
CONVENTIONS UNDER HETEROGENEOUS CHOICE RULES1

Jonathan Newtona

Strategies of players in a population are updated according to the choice
rules of agents, where each agent is a player or a coalition of players. It is
known that classic results on the stochastic stability of conventions are due to
an asymmetry property of the strategy updating process. We show that asym-
metry can be defined at the level of the choice rule and that asymmetric rules
can be mixed and matched whilst retaining asymmetry of the aggregate pro-
cess. Specifically, we show robustness of asymmetry to heterogeneity within an
agent (Alice follows different rules at different times); heterogeneity between
agents (Alice and Bob follow different rules); and heterogeneity in the timing
of strategy updating. These results greatly expand and convexify the domain
of choice rules for which results on the stochastic stability of conventions are
known.
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1. INTRODUCTION

Lewis (1969) argued that conventions, regularities in the behavior of members of a pop-
ulation when faced with a coordination problem, might arise from processes in which in-
dividuals in a population follow simple, adaptive choice rules. Young (1993) and Kandori
et al. (1993) formulated these ideas mathematically using the theory of Markov chains and
showed, using the ideas of Freidlin and Wentzell (1984), that conventions can be ranked
by their stability properties under given models of choice behavior. Since then, the stabil-
ity of conventions under many particular rules has been considered (see Sandholm, 2010;
Newton, 2018).

Methodologically, a given choice rule that is followed by members of a population leads
to a Markov chain, the transition probabilities of which can be summarized by a cost func-

tion. Typically, the cost function then provides the input to a graph theoretic problem, the
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solution to which tells us the stability of our conventions, the most stable conventions being
known as stochastically stable (Foster and Young, 1990). Peski (2010) showed that, if the
cost function satisfies an asymmetry condition with respect to one of the conventions, then
that convention is stochastically stable. Considering an environment with two strategies,
A and B, asymmetry (towards A) roughly corresponds to the requirement that for any two
strategy profiles σ, σ̃ such that all players who play B at σ play A at σ̃, switches to strategy
B from σ are weakly less likely than switches to strategy A from σ̃.1,2

Here, instead of considering asymmetry of the process as a whole, we consider asymme-
try in the choice rule of each agent (an individual or coalition of players). This allows us
to consider three dimensions of heterogeneity. Firstly, we consider heterogeneity within an
agent. It turns out that the set of asymmetric choice rules is convex. If two choice rules are
asymmetric, then a compound rule that sometimes follows one of the rules and sometimes
follows the other is also asymmetric (Theorem 1). Secondly, we consider heterogeneity be-
tween agents. If every agent follows an asymmetric choice rule, then the process as a whole
is asymmetric (Theorem 2). Finally, we consider heterogeneity in the timing of strategy up-
dating. Asymmetry of the process as a whole does not depend on whether agents update
their strategies at the same time or at different times (Theorem 3).

Consequently, when every agent follows an identical choice rule, we can obtain results on
stochastic stability by showing asymmetry for a single representative agent. Many results
from the literature can be recovered in this manner and results for many alternative choice
rules can be derived.3 Even better, we can mix and match agents who follow different
choice rules, and if the agent-specific conditions for asymmetry are satisfied in each case,
we are done. In summary, we can treat the choice rules of agents in the population like
Lego bricks. Firstly, if every brick (choice rule) used in constructing the process is the
same, then we can say something about the entire process by analyzing a single brick (a
representative agent). Secondly, if our bricks (choice rules) are heterogeneous but they all

1This result finally provided an affirmative answer to the long unanswered question of whether the strat-
egy profile at which every player plays a risk dominant strategy is stochastically stable under the best response
with uniform deviations choice rule for any network of interactions.

2To define asymmetry (towards A) for more than two strategies (see Peski, 2010) and to extend our
general results, all that is required is to replace strategy B with “strategies other than A” in the definitions and
analysis. For clarity and unity of exposition, we present the two strategy case throughout.

3In particular, we consider choice rules, recover results and extend results from Alós-Ferrer and Schlag
(2009); Axelrod (1984); Bilancini and Boncinelli (2019); Blume (1993, 2003); Dokumaci and Sandholm
(2011); Ellison (1993, 2000); Ellison and Fudenberg (1995); Kandori et al. (1993); Kreindler and Young
(2013); Malawski (1989); Maruta (2002); Newton (2012); Newton and Angus (2015); Norman (2009a,b);
Ohtsuki et al. (2006); Peski (2010); Sawa (2014); Schlag (1998); Young (1993, 2011).
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satisfy asymmetry, then we can combine them arbitrarily to construct processes that also
satisfy asymmetry.

To give an example, Alice and Bob may update their strategies according to best re-
sponse rules (Section 4), perhaps occasionally collaborating to play a coalitional best re-
sponse (Section 6). Alice may be a caring person who takes Bob’s welfare into account
in her decision making (also Section 4). Bob may take his moral philosophy seriously so
that his choices have a Kantian (Alger and Weibull, 2013, 2016; Bergstrom, 1995) aspect
(Section 7.1). Their friend Colm may follow an imitative rule, perhaps copying the strategy
of whichever player currently has the highest payoff (Section 5). For each of these rules, we
give conditions under which asymmetry holds. These include conditions on relative incen-
tives such as risk dominance (Harsanyi and Selten, 1988) and an altruistic variant of risk
dominance (Maruta, 2002), as well as ordinal conditions such as payoff dominance, max-
imin and the ‘Lewis conditions’ that relate to a debate between Lewis and Gilbert (1981)
over which games are appropriate to the study of conventions.

Sections 4-6 consider broad classes of choice rules. While previous studies have also
considered classes of rules (e.g. Blume, 2003), our approach stands out with respect to the
variety of choice rules that it considers. Furthermore, convexity of the set of asymmetric
choice rules makes a huge number of hybrid rules accessible to study. This is important,
as evidence suggests that human behavior can be a mixed bag, with empirical studies of
evolutionary dynamics finding aspects of both best response and imitation (Cason et al.,
2013; Friedman et al., 2015; Selten and Apesteguia, 2005). In particular, studies of evolu-
tion in coordination games have found support for best response plus deviations with an
intentional component (Hwang et al., 2018; Lim and Neary, 2016; Mäs and Nax, 2016).

Our results suggest that when faced with a problems of conventions, we should first check
whether the choice rules of agents are asymmetric. For example, if A is risk dominant, then
both the logit choice rule and best response with uniform deviations are asymmetric towards
A (Section 4). Hence, if some players follow the logit choice rule and the remainder follow
best response with uniform deviations, then it follows from Theorems 2 and 3 that the
process as a whole is asymmetric. Consequently, the convention at which every player plays
A is stochastically stable. We know this without having to consider basins of attraction,
escape trajectories, potential functions, spanning trees or any of the other methodology that
usually surrounds such results.

The paper is organized as follows. Section 2 gives the model. Section 3 gives our main
theoretical results. Section 4 applies these results to payoff-difference based choice rules, a
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class that includes the most popular best response rules. Section 5 does similarly for imita-
tive rules. Section 6 considers coalitional rules. Section 7 considers Kantian and altruistic
payoff transformations, discusses simplified conditions for Sections 4-6 and concludes.
Proofs are relegated to the appendix.

2. MODEL

Let V be a finite set of players and {A, B} the set of strategies available to each player. A
strategy profile σ ∈ Σ := {A, B}V is a function σ : V → {A, B} that associates each player
with one of the two strategies. Let σA, σB be the homogeneous strategy profiles such that
for all i ∈ V , σA(i) = A, σB(i) = B. Let σS denote σ restricted to the domain S ⊆ V . Denote
by VA(σ) ⊆ V the set of players who play strategy A at profile σ and by VB(σ) ⊆ V the set
of players who play strategy B at profile σ.

Each player i ∈ V has a payoff function Ui : Σ → R such that Ui(σ) gives the payoff of
player i at strategy profile σ. When we consider specific choice rules (Section 4 onwards),
we shall assume

Ui(σ) =
∑

j∈V\{i}

ui j

(
σ(i), σ( j)

)
, (Additive Separability)(2.1)

where, for all j , i, ui j : {A, B}2 → R gives the payoff of player i from his interaction with
player j. If ui j is constant, then the payoff of player i is unaffected by the strategy of player
j. In addition, we shall assume

ui j(A, A) ≥ ui j(B, A), ui j(B, B) ≥ ui j(A, B). (Coordination)(2.2)

A special case of this specification is when each player plays some given coordination game
against every other player (e.g. Kandori et al., 1993; Young, 1993) or against some subset
of players (e.g. Ellison, 1993, 2000).

Assume that the strategy profile evolves according to a discrete time Markov process
on Σ. Specifically, we define a family of Markov processes P = {Pε}ε indexed by ε ∈

[0, 1), where higher values of ε correspond to a greater frequency of perturbations from the
unperturbed process P0. Let the state at time t be σt. Let Pε be determined by the following
steps. At time t + 1, select a subset S ⊆ V of updating players according to a probability
measure π on the power set of V . Then, let σt+1 be randomly determined according to a
probability measure Pε

S (σt, ·) satisfying Pε
S (σt, σ) = 0 if σV\S , σt

V\S . We refer to {Pε
S }ε
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as a choice rule for S . In summary, the two step strategy updating process selects a set
S of updating players before (possibly) updating their strategies, leaving the strategies of
players outside of S unchanged. The relationship between Pε and {Pε

S }S⊆V is given by

Pε(σ, ·) =
∑

S : π(S )>0

π(S ) Pε
S (σ, ·).(2.3)

We consider regular choice rules (Young, 1993; see also Sandholm, 2010). Let Pε
S be

continuous in ε. If P0
S (σ,σ′) = 0 and Pε̂

S (σ,σ′) > 0 for some ε̂ > 0, let {Pε
S (σ,σ′)}ε satisfy

Pε
S (σ,σ′) =

(
a + o(1)

)
εk for some a > 0, k > 0,(2.4)

where a, k may depend on σ, σ′, S , but not on ε; and o(1) represents a term that vanishes
as ε → 0. This class of rules includes popular rules such as the logit choice rule and best
response with uniform deviations. Finally, assume that there is strictly positive probability
of the players in S retaining their current strategies. That is, Pε

S (σ,σ) > 0 for all σ, ε.
Given that the ultimate object of our analysis is the long run behavior of the process as
summarized by its invariant measure, this is without loss of generality.4

For ε > 0, assume that any state can be reached with positive probability from any other
state in some finite number of steps, therefore the process is irreducible and has a unique
invariant probability measure µε on the state space Σ. By standard arguments, the limit of
µε as ε→ 0 exists. For small ε, the process will spend most of the time at states which have
positive probability under this limiting measure. These are known as stochastically stable

states (Foster and Young, 1990).

Definition 1 σ ∈ Σ is stochastically stable under P = {Pε}ε if limε→0 µ
ε(σ) > 0.

Define the cost cS (σ,σ′) of a transition by S from σ to σ′ as the exponential rate of
decay of the probability of such a transition as ε→ 0. That is, for each family of processes
PS = {Pε

S }ε, S ⊆ V , π(S ) > 0,

cS (σ,σ′) :=

limε→0
log PεS (σ,σ′)

log ε if Pε̂
S (σ,σ′) > 0 for some ε̂ > 0,

∞ otherwise .
(2.5)

4If Pε
S ∗ (σ

∗, σ∗) = 0 for some S ∗, σ∗, we can define P̄ε such that, for all S such that π(S ) > 0, for all σ,
σ′, σ , σ′, P̄ε

S (σ,σ) = q + (1 − q)Pε
S (σ,σ), P̄ε

S (σ,σ′) = (1 − q)Pε
S (σ,σ′), for some arbitrary q ∈ (0, 1). P̄ε

then has the same invariant measure as Pε, but, for all S such that π(S ) > 0, for all σ, P̄ε
S (σ,σ) > 0.
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Cost functions measure the order of magnitude of transition probabilities for low values of
ε. Transitions with a high cost are less likely than transitions with a low cost. From (2.5),
we see that if P0

S (σ,σ′) > 0, then cS (σ,σ′) = 0. That is, transitions that can occur under the
unperturbed dynamic have zero cost. In contrast, if a transition is only possible for ε > 0,
then cS (σ,σ′) = k, where k is the k from expression (2.4).

Define a cost function c(·, ·) for the overall process Pε by dropping the S subscripts
in (2.5). To relate this to cS (·, ·), observe that if there exist distinct S ,T ⊆ V such that
Pε

S (σ,σ′) > 0 and Pε
T (σ,σ′) > 0, then it is the most likely of these transitions (i.e. the lowest

cost) which determines the overall likelihood of the transition. Specifically, we derive

Lemma 1 c(σ,σ′) = minS :π(S )>0 cS (σ,σ′).

Peski (2010) considers processes that satisfy a certain type of asymmetry. Asymmetry
means, roughly speaking, that if σ, σ̃ are such that all players who play B at σ play A at σ̃,
then switches to strategy B from state σ are weakly less likely than switches to strategy A

from state σ̃.

Definition 2 c(·, ·) is asymmetric (towards A) if, for any σ,σ′, σ̃ ∈ Σ, such that VB(σ) ⊆
VA(σ̃), there exists σ̃′ ∈ Σ such that VA(σ̃) ⊆ VA(σ̃′), VB(σ′) ⊆ VA(σ̃′) and c(σ,σ′) ≥
c(σ̃, σ̃′).

The concept can be extended from cost functions to underlying processes in the obvious
way.

Definition 3 P = {Pε}ε is asymmetric (towards A) if its cost function is asymmetric.

It turns out that asymmetry is a sufficient condition for the stochastic stability of σA.

Theorem P (Peski, 2010) If c(·, ·) is asymmetric, then σA is stochastically stable.5

In the cited paper, Theorem P is used to show that risk dominance of strategy A implies
stochastic stability of σA under best response with either uniform or payoff dependent de-
viations for any network of interaction.6 In the next section, we give results that allow us to
apply Theorem P to processes that admit a great deal of heterogeneity in choice rules.

5Peski (2010) also gives a strict version of asymmetry that ensures that σA is uniquely stochastically
stable. The theorems in the current paper can also be stated for strict asymmetry. We choose to present results
for (non strict) asymmetry as the definition is cleaner and it admits broader classes of choice rules.

6To give some context, stochastic stability of σA under best response plus uniform deviations under
uniform interaction (i.e. ui j independent of i, j) was proved by Young (1993) and Kandori et al. (1993);
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3. COMBINING ASYMMETRIES

We now present a lemma upon which the theorems of this section build. Asymmetry of
cost functions is preserved under minima.

Lemma 2 If cost functions c1 and c2 are asymmetric, then min{c1, c2} is also asymmetric.

It follows from Lemma 2 that if we combine two asymmetric processes in such a way
that the resulting process has a cost function which is a minimum of the two original cost
functions, then the resulting process will also be asymmetric. This result allows us to con-
sider two types of heterogeneity in choice rules. These are heterogeneity within agents
(Alice sometimes follows one rule and sometimes follows another rule) and heterogeneity
between agents (Alice and Bob follow different rules). The first of these considers a set S

of updating players that sometimes chooses according to one rule and sometimes according
to another.

Theorem 1 (Heterogeneity within agents)
If P̃S and P̄S are asymmetric, then PS defined by Pε

S = λP̃ε
S + (1 − λ)P̄ε

S , λ ∈ (0, 1), is

asymmetric.

For example, Alice may sometimes follow a best response rule (see Section 4) and some-
times follow an imitative rule (see Section 5), but as long as both rules are asymmetric,
Theorem 1 tells us that a process which combines them will also be asymmetric.7

The next theorem considers heterogeneity across updating sets of players. Each S that
updates with positive probability may do so according to a different choice rule.

Theorem 2 (Heterogeneity between agents)
If PS is asymmetric for all S ⊆ V such that π(S ) > 0, then P is asymmetric.

For example, Alice may try to maximize Bob’s payoff (see Section 4), Bob may fol-
low Homo Moralis preferences (see Section 7.1), and sometimes Alice and Bob may even

possible multiplicity of stochastically stable states under best response plus uniform deviations for general
networks of interaction is described in Blume (1996); stochastic stability of σA under logit choice (a form
of best response plus payoff dependent deviations) for general networks of interaction was proved by Blume
(1993).

7Note that the examples following Theorems 1, 2 and 3 are simple and illustrative. More complicated
examples are easy to construct. For example, Alice might follow one rule when she updates at the same time
as Bob and another rule when she updates at the same time as Colm. Alternatively, it could be that when
Alice and Bob update at the same time, their rules are perfectly correlated so that exactly one of them follows
an imitative rule and exactly one of them follows a best response rule.
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form a coalition for their mutual benefit (see Section 6), but as long as all three rules are
asymmetric, Theorem 2 tells us that the aggregate process will also be asymmetric.

As well as heterogeneity, Theorem 2 can help us to understand homogeneity. Consider
a situation in which the only S selected with positive probability are singleton players,
each of whom follows the same choice rule. If we can give some general conditions under
which this choice rule is asymmetric for any given representative agent, then Theorem 2
implies that the aggregate process must be asymmetric under the same conditions. Later
in the paper (Corollary 1), we show that the most famous results in this literature can be
recovered by this method.

The next theorem allows us to consider disjoint sets of players S and T that simultane-
ously and independently follow asymmetric choice rules. When this is the case, the joint
choice rule for S ∪ T is also asymmetric.

Theorem 3 (Heterogeneity in timing)
Let S ,T ⊆ V, S ∩ T = ∅, PS and PT be asymmetric. If PS∪T satisfies, for all ε, σ, σ′S∪T ,

Pε
S∪T

(
σ, (σ′S∪T , σV\(S∪T ))

)
= Pε

S

(
σ, (σ′S , σV\S )

)
Pε

T

(
σ, (σ′T , σV\T )

)
,

then PS∪T is asymmetric.

For example, if Alice follows an asymmetric choice rule and Bob follows an asymmetric
choice rule, then the aggregation of these choice rules is asymmetric regardless of whether
Alice and Bob adjust their strategies at different times or at the same time. In general, the
possibility of simultaneous strategic updating can be important. Alós-Ferrer and Netzer
(2015) define a robustness concept based on the possibility of the identity of stochastically
stable states being affected by simultaneity in updating. Arieli and Young (2016) need a
particular combination of simultaneity and non-simultaneity in strategy updating in order
to obtain rapid convergence to Nash equilibrium in a class of learning models. Theorem 3
shows that, when it comes to asymmetry, we do not have to worry.

Of course, the above three theorems are only useful if the class of asymmetric processes
includes interesting and common choice rules. This does indeed turn out to be the case and
Sections 4, 5 and 6 give a wide variety of such rules. First, however, we give some results
that will help with considering asymmetry in the most common type of rules, those that
involve choice by a single player.
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V = {i, j, k, l,m}, S = {i}.

Figure 1.— asymmetry at the individual level. Vertices shaded grey play A. Unshaded
vertices play B. Note that VB(σ) = VA(σ̂) ⊆ VA(σ̃), so that asymmetry (Definition 2 and
Lemma 3) implies that a transition fromσ toσ(i) (Panel [i]) is less likely than the transitions
in Panels [ii,iii]. Weak asymmetry (Definition 4) implies that the transition in Panel [i] is
less likely than the transition in Panel [ii]. Supermodularity (Definition 5) implies that the
transition in Panel [ii] is less likely than the transition in Panel [iii].

.

3.1. Asymmetry at the level of the individual

For S = {i}, that is when only a single player updates his strategy (e.g. player i in Figure
1), we can simplify Definition 2. Given a strategy profile σ, let σ(i) denote the strategy
profile which is identical to σ except for the strategy of player i. That is, σ(i)( j) = σ( j) for
all j , i, and σ(i)(i) , σ(i).

Lemma 3 c{i}(·, ·) is asymmetric if and only if, for all σ, σ̃ ∈ Σ such that VB(σ) ⊆ VA(σ̃), if

i ∈ VA(σ) and i ∈ VB(σ̃), then c{i}(σ,σ(i)) ≥ c{i}(σ̃, σ̃(i)).

When S = {i}, it will help to consider asymmetry as an implication of two other proper-
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ties: weak asymmetry and supermodularity.

Definition 4 c{i}(·, ·) is weakly asymmetric (towards A) if, for all σ, σ̂ ∈ Σ such that
VB(σ) = VA(σ̂), if i ∈ VA(σ), then c{i}(σ,σ(i)) ≥ c{i}(σ̂, σ̂(i)).

States σ and σ̂ in Definition 4 mirror each other in that players who play A at σ, play B

at σ̂, and players who play B at σ, play A at σ̂ (see Figure 1[i,ii]). Weak asymmetry means
that a switch from A to B by player i from state σ is weakly less probable than a switch
from B to A by player i from state σ̂.

Definition 5 c{i}(·, ·) is supermodular (towards A) if, for all σ̂, σ̃ ∈ Σ such that VA(σ̂) ⊆
VA(σ̃), if i ∈ VB(σ̃), then c{i}(σ̂, σ̂(i)) ≥ c{i}(σ̃, σ̃(i)).

States σ̂, σ̃ in Definition 5 are such that all players who play A at σ̂ also play A at σ̃
(see Figure 1[ii,iii]). Let player i be any player who plays B at both states. Supermodularity
means that a switch from B to A by player i from state σ̂ is weakly less probable than a
switch from B to A by player i from state σ̃. That is, switches by player i from B to A are
weakly more probable when more of the other players are playing A.

Lemma 4 If c{i}(·, ·) is weakly asymmetric and supermodular, then it is asymmetric.

The notation chosen for Definitions 4 and 5 has been chosen to facilitate understanding
of Lemma 4 in terms of these definitions. Specifically, if we consider σ, σ̂, σ̃ as given in
Definitions 4 and 5, we have

c{i}(σ,σ(i)) ≥︸︷︷︸
weak asymmetry

c{i}(σ̂, σ̂(i)) ≥︸︷︷︸
supermodularity

c{i}(σ̃, σ̃(i)),(3.1)

which implies the condition c{i}(σ,σ(i)) ≥ c{i}(σ̃, σ̃(i)) for asymmetry given in Lemma 3. As
it is possible that σ̃ = σ̂, asymmetry implies weak asymmetry. In contrast, (3.1) tells us that
if weak asymmetry holds strictly, then supermodularity can be violated by some amount
while retaining asymmetry.

4. CHOICE BASED ON PAYOFF DIFFERENCES

We first consider decision rules according to which the probability of an individual player
switching from his current strategy to the alternative strategy decreases in the vector of
payoff losses from the switch. An updating player following such a rule acts according to
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a predisposition to improve things, or at least not make them worse, for some group of
players. When this group is the updating player himself, we have the subclass of best/better
response rules.8 As we shall see, this class includes many rules that have been considered
in the literature.

4.1. Definition of payoff-difference based rules

Consider the vector of differences in payoff for every player when player i changes his
strategy so that the strategy profile changes from σ to σ(i). That is, consider

Dσ
i :=

(
U j(σ) − U j(σ(i))

)
j∈V
∈ RV .

Positive elements of Dσ
i correspond to payoff losses and negative elements of Dσ

i corre-
spond to payoff gains.

Let a payoff-difference based choice rule for player i be defined as follows. For non-
decreasing unlikelihood function Υi(·) : RV → R+ and constant (with respect to ε) dσi ∈

(0, 1), σ ∈ Σ, let

Pε
{i}(σ,σ) = 1 − dσi ε

Υi(Dσ
i ) and Pε

{i}(σ,σ
(i)) = dσi ε

Υi(Dσ
i ),(4.1)

with the convention that 00 = 1 so that Pε
{i} is continuous in ε at ε = 0. Such rules satisfy

the restriction on behavior that if a transition is at least as good (measured by changes in
payoff) for everybody as another transition, then the first transition should be no less likely
to occur than the second.

A strictly positive unlikelihood Υi(Dσ
i ) implies that the probability of a transition from

σ to σ(i) approaches zero as ε approaches zero. In contrast, Υi(Dσ
i ) = 0 implies that the

probability of a transition from σ to σ(i) is strictly positive even under the unperturbed

8Fixed points of such rules define the equilibrium concepts of Cournot (1838) and Nash (1950). In his
proofs of the existence of Nash equilibria, Nash uses two best/better response mappings. Most famously
(Nash, 1950), the classic best response correspondence that is definitional to Nash equilibrium, but also, in an
alternative proof (Nash, 1951), a smoothed better response correspondence that allows the use of Brouwer’s
rather than Kakutani’s fixed point theorem.
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process P0. Substituting (4.1) into the definition of a cost function, we obtain

(4.2) c{i}(σ,σ′) :=


0 if σ′ = σ,

Υ(Dσ
i ) if σ′ = σ(i),

∞ otherwise.

We shall now illustrate the breadth and flexibility of this class of rules by giving some ex-
amples. Following this, we give sufficient conditions for the asymmetry of such processes.

4.2. Examples of payoff-difference based rules

4.2.1. Utilitarian rules

A player i follows a utilitarian rule if, for some nonnegative vector λ ∈ RV
+ , we have that

Υi(x) = [λ · x]+,(4.3)

where [x]+ = max{0, x}. Under this rule, the probability of player i changing his strategy
is decreasing in a weighted sum of payoff changes when he does so. A special case of this
is when λi = 1 and λ j = 0 for j , i, in which case we have best response with log-linear

deviations, which for small ε approximates the logit choice rule (Blume, 1993). This rule
is self-regarding in the following sense.

Definition 6 A rule Υi is self-regarding if Υi(x) = f (xi) for some non-decreasing function
f : R→ R+.

The class of self-regarding payoff-difference based rules is effectively the class of skew-

symmetric rules considered by Blume (2003) and Norman (2009a). In contrast, if λ j = 1
for some j , i and λk = 0 for k , j, then we have a best friend forever rule, where
player i makes his decisions according to their impact on player j. Clearly, this rule is not
self-regarding.

4.2.2. Own-payoff based rules

A player i follows an own-payoff based best response rule (Peski, 2010) if, for some
strictly increasing function f : R+ → R+ such that f (0) = 0, we have that

Υi(x) = f ([xi]+).(4.4)
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A special case is f (z) = z, which again gives best response with log-linear deviations. An-
other special case is f (z) = z2, in which case we have best response with log-quadratic

deviations, which for small ε approximates the probit choice rule in two strategy environ-
ments such as the one in the current paper (Dokumaci and Sandholm, 2011).

4.2.3. Hippocratic rules

A player i follows a Hippocratic rule if, for some nonnegative vector λ ∈ RV
+ ,

Υi(x) = λ · [x]+,(4.5)

so that the probability of player i changing his strategy is decreasing in a weighted sum
of payoff losses when he does so. Unlike the utilitarian rule, any gains in payoff are dis-
regarded. If λi = 1 and λ j = 0 for j , i, this is once again best response with log-linear
deviations.

4.2.4. Best response with uniform deviations

A player i follows best response with uniform deviations (Kandori et al., 1993; Young,
1993) if

Υi(x) = [sgn(xi)]+,(4.6)

so that, for small ε, player i will rarely change his strategy unless his payoff weakly in-
creases as a consequence.

4.2.5. Best response with switching costs

A player i follows best response with switching costs and uniform deviations (Norman,
2009b) if, for some strictly positive δ > 0,

Υi(x) = [sgn(xi + δ)]+,(4.7)

so that, for small ε, player i will rarely change his strategy unless his payoff increases by at
least δ as a consequence.

4.2.6. Disjunction and conjunction

Consider rules similar to (4.7) in that Υi takes values on {0, 1}. These Υi are truth func-

tions that output a value of 1 if a condition is satisfied and output 0 if it is not satisfied.



14 J. NEWTON

Another example is

(4.8) Υ′i(x) =

1 if
∑

k∈V[sgn(xk)]+ > 3,

0 otherwise.

which corresponds to a process in which, for small ε, player i will rarely change his strategy
unless by doing so he harms no more than three players.

Any two truth functions can be combined through logical conjunction, which corresponds
to taking the minimum of the functions, or logical disjunction, which corresponds to taking
the maximum of the functions. For example, in the case of Υi given by (4.7) and Υ′i given
by (4.8), the truth function

(4.9) Υ∗i = max{Υi,Υ
′
i},

corresponds to a process in which, for small ε, player i rarely changes his strategy unless, as
a consequence, his payoff increases by at least δ and the payoff of no more than three play-
ers decreases. Note that Υ∗i inherits the non-decreasing property from Υi, Υ′i . Furthermore,
given any set of primitive truth functions, the set of truth functions that can be constructed
in this way has a lattice structure with a maximal and minimal element.

4.3. Asymmetry of payoff-difference based rules

Recall that a risk dominant strategy (Harsanyi and Selten, 1988) for player i is a strategy
that maximizes his payoff when he faces an opponent who plays each strategy with equal
probability. Similarly, we define an altruistically risk dominant strategy for player i against
player j to be a strategy that player i should play to maximize the payoff of player j when
player j plays each strategy with equal probability. Maruta (2002) refers to this latter con-
dition as dominance with respect to homogeneous externality, as it compares the change in
payoff of players of each strategy when an opponent switches to that strategy. However, an
interpretation as altruistic risk dominance emphasizes the symmetry with risk dominance
that is important to the results of this section.

Definition 7 Strategy A is RDi (risk dominant for i) if∑
j∈V\{i}

ui j(A, A) + ui j(A, B) ≥
∑

j∈V\{i}

ui j(B, A) + ui j(B, B);
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(ii)
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(iv)

σ = σA = σ̃(i)

σ(i) = σ̃

σ̂ = σB

σ̂(i)

Ui(·)

uij(A,A)

uij(B,A)

uij(B,B)

uij(A,B)

Uj(·)

uji(A,A)

uji(A,B)

uji(B,B)

uji(B,A)

V = {i, j}

Figure 2.— payoff-difference based choice. Vertices shaded grey play A. Unshaded
vertices play B. Weak asymmetry (Lemma 5) implies that a transition from σ (Panel [i]) to
σ(i) (Panel [ii]) is less likely than a transition from σ̂ (Panel [iii]) to σ̂(i) (Panel [iv]), and
supermodularity (Lemma 6) implies that this latter transition is less likely than a transition
from σ̃ (Panel [ii]) to σ̃(i) (Panel [i]).

and ARDi j (altruistically risk dominant for i against j) if

u ji(A, A) + u ji(B, A) ≥ u ji(A, B) + u ji(B, B).

These two properties turn out to be exactly what is required to give weak asymmetry of
payoff-difference based choice rules.

Lemma 5 If player i follows a payoff-difference based choice rule, A is RDi and

(i) Υi is self-regarding, or

(ii) A is ARDi j for all j,

then c{i}(·, ·) is weakly asymmetric.

The intuition behind Lemma 5 can be conveyed in an example, which is illustrated in Figure
2. Consider V = {i, j} and states σ = σA, σ̂ = σB that mirror each other as in Definition
4. From state σ, if i switches from A to B so that the state becomes σ(i), then changes in
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payoff for players i and j respectively are

(Dσ
i )i = Ui(σ) − Ui(σ(i)) = ui j(A, A) − ui j(B, A), and(4.10)

(Dσ
i ) j = U j(σ) − U j(σ(i)) = u ji(A, A) − u ji(A, B).

From state σ̂, if i switches from B to A so that the state becomes σ̂(i), then changes in payoff

are

(Dσ̂
i )i = Ui(σ̂) − Ui(σ̂(i)) = ui j(B, B) − ui j(A, B), and(4.11)

(Dσ̂
i ) j = U j(σ̂) − U j(σ̂(i)) = u ji(B, B) − u ji(B, A).

Comparing (4.10) to (4.11) component-wise, it is clear that Dσ
i ≥ Dσ̂

i if and only if A is
RDi and ARDi j. For payoff-difference based processes, Dσ

i ≥ Dσ̂
i implies that Υi(Dσ

i ) ≥
Υi(Dσ̂

i ) and therefore, by (4.2), c{i}(σ,σi) ≥ c{i}(σ̂, σ̂i) as required by Definition 4 (weak
asymmetry).

It turns out that payoff-difference based choice rules satisfy supermodularity without the
additional conditions required for weak asymmetry.

Lemma 6 If player i follows a payoff-difference based choice rule, then c{i}(·, ·) is super-

modular.

To see the intuition behind Lemma 6, we continue with our previous example, which we
continue to illustrate in Figure 2. Let σ̃ be such that σ̃(i) = B, σ̃( j) = A. Note that σ̂, σ̃ are
as in Definition 5. From state σ̃, if i switches from B to A then changes in payoff are

(Dσ̃
i )i = Ui(σ̃) − Ui(σ̃(i)) = ui j(B, A) − ui j(A, A), and(4.12)

(Dσ̃
i ) j = U j(σ̃) − U j(σ̃(i)) = u ji(A, B) − u ji(A, A).

Subtracting (4.12) from (4.11) component-wise, we see that

(Dσ̂
i )i − (Dσ̃

i )i = ui j(A, A) − ui j(B, A) + ui j(B, B) − ui j(A, B),(4.13)

(Dσ̂
i ) j − (Dσ̃

i ) j = u ji(A, A) − u ji(B, A) + u ji(B, B) − u ji(A, B),

which are nonnegative by (2.2). Therefore, Dσ̂
i ≥ Dσ̃

i . For payoff-difference based pro-
cesses, Dσ̂

i ≥ Dσ̃
i implies that Υi(Dσ̂

i ) ≥ Υi(Dσ̃
i ) and therefore, by (4.2), c{i}(σ̂, σ̂i) ≥

c{i}(σ̃, σ̃i) as required by Definition 5 (supermodularity).
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Lemma 4 tells us that weak asymmetry and supermodularity suffice for asymmetry, so
Lemmas 5 and 6 can be combined to give the following proposition.

Proposition 1 If player i follows a payoff-difference based choice rule, A is RDi and

(i) Υi is self-regarding, or

(ii) A is ARDi j for all j,

then c{i}(·, ·) is asymmetric.

So, if Alice follows a self-regarding payoff-difference based choice rule such as best re-
sponse with uniform deviations and A is risk dominant for Alice, then her cost function
will be asymmetric (Proposition 1[i]). If Bob follows a utilitarian rule and tries to maxi-
mize the total payoff for him and Alice, A is risk dominant for Bob and altruistically risk
dominant for Bob against Alice, then his cost function will be asymmetric (Proposition
1[ii]). If Alice and Bob alter their strategies simultaneously, then the resulting cost function
for S = {Alice,Bob} will also be asymmetric (Theorem 3). If Pε is such that sometimes
Alice alters her strategy, sometimes Bob alters his strategy and sometimes they alter their
strategies simultaneously, then the resulting cost function for the combined process is asym-
metric (Theorem 2), hence Theorem P applies and the state at which both Alice and Bob
play A is stochastically stable.

4.4. Relation to the literature

If A is RDi and player i follows a self-regarding payoff-difference based rule, then c{i} is
asymmetric (Proposition 1[i]). If this holds for all i ∈ V and only individual players update
their strategies, then the combined process is asymmetric (Theorem 2), hence Theorem P
applies and σA is stochastically stable. We have the following corollary.

Corollary 1 Let π({i}) > 0 for all i ∈ V, π(S ) = 0 otherwise. If, for all i ∈ V, A is RDi

and i follows a self-regarding payoff-difference based choice rule, then σA is stochastically

stable.

This corollary nests existing results on stochastic stability under best response with uni-
form deviations and own-payoff based rules (Peski, 2010, Theorems 2 and 3 respectively),
special cases of which include best response with uniform deviations and uniform interac-
tion (Kandori et al., 1993; Young, 1993); best response with uniform deviations on specific
interaction structures such as the ring network and the two dimensional square lattice with
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von Neumann neighborhoods (Ellison, 1993, 2000); and best response with log-linear devi-
ations for any interaction structure (Blume, 1993). Considering the full set of self-regarding
payoff-difference based choice rules, but again restricting attention to uniform interaction,
the Corollary is effectively the result of Blume (2003, Theorem 1). Combining this with
Theorem 3 of the current paper then gives us the equivalent result for simultaneous choice
Norman (2009a, Theorem 1).9

5. IMITATIVE CHOICE

A process is imitative if an updating player is more likely to switch to a strategy that
currently obtains high payoffs for those who play it. Formally, let C ⊆ V be player i’s
comparison set. When player i considers changing his strategy, his switching probability
will depend on the current payoffs of the players in his comparison set. Define a function
hC : {S : S ⊆ C} × RV → R such that, for given S ⊆ C,

hC(S , x) is


non-decreasing in x j if j ∈ S ,

non-increasing in x j if j ∈ C \ S ,

constant in x j if j < C.

Using this function, we define a statistic ∆σ
i that measures, at strategy profile σ, how well

players in C who play the same strategy as player i perform relative to players who play
the alternative strategy.

∆σ
i := hC

(
Vσ(i)(σ) ∩C ,

(
U j(σ)

)
j∈V

)
.

∆σ
i is non-decreasing in the payoffs of players in C who play the same strategy as player i,

non-increasing in the payoffs of players in C who play a different strategy to player i, and
constant in the payoff of players outside of C.

Let an imitative choice rule for player i be defined as follows. For non-decreasing unlike-
lihood function ΥIm

i : R→ R+ and constant dσi ∈ (0, 1), σ ∈ Σ, let

Pε
{i}(σ,σ) = 1 − dσi ε

ΥIm
i (∆σi ) and Pε

{i}(σ,σ
(i)) = dσi ε

ΥIm
i (∆σi ),(5.1)

9The qualifier ‘effectively’ here refers to the fact that both Blume (2003) and Norman (2009a) deal with
strict risk dominance and unique stochastic stability for large populations, whereas here we deal with (not
necessarily strict) risk dominance and (not necessarily unique) stochastic stability, without any restriction on
population size.
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with the convention that 00 = 1 so that Pε
{i} is continuous in ε at ε = 0. Such rules satisfy

the restriction on behavior that the probability that a strategy is chosen is non-decreasing
in the payoffs of those who currently play that strategy.

A variety of imitative rules have been studied in the literature. For example, player i may
sample some player j in his comparison set and adopt j’s strategy if j obtains a higher
payoff than i, that is if U j(σ) > Ui(σ) (Malawski, 1989). A smoothed version of this rule
has i switching to j’s strategy with a probability proportional to U j(σ) − Ui(σ) (Schlag,
1998). Alternatively, player i may simultaneously consider the payoffs of all of the players
in his comparison set and adopt the strategy associated with the highest average payoff

(Ellison and Fudenberg, 1995) or the strategy of whichever player currently obtains the
highest payoff (Axelrod, 1984). In the biology literature (see Ohtsuki et al., 2006) it is
common to assume that the strategy of each player in the comparison set is adopted with
a probability proportional to that player’s payoff – a death-birth Moran process. If every
player simultaneously follows such a process (a possible application of Theorem 3), then
we have a Wright-Fisher process (see Lehmann et al., 2007). For a survey of imitative rules,
the reader is referred to Alós-Ferrer and Schlag (2009).

5.1. Weak asymmetry of imitative rules

Definition 8 Strategy A is PDi j (payoff dominant for i against j) if

ui j(A, A) ≥ ui j(B, B);

and MMi j (maximin for i against j) if

ui j(A, B) ≥ ui j(B, A).

These two properties turn out to be exactly what is required to give weak asymmetry of
imitative rules.

Letσ, σ̂ be such that VB(σ) = VA(σ̂) andσ(i) = A as in the definition of weak asymmetry.
Note that, by definition, the set of players who play the same strategy as player i at σ is the
same as the set of players who play the same strategy as player i at σ̂.

Consider the payoff of some player j, σ( j) = A, from interaction with an opponent k

whose strategy at σ is the same as his. This opponent causes the payoff of player j at σ to
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differ from his payoff at σ̂ by

u jk(A, A) − u jk(B, B).(5.2)

The same reasoning applies to the payoffs of all other players, with the sign of the difference
reversed for players who play strategy B at σ.

Next, consider the payoff of player j from interaction with an opponent k whose strategy
at σ is different to his. This opponent causes the payoff of player j at σ to differ from his
payoff at σ̂ by

u jk(A, B) − u jk(B, A).(5.3)

Again, this applies to the payoffs of all other players, with the sign of the difference reversed
for players who play strategy B at σ.

If payoff differences such as (5.2) and (5.3) give players who play A at σ weakly higher
payoff at σ than at σ̂, and the opposite holds for players who play B at σ, then player i will
be less likely to switch to strategy B from σ than he is to switch to strategy A from σ̂ and
weak asymmetry will hold. For this to be the case, both (5.2) and (5.3) should be weakly
positive. That is, we require PD jk and MM jk.

Lemma 7 If player i follows an imitative choice rule, A is PD jk and MM jk for all j, k, then

c{i}(·, ·) is weakly asymmetric.

5.2. Supermodularity of imitative rules

Unlike payoff-difference based processes, imitative processes can violate supermodular-
ity. For example, if ∆σ

i equals the average payoff of players who play strategy σ(i) minus
the average payoff of players who play the alternative strategy, then adding to the set of
players who play A may reduce the average payoff of players who play A and thus reduce
the probability of switches to strategy A. However, some popular imitative rules do satisfy
supermodularity, as we shall now see.

5.2.1. Condition dependence

If C = {i}, then the switching probability for a player i decreases in his current payoff

Ui(σ) and is independent of the payoffs of the other players. This is known as condition
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dependence (Bilancini and Boncinelli, 2019) after the biology literature.10 The justification
for the use of such a rule is simple: if one is obtaining a low payoff, it makes sense to try
something else.

Let σ̂, σ̃ be such that VA(σ̂) ⊆ VA(σ̃) and σ̃(i) = B as in the definition of supermodularity.
The set of players who play B is weakly larger at σ̂ than at σ̃, so the only players that do
not play the same strategy at σ̂ and σ̃ will be those who play B at σ̂ and A at σ̃. Such an
opponent j causes the payoff of player i at σ̂ to differ from his payoff at σ̃ by

ui j(B, B) − ui j(B, A)(5.4)

If payoff differences such as (5.4) give player i weakly higher payoff at σ̂ than at σ̃, then
player i will be less likely to switch to strategy A from σ̂ than he is from σ̃ and supermod-
ularity will hold. For this to be the case, (5.4) should be weakly positive.

Lemma 8 If player i follows a condition dependent choice rule and ui j(B, B) ≥ ui j(B, A)
for all j, then c{i}(·, ·) is supermodular.

Note that if A is PDi j and MMi j, then ui j(B, B) ≥ ui j(B, A), otherwise (2.2) would be vio-
lated. Therefore, the conditions of Lemma 7, suitably weakened for condition dependence,
imply the condition of Lemma 8. By Lemma 4, weak asymmetry and supermodularity
suffice for asymmetry, so we have the following proposition.

Proposition 2 If player i follows a condition dependent choice rule, A is PDi j and MMi j

for all j, then c{i}(·, ·) is asymmetric.

5.2.2. Imitate the best

Consider a player i whose choice probabilities are a function of the highest payoff ob-
tained amongst all of the players who play A and the highest payoff obtained amongst all
of the players who play B. To pick out the highest payoff obtained by some player in a set

10The actual choice rule of Bilancini and Boncinelli (2019) is a mixture of condition dependence and
best response. One very flexible family of such rules is that considered by Maruta (2002). The author of
the current paper has worked on establishing sufficient conditions for weak asymmetry, supermodularity
and hence asymmetry of such rules, and can recover the results of the cited paper in this way. Perhaps
unsurprisingly, the conditions derived are a mixture of those for payoff-difference based processes and those
for imitative processes. In order to keep this paper of a tolerable length, these results are not included in the
current exposition.
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of players S , define, for S ⊆ C, functions MS : RV → R,

MS (x) = max {h} ∪ {x j : j ∈ S },

where h ∈ R is a constant that is independent of S . That is, MS (x) equals the maximum
value of x j for j ∈ S , except in the cases when this maximum is less than h, or S is empty,
in which case MS (x) equals h.

If hC is such that hC(S , x) can be written as

hC(S , x) = f (MS (x),MC\S (x)),

for a function f that is non-decreasing in its first argument and non-increasing in its second
argument, we say the rule is an imitate-the-best rule.

Let σ̂, σ̃ be such that VA(σ̂) ⊆ VA(σ̃) and σ̃(i) = B as in the definition of supermodularity.
By similar arguments to the case of condition dependence, to ensure that the maximum
payoff amongst players who play B is at least as high at σ̂ as at σ̃, we require that u jk(B, B) ≥
u jk(B, A) for all j, k. Similarly, to ensure that the maximum payoff amongst players who
play A is no higher at σ̂ than at σ̃, we require that u jk(A, A) ≥ u jk(A, B) for all j, k.

Lemma 9 If player i follows an imitate-the-best choice rule, u jk(B, B) ≥ u jk(B, A) and

u jk(A, A) ≥ u jk(A, B) for all j, k, then c{i}(·, ·) is supermodular.

Note that if A is PD jk and MM jk, then u jk(B, B) ≥ u jk(B, A) and u jk(A, A) ≥ u jk(A, B),
otherwise (2.2) would be violated. So, under the conditions of Lemma 7, Lemma 9 also
applies. By Lemma 4, weak asymmetry and supermodularity suffice for asymmetry, so we
have the following proposition.

Proposition 3 If player i follows an imitate-the-best choice rule, A is PD jk and MM jk for

all j, k, then c{i}(·, ·) is asymmetric.

Interestingly, the u jk(B, B) ≥ u jk(B, A) and u jk(A, A) ≥ u jk(A, B) conditions that guaran-
tee supermodularity correspond to conditions that Lewis (1969) imposes on the games he
considers in his philosophical theory of conventions. Gilbert (1981) later argued that these
conditions were too stringent. Indeed, as we saw in Section 4, they are not directly relevant
to the class of payoff-difference based rules that has predominated in game theoretic for-
ays into this territory. However, as we have just determined, they are of direct relevance to
imitative choice.
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Conditions PD jk and MM jk may seem strong when compared with conditions in prior
studies (Alós-Ferrer and Weidenholzer, 2008; Khan, 2014; Robson and Vega-Redondo,
1996) that give stochastic stability of σA under an imitate-the-best rule when A is PD jk but
not MM jk. These conditions involve interaction structures and comparison sets set up in
such a way that the payoff dominance assumption can be leveraged so that, from nearly
everywhere in the state space, there exists a path of zero cost transitions that leads to σA.
The assumptions that permit this are not innocuous, but here is not the place to debate
their plausibility. Suffice to say, when we consider asymmetry across the whole state space,
stronger conditions are required.

6. COALITIONAL CHOICE

From Theorem 3, we know that asymmetric cS can arise from independent, simultaneous
choice by i ∈ S who follow rules with asymmetric c{i}. In this section, we consider choice
by S as a coalition and study a coalitional variant of payoff-difference based rules. Let

Eσ
S =

(
U j(σA

S , σV\S ) − U j(σB
S , σV\S )

)
j∈V
∈ RV .

That is, starting from profile σ and keeping the strategies of players in V \S constant, (Eσ
S ) j

equals the difference between the payoff of player j when S plays σA
S and the payoff of

player j when S plays σB
S .

Let a coalitional payoff-difference based choice rule for S be a rule that gives the follow-
ing cost function. For non-decreasing unlikelihood function ΥC

S (·) : RV → R+,

cS (σ,σ′) =



0, if σ′ = σ,

ΥC
S (−Eσ

S ), if σ′ = (σA
S , σV\S ) , σ,

ΥC
S (Eσ

S ), if σ′ = (σB
S , σV\S ) , σ,

∞, otherwise.

(6.1)

That is, greater values of Eσ
S make it more likely that S will choose σA

S and less likely that S

will choose σB
S . Note that if S = {i}, then the cost function (6.1) reduces to the cost function

(4.2).11 That is, the individualistic payoff-difference based models of Section 4 are a special
case of the models of this section.

11To see this, observe that if S = {i}, then when σ(i) = A, Dσ
i = Eσ

S and when σ(i) = B, Dσ
i = −Eσ

S .
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6.1. Examples of coalitional rules

Coalitional versions of the rules in Section 4.2 can be considered. For example, S follows
a Hippocratic rule if, for some nonnegative λ ∈ RV

+ ,

ΥS (x) = λ · [x]+.(6.2)

Under this rule, the probability of S switching to σA
S depends on a weighted sum of payoff

losses relative to when S switches to strategy σB
S . If λi = 1 for all i ∈ S and λ j = 0 for

j < S , then we have a coalitional logit rule (Sawa, 2014), which can be understood as the
rule that arises when each member of S votes for S to switch to σA

S or σB
S according to

the (individualistic) logit choice rule based on payoffs at (σA
S , σV\S ) and (σB

S , σV\S ), with
a switch being implemented only if the vote is unanimously in favor. This rule is self-
regarding in the following sense.

Definition 9 A rule ΥS is self-regarding if ΥS (x) = f (xS ) for some non-decreasing func-
tion f : RS → R+.

A class of rules that only makes sense in a non-individualistic setup is the class of coali-

tional stochastic stability rules (Newton, 2012), where the likelihood of strategic change
by coalition S depends on the size of S . For example, if, for some constant κ ∈ R++, non-
negative λ ∈ RV

+ ,

ΥS (x) = κ |S | + [λ · x]+,(6.3)

then we have an augmented utilitarian rule in which the larger a coalition is, the less likely
it is to change its strategies.

6.2. Asymmetry of coalitional rules

When it comes to conditions for asymmetry, the differences between coalitional and indi-
vidualistic payoff-difference based choice can be concisely explained. First, consider i ∈ S ,
j < S . Note that the strategy of player i affects the payoff of players i and j in exactly the
same way as it would if player i were updating his strategy as an individual. This creates
the need for risk dominance and altruistic risk dominance conditions similar to those of
Proposition 1.
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Definition 10 Strategy A is RDiT (risk dominant for i against T ) if∑
j∈T\{i}

ui j(A, A) + ui j(A, B) ≥
∑

j∈T\{i}

ui j(B, A) + ui j(B, B);

ARDS j (altruistically risk dominant for S against j) if∑
i∈S \{ j}

u ji(A, A) + u ji(B, A) ≥
∑

i∈S \{ j}

u ji(A, B) + u ji(B, B).

Our previous risk dominance condition summed over all j , i. Now, the relevant summa-
tion is over players outside of S , that is T = V \ S in the definition above. ARDS j simply
aggregates ARDi j over all i ∈ S .

Second, note that there is an additional consideration present in the coalitional case,
which is the payoff that players in S obtain from interacting with one another. When play-
ers in S all play A, interaction between i, j ∈ S will generate payoff of ui j(A, A) for player
i and u ji(A, A) for player j. When players in S all play B, these payoffs will be ui j(B, B)
and u ji(B, B) respectively. Consequently, to ensure that within-coalition incentives to play
A outweigh within-coalition incentives to play B, we require a payoff dominance condition.

Definition 11 Strategy A is PDiS (payoff dominant for i against S ) if∑
j∈S \{i}

ui j(A, A) ≥
∑

j∈S \{i}

ui j(B, B).

Combining the above arguments, we obtain the following proposition.

Proposition 4 If S follows a coalitional payoff-difference based choice rule, A is RDi(V\S )

and PDiS for all i ∈ S , and

(i) ΥS is self-regarding, or

(ii) A is ARDS j for all j < S ,

then cS (·, ·) is asymmetric.

Finally, note that the coalitional rules we have considered in this section involve coalition
S comparing (σA

S , σV\S ) to (σB
S , σV\S ). Another possibility is that a coalition would compare

an alternative profile to the status quo σ. This leads to difficulties similar to violations of
supermodularity discussed in Section 5. Given the constraints of space, this is not pursued
further here, although a detailed study of the intricacies of such rules would certainly be an
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interesting topic for further study.

7. DISCUSSION

7.1. Payoff transformations

Sometimes a transformation of payoffs can carry conceptual weight. In such cases, it can
be instructive to consider the implications of the transformation with respect to conditions
on the underlying payoffs. For example, we can subject the payoffs of player i to a Homo

Moralis transformation (Alger and Weibull, 2013, 2016; Bergstrom, 1995),

uHM
i j

(
σ(i), σ( j)

)
= (1 − σ) ui j

(
σ(i), σ( j)

)
+ σ ui j

(
σ(i), σ(i)

)
,(7.1)

where σ ∈ [0, 1] is a parameter that weighs the payoff maximizing first term against the
Kantian second term.

Consider a player i who follows a self-regarding payoff-difference based choice rule ac-
cording to the transformed payoffs. For this rule to be asymmetric, we require risk domi-
nance of A under the transformed payoffs. Using payoffs uHM

i j in the definition of RDi and
substituting, we obtain

(1 − σ)
∑

j∈V\{i}

ui j(A, A) + ui j(A, B) − ui j(B, A) − ui j(B, B)︸                                                         ︷︷                                                         ︸
≥0 if and only if A is RDi

(7.2)

+ 2σ
∑

j∈V\{i}

ui j(A, A) − ui j(B, B)︸                          ︷︷                          ︸
≥0 if and only if A is PDiV

≥ 0.

If σ = 0, then (7.2) is the risk dominance condition of Proposition 1[i]. If σ = 1, then
(7.2) is the component of the payoff dominance condition of Proposition 4[i] that relates to
the incentives of player i under coalitional choice by the entire player set V . If both terms
under the summations are greater than zero, then the condition holds regardless of the value
of σ and so asymmetry will continue to hold even when σ changes (see Nax and Rigos,
2016; Newton, 2017; Wu, 2017).

It is similarly possible to subject the payoffs of player i to an altruistic transformation,

uA
i j(σ(i), σ( j)) = (1 − α) ui j(σ(i), σ( j)) + α u ji(σ( j), σ(i)),

where α ∈ [0, 1] is a parameter that weights the payoff maximizing first term against the
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altruistic second term. This approach to altruistic choice is less flexible than the approach
taken in Section 4. However, it is common, so it is worth noting that it can easily fit into
our framework.

Again consider a player i who follows a self-regarding payoff-difference based choice
rule according to the transformed payoffs. For this rule to be asymmetric, we require risk
dominance of A under the transformed payoffs. Using payoffs uA

i j in the definition of RDi

and substituting, we obtain a convex combination of risk dominance and altruistic risk
dominance,

(1 − α)
∑

j∈V\{i}

ui j(A, A) + ui j(A, B) − ui j(B, A) − ui j(B, B)︸                                                         ︷︷                                                         ︸
≥0 if and only if A is RDi

(7.3)

+ α
∑

j∈V\{i}

u ji(A, A) + u ji(B, A) − u ji(A, B) − u ji(B, B)︸                                                 ︷︷                                                 ︸
≥0 if and only if A is ARDi j

≥ 0.

7.2. The curse of the subscript

A considerable number of subscripts and associated quantifiers have their origins in the
arbitrary dependence of ui j on both i and j. This helps to clarify cause and effect in our
discussion of asymmetric rules, but comes at the cost of simple statements. Such simple
statements can be obtained in the following manner. First, note that most of the prior litera-
ture considers the case of a coordination game that is played across pairs on some network
of interactions. Even allowing for directed and weighted networks, this restricts each ui j to
the linear form

ui j

(
σ(i), σ( j)

)
= λi j u

(
σ(i), σ( j)

)
, λi j ∈ R+.(7.4)

When this is the case, all of our conditions for asymmetry in Sections 4-6 simplify and can
be stated without player-specific subscripts.

u(A, A) + u(A, B) ≥ u(B, A) + u(B, B)(7.5)

implies that A is RDi for all i and RDiT for all i,T .

u(A, A) + u(B, A) ≥ u(A, B) + u(B, B)(7.6)
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implies that A is ARDi j for all i, j and ARDS j for all S , j.

u(A, A) ≥ u(B, B)(7.7)

implies that A is PDi j for all i, j and PDiS for all i, S .

u(A, B) ≥ u(B, A)(7.8)

implies that A is MMi j for all i, j.

7.3. Afterword

In the first part of this paper (Section 3), we showed how choice rules can be combined
whilst retaining asymmetry. We considered heterogeneity within agents’ choice rules (The-
orem 1), heterogeneity between agents’ choice rules (Theorem 2), and heterogeneity in the
timing of strategy updating (Theorem 3). In the second part of the paper (Sections 4-6), we
discussed choice rules to which our theorems apply. Taken as a whole, this analysis vastly
expands the set of choice rules under which we know that certain conventions are stochas-
tically stable. In particular, many important results in the literature follow as corollaries.

It will be apparent to the reader that this by no means exhausts what can be said on this
subject. Important avenues for future research would seem to include (i) the study of more
choice rules; (ii) the study of different payoff specifications; (iii) applications to specific
economic problems that admit heterogeneity in behavior.

APPENDIX A: PROOFS OF GENERAL RESULTS

Proof of Lemma 1: Keep in mind that, as ε < 1, log ε < 0, and let log 0
log ε := ∞. Then, for all ε > 0,

max
S :π(S )>0

log π(S )
log ε︸              ︷︷              ︸

→0 as ε→0

+ min
S :π(S )>0

log Pε
S (σ,σ′)

log ε︸           ︷︷           ︸
→cS (σ,σ′) as ε→0

(A.1)

≥ min
S :π(S )>0

log π(S ) + log Pε
S (σ,σ′)

log ε
= min

S :π(S )>0

log
(
π(S )Pε

S (σ,σ′)
)

log ε

=
log

(
maxS :π(S )>0 π(S )Pε

S (σ,σ′)
)

log ε
≥

log
(∑

S :π(S )>0 π(S )Pε
S (σ,σ′)

)
log ε

=
log Pε(σ,σ′)

log ε︸          ︷︷          ︸
→c(σ,σ′) as ε→0

=
log

(∑
S :π(S )>0 π(S )Pε

S (σ,σ′)
)

log ε
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≥
log

(
2|V |maxS :π(S )>0 Pε

S (σ,σ′)
)

log ε
= min

S :π(S )>0

log
(
2|V |Pε

S (σ,σ′)
)

log ε

= min
S :π(S )>0

log 2|V | + log Pε
S (σ,σ′)

log ε
=

log 2|V |

log ε︸  ︷︷  ︸
→0 as ε→0

+ min
S :π(S )>0

log Pε
S (σ,σ′)

log ε︸           ︷︷           ︸
→cS (σ,σ′) as ε→0

.

Taking limits of (A.1) as ε→ 0, we obtain

min
S :π(S )>0

cS (σ,σ′) ≥ c(σ,σ′) ≥ min
S :π(S )>0

cS (σ,σ′),

and therefore c(σ,σ′) = minS :π(S )>0 cS (σ,σ′).

Q.E.D.

Proof of Lemma 2: Consider σ,σ′, σ̃ ∈ Σ, such that VB(σ) ⊆ VA(σ̃).

As c1(·, ·) is asymmetric, there exists σ̄ ∈ Σ such that VA(σ̃) ⊆ VA(σ̄), VB(σ′) ⊆ VA(σ̄) and

c1(σ,σ′) ≥ c1(σ̃, σ̄).(A.2)

As c2(·, ·) is asymmetric, there exists ¯̄σ ∈ Σ such that VA(σ̃) ⊆ VA( ¯̄σ), VB(σ′) ⊆ VA( ¯̄σ) and

c2(σ,σ′) ≥ c2(σ̃, ¯̄σ).(A.3)

Consequently, we have that

c(σ,σ′) =︸︷︷︸
by defn of c

min{c1(σ,σ′), c2(σ,σ′)}

≥︸︷︷︸
by (A.2) and (A.3)

min{c1(σ̃, σ̄), c2(σ̃, ¯̄σ)}

≥ min
{
min{c1(σ̃, σ̄), c2(σ̃, σ̄)},min{c1(σ̃, ¯̄σ), c2(σ̃, ¯̄σ)}

}
=︸︷︷︸

by defn of c

min
{
c(σ̃, σ̄), c(σ̃, ¯̄σ)

}
,

so c(σ,σ′) ≥ c(σ̃, σ̄) or c(σ,σ′) ≥ c(σ̃, ¯̄σ), and the condition for c to be asymmetric is satisfied.

Q.E.D.

Proof of Theorem 1: Keep in mind that, as ε < 1, log ε < 0, and let log 0
log ε := ∞. Then, for all ε > 0,

min
{

log λ
log ε︸︷︷︸

→0 as ε→0

+
log P̃ε

S (σ,σ′)
log ε︸           ︷︷           ︸

→c̃S (σ,σ′) as ε→0

,
log(1 − λ)

log ε︸       ︷︷       ︸
→0 as ε→0

+
log P̄ε

S (σ,σ′)
log ε︸           ︷︷           ︸

→c̄S (σ,σ′) as ε→0

}
(A.4)

= min
{ log

(
λ P̃ε

S (σ,σ′)
)

log ε
,

log
(
(1 − λ) P̄ε

S (σ,σ′)
)

log ε

}

=
log

(
max

{
λ P̃ε

S (σ,σ′), (1 − λ) P̄ε
S (σ,σ′)

})
log ε
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≥
log

(
λ P̃ε

S (σ,σ′) + (1 − λ) P̄ε
S (σ,σ′)

)
log ε

=
log Pε

S (σ,σ′)
log ε︸           ︷︷           ︸

→c(σ,σ′) as ε→0

=
log

(
λ P̃ε

S (σ,σ′) + (1 − λ) P̄ε
S (σ,σ′)

)
log ε

≥
log

(
2 max

{
λ P̃ε

S (σ,σ′), (1 − λ) P̄ε
S (σ,σ′)

})
log ε

= min
{ log

(
2 λ P̃ε

S (σ,σ′)
)

log ε
,

log
(
2 (1 − λ) P̄ε

S (σ,σ′)
)

log ε

}
= min

{
log (2 λ)

log ε︸    ︷︷    ︸
→0 as ε→0

+
log P̃ε

S (σ,σ′)
log ε︸           ︷︷           ︸

→c̃S (σ,σ′) as ε→0

,
log (2 (1 − λ))

log ε︸            ︷︷            ︸
→0 as ε→0

+
log P̄ε

S (σ,σ′)
log ε︸           ︷︷           ︸

→c̄S (σ,σ′) as ε→0

}
.

Taking limits of (A.4) as ε→ 0, we obtain

min{c̃(σ,σ′), c̄(σ,σ′)} ≥ c(σ,σ′) ≥ min{c̃(σ,σ′), c̄(σ,σ′)},

and therefore c(σ,σ′) = min{c̃(σ,σ′), c̄(σ,σ′)}.

As P̃ and P̄ are asymmetric, c̃ and c̄ are asymmetric.

Lemma 2 then implies that c is asymmetric, therefore P is asymmetric. Q.E.D.

Proof of Theorem 2: By assumption, for all S such that π(S ) > 0, PS is asymmetric, so cS is asymmetric.

By Lemma 1, c = minS :π(S )>0 cS . We shall show that c is asymmetric, therefore P is asymmetric.

Let {S : π(S ) > 0} = {S 1, S 2, . . . , S n} and define cost functions ĉ1 = cS 1
, ĉm := min {ĉm−1, cS m

} =

min {cS 1
, . . . , cS m

} for m = 2, . . . , n. In particular,

ĉn =︸︷︷︸
by defn

of cn

min {cS 1
, . . . , cS n

} =︸︷︷︸
by defn

of {S 1,...,S n}

min
S :π(S )>0

cS =︸︷︷︸
by Lemma 1

c,

We complete the proof by showing, by induction, that ĉm is asymmetric for m = 2, . . . , n. By assumption,
ĉ1 = cS 1

is asymmetric. Assume ĉm−1 is asymmetric for some m ≤ n. Then ĉm = min {ĉm−1, cS m
} is asymmetric

by Lemma 2. Q.E.D.

Proof of Theorem 3: Consider σ,σ′, σ̃ ∈ Σ, such that VB(σ) ⊆ VA(σ̃). Let cS∪T be the cost function of
PS∪T .

If cS∪T (σ,σ′) = ∞, we are done as then cS∪T (σ,σ′) ≥ cS∪T (σ̃, σ̄) for any σ̄.

If cS∪T (σ,σ′) < ∞, then σ′ = (σ′S , σ
′
T , σV\(S∪T )).

As cost functions are defined using logs of transition probabilities, it follows from the definition of PS∪T that

cS∪T (σ,σ′) = cS (σ, (σ′S , σV\S )) + cT (σ, (σ′T , σV\T )).(A.5)
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As (A.5) is finite, each of its terms are finite, so

cS (σ, (σ′S , σV\S )) < ∞, cT (σ, (σ′T , σV\T )) < ∞.(A.6)

By asymmetry of cS , there exists ¯̄σ such that VA(σ̃) ⊆ VA( ¯̄σ), VB((σ′S , σV\S )) ⊆ VA( ¯̄σ), and

cS (σ, (σ′S , σV\S )) ≥ cS (σ̃, ¯̄σ)(A.7)

Inequalities (A.6) and (A.7) imply that cS (σ̃, ¯̄σ) < ∞, which implies that ¯̄σ = (σ̄S , σ̃V\S ) for some σ̄S .
Therefore,

cS (σ, (σ′S , σV\S )) ≥ cS (σ̃, (σ̄S , σ̃V\S )).(A.8)

Similarly, by asymmetry of cT , we obtain (σ̄T , σ̃V\T ) such that VA(σ̃) ⊆ VA((σ̄T , σ̃V\T )), VB((σ′T , σV\T )) ⊆
VA((σ̄T , σ̃V\T )), and

cT (σ, (σ′T , σV\T )) ≥ cT (σ̃, (σ̄T , σ̃V\T )).(A.9)

Let σ̄ = (σ̄S , σ̄T , σ̃V\(S∪T )).

As VB((σ′S , σV\S )) ⊆ VA( ¯̄σ) = VA((σ̄S , σ̃V\S )) and VB((σ′T , σV\T )) ⊆ VA((σ̄T , σ̃V\T )), it must be that VB(σ′) =

VB((σ′S , σ
′
T , σV\(S∪T ))) ⊆ VA((σ̄S , σ̄T , σ̃V\(S∪T ))) = VA(σ̄).

Similarly, as VA(σ̃) ⊆ VA( ¯̄σ) = VA((σ̄S , σ̃V\S )) and VA(σ̃) ⊆ VA((σ̄T , σ̃V\T )), it must be that VA(σ̃) ⊆
VA((σ̄S , σ̄T , σ̃V\(S∪T ))) = VA(σ̄).

Finally,

cS∪T (σ,σ′) = cS (σ, (σ′S , σV\S )) + cT (σ, (σ′T , σV\T ))

≥︸︷︷︸
by (A.8) and (A.9)

cS (σ̃, (σ̄S , σ̃V\S )) + cT (σ̃, (σ̄T , σ̃V\T )) = cS∪T (σ̃, σ̄),

therefore, cS∪T is asymmetric. Q.E.D.

Proof of Lemma 3: Consider σ,σ′, σ̃ ∈ Σ, such that VB(σ) ⊆ VA(σ̃).

If c{i}(σ,σ′) = ∞, then letting σ̄ = σA, we have VA(σ̃) ⊆ VA(σ̄), VB(σ′) ⊆ VA(σ̄), and c{i}(σ,σ′) ≥ c{i}(σ̃, σ̄).
The condition for asymmetry is satisfied.

If c{i}(σ,σ′) < ∞, then either σ′ = σ or σ′ = σ(i) for some i ∈ V .

If σ′ = σ or σ′ = σ(i) for i ∈ VA(σ̃), then let σ̄ = σ̃. We have VA(σ̃) ⊆ VA(σ̄), VB(σ′) ⊆ VA(σ̄), and
c{i}(σ,σ′) ≥ 0 = c{i}(σ̃, σ̄). The condition for asymmetry is satisfied.

Noting that i ∈ VB(σ) implies that i ∈ VA(σ̃) (so the preceding case would apply), we have one remaining
case, σ′ = σ(i) for i ∈ VA(σ), i ∈ VB(σ̃). This implies that i ∈ VB(σ′), so if we are to have VB(σ′) ⊆ VA(σ̄),
it must be the case that i ∈ VA(σ̄). However, the only σ̄ that could possibly satisfy both this condition and
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c{i}(σ̃, σ̄) < ∞ is σ̄ = σ̃(i). Therefore, if c{i}(σ,σ(i)) ≥ c{i}(σ̃, σ̃(i)), then the condition for asymmetry is
satisfied, and if c{i}(σ,σ(i)) < c{i}(σ̃, σ̃(i)), then the condition for asymmetry does not hold. Q.E.D.

Proof of Lemma 4: Consider σ, σ′, σ̃ such that VB(σ) ⊆ VA(σ̃), i ∈ VA(σ), i ∈ VB(σ̃).

Let σ̂ be such that VB(σ) = VA(σ̂). Then, as c{i} is weakly asymmetric, by Definition 4, we have that
c{i}(σ,σ(i)) ≥ c{i}(σ̂, σ̂(i)).

Note that VA(σ̂) ⊆ VA(σ̃). Then, as c{i} is supermodular, by Definition 5, we have that c{i}(σ̂, σ̂(i)) ≥ c{i}(σ̃, σ̃(i)).

Combining the inequalities above, we have c{i}(σ,σ(i)) ≥ c{i}(σ̃, σ̃(i)), satisfying the condition for asymmetry
of Lemma 3.

Q.E.D.

APPENDIX B: PROOFS FOR PAYOFF-DIFFERENCE BASED CHOICE

Proof of Lemma 5: Consider the elements of Dσ
i ,

(Dσ
i ) j = U j(σ) − U j(σ(i))(B.1)

=



u ji(A, A) − u ji(A, B) if j , i, σ( j) = A,

−
(
u ji(B, B) − u ji(B, A)

)
if j , i, σ( j) = B,∑

k∈VA(σ)\{i}

(
uik(A, A) − uik(B, A)

)
−

∑
k∈VB(σ)\{i}

(
uik(B, B) − uik(A, B)

)
if j = i,

and the elements of Dσ̂
i ,

(Dσ̂
i ) j = U j(σ̂) − U j(σ̂(i))(B.2)

=



−
(
u ji(A, A) − u ji(A, B)

)
if j , i, σ̂( j) = A,

u ji(B, B) − u ji(B, A) if j , i, σ̂( j) = B,

−
∑

k∈VA(σ̂)\{i}

(
uik(A, A) − uik(B, A)

)
+

∑
k∈VB(σ̂)\{i}

(
uik(B, B) − uik(A, B)

)
if j = i.

Noting that σ( j) = A if and only if σ̂( j) = B, σ( j) = B if and only if σ̂( j) = A, and that, consequently,
VA(σ̂) = VB(σ) and VB(σ̂) = VA(σ), we can subtract (B.2) from (B.1) to get

(Dσ
i − Dσ̂

i ) j(B.3)

=


(
u ji(A, A) − u ji(A, B)

)
−

(
u ji(B, B) − u ji(B, A)

)
if j , i, σ( j) = A,(

u ji(A, A) − u ji(A, B)
)
−

(
u ji(B, B) − u ji(B, A)

)
if j , i, σ( j) = B,∑

k∈V\{i}

((
uik(A, A) − uik(B, A)

)
−

(
uik(B, B) − uik(A, B)

))
if j = i.

If A is RDi, then, from the third case of (B.3), we have that (Dσ
i − Dσ̂

i )i ≥ 0, so (Dσ
i )i ≥ (Dσ̂

i )i.
If Υi is self-regarding, then (Dσ

i )i ≥ (Dσ̂
i )i implies that Υi(Dσ

i ) ≥ Υi(Dσ̂
i ) and therefore, by (4.2), c{i}(σ,σ(i)) ≥

c{i}(σ̂, σ̂). That is, c{i}(·, ·) is weakly asymmetric, proving Lemma 5[i].
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If A is ARDi j for all j, then, from the first and second cases of (B.3), we have that (Dσ
i − Dσ̂

i ) j ≥ 0 and
(Dσ

i ) j ≥ (Dσ̂
i ) j for all j , i. Therefore Dσ

i ≥ Dσ̂
i , and as Υi is non-decreasing, Υi(Dσ

i ) ≥ Υi(Dσ̂
i ) and therefore,

by (4.2), c{i}(σ,σ(i)) ≥ c{i}(σ̂, σ̂). That is, c{i}(·, ·) is weakly asymmetric, proving Lemma 5[ii].

Q.E.D.

Proof of Lemma 6: Using (B.2) for both Dσ̂
i and Dσ̃

i gives

(Dσ̂
i − Dσ̃

i ) j(B.4)

=



(
u ji(A, A) − u ji(A, B)

)
−

(
u ji(A, A) − u ji(A, B)

)
= 0 if j , i, σ̂( j) = A,(

u ji(B, B) − u ji(B, A)
)
−

(
u ji(B, B) − u ji(B, A)

)
= 0 if j , i, σ̃( j) = B,(

u ji(A, A) − u ji(A, B)
)

+
(
u ji(B, B) − u ji(B, A)

)
if j , i, σ̃( j) = A, σ̂( j) = B,∑

k∈VA(σ̃)\{i}

(
uik(A, A) − uik(B, A)

)
−

∑
k∈VA(σ̂)\{i}

(
uik(A, A) − uik(B, A)

)
+

∑
k∈VB(σ̂)\{i}

(
uik(B, B) − uik(A, B)

)
−

∑
k∈VB(σ̃)\{i}(σ̃)

(
uik(B, B) − uik(A, B)

)
if j = i.

The third case of of (B.4) is nonnegative by (2.2). The sum of the first two lines of the fourth case is nonnega-
tive by VA(σ̂) ⊆ VA(σ̃) and (2.2). The sum of the final two lines of the fourth case is nonnegative by a similar
argument. So every element (Dσ̂

i −Dσ̃
i ) j is nonnegative, Dσ̂

i ≥ Dσ̃
i . As Υi is non-decreasing, Υi(Dσ̂

i ) ≥ Υi(Dσ̃
i )

and therefore, by (4.2), c{i}(σ̂, σ̂) ≥ c{i}(σ̃, σ̃). That is, c{i}(·, ·) is supermodular. Q.E.D.

Proof of Proposition 1: By Lemmas 5 and 6, c{i}(·, ·) is weakly asymmetric and supermodular, so by Lemma
4, c{i}(·, ·) is asymmetric. Q.E.D.

Proof of Corollary 1: As A is RDi for all i ∈ V and all i ∈ V follow self-regarding payoff-difference based
rules, Proposition 1[i] implies that c{i} is asymmetric for all i ∈ V . As, by assumption, π(S ) > 0 if and only
if S = {i} for i ∈ V , Theorem 2 then implies that c = minS :π(S )>0 cS is asymmetric. By Theorem P, σA is
stochastically stable. Q.E.D.

APPENDIX C: PROOFS FOR IMITATIVE CHOICE

For readability, in this section we write U(σ) := (U j(σ)) j∈V .

Proof of Lemma 7: Let σ, σ̂ be such that VA(σ) = VB(σ̂), σ(i) = A. Note that

Vσ(i)(σ) = VA(σ) = VB(σ̂) = Vσ̂(i)(σ̂).(C.1)

Consider the elements of U(σ),

U j(σ) =


∑

k∈VA(σ)\{ j} u jk(A, A) +
∑

k∈VB(σ)\{ j} u jk(A, B) if σ( j) = A,∑
k∈VA(σ)\{ j} u jk(B, A) +

∑
k∈VB(σ)\{ j} u jk(B, B) if σ( j) = B,

(C.2)
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and the elements of U(σ̂),

U j(σ̂) =



∑
k∈VA(σ̂)\{ j} u jk(A, A) +

∑
k∈VB(σ̂)\{ j} u jk(A, B)

=
∑

k∈VB(σ)\{ j} u jk(A, A) +
∑

k∈VA(σ)\{ j} u jk(A, B) if σ̂( j) = A,∑
k∈VA(σ̂)\{ j} u jk(B, A) +

∑
k∈VB(σ̂)\{ j} u jk(B, B)

=
∑

k∈VB(σ)\{ j} u jk(B, A) +
∑

k∈VA(σ)\{ j} u jk(B, B) if σ̂( j) = B.

(C.3)

By (C.1), if σ( j) = A, then σ̂( j) = B, and if σ( j) = B, then σ̂( j) = A. Consequently, (C.2) and (C.3), together
with PD jk (u jk(A, A) ≥ u jk(B, B)) and MM jk (u jk(A, B) ≥ u jk(B, A)) imply

For all j ∈ VA(σ), U j(σ) ≥ U j(σ̂),(C.4)

For all j ∈ VB(σ), U j(σ) ≤ U j(σ̂).

Then

∆σ
i = hC(Vσ(i)(σ) ∩C,U(σ)) [by defn of ∆σ

i ](C.5)

= hC(VA(σ) ∩C,U(σ)) [by (C.1)]

≥ hC(VA(σ) ∩C,U(σ̂)) [by (C.4) and defn of hC]

= hC(VB(σ̂) ∩C,U(σ̂)) [by (C.1)]

= hC(Vσ̂(i)(σ̂) ∩C,U(σ̂)) [by (C.1)]

= ∆σ̂
i . [by defn of ∆σ̂

i ]

As ΥIm
i is non-decreasing, (C.5) implies that ΥIm

i (∆σ
i ) ≥ ΥIm

i (∆σ̂
i ) and therefore, by (4.2), c{i}(σ,σ(i)) ≥

c{i}(σ̂, σ̂(i)). That is, c{i}(·, ·) is weakly asymmetric, proving Lemma 7.

Q.E.D.

Proof of Lemma 8: Let σ̂, σ̃ be such that σ̂(i) = σ̃(i) = B, VA(σ̂) ⊆ VA(σ̃). From (C.2), if uik(B, B) ≥
uik(B, A) for all k , i, then Ui(σ̂) ≥ Ui(σ̃). Then,

∆σ̂
i = hC(Vσ̂(i)(σ̂) ∩C,U(σ̂)) [by defn of ∆σ̂

i ](C.6)

= hC({i},U(σ̂)) [by condition dependence, C = {i}]

≥ hC({i},U(σ̃)) [by Ui(σ̂) ≥ Ui(σ̃) and defn of hC]

= hC(Vσ̃(i)(σ̃) ∩C,U(σ̃)) [by condition dependence, C = {i}]

= ∆σ̃
i . [by defn of ∆σ̃

i ]

As ΥIm
i is non-decreasing, (C.6) implies that ΥIm

i (∆σ̂
i ) ≥ ΥIm

i (∆σ̃
i ) and therefore, by (4.2), c{i}(σ̂, σ̂(i)) ≥

c{i}(σ̃, σ̃(i)). That is, c{i}(·, ·) is supermodular, proving Lemma 8. Q.E.D.

Proof of Proposition 2: By definition of condition dependence, the process is independent of the payoffs
of players other than i, therefore PDik and MMik for all k , i suffices for Lemma 7 to imply that c{i}(·, ·) is
weakly asymmetric. Furthermore, PDik and MMik for all k , i, together with (2.2) implies the payoff ordering
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uik(A, A) ≥ uik(B, B) ≥ uik(A, B) ≥ uik(B, A) for all k , i. In particular, uik(B, B) ≥ uik(B, A). Therefore, by
Lemma 8, c{i}(·, ·) is supermodular. Consequently, by Lemma 4, c{i}(·, ·) is asymmetric. Q.E.D.

Proof of Lemma 9: Let σ̂, σ̃ be such that σ̂(i) = σ̃(i) = B, VA(σ̂) ⊆ VA(σ̃). Together with (C.2), u jk(A, A) ≥
u jk(A, B), u jk(B, B) ≥ u jk(B, A) for all j, k, this implies the following inequalities.

For all j ∈ VA(σ̂), U j(σ̂) ≤ U j(σ̃),(C.7)

For all j ∈ VB(σ̃), U j(σ̂) ≥ U j(σ̃).

Note that, as VA(σ̂) ⊆ VA(σ̃) and VB(σ̃) ⊆ VB(σ̂), (C.7) only relates to j for whom σ̂( j) = σ̃( j). Then,

∆σ̂
i = hC(Vσ̂(i)(σ̂) ∩C,U(σ̂)) [by defn of ∆σ̂

i ](C.8)

= hC(VB(σ̂) ∩C,U(σ̂)) [as σ̂(i) = B]

= f (MVB(σ̂)∩C(σ̂),MVA(σ̂)∩C(σ̂)) [by defn of hC under imitate-the-best]

≥ f (MVB(σ̃)∩C(σ̂),MVA(σ̂)∩C(σ̂)) [as VB(σ̃) ⊆ VB(σ̂) and f non-decreasing in first argument]

≥ f (MVB(σ̃)∩C(σ̂),MVA(σ̂)∩C(σ̃)) [by (C.7) and f non-increasing in second argument]

≥ f (MVB(σ̃)∩C(σ̂),MVA(σ̃)∩C(σ̃)) [as VA(σ̂) ⊆ VA(σ̃) and f non-increasing in second argument]

≥ f (MVB(σ̃)∩C(σ̃),MVA(σ̃)∩C(σ̃)) [by (C.7) and f non-decreasing in first argument]

= hC(VB(σ̃) ∩C,U(σ̃)) [by defn of hC under imitate-the-best]

= hC(Vσ̃(i)(σ̃) ∩C,U(σ̃)) [as σ̃(i) = B]

= ∆σ̃
i . [by defn of ∆σ̃

i ]

As ΥIm
i is non-decreasing, (C.8) implies that ΥIm

i (∆σ̂
i ) ≥ ΥIm

i (∆σ̃
i ) and therefore, by (4.2), c{i}(σ̂, σ̂(i)) ≥

c{i}(σ̃, σ̃(i)). That is, c{i}(·, ·) is supermodular, proving Lemma 9. Q.E.D.

Proof of Proposition 3: PD jk and MM jk for all j, k, together with (2.2) implies the payoff ordering u jk(A, A) ≥
u jk(B, B) ≥ u jk(A, B) ≥ u jk(B, A) for all j, k. In particular, u jk(A, A) ≥ u jk(A, B) and u jk(B, B) ≥ u jk(B, A).
Therefore, by Lemmas 7 and 9, c{i}(·, ·) is weakly asymmetric and supermodular, so by Lemma 4, c{i}(·, ·) is
asymmetric. Q.E.D.

APPENDIX D: PROOFS FOR COALITIONAL CHOICE

Lemma 10 Let σ, σ̂ be such that VB(σ) = VA(σ̂). If S follows a coalitional payoff-difference based choice
rule, A is RDi(V\S ) and PDiS for all i ∈ S , and

(i) ΥS is self-regarding, or

(ii) A is ARDS j for all j < S ,

then cS (σ, (σB
S , σV\S )) ≥ cS (σ̂, (σA

S , σ̂V\S )).

Proof: If σS = σB
S , then σ̂S = σ̂A

S , so cS (σ, (σB
S , σV\S )) = cS (σ̂, (σA

S , σ̂V\S )) = 0.
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If σS , σ
B
S , then σ̂S , σ̂

A
S . Consider the elements of Eσ

S ,

(Eσ
S ) j = U j(σA

S , σV\S ) − U j(σB
S , σV\S )(D.1)

=



∑
i∈S

(
u ji(A, A) − u ji(A, B)

)
if j < S , σ( j) = A,

−
∑

i∈S

(
u ji(B, B) − u ji(B, A)

)
if j < S , σ( j) = B,∑

k<S
σ(k)=A

(
u jk(A, A) − u jk(B, A)

)
−

∑
k<S

σ(k)=B

(
u jk(B, B) − u jk(A, B)

)
+

∑
i∈S
i, j

(
u ji(A, A) − u ji(B, B)

)
if j ∈ S ,

and the elements of −Eσ̂
S ,

(−Eσ̂
S ) j = −U j(σA

S , σ̂V\S ) + U j(σB
S , σ̂V\S )(D.2)

=



−
∑

i∈S

(
u ji(A, A) − u ji(A, B)

)
if j < S , σ̂( j) = A,∑

i∈S

(
u ji(B, B) − u ji(B, A)

)
if j < S , σ̂( j) = B,

−
∑

k<S
σ̂(k)=A

(
u jk(A, A) − u jk(B, A)

)
+

∑
k<S

σ̂(k)=B

(
u jk(B, B) − u jk(A, B)

)
−

∑
i∈S
i, j

(
u ji(A, A) − u ji(B, B)

)
if j ∈ S .

Noting that σ( j) = A if and only if σ̂( j) = B, σ( j) = B if and only if σ̂( j) = A, we can subtract (D.2) from
(D.1) to get

(Eσ
S − (−Eσ̂

S )) j = (Eσ
S + Eσ̂

S ) j =(D.3)

=



∑
i∈S

((
u ji(A, A) − u ji(A, B)

)
−

(
u ji(B, B) − u ji(B, A)

))
if j < S , σ( j) = A,∑

i∈S

((
u ji(A, A) − u ji(A, B)

)
−

(
u ji(B, B) − u ji(B, A)

))
if j < S , σ( j) = B,∑

k<S
σ(k)=A

((
u jk(A, A) − u jk(B, A)

)
−

(
u jk(B, B) − u jk(A, B)

))
+

∑
k<S

σ(k)=B

(
u jk(A, A) − u jk(B, A)

)
−

(
u jk(B, B) − u jk(A, B)

)
+

∑
i∈S
i, j

((
u ji(A, A) − u ji(B, B)

)
+

(
u ji(A, A) − u ji(B, B)

))
if j ∈ S ,

If A is RD jS for j ∈ S , then the sum of the first and second lines of the third case of (D.3) is nonnegative.
If A is PD jS for j ∈ S , then the third line of the third case of (D.3) is nonnegative. Therefore, if A is RD jS

and PD jS , the third case of (D.3) is nonnegative. That is, if j ∈ S , then (Eσ
S + Eσ̂

S ) j ≥ 0, so (Eσ
S ) j ≥ (−Eσ̂

S ) j.
If ΥC

S is self-regarding, then (Eσ
S ) j ≥ (−Eσ̂

S ) j for all j ∈ S implies that ΥC
S (Eσ

S ) ≥ ΥC
S (−Eσ̂

S ) and therefore,
by (6.1), cS (σ, (σB

S , σV\S )) ≥ cS (σ̂, (σA
S , σ̂V\S )).

If A is ARDS j for all j < S , then the first and second cases of (D.3) are nonnegative. That is, if j < S ,
(Eσ

S + Eσ̂
S ) j ≥ 0, so (Eσ

S ) j ≥ (−Eσ̂
S ) j. Therefore Eσ

S ≥ Eσ̂
S , and as ΥC

S is non-decreasing, ΥC
S (Eσ

S ) ≥ ΥC
S (−Eσ̂

S )
and therefore, by (6.1), cS (σ, (σB

S , σV\S )) ≥ cS (σ̂, (σA
S , σ̂V\S )). Q.E.D.
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Lemma 11 Let σ̂, σ̃ be such that VA(σ̂) ⊆ VA(σ̃). If S follows a coalitional payoff-difference based choice
rule, then cS (σ̂, (σA

S , σ̂V\S )) ≥ cS (σ̃, (σA
S , σ̃V\S )).

Proof: If σ̃S = σA
S , then cS (σ̂, (σA

S , σ̂V\S )) ≥ cS (σ̃, (σA
S , σ̃V\S )) = 0.

If σ̃S , σ
A
S , then σ̂S , σ

A
S . Using (D.2) for both Eσ̂

S and Eσ̃
S gives

((−Eσ̂
S ) − (−Eσ̃

S )) j(D.4)

=



0 if j < S , σ̂( j) = A,

0 if j < S , σ̃( j) = B,∑
i∈S

((
u ji(A, A) − u ji(A, B)

)
+

(
u ji(B, B) − u ji(B, A)

))
if j < S , σ̃( j) = A, σ̂( j) = B,∑

k<S
σ̃(k)=A

(
uik(A, A) − uik(B, A)

)
−

∑
k<S

σ̂(k)=A

(
uik(A, A) − uik(B, A)

)
+

∑
k<S

σ̂(k)=B

(
uik(B, B) − uik(A, B)

)
−

∑
k<S

σ̃(k)=B

(
uik(B, B) − uik(A, B)

)
if j ∈ S .

The third case of of (D.4) is nonnegative by (2.2). The first two lines of the fourth case, taken together, are
nonnegative as VA(σ̂) ⊆ VA(σ̃). The final two lines of the fourth case, taken together, are nonnegative as
VB(σ̃) ⊆ VB(σ̂). So every element of ((−Eσ̂

S ) − (−Eσ̃
S )) j is nonnegative and −Eσ̂

S ≥ −Eσ̃
S . As ΥC

S is non-
decreasing, ΥC

S (−Eσ̂
S ) ≥ ΥC

S (−Eσ̃
S ) and therefore, by (6.1), cS (σ̂, (σA

S , σ̂V\S )) ≥ cS (σ̃, (σA
S , σ̃V\S )). Q.E.D.

Lemma 12 If S follows a coalitional payoff-difference based choice rule, then cS is asymmetric if and only
if, for all σ, σ̃ such that VB(σ) ⊆ VA(σ̃), we have that cS (σ, (σB

S , σV\S )) ≥ cS (σ̃, (σ̃A
S , σ̃V\S )).

Proof: Consider σ, σ′, σ̃ such that VB(σ) ⊆ VA(σ̃).

If σ′ is not equal to σ, (σB
S , σV\S ) or (σA

S , σV\S ), then by (6.1), cS (σ,σ′) = ∞, so setting σ̄ = σA, we have
that VB(σ′) ⊆ VA(σ̄), VA(σ̃) ⊆ VA(σ̄), and cS (σ,σ′) ≥ cS (σ̃, σ̄), satisfying the condition for asymmetry.

If σ = σ′, then, by (6.1), cS (σ,σ′) = 0. Letting σ̄ = σ̃, we have VB(σ′) = VB(σ) ⊆ VA(σ̃) = VA(σ̄) and, by
(6.1), cS (σ̃, σ̄) = 0, so cS (σ,σ′) ≥ cS (σ̃, σ̄) = 0, satisfying the condition for asymmetry.

If σ , σ′ = (σA
S , σV\S ), let σ̄ = σ̃. Then we have VB(σ′) ⊂ VB(σ) ⊆ VA(σ̃) = VA(σ̄) and, by (6.1),

cS (σ̃, σ̄) = 0, so cS (σ,σ′) ≥ cS (σ̃, σ̄) = 0, satisfying the condition for asymmetry.

The only remaining case is σ , σ′ = (σB
S , σV\S ). For σ̄ to satisfy VB(σ′) ⊆ VA(σ̄), it must be that σ̄S = σA

S ,
and for cS (σ̃, σ̄) < ∞, it must be that σ̄V\S = σ̃V\S . Hence, it only remains to check whether cS (σ,σ′) ≥
cS (σ̃, σ̄) = cS (σ̃, (σA

S , σ̃V\S )), the condition in the statement of the lemma.

Q.E.D.

Proof of Proposition 4: Let σ, σ̃ be such that VB(σ) ⊆ VA(σ̃). Define σ̂ so that VB(σ) = VA(σ̂). Note that
VA(σ̂) ⊆ VA(σ̃). Then,
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cS (σ, (σB
S , σV\S )) ≥︸︷︷︸

by Lemma 10

cS (σ̂, (σA
S , σ̂V\S )) ≥︸︷︷︸

by Lemma 11

cS (σ̃, (σA
S , σ̃V\S )),

satisfying the condition for asymmetry given in Lemma 12. Q.E.D.
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