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Abstract

Researchers frequently make parametric assumptions about the distribution of unobservables
when formulating structural models. Such assumptions are typically motived by computational
convenience rather than economic theory and are often untestable. Counterfactuals can be par-
ticularly sensitive to such assumptions, threatening the credibility of structural modeling exer-
cises. To address this issue, we leverage insights from the literature on ambiguity and model
uncertainty to propose a tractable econometric framework for characterizing the sensitivity of
counterfactuals with respect to a researcher’s assumptions about the distribution of unobserv-
ables in a class of structural models. In particular, we show how to construct the smallest and
largest values of the counterfactual as the distribution of unobservables spans nonparametric
neighborhoods of the researcher’s assumed specification while other “structural” features of the
model, e.g. equilibrium conditions, are maintained. Our methods are computationally simple
to implement, with the nuisance distribution effectively profiled out via a low-dimensional con-
vex program. Our procedure delivers sharp bounds for the identified set of counterfactuals (i.e.
without parametric assumptions about the distribution of unobservables) as the neighborhoods
become large. Over small neighborhoods, we relate our procedure to a measure of local sensi-
tivity which is further characterized using an influence function representation. We provide a
suitable sampling theory for plug-in estimators and apply our procedure to models of strategic
interaction and dynamic discrete choice.
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1 Introduction

Researchers frequently make strong parametric assumptions about the distribution of unobservables

when formulating structural models, often for computational convenience.1 Yet economic theory

typically provides little or no guidance as to the correct specification of the distribution of unobserv-

ables and in many models, such as those we consider in this paper, the distribution of unobservables

is not nonparametrically identified. Ex-ante policy evaluation exercises, or counterfactuals, can be

particularly sensitive to potentially incorrect distributional assumptions. Sensitivity arises through

two channels. The distributional assumptions are first used at the estimation stage, as they help

define the mapping from structural parameters to observables. The assumptions are again used

at the evaluation stage, when solving the model under the policy intervention at the estimated

structural parameters. Counterfactual choice probabilities may be particularly sensitive to distri-

butional assumptions, as they are essentially probabilities of tail events that are not observed in

the data. The potential sensitivity of counterfactuals to such assumptions threatens the credibility

of structural modeling exercises, a point made even by proponents of structural modeling (see, e.g.,

Section 5 of Keane, Todd, and Wolpin (2011)).

In this paper, we introduce a tractable econometric framework to characterize the sensitivity of

counterfactuals with respect to distributional assumptions in a class of structural models. We show

how to construct sets of counterfactuals as the distribution of interest spans neighborhoods of the

researcher’s assumed specification while other “structural” features of the model, e.g. equilibrium

conditions, are maintained. This approach is in the spirit of global sensitivity analysis advocated

by Leamer (1985). Global, rather than local, approaches to characterizing sensitivity in structural

models are important, as the nonlinearity of structural models and/or policy interventions means

that policies can have different effects at different points in the parameter space. Global sensitivity

analyses of nonlinear models can be computationally and theoretically challenging, however.2 Local

sensitivity analyses—based on local linearization around an assumed true specification—are often

more tractable. However, local approaches may fail to correctly characterize the counterfactuals

predicted by the model when the researcher’s assumed distribution of unobservables is misspecified

by a degree that is not vanishingly small.

1The empirical trade literature typically specifies the distributions of latent idiosyncratic efficiencies or costs
as Fréchet or Pareto for computational convenience (see, e.g., Eaton and Kortum (2002) and Allen and Arkolakis
(2014)). Workhorse dynamic discrete choice models following Rust (1987) are typically implemented assuming that
latent payoff shocks are extreme-value distributed for computational convenience. Prominent works analyzing strate-
gic interaction using models of static and dynamic discrete games make strong parametric assumptions about the
distribution of latent payoff shocks (see, e.g., Ericson and Pakes (1995), Aguirregabiria and Mira (2007), Bajari,
Benkard, and Levin (2007), Pesendorfer and Schmidt-Dengler (2008), Ciliberto and Tamer (2009), and Bajari, Hong,
and Ryan (2010)). Moreover, strong parametric assumptions about the distribution of utility shocks and random co-
efficients are frequently made, partly for computational considerations, when evaluating policies using differentiated
products demand models following Berry, Levinsohn, and Pakes (1995).

2See, for example, work on partially identified semiparametric models by Chen, Tamer, and Torgovitsky (2011)
which is motivated partly by questions of sensitivity with respect to various modeling assumptions.
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The key innovation of our approach is to leverage insights from the robustness literature in eco-

nomics pioneered by Hansen and Sargent (see, e.g., Hansen and Sargent (2001, 2008)) to simplify

computation using convex programming techniques. To make the analysis as tractable as possi-

ble, we restrict attention to a class of structural models whose equilibrium restrictions may be

written as a set of moment in/equalities, where the expectation is taken with respect to the dis-

tribution of unobservables. This class is sufficiently broad that it accommodates many models of

static and dynamic discrete choice and some models of static or dynamic discrete games. Following

the robustness literature, we define nonparametric neighborhoods in terms of statistical divergence

from the researcher’s assumed specification, with the option to add location/scale normalizations

or smoothness constraints as appropriate. Consider the problem of minimizing or maximizing the

counterfactual at a particular value of structural parameters by varying the distribution over this

neighborhood, subject to the equilibrium conditions summarized in the moment in/equalities. This

infinite-dimensional optimization problem can be recast as convex program of fixed (low) dimension

for the class of problems we consider. Similar insights also underlie other latent variable methods

in econometrics (see, e.g., Schennach (2014)) and generalized empirical likelihood, though their

redeployment here to target counterfactuals appears novel. The low-dimensional convex programs,

when embedded in an outer optimization over structural parameters, deliver the smallest and

largest counterfactuals consistent with the model as the distribution varies over the neighborhood.

Moreover, our approach is robust to partial identification and irregular estimability of structural

parameters, both of which may be important in applications.

We propose plug-in estimators of the smallest and largest counterfactual obtained as the distribu-

tion varies over nonparametric neighborhoods of the researcher’s assumed specification and develop

a suitable sampling theory. In particular, we show that the estimators are consistent and estab-

lish their joint asymptotic distribution. Although the distribution will typically be nonstandard,

inference is still feasible via subsampling or modified bootstrap methods.

In addition, we characterize the properties of the sets of counterfactuals over very large or very

small neighborhoods of the researcher’s assumed specification. We show that our procedure delivers

sharp bounds on the identified set of counterfactuals (i.e. without any parametric assumption about

the distribution of unobservables) as the neighborhood size expands, provided the researcher’s

assumed specification satisfies a type of support condition. In this sense, our use of neighborhoods

constrained by statistical divergence can be viewed as an (infinite-dimensional) sieve: although

the neighborhoods exclude many distributions, as they become larger they eventually span the

set of distributions relevant for characterizing the identified set of counterfactuals. Unlike finite-

dimensional sieve methods, however, here the dimensionality of the optimization problem remains

fixed as we consider increasingly rich classes of distributions. Our methods therefore provide a

tractable way for characterizing identified sets of counterfactuals in nonlinear structural models

without specifying distributions of unobservables.
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Small neighborhoods are relevant for comparing our procedure with local sensitivity analyses. To

this end, we describe a measure of local sensitivity of counterfactuals with respect to the researcher’s

assumed specification and formally relate it to our procedure when the neighborhood size is small.

Our sensitivity measure is conceptually different from the local sensitivity measures proposed by

Andrews, Gentzkow, and Shapiro (2017, 2018), which treat the model specification as given and

quantify sensitivity of counterfactuals with respect to local misspecification of the moments used

at the estimation stage. In point-identified, sufficiently regular models typically studied in the local

sensitivity literature, we show that our sensitivity measure may be characterized by a particular

influence function representation. Using this representation, we provide a simple and consistent

plug-in estimator of local sensitivity, which researchers may easily report alongside their estimated

counterfactuals in structural modeling exercises.

We illustrate the usefulness of our procedure with application to two workhorse models, namely a

canonical entry game and an infinite-horizon model of dynamic discrete choice. The game provides

a suitable laboratory to illustrate our procedure in a transparent way, as all calculations can be

performed in closed form. The dynamic discrete choice example illustrates how our procedure can

reveal important asymmetries that may be overlooked in a local sensitivity analysis.

Related literature Our approach has some similarities with the literature on global prior sen-

sitivity in Bayesian analysis. Broadly speaking, this literature studies variation in the posterior as

the prior ranges over a class of priors. Early notable references include Chamberlain and Leamer

(1976), Leamer (1982), Berger (1984), and Berger and Berliner (1986). Of particular relevance are

recent works by Giacomini, Kitagawa, and Uhlig (2016) and Ho (2018) who consider nonparamet-

ric classes of priors that are constrained by Kullback–Leibler (KL) divergence relative to a default

prior, also partly motivated by the robustness literature in economics. The contexts and objectives

of these two works are very different from ours.3 Nevertheless, they also inherit tractability in

complex, partially identified settings by specifying neighborhoods in terms of statistical divergence

from a researcher’s assumed (prior) distribution.

In principle, one could attack our problem by framing it as a subvector estimation/inference problem

in a partially identified semiparametric model. Chen et al. (2011), Tao (2014), and Chernozhukov,

Newey, and Santos (2015) study inference in general partially-identified semiparametric models

using sieve approximations for the infinite-dimensional parameter (i.e., the distribution of unob-

servables in our setting). We consider a nonparametric class constrained by statistical divergence

from a researcher’s assumed distribution, rather than a ball of “smooth” functions typically assumed

so as to justify a sieve approximation. In principle, one could adapt various inference methods from

3Both works study sensitivity with respect to priors for Bayesian inference whereas we study sensitivity with
respect to a particular modeling assumption, namely a distributional over unobservables in structural models, and
our inference methods are not Bayesian. Giacomini et al. (2016) emphasize application to structural VARs whereas
Ho (2018) emphasizes applicability to large-scale DSGE models.
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this literature to construct confidence sets for counterfactuals. This approach would require an inner

optimization over the sieve coefficients—whose number must increase to infinity in order to span

the full set of distributions—that would generally be non-convex. For the more restrictive class of

problems we consider, our approach eliminates the infinite-dimensional nuisance parameter via a

convex program of fixed (low) dimension.

The use of convex programming to eliminate distributions of latent variables has been previously

noted in the important works of Ekeland, Galichon, and Henry (2010) and Schennach (2014). Both

of these earlier works consider somewhat different classes of models from those that we consider.

These works are also concerned primarily with characterizing the identified set of structural pa-

rameters whereas we are concerned with characterizing sensitivity of counterfactuals with respect

to a researcher’s modeling assumptions, so the resulting convex programs are different. In recent

work that is concurrent with ours, Li (2018) relaxes some restrictions on the moment functions

and the support of unobservables in Ekeland et al. (2010) and suggests performing inference on

counterfactuals via subvector methods for moment inequality models. By targeting counterfactuals

directly and leveraging some additional structure, our approach sidesteps this difficult subvector

inference problem.

A number of other recent works construct identified sets of counterfactuals in specific models with-

out making parametric assumptions about the distributions of unobservables. Examples of works

that bound counterfactuals in discrete choice models include Manski (2007, 2014), Allen and Re-

hbeck (2017) and Chiong, Hsieh, and Shum (2017). Norets and Tang (2014) construct identified

sets of counterfactuals in infinite-horizon dynamic binary choice models via a reparameterization

which is specific to binary choice settings. Torgovitsky (2016) bounds counterfactuals in dynamic

potential outcomes models. Of these works, Manski (2007), Norets and Tang (2014), and Torgovit-

sky (2016) study inference. Manski (2007) proposes finite-sample confidence sets that are specific to

that class of models. Torgovitsky (2016) uses subsampling and inversion of a profiled test statistic.

Norets and Tang (2014) and perform inference using Bayesian methods.

There is also an active literature on local sensitivity. Local sensitivity analyses typically consider

deviations from a “true” limiting model that are shrinking to zero at an appropriate rate with

the sample size (i.e. contiguously). The idea is that, as one observes more data, larger departures

may be detected using various statistical tests. This approach does not therefore seem appropriate

when we are concerned with sensitivity with respect to an (untestable) assumption regarding the

distribution of unobservables. Indeed, much of the recent literature on local sensitivity is concerned

with formulating estimators and inference procedures that are robust to local misspecification

of moment conditions and the like, which is a different problem from that which we consider.

Nevertheless, Kitamura, Otsu, and Evdokimov (2013) and Bonhomme and Weidner (2018) are

notable for their use of local neighborhoods characterized by statistical divergence. Both of these
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papers are concerned with formulating estimators that are optimal under local misspecification.

Like us, Bonhomme and Weidner (2018) target a specific aspect of model specification. Andrews

et al. (2017, 2018) proposed reporting measures to characterize the sensitivity of estimators of

counterfactuals or structural parameters with respect to moments used in estimation. In their

framework, the distribution of observables is modeled as possibly (locally) misspecified. Armstrong

and Kolesár (2018) discuss optimal inference in this context and Mukhin (2018) draws connections

with semiparametric efficiency theory. Although we assume the model is correctly specified (i.e.,

there exists a distribution of unobservables and parameter vector that can rationalize the model),

it would be interesting to extend our methods along the lines of these works to allow for local

misspecification of the moment in/equalities also.

Finally, several recent works in statistical decision theory advocate decision rules that minimize

maximum expected loss over KL neighborhoods of a reference model, motivated in part by Hansen

and Sargent’s work; see Watson and Holmes (2016) and references therein. Hansen and Marinacci

(2016) draw connections between this approach and decision theory in economics.

The remainder of the paper is as follows. Section 2 describes the setting and outlines our approach.

Section 3 illustrates how to implement our procedure in a simple but transparent entry game setting

and a dynamic discrete choice model. Section 4.1 presents results from convex analysis that justify

our procedure and Section 4.2 establishes the large-sample properties of plug-in estimators. Section

5 discusses the sharp bounds on the identified set of counterfactuals and Section 6 discusses local

sensitivity. Section 7 concludes.

2 Procedure

2.1 Setup

Consider the following description of a structural modeling exercise. The researcher observes a

sample of data, say X1, . . . , Xn. The researcher computes (i) a dP × 1 vector of targeted moments

P̂ (e.g. a vector of choice probabilities or market shares), and possibly (ii) an estimator γ̂ of an

auxiliary parameter (e.g. a law of motion of a Markov state). We assume that P̂ and γ̂ are consistent

estimators and let P0 and γ0 denote their probability limits.

The researcher’s structural model links P0 ∈ P ⊆ RdP and γ0 ∈ Γ (a metric space) to a dθ × 1
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vector of structural parameters θ ∈ Θ ⊂ Rdθ through the moment in/equality restrictions

EF [g1(U, θ, γ0)] ≤ P10 , (1)

EF [g2(U, θ, γ0)] = P20 , (2)

EF [g3(U, θ, γ0)] ≤ 0 , (3)

EF [g4(U, θ, γ0)] = 0 , (4)

where g1, . . . , g4 are vectors of moment conditions of dimension d1, . . . , d4 describing model-implied

moments (in g1 and g2) and additional equilibrium conditions (in g3 and g4), U is a vector of

unobservables with distribution F , and P0 is partitioned conformably as P0 = (P ′10, P
′
20)′.

The distribution F is typically not nonparametrically identified. Therefore, in common practice, a

seemingly reasonable and/or computationally convenient distribution, say F∗, is assumed by the

researcher and maintained throughout the analysis. We refer to F∗ as the researcher’s default or

benchmark specification.

Given F∗ and first-stage estimators γ̂ and P̂ = (P̂ ′1, P̂
′
2)′, the researcher would invert the sample

moment conditions

EF∗ [g1(U, θ, γ̂)] ≤ P̂1 , EF∗ [g2(U, θ, γ̂)] = P̂2 ,

EF∗ [g3(U, θ, γ̂)] ≤ 0 , EF∗ [g4(U, θ, γ̂)] = 0 ,

using, e.g., a minimum distance, GMM, or moment inequality criterion, to obtain an estimator θ̂

of θ. The researcher would then estimate a (scalar) counterfactual of interest

κ = EF [k(U, θ, γ0)]

(e.g. a counterfactual choice probability or counterfactual measure of expected profits) using the

plug-in estimator

κ̂ = EF∗ [k(U, θ̂, γ̂)] .

We refer to this as the explicit-dependence case in what follows, as the function k depends explicitly

on the latent variables. Alternatively, the researcher may have a counterfactual of the form

κ = k(θ, γ0)

for which the researcher might use the plug-in estimator

κ̂ = k(θ̂, γ̂) .

We refer to this as the implicit-dependence case in what follows, as the assumed distribution F∗
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will still have an effect on the estimator θ̂. Although the preceding discussion has assumed point

identification of θ and κ for sake of exposition, our methods are also robust to partial identification

of structural parameters and counterfactuals.

To fix ideas, consider an infinite-horizon dynamic discrete choice (DDC) model with a discrete

statespace, as in Rust (1987). In that model, U is the vector of payoff shocks in the period utility

function and F∗ is taken to be type-I extreme value for computational convenience. The vector of

moment conditions g2 specifies the model-implied conditional choice probabilities and the vector g4

specifies the fixed-point equation for the ex-ante value function. There are no inequalities, so the

remaining moment conditions involving g1 and g3 would be vacuous. The vector θ would consist of

structural parameters and pre- and post-intervention ex-ante value functions, similar to MPEC im-

plementations. Finally, γ would collect all of the transition matrices for the observable components

of the state. The counterfactual κ could be a counterfactual choice probability, a welfare measure,

or a measure of expected payoffs. Section 3 shows how to implement our procedure in DDC models

and presents a numerical example.

In the preceding description of a structural modeling exercise, the distribution F∗ is being used for

estimation of the structural parameter θ and for computation of the counterfactual κ. A natural

question that arises is: to what extent are the counterfactuals driven by the researcher’s choice

F∗, and to what extent do they rely on the underlying structure of the model? The challenge is

to address this question in a way that remains computationally tractable for empirically relevant

structural models.

We address this question as follows. Let U denote the support of U (equipped with its Borel

σ-algebra), let F denote the set of all probability distributions on U , and let N ⊂ F denote a

neighborhood of F∗. The neighborhood N will be nonparametric in our analysis: it will consist

of all probability distributions F that are within some well-defined “distance” of F∗. If this class

seems too large, the researcher may further disciple the class of distributions by incorporating shape

constraints, smoothness restrictions, or location/scale normalizations within the moment conditions

(1)–(4); see Section 2.4.

The object of interest is the interval [
κ(N ) , κ̄(N )

]
,

where, in the explicit-dependence case

κ(N ) = inf
θ∈Θ,F∈N

EF [k(U, θ, γ0)] subject to (1)–(4) holding at (θ, F ) , and

κ̄(N ) = sup
θ∈Θ,F∈N

EF [k(U, θ, γ0)] subject to (1)–(4) holding at (θ, F )
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are respectively the smallest and largest values of the counterfactual obtained by varying θ over its

parameter space and F over the neighborhood N while respecting the model structure (1)–(4). Ex-

treme counterfactuals are defined similarly in the implicit-dependence case, replacing EF [k(U, θ, γ0)]

in the above display with k(θ, γ0).

Focusing on the extreme counterfactuals κ(N ) and κ̄(N ) has two advantages. First, it does not

require point-identification of θ under F∗ or any other candidate distribution F . Thus, it naturally

accommodates models with point- or partially-identified structural parameters and counterfactuals,

and we sidestep having to compute the full identified set of structural parameters. Moreover, like

Reguant (2016), we avoid having to compute all equilibria in models with multiple equilibria, only

those supporting the smallest and largest values of the counterfactual.

The main contribution of this paper is to allow researchers to conduct a global sensitivity analysis

as the parametric assumption F∗ is relaxed and F is allowed to vary over neighborhoods of various

size, while other structural features of the model are maintained. Key to computational tractability

of our procedure is how neighborhoods are defined, as outlined in the next subsection. Later, in

Section 6, we will also describe a measure of the local sensitivity of the counterfactual with respect

to F∗, which characterizes how counterfactuals vary over small neighborhoods of F∗.

2.2 Characterization via convex programming

This subsection gives an heuristic overview to fix ideas and notation. A formal justification is

presented in Section 4.1.

Consider computing κ(N ) and κ̄(N ) using an inner loop, where the counterfactual is minimized or

maximized over F ∈ N subject to the restrictions (1)–(4), and an outer loop optimizing over θ ∈ Θ.

The inner loops are infinite-dimensional optimization problems. Their computational tractability

hinges on how the neighborhood N is constructed. We follow the robustness literature in economics

pioneered by Hansen and Sargent and define nonparametric neighborhoods in terms of a type of

statistical divergence from F∗, thereby allowing the inner loops to be recast as low-dimensional

convex programs.

We consider neighborhoods that are constrained by φ-divergence from F∗:

Nδ = {F ∈ F : Dφ(F‖F∗) ≤ δ} ,
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with

Dφ(F‖F∗) =


∫
φ

(
dF

dF∗

)
dF∗ if F � F∗ ,

+∞ otherwise,

where F � F∗ denotes absolute continuity of F relative to F∗. Many default F∗, such as normal,

type-I extreme value, logistic, Pareto, and Fréchet distributions have strictly positive (Lebesgue)

density over U , so the absolute continuity condition F � F∗ merely rules out F with mass points.

The function φ : [0,∞)→ R∪{+∞} is a convex function representing a cost of departing from F∗.

There are some easily verifiable technical conditions that the function φ must satisfy so as to be

compatible with the model, which we describe formally in Section 4.1.

To give some examples of neighborhoods, the function φ(x) = x log x − x + 1 corresponds to

Kullback–Leibler (KL) divergence:

Nδ =

{
F ∈ F :

∫
log

(
dF

dF∗

)
dF ≤ δ

}
.

KL divergence is used extensively in the robustness literature. However, it does require that the mo-

ment functions g1, . . . , g4 and counterfactual function k have quite thin tails under F∗, as discussed

further in Section 4.1. Weaker moment conditions are required for the function φ(x) = xp−1−p(x−1)
p(p−1)

with index p > 1, which corresponds to neighborhoods constrained by Cressie–Read divergence

(equivalently, by Lp divergence, α-divergence, or Renyi divergence). Choosing p = 2 yields neigh-

borhoods constrained by χ2 (or Pearson) divergence:

Nδ =

{
F ∈ F :

1

2

∫ (
dF

dF∗
− 1

)2

dF∗ ≤ δ

}
.

We also found it useful to work with a hybrid of KL and χ2 divergence, whose corresponding φ

function is

φ(x) =

[
x log x− x+ 1 x ≤ e ,
1
2e(x− e)

2 + (x− e) + 1 x > e ,

where e denotes Euler’s number. Hybrid divergence retains some attractive features of KL diver-

gence but the technical conditions underlying the duality results are satisfied for a much broader

class of models and benchmark distributions F∗.

In the explicit-dependence case, the smallest and largest values of the counterfactual obtained as

we vary F ∈ Nδ (subject to the restrictions imposed by the model) at any fixed θ are

κδ(θ; γ0, P0) = inf
F∈Nδ

EF [k(U, θ, γ0)] subject to (1)–(4) holding at (θ, F ) , and

κ̄δ(θ; γ0, P0) = sup
F∈Nδ

EF [k(U, θ, γ0)] subject to (1)–(4) holding at (θ, F )
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with the understanding that κδ(θ; γ0, P0) = +∞ and κ̄δ(θ; γ0, P0) = −∞ if there exists no distribu-

tion in Nδ for which (1)–(4) hold. Although these are infinite-dimensional optimization problems,

their dual representations are low-dimensional convex programs.

We state the dual programs of κδ(θ; γ, P ) and κ̄δ(θ; γ, P ) for now as a result; Section 4.1 provides a

formal statement. Let g = (g′1, . . . , g
′
4)′ denote the vector of moment functions and let d =

∑4
i=1 di.

Partition λ ∈ Rd as λ = (λ′1, λ
′
2, λ
′
3, λ
′
4)′ ∈ Λ := Rd1+ ×Rd2 ×Rd3+ ×Rd4 . The vector λ consists of the

Lagrange multipliers on the moment conditions (1)–(4); the remaining multipliers are η ∈ R+ for

the constraint on the condition Dφ(F‖F∗) ≤ δ and ζ ∈ R for the constraint that F must integrate

to unity. Let (ηφ)?(x) = supt≥0:ηφ(t)<+∞(tx− ηφ(t)) denote the convex conjugate of ηφ.

Result 2.1 The dual programs of κδ(θ; γ, P ) and κ̄δ(θ; γ, P ) are

κ?δ(θ; γ, P ) = sup
η≥0,ζ∈R,λ∈Λ

−EF∗
[
(ηφ)?(−k(U, θ, γ)− ζ − λ′g(U, θ, γ))

]
− ηδ − ζ − λ′12P , (5)

κ̄?δ(θ; γ, P ) = inf
η≥0,ζ∈R,λ∈Λ

EF∗
[
(ηφ)?(k(U, θ, γ)− ζ − λ′g(U, θ, γ))

]
+ ηδ + ζ + λ′12P , (6)

where λ12 = (λ′1, λ
′
2)′. In particular, for KL neighborhoods:

κ?δ(θ; γ, P ) = sup
η>0,λ∈Λ

−η logEF∗
[
e−η

−1(k(U,θ,γ)+λ′g(U,θ,γ))
]
− ηδ − λ′12P , (7)

κ̄?δ(θ; γ, P ) = inf
η>0,λ∈Λ

η logEF∗
[
eη
−1(k(U,θ,γ)−λ′g(U,θ,γ))

]
+ ηδ + λ′12P , (8)

and for hybrid neighborhoods:

κ?δ(θ; γ, P ) = sup
η>0,ζ∈R,λ∈Λ

−ηEF∗
[
Ψ
(
− η−1

(
k(U, θ, γ) + ζ + λ′g(U, θ, γ)

) )]
− ηδ − ζ − λ′12P , (9)

κ̄?δ(θ; γ, P ) = inf
η>0,ζ∈R,λ∈Λ

ηEF∗
[
Ψ
(
η−1

(
k(U, θ, γ)− ζ − λ′g(U, θ, γ)

) )]
+ ηδ + ζ + λ′12P , (10)

where

Ψ(x) =

[
ex − 1 x ≤ 1 ,
e
2(x2 + 1)− 1 x > 1 .

(11)

The expectations in the dual programs are all under F∗, so κ?δ and κ̄?δ can be computed in closed

form, as for the game example in Section 3, or otherwise numerically. Gradients and Hessians may

also be available in closed form, facilitating fast optimization. Indeed, evaluation of κ?δ and κ̄?δ
may be only marginally more computationally costly than evaluation of a criterion function for

estimating θ.
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By weak duality, the inequalities

κ?δ(θ; γ, P ) ≤ κδ(θ; γ, P ) , κ̄δ(θ; γ, P ) ≤ κ̄?δ(θ; γ, P )

always hold. Therefore, the dual problems always provide (possibly conservative) upper and lower

bounds for the extreme counterfactuals at any given θ. We say that strong duality holds when the

primal and dual problems are equal. Under a mild condition on the moments, strong duality may

be verified via the convex program

δ?(θ; γ, P ) = sup
ζ∈R,λ∈Λ

−EF∗
[
φ?(−ζ − λ′g(U, θ, γ))

]
− ζ − λ′12P . (12)

In particular, for KL divergence

δ?(θ; γ, P ) = sup
λ∈Λ
− logEF∗

[
e−λ

′g(U,θ,γ)
]
− λ′12P , (13)

and for hybrid divergence

δ?(θ; γ, P ) = sup
ζ∈R,λ∈Λ

−EF∗
[
Ψ
(
−ζ − λ′g(U, θ, γ)

)]
− ζ − λ′12P . (14)

The expectations in the above displays are again under F∗ and may therefore be computed in closed

form for certain models or otherwise numerically.

When δ?(θ; γ, P ) < ∞, the program δ? identifies a distribution Fθ,γ,P that minimizes Dφ(·‖F∗)
among all distributions satisfying the constraints (1)–(4) at (θ, γ, P ). If δ?(θ; γ, P ) ≤ δ then there

exists at least one distribution satisfying (1)–(4) at (θ, γ, P ) that belongs to Nδ. If the inequal-

ity is strict, strong duality holds under a mild constraint qualification condition and κ?δ and

κ̄?δ give the correct values for the inner loop at θ. On the other hand, if δ?(θ, γ, P ) = δ, then

Fθ,γ,P is the unique distribution in Nδ satisfying the moment conditions at (θ, γ, P ), in which case

κδ(θ; γ, P ) = κ̄δ(θ; γ, P ) = EFθ,γ,P [k(U, θ, γ)] = EF∗ [mθ,γ,P (U)k(U, θ, γ)] where mθ,γ,P denotes the

Radon–Nikodym derivative of Fθ,γ,P with respect to F∗. In particular, for KL divergence

mθ,γ,P (U) =
e−λ

′
θ,γ,P g(U,θ,γ)

EF∗ [e−λ
′
θ,γ,P g(U,θ,γ)]

,

where λθ,γ,P solves (13), and for hybrid divergence

mθ,γ,P (U) = Ψ̇
(
−ζθ,γ,P − λ′θ,γ,P g(U, θ, γ)

)
,
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where (ζθ,γ,P , λθ,γ,P ) solves (14) and

Ψ̇(x) =

[
ex x ≤ 1 ,

ex x > 1 .

2.3 Estimation

The preceding description provides roadmap for how to estimate the extreme counterfactuals,

given first-stage estimates (γ̂, P̂ ) of (γ0, P0). In the explicit-dependence case (where k depends

non-trivially on u), define the sample criterion functions

K̂δ(θ) =


κ?δ(θ; γ̂, P̂ )

EFθ,γ̂,P̂ [k(U, θ, γ̂)]

+∞ ,

, K̂δ(θ) =


κ̄?δ(θ; γ̂, P̂ ) if δ?(θ; γ̂, P̂ ) < δ,

EFθ,γ̂,P̂ [k(U, θ, γ̂)] if δ?(θ; γ̂, P̂ ) = δ,

−∞ if δ?(θ; γ̂, P̂ ) > δ.

Note that the knife-edge case δ?(θ; γ̂, P̂ ) = δ will almost certainly never occur if δ? is computed by

numerical optimization. In the implicit-dependence case (where k does not depend on u), then the

sample criterion functions simplify to

K̂δ(θ) =

[
k(θ, γ̂)

+∞
, K̂δ(θ) =

[
k(θ, γ̂) if δ?(θ; γ̂, P̂ ) ≤ δ,
−∞ if δ?(θ; γ̂, P̂ ) > δ.

The estimators of the smallest and largest counterfactuals are obtained by optimizing the criterion

functions K̂δ and K̂δ with respect to θ:

κ̂(Nδ) = inf
θ∈Θ

K̂δ(θ) , ˆ̄κ(Nδ) = sup
θ∈Θ

K̂δ(θ) .

If (γ0, P0) are known then we may to compute the smallest and largest counterfactuals κ(Nδ) and

κ̄(Nδ) by simply replacing (γ̂, P̂ ) with (γ0, P0) in the above description.

In Section 4.2, we show that the plug-in estimators κ̂(Nδ) and ˆ̄κ(Nδ) are consistent estimators of

the extreme counterfactuals κ(Nδ) and κ̄(Nδ) and we establish their joint asymptotic distribution.

The distribution will typically be nonstandard, however, as extreme counterfactuals may occur

under multiple distributions in Nδ and at multiple structural parameter values. Nevertheless, one

may still use subsampling or various modified bootstraps to perform inference on the extreme

counterfactuals.

When δ is very small and the model is sufficiently regular, κ̂(Nδ) and ˆ̄κ(Nδ) may be approximated

as κ̂−
√
ŝδ and κ̂+

√
ŝδ, respectively, where ŝ is an estimate of local sensitivity; see Section 6.
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2.4 Shape restrictions

The moment conditions (1)–(4) may also contain further shape restrictions on F . Examples include:

(i) location normalizations, e.g. EF [U ] = 0 or EF [1l{Ui ≤ 0}] = 1
2 for each entry Ui of U for a median

normalization; (ii) scale normalizations, e.g. EF [U2
i ] = 1 or EF [1l{Ui ≤ a}] − EF [1l{Ui ≤ −a}] = b

for a normalization of the inter-quantile range; (iii) covariance normalizations, e.g. EF [UU ′] = I,

or bounds, e.g. EF [UU ′] ≤ Σ; and (iv) smoothness, e.g. EF [1l{Ui ≤ ak+1}] − EF [1l{Ui ≤ ak}] ≤ C

for a1 < a2 < . . . < aK . Researchers may add and remove shape restrictions as appropriate to

investigate how such restrictions affect the sets of counterfactuals.

3 Numerical examples

3.1 Discrete game of complete information

To illustrate our procedure in a simple and transparent way, we consider a complete-information

entry game similar to that studied by Bresnahan and Reiss (1990, 1991), Berry (1992), and Tamer

(2003). Payoffs are described in Table 1.

Firm 2

0 1

Firm 1
0 (0, 0) (0, β2 + βz + U2)

1 (β1 + βz + U1, 0) (β1 + βz −∆ + U1, β2 + βz −∆ + U2)

Table 1: Payoff matrix for (Firm 1, Firm 2) when Z = z.

In this specification, Z ∈ {0, 1, 2} denotes a market-specific regressor and U = (U1, U2)′ is a

random vector representing unobserved (to the econometrician but not to the firms) profits which

is distributed independently of Z. The structural parameters are (β1, β2, β,∆) where β1 and β2

represent firm-specific fixed costs and ∆ (assumed positive) represents a loss of profitability from

competing as a duopolist. The solution concept is restricted to equilibria in pure strategies.

The econometrician observes choice probabilities of the four market structures (conditional on Z).

A standard approach for estimation is to match the observed conditional choice probabilities with

the model-implied conditional choice probabilities. As the model is incomplete—there are certain

realizations of U for which there are two equilibria in pure strategies (Firm 1 enters and Firm 2 does

not, or vice versa)—moment inequality methods are typically used so as to be robust to potential

misspecification of the equilibrium selection mechanism.
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Nevertheless, it is often the case in applied work that strong parametric assumptions are made

about the distribution of payoff shocks to map the structural parameters θ into model-implied

conditional choice probabilities. For example, Berry (1992) and Ciliberto and Tamer (2009) both

assume U is distributed as bivariate normal.4 Given the emphasis on robustness with respect to

equilibrium selection, it seems natural to also question the sensitivity of counterfactuals to the

researcher’s assumed parametric distribution of unobservables.

Suppose the researcher wants to investigate the effect of a tax on market structure. Payoffs under the

tax are presented in Table 2. We will focus on the conditional probability of observing a monopoly,

though our approach could be used equally for other choice probabilities or measures of expected

firm profits.

Firm 2

0 1

Firm 1
0 (0, 0) (0, β2 + βz − τ + U2)

1 (β1 + βz − τ + U1, 0) (β1 + βz −∆ + U1, β2 + βz −∆ + U2)

Table 2: Counterfactual payoff matrix for (Firm 1, Firm 2) when Z = z.

Under the counterfactual payoffs described in Table 2, neither firm enters if Uj ≤ τ − βj − βz for

j = 1, 2 where τ > 0 is the tax, and both firms enter (duopoly) if Uj ≥ ∆ − βj − βz for j = 1, 2.

The moment condition defining the counterfactual of interest is therefore

k(U, θ; z) = 1− 1l{(U1 ≤ τ − β1 − βz; U2 ≤ τ − β2 − βz)

∪ (U1 ≥ ∆− β1 − βz; U2 ≥ ∆− β2 − βz)}

and EF [k(U, θ; z)] is the probability of observing a monopoly under the tax when Z = z.

To describe the moment functions g1 and g2, let p(0, 0|z), p(0, 1|z), p(1, 0|z), and p(1, 1|z) denote

the model-implied conditional choice probabilities for z ∈ {0, 1, 2}. The model predicts a unique

equilibrium in pure strategies for p(0, 0|z) and p(1, 1|z), so there are six equality restrictions. We

follow convention and construct (standard) inequalities for the conditional choice probabilities

p(0, 1|z) and p(1, 0|z). This yields six equality restrictions and six inequality restrictions:

g1(U, θ) =



−1l{U1≥−β1;U2≤∆−β2}

−1l{U1≤∆−β1;U2≥−β2}

−1l{U1≥−β1−β;U2≤∆−β2−β}

−1l{U1≤∆−β1−β;U2≥−β2−β}

−1l{U1≥−β1−2β;U2≤∆−β2−2β}

−1l{U1≤∆−β1−2β;U2≥−β2−2β}


, g2(U, θ) =



−1l{U1≤−β1;U2≤−β2}

−1l{U1≥∆−β1;U2≥∆−β2}

−1l{U1≤−β1−β;U2≤−β2−β}

−1l{U1≥∆−β1−β;U2≥∆−β2−β}

−1l{U1≤−β1−2β;U2≤−β2−2β}

−1l{U1≥∆−β1−2β;U2≥∆−β2−2β}


.

4There are some exceptions, e.g., Aradillas-Lopez (2011).
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The reduced-form parameter P̂1 stacks the (negative of the) observed conditional probabilities of

(0, 1) and (1, 0) and P̂2 stacks the (negative of the) observed conditional probabilities of (0, 0) and

(1, 1). There is no auxiliary parameter (i.e., no γ) in this setting.

As a benchmark specification, we assume U ∼ N(0, I2) under F∗. Note, however, that we will allow

for arbitrary correlation between U1 and U2 as the neighborhoods expand. We impose a location

normalization EF [U ] = 0 using

g4(U, θ) =
[
U1 U2

]′
.

We also impose a scale normalization by setting β = 1. Alternatively, one could impose a scale

normalization on the variance or inter-quantile range of U1 and U2. In total, we have 6 inequality

constraints and 8 equality constraints. The vector of structural parameters is θ = (β1, β2,∆).5

We define neighborhoods via KL divergence relative to F∗. Although the moment functions in g4

are unbounded, this neighborhood definition is still compatible with the key regularity condition

underlying our procedure (Assumption Φ in Section 4.1). With this notion of divergence, the cri-

terion functions for the dual programs κ?, κ̄?, and δ? as well as the local sensitivity measure s can

all be computed in closed form. Full details are deferred to Appendix A.1.

Suppose that the observed conditional probabilities of observing the various market structures

(pre-intervention) are as described in Table 3.

Z (0, 0) (1, 1) (1, 0) (0, 1)

0 0.619 0.003 0.226 0.152
1 0.175 0.075 0.450 0.300
2 0.013 0.427 0.335 0.225

Table 3: Observed conditional probabilities.

Matching the model-implied conditional choice probabilities under F∗ to the observed conditional

choice probabilities as above yields parameter estimates of β̂1 = −0.70, β̂2 = −0.90, and ∆̂ = 0.80

(there are enough equality restrictions to point-identify these parameters under F∗). We will focus on

the probability of observing a monopoly when Z = 1, where pre-intervention presence of monopolies

is highest. Suppose that the tax is τ = 1.5. The counterfactual probability of a monopoly under

F∗ at θ̂ is κ̂ = 0.143. Therefore, under the independent bivariate normal assumption, the model

predicts the probability of observing a monopoly when Z = 1 will fall from 0.750 to 0.143 under

the tax. How reliant is this prediction on the assumed distribution of unobserved profits?

5We could have allowed the duopoly cost to be ∆1 and ∆2 for firms 1 and 2, respectively. However, when ∆1−τ < 0
and ∆2− τ > 0 (or vice versa) there is no equilibrium in pure strategies for certain values of U for the game in Table
2. We therefore impose the restriction ∆1 = ∆2 = ∆ and maintain pure-strategy equilibrium as the solution concept.
One could alternatively consider equilibria in mixed strategies and modify the moment conditions accordingly.
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Figure 1: Solid lines: κ̂(Nδ) and ˆ̄κ(Nδ) for the counterfactual probability of observing
a monopoly under a tax when Z = 1. Dashed line: estimated counterfactual under the
N(0, I2) parametric benchmark. Dotted line: pre-tax probability of observing a monopoly.
Dot-dashed line: bounds based on extrapolating a local sensitivity measure.

To answer this question, Figure 1 plots the upper and lower bounds of the set of counterfactuals over

KL neighborhoods of F∗ of various sizes. These bounds represent the smallest and largest values

of the counterfactual that can be obtained under a distribution in Nδ which is constrained so that

(i) the model explains the pre-intervention conditional choice probabilities in Table 3, and (ii) the

mean-zero restriction on U holds. As can be seen, the bounds are equal to the counterfactual under

F∗ when δ = 0. As δ increases the bounds expand until they span the interval [0, 0.379], which

represents the identified set of the counterfactual probability of observing a monopoly when Z = 1.

To interpret the neighborhood size δ, consider the benchmark specification where F∗ is N(0, I2).

A shift in the fix cost parameters (β1, β2)′ could be offset by shifting the mean from 0 to µ, say.

The KL divergence between the N(0, I2) distribution and N(µ, I2) distribution is 1
2‖µ‖

2. So, a

neighborhood of size δ = 1
2 would contain distributions that are as far from F∗ as distributions that

shift fixed costs of one of the firms by one unit of profits. Similarly, neighborhoods of size δ = 0.125

contain distributions as far from F∗ as distributions that shift fixed costs of one of the firms by half

a unit of profits. With this in mind, we see that the lower bound of 0 is achieved by δ = 0.2. Yet

there are distributions equally close to F∗ under which the probability of observing a monopoly

would be around 0.32. The neighborhoods continue to expand upwards until the upper bound of

0.379 is achieved, slightly over half the probability of observing a monopoly without the tax.
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Figure 1 also plots the bounds that are obtained by extrapolating a measure of local sensitivity of

the counterfactual with respect to F∗ (see Section 6 and Appendix A.1 for computational details).

Extrapolation gives a good approximation when δ is very small. However, the approximation breaks

down outside of very small neighborhoods. The reason is that at F∗ none of the moment equality

restrictions are binding. Thus, none of the inequality restrictions are relevant in characterizing

local sensitivity. The moment inequality restrictions are, however, relevant outside of very small

neighborhoods of F∗. These inequality restrictions further constrain the sets of distributions and,

therefore, the set of counterfactuals.

The preceding exercise could be repeated under further restrictions on the parameter space Θ or

by imposing additional shape constraints on the class of distributions F . One can then explore the

extent to which these restrictions further sharpen the identified sets for counterfactuals.

3.2 Dynamic discrete choice

As a second numerical illustration, we consider a dynamic discrete choice (DDC) model following

Rust (1987). The DDC literature is extensive; see Aguirregabiria and Mira (2010) and Arcidiacono

and Ellickson (2011) for surveys. The basic setup of a discrete-time, infinite-horizon model is as

follows. At each date t, agent i chooses ai,t ∈ {0, 1, . . . , na} so as to maximize discounted expected

payoffs. There is an observable state xi,t ∈ {1, 2, . . . , nx} which evolves as a controlled Markov

process with transition kernel M . The agent’s problem can be summarized by the ex-ante value

function

V (xi,t) = EF
[
max
a

(
π(a, xi,t; θπ) + Ui,t(a) + βEM [V (xi,t+1)|xi,t, a]

)]
,

where π is a deterministic per-period payoff indexed by parameters θπ, β ∈ (0, 1) is a discount

factor, and Ui,t = (Ui,t(0), . . . , Ui,t(na))
′ is a Rna+1-valued vector of latent (to the econometrician)

payoff shocks that are independently (of xi,t) and identically distributed with distribution F . The

testable implications of the model are summarized by the conditional choice probabilities (CCPs)

p(a|xit) = EF
[
1l

{
π(a, xi,t; θπ) + Ui,t(a) + βEM [V (xi,t+1)|xi,t, a]

≥ max
a′

(
π(a′, xi,t; θπ) + Ui,t(a

′) + βEM [V (xi,t+1)|xi,t, a′]
)}]

, a = 0, . . . , na .

Researchers typically observe panel data on (xi,t, ai,t) and estimate structural parameters assuming

the latent utility shocks have a particular parametric distribution, say F∗.
6 A standard parametric

assumption used in the estimation procedures of Rust (1987) and Hotz and Miller (1993) is that

6A few papers study estimation without parametric assumptions on the distribution of payoff shocks. See Norets
and Tang (2014) for the case of models with finite states, as above, and Blevins (2014), Chen (2017), and Buchholz,
Shum, and Xu (2018) for models with continuous states.
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the payoff shocks are i.i.d. type-I extreme value. This assumption is motivated by computational

considerations, as it leads to closed-form expressions for expectations of maxima. Given an estimate

of θπ, the dynamic program can be solved again under counterfactual changes to the environment

to investigate the effect on choice probabilities, welfare, or other quantities of interest. As before,

we see that the researcher’s parametric assumption F∗ plays a role both at the estimation stage

and again when solving the dynamic program to compute counterfactuals.

To map this setup into our framework, identify V with a nx-vector v solving the moment condition

EF∗
[
max
a

(
π(a; θπ) + Ui,t(a) + βMav

)
− v
]

= 0 , (15)

where π(a; θπ) = (π(a, 1; θπ), . . . , π(a, nx; θπ))′, Ma is the nx × nx transition matrix representing

M(xi,t+1|xi,t, a), and the maximum is applied row-wise. The CCPs p(a|x) may be identified with a

nx-vector pa which solves the moment condition

EF∗
[
1l
{
π(a; θπ) + Ui,t(a) + βMav ≥ max

a′

(
π(a′; θπ) + Ui,t(a

′) + βMa′v
)}]

= pa , (16)

where the maximum, inequality, and indicator function are all applied row-wise. Consider a coun-

terfactual transforming payoffs π to π̃ and/or transition probabilities Ma to M̃a. The value function

Ṽ under the counterfactual may be identified with a nx-vector ṽ solving the moment condition

EF∗
[
max
a

(
π̃(a; θπ) + Ui,t(a) + βM̃aṽ

)
− ṽ
]

= 0 , (17)

where π̃(a; θπ) = (π̃(a, 1; θπ), . . . , π̃(a, nx; θπ))′.

In the notation of Section 2, there are no inequalities so g1, g3, and P1 are vacuous. The function

g2 collects the model-implied conditional choice probabilities from equation (16) for a = 1, . . . , na

and the vector P̂2 = (p̂′1, . . . , p̂
′
na)′ collects the estimated CCPs. The auxiliary parameter is γ̂ =

(M̂0, . . . , M̂na). Both P̂2 and γ̂ are computed from the panel of data on (xi,t, ai,t). The function g4

collects the fixed-point equations (15) and (17) for v and ṽ, respectively. Finally, θ = (θ′π, v
′, ṽ′)′.

Our approach to augmenting the parameter space and adding equilibrium conditions for v and ṽ is

somewhat similar to MPEC implementations. As our methods are robust to partial identification,

one could also treat β as unknown and include it as a component of θ. In the example below

we follow much of the literature and treat β as known, however. One could add further moment

conditions embodying location/scale normalizations or smoothness restrictions to g4, as described

in Section 2.4. Unlike the game example, we do not impose a mean-zero normalization on U here.

We use a dynamic model of monopolist entry and exit from Kalouptsidi, Scott, and Souza-Rodrigues

(2017) as a numerical example. Each period a monopolist decides whether to participate (a = 1)

or not participate (a = 0) in a market. The observed state is xi,t = (si,t, ai,t−1)′ where si,t is a
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p(1|x) (H, 0) (M, 0) (L, 0) (H, 1) (M, 1) (L, 1)

Estimated 0.9361 0.8748 0.7299 0.9999 0.8091 0.0048
Counterfactual 0.9495 0.9027 0.8033 0.9999 0.6959 0.0029

Table 4: Estimated CCPs (P̂2) and counterfactual CCPs (κ̂) under F∗.

market-level variable (high, medium or low) which evolves exogenously. Payoffs are

π(a, xi,t; θπ) =

[
−ace if ai,t−1 = 0 ,

a(π1(si,t; θπ)) + (1− a)cs if ai,t−1 = 1 ,

where ce is an entry cost, cs is scrap value, and variable profits π1(s; θπ) are

π1(s; θπ) =
(x(s)− cm)2

4cd
− cf ,

where cf is a fixed cost, cm is the monopolist’s constant marginal cost, and x(s) and cd are the

intercept the slope, respectively, of the linear demand curve faced by the monopolist in state s. As

in Kalouptsidi et al. (2017), we take x(s) = 20, 17, and 12 in the high, medium, and low states,

respectively. We also normalize β = 0.95 and φs = 10, so θπ = (cd, ce, cf , cm).

Suppose we observe a panel of data on (xi,t, ai,t) from which we estimate CCPs (see Table 4) and

transition law q for s (the matrices M0 and M1 are known up to q):

q̂(st+1|st) =

 0.40 0.35 0.25

0.30 0.40 0.30

0.20 0.20 0.60

 ,
where the first row/column correspond to the high state and the third to the low state. Fixing F∗ so

that the payoff shocks are type-I extreme value, we invert the estimated CCPs to obtain estimates

θ̂π = (11.0, 9.0, 5.5, 1.5).

We wish to investigate the effect of a subsidy that reduces the cost of entry by 0.9 units, a reduction

of 10%. Counterfactual CCPs displayed in Table 4 are obtained by solving the model using (θ̂π, F∗).

How reliant are the counterfactual CCPs on the assumed distribution of payoff shocks?

To investigate sensitivity, we apply our procedure over neighborhoods of F∗ of various sizes. We

focus on the first two counterfactual CCPs in Table 4, which represent the conditional probabilities

of an inactive monopolist entering the market when the market-level state is high and medium,

respectively. As the type-I extreme value distribution has slightly fatter tails than the normal

distribution used in the game example, here we constrain neighborhoods by hybrid divergence,

rather than KL divergence, so as to satisfy the key regularity condition underlying our procedure
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Figure 2: Solid lines: κ̂(Nδ) and ˆ̄κ(Nδ) for the entry CCP (i.e., P (1|s, a = 0)) by market-
level state. Dashed line: estimated counterfactual under the type-I extreme value parametric
benchmark. Dotted line: observed CCP without the subsidy. Dot-dashed line: bounds based
on extrapolating a local sensitivity measure.

(Assumption Φ in Section 4.1).7 Figure 2 plots the smallest and largest counterfactuals that could

be obtained under distributions in Nδ that explain the CCPs in the first line of Table 4. Both

figures show that the counterfactual CCPs are bounded below by the CCPs without the subsidy.

The counterfactual CCP in the medium state is constrained above, however, showing that the

model has some structure that disciplines the set of counterfactual predictions.

To interpret the neighborhood size δ, the hybrid divergence between a type-I extreme value dis-

tribution with mean zero and type-I extreme value distribution with location shifted by µ units

behaves like 1
2µ

2 for small values of µ. So, a neighborhood of size δ = 0.10 contains distributions

that are as far from F∗ as distributions that have a location shift of around 0.45 profit units, a mag-

nitude equivalent to half the size of the subsidy. Similarly, neighborhoods of size δ = 0.025 contain

distributions that are as far from F∗ as distributions that have a location shift around one quarter

the size of the subsidy. With this in mind, we see that the lower bound for the counterfactual CCP

in the high state is achieved by around δ = 0.025, the lower and upper bounds for the CCPs in the

medium state are attained by around δ = 0.05, and the upper bound of 1 for the CCP in the high

7The moment conditions g4 grow like ‖U‖ for large values of ‖U‖. Compatibility with KL divergence requires that
EF∗ [ec‖U‖] <∞ for each c > 0; see Section 4.1. The type-I extreme value distribution does not satisfy this condition
as it tails are too thick. It does, however, satisfy the weaker condition EF∗ [‖U‖2] <∞ required by hybrid divergence.
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state is achieved by around δ = 0.15. The bounds for the CCP in the high state expand more slowly

than for the medium state, indicating that this counterfactual CCP is relatively less sensitive to

specification of F∗. After δ = 0.15, the bounds for both counterfactual CCPs are stable and equal

to the limits of the endpoints of their respective identified sets.

Figure 2 also plots the bounds that are obtained by extrapolating a local sensitivity measure

(see Section 6 and Appendix A.2 for computational details). The measure is ŝ = 0.020 for the

counterfactual CCP in the high state and ŝ = 0.035 for the medium state, showing again that

the counterfactual CCP in the high state is relatively less sensitive to specification of F∗. As with

the game example, extrapolation gives a good approximation when δ is very small. Outside of

small neighborhoods, however, these sets fail to capture the true nature of the identified sets of

counterfactual CCPs. One reason for this is that extrapolation produces bounds that are symmetric

around the counterfactual at F∗, whereas the upper panel of Figure 2 reveals asymmetries in the

true set of counterfactuals obtained using our procedure.

We close this section by comparing our approach with Norets and Tang (2014), who study identified

sets of CCPs in dynamic binary choice models without parametric assumptions on F . They eliminate

the nuisance distribution via a reparameterization and a linear program, which is solved for each

θπ-counterfactual CCP pair. If one’s aim is to recover the identified set of counterfactual CCPs,

then their approach is computationally lighter than ours as it uses linear programming and involves

no numerical integration. However, their analysis is more restrictive than ours, as it is specific to

counterfactual CCPs in dynamic binary choice models whereas we allow for general counterfactuals

(e.g. welfare measures, expected profits, and so on) in dynamic multinomial choice models. We also

accommodate a broader range of location/scale normalizations and shape restrictions.

4 Theory

In this section we first outline some theoretical results which underlie the dual representation of

the extreme counterfactuals and justify our choice of criterion function. We then go on to discuss

estimation and inference results.

4.1 Duality

To ensure the dual representations are well defined, we impose two easily verifiable conditions on the

cost function φ and its compatibility with the thickness of the tails of the distribution of g1, . . . , g4

and k under F∗.
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To introduce the condition, let ψ(x) = φ?(x) − x where φ?(x) = supt≥0:φ(t)<+∞(tx − φ(t)) is the

convex conjugate of φ. Define

E = {f : U → R such that EF∗ [ψ(c|f(U)|)] <∞ for all c > 0} .

The space E is an Orlicz class of functions. Further details are deferred to Appendix C. For now,

we just compare E with Lp spaces, namely Lp(F∗) = {f : U → R such that EF∗ [|f(U)|p] <∞} for

1 ≤ p <∞ and the space of (essentially) bounded functions when p =∞. For KL neighborhoods,

we have E = {f : U → R : EF∗ [ec|f(U)|] < ∞ for all c > 0}, so L∞(F∗) ⊂ E ⊂ Lp(F∗) for each

p <∞. For φ corresponding to Cressie–Read divergence with exponent p > 1, we have E = Lq(F∗)

where 1
p + 1

q = 1. Moreover, E = L2(F∗) for hybrid and χ2 divergence.

Assumption Φ

(i) φ : [0,∞) → R ∪ {+∞} is twice continuously differentiable on (0,∞) and strictly convex,

φ(1) = φ′(1) = 0, φ(0) < +∞, limx→∞ x
−1φ(x) = +∞, limx↓0 φ

′(x) < 0, limx→∞ φ
′(x) > 0,

and limx→∞ xφ
′(x)/φ(x) < +∞.

(ii) k(·; θ, γ) and each entry of g(·; θ, γ) belong to E for each θ ∈ Θ and γ ∈ Γ.

Assumption Φ(i) is satisfied by functions inducing KL, Cressie–Read, χ2, and hybrid divergence,

among many others. However, it rules out φ(x) = − log x + x − 1 used in empirical likelihood. In

view of Assumption Φ(i), we may extend the domain of φ so that φ(x) = +∞ if x < 0.

Assumption Φ(ii) describes a trade-off between the tail-thickness of F ∈ Nδ and the growth of

k and ‖g‖ which ensures the expectations in (1)–(4) are well defined.8 As k, g, and F∗ are all

specified by the researcher, this condition is easily verified. In particular, Assumption Φ(ii) holds

for KL, Cressie–Read, χ2, and hybrid divergence under a strong Cramér-type condition, namely

that EF∗ [ec|k(U,θ,γ)|] and EF∗ [ec‖g(U,θ,γ)‖] are finite for all c > 0 and all (θ, γ). This condition is

satisfied, e.g., when (a) k and g are bounded, or (b) k and g are additively separable in U and

the researcher’s choice F∗ is a sufficiently thin-tailed distribution, e.g. normal. If this Cramér-type

condition fails, then a stronger divergence than KL must be used. For instance, if k and each entry

of g all have finite second moments under F∗ then we may use χ2 or hybrid divergence.

Remark 4.1 There is a tradeoff between the class of distributions over unobservables and the

thickness of the tails of moment functions. A key innovation of Schennach (2014) is to allow for

moment functions that are unbounded. Schennach (2014) uses φ corresponding to KL divergence

but adjusts the reference measure (F∗ in our notation) appropriately. In contrast, our objective is to

8Assumption Φ is similar to conditions justifying duality results in generalized empirical likelihood estimation
(see, e.g., Komunjer and Ragusa (2016)) where F∗ would be replaced by the data-generating probability measure.
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examine sensitivity to departures from the researcher’s default choice F∗. We therefore keep F∗ as

the reference measure but modify φ appropriately. Li (2018) uses truncation to extend the framework

of Ekeland et al. (2010) to accommodate unbounded moments, which introduces a tuning parameter.

Rather than modify the model through truncation, our approach restricts attention to sufficiently

thin-tailed classes of distributions. As we show in Section 5, these classes are sufficiently rich that

our procedure delivers sharp bounds on the identified set of counterfactuals over large neighborhoods.

A sufficient condition for strong duality is the following Slater condition. Let 0di denote a di × 1

vector of zeros and C = Rd1+ × {0d2} × Rd3+ × {0d4}. Also let N∞ = {F ∈ F : Dφ(F‖F∗) <∞}.

Definition 4.1 Condition S holds at (θ, γ, P ) if (P ′, 0′d3+d4
)′ ∈ int({EF [g(U, θ, γ)] : F ∈ N∞}+C).

Condition S requires that there exist F “in the interior” of N∞ under which conditions (1)–(4) hold

at (θ, γ, P ). If there are no inequalities, then Condition S reduces to (P ′2, 0
′
d4

)′ ∈ int({EF [g(U, θ, γ)] :

F ∈ N∞}). If there are only inequalities, then Condition S holds if there exists a distribution

F ∈ N∞ such that EF [g(U, θ, γ)] < (P ′1, 0
′
d3

)′ (where the strict inequality holds element-wise).

It is straightforward to relax condition S by replacing “interior” with “relative interior” so as

to accommodate moment functions that become linearly dependent at certain parameter values.

Indeed, the dual representations all remain valid under this weaker condition. However, weakening

the condition somewhat complicates the derivation of the estimation and inference results.

Lemma 4.1 Let Assumption Φ hold. Then: the duals of κδ(θ; γ, P ) and κ̄δ(θ; γ, P ) in the explicit-

dependence case are the programs κ?δ(θ; γ, P ) and κ̄?δ(θ; γ, P ) defined in equations (5) and (6). If

Condition S also holds at (θ, γ, P ) and δ?(θ; γ, P ) < δ, then: the supremum can be taken over

(η, ζ, λ) ∈ (0,∞) × R × Λ, and the dual programs reduce to the programs in equations (7) and (8)

for KL neighborhoods and (9) and (10) for hybrid neighborhoods.

Recall that Fθ,γ,P minimizesDφ(F‖F∗) subject to the restrictions (1)–(4) at (θ, γ, P ). In the explicit-

dependence case, define

Kδ(θ; γ, P ) =


κ?δ(θ; γ, P )

EFθ,γ,P [k(U, θ, γ)]

+∞ ,

, Kδ(θ; γ, P ) =


κ̄?δ(θ; γ, P ) if δ?(θ; γ, P ) < δ,

EFθ,γ,P [k(U, θ, γ)] if δ?(θ; γ, P ) = δ,

−∞ if δ?(θ; γ, P ) > δ,

where δ? is defined in equation (12). In the implicit-dependence case, define

Kδ(θ; γ, P ) =

[
k(θ, γ)

+∞ ,
, Kδ(θ; γ, P ) =

[
k(θ, γ) if δ?(θ; γ, P ) ≤ δ,
−∞ if δ?(θ; γ, P ) > δ.
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With this notation, the sample criterion function for the smallest and largest counterfactuals are

K̂δ(θ) = Kδ(θ; γ̂, P̂ ) and K̂δ(θ) = Kδ(θ; γ̂, P̂ ). We sometimes abbreviate the population criterion

functions to Kδ(θ) := Kδ(θ; γ0, P0) and Kδ(θ) := Kδ(θ; γ0, P0).

Lemma 4.2 Let Assumption Φ hold. Then:

(i) If δ?(θ; γ, P ) > δ, then: there does not exist F ∈ Nδ satisfying conditions (1)–(4) at (θ, γ, P ).

(ii) If Condition S holds at (θ, γ, P ), then: κδ(θ; γ, P ) = Kδ(θ; γ, P ) and κ̄δ(θ; γ, P ) = Kδ(θ; γ, P ).

Lemma 4.2 justifies the description of the inner loop in Section 2. In particular, if Condition S holds

at (θ, γ0, P0) for every θ ∈ Θ with δ?(θ; γ0, P0) ≤ δ, then

κ(Nδ) = inf
θ∈Θ

Kδ(θ) , κ̄(Nδ) = sup
θ∈Θ

Kδ(θ) .

When introducing the estimators κ̂(Nδ) and ˆ̄κ(Nδ) earlier in Section 2, it was argued that the case

δ?(θ; γ̂, P̂ ) = δ could effectively be ignored because of numerical optimization error. This knife-edge

case can also be ignored at a population level under mild conditions. Equip E with the norm

‖f‖ψ = inf
c>0

1

c
(1 + EF∗ [ψ(c|f(Z)|)]) .

For χ2 and hybrid neighborhoods, the norm ‖ · ‖ψ is equivalent to the L2(F∗) norm. A class of

functions {gα : α ∈ A} ⊂ E is E-continuous in α if ‖gα1 − gα2‖ψ → 0 as α1 → α2 (A is a metric

space). For χ2 and hybrid neighborhoods this notion of continuity is equivalent to L2(F∗) continuity,

i.e., EF∗ [(gα1(U)− gα2(U))2]→ 0 as α1 → α2. Let Θδ = {θ ∈ Θ : δ?(θ, γ0, P0) < δ}.

Assumption M

(i) k(·; θ, γ) and each entry of g(·; θ, γ) are E-continuous in (θ, γ)

(ii) Θδ is nonempty and Condition S holds at (θ, γ0, P0) for each θ ∈ Θδ

(iii) cl(Θδ) ⊇ {θ : δ?(θ; γ0, P0) ≤ δ}.

Assumption M(i) may be verified under continuity conditions on k and g. If k and g each consist of

indicator functions of events, Assumption M(i) holds provided the probabilities of the events under

F∗ are continuous in (θ, γ). In the implicit-dependence case, Assumption M(i) requires that k is

continuous in (θ, γ). We only require E-continuity in θ at γ0 for the results in this subsection; the

results in the next subsection require continuity in (θ, γ). Assumption M(i) reduces to E-continuity

in θ for models with no auxiliary parameter (i.e., no γ). Nonemptyness of Θδ is always satisfied

when the model is correctly specified under F∗, i.e., there exists a θ ∈ Θ solving (1)–(4) under F∗.
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Assumption M(iii) is made for convenience and can be relaxed.9 This condition simply ensures that

there do not exist values of θ at which δ?(θ; γ0, P0) = δ but that are separated from Θδ.

Lemma 4.3 Let Assumptions Φ and M hold. Then:

κ(Nδ) = inf
θ∈Θδ

κ?δ(θ; γ0, P0) , κ̄(Nδ) = sup
θ∈Θδ

κ̄?δ(θ; γ0, P0)

in the explicit-dependence case, and

κ(Nδ) = inf
θ∈Θδ

k(θ; γ0) , κ̄(Nδ) = sup
θ∈Θδ

k(θ; γ0)

in the implicit-dependence case.

Lemma 4.3 is a continuity result. It formally justifies ignoring the knife-edge case δ?(θ; γ0, P0) = δ

when characterizing the extreme counterfactuals at a population level.

4.2 Large-sample properties of plug-in estimators

We now show that the plug-in estimators are consistent and derive their asymptotic distribution.

To do so, we first impose two more mild regularity conditions.

Assumption M (continued)

(iv) Θ is a compact subset of Rdθ

(v) EF∗ [φ?(c1 + c2k(U, θ, γ) + c′3g(U, θ, γ))] is continuous in (θ, γ) for each c ∈ Rd+2.

Assumption M(iv) can be relaxed but simplifies some of the proofs. If k and each entry of g consist

of indicator functions of events, then Assumption M(v) merely requires that the probability of

the events under F∗ are continuous in (θ, γ). For models without auxiliary parameters (i.e. no γ),

Assumption M(v) just requires continuity in θ.

Theorem 4.1 Let Assumptions Φ and M hold and let (γ̂, P̂ )→p (γ0, P0) or, if there is no auxiliary

parameter, P̂ →p P0. Then: (κ̂(Nδ), ˆ̄κ(Nδ))′ →p (κ(Nδ), κ̄(Nδ))′.

9This condition can be relaxed by working with sets of the form Nδ′ with δ′ > δ and taking limits of κδ′ and κ̄δ′

as δ′ ↓ δ, since any point with δ?(θ; γ0, P0) = δ belongs to Θδ′ for all δ′ > δ.
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We now derive the asymptotic distribution of the lower and upper bounds. To simplify presentation,

we assume γ is vacuous in the remainder of this subsection. This entails no loss of generality for the

entry game example. For the dynamic discrete choice models it assumes that the Markov transition

matrix is known by the econometrician. We also drop dependence of all quantities on γ for the

remainder of this subsection. We may view the lower and upper bounds as functions of the reduced-

form parameter, so we write κ(Nδ) = κ(Nδ;P0) and κ̄(Nδ) = κ̄(Nδ;P0), and κ̂(Nδ) = κ(Nδ; P̂ )

and ˆ̄κ(Nδ) = κ̄(Nδ; P̂ ). Inference results are derived by establishing differentiability properties

of κ(Nδ;P ) and κ̄(Nδ;P ). In some cases, the lower and upper bounds are (fully) differentiable

functions of the reduced-form parameter P and standard delta-method arguments can be applied.

Lack of full differentiability can arise if there are multiple Lagrange multipliers at a particular θ,

and/or if the value of θ at which the lower and/or upper counterfactual is obtained is not unique.

In these cases, the lower and upper bounds satisfy a weaker notion of differentiability and inference

can be performed using subsampling or various modified bootstraps.

Define

Θδ = {θ ∈ Θ : κδ(θ;P ) = κ(Nδ)} , Θδ = {θ ∈ Θ : κ̄δ(θ;P ) = κ̄(Nδ)} .

Also define

Ξδ(θ) = argsupη≥0,ζ∈R,λ∈Λ − EF∗
[
(ηφ)?(−k(U, θ)− ζ − λ′g(U, θ))

]
− ηδ − ζ − (λ′1, λ

′
2)P ,

Ξδ(θ) = arginfη≥0,ζ∈R,λ∈ΛEF∗
[
(ηφ)?(k(U, θ)− ζ − λ′g(U, θ))

]
+ ηδ + ζ + (λ′1, λ

′
2)P

in the explicit-dependence case, and

Ξδ(θ) = argsupη≥0,ζ∈R,λ∈Λ − EF∗
[
(ηφ)?(−ζ − λ′g(U, θ))

]
− ηδ − ζ − (λ′1, λ

′
2)P ,

Ξδ(θ) = arginfη≥0,ζ∈R,λ∈ΛEF∗
[
(ηφ)?(−ζ − λ′g(U, θ))

]
+ ηδ + ζ + (λ′1, λ

′
2)P

in the implicit-dependence case. These sets are nonempty, convex and compact under the conditions

of the following Lemma and Theorem. Also let

Λδ(θ) = {(λ′1, λ′2)′ : (η, ζ, λ′1, λ
′
2, λ
′
3, λ
′
4)′ ∈ Ξδ(θ) for some (η, ζ, λ′3, λ

′
4)′} ,

Λδ(θ) = {(λ′1, λ
′
2)′ : (η, ζ, λ

′
1, λ
′
2, λ
′
3, λ
′
4)′ ∈ Ξδ(θ) for some (η, ζ, λ

′
3, λ
′
4)′} .

A function f : Rd1+d2 → R is (Hadamard) directionally differentiable at P0 if there is a continuous

map df(P0)[·] : Rd1+d2 → R such that

lim
n→∞

f(P0 + tnπn)− f(P0)

tn
= df(P0)[π]

for each positive sequence tn ↓ 0 and sequence of vectors πn → π ∈ Rd1+d2 (Shapiro, 1990, p. 480).

If the map df(P0)[·] is linear then f is (fully) differentiable at P0.
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Lemma 4.4 Let Assumptions Φ and M hold. If Θδ ⊆ Θδ and either (i) Λδ is lower hemicontin-

uous at each θ ∈ Θδ or (ii) Λδ(θ) is a singleton for each θ ∈ Θδ, then: κ(Nδ; ·) is directionally

differentiable at P0:

dκ(Nδ;P0)[π] = inf
θ∈Θδ

sup
(λ′1,λ

′
2)′∈Λδ(θ)

−(λ′1, λ
′
2)′π .

Similarly, if Θδ ⊆ Θδ, and either (i) Λδ is lower hemicontinuous at each θ ∈ Θδ or (ii) Λδ(θ) is a

singleton for each θ ∈ Θδ then: κ̄(Nδ; ·) is directionally differentiable at P0:

dκ̄(Nδ;P0)[π] = sup
θ∈Θδ

inf
(λ
′
1,λ
′
2)′∈Λδ(θ)

(λ
′
1, λ
′
2)π .

We are now in a position to derive the joint asymptotic distribution of lower and upper bounds.

Provided the first-stage estimator P̂ is asymptotically normally distributed, the result follows by a

delta method for directionally differentiable functions (Shapiro, 1991) and Lemma 4.4.

Theorem 4.2 Let
√
n(P̂ − P0)→d N(0,Σ) and let the conditions of Lemma 4.4 hold. Then:

√
n

[
ˆ̄κ(Nδ)− κ̄(Nδ)
κ̂(Nδ)− κ(Nδ)

]
→d

[
supθ∈Θδ

inf
(λ
′
1,λ
′
2)′∈Λδ(θ)

(λ
′
1, λ
′
2)Z

infθ∈Θδ
sup(λ′1,λ

′
2)′∈Λδ(θ)

−(λ′1, λ
′
2)Z

]
,

where Z ∼ N(0,Σ).

In particular, if ∪θ∈Θδ
Λδ(θ) = {(λ′1, λ

′
2)′} and ∪θ∈Θδ

Λδ(θ) = {(λ′1, λ′2)′}, then:

√
n

[
ˆ̄κ(Nδ)− κ̄(Nδ)
κ̂(Nδ)− κ(Nδ)

]
→d N

([
0

0

]
,

[
λ
′
1 λ

′
2

−λ′1 −λ′2

]
Σ

[
λ1 −λ1

λ2 −λ2

])
.

Theorem 4.2 derives the joint asymptotic distribution of plug-in estimators of the extreme counter-

factuals. The asymptotic distribution is typically nonstandard, however, due to directional differ-

entiability of the lower and upper bounds in P . Nevertheless, one may use subsampling or various

modified bootstraps to perform asymptotically valid inference; see Fang and Santos (2019) and

Hong and Li (2018) for related theoretical developments. In particular, note that the directional

derivative dκ(Nδ;P0) is convex when Θδ is a singleton and dκ̄(Nδ;P0) is concave when Θδ is a

singleton. As emphasized in Fang and Santos (2019) and Hong and Li (2018), these convexity and

concavity properties are helpful for guaranteeing uniform asymptotic coverage of one-sided con-

fidence intervals for κ(Nδ) of the form [κ̂(Nδ) − ĉ1−α/
√
n,∞) and one-sided confidence intervals

for κ(Nδ) of the form (−∞, ˆ̄κ(Nδ)− ˆ̄cα/
√
n], where ĉ1−α and ˆ̄cα are critical values obtained using

subsampling or various modified bootstraps.
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5 Sharp bounds on the identified set of counterfactuals

In this section, we show that the extreme counterfactuals κ(Nδ) and κ̄(Nδ) deliver sharp bounds

on the identified set of counterfactuals (i.e., the set of counterfactuals consistent with (1)–(4) where

no parametric distributional assumptions are placed on F ) as the neighborhood size δ becomes

large. In this sense, the local neighborhoods Nδ act like an infinite-dimensional sieve: although they

exclude many distributions, the neighborhoods are in some sense “dense” in the set of distributions

relevant for characterizing the identified set of counterfactuals. We first present results for the

explicit-dependence case, before turning to the implicit-dependence case. Further related theoretical

results are deferred to Appendix B.

5.1 Counterfactuals depending explicitly on latent variables

In the specification of structural models such as dynamic discrete choice models and static and

dynamic games, it is common to assume that the latent variables have a density relative to some

σ-finite dominating measure, say µ (usually Lebesgue measure). In defining the identified set of

counterfactuals, we therefore consider only distributions that are absolutely continuous with respect

to µ. We do so because absolute continuity is often itself a “structural” assumption that is used,

among other things, to help establish existence of equilibria.

To introduce the identified set, let Fθ = {F ∈ F : EF [g(U, θ, γ0)] is finite and F � µ}. The set Fθ
is the largest set of probability measures that are absolutely continuous with respect to µ and for

which the moments (1)–(4) are defined at θ. The identified set of counterfactuals is

K# =
{
EF [k(U, θ, γ0)] such that (1)–(4) hold for some θ ∈ Θ and F ∈ Fθ

}
.

The set Fθ contains many fatter-tailed distributions not in N∞. It therefore seems reasonable to

ask: in confining ourselves to N∞, do we throw away other distributions that can yield smaller

or larger values of the counterfactual? As we shall see, the answer is “no” provided µ and F∗ are

mutually absolutely continuous, which we may interpret as a type of full support condition for

F∗. In that case, the neighborhoods Nδ eventually span the full set of distributions relevant for

characterizing the smallest and largest elements of K#.

We say that k is µ-essentially bounded if |k(·, θ, γ0)| has finite µ-essential supremum10 for each

θ ∈ Θ. This is trivially true if the function k is bounded, i.e.: supu |k(u, θ, γ0)| < ∞ for each θ.

Conditional choice probabilities always satisfy this boundedness condition because the k function is

10The µ-essential supremum of f : U → R is µ-ess sup f = inf{c : µ({u : f(u) > c} = 0)}. Similarly, the µ-essential
infimum is µ-ess inf f = sup{c : µ({u : f(u) < c} = 0)}. Note that inf f ≤ µ-ess inf f ≤ µ-ess sup f ≤ sup f .
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an indicator function of an event. This boundedness condition ensures the extreme counterfactuals

are finite. Note, however, that we do not require any of the moment functions g1, . . . , g4 to be

bounded.

Theorem 5.1 Let Assumption Φ hold, let Condition S hold at (θ, γ0, P0) for all θ ∈ Θ, let µ and

F∗ be mutually absolutely continuous, and let k be µ-essentially bounded. Then:

κ(Nδ)→ inf K# , κ̄(Nδ)→ supK# as δ →∞.

Remark 5.1 One-sided versions also hold when k is not µ-essentially bounded. Suppose that k

is only µ-essentially bounded from below (i.e. µ-ess inf k(·, θ, γ0) > −∞ for each θ ∈ Θ) and the

remaining conditions of Theorem 5.1 hold. Then: κ(Nδ) → inf K# as δ → ∞. Similarly, if k

is only µ-essentially bounded from above (i.e. µ-ess sup k(·, θ, γ0) < ∞ for each θ ∈ Θ), then:

κ̄(Nδ)→ supK# as δ →∞.

Mutual absolute continuity of µ and F∗ may be interpreted as a type of full support condition on F∗.

In models where µ is Lebesgue measure, it follows from Theorem 5.1 that choosing F∗ with strictly

positive density over U —which is indeed the case for all conventional benchmark choices such as

normal, extreme value (Gumbel), Fréchet, Pareto, etc.— ensures that the extreme counterfactuals

κ(Nδ) and κ̄(Nδ) will approach the bounds of the identified set of counterfactuals as δ gets large.

5.2 Counterfactuals depending implicitly on latent variables

In the implicit-dependence case, the identified set of counterfactuals is

K# = {k(θ, γ0) such that (1)–(4) hold for some θ ∈ Θ and F ∈ Fθ} .

As k does not depend on U , an analogous version of Theorem 5.1 holds without the essential-

boundedness condition.

Theorem 5.2 Let Assumption Φ hold, let Condition S hold at (θ, γ0, P0) for all θ ∈ Θ, let µ and

F∗ be mutually absolutely continuous. Then:

κ(Nδ)→ inf K# , κ̄(Nδ)→ supK# as δ →∞.
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6 Local sensitivity

Local sensitivity analyses characterize the behavior of a targeted quantity (e.g. a counterfactual

or structural parameter) as a model input (e.g. a distribution or vector of moments) varies over a

vanishingly small neighborhood of an assumed true specification. Here we describe a measure of

local sensitivity of counterfactuals with respect to the distribution of unobservables and connect

the measure to our procedure over small neighborhoods. Our measure deals with an assumption

made at the modeling stage: it holds the observable implications of the model fixed and focuses

on what happens “under the hood” of the model. This is conceptually distinct from the measures

proposed by Andrews, Gentzkow, and Shapiro (2017, 2018; AGS hereafter), which characterize

the sensitivity of estimates of counterfactuals or structural parameters with respect to possible

local misspecification of the moments used in estimation. In their framework, the distribution of

observables is possibly (locally) misspecified. In contrast, our approach holds the observables fixed

and varies specification of the distribution of unobservables. The first part of this section describes

our local sensitivity measure, derives its influence function representation, and presents a consistent

and easily computable estimator. We then show how the influence function we obtain and our local

sensitivity measure is complementary to though conceptually very different from the (statistical)

influence function of the counterfactual and related local sensitivity measures.

Our measure of local sensitivity of counterfactuals with respect to F∗ is

s = lim
δ↓0

(κ̄(Nδ)− κ(Nδ))2

4δ
.

The quantity s measures the curvature of the functions δ 7→ κ(Nδ) and δ 7→ κ̄(Nδ) at δ = 0. If s is

finite, then (under some regularity conditions):

κ(Nδ) = κ(F∗)−
√
δs+ o(

√
δ) , κ̄(Nδ) = κ(F∗) +

√
δs+ o(

√
δ) as δ ↓ 0 ,

where θ(F∗) solves (1)–(4) under F∗ and κ(F∗) = EF∗ [k(U, θ(F∗), γ0)] in the explicit-dependence

case or κ(F∗) = k(θ(F∗), γ0) in the implicit-dependence case.11 When specialized further to point-

identified, regular models studied in the local sensitivity literature, the measure s is particularly

simple to characterize. We present an easily computable estimator ŝ of s in this case, which re-

searchers may report alongside estimated counterfactuals. Approximate bounds on counterfactuals

as F varies over small neighborhoods of F∗ can then be estimated using κ̂ ±
√
δŝ, though the ex-

amples presented in Section 3 indicate that these should be interpreted with some caution outside

of very small neighborhoods.

11Finiteness of s implies that the counterfactual κ(F∗) is point identified. Note that this may be true even if θ(F∗)
is not point identified by the moment conditions (1)–(4); see, e.g., Aguirregabiria (2005), Norets and Tang (2014),
and Kalouptsidi et al. (2017) for the case of dynamic discrete choice models.
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6.1 Counterfactuals depending explicitly on latent variables

To draw further comparison with the local sensitivity literature, we restrict attention to models

with equality restrictions only, i.e., d1 = d3 = 0, and impose some further (standard) GMM-

type regularity conditions. First, assume that the moment conditions (2) and (4) point identify a

structural parameter θ(F∗) ∈ int(Θ) when evaluated under F∗ at (γ0, P20). We write θ(F∗) to make

explicit the dependence of this structural parameter on the assumed specification of F∗. Let

h(u, θ, γ, P2) :=

[
g2(u, θ, γ)− P2

g4(u, θ, γ)

]

and define h0(u) = h(u, θ(F∗), γ0, P20) and k0(u) = k(u, θ(F∗), γ0). We assume EF∗ [h(U, θ, γ0, P20)]

is continuously differentiable with respect to θ at θ(F∗),

H :=
∂

∂θ′
EF∗ [h(U, θ, γ0, P20)]

∣∣∣∣
θ=θ(F∗)

has full rank, V := EF∗ [h0(U)h0(U)′] is finite and positive definite, EF∗ [k(U, θ, γ0)2] is finite,

k(·, θ, γ0) and each entry of h(·, θ, γ0, P20) are L2(F∗) continuous in θ at θ(F∗), and EF∗ [k(U, θ, γ0)]

is continuously differentiable with respect to θ at θ(F∗). Let

J =
∂

∂θ′
EF∗ [k(U, θ, γ0)]

∣∣∣∣
θ=θ(F∗)

.

Define

ι(u) = Πk0(u)− J(H ′V −1H)−1H ′V −1h0(u) , (18)

where

Πk0(u) = k0(u)− κ(F∗)− EF∗ [k0(U)h0(U)′](V −1 − V −1H(H ′V −1H)−1H ′V −1)h0(u) .

In just-identified models (i.e. d2 + d4 = dθ), the expression for ι simplifies:

ι(u) = k0(u)− κ(F∗)− JH−1h0(u) .

The function ι is the influence function of the counterfactual with respect to F at F∗. This is

a different notion of influence function from that which is usually encountered when analyzing

semiparametric estimators, as ι measures sensitivity of an estimand to a modeling assumption

rather than sensitivity of an estimator to the data.12 Nevertheless, ι is derived by similar arguments

to those used to in semiparametric efficiency bound calculations for GMM-type models.

12We use the term influence function because the expansion κ(F ) − κ(F∗) =
∫
ι d(F − F∗) + remainder is valid

for distributions F suitably close to F∗, where κ(F ) = EF [k(U, θ(F ), γ0)]. This mimics the usual asymptotic linear
expansion for estimators, where F and F∗ are replaced by the empirical and true probability measures, respectively.
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The following theorem relates local sensitivity to the variance of ι in point-identified, regular mod-

els. We will restrict attention to neighborhoods characterized by χ2 divergence. Other φ-divergences

are locally equivalent to χ2 divergence, so this restriction entails no great loss of generality.13 Neigh-

borhoods constrained by χ2 divergence are also compatible with the above regularity conditions,

which assume k and the entries of g have finite second moments under F∗ (cf. Assumption Φ(ii)).

Theorem 6.1 Let Assumptions Φ(ii) and M(i)(iv) hold for χ2 divergence, and let the above GMM-

type regularity conditions hold. Then: s = 2EF∗ [ι(U)2] where ι is defined in (18).

In this setting, the researcher will have consistent estimates (γ̂, P̂2) of (γ0, P20), which can be used

to consistently estimate θ(F∗). Let θ̂ denote such an estimator. The researcher would estimate the

counterfactual (under F∗) using

κ̂ = EF∗ [k(U, θ̂, γ̂)] .

In addition to the estimated counterfactual κ̂, the researcher could also report an estimate of the

local sensitivity of the counterfactual with respect to F∗:

ŝ = 2EF∗ [(k̂(U)− κ̂)2] + 2Q̂′V̂ Q̂− 4EF∗ [ĥ(U)(k̂(U)− κ̂)]′Q̂ ,

where k̂(u) = k(u, θ̂, γ̂), ĥ(u) = h(u, θ̂, γ̂, P̂2), V̂ = EF∗ [ĥ(U)ĥ(U)′], and

Q̂ = EF∗ [k̂(U)ĥ(U)′](V̂ −1 − V̂ −1Ĥ(Ĥ ′V̂ −1Ĥ)−1Ĥ ′V̂ −1) + Ĵ(Ĥ ′V̂ −1Ĥ)−1Ĥ ′V̂ −1 ,

with

Ĥ =
∂

∂θ′
EF∗ [h(U, θ, γ̂, P̂2)]

∣∣∣∣
θ=θ̂

, Ĵ =
∂

∂θ′
EF∗ [k(U, θ, γ̂)]

∣∣∣∣
θ=θ̂

.

If the model is just identified, then the expression for Q̂ simplifies to Q̂ = ĴĤ−1. In either case,

the plug-in estimator ŝ is consistent under very mild smoothness conditions.

Lemma 6.1 Let the conditions of Theorem 6.1 hold. Also let (θ̂, γ̂, P̂2)→p (θ(F∗), γ0, P20), and let
∂
∂θ′E

F∗ [h(U, θ, γ, P2)], ∂
∂θ′E

F∗ [k(U, θ, γ)], EF∗ [h(U, θ, γ, P2)h(U, θ, γ, P2)′], EF∗ [h(U, θ, γ, P2)k(U, θ, γ)],

EF∗ [h(U, θ, γ, P2)], EF∗ [k(U, θ, γ)], and EF∗ [k(U, θ, γ)2] be continuous in (θ, γ, P2) at (θ(F∗), γ0, P20).

Then: ŝ→p s.

Some of the terms used to construct ŝ will already be computed when estimating the model using

minimum-distance or GMM methods. Therefore, ŝ should be easy to report alongside κ̂ in practice.

13See Theorem 4.1 in Csiszár and Shields (2004). If φ-divergence different from χ2 divergence is used, the quantity
2EF∗ [ι(U)2] may be rescaled by a factor of φ′′(1) to obtain s. No such rescaling is required for KL or hybrid divergence
as φ′′(1) = 1 in both cases.
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6.2 Counterfactuals depending implicitly on latent variables

Turning to the implicit-dependence case, here we make the same GMM-type assumptions on h0,

H, and V , but instead assume that k(θ, γ0) is continuously differentiable with respect to θ at θ(F∗).

The measure of local sensitivity again takes the form s = 2EF∗ [ι(U)2] under the above conditions,

where the influence function is

ι(u) = −J(H ′V −1H)−1H ′V −1h0(u) (19)

with H, V , and h0 as described in the previous subsection, and J = ∂
∂θ′k(θ, γ0)

∣∣
θ=θ(F∗)

. A result

identical to Theorem 6.1 holds in this setting.

Theorem 6.2 Let Assumptions Φ(ii) and M(i)(iv) hold for φ corresponding to χ2 divergence, and

let the above GMM-type regularity conditions hold. Then: s = 2EF∗ [ι(U)2] where ι is defined in

(19).

In this setting, the researcher will have consistent estimates (θ̂, γ̂, P̂2) of (θ(F∗), γ0, P20). The re-

searcher’s estimator of κ(F∗) would be

κ̂ = k(θ̂, γ̂) .

The local sensitivity of κ(F∗) with respect to specification of F∗ can be estimated using

ŝ = 2Q̂′V̂ Q̂

where Q̂ = Ĵ(Ĥ ′V̂ −1Ĥ)−1Ĥ ′V̂ −1 with Ĥ and V̂ as described in the previous subsection and Ĵ =
∂
∂θ′k(θ, γ̂)

∣∣
θ=θ̂

. As in the previous subsection, the plug-in estimator ŝ is consistent under very mild

smoothness conditions.

Lemma 6.2 Let the conditions of Theorem 6.2 hold. Also let (θ̂, γ̂, P̂2)→p (θ(F∗), γ0, P20), and let
∂
∂θ′E

F∗ [h(U, θ, γ, P2)], ∂
∂θ′k(θ, γ), and EF∗ [h(U, θ, γ, P2)h(U, θ, γ, P2)′], be continuous in (θ, γ, P2) at

(θ(F∗), γ0, P20). Then: ŝ→p s.

6.3 Comparison with other notions of sensitivity

We now briefly compare our local sensitivity measure and influence function representation with

the (statistical) influence function of the counterfactual and with AGS’s measures of sensitivity and

informativeness. Consider a class of models whose only moments are of the form (2) with d2 ≥ dθ
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and for which the auxiliary parameter γ is vacuous. Given a first-stage estimator P̂2 and assumed

distribution F∗, the researcher could estimate θ by minimizing the criterion function

(EF∗ [g2(U, θ)]− P̂2)′Ŵ (EF∗ [g2(U, θ)]− P̂2)

given some positive-definite and symmetric matrix Ŵ whose probability limit W is also positive-

definite and symmetric. Assume P̂2 is a regular estimator with (statistical) influence function ιP2 ,

i.e.:
√
n(P̂2 − P20) =

1√
n

n∑
i=1

ιP2(Xi) + op(1)

where P20 is the probability limit of P̂2. The pseudo-true parameter θ(F∗) solves EF∗ [g2(U, θ)] = P20.

Given an estimator θ̂ of θ(F∗) obtained using this procedure, the researcher would then estimate

the counterfactual as κ̂ = EF∗ [k(U, θ̂)].

By standard delta-method arguments, the (statistical) influence function of κ̂ is seen to be

ικ(x) = J ′(H ′WH)−1H ′WιP2(x) , (20)

where H = ∂
∂θ′E

F∗ [g2(U, θ)]
∣∣
θ=θ(F∗)

. The function ικ(x) characterizes sensitivity of the estimator κ̂

with respect to perturbations of the data X1, . . . , Xn. This is conceptually very different from the

function ι(u) obtained in the previous subsections, which characterizes sensitivity of the estimand

κ(F∗) with respect to perturbations of F∗.

One may verify that AGS’s measure of sensitivity of κ̂ to P̂2 is J ′(H ′WH)−1H ′W , the adjustment

required to obtain ικ(x) from ιP2(x). AGS’s measure of informativeness of P̂2 for κ̂ is 1, meaning

that all (statistical) variation in κ̂ is explained by variation in P̂2. In contrast, our measure of

sensitivity characterizes “specification variation” in κ as the researcher varies F∗. AGS’s sensitiv-

ity and informativeness measures and our measure of sensitivity therefore represent distinct but

complementary quantities.

7 Conclusion

This paper introduces a framework to study the sensitivity of counterfactuals with respect to

strong parametric assumptions about the distribution of unobservables that are often made in

structural modeling exercises. Using insights from the model uncertainty literature, we show how

to construct the smallest and largest counterfactuals obtained as the distribution of unobservables

varies over fully nonparametric neighborhoods of the researcher’s assumed specification while other

structural features of the model, such as equilibrium conditions, are maintained. We provide a
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suitable sampling theory for plug-in estimators of the extreme counterfactuals and illustrate our

procedure with applications to two workhorse models. Further, we show that our procedure delivers

sharp bounds on the identified set of counterfactuals as the neighborhoods expand and we explore

connections with a measure of local sensitivity as the neighborhoods shrink. Going forward, we

plan to further extend our methods to accommodate local misspecification in the reduced form and

to consider optimal estimation and inference in this setting.
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A Details for numerical examples

A.1 Discrete game of complete information

This appendix presents closed-form expressions for the programs δ?, κ? and κ̄? and local sensitivity

measure for the game example studied in Section 3.

A.1.1 Objective functions

To develop intuition, we first discuss the case without regressors (i.e. we only use the moment

conditions corresponding to z = 0). Consider the program δ? in display (13). There are nine cell

probabilities associated with different realizations of Uj in the intervals (−∞,−βj ], (βj ,∆−βj ] and

(∆− βj ,∞) for j = 1, 2. We may split the expectation EF∗ [eλ′g(U,θ)] into the probability weighted

sum of conditional expectations over each of the nine cells. Using the moment generating function

(mgf) for the truncated normal distribution, we may deduce

logEF∗
[
eλ
′g(U,θ)

]
=
‖λ4‖2

2
+ log

(
1′
(
(q2

0(θ, λ4)q1
0(θ, λ4)′) ◦R0(λ)

)
1
)

where “◦” denotes element-wise (Hadamard) product, 1 is a conformable vector of ones,

q1
0(θ, λ4) =

 G(−β1−λ4,1)

G(∆−β1−λ4,1)−G(−β1−λ4,1)

G(β1+λ4,1−∆)

 , q2
0(θ, λ4) =

 G(β2+λ4,2−∆)

G(∆−β2−λ4,2)−G(−β2−λ4,2)

G(−β2−λ4,2)

 ,
where G denotes standard normal cumulative distribution function, and

R0(λ) =

 e−λ1,2 e−λ1,2 e−λ2,2

e−λ1,2 e−λ1,1−λ1,2 e−λ1,1

e−λ2,1 e−λ1,1 e−λ1,1


with λ = (λ′1, λ

′
2, λ
′
4)′ where λ1 = (λ1,1, λ1,2)′, λ2 = (λ2,1, λ2,2)′ and λ4 = (λ4,1, λ4,2)′.

Similar computations apply for κ? and κ̄?. There are two cases to consider.

Case 1: τ ≤ ∆. We partition the interval for U1 and U2 into four regions: (−∞,−βj ], (−βj , τ−βj ],
(τ −βj ,∆−βj ], (∆−βj ,∞) for j = 1, 2. The counterfactual game is identical to the original game

with βj transformed to βj − τ and ∆ transformed to ∆− τ for j = 1, 2. Thus neither firm enters if
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Uj ≤ τ − βj for j = 1, 2 and both firms enter if Uj ≥ ∆− βj for j = 1, 2. We may then deduce

η logEF∗
[
eη
−1(k(U,θ)+λ′g(U,θ))

]
=
‖λ4‖2

2η
+ η log

(
1′
(
(q2(θ, λ4, η)q1(θ, λ4, η)′) ◦R(λ, η)

)
1
)

(21)

where

q1(θ, λ4, η) =


G(−β1−

λ4,1
η

)

G(τ−β1−
λ4,1
η

)−G(−β1−
λ4,1
η

)

G(∆−β1−
λ4,1
η

)−G(τ−β1−
λ4,1
η

)

G(β1+
λ4,1
η
−∆)

 , q2(θ, λ4, η) =


G(β2+

λ4,2
η
−∆)

G(∆−β2−
λ4,2
η

)−G(τ−β2−
λ4,2
η

)

G(τ−β2−
λ4,2
η

)−G(−β2−
λ4,2
η

)

G(−β2−
λ4,2
η

)

 ,

and

R(λ, η) =


e(1−λ1,2)/η e(1−λ1,2)/η e(1−λ1,2)/η e−λ2,2/η

e(1−λ1,2)/η e(1−λ1,1−λ1,2)/η e(1−λ1,1−λ1,2)/η e(1−λ1,1)/η

e−λ1,2/η e(−λ1,1−λ1,2)/η e(1−λ1,1−λ1,2)/η e(1−λ1,1)/η

e−λ2,1/η e−λ1,1/η e(1−λ1,1)/η e(1−λ1,1)/η

 .

Case 2: τ > ∆. We partition the interval for U1 and U2 into four regions: (−∞,−βj ], (−βj ,∆−βj ],
(∆ − βj , τ − βj ], (τ − βj ,∞) for j = 1, 2. When ∆ − βj < Uj ≤ τ − βj for j = 1, 2 the game has

two equilibria, namely (0, 0) and (1, 1). We do not need to deal with the problem of equilibrium

selection here for the purposes of the counterfactual, however, as neither equilibrium is a monopoly.

The log-mgf term is now computed as in (21), with

q1(θ, λ4, η) =


G(−β1−

λ4,1
η

)

G(∆−β1−
λ4,1
η

)−G(−β1−
λ4,1
η

)

G(τ−β1−
λ4,1
η

)−G(∆−β1−
λ4,1
η

)

G(β1+
λ4,1
η
−τ)

 , q2(θ, λ4, η) =


G(β2+

λ4,2
η
−τ)

G(τ−β2−
λ4,2
η

)−G(∆−β2−
λ4,2
η

)

G(∆−β2−
λ4,2
η

)−G(−β2−
λ4,2
η

)

G(−β2−
λ4,2
η

)

 ,

and

R(λ, η) =


e(1−λ1,2)/η e(1−λ1,2)/η e−λ2,2/η e−λ2,2/η

e−λ1,2/η e−λ1,2/η e−λ2,2/η e−λ2,2/η

e−λ1,2/η e(−λ1,1−λ1,2)/η e−λ1,1/η e(1−λ1,1)/η

e−λ2,1/η e−λ1,1/η e−λ1,1/η e(1−λ1,1)/η

 .

Closed-form expressions for the full case with regressors follow similarly. For each player we first

construct a grid by sorting −βj , ∆−βj , −βj−β, etc, in ascending order. The vectors q1(θ, λ, η) and

q2(θ, λ, η) are then formed similarly to the above case without regressors using the mgf for truncated

normal random variables. The matrix R(λ, η) is also formed similarly, with multipliers λ1,1, . . . , λ1,6
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and λ2,1, . . . , λ2,6 placed in the exponents in cells corresponding to the relevant events in the equality

and inequality restrictions (1) and (2), and with 1 placed in the exponents corresponding to events

in which a monopoly is observed under the policy intervention.

A.1.2 Local sensitivity

Under the parameterization in Section 3, each of the six moment inequalities are slack at (θ0, P0).

Therefore, only the eight moment equalities (six for the model-implied conditional choice probabil-

ities of no entry and duopoly, plus the two mean-zero restrictions) are relevant for characterizing

local sensitivity. In the notation of Section 6, we have

h(u, θ, P2) =



−1l{U1≤−β1;U2≤−β2}+P00,0

−1l{U1≥∆−β1;U2≥∆−β2}+P11,0

−1l{U1≤−β1−β;U2≤−β2−β}+P00,1

−1l{U1≥∆−β1−β;U2≥∆−β2−β}+P11,1

−1l{U1≤−β1−2β;U2≤−β2−2β}+P00,2

−1l{U1≥∆−β1−2β;U2≥∆−β2−2β}+P11,2

U1

U2


,

where P00,z and P11,z denote the conditional probabilities of no entry and duopoly, respectively,

when Z = z. Recall that we normalize β ≡ 1 so θ = (β1, β2,∆)′. Therefore

H =



G′(−β1)G(−β2) G(−β1)G′(−β2) 0

−G′(β1−∆)G(β2−∆) −G(β1−∆)G′(β2−∆)

(
G′(β1−∆)G(β2−∆)

+G(β1−∆)G′(β2−∆)

)
G′(−β1−β)G(−β2−β) G(−β1−β)G′(−β2−β) 0

−G′(β1+β−∆)G(β2+β−∆) −G(β1+β−∆)G′(β2+β−∆)

(
G′(β1+β−∆)G(β2+β−∆)

+G(β1+β−∆)G′(β2+β−∆)

)
G′(−β1−2β)G(−β2−2β) G(−β1−2β)G′(−β2−2β) 0

−G′(β1+2β−∆)G(β2+2β−∆) −G(β1+2β−∆)G′(β2+2β−∆)

(
G′(β1+2β−∆)G(β2+2β−∆)

+G(β1+2β−∆)G′(β2+2β−∆)

)
0 0 0

0 0 0



,

where G′ denotes standard normal probability density function. As ∆ − βj − β ≤ τ − βj − β for

j = 1, 2, here we also have

EF∗ [k(U, θ)] = G(∆− β1 − β)G(β2 + β − τ) +G(β1 + β − τ)G(∆− β2 − β)
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so

J =

 G′(β1+β−τ)G(∆−β2−β)−G′(∆−β1−β)G(β2+β−τ)

G(∆−β1−β)G′(β2+β−τ)−G(β1+β−τ)G′(∆−β2−β)

G′(∆−β1−β)G(β2+β−τ)+G(β1+β−τ)G′(∆−β2−β)


′

and:

EF∗ [h0(U)k0(U)] =



κP00,0

κP11,0

κP00,1

κP11,1

κP00,2(
G(β1+β−τ)(G(∆−β2−β)−G(∆−β2−2β))

+G(β2+β−τ)(G(∆−β1−β)−G(∆−β1−2β))

)
+κP11,2

G′(τ−β1−β)G(∆−β2−β)−G′(∆−β1−β)G(β2+β−τ)

G′(τ−β2−β)G(∆−β1−β)−G′(∆−β2−β)G(β1+β−τ)


.

Finally, we partition V conformably:

V =

[
V11 V12

V21 V22

]
,

where V21 = V ′12, V22 is a 2× 2 identity matrix,

V12 =



G′(−β1)G(−β2) G(−β1)G′(−β2)

−G′(∆−β1)G(β2−∆) −G(β1−∆)G′(∆−β2)

G′(−β1−β)G(−β2−β) G(−β1−β)G′(−β2−β)

−G′(∆−β1−β)G(β2+β−∆) −G(β1+β−∆)G′(∆−β2−β)

G′(−β1−2β)G(−β2−2β) G(−β1−2β)G′(−β2−2β)

−G′(∆−β1−2β)G(β2+2β−∆) −G(β1+2β−∆)G′(∆−β2−2β)


,

and

V11 =



P00,0 0 P00,1

(
(G(−β1)−G(∆−β1−β))

×(G(−β2)−G(∆−β2−β))

)
P00,2

(
(G(−β1)−G(∆−β1−2β))

×(G(−β2)−G(∆−β2−2β))

)
• P11,0 0 P11,0 0 P11,0

• • P00,1 0 P00,2

(
(G(−β1−β)−G(∆−β1−2β))

×(G(−β2−β)−G(∆−β2−2β))

)
• • • P11,1 0 P11,1

• • • • P00,2 0

• • • • • P11,2


− P2P

′
2 ,

where “•” denotes corresponding upper-triangular element.
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A.2 Dynamic discrete choice

This appendix contains additional calculations for the local sensitivity measure for the DDC ex-

ample studied in Section 3. In the notation of Section 6, we have

h(u, θ, γ, P2) =


1l

{
π(1; θπ) + u(1) + βM1v ≥ π(0; θπ) + u(0) + βM0(v)

}
− P2

max

(
π(1; θπ) + u(1) + βM1v , π(0; θπ) + u(0) + βM0v

)
− v

max

(
π̃(1; θπ) + u(1) + βM̃1ṽ , π̃(0; θπ) + u(0) + βM̃0ṽ

)
− ṽ


,

where the indicator function, inequality, and maximum are applied row-wise. We also have

k(u, θ, γ) = 1l

{
π̃(1; j, θπ) + u(1) + β(M̃1ṽ)j ≥ π̃(0; j, θπ) + u(0) + β(M̃0ṽ)j

}
for the CCP of being active in state j, where (Maṽ)j denotes the corresponding entry of Maṽ.

For the Jacobian terms, we may use the i.i.d. type-I extreme value specification to deduce

∂

∂θ′
EF∗ [k(U, θ, γ)] =

e∆π̃(j,θπ)+β((M̃1−M̃0)ṽ)j

(1 + e∆π̃(j,θπ)+β((M̃1−M̃0)ṽ)j )2

[
∂∆π̃(j,θπ)

∂θ′ 0′nx β(M̃1 − M̃0)j

]
,

where θ = (θ′π, v
′, ṽ′)′, ∆π̃(j, θπ) = π̃(1; j, θπ) − π̃(0; j, θπ), and (M̃1 − M̃0)j denotes the row of

M̃1 − M̃0 corresponding to state j. Similarly,

∂

∂θ′
EF∗ [h(U, θ, γ, P2)]

=


0 0 0

∂π(0;θπ)
∂θ′π

βM0 − I 0
∂π̃(0;θπ)
∂θ′π

0 βM̃0 − I

+D


∂∆π(θπ)
∂θ′π

β(M1 −M0) 0
∂∆π(θπ)
∂θ′π

β(M1 −M0) 0
∂∆π̃(θπ)
∂θ′π

0 β(M̃1 − M̃0)

 ,
where ∆π(θπ) = π(1; θπ)− π(0; θπ), 0 denotes a conformable matrix of zeros, and D is a diagonal

matrix, whose diagonal entries are (in order):

e∆π(x,θπ)+β(M1−M0)v)x

(1 + e∆π̃(x,θπ)+β((M1−M0)v)x)2
, x = 1, . . . , nx ,

e∆π(x,θπ)+β((M1−M0)v)x

1 + e∆π(x,θπ)+β((M1−M0)v)x
, x = 1, . . . , nx , and

e∆π̃(x,θπ)+β((M̃1−M̃0)ṽ)x

1 + e∆π̃(x,θπ)+β((M̃1−M̃0)ṽ)x
, x = 1, . . . , nx .

The remaining matrices V̂ and EF∗ [k̂(U)ĥ(U)′] may be computed numerically.

44



B Supplementary results on identified sets of counterfactuals

Define

K∞ = {EF [k(U, θ, γ0)] such that (1)–(4) hold for some θ ∈ Θ and F ∈ N∞}

in the explicit-dependence case, and

K∞ = {k(θ, γ0) such that (1)–(4) hold for some θ ∈ Θ and F ∈ N∞}

in the implicit-dependence case. Clearly K∞ ⊆ K# because each Fθ will generally contain fatter-

tailed distributions not inN∞. The set K∞ may not be the quite the identified set of counterfactuals:

there may exist F 6∈ N∞ that are consistent with the model and which yield smaller or larger

values of the counterfactuals. The set K∞ is however relevant as it is eventually spanned by the

counterfactuals over Nδ as δ gets large.

Lemma B.1 Let Assumption Φ hold. Then:

κ(Nδ)→ inf K∞ , κ̄(Nδ)→ supK∞ as δ →∞.

In the explicit-dependence case, the smallest and largest elements of K∞ may be characterized in

terms of low-dimensional convex optimization problems. Define

κ∞(θ; γ, P ) = inf
F∈N∞

EF [k(U, θ, γ)] subject to (1)–(4) holding at (θ, F ) ,

κ̄∞(θ; γ, P ) = sup
F∈N∞

EF [k(U, θ, γ)] subject to (1)–(4) holding at (θ, F ) .

The above programs again have a dual representation as finite-dimensional convex optimization

problems. Let F∗-ess inf and F∗-ess sup denote essential infimum and supremum defined relative to

the measure F∗.

Lemma B.2 Let Assumption Φ hold. Then: the duals of κ∞(θ; γ, P ) and κ̄∞(θ; γ, P ) are

κ?∞(θ; γ, P ) = sup
λ∈Λ:F∗-ess inf(k(·,θ,γ)+λ′g(·,θ,γ))>−∞

(
F∗-ess inf(k(·, θ, γ) + λ′g(·, θ, γ))− λ′12P

)
,

κ̄?∞(θ; γ, P ) = inf
λ∈Λ:F∗-ess sup(k(·,θ,γ)−λ′g(·,θ,γ))<+∞

(
F∗-ess sup(k(·, θ, γ)− λ′g(·, θ, γ)) + λ′12P

)
.

If condition S also holds at (θ, γ, P ), then: strong duality holds: κ∞(θ; γ, P ) = κ?∞(θ; γ, P ) and

κ̄∞(θ; γ, P ) = κ̄?∞(θ; γ, P ).
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Remark B.1 The above programs are non-smooth optimization problems which may be difficult

to solve for certain models. Constraining the set to Nδ with δ < +∞ exerts a sort of smoothing

effect on the optimization problem. For instance, with KL or hybrid divergence the above non-

smooth optimization problem is replaced with the smooth programs (7) and (8), and (9) and (10),

respectively.

We may characterize the smallest and largest elements of K# under a mild constraint qualification

condition. Let ri(A) denote the relative interior of a set A ⊂ Rn (i.e. the interior within the affine

hull of A). If A has positive volume in Rn then ri(A) = int(A).

Condition S# (P ′, 0′d3+d4
)′ ∈ ri({EF [g(U, θ, γ0)] : F ∈ Fθ}+ C).

This condition is weaker than Condition S, as the class of distributions N∞ ⊆ Fθ for each θ. Hence,

if Condition S holds at (θ, γ0, P0) then Condition S# holds there also.

The smallest and largest elements of K# may be computed by solving low-dimensional convex

optimization problems in the explicit-dependence case. Define

κ#(θ; γ0, P0) = inf
F∈Fθ

EF [k(U, θ, γ0)] subject to (1)–(4) holding at (θ, F ) ,

κ̄#(θ; γ0, P0) = sup
F∈Fθ

EF [k(U, θ, γ0)] subject to (1)–(4) holding at (θ, F ) .

These programs also have a dual representation as finite-dimensional convex optimization problems.

Lemma B.3 Let Condition S# hold at (θ, γ0, P0) and let µ-ess sup |k(·, θ, γ0)| < ∞. Then: the

duals of κ#(θ; γ0, P0) and κ̄#(θ; γ0, P0) are

κ?#(θ; γ0, P0) = sup
λ∈Λ:µ-ess inf(k(·,θ,γ0)+λ′g(·,θ,γ0))>−∞

(
µ-ess inf(k(·, θ, γ0) + λ′g(·, θ, γ0))− λ′12P0

)
,

κ̄?#(θ; γ0, P0) = inf
λ∈Λ:µ-ess sup(k(·,θ,γ0)−λ′g(·,θ,γ0))<+∞

(
µ-ess sup(k(·, θ, γ0)− λ′g(·, θ, γ0)) + λ′12P0

)
,

and strong duality holds: κ#(θ; γ0, P0) = κ?#(θ; γ0, P0) and κ̄#(θ; γ0, P0) = κ̄?#(θ; γ0, P0).
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C Background material on Orlicz spaces

Our results rely on the theory of paired Orlicz spaces. We refer the reader to Krasnosel’skii and

Rutickii (1961) for a textbook treatment. Komunjer and Ragusa (2016) apply similar results to

characterize and study existence of information projections in conditional moment models. Define

L = {f : U → R such that EF∗ [φ(1 + c|f(U)|)] <∞ for some c > 0}

E = {f : U → R such that EF∗ [ψ(c|f(U)|)] <∞ for all c > 0} .

The class L is an Orlicz class of functions corresponding to the function x 7→ φ(1+ |x|) whereas the

class E is the Orlicz heart corresponding to the conjugate function ψ. To summarize the results that

we use, note that the condition limx→∞ xφ
′(x)/φ(x) <∞ in Assumption Φ(i) verifies the so-called

∆2-condition in Krasnosel’skii and Rutickii (1961). The space L is a separable Banach space when

equipped with the norm

‖f‖φ = inf
c>0

1

c
(1 + EF∗ [φ(1 + c|f(U)|)]) ,

and the space E is a separable Banach space when equipped with the norm

‖f‖ψ = inf
c>0

1

c
(1 + EF∗ [ψ(c|f(U)|)])

(Krasnosel’skii and Rutickii, 1961, Chapter II, Section 10).

Given two functions φ1, φ2 satisfying Assumption Φ(i), write φ1 ≺ φ2 if there exists positive con-

stants c and x0 such that φ1(x) ≤ φ2(cx) for all x ≥ x0. If φ1 ≺ φ2 and φ2 ≺ φ1 then φ1 and

φ2 are said to be equivalent. Equivalent φ functions induce the same spaces L and E and their

corresponding norms ‖ · ‖φ1 and ‖ · ‖φ2 are equivalent (Krasnosel’skii and Rutickii, 1961, Theorems

13.1 and 13.3). For example, the φ functions inducing hybrid and χ2 divergence are equivalent.

A sequence {fn : n ≥ 1} ⊂ L is E-weakly convergent if {EF∗ [fn(U)g(U)] : n ≥ 1} converges for

each g ∈ E . The space L is E-weakly complete: any E-weakly convergent sequence of functions

{fn : n ≥ 1} ⊂ L has a unique limit, say f∗ ∈ L, for which

lim
n→∞

EF∗ [fn(U)g(U)] = EF∗ [f∗(U)g(U)]

for each g ∈ E ; it is also E-weakly compact: every ‖ · ‖φ-norm bounded sequence in L has an

E-weakly convergent subsequence (Krasnosel’skii and Rutickii, 1961, Theorem 14.4). A version of

Hölder’s inequality also holds:

|EF∗ [f(U)g(U)]| ≤ ‖f‖φ‖g‖ψ

for each f ∈ L and g ∈ E (Krasnosel’skii and Rutickii, 1961, Theorem 9.3).
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D Proof of main results

We start with some preliminary Lemmas. Let L+ := {m ∈ L : m ≥ 0 (F∗-almost everywhere)}.

Lemma D.1 Let Assumption Φ hold. Then: EF∗ [φ(m(U))] <∞ if and only if m ∈ L+.

Proof of Lemma D.1. To prove EF∗ [φ(m(U))] < ∞ implies m ∈ L+, first note that we must

have m ≥ 0 (F∗-almost everywhere) because φ(x) = +∞ if x < 0. Taking c = 1
2 in the definition of

‖ · ‖φ, we obtain ‖m‖φ ≤ 2 + φ(2) + EF∗ [φ(m(U))] <∞.

To provem ∈ L+ implies EF∗ [φ(m(U))] <∞, first note that the condition limx→∞ xφ
′(x)/φ(x) <∞

in Assumption Φ(i) verifies the so-called ∆2-condition. Thus, m ∈ L implies EF∗ [φ(1 + c|m(U)|)] <
∞ for all c > 0. As F∗ is a finite measure, L also contains constant functions. As L is closed under

addition, we therefore have

∞ > EF∗ [φ(1 + |m(U)− 1|)] = EF∗ [φ(m(U))1l{m(U) ≥ 1}] + EF∗ [φ(2−m(U))1l{m(U) ≤ 1}]

which implies EF∗ [φ(m(U))1l{m(U) ≥ 1}] is finite. Finiteness of EF∗ [φ(m(U))1l{m(U) ≤ 1}] follows

because ∞ > φ(0) ≥ φ(x) ≥ φ(1) = 0 for x ∈ [0, 1] under Assumption Φ.

We identify each F ∈ Nδ with its Radon–Nikodym derivative with respect to F∗. LetMδ denote the

set of all measurable m : U → R for which EF∗ [φ(m(U))] ≤ δ. Note thatMδ is a ‖·‖φ-norm bounded

subset of L by the proof of Lemma D.1. Therefore, |EF [k(U, θ, γ)]| ≤ ‖k(·, θ, γ)‖ψ‖m‖φ holds for any

F ∈ Nδ by a version of Hölder’s inequality for Orlicz classes. Finiteness of |EF [k(U, θ, γ)]| follows

by Assumption Φ(ii) whenever F ∈ Nδ.

In each of the following proofs, we only prove the results for the lower value κ. The result for the

upper value κ̄ follows by parallel arguments.

In view of Lemma D.1, an equivalent formulation of κδ(θ; γ, P ) is

κδ(θ; γ, P ) = inf
m∈Mδ

EF∗ [m(U)k(U, θ, γ)] subject to EF∗ [m(U)] = 1 , (22)

EF∗ [m(U)g1(U, θ, γ)] ≤ P1 ,

EF∗ [m(U)g2(U, θ, γ)] = P2 ,

EF∗ [m(U)g3(U, θ, γ)] ≤ 0 ,

EF∗ [m(U)g4(U, θ, γ)] = 0 ,

where κδ(θ; γ, P ) = +∞ if infimum runs over an empty set. Similarly, an equivalent formulation of
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the program

I(θ; γ, P ) := inf
F
Dφ(F‖F∗) subject to (1)–(4) holding under F at (θ, γ, P )

is

inf
m∈L+

EF∗ [φ(m(U))] subject to the moment conditions in (22) . (23)

We verify a Slater constraint qualification condition for the programs I(θ; γ, P ) and κδ(θ; γ, P ) and

κ̄δ(θ; γ, P ). The condition corresponds to display (2.312) in Bonnans and Shapiro (2000).

Lemma D.2 Let Assumption Φ hold and let Condition S hold at (θ, γ, P ). Then:

(1, P ′, 0′d3+d4)′ ∈ int({EF∗ [m(U)(1, g(U, θ, γ)′)′] : m ∈ L+}+ {0} × C) ,

which is the constraint qualification for I(θ; γ, P ). If I(θ; γ, P ) < δ also holds, then:

(δ, 1, P ′, 0′d3+d4)′ ∈ int({(EF∗ [φ(m(U))],EF∗ [m(U)(1, g(U, θ, γ)′)])′ : m ∈ L+}+ R+ × {0} × C) ,

which is the constraint qualification for κδ(θ; γ, P ) and κ̄δ(θ; γ, P ).

Proof of Lemma D.2. As condition S holds at (θ, γ, P ), we have (applying integration element-

wise)

(P ′, 0′d3+d4)′ ∈ int

({∫
g(u, θ, γ) dF (u) : F ∈ N∞

}
+ C

)
.

For each t > 0, let tNδ = {tF : F ∈ Nδ}. We then have

(1, P ′, 0′d3+d4)′ ∈ int

({∫
(1, g(u, θ, γ)′)′ dG(u) : G ∈ ∪t∈[ 1

2
, 3
2

]tNδ
}

+ {0} × C
)

⊆ int({EF∗ [m(U)(1, g(U, θ, γ)′)′] : m ∈ L+}+ {0} × C) , (24)

where the second inclusion is by Lemma D.1 and the fact that L is a linear space (so m ∈ L+

implies tm ∈ L+ for all t ≥ 0). This verifies the constraint qualification for I(θ; γ, P ).

Now, if δ?(θ; γ, P ) < δ then mθ,γ,P is feasible for (22) and EF∗ [φ(mθ,γ,P (U))] < δ. By the inclusion

(24), we have

(δ, 1, P ′, 0′d3+d4)′ ∈ int({(EF∗ [φ(m̃(U))],EF∗ [m̃(U)(1, g(U, θ, γ)′)])′ :

m̃ = tmθ,γ,P + (1− t)m,m ∈ L+, t ∈ [0, 1]}+ R+ × {0} × C)

⊆ int({(EF∗ [φ(m(U))],EF∗ [m(U)(1, g(U, θ, γ)′)])′ : m ∈ L+}+ R+ × 0× C) .

This verifies the constraint qualification for κδ(θ; γ, P ) and κ̄δ(θ; γ, P ).
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Proof of Lemma 4.1. The proof extends arguments from Section 3.2 of Shapiro (2017) to deal

with (i) the equalities/inequalities in (1)–(4) representing the equilibrium conditions of the model,

(ii) the function class L, and (iii) additional issues that arise at η = 0.

Using the equivalent formulation in display (22), the Lagrangian for κδ(θ; γ, P ) is

L(m, η, ζ, λ) = EF∗ [m(U)(k(U, θ, γ) + ζ + λ′g(U, θ, γ)) + ηφ(m(U))]− ηδ − ζ − λ′12P ,

where m ∈ L+, η ∈ R+, ζ ∈ R, and λ ∈ Λ. The Lagrangian dual problem is therefore κ?δ(θ; γ, P ) =

supη≥0,ζ∈R,λ∈Λ infm∈L+ L(m, η, ζ, λ). As L is decomposable (Rockafellar and Wets, 1998, Definition

14.59 and Theorem 14.60), we may bring the infimum inside the expectation to obtain

inf
m∈L+

L(m, η, ζ, λ) = EF∗
[

inf
x≥0

x(k(U, θ, γ) + ζ + λ′g(U, θ, γ)) + ηφ(x)
]
− ηδ − ζ − λ′12P

= −EF∗
[

sup
x≥0

x(−k(U, θ, γ)− ζ − λ′g(U, θ, γ))− ηφ(x)
]
− ηδ − ζ − λ′12P

= −EF∗
[
(ηφ)?(−k(U, θ, γ)− ζ − λ′g(U, θ, γ))

]
− ηδ − ζ − λ′12P .

The dual formulation in display (5) now follows.

When Condition S holds and δ?(θ; γ, P ) < δ, it follows by Lemma D.2 and Theorem 2.165 of

Bonnans and Shapiro (2000) that the set of solutions to the dual program is a nonempty, convex,

compact subset of R+ ×R×Λ. Suppose that the solution is attained at (0, ζ∗, λ∗) for some ζ∗ ∈ R
and λ ∈ Λ∗. Let `(η, ζ, λ) = infm∈L+ L(m, η, ζ, λ). As ` is the pointwise infimum of affine functions,

it is concave and upper-semicontinuous. By upper-semicontinuity, we have

`(0, ζ∗, λ∗) ≥ lim sup
η↓0

`(η, ζ∗, λ∗) .

Note the value `(0, ζ∗, λ∗) is necessarily finite: there is no duality gap (by Condition S) and the

value of the primal problem is bounded (by Assumption Φ). On the other hand, for any τ ∈ (0, 1),

by concavity:

`(τη, ζ∗, λ∗) ≥ τ`(η, ζ∗, λ∗) + (1− τ)`(0, ζ∗, λ∗) .

Taking lim infη↓0 of both sides and rearranging, we obtain

lim inf
η↓0

`(η, ζ∗, λ∗) ≥ `(0, ζ∗, λ∗) ,

hence limη↓0 `(η, ζ
∗, λ∗) = `(0, ζ∗, λ∗). We therefore have

`(0, ζ∗, λ∗) = sup
η≥0,ζ∈R,λ∈Λ

`(η, ζ, λ) ≥ sup
η>0,ζ∈R,λ∈Λ

`(η, ζ, λ) ≥ lim
η↓0

`(η, ζ∗, λ∗) = `(0, ζ∗, λ∗) .

Therefore, it is without loss of generality to take the supremum over (0,∞)× R× Λ.
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For KL divergence, φ?(x) = ex − 1 so (ηφ)?(x) = ηeη
−1x − η for η > 0. Therefore, for any η > 0

inf
m∈L+

L(m, η, ζ, λ) = −ηEF∗
[
e−η

−1(k(U,θ,γ)+ζ+λ′g(U,θ,γ))
]

+ η − ηδ − ζ − λ′12P .

Optimizing with respect to ζ gives

sup
ζ∈R

inf
m∈L+

L(m, η, ζ, λ) = −η logEF∗
[
e−η

−1(k(U,θ,γ)+λ′g(U,θ,γ))
]
− ηδ − λ′12P .

For hybrid divergence, we have φ?(x) = Ψ(x) where Ψ(x) is defined in equation (11). Therefore,

for any η > 0

inf
m∈L+

L(m, η, ζ, λ) = −ηEF∗
[
Ψ
(
− η−1

(
k(U, θ, γ) + ζ + λ′g(U, θ, γ)

))]
− ηδ − ζ − λ′12P

as claimed.

Proof of Lemma 4.2. Using the equivalent formulation of I(θ; δ, P ) in display (23), the La-

grangian for I(θ; γ, P ) is L(m, ζ, λ) = EF∗ [m(U)(−ζ − λ′g(U, θ, γ)) + φ(m(U))] − ζ − λ′12P . It

follows by similar arguments to Lemma 4.1 that

inf
m∈L+

L(m, ζ, λ) = −EF∗
[
φ?(ζ + λ′g(U, θ, γ))

]
− ζ − λ′12P ,

hence

δ?(θ; γ, P ) = sup
ζ∈R,λ∈Λ

−EF∗
[
φ?(−ζ − λ′g(U, θ, γ))

]
− ζ − λ′12P

as in display (12). For KL divergence, we have

δ?(θ; γ, P ) = sup
ζ∈R,λ∈Λ

−EF∗
[
e−ζ−λ

′g(U,θ,γ)
]

+ 1− ζ − λ′12P

= sup
λ∈Λ
− logEF∗

[
e−λ

′g(U,θ,γ)
]
− λ′12P .

Similarly, for hybrid divergence, we have

δ?(θ; γ, P ) = sup
ζ∈R,λ∈Λ

−EF∗
[
Ψ
(
−ζ − λ′g(U, θ, γ)

)]
− ζ − λ′12P .

Part (i): By weak duality, we have I(θ; γ, P ) ≥ δ?(θ; γ, P ). Therefore, δ?(θ; γ, P ) > δ implies there is

no solution F ∈ Nδ satisfying (1)–(4) at (θ, γ, P ), so we set κδ(θ; γ, P ) = +∞ and κ̄δ(θ; γ, P ) = −∞.

Part (ii): By the first part of Lemma D.2, strong duality holds for I(θ; γ, P ) so I(θ; γ, P ) =

δ?(θ; γ, P ). First consider the explicit-dependence case. If δ?(θ; γ, P ) = δ then mθ,γ,P is the unique
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m ∈ Mδ that satisfies the constraints in (22). Thus, both lower and upper values of the coun-

terfactuals are attained under Fθ,γ,P . If, in addition, δ?(θ; γ, P ) < δ then strong duality holds for

κδ(θ; γ, P ) and κ̄δ(θ; γ, P ) (Bonnans and Shapiro, 2000, Theorem 2.165).

In the implicit-dependence case, if δ?(θ; γ, P ) ≤ δ then there exists a distribution F ∈ Nδ satisfying

the constraints (1)–(4) at (θ, γ, P ), so the counterfactual is k(θ, γ).

Proof of Lemma 4.3. First consider the explicit-dependence case. By Lemma 4.2(ii), we have

that infθ∈Θδ κδ(θ; γ0, P0) = infθ∈Θδ κ
?
δ(θ; γ0, P0) under Assumption Φ and Assumption M(ii). As

infθ∈Θδ κδ(θ; γ0, P0) ≥ infθ∈Θ κδ(θ; γ0, P0) =: κ(Nδ), it therefore remains to show

inf
θ∈Θδ

κδ(θ; γ0, P0) ≤ inf
θ∈Θ

κδ(θ; γ0, P0) .

We prove this inequality by contradiction. Suppose there exists θ∗ 6∈ Θδ with κδ(θ
∗; γ0, P0) <

infθ∈Θδ κδ(θ; γ0, P0). As κδ(θ
∗; γ0, P0) < +∞, there must exist some m ∈ Mδ satisfying the con-

straints in (22) at (θ∗, γ0, P0). But as δ?(θ∗; γ0, P0) = δ, it follows by convexity of φ that mθ∗,γ0,P0

must be the unique such m ∈Mδ. Therefore

κδ(θ
∗; γ0, P0) = EF∗ [mθ∗,γ0,P0(U)k(U, θ∗, γ0)]

< inf
θ∈Θδ

κδ(θ; γ0, P0)

≤ inf
θ∈Θδ

EF∗ [mθ,γ0,P0(U)k(U, θ0, γ0)] . (25)

By Assumption M(iii), we must have θ∗ ∈ cl(Θδ). Take a sequence {θn : n ≥ 1} ⊂ Θδ with θn → θ∗.

As {mθn,γ0,P0 : n ≥ 1} ⊂ Mδ, it is ‖ · ‖φ-norm bounded and hence has an E-weakly convergent

subsequence (Krasnosel’skii and Rutickii, 1961, Theorem 14.4). That is, there exists a subsequence

{θni : i ≥ 1} and a unique m∗ ∈ L such that mθni ,γ0,P0 is E-weakly convergent to m∗. By the

triangle inequality and Hölder’s inequality, we may deduce∣∣∣EF∗ [mθni ,γ0,P0(U)k(U, θni , γ0)]− EF∗ [m∗(U)k(U, θ∗, γ0)]
∣∣∣

≤ |EF∗ [(mθni ,γ0,P0(U)−m∗(U))k(U, θ∗, γ0)]|+ ‖m∗‖φ‖k( · , θni , γ0)− k( · , θ∗, γ0)‖ψ ,

where the first term on the right-hand side vanishes by E-weak convergence and the second term

vanishes by Assumption M(i) and Hölder’s inequality for Orlicz classes. By similar arguments, we

may deduce

EF∗ [m∗(U)] = 1 , EF∗ [m∗(U)g1(U, θ∗, γ0)] ≤ P10 , EF∗ [m∗(U)g2(U, θ∗, γ0)] = P20 ,

EF∗ [m∗(U)g3(U, θ∗, γ0)] ≤ 0 , EF∗ [m∗(U)g4(U, θ∗, γ0)] = 0 .
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Therefore, m∗ satisfies all the constraints in (22) at (θ∗, γ0, P0). Finally, as m 7→ EF∗ [φ(m)] is

lower semicontinuous in the E-weak topology on L (Komunjer and Ragusa, 2016, p. 961), we have

δ ≥ lim infi→∞ EF∗ [φ(mθni ,γ0,P0(U))] ≥ EF∗ [φ(m∗(U))] hence m∗ ∈Mδ.

To complete the proof, note that Lemma 4.2 and strict convexity of φ implies m∗ = mθ∗,γ0,P0 , hence

inf
θ∈Θδ

EF∗ [mθ,γ,P (U)k(U, θ, γ0)] ≤ lim
i→∞

EF∗ [mθni ,γ0,P0(U)k(U, θni , γ0)]

= EF∗ [mθ∗,γ0,P0(U)k(U, θ∗, γ0)] ,

which contradicts (25).

In the implicit-dependence case, E-continuity of k(θ, γ) is equivalent to continuity of the function

(θ, γ) 7→ k(θ, γ). Then infθ∈Θδ k(θ, γ0) = infθ∈cl(Θδ) k(θ, γ0) ≤ infθ:δ?(θ;γ0,P0)≤δ k(θ, γ0) by Assump-

tion M(iii), and infθ:δ?(θ;γ0,P0)≤δ k(θ, γ0) ≤ infθ∈Θδ k(θ, γ0).

Proof of Theorem 4.1. This follows immediately from Lemmas E.4 and E.5 and Slutsky’s

theorem.

Lemma 4.4 is proved by extending some arguments from Shapiro (2008) to allow for non-compactness

of the domain and possibly discontinuous objective function. These extensions are important be-

cause the multipliers take values in R+ × R × Λ, which is not compact, and discontinuity of the

objective may arise along the boundary where η = 0. Some of our extensions use techniques from

Pollard (1991) on asymptotics for minimizers of convex stochastic processes.

Proof of Lemma 4.4. We first prove the result for the explicit-dependence case. Write Ξδ =

Ξδ(θ;P0) and Λδ = Λδ(θ;P0) to denote dependence of the sets of multipliers on P . In view of

Lemmas E.1, E.3 and E.6, the sets Ξδ(θ;P ) and Λδ(θ;P ) are nonempty, convex and compact for

all P in a neighborhood of P0. Let Pn = P0 + tnπn. We first prove the inequality

lim sup
n→∞

κ(Nδ;Pn)− κ(Nδ;P0)

tn
≤ inf

θ∈Θδ
sup

(λ′1,λ
′
2)∈Λδ(θ)

−(λ′1, λ
′
2)π . (26)

Take any θ ∈ Θδ. Condition S holds at (θ, P0) by Assumption M(ii) and hence also at (θ, Pn) for

all n sufficiently large by Lemma E.1. It follows that for n sufficiently large we have

κδ(θ;P0) = κ?δ(θ;P0) , κδ(θ;Pn) = κ?δ(θ;Pn) (27)

in which case, for any (λ′1n, λ
′
2n) ∈ Λδ(θ;Pn), the inequality

κ?δ(θ;P0) ≥ κ?δ(θ;Pn)− (λ′1n, λ
′
2n)(P0 − Pn) (28)
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must hold. By (27) and (28), for n sufficiently large we must have

κ(Nδ;P0) = κ?δ(θ;P0) ≥ κ?δ(θ;Pn)− (λ′1n, λ
′
2n)(P0 − Pn) ≥ κ(Nδ;Pn)− (λ′1n, λ

′
2n)(P0 − Pn)

hence κ(Nδ;Pn) − κ(Nδ;P0) ≤ −(λ′1n, λ
′
2n)(Pn − P0). As d((λ′1n, λ

′
2n),Λδ(θ;P0)) → 0 (cf. Lemma

E.8) and Λδ(θ;P0) is bounded, we obtain the inequality

lim sup
n→∞

κ(Nδ;Pn)− κ(Nδ;P0)

tn
≤ sup

(λ′1,λ
′
2)∈Λδ(θ)

−(λ′1, λ
′
2)π .

As θ ∈ Θδ(P ) was arbitrary, this proves (26).

We now establish the corresponding lower bound

lim inf
n→∞

κ(Nδ;Pn)− κ(Nδ;P0)

tn
≥ inf

θ∈Θδ
sup

(λ′1,λ
′
2)∈Λδ(θ)

−(λ′1, λ
′
2)π . (29)

Choose a sequence {θn : n ≥ 1} ⊂ Θ such that κδ(θn;Pn) ≤ κ(Nδ;Pn) + o(tn). By Assumption

M(iv) (passing to a subsequence if necessary) we may assume that θn converges to some θ∗ ∈ Θ.

We first show that θ∗ ∈ Θδ. For each n, choose mn solving the primal problem for κδ(θn;Pn). As

{mn : n ≥ 1} ⊂ Mδ, it has an E-weakly convergent subsequence {mni : i ≥ 1} with mni → m∗ ∈ L.

By similar arguments to the proof of Lemma 4.3, we may deduce that m∗ ∈ Mδ, the constraints

in (22) are all satisfied by m∗ at (θ∗, P0), and EF∗ [mni(U)k(U, θni)] → EF∗ [m∗(U)k(U, θ∗)]. By

definition of θn,

κ(Nδ;Pni) ≤ EF∗ [mni(U)k(U, θni)] ≤ κ(Nδ;Pni) + o(tni) .

Lemma E.4 implies κ(Nδ;Pni)→ κ(Nδ;P0), hence EF∗ [m∗(U)k(U, θ∗)] = κ(Nδ;P0) and so θ∗ ∈ Θδ.

Returning to the proof of (29), note Condition S holds at (θ∗, P0) by Assumption M(ii). Therefore,

Condition S also holds at (θn, P0) and (θn, Pn) for all n sufficiently large (cf. Lemma E.2), and we

obtain

κδ(θn;P0) = κ?δ(θn;P0) , κδ(θn;Pn) = κ?δ(θn;Pn) .

By similar arguments to the proof of the upper bound, we deduce that for all n sufficiently large:

κ(Nδ;Pn) ≥ κ?δ(θn;Pn)− o(tn)

≥ κ?δ(θn;P0)− (λ′1n, λ
′
2n)(Pn − P0)− o(tn)

≥ κ(Nδ;P0)− (λ′1n, λ
′
2n)(Pn − P0)− o(tn)

for any (λ′1n, λ
′
2n) ∈ Λδ(θn;P0). If Λδ(·;P0) is lower hemicontinuous at θ∗, then we may choose

(λ′1n, λ
′
2n) ∈ Λδ(θn;P0) so that (λ′1n, λ

′
2n) → (λ′1, λ

′
2) ∈ arg sup(λ′1,λ

′
2)∈Λδ(θ

∗;P0)(λ
′
1, λ
′
2)π. Otherwise,
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if Λδ(·;P0) is a singleton then convergence follows by Lemma E.8. Therefore

lim inf
n→∞

κ(Nδ;Pn)− κ(Nδ;P0)

tn
≥ −(λ′1, λ

′
2)′π

= sup
(λ′1,λ

′
2)∈Λδ(θ

∗)
−(λ′1, λ

′
2)π

≥ inf
θ∈Θδ

sup
(λ′1,λ

′
2)∈Λδ(θ)

−(λ′1, λ
′
2)′π

which completes the proof for the explicit-dependence case.

The result for the implicit-dependence case follows similarly. An equivalent primal problem in this

case is described in equation (41) and its dual is in equation (42), which is why the set of multipliers

Ξδ is defined differently in this case. If Condition S holds at (θ, P ) and δ?(θ;P ) < δ then strong

duality holds, i.e.: κ?δ(θ;P ) = k(θ) (cf. Lemma D.2).

Proof of Theorem 4.2. The result follows directly from Theorem 2.1 of Shapiro (1991), using

Lemma 4.4 and the condition
√
n(P̂ − P )→d N(0,Σ).

Recall Condition S# and the programs κ#, κ̄#, κ∞, and κ̄∞ from Appendix B.

Proof of Theorem 5.1. As condition S holds at (θ, γ0, P0) for each θ ∈ Θ, condition S# must

also hold there. So by Lemma B.3, we obtain

κ#(θ; γ0, P0) = sup
λ∈Λ:µ-ess inf(k(·,θ,γ0)+λ′g(·,θ,γ0))>−∞

(
µ-ess inf(k(·, θ, γ0) + λ′g(·, θ, γ0))− λ′12P0

)
,

κ̄#(θ; γ0, P0) = inf
λ∈Λ:µ-ess sup(k(·,θ,γ0)−λ′g(·,θ,γ0))<+∞

(
µ-ess sup(k(·, θ, γ0)− λ′g(·, θ, γ0)) + λ′12P0

)
for each θ ∈ Θ. But by Lemma B.2 and the fact that Condition S holds at (θ, γ0, P0) for each θ ∈ Θ,

we also have

κ∞(θ; γ0, P0) = sup
λ∈Λ:F∗-ess inf(k(·,θ,γ0)+λ′g(·,θ,γ0))>−∞

(
F∗-ess inf(k(·, θ, γ0) + λ′g(·, θ, γ0))− λ′12P0

)
,

κ̄∞(θ; γ0, P0) = inf
λ∈Λ:F∗-ess sup(k(·,θ,γ0)−λ′g(·,θ,γ0))<+∞

(
F∗-ess sup(k(·, θ, γ0)− λ′g(·, θ, γ0)) + λ′12P0

)
for each θ ∈ Θ. As µ and F∗ are mutually absolutely continuous, the µ-essential supremum and F∗-

essential supremum are equal, and the same is true for essential infimum. Therefore, κ#(θ; γ0, P0) =

κ∞(θ; γ0, P0) and κ̄#(θ; γ0, P0) = κ̄∞(θ; γ0, P0) for each θ ∈ Θ, so inf K# = inf K∞ and supK# =

supK∞. The result now follows by Lemma B.1.

Proof of Theorem 5.2. By Lemma B.1 and the fact that K# ⊇ K∞, it’s enough to show that

inf K# ≥ inf K∞ and supK# ≤ supK∞.
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First, suppose that inf K# > −∞. Then for any ε > 0 there exists θε ∈ Θ and Fε ∈ Fθ such that

conditions (1)–(4) hold at (θε, Fε) and for which k(θε, γ0) < inf K# + ε. As condition S holds at

(θε, γ0, P0), condition S# must also hold there. As θε is feasible, by Lemma E.10 we must have

0 = sup
λ∈Λ:µ-ess inf(λ′g(·,θ,γ0))>−∞

(
µ-ess inf(λ′g(·, θ, γ0))− λ′12P0

)
.

As µ and F∗ are mutually absolutely continuous, the µ-essential supremum and F∗-essential supre-

mum are equal, and the same is true for essential infimum. Therefore

0 = sup
λ∈Λ:F∗-ess inf(λ′g(·,θ,γ0))>−∞

(
F∗-ess inf(λ′g(·, θ, γ0))− λ′12P0

)
.

It follows by Lemma E.9 that there exists F ∈ N∞ such that (1)–(4) hold at (θε, F ). Therefore,

inf K∞ ≤ k(θε, γ0) < inf K# + ε.

Now suppose that inf K# = −∞. Then for any n ∈ N there exists θn ∈ Θ and Fn ∈ Fθ such that

conditions (1)–(4) hold at (θn, Fn) and for which k(θn, γ0) ≤ −n. A similar argument shows that

there exists F ∈ N∞ such that (1)–(4) hold at (θn, F ). Therefore, inf K∞ ≤ k(θn, γ0) ≤ −n.

Proof of Theorem 6.1. To simplify notation, we drop dependence of h on (γ, P2) and k on γ

throughout the proof.

Take any function b ∈ L2(F∗) with EF∗ [b(U)] = 0. By analogy with standard efficiency bound

calculations for GMM, define the projection Π : L2(F∗)→ L2(F∗) by

Πb = b− EF∗ [b(U)h0(U)′](V −1 − V −1H(H ′V −1H)−1H ′V −1)h0 .

If the model is just-identified, then (V −1 − V −1H(H ′V −1H)−1H ′V −1) = 0 and the projection

reduces to the identity map.

Using a standard construction (cf. Example 3.2.1 in Bickel, Klaassen, Ritov, and Wellner (1993)),

for each t ∈ (−1, 1) we define a probability measure Ft via

dFt
dF∗

=
υ(tΠb)

EF∗ [υ(tΠb(U))]
, where υ(x) =

2

1 + e−2x
.

Thus {Ft : t ∈ (−1, 1)} is a smooth parametric family passing through F∗ at t = 0. Fix any

dθ × (d2 + d4) matrix A of full rank. Premultiplying h by A yields a just-identified system with

moment functions Ah(u, θ). By the implicit function theorem and invertibility of AH, there exists

ε > 0 such that the moment condition EFt [Ah(U, θ)] = 0 has a unique solution θ(Ft) ∈ Θ for all
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t ∈ (−ε, ε), and
dθ(Ft)

dt

∣∣∣∣
t=0

= −(AH)−1AEF∗ [h0(U)Πb(U)] .

Writing κ(Ft) = EFt [k(U, θ(Ft))], we therefore have

dκ(Ft)

dt

∣∣∣∣
t=0

= EF∗ [k0(U)Πb(U)]− J(AH)−1AEF∗ [h0(U)Πb(U)]

= EF∗ [ι̃(U)Πb(U)] ,

where ι̃(u) = k0(u)− κ(F∗)− J(AH)−1Ah0(u). As Π is an orthogonal projection:

dκ(Ft)

dt

∣∣∣∣
t=0

= EF∗ [Πι̃(U)Πb(U)] .

However, note that irrespective of the choice of A, we have

Πι̃ = Πk0 − J(AH)−1A(h0 − EF∗ [h0(U)h0(U)′](V −1 − V −1H(H ′V −1H)−1H ′V −1)h0)

= Πk0 − J(AH)−1A(h0 − V (V −1 − V −1H(H ′V −1H)−1H ′V −1)h0)

= Πk0 − J(AH)−1AH(H ′V −1H)−1H ′V −1h0

= Πk0 − J(H ′V −1H)−1H ′V −1h0

= ι

hence
dκ(Ft)

dt

∣∣∣∣
t=0

= EF∗ [ι(U)Πb(U)]

for all b ∈ L2(F∗).

As φ(x) = x2−1−2(x−1)
2 , a Taylor series expansion of υ(x) around x = 0 yields

Dφ(Ft‖F∗) =
t2

2
EF∗ [(Πb(U))2] + o(t2) .

Therefore, whenever Πb 6= 0 we have

(κ(Ft)− κ(F−t))
2

4Dφ(Ft‖F∗)
=

EF∗ [ι(U)Πb(U)]2 + o(1)
1
2EF∗ [(Πb(U))2] + o(1)

hence

s ≥ EF∗ [ι(U)Πb(U)]2

1
2EF∗ [(Πb(U))2]

.

If ι(u) = 0 (F∗-almost everywhere) then the right-hand side is zero for any b and we trivially have

s ≥ 2EF∗ [ι(U)2]. Otherwise, choosing b = ι yields s ≥ 2EF∗ [ι(U)2].
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We prove the reverse inequality s ≤ 2EF∗ [ι(U)2] by contradiction. Suppose that there exists a

sequence δn ↓ 0 and ε > 0 such that

(κ̄(Nδn)− κ(Nδn))2

4δn
≥ 2EF∗ [ι(U)2] + 2ε

for each n. We may choose mn,mn ∈Mδn and θn, θn ∈ Θ such that

EF∗ [mn(U)] = 1 , EF∗ [mn(U)] = 1 , EF∗ [mn(U)h(U, θn)] = 0 , EF∗ [mn(U)h(U, θn)] = 0

and
(EF∗ [mn(U)k(U, θn)−mn(U)k(U, θn)])2

4δn
≥ 2EF∗ [ι(U)2] + ε . (30)

By Assumption M(iv) (taking a subsequence if necessary), we can assume that θn → θ∗ and θn → θ
∗

for some θ∗, θ
∗ ∈ Θ.

As neighborhoods are defined via χ2 divergence, identify L and E with L2(F∗). Let ‖ · ‖2 denote

the L2(F∗) norm and observe that EF∗ [φ(mn)] = 1
2‖mn − 1‖22 and similarly for mn. We have

‖mn − 1‖22, ‖mn − 1‖22 ≤ 2δn ↓ 0 as n→∞. (31)

By similar arguments to the proof of Lemma 4.3, we may deduce EF∗ [h(U, θ∗)] = EF∗ [h(U, θ
∗
)] = 0.

It then follows by identifiability of θ(F∗) that θ∗ = θ
∗

= θ(F∗).

Note that mn and θn must satisfy EF∗ [mn(U)h(U, θn)] = 0. By differentiability of θ 7→ EF∗ [h(u, θ)]

at θ(F∗), we therefore obtain

−H(θn − θ(F∗)) + o(‖θn − θ(F∗)‖) = EF∗ [(mn(U)− 1)h(U, θn)] as θn → θ(F∗).

By Cauchy-Schwartz, Assumption M(i), and the fact that H has full rank, we therefore have

‖θn − θ(F∗)‖ = O(‖mn − 1‖2)

and hence, by (31), Cauchy-Schwarz, and L2(F∗) continuity of θ 7→ h(·, θ, γ0, P20) at θ(F∗), we

obtain

−H(θn − θ(F∗)) = EF∗ [(mn(U)− 1)h0(U)] + o(δ1/2
n ) (32)

and so

θn − θ(F∗) = −(H ′V −1H)−1H ′V −1EF∗ [(mn(U)− 1)h0(U)] + o(δ1/2
n ) .
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Turning to the counterfactual, by similar arguments we may deduce

EF∗ [mn(U)k(U, θn)]− κ(F∗) = J(θn − θ(F∗)) + EF∗ [(mn(U)− 1)(k0(U)− κ(F∗))] + o(δ1/2
n )

= −J(H ′V −1H)−1H ′V −1EF∗ [(mn(U)− 1)h0(U)]

+ EF∗ [(mn(U)− 1)(k0(U)− κ(F∗))] + o(δ1/2
n ) .

However, by (32) and definition of Π we also have

EF∗ [(mn(U)− 1)(k0(U)− κ(F∗)−Π(k0(U)− κ(F∗)))] = o(δ1/2
n )

hence

EF∗ [mn(U)k(U, θn)]− κ(F∗) = EF∗ [(mn(U)− 1)ι(U)] + o(δ1/2
n ) .

Analogous arguments apply to mn and θn. We have therefore shown

(EF∗ [mn(U)k(U, θn)−mn(U)k(U, θn)])2

4δn
=

(EF∗ [(mn(U)−mn(U))ι(U)])2

4δn
+ o(1) . (33)

It remains to control the denominator. To do so, first note that we must have mn 6= mn for all n

sufficiently large. Otherwise, substituting (33) into (30) yields o(1) ≥ 2EF∗ [ι(U)2] + ε. As n→∞,

the ε term dominates the o(1) term and we obtain a contradiction.

To complete the proof, observe that

‖mn −mn‖22 ≤ 2‖mn − 1‖22 + 2‖mn − 1‖22 ≤ 8δn (34)

by (31). Substituting (33) and (34) into (30) yields

2(EF∗ [(mn(U)−mn(U))ι(U)])2

‖mn −mn‖22
+ o(1) ≥ 2EF∗ [ι(U)2] + ε .

Finally, by Cauchy-Schwarz:

2EF∗ [ι(U)2] + o(1) ≥ 2EF∗ [ι(U)2] + ε .

As n→∞, the ε term dominates the o(1) term and we obtain a contradiction.

Proof of Lemma 6.1. Immediate by consistency of (θ̂, γ̂, P̂ ) and Slutsky’s theorem.

Proof of Theorem 6.2. The proof follows similar arguments to the proof of Theorem 6.1, here

we just note the necessary modifications. First note (again dropping dependence on γ to simplify

notation) that here κ(Ft) = k(θ(Ft)). In the proof of the inequality s ≥ 2EF∗ [ι(U)2], we modify the
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derivative of κ to obtain

dκ(Ft)

dt

∣∣∣∣
t=0

= −J(AH)−1AEF∗ [h0(U)Πb(U)]

= EF∗ [Πι̃(U)Πb(U)]

where ι̃(u) = −J(AH)−1Ah0(u). We may again verify that irrespective of the choice of A, we have

Πι̃ = −J(H ′V −1H)−1H ′V −1h0 hence

dκ(Ft)

dt

∣∣∣∣
t=0

= EF∗ [ι(U)Πb(U)]

for all b ∈ L2(F∗).

For the proof of the reverse inequality, inequality (30) is replaced with the inequality

(k(θn)− k(θn))2

4δn
≥ 2EF∗ [ι(U)2] + ε .

where we may deduce similarly that

k(θn)− κ(F∗) = −J(H ′V −1H)−1H ′V −1EF∗ [(mn(U)− 1)h0(U)] + o(δ1/2
n )

= EF∗ [(mn(U)− 1)ι(U)] + o(δ1/2
n ) .

Analogous arguments apply to mn and θn. In place of (33) we now have

(k(θn)− k(θn))2

4δn
=

(EF∗ [(mn(U)−mn(U))ι(U)])2

4δn
+ o(1) .

The remainder of the proof now follows similarly.

Proof of Lemma 6.2. Immediate by consistency of (θ̂, γ̂, P̂ ) and Slutsky’s theorem.

Proof of Lemma B.1. Clearly κ(Nδ) ≥ inf K∞ for each δ > 0. Suppose inf K∞ is finite. Fix

any ε > 0. Then there is Fε ∈ N∞ and θε ∈ Θ such that (1)–(4) all hold at (θε, γ0, P0) under Fε

and EFε [k(U, θε, γ0)] < inf K∞ + ε. But then for any δ ≥ Dφ(Fε‖F0) we necessarily have κ(Nδ) <
inf K∞+ε. If inf K∞ = −∞, then for each n ∈ N there exists Fn ∈ N∞ and θn ∈ Θ such that (1)–(4)

all hold at (θn, γ0, P0) under Fn and EFn [k(U, θn, γ0)] < −n. But then for any δ ≥ Dφ(Fn‖F0) we

necessarily have κ(Nδ) < −n.

Proof of Lemma B.2. Let L+ denote the cone of (F∗-almost surely) non-negative functions in
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L. We may write κ∞(θ; γ, P ) as a conic program:

κ∞(θ; γ, P ) = inf
m∈L+

EF∗ [m(U)k(U, θ, γ)] subject to the constraints in (22).

By standard duality results for conic programs (Bonnans and Shapiro, 2000, Section 2.5.6), the

dual of κ∞(θ; γ, P ) is

κ?∞(θ; γ, P ) = sup
ζ∈R,λ∈Λ

−ζ − λ′12P subject to ζ + F∗-ess inf(k(·, θ, γ) + λ′g(·, θ, γ)) ≥ 0 .

Whenever F∗-ess inf(k(u, θ, γ)+λ′g(u, θ, γ)) > −∞ the solution for ζ must set ζ = −F∗-ess inf(k(·, θ, γ)+

λ′g(·, θ, γ)) in which case

κ?∞(θ; γ, P ) = sup
λ∈Λ

(
F∗-ess inf(k(·, θ, γ) + λ′g(·, θ, γ))− λ′12P

)
.

Conversely, if F∗-ess inf(k(·, θ, γ) + λ′g(·, θ, γ)) = −∞ then λ is clearly infeasible.

To establish strong duality, the constraint qualification we require is

(1, P ′, 0′)′ ∈ int({(EF∗ [m(U)(1, g(U, θ, γ)′)])′ : m ∈ L+}+ {0} × C) ,

which holds whenever Condition S holds at (θ, γ0, P0) (cf. Lemma D.2). It follows by Theorem 2.187

of Bonnans and Shapiro (2000) that strong duality holds.

Lemma B.3 is proved by applying some results of Csiszár and Matúš (2012) that extend classical

duality results relying on paired function classes to much broader classes of functions. Their results

apply to optimization problems constrained by equality restrictions. Some (straightforward) modi-

fications are required to show similar characterizations apply to classes with inequality restrictions.

Proof of Lemma B.3. Fix any θ ∈ Θ. With θ fixed, we drop dependence of g and k on (θ, γ0, P0)

for the remainder of the proof. Let L1
+(µ) denote the cone of µ-almost everywhere non-negative

functions in L1(µ). Let Ṁ = {m ∈ L1(µ) :
∫
mg dµ is finite} and let Ṁ+ = Ṁ ∩ L1

+(µ). Thus,

F ∈ Fθ if and only if its derivative with respect to µ, say m, belongs to Ṁ+. Similarly, any m ∈M+

with
∫
m dµ = 1 corresponds to a distribution in Fθ. For any c ∈ Rd+1, define the set

M[c] =

{
m ∈ Ṁ+ :

∫
(1, g(u)′)′m(u) dµ(u) = (1, P ′0, 0

′
d3+d4)′ + c

}
.

Also let the functions q1, q2 : Rd+1 → (−∞,+∞] be given by

q1(c) = inf

{∫
mk dµ : m ∈M[c]

}
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and

q2(c) =

[
0 if c ∈ {0} × Rd1− × {0}d2 × Rd3− × {0}d4 ,
+∞ otherwise.

The functions q1 and q2 are lower-semicontinuous, proper convex functions (Rockafellar, 1970,

p. 24). Note µ-essential boundedness of k guarantees that q1(c) > −∞ for all c. The quantity

κ#(θ; γ0, P0) may now be written in terms of q1 and q2:

κ#(θ; γ0, P0) = inf
c∈Rd+1

(q1(c) + q2(c))

If condition S# holds at (θ, γ0, P0) then ri({c : q1(c) < +∞}) and ri({c : q2(c) < +∞}) have

nonempty intersection. Fenchel’s duality theorem (Rockafellar, 1970, Theorem 31.3) then implies

κ#(θ; γ0, P0) = sup
ν∈Rd+1

(−q?1(ν)− q?2(−ν)) (35)

where q?1 and q?2 are the convex conjugates of q1 and q2. By direct calculation, we see that

− q?2(−ν) =

[
0 if ν ∈ R×−Λ ,

−∞ otherwise.
(36)

For q?1, we begin by writing

−q?1(ν) = inf
c∈Rd+1

(
−c′ν + q1(c)

)
= inf

c∈Rd+1
inf

m∈M[c]

(
−c′ν +

∫
mk dµ

)
= inf

c∈Rd+1
inf

m∈M[c]

(
(1, P ′0, 0

′
d3+d4)ν +

∫ (
k(u)− (1, g(u)′)ν

)
m(u) dµ(u)

)
= inf

m∈Ṁ+

(
(1, P ′0, 0

′
d3+d4)ν +

∫ (
k(u)− (1, g(u)′)ν

)
m(u) dµ(u)

)
.

Let

Q(u,m(u)) =

[
k(u)m(u) if m(u) ≥ 0 ,

+∞ otherwise.

We therefore have

−q?1(ν) = inf
m∈Ṁ

(
(1, P ′0, 0

′
d3+d4)ν +

∫ (
Q(u,m(u))− (1, g(u)′)ν

)
m(u) dµ(u)

)
.

By Remark A.3 and Theorem A.4 of Csiszár and Matúš (2012), we may bring the infimum inside
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the expectation:

−q?1(ν) = (1, P ′0, 0
′
d3+d4)ν +

∫
inf
x∈R

(
Q(u, x)− (1, g(u)′)ν

)
x dµ(u)

= (1, P ′0, 0
′
d3+d4)ν +

∫
inf
x≥0

(
k(u)− (1, g(u)′)ν

)
x dµ(u)

=

[
−∞ if µ-ess inf(k(·)− (1, g(·)′)ν) < 0 ,

(1, P ′0, 0
′
d3+d4

)ν otherwise.
(37)

Writing ν = (ζ, λ′)′, it now follows from (35), (36), and (37) that

κ#(θ; γ0, P0) = sup
ζ∈R,λ∈Λ:µ-ess inf(k(·)+g(·)′λ−ζ)≥0

ζ − λ′12P0

= sup
λ∈Λ:µ-ess inf(k(·)+g(·)′λ)>−∞

µ-ess inf(k(·) + g(·)′λ)− λ′12P0

as required.
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E Supplementary results

E.1 Notation

For x ∈ Rn and A ⊂ Rn let d(x,A) = infa∈A ‖x − a‖ where ‖ · ‖ denotes Euclidean norm. Let
~dH(A,B) = supa∈A infb∈B ‖a− b‖ denote the directed Hausdorff distance between sets A,B ⊂ Rn.

Let Bε denote a Euclidean ball centered at the origin with radius ε, where the dimension of the

ball should be obvious from the context. Let T ⊆ Rn be a nonempty, closed convex cone with

nonempty interior and let B ⊂ T . Let ∂B denote the boundary of B. We define the exterior

of B relative to T as ext(B;T ) = cl(∂B ∩ int(T )). For example, if n = 2, T = R × R+, and

B = {(x, y) : x2 + y2 ≤ 1, x ≥ 0}, then ext(B;T ) = {(x, y) : x2 + y2 = 1, x ≥ 0}.

E.2 Stability of constraint qualifications under perturbations

Lemma E.1 Let Assumption Φ hold and let Condition S hold at (θ, γ, P ). Then: there exists a

neighborhood N of P such that Condition S holds at (θ, γ, P̃ ) for each P̃ ∈ N .

Proof of Lemma E.1. First note B2ε ⊆ ({EF [g(U, θ, γ)] − (P ′, 0′d3+d4
)′ : F ∈ N∞} + C) must

hold for some ε > 0. But for any P̃ with ‖P − P̃‖ < ε we clearly have

‖(EF [g(U, θ, γ)]− (P ′, 0′d3+d4)′)− (EF [g(U, θ, γ)]− (P̃ ′, 0′d3+d4)′)‖ < ε

for all F ∈ N∞, and so Bε ⊆ ({EF [g(U, θ, γ)]− (P̃ ′, 0′d3+d4
)′ : F ∈ N∞}+ C).

Lemma E.2 Let Assumption Φ hold, let each entry of g be E-continuous in (θ, γ), and let Condition

S hold at (θ, γ, P ). Then: there exists a neighborhood N of (θ, γ, P ) such that Condition S holds at

(θ̃, γ̃, P̃ ) for each (θ̃, γ̃, P̃ ) ∈ N .

Proof of Lemma E.2. As Condition S holds at (θ, γ, P ), there exists sufficiently large δ such

that 0 ∈ int({EF [g(U, θ, γ)] − (P ′, 0′d3+d4
)′ : F ∈ Nδ} + C). Therefore, we may choose ε > 0 such

that B4ε ⊆ int({EF [g(U, θ, γ)]− (P ′, 0′d3+d4
)′ : F ∈ Nδ}+ C).

Identify any F ∈ Nδ with its Radon–Nikodym derivative with respect to F∗, say m ∈ Mδ. By

the proof of Lemma D.1, ‖m‖φ ≤ 2 + φ(2) + δ for each m ∈ Mδ. By E-continuity, there exists a

neighborhood N1 of (θ, γ) such that for any (θ̃, γ̃) ∈ N1 and with r denoting any entry of g1, g2,
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g3, or g4, we have

‖r(·, θ, γ)− r(·, θ̃, γ̃)‖ψ <
ε√

d(2 + φ(2) + δ)
.

It follows by Hölder’s inequality for Orlicz classes that

sup
m∈Mδ

|EF∗ [m(U)r(U, θ, γ)]− EF∗ [m(U)r(U, θ̃, γ̃)]| ≤ ε√
d

for any (θ̃, γ̃) ∈ N1, hence Bε ⊆ ({EF [g(U, θ̃, γ̃)]− (P ′, 0′d3+d4
)′ : F ∈ Nδ}+ C) for any (θ̃, γ̃) ∈ N1.

Now let N2 be an ε-neighborhood of P . For any F ∈ Nδ and any (θ̃, γ̃, P̃ ) ∈ N1 ×N2, we have

‖(EF [m(U)g(U, θ, γ)]− (P ′, 0′)′)− (EF [m(U)g(U, θ̃, γ̃)]− (P̃ ′, 0′)′)‖ < 2ε

hence B2ε ⊆ int({EF [g(U, θ̃, γ̃)]− (P̃ ′, 0′d3+d4
)′ : F ∈ Nδ}+ C).

Lemma E.3 Let Assumption Φ hold, let EF∗ [φ?(c1 +c′2g(U, θ, γ))] be continuous in (θ, γ) for every

(c1, c
′
2)′ ∈ Rd+1, and let Condition S hold at (θ, γ, P ). Then: δ?(θ; γ, P ) is continuous at (θ, γ, P ).

Proof of Lemma E.3. Recall the definition of the program I(θ; γ, P ) (see the discussion imme-

diately preceding Lemma D.2). As Conditions S holds at (θ, γ, P ), we must have I(θ; γ, P ) < ∞.

The objective function

`(ζ, λ) = −EF∗ [φ?(ζ + λ′g(U, θ, γ))]− ζ − (λ′1, λ
′
2)′P

is the pointwise infimum of affine functions and is therefore concave and upper semicontinuous. By

Lemma D.2 and Theorem 2.165 of Bonnans and Shapiro (2000), the set of multipliers (ζ, λ) solving

the dual problem, say Ξ, is a nonempty, convex, and compact subset of R1+d. Fix ε > 0 and let

Ξε = {(ζ, λ) ∈ R× Λ : d((ζ, λ),Ξ) ≤ ε}. For any (θ̃, γ̃, P̃ ) ∈ Θ× Γ× P, let

˜̀(ζ, λ) = −EF∗ [φ?(ζ + λ′g(U, θ̃, γ̃))]− ζ − (λ′1, λ
′
2)′P̃ .

By continuity of (θ, γ) 7→ EF∗ [φ?(c1 + c′2g(U, θ, γ))], ˜̀ converges pointwise to ` as (θ̃, γ̃, P̃ ) →
(θ, γ, P ). By concavity, convergence holds uniformly over Ξε (Rockafellar, 1970, Theorem 10.8), so

sup
(ζ,λ)∈Ξε

˜̀(ζ, λ)→ δ?(θ; γ, P ) as (θ̃, γ̃, P̃ )→ (θ, γ, P ). (38)

By upper semicontinuity of ` and definition of Ξ:

δ?(θ; γ, P )− sup
(ζ,λ)∈ext(∂Ξε;R×Λ)

`(ζ, λ) =: 2a > 0 . (39)

It follows by (38) and (39) that there exists a neighborhood N of (θ, γ, P ) such that for any
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(θ̃, γ̃, P̃ ) ∈ N , the inequality

sup
(ζ,λ)∈Ξε

˜̀(ζ, λ)− sup
(ζ,λ)∈ext(∂Ξε;R×Λ)

˜̀(ζ, λ) > a

holds, hence arg sup(ζ,λ)∈Ξε
˜̀(ζ, λ) ∩ ext(∂Ξε;R × Λ) = ∅. Take any (ζ, λ) ∈ R × Λ outside Ξε.

Then there exists (ζε, λε) ∈ ext(∂Ξε;R × Λ) that is the convex combination of (ζ, λ) and some

(ζ̃, λ̃) ∈ arg sup(ζ,λ)∈Ξε
˜̀(ζ, λ). But then by concavity of ˜̀:

˜̀(ζ̃, λ̃) > ˜̀(ζε, λε) ≥ τ ˜̀(ζ̃, λ̃) + (1− τ)˜̀(ζ, λ)

for some τ ∈ (0, 1). It follows that ˜̀(ζ, λ) < sup(ζ,λ)∈Ξε
˜̀(ζ, λ) must hold whenever (θ̃, γ̃, P̃ ) ∈ N .

Therefore, whenever (θ̃, γ̃, P̃ ) ∈ N we have δ?(θ̃; γ̃, P̃ ) = sup(ζ,λ)∈Ξε
˜̀(ζ, λ). The result now follows

by display (38).

E.3 Continuity of extreme counterfactuals

The smallest and largest counterfactuals κ(Nδ) and κ̄(Nδ) depend implicitly on (γ, P ). In what

follows, we sometimes make this dependence explicit by writing κ(Nδ; γ, P ) and κ̄(Nδ; γ, P ). The

next two lemmas establish continuity of the extreme counterfactuals in (γ, P ). The results are

proved for κ; the proofs for κ̄ are identical. We first present results for the explicit-dependence case.

Lemma E.4 Let Assumptions Φ and M hold and let k depend on u. Then: κ(Nδ; ·, ·) and κ̄(Nδ; ·, ·)
are continuous on a neighborhood of (γ0, P0).

Proof of Lemma E.4. We first show κ(Nδ; ·, ·) is upper semicontinuous at (γ0, P0). Fix ε > 0.

By Lemma 4.3, choose θε ∈ Θδ such that κ?δ(θε; γ0, P0) < κ(Nδ; γ0, P0) + ε. As Condition S holds

at (θε, γ0, P0) (cf. Assumption M(ii)), Lemma E.2 implies that Condition S also holds at (θε, γ, P )

for all (γ, P ) in some neighborhood N of (γ0, P0). By continuity of δ?(θε; ·, ·) at (γ0, P0) (cf. Lemma

E.3), the inequality δ?(θε, ·, ·) < δ holds on a neighborhood N ′ of (γ0, P0). It follows by Lemma 4.2

that κδ(θε; ·, ·) = κ?δ(θε; ·, ·) holds on N ∩N ′. Lemma E.7 implies that κ?δ(θε; ·, ·)) < κ?δ(θε; γ0, P0)+ε

holds on a neighborhood N ′′ of (γ0, P0). On N ∩N ′ ∩N ′′ we therefore have

κ(Nδ; ·, ·) ≤ κδ(θε; ·, ·) = κ?δ(θε; ·, ·) < κ?δ(θε; γ0, P0) + ε < κ(Nδ; γ0, P0) + 2ε .

We establish lower semicontinuity by contradiction. Suppose there is ε > 0 and a sequence (γn, Pn)→
(γ0, P0) along which

κ(Nδ; γn, Pn) ≤ κ(Nδ; γ0, P0)− ε . (40)
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For each n, choose θn ∈ Θ and Fn ∈ Nδ for which EFn [k(U, θn, γn)] < κδ(γn, Pn) + ε. Let mn

denote the derivative of Fn with respect to F∗. By Assumption M(iv), we may assume (taking

a subsequence if necessary) that θn → θ∗ for some θ∗ ∈ Θ. By E-weak convergence, there is a

subsequence {ni : i ≥ 1} along which mni is E-weakly convergent to a unique m∗ ∈ L+. By similar

arguments to the proof of Lemma 4.3, we may use E-weak convergence and Assumption M(i) to

deduce that m∗ ∈Mδ, m
∗ satisfies the constraints in (22) at (θ∗, γ0, P0), and

EF∗ [mni(U)k(U, θni , γni)]→ EF∗ [m∗(U)k(U, θ∗, γ0)] .

But by (40) this implies EF∗ [m∗(U)k(U, θ∗, γ0)] ≤ κ(Nδ; γ, P )− ε, which contradicts the definition

of κ(Nδ; γ0, P0).

Lemma E.5 Let Assumptions Φ and M hold with k depending only on (θ, γ). Then: κ(Nδ; ·, ·) and

κ̄(Nδ; ·, ·) are continuous on a neighborhood of (γ0, P0).

Proof of Lemma E.5. The proof follows similar arguments to Lemma E.5. For upper semiconti-

nuity, for any ε > 0 we may choose θε ∈ Θδ such that k(θε, γ0) < κ(Nδ; γ0, P0) + ε. It follows from

Lemmas E.2 and E.3 that there is a neighborhood N of (γ, P ) such that (i) Condition S holds at

(θε, γ, P ) and (ii) δ?(θε; γ, P ) < δ for all (γ, P ) ∈ N . By continuity of k(θε, ·) there also exists a

neighborhood N ′ of γ0 on which k(θε, ·) < k(θε, γ0) + ε Therefore on N ∩ (N ′ × Rd1+d2) we have

κ(Nδ; ·, ·) ≤ k(θε, ·) < k(θε, γ0) + ε < κ(Nδ; γ0, P0) + 2ε ,

establishing upper semicontinuity. The proof of lower semicontinuity follows similar arguments to

the proof of Lemma E.4.

E.4 Convergence of multipliers

This section contains some ancillary results on the convergence of multipliers. As before, we prove

the results only for the lower bound; corresponding results for the upper bound follow by parallel

arguments.

In the explicit-dependence case, let Ξδ(θ; γ, P ) denote the set of Lagrange multipliers (η, ζ, λ′)′

solving κ?δ(θ; γ, P ) in equation (5). In the implicit-dependence case, we may simultaneously check

feasibility of (θ, γ, P ) and evaluate the counterfactual using the convex program

κδ(θ; γ, P ) = inf
F∈Nδ

k(θ, γ) subject to (1)–(4) holding under F at (θ, γ, P ) . (41)
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The value of this program is k(θ, γ) if there is a distribution F ∈ Nδ satisfying the constraints at

(θ, γ, P ), otherwise the value of the program is +∞. By analogous arguments to Lemma 4.1, the

program (41) has the dual representation

κ?δ(θ; γ, P ) = k(θ, γ) + sup
η≥0,ζ∈R,λ∈Λ

−EF∗
[
(ηφ)?(−ζ − λ′g(U, θ, γ))

]
− ηδ − ζ − λ′12P . (42)

Similarly, define

κ̄δ(θ; γ, P ) = sup
F∈Nδ

k(θ, γ) subject to (1)–(4) holding under F at (θ, γ, P )

which takes the value k(θ, γ) if if there is a distribution F ∈ Nδ satisfying the constraints at (θ, γ, P )

and −∞ otherwise. This program has the dual representation

κ̄?δ(θ; γ, P ) = k(θ, γ) + inf
η≥0,ζ∈R,λ∈Λ

EF∗
[
(ηφ)?(−ζ − λ′g(U, θ, γ))

]
+ ηδ + ζ + λ′12P . (43)

Thus, in the implicit-dependence case, we let Ξδ(θ; γ, P ) and Ξδ(θ; γ, P ) denote the sets of multi-

pliers solving (42) and (43), respectively.

Lemma E.6 Let Assumption Φ hold, let Condition S hold at (θ, γ, P ), and let δ?(θ; γ, P ) < δ.

Then: Ξδ(θ; γ, P ) is a nonempty, compact, convex subset of R+ × R× Λ.

Proof of Lemma E.6. Follows from Theorem 2.165 of Bonnans and Shapiro (2000): the objective

is the pointwise infimum of affine functions and is therefore concave and upper semicontinuous, and

condition S implies a Slater constraint qualification (cf. Lemma D.2).

The next lemma uses some insights from Pollard (1991). Let T = R+×R×Λ. For each ε > 0 we may

cover Ξδ(θ; γ, P ) ⊂ T by a set Ξδ(θ; γ, P )ε ⊂ T consisting of finitely many hypercubes with edges

parallel to the coordinate axes so that d((η, ζ, λ),Ξδ(θ; γ, P )) ≤ ε for all (η, ζ, λ) ∈ Ξδ(θ; γ, P )ε and

so that ext(∂Ξδ(θ; γ, P )ε;T ) ∩ Ξδ(θ; γ, P ) = ∅.

Lemma E.7 Let Assumptions Φ and M(i)(v) hold, let Condition S hold at (θ, γ, P ), and let

δ?(θ; γ, P ) < δ. Then: for each ε > 0 there exists a neighborhood N of (θ, γ, P ) such that for each

(θ̃, γ̃, P̃ ) ∈ N the multipliers Ξδ(θ̃; γ̃, P̃ ) solving κ?δ(θ̃; γ̃, P̃ ) are contained in Ξδ(θ; γ, P )ε. Moreover,

κ?δ is continuous at (θ, γ, P ).

Proof of Lemma E.7. We prove the result for the explicit-dependence case. The result for the

implicit-dependence case follows similarly.
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Step 1 (preliminaries): To simplify notation, let Ξ = Ξδ(θ; γ, P ) and Ξε = Ξδ(θ; γ, P )ε. Lemmas

E.2 and E.3 imply there is a neighborhood N ′ of (θ, γ, P ) such that (θ̃, γ̃, P̃ ) is attainable and

δ?(θ̃, γ̃, P̃ ) < δ for each (θ̃, γ̃, P̃ ) ∈ N ′. By Lemma E.6, for each (θ̃, γ̃, P̃ ) ∈ N ′ the multipliers

Ξ̃ := Ξδ(θ̃; γ̃, P̃ ) solving κ?δ(θ̃; γ̃, P̃ ) are a nonempty, compact, convex subset of T . Let

`(η, ζ, λ) = inf
m∈L+

L(m, η, ζ, λ; θ, γ, P ) , ˜̀(η, ζ, λ) = inf
m∈L+

L(m, η, ζ, λ; θ̃, γ̃, P̃ ) .

By upper semicontinuity of ` and definition of Ξ, we have

κ?δ(θ; γ, P )− sup
(η,ζ,λ)∈ext(∂Ξε;T )

`(η, ζ, λ) =: 4a > 0 . (44)

The remaining steps of the proof depend on whether inf{η : (η, ζ, λ) ∈ Ξ} > 0 or not.

Step 2 (proof when inf{η : (η, ζ, λ′)′ ∈ Ξ} > 0): Without loss of generality we may choose Ξε such

that inf{η : (η, ζ, λ) ∈ Ξε} > 0. As

`(η, ζ, λ) = −EF∗
[
(ηφ)?(−k(U, θ, γ)− λ′g(U, θ, γ)− ζ)

]
− ηδ − ζ − λ′12P

when η > 0, it follows by Assumption M(v) that ˜̀(η, ζ, λ)→ `(η, ζ, λ) as (θ̃, γ̃, P̃ )→ (θ, γ, P ). This

convergence is pointwise for (η, ζ, λ) ∈ R+×Rd+1 with η > 0. By concavity of ˜̀(·, ·, ·) and Theorem

10.8 of Rockafellar (1970), pointwise convergence may be strengthened to uniform convergence on

compact subsets of R++ × Rd+1, hence

sup
(η,ζ,λ)∈Ξε

˜̀(η, ζ, λ)→ κ?δ(θ; γ, P ) as (θ̃, γ̃, P̃ )→ (θ, γ, P ). (45)

By (44) and (45), there exists a neighborhood N ′′ of (θ, γ, P ) such that for (θ̃, γ̃, P̃ ) ∈ N ′ ∩N ′′, the

inequality

sup
(η,ζ,λ)∈Ξε

˜̀(η, ζ, λ)− sup
(η,ζ,λ)∈ext(∂Ξε;T )

˜̀(η, ζ, λ) > 2a

holds. It follows that arg sup(η,ζ,λ)∈Ξε
˜̀(η, ζ, λ)∩ext(∂Ξε;T ) = ∅ holds onN ′∩N ′′. Fix any (θ̃, γ̃, P̃ ) ∈

N ′ ∩N ′′. Take any point (η, ζ, λ) ∈ T \Ξε. Then there is a point (ηε, ζε, λε) ∈ ext(∂Ξε;T ) that is a

convex combination of (η, ζ, λ) and a point (η̃, ζ̃, λ̃) ∈ arg sup(η,ζ,λ)∈Ξε
˜̀(η, ζ, λ). But then we have

˜̀(η̃, ζ̃, λ̃) > ˜̀(ηε, ζε, λε) ≥ τ ˜̀(η̃, ζ̃, λ̃) + (1− τ)˜̀(η, ζ, λ)

for some τ ∈ (0, 1), hence ˜̀(η, ζ, λ) < sup(η,ζ,λ)∈Ξε
˜̀(η, ζ, λ). Therefore, Ξ̃ ⊆ Ξε must hold on

N ′ ∩N ′′. Continuity now follows by (45).

Step 3 (proof when inf{η : (η, ζ, λ′)′ ∈ Ξ} = 0): We break this proof into several steps.

69



Step 3a (proof that Ξ̃ ⊆ Ξε on a neighborhood of (θ, γ, P )): As inf{η : (η, ζ, λ) ∈ Ξ} = 0 and

Ξ is compact, there exists (ζ̄, λ̄) ∈ R × Λ such that (0, ζ̄, λ̄) ∈ Ξ. By upper semicontinuity and

concavity of `, we may deduce that limη↓0 `(η, ζ̄, λ̄) = `(0, ζ̄, λ̄) (cf. the proof of Lemma 4.1). So for

any ε0 ∈ (0, a) we may choose η̄ > 0 such that `(η̄, ζ̄, λ̄) > `(0, ζ̄, λ̄)− ε0 and (η̄, ζ̄, λ̄) ∈ int(Ξε). By

Assumption M(v), there exists a neighborhood N ′′ of (θ, γ, P ) upon which the inequality

˜̀(η̄, ζ̄, λ̄) > κ?δ(θ; γ, P )− 2ε0 (46)

holds for all (θ̃, γ̃, P̃ ) ∈ N ′′.

We now show by contradiction that the inequality

sup
(η,ζ,λ)∈ext(∂Ξε;T )

`(η, ζ, λ) ≥ sup
(η,ζ,λ)∈ext(∂Ξε;T )

˜̀(η, ζ, λ)− 2ε0 (47)

holds on a neighborhood N ′′′ of (θ, γ, P ). To establish a contradiction, suppose that there is ε1 > 0

and a sequence {(θn, γn, Pn) : n ≥ 1} converging to (θ, γ, P ) along which

sup
(η,ζ,λ)∈ext(∂Ξε;T )

`(η, ζ, λ) ≤ sup
(η,ζ,λ)∈ext(∂Ξε;T )

`n(η, ζ, λ)− ε1 , (48)

where `n(η, ζ, λ) := infm∈L+ L(m, η, ζ, λ; θn, γn, Pn). For each n ≥ 1, choose

(ηn, ζn, λn) ∈ arg sup(η,ζ,λ)∈ext(∂Ξε;T )`n(η, ζ, λ) .

As ext(∂Ξε;T ) is compact, we may take a subsequence {(ηni , ζni , λni) : i ≥ 1} converging to some

point (η∗, ζ∗, λ∗) ∈ ext(∂Ξε;T ). There are two cases to consider.

Case 1: if η∗ > 0, then by uniform convergence of `n to ` on compact subsets of R++ × Rd+1 we

obtain

lim
i→∞

`ni(ηni , ζni , λni) = `(η∗, ζ∗, λ∗) ≤ sup
(η,ζ,λ)∈ext(∂Ξε;T )

`(η, ζ, λ) ,

contradicting (48).

Case 2: If η∗ = 0, fix any small ε2 > 0 so that (ε2, ζ
∗, λ∗) ∈ Ξε. By upper semicontinuity and

concavity of `(·, ζ∗, λ∗), we may choose ε2 sufficiently small that `(ε2, ζ
∗, λ∗) − `(2ε2, ζ

∗, λ∗) < ε1.

For all i large enough we have ηni < ε2 and hence τni := ε2
2ε2−ηni

∈ (0, 1). By concavity:

`ni(ηni , ζni , λni) ≤
1

τni
(`ni(ε2, ζni , λni)− (1− τni)`ni(2ε2, ζni , λni)) .
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But by uniform convergence of `ni on compact subsets of R++ × Rd+1, we therefore have

lim
i→∞

`ni(ηni , ζni , λni) ≤ 2`(ε2, ζ
∗, λ∗)− `(2ε2, ζ

∗, λ∗)

≤ sup
(η,ζ,λ)∈ext(∂Ξε;T )

`(η, ζ, λ) + (`(ε2, ζ
∗, λ∗)− `(2ε2, ζ

∗, λ∗))

< sup
(η,ζ,λ)∈ext(∂Ξε;T )

`(η, ζ, λ) + ε1 ,

contradicting (48). This proves inequality (47).

It now follows from displays (44), (46), and (47) that on N ′ ∩N ′′ ∩N ′′′ we have

˜̀(η̄, ζ̄, λ̄) > κ?δ(θ; γ, P )− 2ε0 = sup
(η,ζ,λ)∈ext(∂Ξε;T )

`(η, ζ, λ) + 4a− 2ε0

≥ sup
(η,ζ,λ)∈ext(∂Ξε;T )

˜̀(η, ζ, λ) + 4(a− ε0) ,

where a − ε0 > 0. Therefore, sup(η,ζ,λ)∈Ξε
˜̀(η, ζ, λ) > sup(η,ζ,λ)∈ext(∂Ξε;T )

˜̀(η, ζ, λ) holds on N ′ ∩
N ′′ ∩N ′′′. It now follows by similar arguments to Step 2 that Ξ̃ ⊆ Ξε on N ′ ∩N ′′ ∩N ′′′.

Step 3b (proof of continuity): By Step 3a, for any (θ̃, γ̃, P̃ ) ∈ N ′ ∩N ′′ ∩N ′′′ we have

κ?δ(θ̃; γ̃, P̃ ) = sup
(η,ζ,λ)∈R+×R×Λ

˜̀(η, ζ, λ) = sup
(η,ζ,λ)∈Ξε

˜̀(η, ζ, λ) . (49)

It follows by (46) that

κ?δ(θ̃; γ̃, P̃ ) ≥ ˜̀(η̄, ζ̄, λ̄) > κ?δ(θ; γ, P )− 2ε0 ,

proving lower semicontinuity. To establish upper semicontinuity, for each ε0 > 0 one may deduce

(by similar arguments used to establish inequality (47) in Step 3a) there is a neighborhood N ′′′′ of

(θ, γ, P ) upon which

sup
(η,ζ,λ)∈Ξε

`(η, ζ, λ) ≥ sup
(η,ζ,λ)∈Ξε

˜̀(η, ζ, λ)− ε0 (50)

holds. It follows by (49) and (50) that on N ′ ∩N ′′ ∩N ′′′ ∩N ′′′′, we have

κ?δ(θ̃; γ̃, P̃ ) = sup
(η,ζ,λ)∈Ξε

˜̀(η, ζ, λ) ≤ sup
(η,ζ,λ)∈Ξε

`(η, ζ, λ) + ε0 = κ?δ(θ; γ, P ) + ε0

as required.

Lemma E.8 Let Assumptions Φ and M(i)(v) hold, let Condition S hold at (θ, γ, P ), and let

δ?(θ; γ, P ) < δ. Then:

~dH(Ξδ(θ̃; γ̃, P̃ ),Ξδ(θ; γ, P ))→ 0 , ~dH(Ξδ(θ̃; γ̃, P̃ ),Ξδ(θ; γ, P ))→ 0 as (θ̃, γ̃, P̃ )→ (θ, γ, P ).
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Proof of Lemma E.8. Fix ε > 0. By Lemma E.7, there is a neighborhood N of (θ, γ, P ) such

that Ξδ(θ̃; γ̃, P̃ ) ⊆ Ξδ(θ; γ, P )ε holds for all (θ̃, γ̃, P̃ ) ∈ N . Therefore, the inequality

~dH(Ξδ(θ̃; γ̃, P̃ ),Ξδ(θ; γ, P )) ≤ ~dH(Ξδ(θ; γ, P )ε,Ξδ(θ; γ, P )) ≤ ε

holds for all (θ̃, γ̃, P̃ ) ∈ N .

E.5 Feasibility

Consider characterizing the extreme counterfactuals in the implicit-dependence case. We may use

conic programs to check whether there exists a distribution that satisfies the moment conditions

(1)–(4) at a particular point θ. If so, we say that θ is feasible.

To check feasibility of θ for distributions belonging to N∞, we may use the program

f∞(θ; γ, P ) = inf
F∈N∞

0 subject to (1)–(4) holding at (θ, F )

where f∞(θ; γ, P ) = +∞ if infimum runs over an empty set.

Lemma E.9 Let Assumption Φ hold. Then: the dual of f∞(θ; γ, P ) is:

f?∞(θ; γ, P ) = sup
λ∈Λ:F∗-ess inf(λ′g(·,θ,γ))>−∞

(
F∗-ess inf(λ′g(·, θ, γ))− λ′12P

)
.

If condition S also holds at (θ, γ, P ), then: strong duality holds: f∞(θ; γ, P ) = f?∞(θ; γ, P ).

Proof of Lemma E.9. Recall L+ is the cone of (F∗-almost surely) non-negative functions in L.

We may write f∞(θ; γ, P ) as a conic program:

f∞(θ; γ, P ) = inf
m∈L+

0 subject to the constraints in (22).

The result follows by similar arguments to the proof of Lemma B.2.

To check feasibility of θ for distributions belonging to Fθ, we may use the program

f#(θ; γ, P ) = inf
F∈Fθ

0 subject to (1)–(4) holding at (θ, F )

where f#(θ; γ, P ) = +∞ if infimum runs over an empty set.
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Lemma E.10 Let Condition S# hold at (θ, γ0, P0). Then: the dual of f#(θ; γ0, P0) is:

f?#(θ; γ0, P0) = sup
λ∈Λ:µ-ess inf(λ′g(·,θ,γ0))>−∞

(
µ-ess inf(λ′g(·, θ, γ0))− λ′12P0

)
and strong duality holds: f#(θ; γ0, P0) = f?#(θ; γ0, P0).

Proof of Lemma E.10. We use similar arguments to the proof of Lemma B.3, stating only the

necessary modifications here. Let Ṁ = {m ∈ L1(µ) :
∫
mg dµ is finite} and let Ṁ+ = Ṁ ∩L1

+(µ).

For any c ∈ Rd+1, define

M[c] =

{
m ∈ Ṁ+ :

∫
(1, g(u)′)′m(u) dµ(u) = (1, P ′0, 0

′
d3+d4)′ + c

}
Also let the functions q1, q2 : Rd+1 → (−∞,+∞] be given by

q1(c) =

[
0 if M[c] 6= ∅ ,
+∞ otherwise

and

q2(c) =

[
0 if c ∈ {0} × Rd1− × {0}d2 × Rd3− × {0}d4 ,
+∞ otherwise

in which case

f#(θ; γ0, P0) = inf
c∈Rd+1

(q1(c) + q2(c))

If condition S# holds at (θ, γ0, P0) then ri({c : q1(c) < +∞}) and ri({c : q2(c) < +∞}) have

nonempty intersection. By Fenchel’s duality theorem, we therefore obtain

f#(θ; γ0, P0) = sup
ν∈Rd+1

(−q?1(ν)− q?2(−ν)) (51)

where q?1 and q?2 are the convex conjugates of q1 and q2; see display (36) for q?2. For q?1, we have

−q?1(ν) = inf
c∈Rd+1

(
−c′ν + q1(c)

)
= inf

c∈Rd+1:M[c] 6=∅

(
−c′ν

)
= inf

c∈Rd+1:M[c] 6=∅
inf

m∈M[c]

(
(1, P ′0, 0

′
d3+d4)ν −

∫
(1, g(u)′)νm(u) dµ(u)

)
= inf

m∈Ṁ+

(
(1, P ′0, 0

′
d3+d4)ν −

∫
(1, g(u)′)νm(u) dµ(u)

)
.

Let

Q(m(u)) =

[
0 if m(u) ≥ 0 ,

+∞ otherwise.
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Therefore:

−q?1(ν) = inf
m∈Ṁ

(
(1, P ′0, 0

′
d3+d4)ν +

∫ (
Q(m(u))− (1, g(u)′)ν

)
m(u) dµ(u)

)
.

By Remark A.3 and Theorem A.4 of Csiszár and Matúš (2012), we may bring the infimum inside

the expectation:

−q?1(ν) = (1, P ′0, 0
′
d3+d4)ν +

∫
inf
x∈R

(
Q(x)− (1, g(u)′)ν

)
x dµ(u)

= (1, P ′0, 0
′
d3+d4)ν +

∫
inf
x≥0

(
−(1, g(u)′)ν

)
x dµ(u)

=

[
−∞ if µ-ess inf(−(1, g(·)′)ν) < 0

(1, P ′0, 0
′
d3+d4

)ν otherwise.
(52)

Writing ν = (ζ, λ′)′, it follows from (36), (51), and (52) that

q = sup
ζ∈R,λ∈Λ:µ-ess inf(g(·)′λ−ζ)≥0

ζ − λ′12P0

= sup
λ∈Λ:µ-ess inf(g(·)′λ)>−∞

µ-ess inf(g(·)′λ)− λ′12P0

as required.
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