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ABSTRACT

We develop a simple, nonparametric approach for estimating the entire distributions

of mutual fund skill and its economic value. Our approach avoids the challenge of

specifying these distributions and accommodates the need to study jointly multiple skill

measures. Our results show that most funds (i) are skilled at detecting profitable trades,

(ii) face tight capacity constraints, and (iii) extract positive value from their skills. We

also show that investment and trading skills vary substantially across funds and are

strongly correlated—two features that are partly driven by the fund strategies. Finally,

we find that the fund industry (i) is not heavily concentrated, (ii) does a good job at

maximizing profits, and (iii) is in a strong bargaining position vis-a-vis investors.



I Introduction

Over the past 50 years, the academic literature on mutual funds has largely focused

on performance. For instance, Carhart (1997), Elton et al. (1993), and Jensen (1968)

find that the aggregate alpha net of fees and trading costs is negative, while recent

studies find the same result for the majority of funds (e.g., Barras, Scaillet, and Wermers

(2010), Harvey and Liu (2018a)). Far less attention has been devoted to the analysis

of mutual fund skill.1 Whereas these two notions are often used interchangeably, they

differ in important ways—a point forcefully made by Berk and van Binsbergen (2015;

BvB hereafter). Skill is defined from the viewpoint of funds, i.e., it measures whether

funds have unique investment and trading abilities that allow them to create value.

In contrast, performance is defined from the viewpoint of investors, i.e., it measures

whether the value created by the funds, if any, is passed on to them.

Measuring skill rather than performance is important for several reasons. First, the

analysis of skill is informative about the prevalence of skilled funds in the population

and the type of skill they exhibit. Second, it determines how many funds create value

from exploiting their skills. Third, it uncovers important features of the mutual fund

industry regarding its levels of concentration, profits, and bargaining power vis-a-vis

investors. Finally, it sheds light on the social value of active management. If funds are

skilled, they may improve price efficiency and the allocation of resources in the economy.

In this paper, we propose an extensive analysis of individual fund skill. We develop a

novel approach to estimate the entire distributions of both skill and its economic value.

To measure skill, we build on the idea that funds have different abilities to invest and

trade. To formalize this idea, we use the economic model of Berk and Green (2004;

BG hereafter) in which the gross alpha αit of each fund decreases with its size qi,t−1:

αi,t = ai− biqi,t−1. Using this model, we uncover two skill dimensions: (i) the first dollar

(fd) alpha ai captures the fund skill at generating investment ideas, and (ii) the size

coefficient bi captures the fund skill at mitigating capacity constraints.2

To measure the economic value of skill, we build on the concept of value added

(see BvB). Similar to the rent of a monopolist, it captures the dollar profit earned by

the fund from exploiting its skill. To distinguish between short- and long-term profits,

we examine: (i) the lifecycle value added vali = E [αi,tqi,t−1] which is measured over

1Notable exceptions include Berk and Green (2004), Berk and van Binsbergen (2015), Grinblatt and
Titman (1989), Jones and Shanken (2005), Pastor, Stambaugh, and Taylor (2015), and Wermers (2000).

2For instance, the Dimensional Fund Advisors (DFA) fund highlights its ability to efficiently trade
small-cap stocks as a source of value creation. In addition to minimizing price impact when buying in
the open market, DFA has developed an expertise in buying large blocks of shares from sellers in need
of liquidity (Cohen (2002)).
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the lifecycle of the fund, and (ii) the steady state value added vassi = E [αi,t]E [qi,t−1]

which is measured once the fund reaches its average size. In total, our framework jointly

considers four different measures, which we denote by mi ∈ {ai, bi, vali, vassi }.
Our estimation approach is nonparametric, simple, and supported by econometric

theory. It is nonparametric as it imposes minimal structure of the shape of each distribu-

tion φ(m). It is simple to apply—intuitively, it is akin to computing an histogram using

as inputs the estimated fund measures m̂i (i = 1, 2, ...) obtained from time-series re-

gressions. Finally, it is supported by econometric theory because we formally derive the

asymptotic properties of the estimated distribution. This allows us to conduct proper

statistical inference in a large and possibly unbalanced panel of funds.

Our approach departs from standard Bayesian/parametric approaches recently used

to infer the distribution of fund performance (e.g., Chen, Cliff, and Zhao (2017), Harvey

and Liu (2018a), Jones and Shanken (2005)). These approaches require a full paramet-

ric specification of the distribution, as well as complex and computer-intensive meth-

ods (Gibbs sampling, Expectation Maximization). Both requirements make these ap-

proaches ill suited for the analysis of skill. First, they are prone to mispecification errors

because theory offers little guidance to specify how skill varies across funds. Second,

they have a limited ability to analyze multiple measures (ai, bi, va
l
i, and vassi ). Whereas

a joint specification is subject to the curse of dimensionality, a separate specification is

vulnerable to inconsistencies because all measures are intertwined.

The main estimation challenge is to adjust for the bias. Because the true fund

measures mi are unobservable, we can only rely on the estimated measures m̂i to infer

the distribution φ(m). This creates an Error-in-Variable (EIV) bias that is reminiscent

of the well-known EIV bias in the two-pass regression (e.g., Jagannathan, Skoulakis,

and Wang (2013), Kan, Robotti, and Shanken (2013), Shanken (1992)). To address this

issue, we develop a simple procedure to obtain the bias-adjusted distribution φ̂
∗
(m).

The bias adjustment is easy to interpret, available in closed form, and validated through

an extensive Monte Carlo analysis. It also plays a major role in the estimation—we

find that the unadjusted distribution φ̂(m) overestimates the probability in the tails,

does not capture the strong asymmetry in skill, and wrongly signals that the majority

of funds fail to create value.

Our empirical analysis of US equity funds between January 1975 and December 2018

reveals several new insights. First, the ability of funds to detect profitable trades is both

widespread and economically significant. Controling for the standard risk factors, we

find that the fd alpha ai is positive for 86% of the funds, and reaches 3.1% per year

on average. Second, individual funds face increasing trading costs as they grow large—
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the size coefficient bi is positive for around 85% of the funds. This result provides

strong support to models that emphasize the importance of capacity constraints in the

mutual fund industry (e.g., BG, Pastor and Stambaugh (2012)). Third, skill generates

substantial economic value. Around 60% of the funds create value over their lifecycle

(vali > 0), which is, on average, equal to $1.7 mio. per year—a number similar to

that reported by BvB ($2.0 mio.). Fourth, the economic value increases dramatically

once funds reach their average size—the steady state value added vassi is positive for

around 70% of the population, and is equal to $7.3 mio. per year on average. The

sharp difference of $5.2 mio. highlights the economic importance of capacity constraints

which lower the value added as size moves away from its average (e.g., bi > 0 implies

vali − vassi < 0).

Our fund-level analysis allows us to uncover two important properties of the skill

dimensions. First, they vary significantly across individual funds. The cross-sectional

volatility for both ai and bi is larger than the average—a finding that is inconsistent

with the common practice of imposing constant values across funds to reduce estimation

errors. Second, they are strongly correlated—the pairwise correlation between the esti-

mated values âi and b̂i is equal to 0.82. This strong heterogeneity and correlation are

partly driven by the strategy followed by funds (Pastor, Stambaugh, and Taylor (2019)).

For instance, investing in small cap stocks involves illiquidity. As trading costs increase,

it becomes more difficult to arbitrage any mispricing away. Consistent with this intu-

ition, we find that small cap funds are more skilled at detecting profitable trades than

large cap funds (higher ai), but also more exposed to capacity constraints (higher bi).

Similarly, high turnover funds trade often which allows them to exploit more profitable

opportunities (higher ai) at the cost of higher trading costs (higher bi).

The difficulty for funds to be skilled along the two dimensions implies that the

industry is not concentrated. The top 5% of the funds only capture 20.8% of the total

value added (versus 92.7% if ai and bi were uncorrelated). The skill correlation also

highlights the importance of the value added in comparing funds. Because funds with

more profitable ideas typically face higher trading costs, it is a priori unclear whether

they dominate funds with more scalable investment strategies. Our empirical analysis

reveals that this is indeed the case for small cap funds, but not for high turnover funds.

Finally, we use our novel approach to study three equilibrium predictions implied by

the BG model. First, we find supportive evidence that funds maximize their value added.

On average, the steady state value added vassi represents 76% of the optimal value added

level va∗i defined as
a2
i

4bi
. Consistent with learning effects, we also find that the lifecycle

value added vali remains far from the optimal level. Because investors must learn about
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ai and bi using past data, their short-term allocation can be quite different from the fund

optimal size (Pastor and Stambaugh (2012)). Second, we confirm that the gross alpha

αi = E[αi,t] is a noisy measure of the value added. In the BG model, αi can take any

value because the fees chosen by funds are arbitrary (see BvB). We show that αi is only

informative about ai, bi, or va∗i if all funds coordinate on specific fee setting policies.

However, our comparison of low and high expense funds provides limited evidence of

such coordination. Third, we clearly reject the prediction that the net alphas are equal

to zero. This result resonates with the previous literature on performance and implies

that additional elements beyond the BG model are necessary to explain why funds have

both negative and positive alphas.

Overall, the extensive value created by the mutual fund industry has several key

implications. It strongly suggests that active funds make financial prices more efficient

and contribute to the allocation of real resources in the economy. Some funds may do

so by participating to the primary market, or by improving the information efficiency of

the secondary market (e.g., Bond, Edmans, and Goldstein (2012)). Importantly, it does

not contradict the famous arithmetic of Sharpe (1991) under which the active industry

cannot beat the market. As noted by Pedersen (2018), this rule breaks down because

passive investors only hold a subset of the market and trade regularly (e.g., IPOs, index

turnover). Therefore, it is not theoretically inconsistent that the industry as a whole

beats the market by trading on information and accomodating liquidity needs. Finally,

the combination of high value added and low performance reveals that mutual funds are

not only skilled, but also in a strong bargaining position vis-a-vis their investors.

Our work is related to several strands of the literature. Recent papers use paramet-

ric/Bayesian approaches to infer the distribution of fund alphas (e.g., Chen, Cliff, and

Zhao (2017), Jones and Shanken (2005), Harvey and Liu (2018a)) or their sensitivity

to capacity constraints (Harvey and Liu (2018b)). Here, we apply a nonparametric ap-

proach to multiple measures of skill and value added. Several studies apply the False

Discovery Rate approach to measure the proportions of funds with non-zero performance

(e.g., Avramov, Barras, and Kosowski (2013), Barras, Scaillet, and Wemers (2010), Fer-

son and Chen (2019)). This paper focuses on skill and estimates the entire distribution

and its moments (not just the proportions). BG, BvB, and Pastor, Stambaugh, and

Taylor (2015) introduce several measures of skill and economic value. We largely build

on their framework to define our different measures. Finally, several studies provide

evidence of capacity constraints at the aggregate level (e.g., Chen et al. (2004), Pastor,

Stambaugh, and Taylor (2015)). Here, we examine the impact of capacity constraints

at the individual fund level to capture the cross-sectional variation in trading skill.
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The remainder of the paper is as follows. Section II presents the different measures

of skill and value added. Section III describes our nonparametric approach. Section IV

presents the mutual fund dataset. Section V contains the empirical analysis, and Section

V concludes. The appendix provides additional information regarding the methodology,

the data, and the empirical results.

II Mutual Fund Skill and Value Creation

A The Two Skill Dimensions of Mutual Funds

We begin our analysis by describing how to measure mutual fund skill. Our framework

incorporates the widely held view that mutual funds are exposed to capacity constraints

(e.g., BG, Pastor and Stambaugh (2012), Perold and Salomon (1991)). In a world

with capacity constraints, each fund faces increasing trading costs as it grows large.

To generate high returns, it must therefore be skilled along two dimensions. The first

dimension captures the fund skill at identifying profitable opportunities. The second

dimension captures the fund skill at minimizing the price impact of its trades.

To measure the two skill dimensions, we use the economic model of BG. We denote

each fund by the subscript i = 1, ..., n, where n denotes the total population size. For

each fund, the total (benchmark-adjusted) revenue from active management is given by

TRi,t = aiqi,t−1, where qi,t−1 denotes the lagged fund size. The total cost is modeled

as a convex function of fund size to capture the impact of capacity constraint, i.e.,

TCi,t = biq
2
i,t−1. Taking the difference TRi,t − TCi,t and dividing by qi,t−1, we obtain

the fund gross alpha,

αi,t = ai − biqi,t−1, (1)

which varies over time in response to changes in fund size.

The BG model is particularly convenient because it provides a simple measurement

of the two skill dimensions. The first dimension is measured by the first dollar (fd)

alpha ai. This measure isolates the profitability of the fund ideas by determining the

gross alpha when qi,t−1 = 0. In other words, we can interpret ai as a ”paper” return

that is unencumbered by the drag of real world implementation (Perold and Salomon

(1991)). The second skill dimension is measured by the size coefficient bi. This coefficient

determines the sensitivity of the gross alpha to changes in fund size—a low value of bi

signals that the fund is able to mitigate capacity constraints.

A key feature of our framework is that we allow ai and bi to be fund specific. There-

fore, we provide the first structural estimation of the BG model at the individual fund
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level. To do so, we treat ai and bi not as fixed parameters, but as random realizations

from the cross-sectional skill distributions φ(a) and φ(b).3 This contrasts with previous

studies which typically impose restrictions on ai and bi. For instance, it is common to

assume that the size coefficient is constant across funds (e.g., Chen et al. (2004), Pastor,

Stambaugh, and Taylor (2015)). Whereas this pooling assumption reduces estimation

errors, it is a priori unclear why capacity constraints have the same impact on all funds.4

Our framework for measuring skill calls for two main comments. First, Equation

(1) embeds different sources of variation in skill that are not explicitly modeled. Skill

can potentially vary because some funds have unique investment and trading abilities.

For instance, some funds may be run by extremely talented managers or benefit from a

high speed of information dissemination within their family (Cici, Jaspesen, and Kempf

(2017)). Skill can also vary because funds follow specific strategies, such as investing in

small cap stocks or trading at high frequencies. These different skill components may

further reinforce each other through complementarity effects—for one, fund families

may want to allocate their top managers to strategies which reward managerial skill

the most (Fang, Kempf, and Trapp (2014)). To formalize these points, we can write

ai = ga(a
f
i , a

m
i , si) and bi = gb(b

f
i , b

m
i , di) for given functions ga and gb, where afi , bfi

denote the unique skills of the fund family (f), ami , bmi denote the unique skills of the

fund manager (m), and the vector di captures the characteristics of the fund strategy.

For instance, Pastor, Stambaugh, and Taylor (2019) specify di as (liqi, turni)
′, where

liqi and turni denote the levels of liquidity and turnover chosen by the fund.

Second, we focus on Equation (1) because it provides a simple and natural starting

point for capturing the two skill dimensions. However, we can easily extend our baseline

framework by writing the gross alpha as αi,t = ai − biqi,t−1 − c′izi,t−1, where zi,t−1 is

the Q-vector of additional variables. The vector zi,t−1 potentially includes (i) different

functions of qi,t−1 to model more complicated cost functions (e.g., fixed operating costs),

and (ii) additional predictors to accommodate richer alpha dynamics (e.g, business cycle

indicators, variables specific to the fund, the family, or the manager).5 In the empirical

section of the paper, we examine several alternatives to our baseline specification.

3To lighten notation, we do not subscript the density φ by the skill measure.
4To control for heterogeneity across funds, it is also common to take the log of qi,t−1 (e.g., Chen et

al. (2004), Harvey and Liu (2018b)) based on the assumption that a relative size change has the same
impact for all funds. Instead of making this assumption, we simply allow bi to vary across funds.

5See, for instance, Chen et al. (2004), Kacperczyk, van Nieuwerburgh, and Veldkamp (2014), Fang,
Kempf, and Trapp (2014), and Pastor, Stambaugh, and Taylor (2015, 2017).
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B The Value Created by Mutual Funds

Equation (1) captures skill but does not measure the economic value associated with ai

and bi. To address this issue, we use the value added (see BvB). This measure is defined

as the economic rent (in dollars) earned by each fund from exploiting its skills. As such,

it has an intuitive interpretation—it is similar to the rent of a monopolist measured as

the markup price of the good multiplied by the total quantities sold.

To formalize this intuition, we consider two measures of the value added. First, we

use the lifecycle (l) value added vali initially proposed by BvB. This measure captures

the value added by the fund during its entire lifecycle:

vali = plim
T→∞

1

T

T∑
t=1

αi,t · qi,t−1 = E [αi,tqi,t−1] = aiE[qi,t−1]− biE[q2
i,t−1], (2)

where E[qi,t−1] and E[q2
i,t−1] denote the time-series averages of the fund size and its

squared value. In other words, vali captures the average value added across the different

size levels at which the fund operates. Second, we propose a new measure referred to

as the steady state (ss) value added vassi . Contrary to vali, this measure captures the

value added once the fund reaches its average, or steady state size E[qi,t−1] :

vassi = plim
T→∞

1

T

T∑
t=1

αi,t · plim
T→∞

1

T

T∑
t=1

qi,t−1 = E [αi,t]E [qi,t−1]

= aiE[qi,t−1]− biE[qi,t−1]2. (3)

Similar to Equation (1), we allow the value added in Equations (2) and (3) to be fund

specific. To capture the heterogeneity across funds, we treat vali and vassi as random

realizations from the cross-sectional distributions φ(val) and φ(vass).

In a world with capacity constraints, the steady state value added is greater than

the lifecycle value added. To see this point, we can write their difference as vali−vassi =

cov(αi,t, qi,t−1) = −bivar(qi,t−1), and note that the covariance between the gross alpha

and size is negative when bi is positive. Therefore, the comparison of the two measures

quantifies the value loss as the fund progressively converges towards the steady state.

It is tempting to estimate how much value the fund creates relative to its total size.

This measure, which is obtained by dividing vassi by E[qi,t−1], is nothing else that the

average gross alpha αi = E[αi,t].
6 However, the gross alpha is a noisy measure of value

6The gross alpha is examined, among others, by Baks, Metrick, and Wachter (2001), Barras, Scaillet,
and Wermers (2010), Jensen (1968), Jones and Shanken (2005), Wermers (2000). It is commonly defined
as the intercept αui from the regression of ri,t on the risk factors ft: ri,t = αui + β′ift + εi,t. Whereas

7



creation precisely because it does not control for differences in fund size (BvB)—a point

that we formally examine below. Such differences arise naturally because funds have

different skill levels and may choose different fee setting policies. Therefore, using the

gross alpha is akin to measuring the monopolist rent with the markup price of the goods,

regardless of how much quantity is sold.

We illustrate this point with a simple example in which (i) fund A has more invest-

ment and trading skills than fund B (aA > aB, bA < bB), but (ii) chooses the same

level of fees fe (see the appendix for a detailed description). If investors compete for

performance (as in the BG model), they allocate money to both funds until they break

even. As a result, both funds produce the same gross alphas: αA = αB = fe. This

implies that the gross alpha fails to capture that fund A creates more value than fund

B. It also fails to capture that fund A is more skilled than fund B on every dimension.

the differences in skill—fund A has more ideas (higher ai) and trades more efficiently

(lower bi).

III Overview of the Nonparametric Approach

A General Motivation

We now describe the approach for estimating the cross-sectional distribution φ(m),

where m ∈ {a, b, val, vass} encompasses all four measures presented above. Our method-

ological contribution is to develop a nonparametric approach that imposes minimal

structure on the skill distribution. As a result, it provides several key advantages.

First, our approach is largely immune to misspecification errors. This is not the

case for standard Bayesian/parametric approaches as they require to fully specify the

shape of the true distribution. In the context of skill, choosing the correct specification

is challenging—whereas theory predicts that performance should cluster around zero,

it offers no such guidance for skill/value added. In principle, we can gain parametric

flexibility by using normal mixture models (e.g., Chen, Cliff, and Zhao (2017), Harvey

and Liu (2018a)). In practice, however, determining the correct number of mixtures is

difficult because the parameters are estimated with significant noise (Cheng and Yang

(2019)), and the statistical inference is technically involved (Chen (2017)).7

αui is not equal to αi because of the omitted size variable qi,t−1, the difference is negliglible if qi,t−1 is
weakly correlated with ft (which is typically the case in the data).

7For example, the classical theory of the log likelihood test statistic does not hold for testing the
number of components in the mixture (e.g., Ghosh and Sen (1985)). Here, inference is even more
complicated because we do not observe the true skill measures, but only the estimated ones.
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Second, it allows for a joint analysis of all four measures. Such analysis is extremely

challenging with Bayesian/parametric approaches because they involve the daunting

task of correctly specifying and estimating a multivariate distribution whose marginals

are potentially mixtures of distributions. To sidestep this challenge, it is tempting to

specify and estimate each distribution separately. However, this procedure is likely to

generate inconsistencies because the measures of skill and value added are theoretically

related as per Equations (1)-(3).

Third, the implementation of the nonparametric approach is simple and fast. Intu-

itively, it is akin to computing an histogram using as inputs the estimated skill measure

of each fund. In contrast, Bayesian/parametric approaches require sophisticated and

computer-intensive Gibbs sampling and Expectation Maximization (EM) methods (e.g.,

Chen, Cliff, and Zhao (2017), Harvey and Liu (2018a), Jones and Shanken (2005)).

Fourth, it provides a unified framework for estimating the skill density function φ,

along with the other characterizations of the distribution, including the cumulative dis-

tribution function Φ(x) = P [mi ≤ x] =
∫ x
−∞ φ(u)du, the moments (e.g., mean, variance),

and the distribution quantile Q(p) = Φ−1(p), where p denotes the probability level.

Last but not least, it comes with a full-fledged inferential theory. We derive the

asymptotic distribution of each estimator as the numbers of funds n and return observa-

tions T grow large (simultaneous double asymptotics with n, T →∞). We can therefore

determine its asymptotic properties and conduct proper statistical inference guided by

theoretical results.

B Estimation Procedure

B.1 Estimation of the Different Measures

Our nonparametric estimation of the density φ(m) consists of three main steps. To

begin, we estimate the two skill dimensions of each fund i in the population (i = 1, ..., n)

using the following time-series regression:

ri,t = αi,t + β′ift + εi,t = ai − biqi,t−1 + β′ift + εi,t, (4)

where ri,t is the fund gross excess return (before fees) over the riskfree rate, ft is a

K-vector of benchmark excess returns, and εi,t is the error term. We interpret Equation

(4) as a random coefficient model (e.g., Hsiao (2003)) in which the coefficients ai, bi, and

βi are random realizations from a continuum of funds. Under this sampling scheme, we
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can invoke cross-sectional limits to infer the density of each skill measure m.8,9

The vector of coefficients γ̂i=
(
âi, b̂i,β̂

′
i

)′
for fund i (i = 1, ....n) is computed as

γ̂i= Q̂−1
x,i

1

Ti

T∑
t=1

Ii,txi,tri,t, (5)

where Ii,t is an indicator variable equal to one if ri,t is observable (and zero other-

wise), T is the total number of periods, Ti =
∑T

t=1 Ii,t is the number of return obser-

vations for fund i, xi,t = (1,−qi,t−1, f
′
t)
′ is the vector of explanatory variables, and

Q̂x,i = 1
Ti

∑T
t=1 Ii,txi,tx

′
i,t is the estimated matrix of the second moments of xi,t. Us-

ing the estimated coefficients along with the size and squared size time-series averages,

qi,1 = 1
Ti

∑T
t=1 Ii,tqi,t−1, qi,2 = 1

Ti

∑T
t=1 Ii,tq

2
i,t−1, we can then infer each of the four

measures as

Fd alpha : m̂i = âi,

Size coefficient : m̂i = b̂i,

Value added
(lifecycle)

: m̂i = v̂ali = âiqi,1 − b̂iqi,2,

Value added
(steady state)

: m̂i = v̂assi = âiqi,1 − b̂iq2
i,1. (6)

Our econometric framework formally accounts for the unbalanced nature of the panel

of mutual fund returns by means of the observability indicators Ii,t. Given that the

number of observations is small for some funds, the inversion of the matrix Q̂x,i can

be numerically unstable and yield unreliable estimates of mi. To address this issue, we

follow Gagliardini, Ossola, and Scaillet (2016) and introduce a formal fund selection rule

1χi equal to one if the following two conditions are met (and zero otherwise):

1χi = 1
{
CNi ≤ χ1,T , τ i,T ≤ χ2,T

}
, (7)

where CNi =

√
eigmax

(
Q̂x,i

)
/eigmin

(
Q̂x,i

)
is the condition number of the matrix Q̂x,i

defined as the ratio of the largest to smallest eigenvalues eigmax and eigmin, τ i,T = T/Ti

is the inverse of the relative sample size Ti/T , and χ1,T , χ2,T denote the two threshold

values. The first condition {CNi ≤ χ1,T } excludes funds for which the time series

8Gagliardini, Ossola, and Scaillet (2016) use a similar sampling scheme to develop testable applica-
tions of the arbitrage pricing theory in a large cross-section of assets.

9We can also apply our approach to estimate the cross-sectional distribution of the fund beta for each
risk factor k (k = 1, ...,K), denoted by φ(βk). As explained below, the common practice of estimating
φ(βk) using the estimated betas is biased because of the error-in-variable (EIV) problem.
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regression is poorly conditioned, i.e., a large value of CNi indicates multicollinearity

problems (Belsley, Kuh, and Welsch (2004), Greene (2008)). The second condition

{τ i,T ≤ χ2,T } excludes funds for which the sample size is too small. Both thresholds

χ1,T and χ2,T increase with the sample size T—with more return observations, the fund

coefficients are estimated with greater accuracy which allows for a less stringent selection

rule. Applying this formal selection rule, we obtain a total number of funds equal to

nχ =
∑n

i=1 1χi .

B.2 Kernel Density Estimation

In the next step, we estimate the skill density function using a standard nonparametric

approach based on kernel smoothing.10 The estimated density φ̂ at a given point m is

computed as

φ̂(m) =
1

nχh

n∑
i=1

1χi K

(
m̂i −m

h

)
, (8)

where h is the vanishing smoothing bandwidth—similar to the length of histogram

bars, h determines how many observations around point m we use for estimation. The

function K is a symmetric kernel function that integrates to one. Because the choice

of K is not a crucial aspect of nonparametric analysis, we use the standard Gaussian

kernel K(u) = 1√
2π

exp(−u2

2 ) for our empirical analysis (see Silverman (1986)).

The following proposition examines the asymptotic properties of φ̂(m) as the number

of funds n and the number of periods T grow large for a vanishing bandwidth h.

Proposition III.1 As n, T → ∞ and h → 0 such that nh → ∞ and
√
nh(h2T +

(1/T )
3
2 )→ 0, we have

√
nh
(
φ̂(m)− φ(m)− bs(m)

)
⇒ N (0,K1φ(m)) , (9)

and the bias term bs(m) is the sum of two components,

bs1(m) =
1

2
h2K2φ

(2)(m), (10)

bs2(m) =
1

2T
ψ(2)(m), (11)

where K1 =
∫
K(u)2du, K2 =

∫
u2K(u)du, φ(2)(m) is the second derivative of the

density φ(m) and ψ(2)(m) is the second derivative of the function ψ(m) = ω(m)φ(m)

10See, for instance, Ait-Sahalia (1996), Ait-Sahalia and Lo (1998), and Stanton (1997) for applications
of kernel density estimation in finance.
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with ω(m) = E[Si|mi = m]. The term Si is the asymptotic variance of the estimated

centered measure
√
T (m̂i−mi) equal to plim

T→∞
(
τ2
i,T

T

T∑
t,s=1

Ii,tIi,sui,tui,s). For each measure,

the term ui,t is given by

Fd alpha : ui,t = e′1Q
−1
x,ixi,tεi,t,

Size coefficient : ui,t = e′2Q
−1
x,ixi,tεi,t,

Value added
(lifecycle)

: ui,t = E[qi,t−1]e′1Q
−1
x,ixi,tεi,t + ai(qi,t−1 − E[qi,t−1])

− E[q2
i,t−1]e′2Q

−1
x,ixi,tεi,t − bi(q

2
i,t−1 − E[q2

i,t−1]),

Value added
(steady state)

: ui,t = E[qi,t−1]e′1Q
−1
x,ixi,tεi,t + ai(qi,t−1 − E[qi,t−1])

− E[qi,t−1]2e′2Q
−1
x,ixi,tεi,t − bi2E[qi,t−1](qi,t−1 − E[q2

i,t−1]), (12)

where e1 (e2) is a vector with one in the first (second) position and zeros elsewhere and

Qx,i = E[xi,tx
′
i,t]. Under a Gaussian kernel, the two constants K1 and K2 are equal to

1
2
√
π

and 1, respectively.

Proof. See the appendix.

Proposition III.1 yields several important insights. First, it shows that the estimated

density function φ̂(m) is asymptotically normally distributed, which facilitates the con-

struction of confidence intervals. As shown in Equation (9), the width of this interval

depends on the variance term K1φ(m) which is higher in the peak of the density.

Second, φ̂(m) is a biased estimator of the true density. Therefore, we can improve

the density estimation by adjusting for the bias term bs(m). Equations (10)-(11) reveal

that bs(m) has two distinct components. The first component bs1 is the smoothing bias,

which is standard in nonparametric density estimation (e.g., Silverman (1986), Wand

and Jones (1995)). The second component bs2, which is referred to as the error-in-

variable (EIV) bias, is non-standard in nonparametric statistics—it arises because we

estimate φ using the estimated measures instead of the true ones (i.e., m̂i instead of

mi).

Finally, Proposition III.1 provides guidelines for the choice of the bandwidth. We

show in the appendix that the choice of the optimal bandwidth h∗—the one that min-

imizes the Asymptotic Mean Integrated Squared Error (AMISE) of φ̂(m)—depends on

the relationship between T and n:11 (i) if T is small relative to n (n2/5/T → ∞), h∗ is

proportional to (nT )−
1
3 ; (ii) if T is large relative to n (n2/5/T → 0), h∗ is proportional to

11The AMISE is defined as the integrated sum of the leading terms of the asymptotic variance and
squared bias of the estimated density φ̂(m).

12



n−
1
5 . Our Monte-Carlo analysis presented in the appendix reveals that given our actual

sample size, the two bandwidth choices produce similar results with a slight advantage

to the first case. Motivated by these results, we use the following bandwidth in our

baseline specification:

h∗ =

(
K2

K1

∫
φ(2)(m)ψ(2)(m)dm

)− 1
3

(n/T )−
1
3 . (13)

B.3 Bias Adjustment

Our final step is to adjust the kernel density estimator φ̂(m) for the bias. To do so,

we apply a Gaussian reference model to compute the two bias terms and the optimal

bandwidth given in Proposition III.1.12 Under this model, the fund measure mi and

the log of the asymptotic variance si = log(Si) are drawn from a bivariate normal

distribution where mi ∼ N(µm, σ
2
m), si ∼ N(µs, σ

2
s), and corr(mi, si) = ρ.

Applying a simple Gaussian reference model has several appealing properties. First,

the computation of the bias and the bandwidth is straightforward because they are all

available in closed form. Second, the bias terms are precisely estimated because they

only depend on the five parameters of the normal distribution θ = (µm, σm, µs, σs, ρ)′.

Third, the analysis of the closed-form expressions allows us to to shed light on (i)

the determinants of the bias, and (ii) the conditions under which the reference model

provides a close approximation of the true bias.

These benefits are not shared by a fully nonparametric approach in which the bias

terms are inferred from Equations (10)-(11) via a nonparametric estimation of the

second-order derivatives φ(2) and ψ(2). Estimating these derivative terms is notoriously

difficult and generally leads to large estimation errors (e.g., Wand and Jones (1995; ch.

2)).13 Similarly, the standard bootstrap usually seriously underestimates the bias in

curve estimation problems (Hall (1990), Hall and Kang (2001)). The design of resam-

pling techniques suitable for our unbalanced setting with an EIV problem is a difficult

and still open question.

The following proposition derives closed-form expressions for the two bias compo-

nents and the optimal bandwidth under the Gaussian reference model as the number of

12A normal reference model underlies the celebrated Silverman rule for the optimal choice of the
bandwidth in standard non-parametric density estimation without the EIV problem. This rule gives

h∗ = 1.06σn−
1
5 , where σ is the standard deviation of the observations (Silverman (1986)).

13We can estimate the rth-derivative of a density φ by kernel smoothing (Bhattacharya (1967)). The
rate of consistency of the derivative estimator equals

√
nh2r+1 and is much slower than the rate

√
nh for

the density estimator. In other words, the higher-order derivatives are imprecisely estimated because
the rate of consistency decreases with the derivative order r.
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funds n and the number of periods T grow large for a vanishing bandwidth h.

Proposition III.2 As n, T → ∞ and h → 0 such that nh → ∞ and
√
nh(h2T +

(1/T )
3
2 )→ 0, the two bias components under the reference model are equal to

bsr1(m) =

[
1

2
K2h

2 1

σ2
m

(m̄2
1 − 1)

]
1

σm
ϕ(m̄1), (14)

bsr2(m) =

[
1

2T
exp(µ̄s)

1

σ2
m

(m̄2
2 − 1)

]
1

σm
ϕ(m̄2), (15)

where m̄1 =
m− µm
σm

, m̄2 =
m− µm − ρσmσs

σm
, µ̄s = µs +

1

2
σ2
s, ϕ(x) =

1√
2π

exp(−1

2
x2)

is the density of the standard normal distribution. In addition, the optimal bandwidth

h∗ is given by

h∗ =

[
K2

K12
√
π

3

4σ5
m

(
ρ4σ4

s

12
− ρ2σ2

s + 1

)
exp

(
µ̄s(1−

ρ2

2
)

)]− 1
3

(n/T )−
1
3 . (16)

Proof. See the appendix

Equations (14)-(15) imply that the smoothing bias is negligible, whereas the EIV bias

is not. As the total number of funds n increases, h∗ shrinks towards zero, which reduces

the magnitude of bsr1(m). With a population of several thousand funds, the smoothing

term becomes negligible for all values of m. In contrast, bsr2(m) depends on the number

of observations T because it arises from the gap between m̂i and mi. Therefore, the

EIV bias remains significant even if the fund population is large. Another insight from

Equation (15) is that the magnitude of the EIV bias depends on the variances of m̂i

and mi which are defined as σ2
m and σ2

m̂ = 1
T exp(µ̄s). As σm increases relative to σm̂,

the EIV bias becomes less severe because it makes the cross-sectional variation of the

estimated measure m̂i more aligned with that of the true measure mi (and vice-versa).

The appendix contains a detailed comparative static analysis of the magnitude of the

EIV bias.

Using the results in Proposition III.2, we can compute the bias-adjusted density

φ̂
∗
(m). We estimate the parameter vector θ using the estimated quantities m̂i and ŝi

(i = 1, ..., nχ). To compute ŝi = log(Ŝi), we use the standard variance estimator of

Newey and West (1987):

Ŝi =
τ2
i,T

T

T∑
t=1

Ii,tû
2
i,t + 2

L∑
l=1

(
1− l

L+ 1

)[
τ2
i,T

T

T−l∑
t=1

Ii,tIi,t+lûi,tûi,t+l

]
, (17)

where ûi,t is obtained by plugging the estimated quantities for the chosen measure in
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Equation (12), and L is the number of lags to capture potential serial correlation. Then,

we plug the elements of the estimated vector θ̂ into Equations (14)-(16) to compute the

bias terms b̂s
r

1(m), b̂s
r

2(m), and the optimal bandwidth h∗. Finally, we remove the bias

terms from the unadjusted density in Equation (8) to obtain the bias-adjusted density

estimator

φ̂
∗
(m) = φ̂(m)− b̂s

r

1(m)− b̂s
r

2(m). (18)

An important question is whether the EIV bias obtained with the normal reference

model provides a good approximation of the true bias (i.e., whether bsr2(m) ≈ bs2(m)).

Two compelling arguments show that this is the case. First, Proposition III.1 shows

that the true bias bs2(m) is a function of the second-order derivative of the true density

φ. As long as φ peaks around its mean, this derivative takes negative values in the

center and positive values in the tails—exactly like the function bsr2(m).14 Second,

our extensive Monte-Carlo analysis calibrated on the data reveal that the bias-adjusted

density captures the true density remarkably well (see the appendix).15

With the bias-adjusted density at hand, we can easily estimate the cumulative distri-

bution function (cdf), moments, and quantiles via numerical integration. For instance,

the proportion of funds with a negative mi is given by π̂− =

∫ 0

−∞
φ̂
∗
(u)du. An alterna-

tive approach is to directly use the bias-adjusted estimators of all these quantities (cdf,

moments, quantiles) which are derived in the appendix. Whereas both approaches are

asymptotically equivalent, the Monte-Carlo analysis reveals that the numerical integra-

tion produces a lower Mean Squared Error (MSE). Motivated by these results, we use

this approach in the empirical section of the paper.

IV Data Description

A Mutual Fund Data and Benchmark Model

We conduct our analysis on the entire population of open-end actively managed US

equity funds. We collect monthly data on net returns and size, as well as annual data

on fees, turnover, and investment objectives from the CRSP database between January

1975 and December 2018. This allows us to construct the time-series of the gross return

14The two terms bs2(m) and bsr2(m) only differs if φ is a mixture of distributions whose components
have means extremely far away from one another. In this case, we have a trough instead of a peak
around the mean.

15Our Monte-Carlo analysis resonates with the one performed by Silverman (1986) for the standard
non-parametric density estimation without the EIV problem. He shows that the rule of thumb for the
bandwidth choice, which relies on a normal reference model, is quite robust to departures from normality.
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and size for the population and different groups (small/large cap, low/high turnover).

To estimate the regression for each fund in Equation (4), we use the four-factor

model of Cremers, Petajisto, and Zitzewitz (2012; CPZ hereafter) which includes the

vector ft = (rm,t, rsmb,t, rhml,t, rmom,t)
′, where rm,t, rsmb,t, rhml,t, and rmom,t capture

the excess returns of the market, size, value, and momentum factors. The CPZ model

departs from the model of Carhart (1997) in two respects: (i) rm,t is proxied by the

excess return of the S&P500 (instead of the CRSP market index), and (ii) the size and

value factors are index-based and measured as the return difference between the Russell

2000 and S&P500, and between the Russell 3000 Value and Russell 3000 Growth.16

The motivation for using the CPZ model is that it correctly assigns a zero alpha

to the S&P500 and Russell 2000. Both indices cover about 85% of the total market

capitalization and are widely used as benchmarks by mutual funds. On the contrary,

the Carhart model fails to price these indices—for one, the Russell 2000 has a negative

alpha of -2.4% per year over the period 1980-2005. Therefore, small cap fund that use

this index as a benchmark are likely be classified as unskilled under the Carhart model.17

To apply the fund selection rules in Equation (6), we follow Gagliardini, Ossola,

and Scaillet (2016) and select funds for which the condition number of the matrix of

regressors Q̂x,i is below 15 and the number of monthly observations is above 60 (CNi ≤15

and τ i,T ≤ 8.8). These selection criteria produce a final universe of 2,291 funds. The

appendix provides more detail on the construction of the mutual fund dataset.

B Summary Statistics

Table I reports summary statistics for our mutual fund sample. To this end, we construct

an equally-weighted portfolio of all existing funds at the start of each month. In Panel

A, we report the first four moments and first-order autocorrelation of the portfolio gross

excess returns. In the entire population, the portfolio achieves a risk-return tradeoff

similar to that of the aggregate stock market (8.8% and 15.3% per year). It also exhibits

a negative skewness (-0.75) and a positive kurtosis (5.34). The results are similar across

groups, except for the small cap portfolio which produces higher mean and volatility.

In Panel B, we report the estimated portfolio betas and adjusted R2 obtained with

the CPZ model. We find that small cap funds are heavily exposed to the size factor

(0.77), which is also the case for high turnover funds. (0.50). Finally, Panel C reports

16Because the factors in the CPZ model are not available between January 1975 and December 1978,
we replace them with the values obtained from the Carhart model. Focusing instead on the period
January 1979-December 2018 does not change our main results.

17In the appendix, we re-estimate the distributions of skill and value added using alternative models.
With the exception of small-cap funds, we find that the results remain largely unchanged.
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additional characteristics that include the average number of funds in the portfolio and

its average size, fees, turnover, and age (obtained by averaging across funds and then

over time). Consistent with intuition, small cap funds manage a small asset base—the

average size is equal to $371 mio. versus $1,286 mio. for large cap funds. We also find

that high turnover funds trade very aggressively. The annual average turnover reaches

175% versus 43% for low turnover funds.

Please insert Table I here

V Empirical Results

A Skill and Value Creation in the Mutual Fund Industry

A.1 The Two Skill Dimensions

We begin our analysis with a bird’s eye view of the two skill dimensions among mutual

funds—the fd alpha and size coefficient. We estimate ai and bi for each fund (as per

Equation (12)), and then use our nonparametric approach to infer the cross-sectional

skill distributions φ(a) and φ(b). To describe their properties, we compute the bias-

adjusted estimates of (i) the moments (mean, variance, skewness, kurtosis), (ii) the

proportions of funds with negative and positive skill measures denoted by π̂− and π̂+,

and (iii) the distribution quantiles at 5% and 95% denoted by Q̂(5%) and Q̂(95%) (see

the appendix for the computations). The summary statistics for φ(a) and φ(b) are shown

in Panel A of Table II. To ease interpretation, we standardize b̂i for each fund in Table II

so that it corresponds to the change in gross alpha for a one standard deviation change

in size.

We find overwhelming evidence that mutual funds are able to detect profitable in-

vestment ideas. The fd alpha is positive for 85.8% of the funds in the population, and

economically large with an average level of 3.1% per year. At the same time, individual

funds face increasing trading costs as they grow large. Around 85% of the funds have a

positive size coefficient whose magnitude is typically large. On average, a one standard

deviation increase in size reduces the gross alpha by 1.4% per year. In terms of level,

a $100 mio. increase in size lowers the gross alpha by 0.2%.18 These results provide

strong support to models that emphasize the importance of capacity constraints for

18We have b̄
σ̄q

100 mio= 1.4
6.5

= 0.2% per year, where b̄ = 1.4% is the average size coefficient, and

σ̄q = $650 mio. is the average volatility of fund size (i.e., time-series volatility averaged across funds).
This number provides a lower bound for the average impact of a $100 mio. increase because of the
Jensen inequality, i.e., E[ bi

σqi
] > E[bi]

E[σqi]
= b̄

σ̄q
.
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mutual funds (e.g., BG, Pastor and Strambaugh (2012)).

Whereas the presence of funds with a negative size coefficient (bi < 0) is not consis-

tent with the BG model, the economic significance of this phenomenon is weak. These

funds only represent 14.3% of the population and their size coefficient are close to zero

(i.e., Q̂(5%) = −0.6% per year). For these specific funds, it could be the case that

the cost structure TCi,t is more complex than in the BG model (e.g., fixed costs). In

the appendix, we find that adding fixed costs (using 1/qi,t−1) and non-linear size effects

(using q2
i,t−1 and q3

i,t−1) reduces the number of funds with negative b̂i from 521 to 364

and 260, respectively. Therefore, alternative cost specifications help to reduce but do

not eliminate all funds with negative b̂i.

Please insert Table II here

A.2 The Value Added

Next, we examine the value created by mutual funds—the lifecycle and steady state

value added. For each fund, we estimate vali and vassi as a function of the two skill

dimensions ai and bi (as per Equation (12)), and then use our nonparametric approach

to infer the cross-sectional distributions φ(val) and φ(vass). The summary statistics for

both distributions are reported in Panel B Table II.

Overall, individual funds create significant value from their investment and trading

decisions. Over their lifecycle, close to 60% of the funds produce a positive value added

which, on average, reaches $1.7 mio. per year—a number that is comparable to the

value of $2.0 mio. reported by BvB (their Table 7).19 The total value created by mutual

funds is even more striking at the steady state. Once funds reach their average size, the

value added is positive for 70% of the population and is, on average, equal to $7.3 mio.

per year. Consistent with our previous analysis, vassi is typically larger than vali because

bi is typically positive (see Panel A).20 The strong magnitude of this gap—$5.2 mio. per

year on average—further emphasizes the economic importance of capacity constraints.

The minority of funds with negative value added is comprised of two types: (i)

”charlatans” that have no profitable investment ideas (ai < 0), and (ii) funds that grow

too large to maintain a positive alpha (ai < biqi,t−1). With a negative proportion for

the fd alpha equal to 14%, we conclude that charlatans represent around 40% of the

19Their baseline average of 3.2 mio. per year is not comparable because it includes the fund diversifi-
cation services (i.e., the benchmark returns are computed on a net basis (not gross)).

20We can interpret this result using the Jensen inequality. We can write vali = E[vai(qi,t−1)] and
vassi = vai(E[qi,t−1]), where vai(qi,t−1) = (ai− biqi,t−1)qi,t−1. Because vai(qi,t−1) is a concave function,
we have E[vai(qi,t−1)] < vai(E[qi,t−1]).
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funds with negative value added.21 It is a priori surprising that the value added is

negative given that funds have the option to invest passively. It could be the case that

charlatans take active positions to hide their lack of skill (Berk and van Binsbergen

(2019)). Another possibility is that some funds may grow too large as investors and

managers learn about the skill measures ai and bi—a point we revisit below.

A.3 Impact of the EIV Bias

Accounting for the EIV bias adjustment is essential because it largely changes the shape

of the cross-sectional distributions. First, it removes probability mass from the tails of

the unadjusted density φ̂(m). Intuitively, using the estimated skill measures m̂i intro-

duces noise and thus inflates the probability of observing extreme skill levels. Second,

it induces a positive skewness because the correlation ρ between each skill measure and

estimation variance is positive (ρ̂ ≈ 0.25).22 In other words, funds with better invest-

ment ideas (high ai), tighter capacity constraints (high bi), and larger value added (high

vai) tend to hold concentrated portfolios with higher volatility.

To quantify these adjustments, Table III and Figure 1 compare the bias adjusted

and unadjusted distributions φ̂
∗
(m) and φ̂(m) for (i) the two skill dimensions (Panel A),

and (ii) the value added (Panel B). Apart from the mean which is not subject to the

EIV bias, the differences are striking. The unadjusted quantiles are implausibly large

because they are heavily influenced by large observations. For one, the spread between

the two quantiles for the lifecycle value added is 2.3 times larger than the adjusted

spread. In addition, the unadjusted distribution fails to capture the strong asymmetry

in skill across individual funds.

Put together, these results change the economic interpretation of the results. For

instance, the unadjusted statistics for the lifecycle value added lead to the wrong con-

clusion that the majority of funds destroy value (π̂− = 54.2%). In addition, they reveal

that 22.5% of the funds have a negative size coefficient—a suspiciously large number

given that equity funds typically do not trade in OTC markets where transaction costs

decrease with size (Pedersen (2015; ch. 5)). In contrast, the adjusted statistics cap-

ture the asymmetric nature of capacity constraints—whereas bi is close to zero for un-

constrained funds, it can rise significantly for funds facing tight capacity constraints

21The average proportion of funds with negative value added π̂−va (lifecycle and steady state) is equal to
36.6% = (41.9+31.1)/2. Therefore, the proportion of charlatans is equal to π̂−a /π̂

−
va = 40.0% (14.0/36.6).

22Formally, Equation (15) shows that when ρ is positive, the bias adjustment induces positive skewness
because the probability mass is not transfered around the mean, but to its right (µm + ρσmσs > µm).
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(Q̂(95%) = 3.7%).23

Please insert Table III and Figure 1 here

B A Deeper Look at Individual Fund Skill

B.1 The Variation in Skill across Funds

An important insight from Table II (Panel A) is that the two skill dimensions vary sig-

nificantly across funds. For instance, we find that some funds exhibit stellar investment

skills—5% of them exhibit a fd alpha above 8.1% per year, which is 2.6 times larger than

the average. We also find that funds largely differ in their ability to mitigate capacity

constraints as the volatility of bi is as large as the average (1.4% per year). This find-

ing is inconsistent with the commonly used panel regression approach which imposes a

constant size coefficient b across all funds. It also explains why this approach provides

weak statistical evidence of capacity constraints (as discussed by Pastor, Stambaugh,

and Taylor (2015)). When bi varies across funds, this variation inflates the standard

deviation of the estimated b̂ (Pesaran and Yagamata (2008)). As a result, b̂ may not be

statistically significant even if most funds are exposed to capacity constraints.

As discussed in Section II, the cross-sectional variation in skill is potentially driven

by the specific strategies followed by funds. To examine this issue, we measure skill

among funds with different portolio liquidity (small/large cap) and turnover (low/high

turnover)—two key determinants of the fund strategy (Pastor, Stambaugh, and Taylor

(2019)). The results of this analysis are summarized in Table IV and Figure 2.

Overall, the results confirm that the two skill dimensions vary across strategies. The

average values of the fd alpha and size coefficient vary between 1.8% and 4.7% per year,

and between 1.0% and 1.8% per year. At the same time, we still observe substantial

cross-fund variation in skill within each group. This implies that some funds exhibit

unique investment and trading skills that go beyond the specific strategies they follow.

We find that small cap funds largely dominate large cap funds along the first skill

dimension, whereas the opposite holds for the second skill dimension. These results are

consistent with the difference in liquidity between the two groups. Because small cap

stocks are illiquid, they are likely to exhibit greater mispricing (higher ai)—as noted

by Hong, Lim, and Stein (2000), these stocks are largely untouched by mutual funds.24

23More generally, our analysis implies that any boxplot obtained with standard statistics softwares
must be interpreted with caution if the variable of interest is an estimated quantity.

24Small cap stocks may also yield a higher fd alpha because have a higher idiosyncratic volatility and
may therefore provide more opportunities for stock picking (e.g., Duan, Yu, and McLean (2009)).
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At the same time, the cost of trading small cap stocks is higher which makes capacity

constraints more severe (higher bi).

We document a similar pattern for high versus low turnover funds. By rebalancing

their portfolio more often, high turnover funds are able to exploit a larger number of

profitable opportunities (higher ai). However, they alo incur higher transaction costs

(higher bi). These findings clarify the relation between skill and turnover. Whereas

previous studies argue that turnover signals superior skill (e.g., Chen, Jegadeesh, and

Wermers (2000), Grinblatt and Titman (1989)), other studies favor the opposite in-

terpretation (e.g., Carhart (1997), Elton et al. (1993)). Our results show that both

conclusions hold provided that the right dimension of skill is examined—high turnover

funds are skilled at generating profitable ideas, but unskilled at mitigating capacity

constraints.

Please insert Table IV and Figure 2 here

B.2 The Correlation between the Two Skill Dimensions

Our cross-sectional analysis of skill uncovers another important result: the two skill

dimensions are strongly correlated. In the entire population, the pairwise correlation

between the estimated coefficients âi and b̂i reaches 0.82. This correlation is partly

explained by the fund strategy—as shown in Table IV, liquidity and turnover change

the two skill dimensions simultaneously. In other words, ai and bi are correlated because

they both depend on the vector di = (liqi, turni)
′ that characterizes the fund strategy.

The implications of this positive correlation are twofold. First, the mutual fund in-

dustry is not heavily concentrated. We find that the top 5% of the funds only capture

20.8% of the total value added at the steady state.25 This lack of concentration arises

because few funds are skilled along the two dimensions, which limit their potential to

create value. A simple calculation confirms this point—if ai and bi were uncorrelated,

we would observe a high degree of concentration, i.e., the top 5% would capture 92.7%

of the total value added.26 This result contrasts with the high level of asset concen-

tration observed among fund families (Berk, van Binsbergen, and Liu (2017)). One

plausible explanation is that there are cost benefits in forming large families such as

25We denote the total value added for the population and the top 5% as V̂ = nµ̂ssva and V̂top =
n · 0.05Ê(vassi | vassi > Q̂(95%)), where µ̂vass is the average value added. We compute the expectation

term via a numerical integration of φ̂
∗
(vass) to obtain V̂top/V̂ = 22.8%.

26For each fund i, we simulate 10,000 values of ai and bi by drawing them independently from the
vectors of estimated positive fd alphas and size coefficients. We then compute the value added by
assuming that funds choose their level optimally such that vai = a2

i /(4bi) (as per Equation (19) below).
Finally, we compute the ratio V̂top/V̂ to obtain 92.7%.
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shared resources and improved trading commissions (Chen et al. (2004)).

Second, it becomes essential to aggregate the two skill dimensions to determine which

types of funds create more value. Because funds with more profitable ideas typically

face tighter capacity constraints, it is a priori unclear whether they dominate funds able

to scale up less profitable trading ideas. To examine this issue, Table V compares the

value added (lifecycle and steady state) among the different fund groups. We find that

the skill of small cap funds at identifying profitable trades more than compensates for

their greater exposure to capacity constraints. At the steady state, these funds produce

a positive value more often (π̂+ = 80.9% vs 62.4%) and its level is higher on average

($7.6 mio. vs $4.5 mio.). We also find that low turnover funds unambiguously dominate

high turnover funds (both in terms of average and proportion). In short, small cap funds

and low turnover funds both create more value, but rely on different skill dimensions—

investment skills for the former versus trading skills for the latter.

Please insert Table V here

C Equilibrium Considerations

C.1 Do Skilled Funds Maximize their Value Added?

We now study the equilibrium implications of the BG model which result from the

interaction between (i) a set of skilled funds in scarce supply and (ii) a large number

of rational investors that compete for performance. Solving for the equilibrium yields

several intuitive predictions about skill and value added that we can examine empirically

using our nonparametric approach.

The first one is that mutual funds maximize the value added from exploiting their

skills. In the BG model, each fund has investment ideas (ai > 0), but a limited ability

to scale up its strategy (bi > 0). Its objective is to maximize profits πi under the

constraint that the fees fe,i are equal to the gross alpha αi = ai− biqi (so that investors

break even). Maximizing profits is equivalent to maximizing the value added because

πi = fe,iqi = αiqi = vai. Replacing αi with ai − biqi and using the first order condition
∂vai
∂qi

= 0, we can write the optimal size as q∗i = ai
2bi
, and the optimal value added as

va∗i = aiq
∗
i − biq∗2i =

a2
i

4bi
.

As a prelude to our main analysis, we estimate the cross-sectional distribution of

the optimal value added, denoted by φ(va∗). The nonparametric estimation procedure

described in Section III remains unchanged—the only difference pertains to the definition
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of the estimated measure m̂i and its associated error term ui,t:

m̂i = v̂a∗i =
â2
i

4b̂i
, (19)

ui,t =
2ai
4bi

e′1Q
−1
x,ixi,tεi,t −

a2
i

4b2i
e′2Q

−1
x,ixi,tεi,t, (20)

where we impose the restriction that âi and b̂i are positive (which holds for 72% of the

funds). This condition guarantees that we focus on skilled funds for which the optimal

value added is well defined (i.e., v̂a∗i is positive). The summary statistics for φ(va∗)

in Table VI (Panel A) reveal that the maximum rent that funds could earn reaches an

average of $14.1 mio. per year. The optimal value added also varies significantly, both

in the population and across fund groups. For instance, we find that low turnover funds

produce the combination of skill with the highest profit potential.

Next, we turn to the first prediction of the model by measuring the difference be-

tween the optimal value added va∗i and its observed level, measured either with vai,l or

vai,ss. To do so, we estimate the distributions φ(va∗− val) and φ(va∗− vass) using our

nonparametric approach where m̂i is given by

m̂i = v̂a∗i − v̂ai,l =
â2
i

4b̂i
− âiqi,1 − b̂iqi,2, (21)

m̂i = v̂a∗i − v̂ai,ss =
â2
i

4b̂i
− âiqi,1 − b̂iq2

i,1, (22)

and ui,t is set equal to the difference between the error term for v̂a∗i in Equation (20)

and the error term for v̂ai,l or v̂ai,ss in Equation (12).

Table VI (Panel B) reveals that the lifecycle value added is very far from its optimal

level—the average difference between va∗i and vai,l reaches $13.5 mio. per year. An

intuitive explanation for this large gap is the presence of learning effects. If investors

do not observe the skill dimensions ai and bi, they must learn about them using past

data (Pastor and Stambaugh (2012)). Therefore, the amount of money they are willing

to invest can be quite different from the level at which the value added is maximized.

In this context, the analysis of the steady state value added is informative. Whereas

the impact of learning can be large, it should weaken once funds reach their average

size. This analysis provides strong support to the BG model. We find that the average

difference between va∗i and vai,ss drops to $3.4 mio. per year. Therefore, funds extract

more than 75% of the optimal profits once they reach their average size. The strong

pairwise correlation of 0.94 between v̂ai,ss and v̂a∗i confirms that funds with higher skill

23



potential do create more value.27

Our results further show that 79% of the funds have an average size above its optimal

level (the average difference equals $199 mio.). In the BG model, qi,1 being above q∗i
does not imply that funds fail to maximize the value added—if they simply invest the

additional amount qi,1−q∗i passively, they can keep va∗i unchanged. However, this is not

the case—for these funds, vai,ss is $3.4 mio. lower than va∗i on average. This suggests

that fund managers are also unsure of their skill levels and must learn about them

alongside with investors.

Please insert Table VI here

C.2 Is the Gross Alpha a Noisy Measure of the Value Added?

The second prediction of the BG model is that the gross alpha αi is a noisy measure of

the value added. The model implies that the gross alpha must be equal to fees because

investors break even. However, it does not pin down the level of fees—lower fees simply

lead to a higher fund size without changing total profits va∗i = a1q
∗
1−b1q∗21 =

a2
i

4bi
. Given

that fees are arbitrary, the gross alpha can a priori take any value.

The information contained in the gross alpha depends on whether all funds coordi-

nate on three specific fee setting policies.28 Under Policy 1, the gross alpha is informative

about the value added. In this case, all funds set fees such that the size is constant across

all funds at q̄, which yields αi =
a1q∗1−b1q∗21

q̄ = 1
q̄
a2
i

4bi
÷va∗i . Under Policy 2, the gross alpha

is informative about the first skill dimension (fd alpha). All funds set fees such that the

size equals the optimal level q∗i , which yields αi =
aiq
∗
i−biq∗2i
q∗i

= ai
2 ÷ ai. Under Policy 3,

the gross alpha is informative about the second skill dimension (size coefficient). Here,

all funds set fees such that the size equals its squared optimal level q∗2i , which yields

αi =
aiq
∗
i−biq∗2i
q∗2i

= bi. This analysis is summarized in Table VII.

Please insert Table VII here

To assess the information contained in the gross alpha, we compare funds with

different levels of expenses (fees). For each group, we apply our nonparametric approach

to estimate the cross-sectional distributions of each measure (gross alpha, value added,

27As noted by Berk, van Binsbergen, and Liu (2017), fund families can facilitate the convergence
towards the optimal value added by reallocating capital across managers (via promotions and demotions).

28Here, we build on the analysis of BvB and extend it to include all four measures: the gross alpha,
the value added, the fd alpha, and the size coefficient.
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and the two skill dimensions). For the gross alpha, we define m̂i and ui,t as:

m̂i = α̂i = âi − b̂iqi,1,

ui,t = e′1Q
−1
x xtεi,t − E[qi,t−1]e′2Q

−1
x,ixi,tεi,t − bi(qi,t−1 − E[qi,t−1]).

Consistent with the BG model, Table VIII (Panel A) shows that the gross alpha and

the value added are essentially unrelated. On average, high expense funds exhibit higher

gross alpha than low expense funds (1.2% vs 0.7% per year). However, they produce

significantly lower value added on average ($5.4 vs $11.7 mio. for vassi ). In other words,

funds do not set fees such that they all manage the same size (Policy 1)—instead, we

observe a substantial variation in size across funds (the volatility equals $2,049 mio.).

In contrast, Panel B reveals that the gross alpha is related to the fd alpha. On

average, high expense funds have a significantly higher fd alpha (4.0% vs 2.2%). In

addition, α̂i and âi are positively correlated (0.49). These results suggest that some

funds set fees so as to reach their optimal size q∗i (Policy 2). At the same time, the

moderate correlation between α̂i and âi leaves room for alternative fee policies. For

instance, Habib and Johnson (2016) note that some funds prefer to charge low fees and

manage a large asset base to mitigate several institutional constraints.29 Consistent

with this analysis, we find that fund size is negatively correlated with fees (-0.23).

Please insert Table VIII here

C.3 Do Funds Extract All the Rent from their Skill?

The third prediction of the BG model focuses on the net alpha earned by investors

defined as αni = αi − fe,i. In the model, skilled funds have bargaining power because

they are in scarce supply. Therefore, they extract all the rent from their skills, leaving

investors with a zero net alpha.

To examine this prediction, we estimate the cross-sectional distribution of the net

alpha φ(αn). Applying our nonparametric approach, we define m̂i and ui,t as

m̂i = α̂ni = âi − b̂iqi,1 − f̄e,i, (23)

ui,t = e′1Q
−1
x xtεi,t − E[qi,t−1]e′2Q

−1
x,ixi,tεi,t

−bi(qi,t−1 − E[qi,t−1])− (fe,i,t − f̄e,i), (24)

29The Investment Company Act imposes diversification rules on 75% of the portfolio which prevent
funds from exhausting their investment opportunities if they are too small. Holding a portion of the
portfolio passively managed also allows funds to hide their informed trades and obtain better prices.
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where fe,i,t denotes the monthly fund fees, and f̄e,i denotes the average fees computed

as f̄e,i = 1
Ti

∑T
t=1 Ii,tfe,i,t.

We are not the first to estimate the entire net alpha distribution—recent studies have

used standard parametric approaches to estimate φ(αn) (e.g., Chen, Cliff, and Zhao

(2017), Harvey and Liu (2018a)). As discussed in Section III, using a nonparametric

approach brings several advantages. For one, it is less prone to misspecification errors

because it does not require to specify the shape of φ(αn). It also simpler and faster to

apply because it does not require complex and computer-intensive algorithms such as

Expectation Maximization (EM) methods.

Table IX shows that the fund alphas cluster around zero—the average is equal to

-0.5% per year and 70% of the funds have net alphas between ±1.5% per year. How-

ever, several aspects of the alpha distribution are not consistent with the BG model.

Consistent with the previous literature, we find ample evidence of negative performance

(π̂− = 66.3%). For some funds, the negative alphas are economically highly significant

(Q̂(5%) = −2.7% per year). In addition, a third of the funds deliver positive alphas

(π̂+ = 34.7%)—a number that is significantly higher than the one obtained with the

False Discovery Rate (Barras, Scaillet, and Wermers (2010)). This difference reflects

the improved power of the nonparametric approach in detecting funds with alphas close

to zero.

Overall, we need additional elements beyond the BG model to explain the shape of

φ(αn). Positive alphas can be rationalized by the presence of search costs. If investors

have to spend resources to detect skilled funds, Garleanu and Pedersen (2018) show

that they need to be compensated for these costs in equilibrium. For negative alphas, a

common view is that funds are able to exploit unsophisticated investors and charge them

excessive fees (e.g., Christoffersen and Musto (2002), Gruber (1996)). The behaviour

of these investors drives a positive wedge between fees and gross alphas that is left

unexplained by any rational model.

Please insert Table IX here

D Overall Implications for the Mutual Fund Industry

Our empirical analysis reveals that a large majority of funds create value from exploit-

ing their skills and contribute to make equity prices more informative. This role is

socially valuable because it improves the allocation of resources to the most promising

new companies. Individual funds may do so directly by participating to initial public

offerings. More indirectly, they can improve the liquidity and efficiency of secondary
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markets, which is likely to reduce the cost of capital in the primary market (Cochrane

(2013), Pedersen (2018)). In addition, active funds can have an impact on the economy

if the cash flows of firms depend on the efficiency of the secondary market—a point sum-

marized by Bond, Edmans, and Goldstein (2012). For instance, managers may learn

from equity prices and improve their real investment decisions. They may also be better

incentivized to exert effort if it is accurately reflected in prices.

The structure of the active industry determines how this social function is performed.

First, the industry is not heavily concentrated because a minority of funds are skilled

along the two dimensions (i.e., few have a high ai and low bi). Therefore, each fund

contributes to making prices more efficient. Second, we find that mutual funds do a

good job at maximizing their value added. In other words, they internalize the impact

of capacity constraints on their portfolio returns. This implies that prices are less efficient

than in a fully competitive equilibrium in which the active industry would be larger.

Our results that the active industry as a whole creates value is not inconsistent with

the famous arithmetic of Sharpe (1991). This rule states that if passive investors do not

trade and hold the market, the aggregate return of active investors must be equal to the

market return. In reality, passive investors (i) do trade regularly when companies issue

new shares (IPOs, SEOs) and the composition of popular indices changes, (ii) do not

hold the market because they concentrate on a subset of assets included in the indices

they track. Therefore, even if we assume that mutual funds represent the only active

investors, they can still beat the market by trading based on information and providing

liquidity to passive investors (Pedersen (2018)).30

Finally, we provide strong evidence that the value added is positive and the net

alpha is negative. We therefore conclude that individual funds are not only skilled—

they are also in a strong bargaining position vis-a-vis investors. Our results show that

this position may be stronger than initially thought. Whereas a common explanation

for negative alphas is that funds overcharge relative to their skill, some of them actually

destroy value (i.e., their value added is negative). Yet, these funds still charge fees

to investors which fail to detect charlatans and/or incorporate the negative impact of

capacity constraints.

30To illustrate this point, suppose that a set of passive investors track the Russell 2000. Because this
index exhibits an annual turnover close to 50% per year, theses investors are forced to rebalance their
portfolios. When active investors accomodate these trades, they collectively gain between between 0.4%
and 0.8% per year (Petajisto (2011)).
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E Additional Results

E.1 Alternative Asset Pricing Models

Our estimation of mutual fund skill possibly depends on the choice of the asset pricing

model. To examine the issue, we repeat our analysis using the four-factor model of

Carhart (1997) and the five-factor model of Fama and French (2015). Overall, the

distributions of the two skill dimensions remain largely unchanged. We observe two

noticeable differences. First, the average fd alpha among small cap funds drops from

4.6% to 3.1% per year under the Carhart model, which is consistent with the analysis

of CPZ. Second, the proportion of funds with a positive fd alpha decreases from 86.0%

to 74.8% with the Fama-French model. This reduction arises because some funds tilt

their portfolios toward profitability- and investment-based strategies.

E.2 Fund Size and the Small Sample Bias

As noted by Pastor, Stambaugh, and Taylor (2015), the estimated size coffefficient b̂i

can potentially be biased because the return residual εi,t is positively correlated with the

change in size εqi,t, i.e., εi,t = φiεqi,t + υi,t. Whereas this bias vanishes asymptotically,

it may have a significant impact for funds with a small sample size. To control for this

bias, we use the approach of Amihud and Hurvich (2004) and add a proxy for εqi,t to

the set of regressors in Equation (4) (see the appendix for details). Theory predicts that

the bias should be negative because E[b̂i− bi] = −E[ρ̂qi−ρqi]φ >0 (Stambaugh (1999)).

Consistent with this prediction, we find that the average size coefficient increases from

1.4% to 1.6% per year. Therefore the results strengthen the importance of capacity

constraints for the mutual fund industry.

E.3 Alternative Predictors of the Gross Alpha

We examine alternative specifications to model the dynamics of the gross alpha. To

begin, we follow Harvey and Liu (2018b) and use the industry-adjusted size: αi,t =

ai− biqreli,t−1, where qreli,t−1 is defined as the ratio between the size of the fund and that of

the active fund industry. The rationale for this specification is that the relation between

the gross alpha and size may vary with the overall size of the industry. We find that our

results remain largely unchanged.

We also examine whether the gross alpha is driven by industry-wide capacity con-

straints: αi,t = ai − biqt−1, where qt−1 is defined as the ratio of the industry size on the

total market capitalization. Whereas we confirm the result of Pastor, Stambaugh, and
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Taylor (2015), this model is difficult to estimate at the individual fund level because

the coefficients are poorly estimated—the condition number CNi increases significantly,

which implies that only 373 funds satisfy the selection criterion in Equation (6).

Finally, we include the age of the fund as an additional predictor of the gross alpha:

αi,t = ai − biqi,t−1 − ciagei,t−1. Consistent with Pastor, Stambaugh, and Taylor (2015),

we find that age has a negative impact as 68% of them have a positive coefficient ci.

Controling for age also leaves the proportions of funds with positive fd alpha and size

coefficient largely unchanged.

E.4 Investor Learning and Skill Priors

Our nonparametric approach yields estimates of the entire cross-sectional skill distribu-

tion. Therefore, it provides relevant information for modeling the prior distributions of

ai and bi in an empirical Bayes setting. For instance, BG examine the prior distribution

that investors have on the fd alpha. Calibrating their model using data on fund returns,

survival rates, and flows, they find that around 80% of the funds achieve a positive fd

alpha—a proportion that is very close to the one documented in Table II (π̂+ = 85.8%).

More recently, Pastor and Stambaugh (2012) elicit the joint prior distribution of ai and

bi by setting their correlation equal to zero to ease Bayesian estimation. The empir-

ical evidence suggests that ai and bi are strongly correlated. Therefore, investors in

their model possibly take more time to learn because they believe that the gross alpha

distribution is more spread out than the one inferred from the data.

VI Conclusion

In this paper, we apply a new approach for estimating the cross-sectional distributions of

skill and its economic value. Our approach is nonparametric and thus particularly suited

to the analysis of skill. It avoids the challenge of correctly specifying each distribution,

and allows us to jointly examine multiple measures, including two skill dimensions (fd

alpha and size coefficient), and two measures of the value added (lifecyle and steady state

value added). In addition to its flexibility, our approach is simple to implement, appli-

cable to the different characterizations of each distribution (e.g., moments, quantiles),

and supported by econometric theory.

Our analysis brings several insights into the active fund industry. First, it is skilled—

around 85% of the funds are skilled at detecting profitable trades, and around 70%

exhibit a positive value added once they reach the steady state size. Second, the industry

is not heavily concentrated because the two skill dimensions are positively correlated. In
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other words, it is difficult for funds to have both investment and trading skills. Third, it

does a good job at maximizing the rent from exploiting skill. This implies the size of the

industry is smaller than in a fully competitive equilibrium as funds internalize the impact

of capacity constraints. Finally, the industry has a strong bargaining power vis-a-vis

investors because we find the value created by funds is high, whereas the performance

received by investors is low.

Whereas our paper focuses on skill, our nonparametric approach has potentially wide

applications in finance and economics. We can use it to estimate the cross-sectional dis-

tribution of any coefficient of interest in a random coefficient model. This is, for instance,

the case in asset pricing for capturing the heterogeneity across stocks (risk exposure,

commonality in liquidity), or in corporate finance for capturing the heterogeneity across

firms (investment and financing decisions), and, more recently, in household finance for

capturing the heterogeneity across households (time preference, risk aversion; see Calvet

et al. (2019)).
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Table I
Summary Statistics for the Value-Weighted Portfolio of Funds

Panel A reports the average number of funds and the first four moments of the portfolio gross excess return
for all funds in the population, four styles groups (small cap, large cap, growth, value), and four
characteristic-sorted groups (low expense, high expense, low turnover, high turnover). Panel B reports the
estimated portfolio betas on the market, size, value, and momentum factors, as well as the adjusted R2

using the Cremers, Petajisto, and Zitzewitz benchmark model. All statistics are computed using monthly
data between January 1975 and December 2018.

1

Average     
Nb. Funds 

Mean (Ann.)
Volatility 
(Ann.)

Skewness Kurtosis

All Funds 937 8.0 14.8 -0.7 5.3

Investment Styles
Small-cap 188 9.8 18.7 -0.6 5.0

Large-cap 394 8.0 14.6 -0.7 5.2

Growth 401 8.3 16.4 -0.7 5.1

Value 242 7.9 13.6 -0.7 5.4

Fund Characteristics
Low Expense 306 8.0 14.4 -0.7 5.2

High Expense 232 8.6 16.3 -0.8 5.0

Low Turnover 182 7.9 14.8 -0.8 5.4

High Turnover 181 9.1 16.6 -0.6 5.0

Market Size Value Momentum Adj. R2

All Funds 0.93 0.25 -0.11 0.01 0.98

Investment Styles
Small-cap 0.98 0.78 -0.22 0.06 0.97

Large-cap 0.95 0.14 -0.06 0.01 0.99

Growth 0.95 0.34 -0.35 0.03 0.97

Value 0.91 0.12 0.22 -0.01 0.98

Fund Characteristics
Low Expense 0.93 0.19 -0.05 0.01 0.98

High Expense 0.94 0.42 -0.27 0.02 0.97

Low Turnover 0.93 0.23 -0.07 -0.01 0.97

High Turnover 0.95 0.39 -0.31 0.11 0.95

Panel A: Gross Excess Return

Panel B: Estimated Betas



Table II
Cross-Sectional Distribution of the Two Skill Dimensions

Panel A contains the summary statistics on the cross-sectional distribution of the first skill dimension (the
first dollar (fd) alpha) for all funds, four styles groups (small cap, large cap, growth, value), and four
characteristic-sorted groups (low expense, high expense, low turnover, high turnover). It reports the first four
moments, the proportions of funds with a negative and positive fd alpha, and the distribution quantiles at 5%
and 95%. Panel B repeats the analysis for the second skill dimension (the size coefficient). All cross-
sectional estimates are adjusted for bias (smoothing and EIV) using our non-parametric approach.

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 3.1 3.4 1.6 4.4 14.0 86.0 -1.3 8.2

Investment Styles
Small Cap 4.6 3.5 2.7 3.8 6.9 93.1 -0.8 10.1

Large Cap 1.8 2.5 2.4 17.8 19.9 80.1 -1.5 5.5

Growth 3.0 3.8 2.0 6.7 17.8 82.2 -2.0 8.6

Value 3.7 3.7 1.9 4.5 12.1 87.9 -1.2 9.5

Fund Characteristics
Low Expense 2.1 3.3 1.5 5.9 22.5 77.5 -2.4 6.8

High Expense 4.0 4.3 1.5 2.9 15.3 84.7 ‐1.7 10.3

Low Turnover 2.8 4.4 2.1 8.7 21.9 78.1 ‐2.8 8.6

High Turnover 3.6 5.1 2.0 5.2 21.0 79.0 ‐3.2 11.0

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 1.4 1.4 2.2 4.8 14.1 85.9 -0.6 3.7

Investment Styles
Small Cap 1.7 1.7 1.8 5.8 13.5 86.5 -0.9 4.4

Large Cap 1.0 1.0 2.8 11.9 18.0 82.0 -0.5 2.6

Growth 1.5 1.7 2.4 4.7 17.1 82.9 -1.0 4.1

Value 1.4 1.4 1.5 3.4 13.9 86.1 -0.7 3.7

Fund Characteristics
Low Expense 0.8 1.1 0.8 1.6 23.0 77.0 -0.8 2.6

High Expense 1.6 1.9 1.5 1.4 17.9 82.1 ‐1.1 4.6

Low Turnover 1.0 1.7 1.6 3.5 27.7 72.3 ‐1.5 3.5

High Turnover 1.5 2.3 2.0 8.6 22.0 78.0 ‐1.5 4.7

Panel A: First Dollar Alpha

Panel B: Size Coefficient

Moments Proportions (%) Quantiles (Ann.)

Moments Proportions (%) Quantiles (Ann.)



Table III
Cross-Sectional Distribution of the Value Added

Panel A contains the summary statistics on the cross-sectional distribution of the lifecycle value added for all
funds, four styles groups (small cap, large cap, growth, value), and four characteristic-sorted groups (low
expense, high expense, low turnover, high turnover). It reports the first four moments, the proportions of
funds with a negative and positive value added, and the distribution quantiles at 5% and 95%. Panel B
repeats the analysis for the steady state value added. All cross-sectional estimates are adjusted for bias
(smoothing and EIV) using our non-parametric approach.

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 1.7 10.6 5.8 47.8 41.9 58.1 -4.3 13.9

Investment Styles
Small Cap 3.8 11.5 4.4 22.8 35.3 64.7 -4.5 19.1

Large Cap -0.5 9.5 5.1 50.6 56.3 43.7 -5.5 6.3

Growth 1.9 15.4 4.0 26.8 46.1 53.9 -6.6 20.0

Value 2.9 15.0 4.7 31.4 35.4 64.6 -4.4 18.7

Fund Characteristics
Low Expense 6.1 35.0 4.6 23.7 42.5 57.5 ‐7.6 45.0

High Expense 1.7 8.6 1.8 3.5 38.4 61.6 ‐3.4 11.6

Low Turnover 4.6 30.3 0.6 13.8 32.6 67.4 ‐5.7 29.9

High Turnover 1.3 15.8 1.5 1.3 48.0 52.0 ‐8.6 15.2

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 7.3 18.6 5.7 42.1 31.2 68.8 -3.8 34.5

Investment Styles
Small Cap 7.6 12.8 3.4 14.4 19.1 80.9 -2.2 29.0

Large Cap 4.5 14.1 6.2 48.4 37.6 62.4 -3.7 25.6

Growth 9.1 24.9 4.4 22.4 34.9 65.1 -4.7 45.9

Value 9.8 24.0 5.5 37.1 25.3 74.7 -3.4 41.3

Fund Characteristics
Low Expense 11.7 36.9 4.5 21.7 35.5 64.5 ‐6.6 65.5

High Expense 5.4 10.6 3.5 14.0 25.6 74.4 ‐3.2 23.0

Low Turnover 9.9 30.8 3.0 17.4 21.8 78.2 ‐3.2 48.4

High Turnover 7.1 19.1 4.3 21.4 31.5 68.5 ‐4.8 33.4

Moments Proportions (%) Quantiles (Ann.)

Panel B: Steady State Value Added

Panel A: Lifecycle Value Added

Moments Proportions (%) Quantiles (Ann.)



Table IV
Impact of the Error-in-Variable (EIV) Bias

This table compares the cross-sectional skill distributions with and without the adjustment for the Error-in-
Variable (EIV bias). Panel A shows the summary statistics on the cross-sectional distribution of the first
dollar (fd) alpha for all funds, four styles groups (small cap, large cap, growth, value), and four characteristic-
sorted groups (low expense, high expense, low turnover, high turnover). It reports the first four moments, the
proportions of funds with a negative and positive fd alpha, and the distribution quantiles at 5% and 95%.
Panels C to D repeat the analysis for the size coefficient, the lifecycle value added, and the steady state
value added.

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

With Bias Adjustement 3.1 3.4 1.6 4.4 14.0 86.0 ‐1.3 8.2

Without Bias Adjustement 3.1 5.0 0.5 7.1 21.4 78.6 ‐4.0 11.3

Difference 0.0 ‐1.6 1.2 ‐2.8 ‐7.4 7.4 2.7 ‐3.1

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

With Bias Adjustement 1.4 1.4 2.2 4.8 14.1 85.9 -0.6 3.7

Without Bias Adjustement 1.4 2.2 0.7 7.2 22.5 77.5 -1.6 5.1

Difference 0.0 -0.8 1.5 -2.3 -8.3 8.3 1.0 -1.5

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

With Bias Adjustement 1.7 10.6 5.8 47.8 41.9 58.1 ‐4.3 13.9

Without Bias Adjustement 1.7 17.9 3.5 35.4 54.2 45.8 ‐14.7 26.3

Difference 0.0 ‐7.3 2.4 12.4 ‐12.3 12.3 10.4 ‐12.4

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

With Bias Adjustement 7.3 18.6 5.7 42.1 31.2 68.8 -3.8 34.5

Without Bias Adjustement 7.3 22.2 5.0 37.9 36.3 63.7 -6.4 41.1

Difference 0.0 -3.7 0.7 4.1 -5.1 5.1 2.6 -6.6

Moments Proportions (%) Quantiles (Ann.)

Panel C: Lifecycle Value Added

Moments Proportions (%) Quantiles (Ann.)

Panel D: Steady State Value Added

Panel A: First Dollar Alpha

Panel B Size Coefficient

Moments Proportions (%) Quantiles (Ann.)

Moments Proportions (%) Quantiles (Ann.)



Table V
Optimal Versus Actual Value Added

The table compares the optimal value added with the two formulations of the actual value added (lifecycle,
steady state). Panel A contains the summary statistics on the cross-sectional distribution of the lifecycle
value added for all funds, four styles groups (small cap, large cap, growth, value), and four characteristic-
sorted groups (low expense, high expense, low turnover, high turnover). It reports the first four moments, the
proportions of funds with a negative and positive value added, and the distribution quantiles at 5% and 95%.
Panel B reports the mean and volatility, and the distribution quantiles at 5% and 95% of the difference
between the optimal and lifecycle value added. Panel C repeats the analysis for the steady state value
added. All cross-sectional estimates are adjusted for bias (smoothing and EIV) using our non-parametric
approach.

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 14.1 24.7 5.9 42.5 0.0 100.0 0.5 50.5

Investment Styles
Small Cap 11.4 15.8 6.9 60.1 0.0 100.0 0.8 37.3

Large Cap 12.4 27.0 6.4 50.9 0.0 100.0 0.4 48.8

Growth 16.4 30.3 6.8 64.5 0.0 100.0 0.6 61.6

Value 16.6 26.7 4.3 20.2 0.0 100.0 0.9 55.7

Fund Characteristics
Low Expense 21.0 35.1 3.2 10.1 0.0 100.0 0.9 72.0

High Expense 10.3 12.4 5.1 28.9 0.0 100.0 0.6 32.4

Low Turnover 19.3 23.5 4.2 27.5 0.0 100.0 1.5 60.5

High Turnover 15.1 24.0 4.0 11.7 0.0 100.0 0.6 52.0

Mean 
(Ann.)

Volatility 
(Ann.)

5% 95%
Mean 
(Ann.)

Volatility 
(Ann.)

5% 95%

All Funds 13.5 17.7 0.9 42.3 3.4 4.7 1.5 10.0

Investment Styles
Small Cap 9.9 11.4 1.1 28.0 3.0 4.3 3.5 9.4

Large Cap 13.8 19.5 0.9 44.0 3.2 4.1 1.2 9.0

Growth 17.1 26.2 1.1 57.0 4.5 7.0 0.8 14.9

Value 14.9 16.8 1.2 44.2 4.0 4.4 8.7 12.2

Fund Characteristics
Low Expense 21.3 29.6 1.4 71.9 8.4 15.2 0.8 31.9

High Expense 10.1 8.8 1.2 28.5 3.1 2.8 6.1 8.6

Low Turnover 20.0 27.0 1.5 61.6 6.9 9.3 8.7 23.9

High Turnover 18.6 24.6 1.2 58.7 5.3 5.7 2.8 15.4

Panel A: Optimal Value Added

Moments Proportions (%) Quantiles (Ann.)

Panel B: Difference with Lifecycle and Steady State Value Added

Moments Quantiles (Ann.)Moments Quantiles (Ann.)

vs Steady State Value Addedvs Lifecycle Value Added



Table VI
Fund Fees and Size

Panel A describes the specific fee setting policies under which the gross alpha is informative about the skill
dimensions or the value added. Each policy yields specific predictions regarding either fees or size. Panel B
contains the summary statistics on the cross-sectional distribution of fund fees and size for all funds, four
styles groups (small cap, large cap, growth, value), and four characteristic-sorted groups (low expense, high
expense, low turnover, high turnover). It reports the mean, volatility, and the distribution quantiles at 5% and
95%.

Fees Size Fees Size Fees Size Fees Size

All Funds 1.25 785 0.39 2049 0.66 40 1.95 2901

Investment Styles
Small-cap 1.36 388 0.35 614 0.87 43 2.00 1299

Large-cap 1.17 1062 0.37 2841 0.63 41 1.88 3937

Growth 1.30 791 0.39 2020 0.77 42 2.02 3323

Value 1.19 971 0.38 2481 0.61 42 1.87 3738

Fund Characteristics
Low Expense 0.83 1487 0.16 3594 0.48 51 1.03 6475

High Expense 1.72 359 0.28 622 1.39 36 2.21 1128

Low Turnover 1.18 1280 0.35 3215 0.67 51 1.83 4961

High Turnover 1.33 613 0.38 1163 0.81 48 1.99 2308

Panel B: Summary Statistics for Fund Fees and Size

Mean Volatility Quantile 5% Quantile 95%

Fee Setting Policy    
Scheme I            

(optimal size)
Scheme II            

(size coefficient)
Scheme III           

(value added)

Fees are set such that
The fund size equals    

the optimal size
The fund size equals    

the squared optimal size
The fund size equals    

the median size

Main Prediction
Fees vary across funds 
to allow them to reach 

their optimal size

Fees are tiny to allow 
funds to reach their 
squared optimal size

Size is constant across 
all funds

Does the Gross Alpha 
Measure Skill?

First-Dollar Alpha      
(1st skill dimension)

Size Coefficient        
(2nd skill dimension)

Value Added

Panel A: Fund Fees and Size under Specific Fee Setting Policies



Table VII
Cross-Sectional Distribution of Gross Alpha

The table contains the summary statistics on the cross-sectional distribution of the gross alpha for all funds,
four styles groups (small-cap, large-cap, growth, value), and four characteristic-sorted groups (low-expense,
high-expense, low-turnover, high turnover). It reports the first four moments, the proportions of funds with a
negative and positive gross alpha, and the distribution quantiles at 5% and 95%. All cross-sectional
estimates are adjusted for bias (smoothing and EIV) using our non-parametric approach.

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 0.7 1.5 0.3 8.5 31.6 68.4 -1.4 3.0

Investment Styles
Small-cap 1.7 1.8 1.9 2.1 15.8 84.2 -0.9 4.5

Large-cap 0.2 0.9 0.5 4.4 43.2 56.8 -1.2 1.6

Growth 0.6 1.9 -0.4 8.8 37.7 62.3 -2.0 3.2

Value 1.2 1.6 1.6 4.8 22.0 78.0 -1.1 3.8

Fund Characteristics
Low Expense 0.5 1.4 1.0 2.0 38.5 61.5 ‐1.6 2.7

High Expense 1.2 2.4 0.3 7.1 28.4 71.6 ‐1.8 4.6

Low Turnover 0.9 1.7 1.0 3.0 27.9 72.1 ‐1.5 3.6

High Turnover 1.0 2.3 1.1 5.0 34.5 65.5 ‐2.0 4.4

Moments Proportions (%) Quantiles (Ann.)



Table VIII
Cross-Sectional Distribution of Net Alpha

The table contains the summary statistics on the cross-sectional distribution of the net alpha for all funds,
four styles groups (small-cap, large-cap, growth, value), and four characteristic-sorted groups (low-expense,
high-expense, low-turnover, high turnover). It reports the first four moments, the proportions of funds with a
negative and positive net alpha, and the distribution quantiles at 5% and 95%. All cross-sectional estimates
are adjusted for bias (smoothing and EIV) using our non-parametric approach.

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds -0.5 1.6 -1.0 9.7 65.3 34.7 -2.7 1.7

Investment Styles
Small-cap 0.3 1.7 0.9 4.2 45.2 54.8 -2.2 3.1

Large-cap -1.0 0.9 -1.5 4.3 85.6 14.4 -2.5 0.5

Growth -0.7 1.9 -1.6 9.9 67.2 32.8 -3.4 1.9

Value 0.0 1.5 0.4 4.8 49.5 50.5 -2.2 2.4

Fund Characteristics
Low Expense ‐0.4 1.4 0.2 1.1 62.6 37.4 ‐2.4 1.8

High Expense ‐0.5 2.4 ‐0.9 10.0 60.5 39.5 ‐3.6 3.0

Low Turnover ‐0.2 1.6 0.0 3.6 58.7 41.3 ‐2.6 2.3

High Turnover ‐0.4 2.3 ‐0.1 5.5 59.7 40.3 ‐3.5 3.1

Moments Proportions (%) Quantiles (Ann.)



0

50

100

150

200

250

300

350

‐0
.3

‐0
.2

‐0
.2

‐0
.1

‐0
.1

0
.0

0
.1

0
.1

0
.2

0
.2

0
.3

0
.3

0
.4

0
.5

0
.5

0
.6

0
.6

0
.7

0

20

40

60

80

100

120

140

160

‐1
.0

‐0
.8

‐0
.7

‐0
.5

‐0
.4

‐0
.2

0
.0

0
.1

0
.3

0
.4

0
.6

0
.8

0
.9

1
.1

1
.2

1
.4

1
.5

1
.7

1
.9

0

50

100

150

200

250

‐1
.0

‐0
.8

‐0
.7

‐0
.5

‐0
.3

‐0
.2

0
.0

0
.2

0
.3

0
.5

0
.7

0
.8

1
.0

1
.2

1
.4

1
.5

1
.7

1
.9

Figure 1
Cross-sectional Distributions of the Two Skill Dimensions: 

Analysis across Fund Groups

Panel A plots the cross-sectional densities of the first dollar alpha for small cap and large cap funds. Panel B
compares growth and value funds. Panel C compares low expense and high expense funds. Finally, Panel
D compares low turnover and high turnover funds. All the estimated densities are adjusted for bias
(smoothing and EIV) using our non-parametric approach.
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Figure 1
Cross-sectional Distributions of the Two Skill Dimensions: 

Analysis across Fund Groups (Continued)

Panel A plots the cross-sectional densities of the size coefficient for small cap and large cap funds. Panel B
compares growth and value funds. Panel C compares low expense and high expense funds. Finally, Panel
D compares low turnover and high turnover funds. All the estimated densities are adjusted for bias
(smoothing and EIV) using our non-parametric approach..
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