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 Abstract 
 
This paper considers maximum likelihood (ML) based inferences for dynamic panel data models.  
We focus on the analysis of the panel data with a large number (N) of cross-sectional units and a 
small number (T) of repeated time-series observations for each cross-sectional unit. We examine 
several different ML estimators and their asymptotic and finite-sample properties. Our major 
finding is that when data follow unit-root processes without or with drifts, the ML estimators 
have singular information matrices. This is a case of Sargan (1983) in which the first order 
condition for identification fails, but parameters are identified.  The ML estimators are 
consistent, but they have nonstandard asymptotic distributions and their convergence rates are 
lower than N1/2. In addition, the sizes of usual Wald statistics based on the estimators are 
distorted even asymptotically, and they reject the unit-root hypothesis too often.  However, 
following Rotnitzky, Cox, Bottai and Robins (2000), we show that likelihood ratio (LR) tests for 
unit root follow mixtures of chi-square distributions. Our Monte Carlo experiments show that the 
LR tests with the p-values from the mixed distributions are much better sized than the Wald tests, 
although they tend to slightly over-reject the unit root hypothesis in small samples. It is also 
shown that the LR tests for unit roots have good finite-sample power properties.  
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1. Introduction 

Panel data models assume that individual cross-section units have different intercept terms due to 

unobservable heterogeneity. Two different models are used to control the unobservable 

heterogeneity. One is the random effects (RE) model in which the individual-specific intercept 

terms, or individual effects, are treated as random variables. The other is the fixed effects (FE) 

model in which the effects are treated as parameters. The FE model is more general than the RE 

model in that it requires weaker distributional assumptions about the effects. One difficulty in 

estimating the fixed effects models however is that the number of parameters increases with N.  

A traditional treatment for this so-called “incidental parameters problem” (Neyman and Scott, 

1948) is the within estimator, i.e., least squares on data transformed into deviations from 

individual means, which is also a ML estimator. For models with strictly exogenous regressors, 

the within estimator is consistent. Unfortunately, however, when T is small, the within estimator 

is inconsistent for the dynamic models that use lagged dependent variables as regressors (Nickell, 

1981). One way to avoid this problem is to use the random effects ML estimator that treats the 

effects as time invariant random variables (Hsiao, 1986). Instead, generalized method of 

moments (GMM) estimators have been widely used to analyze the FE dynamic panel models 

(e.g., Arellano and Bond, 1991; Arellano and Bover, 1995; Ahn and Schmidt, 1995, 1997; and 

Blundell and Bond, 1998). An important reason for the popularity of GMM is that it provides 

consistent estimators under quite general FE assumptions. 

In the early 2000’s, research interests in the ML estimation of dynamic panel data 

models have been revived. For example, Lancaster (2002), and Hsiao, Pesaran and Tahmiscioglu 

(2002, HPT) have developed alternative ML estimators for FE dynamic models.1 Kruiniger 

(2002) provides the general conditions under which the ML estimators of Lancaster and HPT are 

consistent. These studies consider the models in which white noise error terms are 

homoskedastic over time. Extending these studies, Alvarez and Arellano (2004) examine the RE 

and the two FE ML estimators when white-noise error terms are heteroskedastic over time. 

One reason for the recent revival of the ML approach may be that the panel data GMM 

estimators often have poor finite-sample properties (e.g., Bond and Windmeijer, 2002).  

Dynamic panel data models imply a large number of moment conditions. The GMM estimators 

                                                 
1Hahn and Kuersteiner (2002) also consider the ML estimator for the FE dynamic model with large N and T.  They 
find the ML estimator, which is the within estimator, is consistent, but it is asymptotically biased.  Hahn and 
Kuersteiner provide a biased-corrected ML estimator.      
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imposing all of the available moment conditions appear to generate biased statistical inferences, 

especially when T is large. Thus, an important research agenda would be to develop the 

alternative GMM estimators that use a smaller number of moment conditions, but without 

substantial loss of asymptotic efficiency. Ahn and Schmidt (1995) show that when data are 

normally distributed, an efficient GMM estimator is asymptotically identical to the ML estimator 

constructed on the same first and second order moment conditions. Given that ML estimators are 

the GMM estimators based on exact identifying moment conditions, the ML-based approach 

may be a viable alternative to the popular GMM approach. 

This paper considers the asymptotic and finite-sample properties of the RE ML estimator 

and the two FE ML estimators of Lancaster (2002) and HPT when white noise error terms are 

homoskedastic over time. In addition, we investigate the asymptotic properties of the estimators 

when data contain unit roots. Our results of efficiency comparisons are not new. For the same 

dynamic models as we consider, Kruiniger (2002) has studied the relative asymptotic efficiency 

of the three estimators, but in a less intuitive manner. Alvarez and Arellano (2004) compare the 

efficiency comparison of the three estimators for general models. Their results are more general 

than those in Kruiniger (2002) and ours, because their models are the autoregressive models of 

higher order with heteroskedastic noise errors. In particular, Alvarez and Arellano propose an 

alternative parameterization for the RE ML estimator that leads to an easy comparison between 

the RE and other estimators. In this paper, we use the same parameterization that we have 

developed independently. More intuitive efficiency comparisons are made because we focus on 

the autoregressive models of order one with homoskedastic errors. Both the approaches of 

Kruiniger and Alvarez and Arellano are limited to the cases in which data are stationary.  

 A novel finding in this paper is that when cross-sectional data follow unit root processes, 

the information matrices of the RE and the two FE ML estimators become singular. However, 

these estimators still can identify the parameters to be estimated. This is a case similar to the case 

of Sargan (1983) in which the first order condition for identification fails, but the parameters are 

identified. Rotnitzky, Cox, Bottai and Robins (2000, RCBR) analyze the general asymptotic 

properties of ML estimators for such cases. Following their approach, we derive the asymptotic 

distribution and convergence rate of the RE and HPT ML estimators. Their asymptotic 

distributions are not normal and their convergence rates are N1/4, not N1/2. In addition, usual 

Wald-type tests for unit roots generate biased inferences. In contrast, likelihood ratio (LR) test 
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statistics for unit root follow mixed 2 distributions that can be easily simulated by Monte Carlo 

experiments. We find that the LR tests with the p-values from the mixed distributions are much 

better sized than other Wald-type tests. 

We also consider a dynamic panel model with heterogeneous trends. For the model with 

large N and T, Moon and Phillips (2004) propose a GMM estimator that is obtained treating 

individual trends as incidental parameters (Neyman and Scott, 1948). The convergence rate of 

the estimator is N1/6 when data follow unit roots with heterogeneous drifts. We consider the ML 

estimation of the model under the alternative assumption that the individual trends are random.  

For fixed T, we find that the convergence rate of the alternative ML estimator is N1/4.        

 This paper is organized as follows. In Section 2, we briefly compare the RE, HPT and 

Lancaster estimators and examine their relative efficiency. Section 3 investigates the asymptotic 

properties of these estimators when data follow unit-root processes. Section 4 reports our Monte 

Carlo experiment results. Some concluding remarks follow in Section 5.     

 

2. ML Estimation 

The foundation of this paper is the simple dynamic model 

 , 1 ( ).it i t i ity y      (1) 

Here i = 1, 2, ..., N denotes cross-section unit (individual) and t = 1, 2, ..., T denotes time. Our 

parameter of interest is  . We initially assume that  is within a unit circle, i.e., | | 1  . We will 

relax this assumption later. The composite error ( )i it  contains a time invariant individual 

effect i and random noise it . The initial observed value of y for individual i is 0iy . We assume 

that the random error vector 1 2( , ,..., )i i i iT     is uncorrelated with 0iy and i , and that 

the i , 0iy , and i are cross-sectionally independent. We assume that the error terms it are 

serially uncorrelated. For the maximum likelihood estimation of model (1), we need to make 

distributional assumptions about the 0iy and i . We assume that all of the i , 0iy , and i are 

normally distributed: 
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where var( )it  . Here, we assume that the 0iy and i have zero means. This assumption is just 

for convenience. We can allow nonzero means without altering our main results. Since we make 

an explicit normality assumption about the individual effects i , we shall refer to (2) as the 

random-effect (RE) assumption. 

 In this paper, we do not consider the more general models that contain exogenous 

regressors. However, our results can be easily extended to such models. The ML estimation of 

model (1) has been considered by Anderson and Hsiao (1981), Bhargava and Sargan (1983), and 

Hsiao (1986). We can easily derive the log-likelihood function, viewing (1) as a recursive 

simultaneous equations model (treating 0iy , 1iy , ... , iTy as endogenous variables). 

 The log-likelihood function for model (1) depends on the five parameters,  , ,oy  , 2

oy , 

2
  and . However, we find a convenient reparameterization by which the parameter 2

oy can be 

orthogonalized to other parameters. Using this method, the parameter of our interest   can be 

estimated independently from 2

oy . In addition, this reparameterization will facilitate our 

comparisons of the RE ML estimator with the two alternative fixed-effects (FE) ML estimators 

developed by Hsiao, Pesaran and Tahmiscioglu (2002, HPT), and Lancaster (2002).  

 We define 

   0( 1)i i ip y    ; 0 0( | )i i iE p y y ;  0 1i i i iu p y    , 

where 2
,( 1) /

o oy y      .2 With this notation, model (1) can be written in the following 

alternative form: 
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where , 1it it i ty y y    , , 1it it i t      , and 

  2( , ..., )i i iTy y y     ; , 1 1 , 1( , ..., )i i i Ty y y      ; 2( , ..., )i i iT       . 

Under the RE assumption, the variance matrix of the error vector ( , )i iu    is given: 

 1

1 1
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, (4) 

                                                 
2If the exogenous regressors, say xi1, ... , xiT, were included in the model, we may construct the likelihood function 
assuming 0 1( | , ,..., )i i i iTE y x x is linear in the conditional variables (Wooldridge, 2000). 
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where 2 2 2
0 ,var( ) / ( / ) /

o oi i y yp y            , 1Tc  is a (T-1)×1 vector whose first entry 

equals one while other entries equal zero, and 1 ,[ ]T T jhB B  is a (T-1)×(T-1) matrix such that 

1, 2T jjB   , 1, , 1 1, 1, 1T j j T j jB B      , and all other entries equal zero. We can show that 

   1 ( 1)1
1 1

( 1) 1 1 1

0 0 1
[ ( )] 1

0
T

T T
T T TT

T
k

B k



 
 

   

         
  

, (5) 

where 1 (( 1) / , ( 2) / ,...,1/ )Tk T T T T T    , and det[ ( )] 1T T T      .3  

 In the reparameterized model (3), the parameter vector to be estimated jointly is given by 

  = ( , , , )     . The initial observation 0iy is uncorrelated with the error vector ( , )i iu    . So, 

we can construct a likelihood function treating 0iy as predetermined. This is so because under our 

normality assumption, 

 
0 0

2 2
0 0 0( , | , ) ( | , ) ( | )i i y i i i yf r y f r y f y    , (6) 

where 1 2( , ,..., )i i i iTr y y y      and “ f ” denotes a normal probability density function. Under 

the RE assumption, and using (4) and (5), we can easily derive the log-density function of ir  

conditional on 0iy .4,5 
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Thus, maximizing the likelihood function 1 , ( )N
i RE i   , we can obtain the conditional RE ML 

estimator of  , which is equivalent to the unconditional RE ML estimator based on the 

unconditional density 
0

2
0( , | , )i i yf r y   . We obtain the equality (6) from the assumption that the 

initial values 0iy  are normally distributed. However, it may be worth noting that the normality 

of 0iy is not required. The equality (6) holds as long as the i and i are normal conditional 

                                                 
3See HPT for the derivation of det[ ( )]T  . The parameter  in their paper is equivalent to ( 1)  in this paper.  
4For the cases in which the yi0 and αi do have non-zero expectations, the term 1 0( )i iy y  will be replaced by 

1 0( )i iy y a    , where a is a constant. 
5We can estimate T  instead of ω. In simulations, we found that the ML algorithms converge faster when T  is 

estimated. Accordingly, we have estimated T  for our simulations.     
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on 0iy and the conditional mean of i is linear in 0iy  

 There is an important case in which the equivalence of the unconditional and conditional 

ML estimators of   breaks down. Suppose that the ity follow a stationary process that has 

considered by Arellano and Bover (1995) and Ahn and Schmidt (1995, 1997): 

  0 0 , 1; ; , 1,..., ,i i i it i it it i t ity q y q q q t T           (7) 

where 1~ (0 , )i T TN I  , i and 0iq are also normally distributed with zero means, and all 

of i , i and 0iq are mutually independent. This process implies that , 1 (1 )it i t i ity y       , 

where (1 ) i  equals i in our notation. Let 0 0( | )i i iE y y  . Then, the data generation 

process (7) appears to be the same as the process given by (1) and (2), if we set: 

 (1 )i i    ; (1 )    . 

However, there exists an important difference between the two data generating processes. In the 

model given by (1) and (2), we do not assume that the initial values 0iy are distributed around the 

effect i . Thus, we do not impose any restriction on , 0cov( , )
oy i iy  . Without any restriction 

on ,oy  , the parameter vector   is orthogonal to the variance (
0

2
y ) of the initial values 0iy .  

Thus, the estimation of   based on the conditional log-density (6) is equivalent to the joint 

estimation of  and
0

2
y  based on the unconditional log-density of 0 1( , , ..., ) .i i iTy y y     

However, this is not the case for (7). The process (7) implies that the 0iy are distributed 

around / (1 )i i    , and that 2
, ,(1 ) (1 )

o oy y          . But this restriction implies 

that
0

2 2(1 ) / y     , and 

   
0

2 2 2 2 2 2(1 ) ( ) /( ) (1 ) /
o oy y y                 . (8) 

Thus, under (7),   is no longer a free parameter: It depends on a new parameter vector 

2( , , , )
oy      . Observe that the marginal density function of 0iy , as well as the conditional 

density of 1( ,..., )i iTy y   , depends on  . Thus, the estimator of   based on the conditional 

log-density (7) is not equivalent to the estimator of  based on the unconditional log-density 

of 0 1( , , ..., ) .i i iTy y y    The ML estimator of   based on the unconditional density will be more 

efficient. Apparently, the unconditional density has more information on   if data are generated 
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by (7). Furthermore, as we show below, when data follow unit root processes, the conditional 

ML estimator of   has a non-standard asymptotic distribution, while the unconditional ML 

estimator computed with the restriction (8) remains asymptotically normal. Of course, however, 

the unconditional ML estimator becomes inconsistent if the restriction (8) does not hold.  Thus, 

in this paper, we focus on the ML estimation of the model (1).   

 The function (6) provides a foundation by which the RE ML estimator of  can be 

compared to the HPT and Lancaster estimators. HPT propose to estimate  based on the 

following differenced model:6  

  1 ,

, 1

0
,i HPT i
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If we assume the normality of the error vector ,( , )HPT i iu    , the HPT model leads to the 

following log-density function: 
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 (9) 

where ( , , )HPT HPT     and , ,det( ) 1HPT T HPT T HTPT     . Observe that this log-density 

function and the corresponding log-likelihood function depend on only three parameters, while 

the RE log-density function (6) depends upon four parameters.  

 While the function (9) is almost identical to (6), a critical difference between the two 

functions is that the former does not depend on the initial value 0iy . That is, (9) is the 

unconditional log-density of 1iy , ..., iTy . Note that under the RE assumption, 

  , 0HPT i i iu y u  ,  
0

2 2var( ) / /HPT i yp        . (10) 

The HPT ML method treats the 0iy as unobservables. This treatment does not lead to 

inconsistent estimators. But it will lead to inefficiency under the RE assumption. The HPT 

                                                 
6 HPT in fact include an intercept term a for the Δyi1 equation.  But the interceptor term equals zero under our 
zero-mean assumptions. 
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estimation does not exploit the information about δ that is contained in the level data 0iy . It only 

exploits the information contained in differenced data. In contrast, the RE estimator utilizes the 

information about  contained in level data (through the non-zero correlation with 1iy  and 

0iy ). Of course, both the estimators become asymptotically equivalent if 0  . 

 The RE and HPT estimators are motivated from the RE assumption (2). However, the 

consistency of the RE and HPT ML estimator does not require that all variables should be normal.  

So long as 0 1( | , ) 0i i i TE y    and 2
0( | , )i i i i TE y I     , both the estimators are consistent.  

This can be shown easily because the score vectors of the RE and HPT log-likelihood functions 

have zero expectations under the two conditions. 

 We now turn to the Lancaster estimator which has a Bayesian flavor. We derived model 

(3) by first-differencing model (1). Instead, if we difference out 0iy from ity , model (1) reduces 

to 

  0 0 , 1 1i i T i iy y p      , (11) 

where 0( 1)i i ip y    , 1T is a T×1 vector of ones, 0 1 0 2 0 0( , ,..., )i i i i i iT iy y y y y y y       and 

0 , 1 1 0 2 0 , 1 0(0, , , ..., )i i i i i i T iy y y y y y y       . Lancaster treats the ip as the unobservable effects 

instead of the i . This treatment is similar to that of HPT in that both do not exploit the 

information contained in the level of 0iy . 

 The density of 0 iy conditional on  , and ip equals 

 

0 0 0 , 1 0 0 , 1/2 /2

1
, 1 1 , 1

/2 /2
2

1 1 , 1

1 1
( | , , ) exp ( 1 ) ( 1 )

(2 ) 2

1
( ) ( )

1 2exp ,
(2 )

( ( ) )
2

i i i i i T i i i TT T

i i T i i

T T

i T i i i

f y p y y p y y p

y y B y y

T
y k y y p

   
  

 


  


 


  

 

          
 
      

  
       
 

 (12) 

where the second equality is shown in the appendix. Observe that 0 1
t

it i s isy y y    . Thus, the 

second equality of (12) implies that the density 0( | , , )i if y p  can be also viewed as a density 

of 1( ,..., )i i iTr y y    conditional on  , and ip . 

 Using the method of Cox and Reid (1987), Lancaster reparameterizes the effects ip  
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defining exp( ( ))i ip p b   , where 

 1 1
1( ) [( ) / ]T t

tb T T t t  
   . (13) 

This reparameterization is chosen so that the new fixed effects ip are information orthogonal to 

( , )   , in the sense that 

  
2

0
2 1

ln( ( | , , ))
0

( , )
i i

i

f y v p
E

p


  

  
   

. 

With this reparameterization and assuming uninformative uniform priors to the ip , we can 

integrate them out from 0( | , , )i if y v p . If we do so, we can show that the conditional density 

of the differenced yit’s, 1 2( , , ..., )i i iTy y y    , conditional on ( , )   , is given  

 1
0 , 1 1 , 1( 1)/2

1 1
( | , ) exp( ( )) exp ( ) ( )

2i i i T i iT
f y v b y y B y y   

 


  
        
 

, 

which leads to the log-density function 

  1
, , 1 1 , 1

( 1) 1
( , ) ( ) ln( ) ( ) ( )

2 2Lan i i i T i i

T
b y y B y y     




  
          . (14) 

 Observe that Lancaster’s ML depends on only two parameters. It does not depend on the 

variance   of the composite error term iu in model (3). Notice that the error term iu  contains 

the projection error component of the effect i (the error in the population regression of 

i on 0iy ). Thus, the fact that (14) does not depend on   seems to imply that the Lancaster 

estimator is indeed a fixed-effect treatment. However, it is not without costs. That is, while the 

Lancaster estimator does not require any distributional assumption about the effect i , it loses 

the usual ML properties as we see below.7          

                                                 
7 An intriguing question would be whether the Lancaster and/or HPT estimators are consistent under broader 
circumstances than the RE estimator is.  Consider the two conditions: (i) 1 2limN i ip N p

     is finite; and (ii) 
1

0lim ( , ) ( , )N i io i i ip N y y 
   is finite.  Obviously, condition (ii) is stronger than (i).  Kruiniger (2002) finds 

that a necessary condition for consistency of the Lancaster estimator is (i).  It can be shown that the same condition 
is required for the consistency of the HPT estimator.  As long as the condition holds and the errors it are i.i.d. and 

uncorrelated with ip , both the Lancaster and HPT estimators are consistent, even if data are not normal.  In contrast, 

it can be shown that the consistency of the RE estimator requires the stronger restriction (ii).  Thus, it is true that 
that the Lancaster and/or the HPT estimator are consistent under more general conditions.  However, there are few 
realistic cases in which condition (i) holds while (ii) is violated.  Condition (ii) would be an acceptable assumption 
for most of the panel studies (at least the studies with short panels).  If (ii) holds, all of the three estimators are 
consistent, and thus the distinction between RE and FE becomes unimportant.     
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 An interesting property of the Lancaster estimator, ˆ ˆ( , )Lan Lan   , is that the asymptotic 

covariance matrix of the Lancaster estimator is not of the inverted Hessian form. Define 

  
2

, , ,
, ,( , ) ; ( , )

( , ) ( , ) ( , ) ( , )
Lan i Lan i Lan i

Lan i Lan iH B   
       

    
          

  
. 

Then, it can be shown8: 

     1 1

2 1 , , ,

ˆ
0 , ( ( , ) ( ( , )) ( ( , )

ˆ
Lan o

d Lan i o o Lan i o o Lan i o o

Lan o

N N E H E B E H
       
 

 



 
   

 
, 

where “→d” means “converges in distribution,” and ( , )o o   denotes the true value of 

( , )   . The reason why the asymptotic covariance matrix of the Lancaster estimator is not of 

the inverted Hessian form is that 0 1( | , ) ( ,... ) 1.Lan i i iTf y v d y y     That is, 0( | , )Lan if y v  is 

not a proper density. Thus, the Lancaster estimator is not really a ML estimator.9 

   Kruiniger (2002) shows that the Lancaster estimator of  is inefficient compared to the 

HPT estimator of  when T > 2, while the asymptotic variance matrices of the two estimators are 

the same when T = 2.10 We can obtain the same result in a more intuitive way. 

 

Proposition 1:  Suppose that the prior density of ip , ( | , )i HPTf p   , is given (0, )HPTN  .  

Then, 

  0( | , , ) ( | , ) ( | , , )i i i HPT i i HPTf y v p f p dp f r v    



  . 

 

All of the proofs are in the appendix. While a rigorous proof of Proposition 1 is given in the 

appendix, the result of the proposition is intuitive given the law of iterative expectations. The 

proposition implies that if 0( | , , )i if y p  were integrated with the normal prior ( | , )i HPTf p   , 

the Lancaster estimator becomes equivalent to the HPT estimator. This explains why the HPT 

estimator should be more efficient than the Lancaster estimator under our RE assumption or the 

assumptions justifying the HPT ML method. Under the RE assumption, the prior ( | , )i HPTf p    

is informative. 
                                                 
8 See Kruiniger (2002). 
9 Lancaster also acknowledges this point. 
10 However, even when T = 2, 0( | , )Lan if y v is not a proper density function. 
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3. Maximum Likelihood When Data Are Random Walks 

In this section, we investigate the asymptotic distribution of the three estimators discussed above 

when data contain unit roots with and without drifts. A number of studies have proposed different 

test methods for unit roots. Examples are, among many, Levin, Lin and Chu (2004), Im, Pesaran 

and Shin (2003), and, Moon and Phillips (2004), and Moon, Perron and Phillips (2005). These 

studies consider the cases of large N and T. Alternative unit-root tests for the data with fixed T 

have been studied by Breitung and Meyer (1994), and Harris and Tzavalis (1999). By 

investigating the asymptotic distributions of the ML estimators, we derive the distributions of the 

Likelihood-Ratio (LR) statistics for testing unit roots in data with fixed T. 

 

3.1. Random Walks without Drifts 

In this subsection, we consider the asymptotic distribution of the random effects ML estimator 

when data follow unit root processes. We begin by considering the cases in which the yit are 

random walks without drifts: , 1it i t ity y   , for t = 1, 2, ... , T. We can easily see that this unit 

root process is equivalent to the following three parametric restrictions on model (3): 

  * *: ( , , , ) (1, ,0,0)UND
o o o o o oH            (15) 

where the superscripted “UND” refers to “unit-root with no drift”, the subscripted “o” indicates 

the true value of the corresponding parameter, and * is unrestricted. 

 For notational convenience, we use , ,RE i  and , ,RE i  to denote the score vector and the 

Hessian matrix of the log-density ,RE i , respectively.  We will use the same rule to denote the 

derivatives of the log-density function with respect to individual parameters: for example, 

, , , /RE i RE i     and 2 2
, , , /RE i RE i     . 

 In usual maximum likelihood theory, the information matrices of log-density (in our case, 

( , ,( ( ))RE i oE   ) are assumed to be nonsingular. However, when data are generated with the 

restrictions (15), this is no longer the case. We state this finding formally.   

 

Proposition 2:  Under UND
oH , both of , , *( ( ))RE iE   and , , * , , *( ( ) ( ) )RE i RE iE      are singular. 
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 The proposition implies that the information matrix of the RE log-density function (6) is 

singular. This proposition also applies to the HPT and Lancaster estimation. It means that the 

usual asymptotic theory of ML estimation does not apply to the RE, HPT and Lancaster ML 

estimation when data follow random walks without drift. Singular information matrices often 

imply model non-identification. However, as Sargan (1983) finds from the analysis of the models 

linear in variables and nonlinear in parameters, a singular information matrix (first-order 

condition for lack of identification) is not a necessary condition of non-identification. Similarly 

to his cases, Proposition 2 does not imply that the RE model (3) is not identifiable when *o  .  

If the RE model were not identifiable, it should be the case that * is not a unique maximizer of 

,( ( ))RE iE   when *o  . But this is not the case. To see why, consider a simple case of T = 2 

at *o  .  If we concentrate ,( ( ))RE iE  by maximizing it with respect to the nuisance 

parameter vector ( , , )     given  , we can obtain: 

   
2

2
, *

1 1 1 5 1
( ) ln ln 2 ( , ),

2 2 2 2 2 2
c
RE iE g v T

  
           

  
  

where the superscript “c” means “concentrated”, and *( , )g T is some function of the variance 

parameter ν* and T.  Then, it can be show that at 1  , 

  , , , , , , , ,( ( )) ( ( )) ( ( )) 0; ( ( )) 3c c c c
RE i RE i RE i RE iE E E E              . 

Thus, although the expected value of the second derivative of , ( )c
RE i  equals zero, 1  is still a 

local maximum point. Moreover, it can be shown that 

   
3

, , 2 2

2( 1)
( ) .

( 2) 1 ( 1)
c
RE iE 


 


 

    
  

Thus,  , ( )c
RE iE  is always increasing when  < 1 and decreasing when  > 1. This indicates 

that 1  is the global maximum point of  , ( )c
RE iE  when *o  . This shows that * is the 

global maximum point of ,( ( ))RE iE  when *o  . We can generalize this result to the cases 

with general T. Stated formally: 

 

Proposition 3: Under UND
oH , *  is a unique global maximizer of ,( ( )).RE iE   Thus, the RE 



 13

ML estimator, ˆ ˆ ˆ ˆ ˆ( , , , )RE RE RE RE RE      , is a consistent estimator under UND
oH . 

 

 This proposition applies to the HPT estimator. However, somewhat surprisingly, it does 

not apply to the Lancaster ML estimation. When data are random walks, the point 1   is an 

inflexion point of the expectation of Lancaster log-likelihood function. 

 

Proposition 4:  Under UND
oH , * does not maximize  , ( , )Lan iE   . In fact, * is an inflexion 

point. 

 

 This proposition is shown by investigating the concentrated expected log-likelihood 

function  , ( )c
Lan iE  constructed similarly to  , ( )c

RE iE  . For example, when T = 2, we obtain: 

   
2

,

2

( ) ( 1)
0

2( 1)

c
Lan iE

 
 

  
    


. 

Thus,  , ( )c
Lan iE  is always increasing except when 1  . 

 Proposition 4 implies that the estimator of  which directly maximizes the log-likelihood 

function 1 , ( , )N
i Lan i     may not be consistent when data contain a unit root. In fact, in 

unreported simulations with data containing unit roots, we often failed to locate the maximizing 

values of ( , )   , although, when located, they were close to one. In contrast, Given that 1  is 

the unique root of  ,. ( ) /c
Lan iE    = 0 when *o  , the GMM estimator using the score 

vector of 1 , ( , )N
i Lan i    as moment functions would be consistent. However, the GMM estimator 

would not be normal even asymptotically. It can be shown that the expectation of the Hessian 

matrix of 1 , ( , )N
i Lan i    is singular under UND

oH . In this paper we will not further explore the 

asymptotic distribution of the Lancaster estimator, although it would be an interesting research 

agenda. We focus on the asymptotic distributions of the RE and HPT estimators. Given that the 

Lancaster estimator does not use a proper density, it could be viewed as a GMM estimator or a 

pseudo ML estimator in the sense of Gouriéroux, Monfort and Trognon (1984). The approach of 

Rotnitzky, Cox, Bottai and Robins (2000), which we use below to derive the asymptotic 

distributions of the RE and HPT ML estimator, is for the ML estimators. It would be a valuable 
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research agenda to investigate how their approach can be generalized to GMM or pseudo ML 

estimators. 

 Proposition 4 is a somewhat counterintuitive result in that the expected value of the HPT 

log-likelihood function has a global maximum at 1  when *o  . Recall that when 1o   

and T = 2, the Lancaster and HPT estimators are asymptotically equivalent. Proposition 4 implies 

that this equality breaks down when data are random walks ( *o  ). 

 Sargan (1983) shows, for the models linear in variables but nonlinear in parameters, that 

when information matrices are singular, ML estimators are not asymptotically normal, although 

they may be consistent. Similar to his case, Proposition 3 warrants that the RE and HPT 

estimators are consistent, but their asymptotic distributions are not normal when *o  as we 

show below. While the asymptotic distributions of the two RE and HPT estimators are similar to 

those of the ML estimators Sargan considered, his results do not directly apply to the dynamic 

panel data model (3). The model Sargan (1983) has analyzed subsumes linear simultaneous 

equation models without variance-covariance restrictions on error terms. The dynamic panel 

model (3) can be viewed as a linear simultaneous equations model if we treat 1iy , ... , iTy  as 

endogenous regressors. However, the model (3) is not a special case of Sargan’s model because it 

imposes variance-covariance restrictions on the error terms.  

 Fortunately, Rotnitzky, Cox, Bottai and Robins (2000, RCBR) derive the asymptotic 

distributions of the ML estimators of more general models when their information matrices are 

singular. We can derive the asymptotic distributions of the RE and HPT estimators using their 

method. Here, we will focus on the RE estimator only. All of the results we obtain below also 

apply to the HPT estimator. 

 RCBR study the cases in which the derivatives of log-density functions are linearly 

dependent (so that Hessian matrices become singular). For such cases, they derive the asymptotic 

distributions of ML estimators and likelihood-ratio (LR) test statistics. To use their method, we 

need to show that the derivatives of ,RE i are linearly dependent at *  . Stated formally:  

       

Proposition 5:  , , * , , * * , , *( ) ( ) ( ) 0RE i RE i RE i          . 

 

 To get tractable asymptotic results, we now need to reparameterize the model.  
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Following RCBR, we define the following new parameter vector: 

 

   1

, , * , , * , , * , , *

* *

0
( 1)

( ) ( ) ( ) ( )

0

( 1)
( 1) ,

1 ( 1)

0

r

r
r

r RE i RE i RE i RE i

r

E E   

 
 

 
     
 

 
    


  
 



   
     
        
           

  
     
               
      
     
     

   

 

where ( , , )     , and E() is computed assuming UND
oH . This parameterization is chosen to 

secure that when *  , *r  . The reparameterization requires the knowledge of the true 

variance of it , * . However, this problem can be resolved by replacing * by r . 

 The above reparameterization means that we retain  and in , ( )RE i  , but treat and 

 as the functions of  and the new parameters r and r : 

   ( 1); ( 1)r r r r               . (16) 

Let ( , )r r    , ( , , )r r r     and , ,( ) ( , ( , ), ( , ), ).RE i r RE i r r          Under this 

reparameterization, , *r o  whenever *o  . In addition, the reparameterization is designed to 

have 

   , , * , , * , , * * , , *( ) ( ) ( ) ( ) 0RE i RE i RE i RE i              . 

This reparameterization is necessary because the RCBR approach is basically for the cases where 

a first derivative of a log-likelihood function equals (not asymptotically, but exactly) zero. The 

asymptotic distributions of the ML estimators of and are different from those of the ML 

estimators of r and r , although the former can be derived from the latter (see RCBR).  

However, the distribution of the ML estimator of  can be directly obtained from that of the ML 

estimator from the reparameterized model.   

 Define: 

    ,1 2i i is s s  ; ,1 , , *( ) / 2i RE is    ; , ,,2 *( )rRE iis    ; 
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   ( ) [ ], , 1, 2i i ijE s s i j     ; 1 [ ]ij   . 

To use the RCBR approach, we need to check (i) whether or not , , *( )RE i   equals zero or is 

linearly related to , , *( )RE i   and ,2is , and (ii) whether or not , , *( )RE i   is a linear combination 

of is . We find that only , , *( )RE i   equals zero, not , , *( )RE i   , and that , , *( )RE i   is not a linear 

combination of , , *( )RE i   and ,2is . We also find that , , *( )RE i   is not a linear combination 

of *( )is  . Based on this finding, we obtain the following result: 

 

Proposition 6:  Let 1 2( , )Z Z Z  denote a mean-zero normal vector with 1( )Var Z   , where 

1Z is a scalar and 2Z is a 3×1 vector. Let ˆ ˆ ˆ( , )r r    be the ML estimator that maximizes 

1 , ( )N
i RE i   . Assume that UND

oH holds; that is, ( , , ) (1,1,0)o o o     .  Then, 

  
1/ 21/ 4
1

1 121 11 11/ 2
2 12*

ˆ 0( 1)( 1)
1( 0) 1( 0),

( )ˆ( )

B

d

r

ZN
Z Z

Z ZZN


  

     
              

 (17) 

where * *( ,1,0)   , “→d” means “converges in distribution,” and B is a Bernoulli random 

variable with success probability equal to half and independent of Z. The Likelihood Ratio (LR) 

statistic for UND
oH is a mixture of 2 (2) and 2 (3) with the mixing probability equal to one half.  

The LR test for the hypothesis that 1o  is a mixture of 2 (1) and zero with the mixing 

probability equal to one half.11  

   

 Several comments follow from Proposition 6. First, the ML estimator r̂ is not normal 

even asymptotically. Since ˆ ˆ
RE  , the above theorem indicates that the convergence rate of 

ˆ
RE is N1/4. The result also implies that the ML-based t-test for the hypothesis of 1o  would not 

be properly sized.12 Second, the probability that the ML estimator ˆ
RE is equal to the true value 

                                                 
11 If the means of the 0iy and i are non-zero, we need to include an intercept term, say a, in the log-likelihood 

function replacing 1 0( )i iy y  by 1 0( )i iy y a   . Then, the unit-root hypothesis (15) implies a = 0 in addition 

to the restrictions in θ*.  For this case, the LR statistic for testing all of the restrictions implied by (15) is a mixture 
of 2 (3) and 2 (4) . 
12 We may consider an alternative Wald-type test statistic, 4 11ˆ( 1) /REN    . Proposition 6 implies that under UND

oH , 
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of  converges to half as N  . This implies that the asymptotic distribution of the ML 

estimator ˆ
RE will be spiked at 1  when *o  . Third, the two LR test statistics from the 

reparameterized log-likelihood , ( )RE i r are the same as the LR test statistics directly obtained 

from the original log-likelihood , ( )RE i  . Thus, using the LR statistics for testing UND
oH , we do 

not need the parameterization (16). Fourth, we can think of the LR statistic for testing the joint 

hypothesis that 1o  and 0o  . It can be shown that when *o  , this test statistic follows a 

mixture of 2 (1) and 2 (2) .13,14 

 Finally, we can obtain the similar results for the HPT estimator. The unit-root hypothesis 

(15) implies that 1o  and , 0HPT o  . The HPT-based LR test for this joint hypothesis follows a 

mixture of 2 (2) and 2 (1) . 

 

3.2. Random Walks with Homogenous Drifts 

We now consider the ML estimation of the dynamic panel data model with homogeneous trends, 

and the LR test for the hypothesis of random walk with homogeneous drifts. Specifically, we 

consider the following model: 

   , 1 ( )it i t i ity y t       . (18) 

We assume that 0( , , )i i iy    satisfies the RE assumption (2), but we now allow the initial 

values 0iy and the effect i to have nonzero means. Assume that 0 1 2 0( | )i i iE y y    . Then, 

similarly to what we have done from (1) to (3), we can transform (18) into  

                                                                                                                                                             
this statistic follows a mixture of 2 (1) and zero. 
13 These LR tests are two-tail tests. When T is fixed, the RE likelihood function is well defined in the neighborhood 
of 1  . Thus the RE ML estimator is not subject to the boundary problem raised by Andrews (1999), and the 

hypothesis of 1o  can be tested against the two-tail alternative hypothesis of 0 1  . This justifies use of the LR 

tests.  However, some one-tail alternatives of the LR tests would be more powerful since o is unlikely to be 

greater than one, although we do not investigate them here.           
14 Arellano and Bover propose to use for GMM the moment conditions, , 1[ ( )] 0it is i sE y y y    , t < s. These 

moment conditions are valid under (7), but not under (1) and (2). Observe that these moment conditions can identify 
the true value of   even if data follow unit root processes without drifts. In contrast, the moment conditions by 
Arellano and Bond (1991), , 1( ( )) 0it is i sE y y y     , t < s, are motivated by the model given by (1) and (2). As 

Blundell and Bond (1998) find, these moment conditions are unable to identify   if data follow random walk 
processes because the level instruments yit are uncorrelated with differenced regressors Δyi,s-1.         
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 (19)  

where 1a    , 2( 1)     and 0 1( ( | ))i i i i iu E y     . The individual log-density 

function for this model (conditional on 0iy ) is given: 

    

 

,

1
, 1 1 1 , 1 1

2

1 0 1 , 1 1

1
( ) ln(2 ) ln( ) ln( )

2 2 2
1

1 1
2

( ) ( 1 ) ,
2

D D
RE i T

i i T T i i T

i i T i i T
T

T T

y y B y y

T
y y a k y y

   

   


  



    

  

   

        

        



 (20) 

where ( , , , , , )D a       , and 1T T   , as before. 

 Suppose that data are generated by the following trend-stationary process: 

   it i ity gt q   ; , 1it i t itq q   , 0,...,t T , (21) 

where 1~ (0 , )i T TN I  , i and 0iq are also normally distributed, and all of i , i and 0iq are 

mutually independent. Assume that 0 1 2 0( | )i i iE y y    . This data generation process is the 

same as the process (18), if we set: 

 (1 )i i    ; 2(1 )    ; 1(1 )a g    ; (1 )g   . 

However, there exists an important difference between (18) and (21). In the former, we do not 

assume that the initial values 0iy are distributed around the effect i . Thus, we do not impose any 

restriction on , 0cov( , )
oy i iy  . Without any restriction on ,oy  , the parameter vector  D is 

orthogonal to the variance (
0

2
y ) of the initial values 0iy . Thus, the estimation of D  based on 

the conditional log-density (20) is equivalent to the joint estimation of D and
0

2
y  based on the 

unconditional log-density of 0 1( , , ..., ) .i i iTy y y    However, this is not the case for (21). The 

process (21) implies that the 0iy are distributed around /(1 )i i    , and that 

2
, ,(1 ) (1 )

o oy y          . But this restriction implies that
0

2 2(1 ) / y     , and 

   
0

2 2 2 2 2 2(1 ) ( ) /( ) (1 ) /
o oy y y                 . (22) 

Observe that does not contain any free parameter given ,  , and
0

2
y . This means that any 

knowledge of
0

2
y would help to obtain a more efficient estimator of D . This implies that the 
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estimation of D based on the conditional log-density (20) is not equivalent to the joint 

estimation of D and
0

2
y based on the unconditional log-density of 0 1( , , ..., ) .i i iTy y y    The ML 

estimators based on the unconditional density will be more efficient. Of course, these 

unconditional ML estimators will be inconsistent if condition (22) is violated. 

 We now turn to the cases where data are random walks with homogeneous drifts; that is, 

1  in (21). We can show that the unconditional ML estimators computed with the restriction 

(22) are consistent and asymptotically normal.15 Thus, the usual ML theory applies. However, 

the conditional ML estimators without the restriction have a different story. The hypothesis of 

random walk with a homogeneous drift implies the following restrictions on (20): 

   * * *: (1, ,0,0, ,0)D D D
o oH a     , (23) 

where “D” refers to “(homogeneous) drifts”, and * and *a are unrestricted. When this hypothesis 

holds, we obtain essentially the same results as Proposition 5. Stated formally: 

 

Proposition 7:  , , * * , , * , , * * , , *( ) ( ) ( ) ( ) 0D D D D D D D D
RE i RE i RE i RE ia              . 

 

 Proposition 7 implies that the Hessian matrix (not just the information matrix) of the RE 

ML estimator of D is singular under D
oH . In order to derive the asymptotic distribution of the 

ML estimator, we can use the following reparameterization: Define ( , , , , , )D
r r r ra       , 

where 

 ( , )r rv      ; ( , ) ( 1)r r       ; ( , , ) ( 1)r ra a         . (24) 

Then, ,0 *
D D
r  whenever *

D D
o  . Let 

 , ,( ) ( , ( , ), ( , ), , , ( , , ))
D D D
RE i r RE i r r ra a             , 

so that 

 , , * , , * * , , * , , * * , , *( ) ( ) ( ) ( ) ( ) 0D D D D D D D D D D
RE i RE i RE i RE i RE ia                  . 

With this parameterization, we redefine: 

   ( , , , , )r r r ra      ; 

                                                 
15 The restricted ML estimators are also consistent and asymptotically normal for the models without drifts. 
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 ,1 ,2( , )i i is s s  ; ,1 , , *( ) / 2D D
i RE is    ; ,2 , , *( )

r

D D
i RE is    ; , *( | )D D

i r oVar s     . 

Similarly to Proposition 6, let 1 2( , )Z Z Z  denote a 6×1 mean-zero random vector with 

1( ) ( )Var Z   , where 1Z is a scalar. Then, the ML estimator of D
r , ˆ ˆ ˆ( , )D

r r     , has the same 

asymptotic distribution as (17). Accordingly, the LR statistic for testing D
oH is a mixture of 

2 (3) and 2 (4) , 2 2(4) (1 ) (3)B B   , where B is a Bernoulli random variable with success 

probability equal to one half. In addition, under UD
oH , the LR statistic for testing 1o   

is 2 (1)B . Similar to the cases of unit-roots without drifts, these LR statistics can be computed 

using the original log-likelihood 1 ,
N D
i RE i  . The reparameterization (24) is not required. 

 

3.3. Random Walks with Heterogeneous Drifts 

In this section, we examine the ML estimation of a dynamic panel data model with 

heterogeneous trends, and the corresponding LR test for the hypothesis of random walk with 

heterogeneous drifts. Under this model the data follow the following process: 

   , 1 ( )it i t i i ity y t       , (25) 

As before, the error terms it are assumed to be normal and i.i.d. over both time and individuals.  

The error terms are not correlated with any of i , i and 0iy . The identification of the model 

requires that 3T  . Assume that ( )i i  and i are normal conditional on the initial value 0iy  

with conditional means linear in 0,iy  and the conditional variance matrix, ,W  where 

jhW      (j, h = 1, 2) is a 2×2 matrix. 

 Moon and Phillips (2004) have proposed a GMM estimator for model (25). In their study, 

T is large and the unobservables i and i are nuisance parameters. An interesting property of the 

GMM estimator is that its convergence rate is N1/6. In this subsection, we consider an alternative 

random-trends treatment. 

 Define 2
, 1it it i ty y y      , 2 2 2

3( ,... )i i iTy y y     , and 2 2 2
, 1 2 , 1( ,... )i i i Ty y y      .  

We also define 1 0 1( ( | ))i i i i i i iu E y         , and 2 0 2( ( | ))i i i i iu E y      . Using this 

notation, we can transform the model (25) into: 
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Define: 
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( 2) 20T
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, 

such that 2
1 1 2( ,..., ) ( , , )HD

T i iT i i iL y y y y y         . Then, the variance matrix of the error vector in 

(26), 2
1 2( , , )i i iu u    , is of the form: 

 ( )HD HD HD
T T T T TW L L J WJ      . 

With this variance matrix, the log-density of 2
1 2( , , )i i iy y y     conditional on 0iy is given: 

 

,

1 1 1 1 1 1
1

2 2 2 0 1 2 2 2 0 1
2 2 2 2

, 1 , 1

1 1
( ) ln(2 ) ln( ) ln{det[ ( )]}

2 2 2

1
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2
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HD HD HD
RE i T
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i i i T i i i

i i i i
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 (27) 

where 11 12 22 1 2 1 2( , , , , , , , , )HD a a         . An alternative representation of the log likelihood 

function, which is computationally more convenient, is given in the appendix.  

 Suppose now that the data follow the unit-root process with heterogeneous drifts: 

it i ity     . This process implies the following five restrictions on HD :  

  * 11,* 1,* 1,* *: (1, , , 0, 0, , 0, , 0)HD HD HD
o oH a      , (28) 

where “HD” refers to “heterogeneous drifts,”, and * , 11,* , 1,* , and 1,*a are unrestricted ( 1o  , 

12, 22, 0o o   , and 2, 2, 0o oa   ). Similar to the cases of unit-roots without drifts and with 

homogeneous drifts, we can show that under HD
oH , the information matrix of the log-density (24) 

is singular. Stated formally: 
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Proposition 8:  At *
HD HD  , 

 
2 2 11 12, , 1 , , 1 , , , , 11 , , 11 , ,( 1) 0.HD HD HD HD HD HD

RE i RE i a RE i RE i RE i RE ia                    

 

 Proposition 8 implies that similarly to Proposition 6, we can derive the asymptotic 

distribution of the ML estimator of HD . The LR statistic for testing HD
oH is a mixture of 2(5)  

and 2(4) , 2 2(5) (1 ) (4)B B   . The ML estimator of  is N1/2-consistent. This convergence 

rate is contrasted to N1/6 of the GMM estimator of Moon and Phillips (2004). We are unable to 

identify the source of their different convergence rates. Indeed, their convergence rates are 

obtained under different settings: large N and fixed T for the ML estimator; and both large N and 

T for the GMM estimator. The two estimators could be better compared by investigating the 

asymptotic distribution of the ML estimator as T tends to infinity. We will leave this comparison 

to a future study. 

 

4. Monte Carlo Experiments 

In this section we consider the finite-sample properties of the RE and HPT ML estimators. We 

here consider the RE and HPT ML estimators only.16 Alvarez and Arellano (2004) compare the 

efficiency gains of the RE estimator over the HPT and Lancaster estimators through calculations 

of population asymptotic variances. Thus, our results partly supplement theirs. 

We also investigate the size and power properties of the t-test and the Likelihood Ratio 

(LR) test based on the RE and HPT estimators. Harris and Tzavalis (1999) proposed one-tailed t-

tests for the hypothesis of unit root. The t-statistics for their tests, which are obtained by 

correcting the biases in within-type estimators, are asymptotically standard normal under the null 

hypothesis of unit root. For comparison, we also report the test results from their method.  For 

our experiments, we consider three cases: the ML estimation without trend, with homogeneous 

trends, and with heterogeneous trends. 

 

4.1. ML Estimation without Trend 

                                                 
16The Lancaster estimator seems to be quite sensitive to the choice of the starting parameter values used for 
algorithms.  Some limited simulation results on the Lancaster estimator are available upon request from the authors. 
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In this subsection, we consider the finite-sample properties of the RE and HPT estimators 

computed with the assumption of no trend. The foundation of our Monte Carlo experiments here 

is the stationary data generating process (11), where 2~ (0, )i N   , 2
0 0~ (0, )i qq N  and 

~ (0, )i N  . We set 2 2  , 2
qo  = 2, 1  , and T = 5. We try four different values, 0.5, 0.8, 0.9 

and 1, for o . Observe that when 1o  , the ity are random walks without drifts. For each trial, 

we use 10,000 iterations. We consider two cases, N = 500 and 100, to examine both the large-

sample and small-sample properties of the estimators.   

 Table 1 reports the bias and MSE (mean square error) of the RE ML estimator of  . We 

also report the finite-sample size and power properties of the t-tests based on the RE ML 

estimation. For all true values of  ( o ), the biases of the ML estimator are small, even when N = 

100. MSE generally increases with o when 0.9o  , but it slightly decreases as o increases 

from 0.9 to one. When o is small, the t-test is properly sized. However, as o increases, the test 

tends to over-reject correct hypotheses.   

 The power of the t-test to correctly reject the unit-root hypothesis increases with N.  

When N = 100, the power of the t-test is generally low especially when 0.8 1o  . When 

1o  , the t-test rejects the correct unit-root hypothesis too much. This trend is not dependent on 

the sample size.  This result is consistent with Proposition 6. The HPT estimator has similar 

properties as the RE estimator. 

 Figures 1-2 show the finite-sample distributions of the sampling errors of the RE 

estimator (that is, ( )RE o  ). Figure 1 is for the case with N = 500 and Figure 2 is for the case 

with N = 100. In either figure, the distribution of the RE estimator becomes wider as o increases.  

Up to 0.9o  , the estimator is roughly normally distributed. Then, when 1o  , the estimator is 

no longer normally distributed.  Its distribution has a hump near 1  as Proposition 6 suggests. 

 Figures 3 compares the sampling error distributions of the RE and HPT ML estimators 

when N = 100. Somewhat surprisingly, the two estimators are similarly distributed. At our choice 

of parameter values, the efficiency gains of the RE estimator over the HPT estimator are not 

substantial. However, we find from unreported experiments that the efficiency gain of the RE 

estimator increases with the conditional variance of 0iy given the individual effects i ( 2
0q  in 
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our set-up).  

 We now examine the finite-sample size and power properties of the LR tests for all of the 

parametric restrictions implied by the hypothesis of unit root. In Table 2, LR-RE denotes the RE-

based LR test for three parametric restrictions ( , , ) (1,0,0)o o o     . LR-HPT represents the 

HPT-based LR test for two restrictions ,( , ) (1,0)o HPT o   , while the t-test of Harris and 

Tzavalis for the hypothesis of unit root without drifts is represented by T-HT. The asymptotic 

distribution of the LR-RE statistic is asymptotically a mixture of 2 (3)  and 2 (2) , while that 

of the LR-HPT statistic is a mixture of 2 (2)  and 2 (1) . For sensitivity analysis, we report 

test results obtained with five different combinations of the values of 2
 , 2

qo , and . 

 The LR-HPT test is generally better sized than the LR-RE and T-HT test, but by a small 

margin. For example, for our base choice of 2 2  , 2 2qo  , and 1  , when N = 500 and the 

normal size is 5%, the rejection rates of LR-RE, LR-HPT and T-HT are 5.40%, 5.03%, and 

5.38%, respectively. Even when N = 100, both the LR-HPT and LR-HPT tests perform well.  

LR-RE tends to over-reject the unit root hypothesis, but the size of this distortion is not 

substantial, clearly smaller than that of the t-test reported in Table 1. 

 Table 2 also reports the finite-sample power property of the LR tests to reject the unit-

root hypothesis. Not surprisingly, the power of each test increases with N. Overall, LR-RE has 

the highest power, with a few exceptions in the cases with N = 100 and the 1% significance level.  

The powers of LR-HPT and T-HT are generally compatible. The power of the LR-RE test 

depends on the sample size (N), the true value of  ( o ), and the relative sizes of the conditional 

variance of the initial values of y ( 2
0q ) and the variance of the random noises ( ). Their powers 

are positively related to the sample size and the conditional variance of the initial values 

of y (conditional on the unobservable effects i ), while it is negatively related to the variance of 

random noises and the true value of  . To be more specific, consider the case of N = 500.  

When o = 0.9, the power of the LR-RE test is 100% or very close to it for all of the cases 

reported in Table 2. Even the true value of  is closer to one ( 0.95o  ), the power remains 

reasonably high, when the conditional variance is relatively larger than the variance of the 

random noises. If we compare our base case of 2 2( , , )qo   = (2,2,1) with the cases 
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of 2 2( , , )qo   = (2,1,1) and 2 2( , , )qo   = (2,2,4), we can see that the power of the LR-RE test is 

negatively related to the ratio of and 2
qo . The power is somewhat low when the ratio is large, 

especially when 1% of significance level is used for the test. But, the power of the LR test using 

10% of significance level is greater than 89% for all of the cases reported in Table 2. 

 We now consider the power of the LR-RE test when N = 100. Clearly, the power is lower 

when N = 100 than when N = 500, especially when the ratio of and 2
qo is large and the true of 

 is close to one. But, when the ratio of and 2
qo is small, the power of the test is reasonably 

high, even if the true value of  is very close to one (see the case of 2 2( , , )qo   = (2,4,1)). For 

dynamic models, we can expect that the ratio of and 2
qo should be low because the initial 

values of y is the weighted sum of the past random noises. The ratio would be even lower when 

the true value of  is close to one. Thus, we can guess that for quite general cases, the LR test 

would have high power even in small samples.   

 Table 3 reports the finite-sample performances of the LR tests for the single parametric 

restriction 1o   based on the RE and HPT estimators. Comparing Tables 2 and 3, we can see 

that the LR tests for the multiple restrictions implied by the hypothesis of unit root (e.g., 

( , , ) (1,0,0)o o o    for the cases of the RE estimation) are generally better sized than the LR 

tests for the single restriction of 1o  . The former tests also have much higher power. 

 The general findings from our first Monte Carlo experiments can be summarized as 

follows. First, when the true value of  is near one, the RE and HPT estimators do not follow 

usual normal distributions even if the sample size is large. This finding is consistent with our 

result in Proposition 6. Second, when the data follow the random walks without drifts, the t-tests 

based on the ML estimators reject correct unit-root hypothesis too often. In contrast, the LR tests 

based on the RE or HPT estimators perform well. Even when N is small, they are sized properly 

and have good power to reject the unit root hypothesis. Third, we find that in terms of the power 

of the LR test, use of the RE estimator instead of the HPT estimator is desirable especially when 

the initial values have a large variance. Finally, the LR test for the single restriction of 1o  has 

low power. Use of the LR test for the multiple restrictions implied by the unit-root hypothesis is 

recommended.     
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4.2. ML Estimation with Homogenous Trends 

We now consider the LR test for unit root based on the RE estimation with homogeneous trends.   

For simulations, data are generated following (21). The parametric restrictions we test are 

given : ( , , , ) (1,0,0,0)o o o o oH       . Table 4 reports the rejection rates of the LR test 

determined by using the mixed distribution of 2 (3)  and 2 (4) . Again as with Tables 2 and 3, 

we report the results we obtain with different combinations of the values of 2
 , 2

qo , and .  

For all simulations, the trend parameter g in (21) is fixed at 0.5. The choice of different values of 

g alters simulation outcomes only immaterially. Six different combinations of N and T are used.  

For each of N = 100 and 200, we try three different values for the number of time series 

observations: T = 5, 10, and 25. We do so because the size of T would be an important factor 

determining the finite-sample properties of the estimators for the models with time trends.     

For the cases with T = 5, the results reported in Table 4 are very comparable to those in 

Table 2. The introduction of homogeneous drift does not lead to a large change in the size or 

power of the LR test. The power of the LR tests becomes higher as either N or T increases.  For 

our base choice of 2 2  , 2 2qo  , 1  , and T = 5, when N = 500 and the normal size is 5%, 

the rejection rate of the LR test based on the RE estimator is 4.77%. Thus, the LR test is again 

reasonably well sized. In addition, the test has a power to reject unit root even when o is close to 

one. As with the no-drift simulations when N = 100, the LR test performs well. It tends to 

slightly over-reject the unit root hypothesis but retains a good power property even when N is 

small, especially when the variance of the initial values 0iy or the number of time series 

observations are large. 

 

4.3. Random Walks with Heterogeneous Drifts 

In this subsection, we examine the finite-sample properties of the RE ML estimator computed 

under the assumption of heterogeneous trends. The data generating process we use is given:   

 it i i ity g t q   ; , 1it i t itq q   , 0,...,t T , 

where 1~ (0 , )i T TN I  , i and 0iq are also normally distributed with zero means, and all of 

i , i , 0iq and ig are mutually independent. The mean of the normally distributed trends gi is 
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fixed at 0.5 while their variance is set at three different values, 0, 0.5, and 1. The data are 

generated with 2 2  , 2 2,qo   1  , our default case from the previous two experiments.  

Note that when 1o  and 2
g  > 0, the data are random walks with heterogeneous drifts.  

When 1o  and 2
g = 0, the data are random walks with homogeneous drifts. As with the 

pervious experiments we use 10,000 iterations and six different combinations of N and T are 

tried. 

 To save space, we only consider the finite-sample properties of the LR test based on the 

RE estimation (LR-RE). For each simulation, the five parametric restrictions imposed on 

(27), 12, 22, 2, 2,( , , , , ) (1,0,0,0,0)o o o o oa      , all of which are implied by the hypothesis of unit 

root with heterogeneous drifts, are jointly tested. Thus, under the null hypothesis of unit roots 

with heterogeneous trends, the LR statistic has the asymptotic distribution mixing 2 (5)  and 

2 (4) . For comparison, we also consider another one-tailed t-test developed by Harris and 

Tzavalis (T-HT). The t-test is designed for testing the hypothesis of unit root allowing for 

heterogeneous drifts. The simulation results are reported in Table 5.   

 Since we use 2 2( , , )qo   = (2,2,1) to generate the results in Table 4, the data generating 

processes are the same for the case of 2 0g   in Table 5 and the case of 2 2( , , )qo    = (2,2,1) in 

Table 4. Comparing these two cases, we can see that when T is small, the power property of the 

LR test based on the RE ML estimation with heterogeneous trends is quite different from that of 

the LR test based on the estimation with homogeneous trends. For example, for the cases with T 

= 5 and 0.9o  , the rejection rates of the LR test from the estimation with homogeneous time 

trends are all 100% at the 1%, 5%, 10% of normal sizes (Table 4). In contrast, the same rates of 

the LR test from the estimation allowing heterogeneous trends are merely 2.35%, 9.98% and 

17.28, respectively (Table 5). For the estimation allowing heterogeneous trends, the power of the 

LR test improves only mildly when N increases from 100 to 500. However, the power increases 

in a large scale as T increases. We observe the similar results from the cases in which 

heterogeneous trends exist in data ( 2 0g  ). 

 Tables 5 also report the finite-sample performances of the t-test by Harris and Tzavalis 

(T-HT). Similarly to the LR test, the t-test has low power to reject the hypothesis of unit roots.  
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Overall, the t-test show the performances compatible to those of the LR tests.  

   

5. Concluding Remark                         

This paper has considered the asymptotic and finite-sample properties of a random effects ML 

estimator and the two fixed-effects ML estimators of Lancaster (2002) and Hsiao, Pesaran and 

Tahmiscioglu (2002, HPT). When data are stationary, the random effects ML estimator is 

asymptotically more efficient than the other two fixed effects ML estimators when both the 

individual effects and the initial observations are normal. We also consider the asymptotic 

distributions of the random effects and HPT ML estimators when data contain unit roots. The 

two estimators, as well as the Lancaster estimator, are non-normal. This distortion results 

because the information matrices of the estimators are singular when data contain unit root.  

Thus, the t-tests for unit root are inappropriate. Consistent with the prediction of Rotnitzky, Cox, 

Bottai and Robins (2000), the Likelihood-Ratio tests for unit root with the p-values from the 

mixed chi-square distributions perform much better than the t-tests. They also have good power 

properties even if the number of observations is small.  

 Our results depend on the assumption of homoskedastic random errors ( it ). Alvarez and 

Arellano (2004) have shown that when the errors are heteroskedastic or autocorrelated over time, 

the ML estimator computed incorporating such heteroskedasticity and autocorrelations is 

generally consistent and asymptotically normal even if data may follow random walks.  

However, Thomas (2005) found that the finite-sample distribution of the ML estimator 

considerably deviates from the normal distribution, if data follow unit root processes and the 

error variances change only slowly over time. In addition, there are some special cases in which 

the information matrix of the ML estimator becomes singular. An example is the case in which 

only the variance of the random error at the last time period is different from the variances at 

other time periods. Another example is the case in which the random errors follow a MA(1) 

process with the MA coefficient equal to one (Thomas, 2005). We are currently working on such 

special cases.   

  Our results also convey a message to the studies of Monte Carlo experiments on dynamic 

panel data models. The homoskedasticity assumption is not an innocuous simplifying assumption 

for the models. The asymptotic and finite-sample properties of the estimators developed for the 

models could crucially depend on whether or not the homoskedasticity assumption holds.
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Appendix 

 

 Proof of Equation (12):  Define 11 1T T TP T   , T T TQ I P  ; and 

   1

( 1)

1 1 0 ... 0 0

0 1 1 ... 0 0

: : : : :

0 0 0 ... 1 0

0 0 0 ... 1 1

T

T T

D 
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where 1T is a (T×1) vector of ones.  Observe that 1 1( ,..., )T i iT iD y y y    .  Notice that 11T TD   = 

( 1) 10 T   , Thus, by Rao (1973, p. 77), we have 1
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 Proof of Proposition 1:  A straight algebra shows 
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where 1 1 , 1( )i i T i ig y k y y        .  We can also show: 



 30

 

2 2 2
1/ 2 1/ 2 1/ 2

21/ 2
, ,1/ 2

, 1/ 2 1/ 2 1/ 2
,

2

,

1 1
exp

(2 ) ( ) 2 2 2

( )
( ) exp

(2 ) ( ) 2

exp .
2

i i i i i
HPT HPT

HPT T HPT T HPT
HPT T i i

HPT HPT HPT T

i
HPT T

T T T
p p p g g

v

T
p g

v

T
g

     

  
   





 
    
 

  
        

 
  

  

 

Thus, 

 

0

1 2
, 1 1 , 1/2 /2 1/2

, ,

21/2
, , 2

1/2 1/2 1/2
,

( | , , ) ( | , )

1 1
exp ( ) ( )

(2 ) ( ) 2 2

( )
exp

(2 ) ( ) 2

i i i HPT i

i i T i i t iT T
HPT T HPT T

HPT T HPT T HPT
i i

HPT HPT HPT T

f y p f p dp

T
y y B y y g

T
p g

   

 
    

  
    






  



 
       

  
  
        



1 2
, 1 1 , 1/2 /2 1/2

, ,

1 1
exp ( ) ( )

(2 ) ( ) 2 2

( | , , ).

i

i i T i i t iT T
HPT T HPT T

i HTP

dr

T
y y B y y g

f r v

 
    

 






  



 
       

  


  

 

 The following lemmas are useful to prove the propositions in Section 3.  The first two 

lemmas provide alternative forms of ( )T  and 1[ ( )]T   . 

 

Lemma A.1: Let ( )s  be the s×s (s = 2, ..., T) matrix of the form of ( )T  in Section 2.  

Let: 

   

1 0 0 ... 0 0
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Then, ( )s s s s sL L c c     . 
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Lemma A.2: 1 1[ ( )] ( )
1T T T T T

T
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   . 

 

Lemma A.3:  1 1
1 1 1 1 1( )T T T T TB D D Tm m 
        , where 1

1 (1,2,..., 1)Tm T T
   and 1TD 

 is the 

square matrix of the first (T-1) columns of 1TD  .  In addition,  1
1 ( 1)( 1) / 6Ttrace B T T
    ; 

and  1 1 ( 1)(2 1) /(6 )T Ttrace k k T T T     .  

 

Lemma A.4:  The first-order and second-order derivatives of , ( )RE i  are given: 
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Lemma A.5:  Under the RE assumption, 
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(A.2)-(A.6) can be obtained by the similar method. 

 

Lemma A.6:  Under the RE assumption, 
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Proof of Proposition 2:  When * *(1, , 0, 0)o     , Lemma A.1 and the definition of 1( )TH   

in Lemma 5 imply that 1 1 1 1(1) (0) (1)T T T TH H I     .  This is so because 1 1 1(0)T T TL L     

and 1
1 1(1) ( )T TH L 
  .  In addition, in (A.7), B = 0 because 0o  . Using Lemma A.3 and the 

fact that , 1T o  when *o  , we can show A = T(T-1)/2 = Tb(1)′.  Substituting these results, 

0o  , and , 1T o  , into (A.7), we have: 
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  (A.8) 

which has a zero determinant. The likelihood theory indicates  , * , *( ) ( ) 0RE i RE iE H B   , at 

*o  .  Thus,  , *( )RE iE B   must be also singular. 

 

 Proof of Proposition 3:  We first derive ,( ( ))RE iE  under UND
oH .  We can show that 
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where 1T T   .  We now concentrate out ,  , and  from ,( ( , , , ))RE iE     .  It is 

obvious that 0  maximizes ,( ( , , , ))RE iE     .  Thus we have the concentrated value of 
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Now, solve the first-order condition with respect to T  (instead of  ): 
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Now, solving 
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Then, a little algebra shows: 
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. 

Since the denominator of ,( ( )) /c
RE iE    is positive for any T ≥ 2, it is positive for 1  and 

negative for 1  .  The derivative equals zero only at 1  .  This indicates that 1  is the 

global maximum point. 

 

 Proof of Proposition 4:  It can be shown that when *o  , 

 
 ,

2*

1
( , ) ( ) ln( )

2
( 1)( 1) ( 1)( 2) ( 1)( 1)

.
2 6 3 6

Lan i

T
E b

T T T T T T

   

  



 

         
 


 

Without loss of generality we set * 1  .  Then, the first-order maximization condition with 

respect to yields 

 21 ( 1)( 1) ( 1)( 2) ( 1)( 1)

1 6 3 6

T T T T T T

T
             

. 

Substituting this into the expected value of ,( ( , ))Lan iE   , we can get 
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 ,

2

1 1 1
( ) ( ) ln

2 1 2

1 ( 1)( 1) ( 1)( 2) ( 1)( 1)
ln .

2 6 3 6

c
Lan i

T T
E b

T

T T T T T T T

 

 

      
          

 



 

If we differentiate the concentrated likelihood function, we yield 

 
        

     
,

2

( ) 1 1 2
( )

1 2 2 1

c
Lan iE T T T T

b
T T T T

 


  

    
 

     


; 

 

      
     

   
     

22
,

22

( ) 2 1 1 2
( )

2 4 1

1 1
.

2 4 1

c
Lan iE T T

b
T T

T T

T T

  


   

  

    
 

     

 


    



 

 

      
     

      
      

33
,

33

22

( ) 8 1 1 2
( )

2 4 1

6 1 1 1 2
.

1 2 2 1

c
Lan iE T T

b
T T

T T T

T T T

  


   

 

 

    
 

     

    


    



 

It can be shown that when 1  , 

  
1 ( 1)( 2) ( 1)( 2)( 3)

(1) ; (1) ; (1)
2 6 12

T T T T T T
b b b

          . 

Using these results, we can easily show that at 1  ,  

  
   2

, ,

2

(1) (1)
0,

c c
Lan i Lan iE E

 
 

 
 

 
 

but, 

  
           3

,

3

(1) 1 2 3 1 1
0

12 2

c
Lan iE T T T T T


     

  



. 

Thus, 1  is an inflexion point of  , ( )c
Lan iE  . 

 

 Proof of Proposition 5:  At *  , using the alternative representation of 1[ ( )]T    

given in Lemma A.2, we can have 
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1 11
, , * 2

, 1 , 1

1
2 2

1
( ) ( )

2 2

1 1
( ) ,

2 2 2 2

i i
RE i T T

i i i i

i T T T T i i i i

y yT
L L

y y y y

T T
rL L L L r rr

 
 

   



 



    
              

         


 

where 1( , ..., )i i iTr y y    and *    Also, we have: 

  
   

2 2 22

, , * 1 1 , 1

2

( ) ( )
2 2 2 2

1
1 1 .

2 2 2 2

RE i i T i i T T i

i T T T T i i T T i

T T T T
y k y y k L r

T T T
rL k k L r r r

 
 

 

 
           

        


 

Thus, 

 1
, , * , , * 2 1

1 1
( ) ( ) ( 1 1 ) .

2
T s

RE i RE i i T T T i s t it isv r I r y y
v  




             

Now, 

 

1

1 1 21 1
, , * 2 1

, 1 , 1

1
1

0

01 1 1
( ) ( ) .

: :

i

i i i T s
RE i T T s t it is

i i i

T
t it iT

y

y y y
L L y y

y y y

y y

 
  

 
 

 



    
                                
        

  

Thus, , , * , , * * , , *( ) ( ) ( ) 0.RE i RE i RE i           

 

 Proof of Proposition 6:  We first check whether (i) whether , , *( )RE i   equals zero or is 

linearly related to , , *( )RE i   and ,2is .  Note that 

  , , * , , *( ) ( )
rRE i RE i    ; , , * , , *( ) ( )

rRE i RE i    ; , , * , , *( ) ( )RE i RE i    . 

Since , ,( , , , ) ( , ( , ), ( , ), )RE i r r RE i r r             , we have: 

  , , , , , , , ,RE i RE i RE i r RE i         ; 

  
   

, , , , , , , , , , , , , ,

, , , , , ,

2
, , , , , , , , , , , ,2 2 .

RE i RE i RE i r RE i RE i RE i r RE i

r RE i RE i r RE i

RE i RE i RE i r RE i RE i r RE i

      

  

     

 

 

 

     

  

     

      

  

     

 

Then, with a little algebra and Lemma A.3, we can show that at *r  , 
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, , * , , * , , * , , *

2
* , , * , * * , , *

1
, 1 1 , 1 , 1 1 1 , 1

* *

2 3

, 1 1 1 1 , 1 1
* *

( ) ( ) 2 ( ) ( )

2 ( ) ( ) ( )

1

2
( ( ))

RE i RE i RE i RE i

RE i RE RE i

i T i i T T i

i T i T i i i T

T
y B y y k k y

T T
y k y k y y y k

   

  

   

    

 

 


      

   

  

  

       


           

   

  

 

 

2

1 , 1

1
2

, 1 , 1 , 1 1
* * *

( )

( 1)

2

1 2 ( 1)
( ) ( ) ,

2

i i

i T T i i T iT iT

y y

T T

T T T T
y D D y y m y y

  

 



   

 
 
 
 

   
 




             
 

 

 

which is neither zero, nor a linear combination of , , *( )RE i   and ,2is . 

 We now check (ii) whether or not , , *( )RE i   is a linear function of is .  We can show 

 
 

     
, , , , ,, , , , ,

2 3
,. , , , , , , , , , , ,

3 3

3 2 3 .

RE i RE i RE RE i RE i

r RE i RE i RE i r RE i RE i r RE i

    

       

   

     

    

     
 

But, at *  , 

 , , *( ) 0RE i    ; 
2

, , , 1 1 1 , 1
*

RE i i T T i

T
y k k y         ; 

  
3

, , * , 1 1 1 , 1
*

2
( ) ( )RE i i T i T i i

T
y k y k y y             ; 

  
4

3 2
, , * 1 1 , 1

*

3
( ) ( ( ))RE i i T i i

T
T y k y y 

          ; 

  , , * , , *
*

1
( ) ( )RE i RE i  


   ; , , * , , *

*

1
( ) ( )RE i RE i  


   ; 

  
2

, , * , , *
* *

1
( ) ( )

2RE i RE i

T
  

 
    ; , , * , , *

*

2
( ) ( )RE i RE i  


   ; 

  , , * , , *
*

2
( ) ( )RE i RE i  


   ; , , * , , * 3

* *

3
( ) ( ) .

2RE i RE i

T
  

 
     

Using these results, we can show: 
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3 2 2

, , * , 1 1 1 , 1
*

2 2
2

1 , 1 , , *
* *

2 3 3
( )

2

6 3
( ) ( ) 3 ( ),

RE i i T T i

T i iT iT RE i

T T T T
y m m y

T T
m y y y









 

   

 

      

     




 

which is neither zero, nor a linear combination of is .  For example, when T = 2: 

   2 2
, , * 1 1 2 2 , , *

* * *

3 12 12
( ) 15 ( ) 3 ( )RE i i i i i RE iy y y y  

  
           ; 

   2 2
, , * 1 1 2 2

* * *

1 2 2
( ) ( ) 3RE i i i i iy y y y 

  
 

         
 

 ; 

   2 2
, , * , , * 1 22

* *

1 1
( ) ( ) ( ) ( )

2rRE i RE i i iy y  
 

         

 2
, , * , , * 1 2

*

1
( ) ( ) 1 ( )

2rRE i RE i i iy y  


        ; 

  , , * , , * 0 1 2
*

1
( ) ( )

rRE i RE i i i iy y y  


      . 

All of these derivatives are linearly independent. 

 We now consider the asymptotic distribution of the ML estimator of r .  Let 

1 ,( ) ( ),N
N r i RE i rL     where ( , ) .r r     For convenience, redefine r as ( , , )r r r      

instead of ( , , )r r    .  Correspondingly, we also reorder ,2is and 2Z .  Partition 2Z into  

2 21 22( , )Z Z Z  , where 21Z is a 2×1 vector and 22Z is a scalar.  We also partition  and 1 , 

accordingly: 

 

11 21,1 22,1

11 21
21,1 21,21 22,21

21 22
22,1 22,21 22,22

    
                    
 

; 

11 21,1 22,1

11 21
1 21,1 21,21 22,21

21 22
22,22

22,1 22,21

( )
( )

    
                    
 

. 

Given the conditions (i)-(ii) are satisfied, Theorem 3 of RCBR implies that in the bounded 

neighborhood of * , the log-likelihood function can be approximated by: 
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2 2 2
1

* * * *
2

2 2 2
11 1 1 1

* * * *
2

( 1) ( 1) ( 1)1
( ) ( ) (1)

2

( 1) ( 1) ( 1)1
( ) ( ) ( ) (1)

2

N r N p

r r r

N p

r r r

Z
L L N N o

Z

Z
L N N o

Z

  
 

     

  


     
   

         
                   

         
                   

(A.9) 

Suppose that 1 0Z  .  Then, it is straightforward to show that the ML estimator of r equals 

  
2

1

*
2

ˆ( 1)
(1)

ˆ( )
p

r

ZN
o

ZN



 

   
        

. 

That is, 

  
1/ 2

1

*
2

ˆ( 1) ( 1)
(1).

ˆ( )

B

p

r

N Z
o

ZN



 

    
        

 (A.10) 

This is so because the solution for 1/ 2 ˆ( 1)N   has two solutions and both solutions have equal 

chances.  Now, suppose 1 0Z  .  Then, we do not have an interior solution for 

2ˆ( 1) 0N    .  The corner solution for 2ˆ( 1)N   equals zero.  For this case, we have: 

  
1/ 2

21 11 1*
2 1

ˆ 0( 1)
(1).

( )ˆ( )
p

r

N
o

Z ZN



 


   
          

 (A.11) 

Thus, we obtain (17). 

 We now derive the asymptotic distributions of LR test statistics. Substituting (A.10) and 

(A.11) into (A.9), we have: 

  1 1 * *
* 1 2 2 22 2

ˆ2[ ( ) ( )] 1( 0) ( ) 1( 0)N r NL L Z Z Z Z Z Z             , (A.12) 

where 1() is the index function, 22 21 11 1 12 1
22 [ ( ) ]        and * 21 11 1

2 2 1( )Z Z Z    . 

A tedious algebra shows: 

  
1 1 11 1 * *

1 1 2 22 2

1 ** 1 ** * 1 **
1 11 1 21 21,21 21 22 22,22 22

( ) Z ( )

Z ( ) ( ) '( ) ,

Z Z Z Z Z

Z Z Z Z Z

  

  

     

      
 (A.13)  

where, 11
11   , 21,21 21,1 11 1 21,1

21,21 ( )        , ** 21,1 11 1
21 21 1( )Z Z Z    , 

   
1

22,111 21,1
22,22 22,1 22,21

22,22 21,1 21,21 22,21

                      
; 
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1

11 21,1
1** 22,1 22,21

22 22 21,1 21,21
21

Z
Z Z

Z


                

.  

Notice that 1Z , **
21Z and **

22Z  are uncorrelated, and 

  1 11~ (0, )Z N  ; **
21 21,21~ (0, )Z N  ; **

22 22,22~ (0, )Z N  . (A.14) 

Using (A.13), we can rewrite (A.12) as: 

 
1 ** 1 ** ** 1 **

* 1 1 11 1 21 21,21 21 22 22,22 22

** 1 ** ** 1 **
1 21 21,21 21 22 22,22 22

ˆ2[ ( ) ( )] 1( 0) ( ( ) ( ) ( ) )

1( 0) ( ( ) ( ) ).

N r NL L Z Z Z Z Z Z Z

Z Z Z Z Z

    

 

          

      
 (A.15) 

 Let (1,1,0, )r    be the restricted ML estimator of r which maximizes (A.9) with the 

restrictions, 1  and 0   .  It can be shown that: 

  **
* 22( ) (1)pN Z o    . 

Substituting this solution into (A.9), we can have 

 

1

* 2 1 21 2 1 2 1

* 22

** 1 **
22 22,22 22

0 0 0

2[ ( ) ( )] 2 0 0 0 (1)

* *

( ) (1)

N r N p

p

Z

L L N Z N o

Z

Z Z o

 
     

  



        
                   
                

  



    (A.16) 

Using (A.14)-(A.16), we can show that when , *r o  , the LR test statistic for testing the joint 

hypotheses of 1o  , , 0r o  , and 0o  follows a mixed Chi-square distribution: 

  

1 ** 1 **
1 1 11 1 21 21,21 21

** 1 **
1 21 21,21 21

2 2

ˆ2[ ( ) ( )] 1( 0) ( ( ) ( ) )

1( 0) ( ( ) ) (1)

(3) (1 ) (2).

N r N r

p

d

L L Z Z Z Z Z

Z Z Z o

B B

 

 

 



       

    

    



 

 Finally, consider the LR statistic for testing the hypothesis that 1o  .  Let
 

(1, )r r     

be restricted ML estimator that maximize (A.9) with the restriction 1o  .  We can show that 

  


*
* 2( ) (1)r pN Z o    . 

Substituting this solution into (A.9) yields: 
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  1

*
2* * *

* * ** 1 ** ** 1 **
2 22 2 21 21,21 21 22 22,22 22

0 0 0
2[ ( ) ( )] 2 (1)

(1) ( ) ( ) (1).

rN N p

r r r

p p

Z
L L N N o

Z

Z Z o Z Z Z Z o

 
     

 

       
                   

         

 (A.17) 

Then, using (A.14), (A.15) and (A.17), we have: 

  


1 2
1 1 11 1

ˆ2[ ( ) ( )] 1( 0) ( ) (1) (1).rN r N p dL L Z Z Z o B          

This completes our proof. 

 

 Proof of Proposition 7:  It is easy to see that , , * * , , *( ( ) ( ))D D D D
RE i RE ia    , , , *( )D D

RE i   , and 

, , *( )D D
RE i   are the same as , , *( )RE i   , , , *( )RE i   , and , , *( )RE i   with the ity replaced by 

ity a  .  Thus, we can obtain the result by the same method used for Propositions 5. 

 

 Proof of Proposition 8:  Define 

   

1 0 0 0 ... 0

1 1 0 0 ... 0

1 2 1 0 ... 0

0 1 2 1 ... 0

: : : : :

0 0 0 0 ... 1

HD
T

T T

L



 
  
     
 
  
 

; 2

( 2) 20T
T

I
J

 

 
  
 

; 

1 0

1 1

1 2

: :

1 1

TG

T

 
 
 
 
 
 
  

, 

We can easily show that 1( )HD
T TG L J and ( )HD HD HD

T T T T TW L L J WJ    .  Let 

  11 12

12 22

( 1)

2
( 1) ( 1)(2 1)

2 6

T T

T T
Tg g

G G
g g T T T T T

 
              
 

. 

Then, we have: 

   

1
1

1
1 1 1 1

2

1 1 1 1 1
2

( )

( ) [ ( ) ] ( )

( ) ( ) ( ) [ ] ( ) .

HD HD HD
T T T T T

HD HD HD HD HD HD HD HD
T T T T T T T T T T T T

HD HD HD HD
T T T T T T T T

L L J WJ

L L L L J W J L L J W I J L L

L L L G W G G W I G L





   

    

    
 

      

    

 

Thus, the log-likelihood function can be written: 
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,

1 1 1 0 1 1 1 0
1

2 2 2 0 1 2 2 2 0 1
2 2 2 2

, 1 , 1

1 1
ln(2 ) ln( ) ln[det( )]

2 2 2

1
( )

2

HD HD HD
RE i T T T T

i i i i
HD HD

i i i T T T T i i i

i i i i

T
L L J WJ

y a y y a y

y a y y L L J WJ y a y y

y y y y

 

 
   


 



 

     

        
                  
           



 

Define 1,* 1,* 0it it id y a y    . By a tedious but straightforward algebra, we can show at 

*
HD HD  : 

  1 111
, , 1 1 , 1 1 1

11 11

1
( ( ) ) ;

( 1)
HD T t T T
RE i t s is i t t it t ity d T t y d

g


  
 
            


  

  
2

11
, , 2 1

11 11

1 ( 1)
( 1)

( 1) 2
HD T T
RE i a t it t it

w T T
t d d

g   


    


 ; 

  
2

11
, , 2 0 1 0

11 11

1 ( 1)
( 1)

( 1) 2
HD T T
RE i t it i t it i

w T T
t d y d y

g    


    


 , 

where *  and 11 11,*  .  Thus, we have: 

 
2 2

1 111
, , 1 , , 1 , , 1 1 , , 1 1 1

11 11

1
( ( ) )( )

( 1)
HD HD HD T t T T
RE i RE i a RE i t s i s i t t it t ita d d T t d d

g 


  
 
            


   . 

We also can show: 

  2 211
, , 1 12 2

11 11

1
( )

2 2 2 ( 1)
HD T T
RE i t it t it

T
d d

g


         


 ; 

  
11

2 211 11 11
1 12, ,

11 11 11 11 11 11

1 1
( ) ( )

2 1 2 ( 1) 2 ( 1)
HD T T

t it t itRE i

g g
d d

g g g


          

  
 ; 

  
12

2 112 12 11
1 1 1 , 12, ,

11 11 11 11 11 11

1
( ) ( )( )

( 1) ( 1) ( 1)
HD T T T

t it t it t i tRE i

g g
d d td

g g g


    


         

  
 . 

But, 
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, , , , 11 11 , ,

212 1
11 1 1 11 11 11 1 1

2
11 11 11 111

1
11 1 1

11 1

( 1)

( ) ( 1)21

2 ( 1) 2 ( 1)( )

( )

(

HD HD HD
RE i RE i RE i

T T TT T t
t it t it t itt it t s is it

T
t it

T T
t it t it

g

T t d d g dd d d

g gd

T t d d

g

  
 

 

    



 


    




 

  

        
        

  
 

  

 

     

     

2

11 11 1

1 11 11

2

11 1 1 1 11 11 1

11 11 11 11

2

11 1 11 1 1 11 11 1

11 11 11 11

( 1)

1) 2 ( 1)

( 1) ( 1) ( 1)

( 1) 2 ( 1)

( 1) ( 1) ( 1)

( 1) ( 1)

T
t it

T T T T
t it t it t it t it

T T T
t it t it t it t

g d

g

T d t d d g d

g g

T d t d d g

g g



 

 

   

  

   



   

   

 


 

       
  

 

      
   

 
 

     

2

11 11

2
11 11

1 1 1
11 11

2 ( 1)

( 1)
( 1) ,

2 ( 1) ( 1)

T
it

T T T
t it t it t it

d

g

T
d t d d

T T

 

 
     




      

 

 

where the last equality results from g11 = T.  Now observe that: 

      
11 12

2

1 1 1, , , ,
11 11

( 1) 1
( 1) ( 1)

2 ( 1) ( 1)
HD HD T T T

t it t it t itRE i RE i

T
T d d t d

T T       


       
 

  . 

Thus, we have: 

  11 11 12

11 12

, , , , 11 11, , , , , ,

, , , , 11 11, , , ,

( 1) [( 1) ]

( 1) 0.

HD HD HD HD HD
RE i RE i RE i RE i RE i

HD HD HD HD
RE i RE i RE i RE i

T T    

   

  

  

     

     

    

   
 

   

 An alternative representation of the log likelihood function (27) is given:  

, 2

2 2 1 2 2
, 1 2 , 1

1 1 1 0 2 2
2 , 1

2 2 2 0 1

1 1 1 01

2 2 2

1 1 1
ln(2 ) ln[det( )] ln( ) ln[det( )]

2 2 2 2
1

( ) ( ) ( )
2

1
( )

2

HD HD
RE i T

HD
i i T i i

i i HD
T i i

i i i

i i

i

T
B

y y B y y

y a y
K y y

y a y y

y a y

y a

 

 





 







  

 



     

      

                 
  


  



2 2
2 , 1

0 1

( ) ,HD
T i i

i i

K y y
y y


  

           

 

where, 
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2

2 2

1 3

0 1

0 0

: :

0 0

HD
T

T x

C 



 
  
 
 
 
 
 

; 

   

2

2 2

6 4 1 0 ... 0

4 6 4 1 ... 0

1 4 6 4 ... 0

: : : : :

0 0 0 0 ... 4

0 0 0 ... 6

HD
T

T x T

B 

 

 
   
  

  
 
 
  
 

; 1
2 2 2( ) ( )HD HD HD

T T TK B C
   ; 

 11, 12, 11 12 1
2 2 2

12, 22, 12 22

1 1
( ) ( ) ( )

1 2
T T HD HD HD

T T T
T T

C B C
   
   


  

              
. 

Our unreported simulations show that it is much easer to minimize the above log likelihood 

function with respect to ,11 ,12 ,22 1 2 1 2( , , , , , , , , )T T T a a        than to minimize the equivalent log 

likelihood function (27) with respect to 11 12 13 1 2 1 2( , , , , , , , , )HD a a         .   
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Table 1 

RE and HPT ML Estimation without Time Trends: 
Biases in the Estimators and Size and Power Properties of the T-Tests 

 
   Rejections of Ho:  =  Rejections of Ho:  = 1
   Mean Bias MSE    1%    5%    10%      1%     5%     10%

RE N = 500
  

  0.500 0.000 0.001 1.06 5.01 9.58 100.0 100.0 100.0
  0.809 0.009 0.005 6.33 11.45 15.88 66.15 79.34 85.03
  0.901 0.001 0.006 9.60 17.24 23.26 20.53 29.68 35.90
  0.998 -0.002 0.005 9.49 16.38 21.22 9.49 16.38 21.22
    
 N = 100   
   0.503 0.003 0.006  1.31 4.34 8.49  99.30 99.58 99.62
   0.810 0.010 0.015  9.03 15.51 20.81  26.89 38.89 46.18
   0.891 -0.009 0.015  9.63 16.67 22.24  13.27 21.64 26.79
   0.996 -0.004 0.011  9.20 15.96 21.41  9.20 15.96 21.41
    

HPT N = 500
  

  0.501 0.001 0.001  1.04 4.85 9.47  100.0 100.0 100.0
  0.8183 0.018 0.007  9.04 14.67 18.78  54.98 64.99 69.25
  0.897 -0.003 0.006  7.26 14.66 20.43  20.78 29.57 34.68
  0.998 -0.002 0.004  8.80 15.05 19.76  8.80 15.05 19.76
    
 N = 100   
   0.510 0.010 0.011  2.81 5.42 8.92  97.57 97.98 98.23
   0.811 0.011 0.016  6.87 13.57 18.39  26.33 37.23 43.11
   0.882 -0.018 0.013  6.89 13.36 18.27  13.38 20.96 26.06
   0.997 -0.003 0.010  8.02 14.33 19.08  8.02 14.33 19.08
 
Notes: Table 1 reports the means, biases and mean square errors of the RE and HPT estimators from 10,000 simulations with the number of cross-
section observations equal to N and the true value of δ equal to δo along with the rejection rates of the t-test with significance levels of 1%, 5% 

and 10%.  The variables, ηi, qi0, and εit, are generated from the normal distributions with zero means and the variances, variances, 2 2  , 

2
0 0q  , and 1  , respectively.  The number of time series observation is fixed at T = 5.  The data are generated without trends and with 

zero means.  The ML estimators are estimated without trends and intercept terms.



 
Figure 1 

The Sample Error Distributions of the RE ML Estimator without Trend When N = 500: 
The true values of δo vary from 0.5 to 1. 
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Notes: Figure 1 shows the finite-sample distribution of the sampling errors of the RE estimator for values of 
o

  varying from 0.5 to 1.  The variables, ηi, qi0, and εit, are generated from the normal 

distributions with zero means and the variances, variances, 2 2  , 2
0 0q  , and 1  , respectively.  N = 500 and T = 5 are used.  The data are generated without trends and with zero means.  The 

ML estimators are estimated without trends and intercept terms 



 

Figure 2 
The Sampling Error Distribution of the RE estimator without Trend When N = 100:  

The true values of δo vary from 0.5 to 1. 
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Notes: Figure 2 shows the finite-sample distribution of the sampling errors of the RE estimator for values of δo varying from 0.5 to 1.  The variables, ηi, qi0, and εit, are generated from the normal 

distributions with zero means and the variances, 2 2  , 2
0 0q  , and 1  , respectively.  N = 100 and T = 5 are used.  The data are generated without trends and with zero means.  The ML 

estimators are estimated without trends and intercept terms. 
 



 

 
Figure 3 

The Sampling Error Distributions of the RE and HPT estimators when N = 100 
 

0

100

200

300

400

500

600

-0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0. 16

0

50

100

150

200

250

300

350

-0. 4 -0.3 -0.2 -0. 1 0 0. 1 0.2 0.3

Panel A: δo = 0.5 Panel B: δo = 0.8 

 

0

50

100

150

200

250

300

350

400

450

-0. 4 -0.3 -0. 2 -0.1 0 0. 1 0.2 0.3

 

0

100

200

300

400

500

600

700

800

-0. 4 -0.32 -0. 24 -0. 16 -0.08 0 0.08 0.16 0.24 0.32

Panel C: δo = 0.9 Panel D: δo = 1.0 
 
Notes: Figure 3 shows the finite-sample distributions of the sampling errors of the RE and HPT estimator for various values of δ0.  The variables, ηi, qi0, and εit, are generated from the normal distributions 

with zero means and the variances, variances, 2 2  , 2
0 0q  , and 1  , respectively.  N = 100 and T = 5 are used.  The data are generated without trends and with zero means.  The ML estimators 

are estimated without trends and intercept terms. 



 
Table 2 

LR Tests Based on RE and HML ML Estimation with Trends:  
Testing All of the Parametric Restrictions Implied by the Hypothesis of Unit Root  

 
  = 1 = 0.95 = 0.9 
N Test 1% 5% 10% 1% 5% 10% 1% 5% 10% 

2 2
02, 2, 1q      

         

N=500 LR-RE 1.06 5.40 10.48 84.54 94.75 97.41 100.0 100.0 100.0 
 LR-HPT 0.95 5.03 10.07 61.75 82.57 89.79 99.55 99.94 99.98 
 T-HT (1.13) (5.38) (10.33) (57.13) (80.34) (88.88) (97.61) (99.64) (99.93) 
           
N=100 LR-RE 1.24 6.09 11.44 12.69 32.25 44.59 60.92 82.42 94.48 
 LR-HPT 1.02 5.21 10.53 8.80 24.05 35.31 34.03 59.25 71.49 
 T-HT (1.31) (5.46) (10.77) (12.20) (30.53) (44.38) (35.17) (61.89) (75.09) 

2 2
02, 4, 1q      

         

N=500 LR-RE 1.11 5.34 10.67 97.62 99.66 99.85 100.0 100.0 100.0 
 LR-HPT 0.95 5.03 10.07 48.86 73.04 82.25 91.50 97.86 99.08 
 T-HT (1.13) (5.38) (10.33) (46.60) (72.67) (83.09) (86.54) (96.24) (98.58) 
           
N=100 LR-RE 1.36 6.05 11.35 23.21 47.22 59.76 85.05 95.65 98.11 
 LR-HPT 1.02 5.21 10.53 6.96 20.23 30.58 18.15 39.73 52.78 
 T-HT (1.31) (5.46) (10.77) (10.03) (26.44) (39.67) (22.41) (46.39) (60.75) 

2 2
02, 1, 1q       

         

N=500 LR-RE 1.12 5.49 10.55 72.17 88.77 93.57 99.98 100.0 100.0 
 LR-HPT 0.95 5.03 10.07 68.24 86.54 92.45 99.94 100.0 100.0 
 T-HT (1.13) (5.38) (10.33) (62.29) (84.09) (91.12) (99.40) (99.95) (99.98) 
           
N=100 LR-RE 1.20 5.87 11.47 9.52 26.53 38.23 48.78 73.23 82.84 
 LR-HPT 1.02 5.21 10.53 9.88 26.36 37.72 44.76 69.23 80.26 
 T-HT (1.31) (5.46) (10.77) (13.31) (32.67) (46.59) (43.12) (69.65) (81.20) 

2 2
02, 2, 2q      

         

N=500 LR-RE 1.06 5.40 10.48 76.89 91.07 95.22 100.0 100.0 100.0 
 LR-HPT 0.95 5.03 10.07 68.24 86.54 92.45 99.94 100.0 100.0 
 T-HT (1.13) (5.38) (10.33) (62.29) (84.09) (91.12) (99.40) (99.95) (99.98) 
           
N=100 LR-RE 1.24 6.09 11.44 10.35 28.58 40.43 54.35 77.59 86.28 
 LR-HPT 1.02 5.21 10.53 9.88 26.36 37.72 44.76 69.23 80.26 
 T-HT (1.31) (5.46) (10.77) (13.31) (32.67) (46.59) (43.12) (69.65) (81.20) 

2 2
02, 2, 4q      

         

N=500 LR-RE 1.06 5.40 10.48 72.35 88.65 93.72 99.99 100.0 100.0 
 LR-HPT 0.95 5.03 10.07 71.65 88.25 93.75 99.97 100.0 100.0 
 T-HT (1.13) (5.38) (10.33) (64.67) (85.47) (92.25) (99.72) (99.97) (99.99) 
           
N=100 LR-RE 1.24 6.09 11.44 9.45 26.39 38.22 51.09 74.69 84.29 
 LR-HPT 1.02 5.21 10.53 10.68 27.53 39.20 50.58 74.31 84.17 
 T-HT (1.31) (5.46) (10.77) (13.88) (33.66) (47.73) (47.38) (73.50) (84.04) 

 
Notes: Table 2 reports the empirical sizes and power (%) of the LR tests for all of the parametric restrictions implied by the hypothesis of unit 
root.  LR-RE denotes the LR test based on the RE ML estimator with the p-values from a mixture of 2 (3) and 2 (2) over 10,000 simulations, 
while LR-HPT represents the LR test based on and a mixture of χ2(1) and χ2(0).  For comparison, the size and power of a one-tailed and bias-
corrected t-test (BT-HT) of Harris and Tzavalis (1999) are reported in parentheses.  The t-statistic, which is obtained by correcting the bias in 
the usual within estimator, is asymptotically standard normal under the null hypothesis of unit root without drifts,  The variables, ηi, qi0, and εit, 

are generated from the normal distributions with zero means and, the variances, 2
 , 2

0q , and  , respectively.  The data are generated 

without trends and with zero means.  The ML estimators are estimated without trends and intercept terms.   



 

Table 3 
LR Tests Based on RE and HPT ML Estimation without Trend: 

Testing the Single Parametric Restriction 1o   Implied by the Hypothesis of Unit Root  

 
  = 1 = 0.95 = 0.9 

N Test 1% 5% 10% 1% 5% 10% 1% 5% 10% 

2 2
02, 2, 1q      

         

N = 500 LR-RE 1.04 5.75 11.56 1.09 7.42 16.61 4.80 23.32 40.98 
 LR-HPT 0.95 5.04 10.26 0.88 5.34 11.85 1.28 9.61 23.12 

           
N = 100 LR-RE 1.46 6.15 12.76 1.36 6.76 14.68 1.68 10.09 21.62 

 LR-HPT 1.13 5.21 10.60 1.17 5.37 11.91 1.03 6.24 15.06 

2 2
02, 4, 1q      

         

N = 500 LR-RE 1.04 5.74 11.57 1.50 9.84 20.65 10.69 33.53 50.76 
 LR_HPT 0.95 5.04 10.26 0.87 5.43 11.38 1.47 7.79 17.31 
           

N = 100 LR-RE 1.45 6.01 12.61 1.56 7.66 16.61 2.55 13.60 26.92 
 LR-HPT 1.13 5.21 10.60 1.12 5.42 11.83 1.12 6.41 13.89 

2 2
02, 1, 1q      

         

N = 500 LR-RE 1.05 5.66 11.58 1.02 6.28 14.41 2.67 17.96 36.45 
 LR_HPT 0.95 5.04 10.26 0.90 5.40 12.10 1.40 12.39 29.07 
           

N = 100 LR-RE 1.41 6.08 12.75 1.30 6.31 13.88 1.29 8.65 19.63 
 LR-HPT 1.13 5.21 10.60 1.14 5.40 12.09 1.09 6.67 16.10 

2 2
02, 2, 2q      

         

N = 500 LR-RE 1.04 5.74 11.55 1.02 6.72 15.05 3.35 20.47 39.11 
 LR-HPT 0.95 5.04 10.25 0.90 5.40 12.08 1.40 12.39 29.07 
           

N = 100 LR-RE 1.46 6.15 12.76 1.34 6.41 14.17 1.48 9.15 20.41 
 LR-HPT 1.13 5.21 10.60 1.14 5.40 12.09 1.09 6.67 16.10 

2 2
02, 2, 4q      

         

N = 500 LR-RE 1.04 5.74 11.55 1.00 6.28 14.34 2.73 18.98 37.98 
 LR-HPT 0.95 5.04 10.25 0.86 5.37 12.30 1.67 14.55 32.13 
           

N = 100 LR-RE 1.46 6.15 12.76 1.35 6.30 13.89 1.33 8.87 19.89 
 LR-HPT 1.13 5.21 10.60 1.17 5.46 12.12 1.13 7.06 16.16 

 
Notes: Table 3 reports the size and power (%) of the LR tests based on the RE and HPT ML estimation with their p-values from a mixture of χ2(1) 
and χ2(0) over 10,000 simulations.  The variables, ηi, qi0, and εit, are generated from the normal distributions with zero means and the variances, 

2
 , 2

0q , and  , respectively.  The data are generated without trends and with zero means.  The ML estimators are estimated without trends 

and intercept terms. 

  
 

 



 

Table 4 
LR Test Based on the RE ML Estimation with Homogenous Trends: 

Testing the Composite Hypothesis of Unit Root, Ho: 1o  , and 0o o o      

 
 = 1 = 0.95 = 0.9 
 1% 5% 10% 1% 5% 10% 1% 5% 10% 

2 2
02, 2, 1q      

         

N=500 T = 5 1.23 4.77 9.57 79.89 92.57 96.04 100.0 100.0 100.0 
 T = 10 1.13 4.78 9.31 100.0 100.0 100.0 100.0 100.0 100.0 
 T = 25 0.86 4.57 9.18 100.0 100.0 100.0 100.0 100.0 100.0 
           
N=100 T = 5 1.15 5.62 11.78 11.48 29.20 41.79 56.80 79.64 87.78 
 T = 10 1.32 6.12 11.78 53.40 77.35 86.56 99.50 99.94 99.97 
 T = 25 1.32 6.55 12.62 99.97 100.0 100.0 100.0 100.0 100.0 

2 2
02, 4, 1q      

         

N=500 T = 5 1.05 5.49 10.19 96.49 99.16 99.73 100.0 100.0 100.0 
 T = 10 0.93 4.94 9.67 100.0 100.0 100.0 100.0 100.0 100.0 
 T = 25 1.03 4.73 9.43 100.0 100.0 100.0 100.0 100.0 100.0 
           
N=100 T = 5 1.39 6.47 11.60 21.20 43.83 56.88 81.26 93.65 97.07 
 T = 10 1.28 5.83 11.4 67.85 87.78 93.22 99.97 99.99 100.0 
 T = 25 1.20 5.95 11.25 100.0 100.0 100.0 100.0 100.0 100.0 

2 2
02, 1, 1q      

         

N=500 T = 5 1.14 5.14 9.54 66.17 85.09 91.33 99.96 100.0 100.0 
 T = 10 0.94 4.49 8.54 99.90 100.0 100.0 100.0 100.0 100.0 
 T = 25 1.07 4.80 9.42 100.0 100.0 100.0 100.0 100.0 100.0 
           
N=100 T = 5 1.37 6.14 12.41 9.51 25.44 37.51 44.69 69.12 79.78 
 T = 10 1.37 6.33 12.18 47.87 73.35 83.53 99.19 99.85 99.97 
 T = 25 1.24 6.43 12.1 99.99 100.0 100.0 100.0 100.0 100.0 

2 2
02, 2, 2q      

         

N=500 T = 5 1.19 5.39 10.25 70.82 88.08 93.65 100.0 100.0 100.0 
 T = 10 1.08 5.06 10.01 100.0 100.0 100.0 100.0 100.0 100.0 
 T = 25 0.93 4.69 9.55 100.0 100.0 100.0 100.0 100.0 100.0 
           
N=100 T = 5 1.34 5.99 11.66 10.14 25.98 37.52 49.39 74.41 84.23 
 T = 10 1.32 6.05 11.83 51.24 76.04 85.17 99.49 99.93 99.98 
 T = 25 1.25 6.08 11.90 100.0 100.0 100.0 100.0 100.0 100.0 

2 2
02, 2, 4q      

         

N=500 T = 5 1.02 5.07 10.01 66.18 84.89 91.43 100.0 100.0 100.0 
 T = 10 1.19 5.77 11.16 99.96 99.99 99.99 100.0 100.0 100.0 
 T = 25 0.94 5.02 9.97 100.0 100.0 100.0 100.0 100.0 100.0 
           
N=100 T = 5 1.09 5.70 11.04 9.23 24.14 36.07 47.17 71.92 82.57 
 T = 10 1.15 5.65 11.16 48.48 73.80 83.84 99.62 99.96 100.0 
 T = 25 1.25 5.68 11.16 100.0 100.0 100.0 100.0 100.0 100.0 
 
Notes: Table 4 reports the size and power of the LR test based on the RE ML estimation with homogeneous trends with the p-values from a 
mixture of 2 (4) and 2 (3) over 10,000 simulations.  The variables, ηi, qi0, and εit, are generated from the normal distributions with zero means 

and the variances, 2
 , 2

0q , and  , respectively.  The trend parameter g is fixed at 0.5.  The ML estimators are computed allowing a 

common time trend and a nonzero intercept. 



 

Table 5 
LR Test Based on RE ML with Heterogeneous Trends: 

Testing the Composite Hypothesis of Unit Root, Ho: 12, 22, 2, 2,1 0o o o o oa          

 
 = 1 = 0.95 = 0.9 
 Test 1% 5% 10% 1% 5% 10% 1% 5% 10% 

2
g = 0 

         

N=500           
 T = 5 LR-HT 1.14 5.63 10.76 1.28 6.28 12.01 2.35 9.98 17.28 
 T-HT (1.06) (5.13) (10.74) (1.35) (5.95) (11.17) (1.82) (8.34) (15.52) 
 T = 10 LR-HT 1.43 5.79 10.99 2.48 9.64 17.41 28.40 52.92 65.95 
 T-HT (1.11) (5.19) (10.06) (2.05) (8.74) (15.79) (9.37) (27.12) (40.26) 
 T = 25 LR-HT 1.10 5.46 10.72 64.84 84.46 90.91 100.0 100.0 100.0 
 T-HT (1.08) (5.26) (10.22) (22.23) (47.13) (60.61) (99.50) (99.90) (99.96) 
N = 100           
 T = 5 LR-HT 1.41 6.38 11.74 1.30 6.26 12.22 1.63 7.8 14.13 
 T-HT (1.01) (5.30) (10.30) (1.05) (5.26) (10.65) (1.47) (6.44) (12.45) 
 T = 10 LR-HT 1.42 6.54 12.59 1.73 7.38 13.39 4.00 14.13 23.49 
 T-HT (1.16) (5.33) (11.10) (1.85) (7.58) (13.95) (3.64) (12.04) (21.16) 
 T = 25 LR-HT 1.45 6.52 12.60 8.79 24.21 36.33 82.85 94.68 97.41 
 T-HT (1.40) (5.69) (10.90) (6.04) (17.76) (2918) (44.13) (70.93) (81.64) 

2
g = 0.5 

         

N=500           
 T = 5 LR-HT 1.18 5.69 11.32 1.36 6.42 11.86 2.42 8.73 15.97 
 T-HT (1.20) (5.42) (10.51) (1.13) (5.66) (11.34) (1.82) (8.85) (15.92) 
 T = 10 LR-HT 1.36 5.81 11.15 2.08 8.02 14.87 12.92 31.70 44.60 
 T-HT (0.92) (5.07) (9.89) (2.25) (9.39) (17.02) (9.49) (26.42) (40.22) 
 T = 25 LR-HT 1.38 6.07 11.43 25.25 48.37 60.87 100.0 100.0 100.0 
 T-HT (1.25) (5.51) (10.59) (22.64) (47.65) (61.75) (99.49) (99.98) (99.99) 
N = 100           
 T = 5 LR-HT 1.37 6.31 12.87 1.88 7.67 14.02 1.72 7.81 14.28 
 T-HT (1.01) (5.01) (10.17) (1.22) (5.61) (10.89) (1.41) (6.85) (13.13) 
 T = 10 LR-HT 1.46 6.78 12.85 1.63 7.42 13.91 2.70 10.89 19.42 
 T-HT (1.52) (6.17) (11.47) (1.85) (7.58) (13.95) (3.64) (12.04) (21.16) 
 T = 25 LR-HT 1.44 6.79 12.62 4.24 14.06 23.22 48.93 73.59 83.67 
 T-HT (1.40) (5.69) (10.90) (6.04) (17.81) (29.04) (45.30) (70.48) (81.75) 

2
g = 1 

         

N=500           
 T = 5 LR-HT 1.30 6.17 12.02 1.34 6.46 12.04 2.04 8.29 14.76 
 T-HT (1.07) (5.11) (10.45) (1.22) (5.97) (11.43) (1.80) (8.01) (15.28) 
 T = 10 LR-HT 1.42 6.15 11.94 1.89 7.71 14.76 13.08 30.41 42.68 
 T-HT (1.28) (5.62) (11.02) (2.38) (9.32) (16.48) (10.44) (27.58) (40.25) 
 T = 25 LR-HT 1.23 5.62 11.78 23.64 47.43 60.02 99.99 100.0 100.0 
 T-HT (1.02) (5.38) (10.62) (22.05) (46.12) (60.40) (99.38) (99.94) (99.99) 
N = 100           
 T = 5 LR-HT 1.53 6.97 13.48 1.40 6.67 12.99 1.46 7.39 14.32 
 T-HT (1.20) (5.17) (10.33) (0.87) (5.54) (10.74) (1.33) (6.54) (12.40) 
 T = 10 LR-HT 1.45 6.90 12.97 1.63 7.40 13.96 2.98 11.38 19.84 
 T-HT (1.16) (5.33) (11.10) (1.85) (7.58) (13.95) (3.38) (12.51) (21.59) 
 T = 25 LR-HT 1.45 6.82 12.67 4.19 13.99 23.09 48.49 73.12 83.42 
 T-HT (1.40) (5.69) (10.90) (6.04) (17.81) (29.04) (45.30) (70.48) (81.75) 
 
Notes: Table 5 reports the size and power of the LR test based on the RE ML estimation with the p-values from a mixture of 2 (4) and 2 (5) over 
10,000 simulations.  The estimators are computed allowing heterogeneous time trends and nonzero intercepts.  For comparison, the size and 
power of a one-tailed and bias-corrected t-test (BT-HT) of Harris and Tzavalis (1999) are reported in parentheses.  The t-statistic, which is 
obtained by correcting the bias in a within-type estimator, is asymptotically standard normal under the null hypothesis of unit root with 
heterogeneous drifts,   For each simulation, the variables, ηi, qi0, and εit are generated from the normal distributions with zero means and the 

variances, 2 2  , 2
0 0q  , and 1  , respectively.  The trend parameters gi are drawn from the normal distribution 2(0.5, )gN  .   


