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Abstract

The standard Berry, Levinsohn, and Pakes (1995) (BLP) approach to estimation

of demand and supply parameters assumes that the product characteristic unobserved

to the researcher but observed by consumers and producers is conditionally mean in-

dependent of all characteristics observed by the researcher. We extend BLP to allow

all product characteristics to be endogenous, so the unobserved characteristic can be

correlated with the other observed characteristics. We derive moment conditions based

on the assumption that firms - when choosing product characteristics - are maximizing

expected profits given their beliefs at that time about preferences, costs, and competi-

tors’ actions with respect to the product characteristics they choose. Following Hansen

and Singleton (1982) we assume that the“mistake” in the choice of the amount of the

characteristic that is revealed once all products are on the market is conditionally mean

independent of anything the firm knows when it chooses its product characteristics.

We develop an approximation to the optimal instruments and we also show how to use

the standard BLP instruments. Using the original BLP automobile data we find all

parameters to be of the correct sign and to be much more precisely estimated. Our

estimates imply observed and unobserved product characteristics are highly positively

correlated, biasing demand elasticities upward significantly, as our average estimated

price elasticities double in absolute value and average markups fall by 50%.
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1 Introduction

The identification of discrete choice demand models since Berry, Levinsohn, and Pakes (1995)

(BLP) has relied on the assumption that the product characteristic unobserved to the re-

searcher but observed to producers and consumers is conditionally mean independent of all

observed product characteristics. Under this identification assumption any function of ob-

served characteristics of all products in the market is a valid instrument for any product’s

price. Given the abundance of instruments - many of them likely to be very weak - BLP use

the structure of their competitive setting to develop product-specific instruments for price

that are likely to be highly correlated with that product’s price. More recently Gandhi and

Houde (2015) show how to extend this logic to develop even more powerful instruments.

Since the inception of its use this assumption has been criticized as being inconsistent with

profit-maximizing behavior; it is not clear why firms would choose a level of the unobserved

quality for a product independently of the choice of the products’ observed characteristics.

Empirically we see a high positive correlation among the observed attributes of products,

suggesting unobserved product quality is likely to be positively correlated with observed

characteristics. If firms do choose to put more unobserved-by-the-researcher quality on

products that have more attractive observed characteristics, then instrumenting price with

observed product characteristics will not break the positive correlation between price and

unobserved quality that BLP are trying to address. Demand elasticities will then continue

to be biased in a positive direction because higher prices mean consumers are getting higher

unobserved quality, leading consumers to look less price sensitive then they actually are in

reality.

In this paper we extend BLP to allow all product characteristics to be endogenous so the

unobserved characteristic can be correlated with the other observed characteristics. Spence

(1976) formalized the notion that firms’ decisions about characteristics’ choices are driven

by their beliefs about consumer preferences for them and the costs of providing them by

showing their first-order conditions for profit-maximization contain terms related to marginal

and infra-marginal consumers and costs.1 We use these first-order conditions for the optimal

choice of price and observed and unobserved product characteristics to try to infer firms’

beliefs about the distribution of consumers tastes and the structure of costs.

We estimate a model of BLP-type demand and supply under the assumption that firms

choose characteristics first given some information set. They do so knowing that once all

1See also the more recent generalization by Veiga and Weyl (2014).
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of the product characteristics and other demand and supply factors have been realized they

will compete in prices in a Bertrand–Nash manner. Our identification is based on the

assumption that firms’ ex-post optimization mistakes are conditionally mean independent

of anything the firm knows at the time the firm chooses its product characteristics (Hansen

and Singleton (1982)). This will be true as long as firms do not condition on something that

we do not observe that affects their profitability and their characteristics’ choices ( Pakes

et al. (2015)). An advantage of these setups is that we do not have to completely specify

the firm’s information set at the time it chooses characteristics; it may include other firms’

product lagged or contemporaneous characteristics and demand/cost shocks, signals on all

of these, or no information on them at all.

Our approach is complementary to the many papers previous to ours that have exploited

Spence’s insight that optimization can help with identification of model parameters, including

Mazzeo (2002), Sweeting (2007), Crawford and Shum (2007), Lustig (2008), Gramlich (2009),

Fan (2013), Eizenberg (2014), and Blonigen et al. (2013).2 These papers are more general

than our approach in the sense that they consider (e.g.) the use of optimization to help

with identification of fixed costs, sunk costs, or identification in the face of restricted sets

of characteristics from which firms can choose for product characteristics. However, all of

these papers maintain some kind of independence between the level or change in the demand

or supply shock and the observed product characteristics. Our identification assumption is

straightforward to adopt to all of these settings and would allow researchers to sidestep

imposing mean independence of observed and unobserved characteristics while at the same

time estimating (e.g.) fixed or sunk costs.

The steps necessary to calculate the value of our objective function are identical to the

steps in BLP’s two-step GMM estimator except we replace the mean independence moments

with our optimization moments. The BLP inversion allows us to – for any given parameter

value – solve for the unobserved characteristics for every vehicle so we can treat them as

another observed characteristic that the firm is choosing optimally. Using characteristics of

competitors vehicles from prior years - which should be known to the firm at the time they

made characteristic choices in those prior years - we develop an approximation to the optimal

instruments implied by the model’s structure. The standard BLP instruments are also valid

instruments in our setting and we provide results using these instruments as well. The only

other difference with the BLP estimation routine is we include this characteristics in marginal

2See the review in Crawford (2012) for a complete list of all papers that use optimization in characteristics
for identification.
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cost function. Formulating our estimator in the GMM framework means our estimator can

easily be supplemented with moments that may further help with identification, as in Petrin

(2002) or Berry et al. (2004).

The most striking difference between the BLP estimates and the optimization estimates

is that the coefficient on price is much larger under optimization. The impact of this change

is that relative to BLP on average elasticities double and estimated markups fall by 50%. We

investigate whether a positive correlation between observed and unobserved characteristics is

a possible explanation by constructing a “BLP instrumented price”, that is, we regress price

on the BLP instruments and construct predicted values. We find our unobserved qualities

are significantly positively correlated with the instrumented prices with a correlation of

approximately 0.5.

A second related difference in model fit relates to the fact that only 10% of U.S. households

buy new cars in any given year so both fitted demand models need a way to explain why 90%

of households choose the outside good. BLP fits 90% of households not buying by having

consumers view the average unobserved quality of new cars as much worse than the outside

good. In contrast, the optimization-fit has consumers strongly desiring new cars relative to

the outside good but the significantly higher price elasticity causes 90% not to buy a new

car.

Our estimates are almost always much more precisely estimated relative to the BLP-fit

model. We also find some of the anomalies in the BLP point estimates are not present in

the optimization-fit point estimates. The BLP point estimates imply consumers dislike fuel

efficiency but in our setup they strongly and significantly like fuel efficiency. The BLP point

estimates also imply it cost less to build a bigger and more fuel efficient vehicle while we find

the opposite.

The differences we report here between the optimization-fit model and the BLP-fit model

have also been found in European automobile data (see Miravete et al. (2015)). They

adopt our approach to estimating demand and supply to look at competition in the Spanish

automobile market. They report that using the optimization moments on average estimated

price elasticities double and estimated markups fall by 50% relative to when they use the

BLP moments. Anomalous demand and supply point estimates under the BLP-fit are not

present under optimization-fit, the standard errors are much smaller, and their unobserved

quality term is positively correlated with observed characteristics.

In Section (2), we specify demand and supply system and describe strength and weakness

of the identification strategy that previous studies used in the discrete choice demand esti-
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mation since BLP. In Section (3), we present our approach to identify heterogeneity in tastes

and supply parameters by using market-level data. Estimation and choice of instruments

are suggested in Section (3.2). Section (4) shows Monte Carlo simulation results. Lastly, we

apply our approach to the same automobile data BLP used in (5).

2 Demand and Supply

Our approach to modeling demand and supply, our data, and the steps in our estimation

procedure mimic the approach in Berry, Levinsohn, and Pakes (1995) (BLP) up to the

identification assumptions. In this section we review their approach. Each product is defined

as a vector of K observed characteristics and price (Xj, pj) ∈ RK+1 and an unobserved (to

the econometrician) characteristic ξj which is observed by both consumers and producers.

Product j = 0 is the option of not buying a new vehicle and it is standard to normalize its

characteristics and price to zero (X0 = p0 = ξ0 = 0).

A consumer i is indexed by (yi, vi, εi), where yi is a draw from the distribution of U.S.

household incomes for the appropriate year, vi is vector of their K idiosyncratic normally

distributed taste draws (vik)
K
k=1 drawn from a standard normal distribution, one for each of

the K characteristics, and εi is the vector of their product-specific “tastes” (εij)
J
j=1 which

are assumed to be independent and identically distributed extreme value across consumers

and products. The demand model parameters are given as θD = (α, β, σ) ∈ R1+K+K , where

α is the marginal utility of income parameter, β is the vector of mean tastes for observed

characteristics and includes (βk)
K
k=1, and σ is the vector ofK parameters (σk)

K
k=1 that measure

of the extent of heterogeneity in tastes among consumers for each characteristic k. Utility

that consumer i derives from good j is given as

uij
(
θD
)

= α ln (yi − pj) + δj +
K∑
k=1

σkvikXjk + εij

where the product specific utility component δj is common to all consumers and defined as

δj = X ′jβ + ξj.

Consumer i’s taste for characteristic Xk is then given by βik = βk + σkvik.
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Consumer chooses the one and only one product j which yields the highest utility:

uij
(
θD
)
≥ uij′

(
θD
)
, ∀j′.

sij is individual i’s probability of purchasing good j prior to the realization of ε and is given

by

sij
(
p,X, ξ; θD

)
=

exp
(
α ln (yi − pj) +X ′jβ + ξj +

∑
k σkvikXjk

)∑
j′∈J exp

(
α ln (yi − pj′) +X ′j′β + ξj′ +

∑
k σkvikXj′k

) .
Letting F (y, v, ε) denote the distribution of consumer characteristics the market share for

good j is given as the integral over these consumers:

sj
(
p,X, ξ; θD

)
=

∫
{uij(θD)≥uij′ (θD), ∀j′}

sij
(
p,X, ξ; θD

)
dF (y, v, ε) .

BLP develop a method to allow for the possibility that prices are correlated with un-

observed characteristics. Ignoring the correlation can result in demand estimates that too

inelastic because price is positively correlated with unobserved product quality (see e.g.

Trajtenberg (1989))). Market shares are nonlinear functions of prices and observed and

unobserved characteristics so standard instrumental variable techniques are not consistent.

BLP prove – if the goods are weak substitutes – that at any given set of parameter values

(α, σ), there exists a unique vector δ (α, σ) = (δj (α, σ))j∈J which exactly matches observed

shares in data to predicted shares from the model:

sj(δ (α, σ)) = sdata
j , ∀j. (1)

Given any set of parameter values (α, σ) their approach solves for this δ(α, σ) and holds

it constant during estimation to control for potential correlation between the unobserved

characteristics and price. We use this inversion to recover for any set of parameter values

(α, σ, β) the unique vector of unobserved characteristics so we can treat it as another observed

characteristic the firms choose.3

Let X = (Xj)j∈J denote all of the characteristics observed to consumers, producers, and

the researcher. For identification BLP allow price to be endogenous but assume that these

3Once one has δj (α, σ) and β one knows ξj(θ
D) ≡ ξj

(
δ (α, σ) , θD

)
, ∀j.
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X are mean independent of ξj ∀j:

E
[
ξj
(
θD0
)
| X

]
= 0 ∀j. (2)

Since all X are assumed to be exogenous any function of them can serve as instruments

for any vehicle j but many of them may be weak. Using the firm pricing first-order con-

ditions Pakes (1994) provides motivation for using the following as instruments for good

j: own product characteristic Xjk, ∀k, the sum of characteristic across own-firm products∑
j′ 6=j,j′∈Jf Xj′ , and the sum of all characteristics across competing firms,

∑
j′ /∈Jf Xj′ .

On the supply side marginal costs are given as

ln (mcj) = W ′
jγ + ωj

where Wj are cost shifters, typically Xj itself or the log of it, and ωj is the cost shock for good

j. As marginal costs are not directly observed BLP assume Bertrand Nash price competition

and invert them out using the J pricing first-order conditions:

sj +
∑
j′∈Jf

(pj′ −mcj′)
∂sj′

∂pj
= 0, ∀j ∈ Jf . (3)

where firms are indexed by f and Jf is the set of goods that firm f produces. Once marginal

costs are recovered BLP identify the cost parameters γ by assuming that the cost shocks

are uncorrelated with cost shifters, an assumption analogous to the demand identification

condition (2):

E
[
ωj
(
θD0 , γ0

)
| W

]
= 0 ∀j. (4)

BLP supply instruments are constructed in the same way as described above by replacing

X with W .

The estimation approach used by BLP is optimal two-step Generalized Method of Mo-

ments (GMM). Let the model parameter θ =
(
θD, γ

)
. Let G (θ) be a stacked vector of

the mean independence demand and supply moments in (2) and (4), and let Ω̂ denote the

inverse of the first-step estimate of variance-covariance matrix of the moments. The GMM
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estimator is the solution to

min
θ
Q (θ) = G (θ)′ Ω̂ G (θ) .

For any candidate value (θs) the steps to calculate Q (θs) include

1. Invert out δ (αs, σs) by matching the model predicted shares to the data and calculate

ξj = δj(αs, σs)−X ′jβs ∀j.

2. Using equations (3) invert out mcj ∀j and calculate ωj = ln (mcj)−W ′
jγs ∀j.

3. Calculate G (θs) and implied Q(θs).

The main difference between our approach and BLP estimation approach is in Step 3 where

we use moment conditions implied by optimization instead of assuming the characteristic not

observed by the researcher is mean independent of those that are observed by the researcher.

3 Identification Using Optimization

There is a large and growing literature that uses optimization to identify demand and cost

parameters.4 We follow in this tradition and extend the optimization in prices used in BLP

to include all observed and unobserved product characteristics.

3.1 Competitive Setting

As in many papers in this literature we assume firms compete with each other every period

in two stages. In the second stage firms know that they will compete in prices in a Bertrand-

Nash manner given the chosen characteristics of all products in the market. In the first stage

firms choose characteristics to maximize expected profits given their information set, denoted

If for firm f . This information set may differ across firms, and it may include other firms’

product characteristics, own- and other-firm cost shifters, some signals on the variables, or

no information at all on them. An advantage of using Hansen and Singleton (1982) is that

it does not require the researcher to know or specify the entire information set of each firm.

Define Zj = (Xj,Wj, ωj), and Z = (Zj)j∈J . Redefine K be the number of characteristics

including ξ and let θ = (α, β, σ, γ) include the cost parameters. In the first step, firm f

4See the introduction.
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chooses vectors Xf = (Xj)j∈Jf and ξf = (ξj)j∈Jf to solve:

max
Xf , ξf

E
[
Πf

∣∣ If]
Πf =

∑
j′∈Jf

(pj′ −mcj′ (Xj′ , ξj′ ; θ)) sj′ (p, Z, ξ; θ) .

with prices determined after characteristics are set in a Bertrand-Nash manner. For any

realized values of (Z, ξ) the realized value of the first-order condition for characteristic k of

product j is given by νjk(θ) and written as

νjk (θ) ≡ ∂Πf

∂Xjk

=
∑
j′∈Jf

[
(pj′ −mcj′ (Xj′ , ξj′ ; θ))

d sj′ (p, Z, ξ; θ)

d Xjk

(5)

+sj′ (p, Z, ξ; θ)
∂ (pj′ −mcj′ (Xj′ , ξj′ ; θ))

∂Xjk

]
(6)

for k < K. If k = K, the above first-order condition is taken with respect to ξj.

The first-order condition illustrates that multi-product firms internalize the externality

of changing Xj on the profits of its other products j′ ∈ Jf . The term in (5) represents the

change in profits attributable to marginal consumers while the second term in (6) captures

those attributable to infra marginal consumers. Firms anticipate the change in equilibrium

prices that will occur in the second step if they change their product characteristics and this

shows up in the first-order condition in the derivative of shares with respect to characteristics

Xj (and ξj):

d sj′ (p, Z, ξ; θ)

d Xjk

=
∂sj′

∂Xjk

+
∑
j′′∈J

∂sj′

∂pj′′

∂pj′′

∂Xjk

.

We follow Fan (2013) and estimate
∂pj′′

∂Xjk
using the Implicit Function Theorem.

The optimal level of Xf chosen by the firm maximizes expected profits given what the

firm knows at the time the characteristics are chosen. Sometimes firms will provide too little

of a characteristic and sometimes it will provide too much, but on average these “mistakes”
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average out. We write it as:

E [νjk (θ0) | If ] = 0 ∀k, j ∈ Jf , ∀f (7)

νjk may include expectational errors that arise due to asymmetric information across com-

peting firms on each others’ costs and product characteristics or it may be incomplete in-

formation on the outcomes own-firm payoff-relevant variables (like realized cost shocks). νjk

may also include model approximation error or measurement error in the data. As Pakes et

al. (2015) note, if there is something known to the firm but not seen by the researcher and

if it affects the firm’s profits and thus its decisions, the mean of these selected observations

will not generally be zero. Our identification is based on these K first-order conditions with

respect to X coupled with the J first-order conditions with respect to p in (3).

Some product characteristics may not be update every period, implying that firms maxi-

mize the sum of the future stream of profits at the time of decision. We discuss the robustness

of our approach in Section 6.

3.2 Instruments

We have more than K unknown parameters but only K first-order condition conditions. We

use the insight by Hansen and Singleton (1982) that any function of the arguments of If are

possible instruments. Chamberlain (1987) shows that the efficient set of instruments are the

expected value of the derivatives of the error term with respect to the parameters evaluated

at the true parameter θ0.

In our context this optimal instrument H is a JK× the number of parameters matrix

H = E
[
ν (θ0) ν (θ0)′ | I

]−1
E

[
∂ν (θ0)′

∂θ

∣∣∣∣∣ I
]′
. (8)

Letting E
[
ν (θ0) ν (θ0)′ | I

]
= IJK for now, Hjkl, the element (jk, l) of the derivative, is

given as

Hjkl = E

[
∂νjk (θ0)

∂θl

∣∣∣∣∣ If
]
∀k, l, j ∈ Jf , ∀f. (9)
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where the derivative of νjk with respect to θl is given as:

∂νjk (θ0)

∂θl
=

∑
j′∈Jf

[
∂ (pj′ −mcj′)

∂θl

d sj′

d Xjk

+ (pj′ −mcj′)
d2 sj′

d θl d Xjk

+
d sj′

d θl

∂ (pj′ −mcj′)
∂Xjk

+ sj′
∂2 (pj′ −mcj′)

∂θl ∂Xjk

]
where

d sj
d θl

=
∂sj
∂θl

+
∑
j′∈J

∂sj
∂Xj′

∂Xj′

∂θl
+
∑
j′∈J

∂sj
∂pj′

∂pj′

∂θl
+
∑
j′∈J

∑
j′′∈J

∂sj
∂pj′

∂pj′

∂Xj′′

∂Xj′′

∂θl

for k < K. If k = K, d X or ∂X is substituted to d ξ or ∂ξ. In principle we are exactly

identified, i.e. the total number of instruments is equal to the total number of model param-

eters. These instruments place larger weights on the first-order conditions which are most

responsive to changes in the parameters contained in θ.

There are four significant challenges to calculating the optimal instruments. We do not

know the true value of parameters θ0 and we do not know the information set If of any firm.

Even if we knew If we would have to specify the distribution of the remaining unknown

random variables conditional on the information set to be able to integrate over it. Finally,
∂X
∂θ

and ∂p
∂θ

are complicated unknown equilibrium objects.

We follow Berry et al. (1999) and choose an informed guess θg and then approximate

the optimal instrument Hjkl by using the value of the derivative itself
∂νjk
∂θl

calculated under

different assumptions about what is known to the firm at time when the characteristics’

decisions are made. We set the terms ∂X
∂θ

and ∂p
∂θ

to zero because of the difficulties of

estimating them so
d sj
d θl

=
∂sj
∂θl

in our estimation routine.5 Let Xt = (Xjt)j∈Jt be a vector

of characteristics of all products available in year t, and define ξt, Wt, pt, and ωt similarly.

Let Xf,t = (Xjt)j∈Jft be the set of firm f ’s products, and X−f,t = (Xjt)j /∈Jft be the set of

firm f ’s competitors’ products. In the benchmark setup we assume firms’ information sets

contain their own contemporaneous costs shocks and their competitors’ characteristics from

the previous year:

{X−f, t−1, ξ−f, t−1, W−f, t−1, ω−f, t−1, ωf, t} ⊂ I lagged
f,t

When calculating the derivative for a product characteristic for firm f we use observed and

5Leaving out these terms is not a consistency issue but instead an efficiency issue. In our monte carlos it
is possible to calculate these terms we compare the monte carlo results with and without them to check on
the importance of these terms for precision.
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unobserved characteristics of products of the firms competing against f from the previous

year. At those characteristics we solve for the Bertrand-Nash equilibrium prices and evaluate

the derivative at those prices for firm f .

In the second case we assume

{X−f, t, ξ−f, t, p−f, t, W−f, t, ωt} ⊂ Icontemporaneous
f,t

so firm f knows its competitors’ contemporaneous choices of characteristics and costs at the

time of decision. In this case, the derivative is evaluated at realized values of Xt, ξt, Wt, pt,

and ωt.
6

Estimation

Our estimation approach mimics the steps in the discussion of the BLP estimation approach

up to two differences. We replace the moments in Step 3 with our optimization moments.

Using the instruments suggested above, the moment condition is given by

Gkl (θ) ≡ E
[
Ĥjkl νjk (θ)

]
∀k, l

= 0 (10)

where Ĥjkl is our approximation to the optimal instrument Hjkl. We also include ξj in the

set of marginal cost shifters and we estimate a parameter associated with it.7 For an initial

guess at θ0 – we use the BLP estimates – we calculate the approximation to the optimal

instruments. Given those instruments we calculate the optimal weighting matrix and the

first stage estimates. At the first stage estimates we recalculate the optimal instruments and

the efficient weighting matrix and the reestimate to get the two-step GMM estimates.8

6This case implies that the conditional expectation of the FOCs are taken with respect to approximation
or measurement error.

7As in BLP we use importance sampling to minimize simulation error. We draw importance samples at
an initial estimate θ1, and then evaluate instruments H and optimal weighting matrix Ω at θ1 for GMM
estimation. Once the first step estimates are converged at θ2, we re-draw importance samples, re-derive
instruments, and re-evaluate optimal weighting matrix at θ2. Then, we repeat the search over θ.

8Using the GMM approach allows one to augment the setup with additional moment conditions in a
straightforward manner as in Petrin (2002) or Goolsbee and Petrin (2004).
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4 Monte Carlo Simulation

We investigate the properties of our estimator with two simple and transparent monte carlos.

Readers not interested in these details can skip directly to the BLP application although

4.1 Monopoly

We first consider a single-product monopolist who chooses a single product characteristic to

maximize expected profits. At the time she chooses the characteristic she knows her cost

shock but she does not know the demand shock, although she knows the distribution from

which it will be drawn. She also knows the profit maximizing price for any given demand-

cost-characteristic tuple, so she can calculate expected profits for any chosen level of product

characteristic. The specifics follow.

We consider both logit and random coefficients discrete choice demand setups. Let βi0

denote the base-level of utility consumer i derives from purchased the good. βi is the taste

for the single good characteristic X. Both εi and εi0 are distributed i.i.d. extreme value.

Consumer i purchases the good if ui is greater than or equal to ui0 = εi0 where

ui = βi0 +Xβi − αp+ ξ + εi

βi0 ∼ N (0, σ1)

βi ∼ N (β, σX) ,

with β defined as the mean taste for X and (σ1, σX) characterizing the heterogeneity in taste.

In the logit case (σ1, σX) = (0, 0) and in the random coefficient case they are non-negative.

We write the demand parameters together as θD = (α, β, σ1, σX). Market share in the

logit case is given by

s
(
p,X, ξ; θD

)
=

exp (Xβ − αp+ ξ)

1 + exp (Xβ − αp+ ξ)

and in the random coefficients’ case, which integrates over the distribution of consumers

G(i), share is given by

s
(
p,X, ξ; θD

)
=

∫
i

exp (βi0 +Xβi − αp+ ξ)

1 + exp (βi0 +Xβi − αp+ ξ)
dG(i).
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The monopolist’s marginal cost is given as

ln (mc) = γlnX + ω,

with γ the elasticity of marginal costs with respect to the characteristic X and cost shock

ω. All parameters together are denoted θ = (α, β, σ1, σX , γ).

Let Z = (X, ξ, ω). Profits are given as

Π (Z; θ) = (p−mc (X,ω; θ)) s (p,X, ξ; θ) .

The timing is as follows. The cost shock ω∗ is realized. Let Z̃ = (X, ξ, ω∗). The monopolist

knows the demand parameters and the distribution of the demand shock F (ξ) but she does

not see the realized demand shock ξ∗ before the characteristic choice is made. She solves

max
X

E
[
Π
(
Z̃; θ

) ∣∣ω∗, F (ξ)
]

=

∫
(p−mc (X,ω∗; θ)) s (p,X, ξ; θ) dF (ξ) ,

knowing p will be set to maximize profits once the characteristic is set and ξ∗ is realized.

Let Ẑ = (X∗, ξ, ω∗) with X∗ the optimal amount of X. X∗ solves

E

∂Π
(
Ẑ; θ

)
∂X

∣∣∣∣∣ω∗, F (ξ)

 =

∫ (
(p (X∗, ω∗; θ)−mc (X∗, ω∗; θ))

d s (p (X∗, ω∗; θ), X∗, ξ; θ)

d X

)
dF (ξ)

+

∫ (
∂ (p (X∗, ω∗; θ)−mc (X∗, ω∗; θ))

∂X
s (p (X∗, ω∗; θ), X∗, ξ; θ)

)
dF (ξ)

= 0

where p (X∗, ω∗; θ) is the optimal price given X∗ and ω∗, maximizing the expected profits

where expectation is taken over F (ξ). Letting Z∗ = (X∗, ξ∗, ω∗) the realized value of the

derivative is given as ν(Z∗; θ) = ∂Π(Z∗;θ)
∂X

, given as

ν(Z∗; θ) = (p (X∗, ω∗; θ)−mc (X∗, ω∗; θ))
d s (p (X∗, ω∗; θ), X∗, ξ∗; θ)

d X
∂ (p (X∗, ω∗; θ)−mc (X∗, ω∗; θ))

∂X
s (p (X∗, ω∗; θ), X∗, ξ∗; θ) .
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This derivative will sometimes be positive and sometimes be negative depending upon

whether “too much” or “too little” of X was chosen prior to the realized demand shock.

ν(Z∗; θ) evaluated at the realized p∗ = p(Z∗), the profit maximizing price given Z∗, is zero

by construction of p∗. By the way the data are constructed on average these “mistakes” will

average out:

E [ν(Z∗; θ)|ω∗, F (ξ)] = 0,

and this moment is our source of identification. When evaluating ν, we mimic the stan-

dard empirical settings where econometricians cannot observe cost and demand shocks.

At each θ we apply Berry-inversion in (1) to find ξ
(
X∗, p∗; θD

)
and FOC with respect

to price in (3) to find mc
(
p∗, s

(
p∗, X∗, ξ

(
X∗, p∗; θD

))
; θD

)
. Then, ν is evaluated at

p∗, X∗,mc
(
p∗, s

(
p∗, X∗, ξ

(
X∗, p∗; θD

))
; θD

)
), and s

(
p∗, X∗, ξ

(
X∗, p∗; θD

)
; θD

)
at each

θ. This is what I did in mc exercise but it sounds wrong as ν evaluated at realized p∗ auto-

matically become zero without an error at the true θ. [Maybe the right way to evaluate ν

in estimation is to derive p (X∗, ω; θ) where ω is found from inverted mc minus γlnX∗]

In this monte carlo setup we could construct the optimal instruments, which are given

by

H =
1

E
[
ν (Z∗; θ)2 |ω∗, F (ξ)

]E [∂ν (Z∗; θ)

∂θ

∣∣∣ω∗, F (ξ)

]
.

Letting E
[
ν (Z∗; θ)2 |ω∗, F (ξ)

]
any scalar, the l element of the instrument is given as

Hl = E

[
∂ν (Z∗; θ)

∂θl

∣∣∣ω∗, F (ξ)

]
∀l

because we know the distribution of Z∗. As we are interested in the properties of our es-

timator in standard empirical settings where the researcher could not compute the optimal

instruments we mimic our proposed empirical approach to approximating the optimal instru-

ments by evaluating the derivative at the realized values Z∗. That is, Hl is approximated at

at some initial value θ̂ and p
(
X∗, ω∗; θ̂

)
≈ p

(
X∗, ω

(
X∗, p∗, ξ

(
X∗, p∗; θ̂D

)
; θ̂
)

; θ̂
)

where

ω∗ is approximated by mc
(
p∗, s

(
p∗, X∗, ξ

(
X∗, p∗; θD

))
; θD

)
− γ̂lnX∗. We also check to see

whether including ∂X
∂θ

and ∂p
∂θ

makes a big difference in efficiency as these terms that are

very difficult to approximate in any empirical application (we can numerically approximate

15



them). The moment condition, analogous to (10) is

Gl (Z
∗; θ) ≡ E

[
Ĥl ν(Z∗; θ)

]
∀l

= 0

By applying two step GMM with moment condition Gl (θ), we estimated the parameters.

We simulate M = 1000 markets for each of N = 200 times. Table 1 and 2 show the

estimated results with logit and random coefficient setup, respectively. In both cases the

average of the point estimates across the 200 simulations is very close to the truth and the

standard deviations of the estimates across monte carlos are small relative to the magnitude

of their respective coefficients.

4.2 Duopoly

Suppose two single-product firms, j = 1, 2. Utility of consumer i is identical to above except

she now has two choices,

uij = βi0 +Xjβi − αpj + ξj + εji.

Each firm has marginal cost, ln(mcj) = γ lnXj + ωj. Let Zj = (Xj, ξj, ωj). Each firm j’s

profits are given as

Πj (Z1, Z2; θ) = (pj −mcj (Xj, ωj) ; θ) sj (p1, p2, X1, X2, ξ1, ξ2; θ)

where pjs are determined by competing in Bertrand Nash after Xjs are set.

The timing is specified identically to the monopoly case but the information set of

each firm Ij now includes own cost and demand shocks. First, cost and demand shocks

(ξ∗1 , ξ
∗
2 , ω

∗
1, ω

∗
2) are realized, and each firm observes own ξ∗j and ω∗j but not the competi-

tor’s. Both firms know the demand parameters and the distributions of the each shock,

Fξ (ξ1) = Fξ (ξ2) and Fω (ω1) = Fω (ω2). Each firm j simultaneously chooses Xj given

16



(ξ∗j , ω
∗
j ):

max
Xj

E
[
Πj (Z1, Z2; θ)

∣∣ ξ∗j , ω∗j , Fξ, Fω)
]

=

∫ ∫ (
pj −mcj

(
Xj, ω

∗
j ; θ

))
sj (p1, p2, X1, X2, ξ1, ξ2; θ) dFξ (ξ−j) dFω (ω−j) ,

knowing p1 and p2 will be set optimally once the both firms’ characteristics are set.

Let Ẑj =
(
X∗j , ξj, ωj

)
and Z∗j =

(
X∗j , ξ

∗
j , ω

∗
j

)
with X∗j the optimal choice of Xj: X

∗
j solves

E

∂Πj

(
Z∗j , Ẑ−j; θ

)
∂Xj

∣∣∣∣∣ ξ∗j , ω∗j , Fξ, Fω


=

∫ ∫ ((
pj −mcj

(
X∗j , ω

∗
j ; θ

)) d sj (p1, p2, X
∗
1 , X

∗
2 , ξ
∗
j , ξ−j; θ

)
d Xj

)
dFξ (ξ−j) dFω (ω−j)

+

∫ ∫ (
∂
(
pj −mcj

(
X∗j , ω

∗
j ; θ

))
∂Xj

sj
(
p1, p2, X

∗
1 , X

∗
2 , ξ
∗
j , ξ−j; θ

))
dFξ (ξ−j) dFω (ω−j)

= 0 ∀j = 1, 2

where pj = pj
(
X∗1 , X

∗
2 , ξ
∗
j , ω

∗
j ; θ, Fξ, Fω

)
, the optimal price maximizing the expected profits

under Bertrand Nash where expectation is taken over Fξ and Fω.

The realized value of the derivative is given as νj (Z∗1 , Z
∗
2 ; θ) =

∂Πj(Z∗1 ,Z∗2 ;θ)
∂Xj

:

νj (Z∗1 , Z
∗
2 ; θ) =

(
pj −mcj

(
X∗j , ω

∗
j ; θ

)) d sj (p1, p2, X
∗
1 , X

∗
2 , ξ
∗
1 , ξ
∗
2 ; θ)

d Xj

∂
(
pj −mcj

(
X∗j , ω

∗
j ; θ

))
∂Xj

s (p1, p2, X
∗
1 , X

∗
2 , ξ
∗
1 , ξ
∗
2 ; θ) .

Notice that νj (Z∗1 , Z
∗
2 ; θ) is evaluated at pj = pj

(
X∗1 , X

∗
2 , ξ
∗
j , ω

∗
j ; θ, Fξ, Fω

)
.9 This derivative

will not be exactly zero because X is chosen prior to the competitors’ realized demand and

supply shocks. By the way the data are constructed on average these “mistakes” average

out:

E
[
νj(Z

∗
j , Z

∗
j ; θ)| ξ∗j , ω∗j , Fξ, Fω

]
= 0, ∀j = 1, 2

9νj (Z∗1 , Z
∗
2 ; θ) evaluated at p∗j = p(Z∗1 , Z

∗
2 ) is zero by construction of p∗j .
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and this moment is our source of identification. When evaluating ν, we pretend that we do not

observe ωjs. At each θ, we “inver out” ξj
(
X∗1 , X

∗
2 , p
∗
1, p
∗
2; θD

)
s and derivemcj

(
p∗j , sj

(
p∗1, p

∗
2, X

∗
1 , X

∗
2 , ξ1

(
X∗1 , X

∗
2 , p
∗
1, p
∗
2; θD

)
, ξ2

(
X∗1 , X

∗
2 , p
∗
1, p
∗
2; θD

))
; θD

)
s

according to (1) and (3), respectively.

The optimal instruments are given as

H = E
[
ν (Z∗1 , Z

∗
2 ; θ) ν (Z∗1 , Z

∗
2 ; θ)′ | ξ∗j , ω∗j , Fξ, Fω

]−1
E

[
∂ν (Z∗1 , Z

∗
2 ; θ)′

∂θ

∣∣∣ ξ∗j , ω∗j , Fξ, Fω]′
where ν (Z∗1 , Z

∗
2 ; θ) is a 2 by 1 vector of (νj)j=1,2. LettingE

[
ν (Z∗1 , Z

∗
2 ; θ) ν (Z∗1 , Z

∗
2 ; θ)′ | ξ∗j , ω∗j , Fξ, Fω

]
=

I2, the lth column of the instrument is given as

Hl = E

[
∂ν (Z∗1 , Z

∗
2 ; θ)′

∂θl

∣∣∣ ξ∗j , ω∗j , Fξ, Fω] ∀l.

Approximation of the optimal instruments is done by solving the equilibrium pj(X
∗
1 , X

∗
2 , ξj

(
X∗1 , X

∗
2 , p
∗
1, p
∗
2; θ̂D

)
, ω∗j ; θ̂, Fξ, Fω)

at the initial value θ̂ and realized X∗1 , X
∗
2 , ξ1

(
X∗1 , X

∗
2 , p
∗
1, p
∗
2; θD

)
, ξ2

(
X∗1 , X

∗
2 , p
∗
1, p
∗
2; θD

)
, ω∗1,

and ω∗2 where ω∗j s are approximated bymcj
(
p∗j , sj

(
p∗1, p

∗
2, X

∗
1 , X

∗
2 , ξ1

(
X∗1 , X

∗
2 , p
∗
1, p
∗
2; θD

)
, ξ2

(
X∗1 , X

∗
2 , p
∗
1, p
∗
2; θD

))
; θD

)
−

γ̂lnX∗j .

The moment condition, analogous to (10) is

Gl (Z
∗
1 , Z

∗
2 ; θ) ≡ E

[
Ĥ ′l ν(Z∗1 , Z

∗
2 ; θ)

]
∀l

= 0

By applying two step GMM with moment condition Gl (θ), we estimated the parameters.

5 Application to BLP Data

We use the exact same data used in BLP. There are twenty new U.S. automobile markets -

one for each year from 1971 to 1990 - for a total of 2217 observations on prices, quantities,

and characteristics of different vehicle models. We assume the firms set the same K =

5 characteristics as those that enter into the BLP utility function, including the ratio of

horsepower to weight, interior space (length times width), miles per dollar, whether air

conditioning is standard (a proxy for luxury), and the unobserved quality. The five cost

shifters are the unobserved quality, the log of ratio of horsepower to weight, the log of
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interior space, air conditioning, and the log of miles per gallon.10 In a market with J

products there are J observations on the K realized first-order conditions. The outside good

qualilty ξ0 is normalized to zero and we do not separately estimate the mean utility for new

vehicles instead letting it remain in the unobserved quality so in our setup β ∈ RK−1. A

ξj > 0 implies that new car on average is preferred to not purchasing a new good. Parameter

θ = (β, σ, α, γ) consists also of σ ∈ RK , α ∈ R, and γ ∈ RK for a total of 3K=15 parameters

to be identified.

“Lagged” information set, I lagged, includes only last years observed and unobserved char-

acteristics to construct νjk(θ). In this case when firm f chooses her characteristics she does

so using the configuration of competitors’ last years products and characteristics to forecast

her best guesses at profit maximizing characteristics’ choices. In doing so she calculates the

Bertrand-Nash prices that would be realized given her choices of observed and unobserved

characteristics and the realized characteristics of her competitors products in the previous

year. On the other hand, “contemporaneous” information set, Icontemporaneous, uses contem-

poraneous characteristics to construct νjk(θ). We approximate E
[
ν (θ) ν (θ)′ |I

]
= IJK .11

We transform the instrument Ĥjkl into a block diagonal matrix so that we have K ∗ 15 = 75

instruments as a benchmark specification.

Table 4 shows the demand and supply estimates. The first column restates the origi-

nal BLP results and columns two and three labeled with FOC (first-order condition) are

estimated using the optimization conditions given the information set I lagged
f,t . That is, we es-

timate the parameters under the assumption that firms only know last year’s characteristics

of their competitors’ cars when choosing their characteristics. Column two uses the full set of

instruments (Full IV) of which there are 43, one for each parameter-FOC pair after dropping

32 instruments due to high correlation. It is well known that while additional instruments

always improve standard errors, if many of them are weak bias can be introduced into the

estimates.12 For this reason we also use a subset of these instruments that we think are

likely to be the most informative (Partial IV). For each characteristic Xk (except ξ) we use

only the derivatives with respect to (α, βk, γk, σk). For ξ we use the derivatives with respect

10Air conditioning is an indicator variable which raises the issue of differentiability. We estimate the model
both with and without the air conditioning first-order condition as we remain overidentified even when we
do not use this condition. At the cost of complicating the estimator by having to combine moment equalities
with moment inequalities we could add an inequality related to air conditioning or any other indicator-type
characteristic.

11This simplification does not affect consistency, only the efficiency. Another approximation of
E
[
ν (θ) ν (θ)

′ |I
]

can be done by a block diagonal matrix where a block is a K by K variance-covariance
matrix of νjk (θ) |k=1,...,K for each firm f and year t.

12For example see Bekker (1994), Newey and Smith (2004), or Hansen et al. (2008).
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to (α, γk, σk) giving us a total of 19 instruments. In the robustness section we estimate

parameters based on the assumption that firms know their competitors’ contemporaneous

characteristics when making choices.

The most striking difference between the BLP estimates in column one and optimization

estimates in columns two and three is that the coefficient on price is much larger in the latter

cases; consumers are significantly more price sensitive when optimization conditions are used

for identification. Table 5 investigates the impact of this difference on estimated elasticities

and markups. On average elasticities double in absolute value in response to the increase in

price sensitivity. This causes estimated markups to fall by on average around 50%.

One possible explanation for these changes across identification conditions is that ob-

served and unobserved characteristics are positively correlated because firms put more un-

observed quality into cars with high observed quality to the researcher. In this case the

instrumented price in the BLP setup will be positively correlated with unobserved quality

and this may be leading to an upward bias in the price coefficient. Table 6 explores whether ξ

is positively correlated with X by regressing estimated ξ’s on all of the BLP demand instru-

ments. Consistent with the price coefficient changes the BLP instruments explain 70% of the

variation in ξ across vehicles and except for miles per dollar – which is negatively correlated

with ξ – all other characteristics are positively correlated with ξ. The negative correlation

between miles per dollar and ξ might be the reason that the coefficient in the BLP setup of

miles per dollar is negative, that is, why people appear not to like fuel efficiency. In reality

they like fuel efficiency but it is negatively correlated with other unobserved features of the

vehicle that consumers’ value.

The last step is to check whether the BLP instrumented price is positively correlated

with ξ. We construct the instrumented price by regressing price on the BLP instruments to

get a predicted price for each vehicle. Table 7 reports the estimates of the regression of these

instrumented prices on an intercept and ξ. The coefficient is significant and positive and the

correlation between the instrumented price and ξ is approximately 0.5. Thus the hypothesis

that the price coefficient is biased up under the assumption of mean independence because

observed and unobserved product characteristics are positively correlated is consistent with

all of our findings from the model estimated with the optimization conditions.

A second related difference is in how the two demand models fit the data. Both mod-

els exactly match market shares of products using the BLP inversion. Only 10% of U.S.

households buy new cars in any given year so both fitted demand models need a way to ex-

plain why 90% of households choose the outside good. The way they do so is quite different
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and the difference can be found in the final row of Table 4, which reports the average ξ’s

from each model’s fit. BLP fits 90% of households not buying by having consumers derive

strong negative unobserved quality on average from the act of buying a car relative to the

outside option of no new car (ξ̄ = −7.10 versus ξ0 = 0). In contrast, the optimization-fit

has consumers strongly desiring new cars relative to the outside good – (ξ̄ = 3.52) – but the

significantly higher price elasticity causes 90% not to buy a new car.

Another difference is that some of the anomalies in the BLP point estimates are not

present in the optimization-fit point estimates. The BLP point estimates imply consumers

dislike fuel efficiency but in our setup they strongly and significantly like fuel efficiency. They

also find costs are decreasing as interior space and fuel efficiency increases. We find costs

increasing in all of the characteristics, including the unobserved characteristic ξ which enters

our cost function but does not enter the BLP cost function.

Table 4 also shows that our estimates are almost always much more precisely estimated

relative to the BLP-fit model whether we use the full or partial set of instruments. With the

full set of instruments our standard errors are on average a fourth of the standard errors from

BLP. The data is exactly the same data so the optimization moments appear to contain more

information on both the distribution of consumer preferences and on the cost parameters.

Before turning to the rest of our results we note that the differences we report here be-

tween the optimization-fit model and the BLP-fit model have also been found in European

automobile data (see Miravete et al. (2015)). They adopt our approach to estimating de-

mand and supply to look at competition in the European automobile market. Using the

optimization moments estimated price elasticities double on average and estimated markups

fall relative to when they use the BLP moments, They find some anomalous demand and

supply point estimates under the BLP-fit that are not present under optimization-fit. Un-

der the optimization-fit their standard errors are much smaller and their unobserved quality

term is positively correlated with observed characteristics.

Table 8 reports the results of the regression of the cost shocks on the BLP instruments

for the cost function. Observed cost characteristics explain almost half of the movement in

the unobserved cost shock.

6 Robustness

Characteristics of automobile do not change every year. We allow for the “dynamic” opti-

mization FOCs, by restricting the observations to when at least one characteristic is changed
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or a new model is introduced. It is equivalent to approximating the sum of the future stream

of profits at the time of changing the characteristics to E [Πf | If,t] = E
[∑T−1

τ=t πf,τ | If,t
]
≈

E [πf,t | If,t]. T refers to the year when at least one characteristic is changed for more

than 10%. The first two columns in Table 9 compares the benchmark results and the “dy-

namic” results. Column 1 is the Full IV estimates presented in Table 4 with the benchmark

“lagged” information set. Column 2 is the Full IV estimates with the “lagged” information

set, only using the restricted observations. Although this reduces the number of observations

to approximately half the standard errors do not increase much as most of the variation in

moments originate from the restricted observations.

In the last two columns we estimate the “lagged” model by applying the instruments

suggested in BLP – own characteristics and the sum of own and competitors’ characteristics.

As long as the BLP instruments are evaluated at the values given by the “lagged” infor-

mation set, they are mean independent from the moment νjk. Standard BLP instruments

are 15 but we include three additional BLP instruments with respect to prices as they are a

function of the given information. Therefore, there are 18 BLP instruments, evaluated at the

competitors’ previous characteristics and the simulated equilibrium prices at those values,

for each moment. Coefficients are similar to the benchmark specification. Standard errors

tend to be lower as there are more instruments.

Table 10 presents robustness results for two additional specifications. Column 1 is the

Full IV estimates presented in Table 4 with the benchmark “lagged” information set. Given

the precision of the estimates in Table 4 (under the “lagged” information set assumption)

we estimate the model allowing for different tastes and cost structures between 1971-1980

and 1981-1990 each of which use 834 and 1175 observations, respectively, in Column 2 and 3.

Estimates are still precisely estimated but the standard errors with half samples are almost

always higher than those with entire samples, and the magnitude of difference is close to 1√
2
.

Most model parameters are similar in the 1970s relative to 1980s.

Column 4 uses the “contemporaneous” information set. While most of the coefficients

in Column 4 are similar to Column 1 some are different although none significantly. The

point estimate of the price coefficient decreases 5% but again the difference is not signifi-

cant. Standard errors for some parameters go down relative to the “lagged” information set

assumption.
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7 Conclusions

Traditional identification since BLP in discrete choice demand model has been to assume

no correlation between observed and unobserved characteristics. The major concern of this

identification assumption is that it may lead to biased price elasticities if observed and

unobserved characteristics are correlated with one other. We avoid this mean independence

assumption and infer the distribution of consumer tastes in demand and supply estimation

by exploiting optimal choices of product characteristics and prices by firms. We allow firms’

information sets at the time they choose characteristics to potentially include competitors’

product characteristics, demand, and cost shocks, signals on all of these, or no information

at all on them. Following Hansen and Singleton (1982), our identification is based on the

assumption that firms are correct in their choices on average even though firms may wish

they had made different decisions ex-post.

Using the same automobile data from BLP, we find elasticities double and markups fall

by 50%. We also find significantly more precise estimates given the same exact data and

some of the slightly puzzling parameter estimates of BLP go away as all of our parameter

estimates are of the correct sign.
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Tables

Table 1: Monte Carlo Simulation - Monopoly, Logit
Parameter Truth J=1000 J=10000

IV at truth IV at non-truth IV at truth IV at non-truth

βX 3 3.026 2.995 3.026 3.012
(0.006) (0.034) (0.002) (0.011)

γ 2 2.047 2.019 2.048 2.029
(0.008) (0.052) (0.003) (0.016)

α 10 9.998 10.001 9.997 9.998
(0.001) (0.004) (0.000) (0.001)

J 1000 1000 10000 10000

Table 2: Monte Carlo Simulation - Monopoly, Random Coefficient
Parameter Truth J=1000 J=10000

IV at truth IV at non-truth IV at truth IV at non-truth

βX 3 3.079 3.090 3.081 3.081
(0.408) (0.045) (0.129) (0.014)

γ 2 2.028 2.020 2.027 2.029
(0.772) (0.065) (0.244) (0.021)

α 10 9.982 9.987 9.983 9.980
(0.104) (0.069) (0.033) (0.022)

σ1 0.1 0.103 0.104 0.104 0.103
(0.495) (0.230) (0.157) (0.073)

σX 0.5 0.509 0.511 0.509 0.512
(1.809) (0.750) (0.572) (0.237)

J 1000 1000 10000 10000
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Table 3: Monte Carlo Simulation - Duopoly, J=2000
Parameter Truth IV at truth

βX 3 2.9866
(0.4021)

γ 2 1.96
(0.1476)

α 10 10.1068
(1.3635)

σ1 1.5 1.5008
(0.1051)

σX 1 0.9935
(0.0681)

J 2000
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Table 4: Estimated Parameters of the Demand and Supply
Variable BLP FOC

Full IV Part IV

Term on Price α ln(y − p) 43.501 144.131 155.661
(6.427) (34.054) (81.672)

Means (β’s) Constant -7.061
(0.941)

HP/weight 2.883 1.168 1.527
(2.019) (0.192) (0.884)

Size 3.460 0.108 0.316
(0.610) (0.036) (0.422)

Air 1.521 1.722 0.975
(0.891) (0.331) (0.812)

MP$ -0.122 2.442 2.401
(0.320) (0.414) (1.633)

Std. Deviations (σ’s) Constant 3.612 3.190 3.093
(1.485) (1.093) (6.304)

HP/weight 4.628 3.007 2.818
(1.885) (0.587) (2.351)

Size 2.056 0.934 0.919
(0.585) (0.150) (0.747)

Air 1.818 1.773 1.607
(1.695) (0.257) (1.247)

MP$ 1.050 0.859 1.612
(0.272) (0.286) (0.984)

Cost Side Parameters Constant 0.952
(0.194)

Mean Charac (ξ) 0.122 0.121
(0.028) (0.056)

ln(HP/weight) 0.477 0.059 0.067
(0.056) (0.015) (0.041)

ln(Size) -0.046 0.030 0.054
(0.081) (0.006) (0.066)

Air 0.619 0.226 0.135
(0.038) (0.042) (0.078)

ln(MPG) -0.415 0.551 0.538
(0.055) (0.081) (0.386)

Mean Unobserved ξ̄ -7.10 5.18 6.10
Num. IVs 15 43 19
J 2217 2125 2125

“Full IV” uses the full set of instruments while “Part IV” uses a subset of instruments.
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Table 5: Implied Elasticities and Markups
Elasticities Markups ($)

BLP FOC BLP FOC
Full IV Part IV Full IV Part IV

Lexus LS400 -3.027 -4.836 -5.008 9214.54 5754.35 5553.02
Lincoln Towncar -3.030 -5.708 -5.973 8310.82 4633.86 4435.15
Nissan Maxima -4.124 -7.867 -8.155 3385.84 1780.48 1716.92

Ford Taurus -3.952 -8.205 -8.966 2679.14 1363.66 1244.59
Chevy Cavalier -5.899 -10.284 -11.668 1327.75 755.42 654.93
Nissan Sentra -6.304 -10.751 -12.420 909.79 533.02 459.87

Mean -4.087 -7.796 -8.482 4051.87 2393.99 2280.53
Median -3.975 -8.219 -8.789 2751.77 1397.99 1324.34

Std. Deviation 1.120 2.130 2.577 3905.32 2821.63 2712.61
“Full IV” uses the full set of instruments while “Part IV” uses a subset of instruments.

Table 6: E
[
ξj
∣∣ X] 6= 0

ξ Full IV Part IV

Constant 0.898 -3.102 1.700 -1.686
(0.594) (1.122) (0.673) (1.241)

HP/weight 6.693 6.123 7.506 5.919
(0.593) (0.613) (0.672) (0.678)

Size 5.463 4.239 5.607 3.888
(0.294) (0.335) (0.334) (0.371)

Air 1.397 0.863 2.503 1.693
(0.135) (0.136) (0.154) (0.150)

MP$ -2.808 -3.952 -3.122 -4.844
(0.0996) (0.143) (0.113) (0.158)

Other BLP instruments No Yes No Yes
R-squared 0.621 0.736 0.624 0.751

“Full IV” uses the full set of instruments while “Part IV” uses a subset of instruments.
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Table 7: Correlation Between Instrumented price (p̂(IVX)) and ξ
p̂(IVX) Full IV Part IV

Constant 7.734 7.048
(0.206) (0.202)

ξ 0.778 0.773
(0.031) (0.026)

R-squared 0.220 0.281
p̂(IVX) is predicted price on BLP demand instruments.

“Full IV” uses the full set of instruments while “Part IV” uses a subset of instruments.

Table 8: E
[
ωj
∣∣ W ] 6= 0

ω Full IV Part IV

Constant 0.090 0.993 -0.165 0.655
(0.136) (0.164) (0.148) (0.184)

ln(HP/weight) 0.326 0.048 0.294 0.031
(0.035) (0.033) (0.038) (0.036)

ln(Size) -0.800 -0.418 -0.871 -0.467
(0.064) (0.060) (0.069) (0.067)

Air 0.341 0.155 0.299 0.134
(0.017) (0.0160) (0.019) (0.018)

ln(MPG) 0.049 -0.136 0.123 0.025
(0.043) (0.0441) (0.047) (0.049)

Other BLP instruments No Yes No Yes
R-squared 0.314 0.578 0.283 0.533

“Full IV” uses the full set of instruments while “Part IV” uses a subset of instruments.
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Table 9: Robustness to Dynamic Optimization and BLP IVs
Variable FOC IVs BLP IVs

Lagged Dynamic Lagged Dynamic

Term on Price α ln(y − p) 144.131 162.919 161.879 162.565
(34.054) (48.834) (18.299) (11.774)

Means (β’s) HP/weight 1.168 0.937 0.77 0.996
(0.192) (0.229) (0.091) (0.073)

Size 0.108 0.133 0.497 0.266
(0.036) (0.034) (0.058) (0.022)

Air 1.722 1.319 1.957 1.220
(0.331) (0.276) (0.188) (0.089)

MP$ 2.442 1.678 2.227 1.871
(0.414) (0.345) (0.217) (0.114)

Std. Deviations (σ’s) Constant 3.19 3.33 2.64 3.912
(1.093) (1.886) (0.607) (0.440)

HP/weight 3.007 2.986 1.963 2.442
(0.587) (0.662) (0.199) (0.140)

Size 0.934 0.641 1.25 0.828
(0.150) (0.128) (0.093) (0.040)

Air 1.773 2.009 1.199 1.518
(0.257) (0.394) (0.131) (0.087)

MP$ 0.859 0.846 0.767 0.815
(0.286) (0.356) (0.120) (0.075)

Cost Side Parameters Mean Charac (ξ) 0.122 0.113 0.12 0.114
(0.028) (0.033) (0.013) (0.008)

ln(HP/weight) 0.059 0.049 0.042 0.049
(0.015) (0.016) (0.005) (0.004)

ln(Size) 0.03 0.026 0.097 0.050
(0.006) (0.007) (0.011) (0.004)

Air 0.226 0.17 0.246 0.150
(0.042) (0.042) (0.025) (0.009)

ln(MPG) 0.551 0.423 0.543 0.438
(0.081) (0.086) (0.053) (0.028)

Mean Unobserved ξ̄ 5.18 8.929 7.208 8.40
Num. IVs 43 59 75 75
J 2125 902 2125 902

“FOC IVs” are the benchmark results, using FOCs as moments and the optimal instruments
H in (9). Lagged results are the same as in FOC Full IV in Table 4.
“BLP IVs” still use FOCs as moments but use BLP IVs as instruments.
“Lagged” specifications evaluate instruments conditional on previous year’s competitors’
portfolios are included in firm’s information set.
“Dynamic” only use observations if at least one characteristic is changed by at least 10%
from the previous year or the new product is introduced.
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Table 10: Robustness to Firm Information and Subsets of Data
Variable Lagged Contemporaneous

Pooled 70s 80s Pooled

Term on Price α ln(y − p) 144.131 140.154 161.219 137.032
(34.054) (59.361) (25.078) (17.737)

Means (β’s) HP/weight 1.168 1.473 1.472 0.886
(0.192) (0.590) (0.197) (0.158)

Size 0.108 0.201 0.307 0.618
(0.036) (0.088) (0.041) (0.062)

Air 1.722 1.489 1.552 1.324
(0.331) (0.543) (0.344) (0.140)

MP$ 2.442 2.214 1.985 2.644
(0.414) (0.837) (0.252) (0.295)

Std. Deviations (σ’s) Constant 3.19 2.259 2.232 2.276
(1.093) (1.355) (0.739) (0.471)

HP/weight 3.007 4.407 3.146 2.963
(0.587) (1.355) (0.422) (0.389)

Size 0.934 0.576 0.664 0.371
(0.150) (0.201) (0.095) (0.169)

Air 1.773 1.634 1.612 1.286
(0.257) (1.007) (0.181) (0.150)

MP$ 0.859 0.697 0.68 0.771
(0.286) (0.411) (0.155) (0.150)

Cost Side Parameters Mean Charac (ξ) 0.122 0.124 0.123 0.134
(0.028) (0.050) (0.018) (0.017)

ln(HP/weight) 0.059 0.076 0.072 0.053
(0.015) (0.035) (0.013) (0.011)

ln(Size) 0.03 0.045 0.049 0.118
(0.006) (0.015) (0.008) (0.013)

Air 0.226 0.203 0.228 0.188
(0.042) (0.092) (0.041) (0.024)

ln(MPG) 0.551 0.544 0.565 0.636
(0.081) (0.181) (0.081) (0.075)

Mean Unobserved ξ̄ 5.18 6.25 6.89 3.52
Num. IVs 43 71 71 72
J 2125 834 1175 2217

“Lagged” are the benchmark results, using instruments conditional on previous year’s com-
petitors’ portfolios are included in firm’s information set. Pooled results are the same as in
FOC Full IV in Table 4.
“Contemporaneous” columns use instruments assuming that competitors’ contemporaneous
product portfolios are known to a firm.
“70s” and “80s” are estimated only using subsamples during 1970s and 1980s, respectively.
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