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Abstract

We study subvector inference in the linear instrumental variables model assuming
homoskedasticity but allowing for weak instruments. The subvector Anderson and Ru-
bin (1949) test that uses chi square critical values with degrees of freedom reduced by
the number of parameters not under test, proposed by Guggenberger et al. (2012), con-
trols size but is generally conservative. We propose a conditional subvector Anderson
and Rubin test that uses data-dependent critical values that adapt to the strength of
identification of the parameters not under test. This test has correct size and strictly
higher power than the subvector Anderson and Rubin test by Guggenberger et al.

(2012). We provide tables with conditional critical values so that the new test is quick
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and easy to use. Application of our method to a model of risk preferences in develop-
ment economics shows that it can strengthen empirical conclusions in practice.
Keywords: Asymptotic size, linear IV regression, subvector inference, weak instru-
ments
JEL codes: C12, C26

1 Introduction

Inference in the homoskedastic linear instrumental variables (IV) regression model with pos-
sibly weak instruments has been the subject of a growing literature[] Most of this literature
has focused on the problem of inference on the full vector of slope coefficients of the endoge-
nous regressors. Weak-instrument robust inference on subvectors of slope coefficients is a
harder problem, because the parameters not under test become additional nuisance parame-
ters, and has received less attention in the literature, see e.g., Dufour and Taamouti (2005)),
Guggenberger et al. (2012) (henceforth GKMC), and Kleibergen| (2015).

The present paper contributes to that part of the literature and focuses on the subvector
Anderson and Rubin| (1949) (AR) test studied by GKMC. Chernozhukov et al (2009) showed
that the full vector AR test is admissible, see also [Montiel-Olea| (2017). GKMC proved that
the use of chi square critical values x3_,, ., where k is the number of instruments and myy is
the number of unrestricted slope coefficients under the null hypothesis, results in a subvector
AR test with asymptotic size equal to the nominal size, thus providing a power improvement
over the projection approach, see Dufour and Taamouti| (2005)), that uses x# critical values.

This paper is motivated by the insight that the largest quantiles of the subvector AR test
statistic, namely the quantiles of a Xi—mw distribution, occur under strong identification
of the nuisance parameters. Therefore, there may be scope for improving the power of
the subvector AR test by using data-dependent critical values that adapt to the strength
of identification of the nuisance parameters. Indeed, we propose a new data-dependent
critical value for the subvector AR test that is smaller than the xi_,, = critical value in
GKMC. The new critical value depends monotonically on a statistic that measures the
strength of identification of the nuisance parameters under the null (akin to a first-stage F
statistic in a model with my = 1), and converges to the xi_,, critical value when the
conditioning statistic gets large. We prove that the new conditional subvector AR test has
correct asymptotic size and strictly higher power than the test in GKMC, and therefore the
subvector AR test in GKMC is inadmissible.

1See e.g., Nelson and Startz| (1990)), |Staiger and Stock! (1997), Kleibergen! (2002)), [Moreiral (2003), Andrews
et al.| (2006} |2008) |[Chernozhukov et al.| (2009), and Hillier| (2009a,b]).




At least in the case my, = 1, there is little scope for exploring alternative approaches,
such as, e.g., Bonferroni, for using information about the strength of identification to improve
the power of the new conditional subvector test. Specifically, in the case my = 1, we use
the approach of [Elliott et al.| (2015]) to obtain a point-optimal power bound for any test that
only uses the subvector AR statistic and our measure of identification strength, and find
that the power of the new conditional subvector AR test is very close to it.

Implementation of the new subvector test is trivial. The test statistic is the same as in
GKMC and the critical values, as functions of a scalar conditioning statistic, are tabulated.

Our analysis relies on the insight that the subvector AR statistic is the likelihood ratio
statistic for testing that the mean of a k£ x p Gaussian matrix with Kronecker covariance is
of reduced rank, where p := 1 + my,. When the covariance matrix is known, this statistic
corresponds to the minimum eigenvalue of a noncentral Wishart matrix. This enables us to
draw on a large related statistical literature, see Muirhead, (2009). A useful result from Perl-
man and Olkin| (1980) establishes the monotonicity of the distribution of the subvector AR
statistic with respect to the concentration parameter which measures the strength of iden-
tification when my, = 1. The proposed conditional critical values are based on results given
in [Muirhead| (1978) on approximations of the distribution of the eigenvalues of noncentral
Wishart matrices.

In the Gaussian linear IV model, we show that the finite-sample size of the conditional
subvector AR test depends only on a my -dimensional nuisance parameter. When my, = 1,
it is therefore straightforward to compute the finite-sample size by simulation or numerical
integration, and we prove that finite-sample size for general my, is bounded by the size in
the case my, = 1. The conditional subvector AR test depends on eigenvalues of quadratic
forms of random matrices. We combine the method of |Andrews et al.| (2011) that was used
in GKMC with results in |Andrews and Guggenberger| (2015) to show that the asymptotic
size of the new test can be computed from finite-sample size when errors are Gaussian and
their covariance matrix is known.

Three other related papers are Rhodes Jr| (1981)) that studies the exact distribution of the
likelihood ratio statistic for testing the validity of overidentifying restrictions in a Gaussian
simultaneous equations model; and |[Nielsen| (1999, 2001)) that study conditional tests of rank
in bivariate canonical correlation analysis, which is related to the present problem when
k = 2 and my = 1. These papers do not provide results on asymptotic size or power.

In ongoing work, [Kleibergen| (2015) provides power improvements over projection for the
conditional likelihood ratio test for a subvector hypothesis in the linear IV model. Building on
the approach of|(Chaudhuri and Zivot| (2011)), Andrews (2017)) proposes a two-step Bonferroni-

like method that applies more generally to nonlinear models with non-iid heteroskedastic



data, and is asymptotically efficient under strong identification. Our paper focuses instead
on power improvement under weak identification. Another related recent paper on subvector
inference in the linear IV model is [Wang and Tchatoka (2018]). Also, see |Zhu/ (2015)), whose
setup also allows for conditional heteroskedasticity and is based on the Bonferroni method.
Andrews and Mikusheval (2016) develop robust subvector inference in nonlinear models.
Han and McCloskey| (2017) study subvector inference in nonlinear models with near singular
Jacobian. |[Kaido et al.| (2016) and Bugni et al.| (2017)) consider subvector inference in models
defined by moment inequalities.

The analysis in this paper relies critically on the assumption of homoskedasticity. Al-
lowing for heteroskedasticity is difficult because the number of nuisance parameters grows
with k, and finite-sample distribution theory becomes intractable. When testing hypotheses
on the full vector of coefficients in linear IV regression, robustness to heteroskedasticity is
asymptotically costless since the heteroskedasticity-robust AR test is asymptotically equiva-
lent to the nonrobust one under homoskedasticity, and the latter is admissible. However, in
the subvector case, our paper shows that one can exploit the structure of the homoskedastic
linear IV model to obtain more powerful tests, while it is not at all clear whether this is feasi-
ble under heteroskedasticity. Therefore, given the current state of the art, our results seem to
indicate that there is a trade-off between efficiency and robustness to heteroskedasticity for
subvector testing in the linear IV model. Note that the conditional subvector AR test sug-
gested here must have asymptotic size exceeding the nominal size if one allows for arbitrary
forms of heteroskedasticty. This follows from the fact that this test has uniformly higher
rejection probabilities that the unconditional subvector AR test in GKMC and the latter
test must have asymptotic size larger than nominal size under heteroskedasticity. The sub-
vector AR statistic here uses the weighting matrix that is valid only under homoskedasticity.
While it converges to a chi square X%—mw limiting distribution under strong identification
of the parameters not under test and homoskedasticity, its limiting distribution under het-
eroskedasticity would depend on nuisance parameters some of which leading to quantiles
that exceed the corresponding quantiles of a X%—mw distribution.

The structure of the paper is as follows. Section [2| provides the finite-sample results
with Gaussian errors, fixed instruments, and known covariance matrix. Section [3| gives
asymptotic results. Section 4] provides a Monte Carlo comparison of the power of the new
test and a heteroskedasticity-robust test in a model with conditional homoskedasticity to
investigate potential loss of power for robustness to heteroskedasticity. Section |5 provides an
empirical application of our method to a model of risk preferences from [Tanaka et al. (2010)),
and shows that conclusions from previous less powerful methods can be reversed, namely

insignficant effects become significant. The main goal of this section is to provide a self-



contained guide for empirical researchers on how to implement our procedure to conduct a
hypothesis test /build a confidence region. Finally, Section@ concludes. All proofs of the main
results in the paper and tables of conditional critical values for the cases k —my =1,...,5
are provided in the Appendix. Additional tables of critical values, computational details and
additional numerical results are given in the Supplementary Material (SM) to this article
available online. hyperlink to be added by publisher]

We use the following notation. For a full column rank matrix A with n rows let Py =
A(A’A)7A” and My = I, — Pa, where I,, denotes the n x n identity matrix. If A has zero
columns, then we set M4 = I,,. The chi square distribution with k degrees of freedom and its
1—a-quantile are written as x? and X%,lfm respectively. For an nxn matrix A, p (A) denotes
the rank of A and k; (A), i = 1,...,n denote the eigenvalues of A in non-increasing order.
BY Kmin(A) and Kpax(A) we denote the smallest and largest eigenvalue of A, respectively.
We write 0"** to denote a matrix of dimensions n by k with all entries equal to zero and

typically write 0" for 0"**.

2 Finite-sample analysis

The model is given by the equations

y=YB+Wy+e
Y=ZIly +Vy
W =ZIly + Vi, (21)

where y € R*, Y € ™ W € R>™w and Z € R™*. We assume that k — my > 1. The

reduced form can be written as

(v vy w)=2z(m HW>(§ OmIV:anmy Om;xmw>+(vy Ve Vi ), (22)

mw

N
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where v, := Vy S+ Viyy + €. By V; we denote the i-th row of V' written as a column vector
and similarly for other matrices. Let m := my + my.

The objective is to test the hypothesis

HO . ﬁ = BO against H1 : ﬁ 7é ﬁ(), (23)

using tests whose size, i.e. the highest null rejection probability (NRP) over the unrestricted



nuisance parameters Ily, [Ty, and 7, equals the nominal size «. In particular, weak identi-
fication and non-identification of 5 and ~ are allowed for.

Throughout this section, we make the following assumption.

Assumption A: 1. V; := (vy, Vi, Vi) ~ LLd.N (00D Q) i = 1, ..., n, for
some § € R+H*(m+1) gyuch that

1 lemw ! 1 OleW
QBo) = —fo Omxmw | Qf —F, oW (24)
OmW><1 I OmW><1 I

mw mw

is known and positive definite. 2. The instruments Z € R"** are fixed and Z'Z € RF** is

positive definite.

The subvector AR statistic for testing H is defined as

(Yo — W) Py(Yo— W7)

ARn = I = 7 2.5
V=SB T (1) 2
where €2 () is defined in and

?0 =Yy - Yﬁo (26)

Denote by k; for © = 1,...,p := 1 + my the roots of the following characteristic polynomial
in K

592 (6o) = (Vo, W) Pz (Vo, W) | = 0, (2.7)

ordered non-increasingly. Then,

AR (Bo) = ey (2.8)

that is, AR, () equals the smallest characteristic root, see, e.g. (Schmidt,|[1976| chapter 4.8).
The subvector AR test in GKMC rejects Hy at significance level o if AR, (60) > X3y 1—as
while the AR test based on projection rejects if AR, (8y) > X%,lfoz'

Under Assumption A, the subvector AR statistic equals the minimum eigenvalue of a
noncentral Wishart matrix. More precisely, we show in the Appendix (Subsection that
the roots f; of for : =1, ..., p, satisfy

0= |id, — ==, (2.9)

where = ~ N (M, I},)) for some nonrandom M € R**? (defined in (A.11)) in the Appendix).
Furthermore, under the null hypothesis Hy, M = (Ok, @W) for some Oy € R¥>*™ (defined



in (A.13)) in the Appendix) and thus p (M) < my,, where again p (M) denotes the rank of
the matrix M. Therefore, =Z'= ~ W, (k, I,, M' M), where the latter denotes a non-central

Wishart distribution with k£ degrees of freedom, covariance matrix I,, and noncentrality

IxXmw
MM = ( 0 , ) : (2.10)

0wl @4, O

matrix

The joint distribution of the eigenvalues of a noncentral Wishart matrix only depends
on the eigenvalues of the noncentrality matrix M’ M (see e.g. Muirhead, 2009). Hence, the
distribution of (&4, ..., A,) under the null only depends on the eigenvalues of ©71;, Oy, which
we denote by

ki =k (O Ow), i=1,...,my. (2.11)

We can think of ©;,0Oy as the concentration matrix for the endogenous regressors W, see
e.g. |Stock et al.| (2002). In the case when my = 1, ©y,0Oy is a scalar, and corresponds to
the well-known concentration parameter (see e.g. [Staiger and Stock| (1997)) that measures

the strength of the identification of the parameter vector v not under test.

2.1 Motivation for conditional subvector AR test: Case my =1

The above established that when my, = 1 the distribution of AR, (5y) under H, depends
only on the single nuisance parameter ;. The following result gives a useful monotonicity

property of this distribution.

Theorem 1 Suppose that Assumption A holds and my, = 1. Then, under the null hypothesis
Hy : 8 = Py, the distribution function of the subvector AR statistic in (2.5) is monotonically
decreasing in the parameter k1, defined in 1) and converges to X4 _, as k1 — 0.

This result follows from (Perlman and Olkin, 1980, Theorem 3.5), who established that
the eigenvalues of a k& x p noncentral Wishart matrix are stochastically increasing in the
nonzero eigenvalue of the noncentrality matrix when the noncentrality matrix is of rank 1.

Theorem (1| shows that the subvector AR test in GKMC is conservative for all k1 < o0,
because its NRP Pr,, (AR, (80) > X7_11_o) is monotonically increasing in #; and the worst
case occurs at k1 = 0o. Hence, it seems possible to improve the power of the subvector AR
test by reducing the x%_, critical value based on information about the value of ;.

If k1 were known, which it is not, one would set the critical value equal to the 1 — «
quantile of the exact distribution of AR, (5y) and obtain a similar test with higher power
than the subvector AR test in GKMC. Alternatively, if there was a one-dimensional minimal

sufficient statistic for k1 under Hy, one could obtain a similar test by conditioning on it.
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Figure 1: Conditional critical value function. The solid line plots ¢1_q (A1;k — 1), the 1 —a quantile
of the distribution given in (2.12)), for & = 0.05. The dotted straight line gives the corresponding
quantile of x7_.

Unfortunately, we are not aware of such a statistic. However, an approximation to the
density of eigenvalues of noncentral Wishart matrices by [Leach (1969)), specialized to this
case, implies that the largest eigenvalue k; is approximately sufficient for x; when k; is
“large” and ks = 0. Based on this approximation, (Muirhead, (1978, Section 6) provides
an approximate, nuisance parameter free, conditional density of the smallest eigenvalue ks
given the largest one 4. This approximate density (with respect to Lebesgue measure) of &y

given i, can be written as

fggml (x2|R1) = fxi,l (x2) (R — $2)1/2g (F1), o €0,k1], (2.12)

where fi2 (+) is the density of a x7 ;, and g (#;) is a function that does not depend on any
unknown parameters, see in the Appendix.

Because is analytically available, the quantiles of the distribution whose density
is given in can be computed easily using numerical integration for fixed values of &;.
Figure [1] plots the 1 — a quantile of that distribution as a function of #; for a = 5% and
k= 2,510, and 20. It is evident that this conditional quantile function is strictly increasing
in /1 and asymptotes to X%—l,l—a'ﬁ We propose to use the above conditional quantile function
to obtain conditional critical values for the subvector AR statistic.

In practice, to make implementation of the test straightforward for empirical researchers,

2The monotonicity statement is made based on numerical integration without an analytical proof. An
analytical proof of the limiting result is given in Appendix [A.3]



a=5%, k—1=4
ki ¢v| R4 cev| ki c¢cv| Ry cv| ki ¢cv | Rk cv k1 ¢V k1 cv k1 cv
1.2 1121 19132 29|45 39|59 49|74 59 94 691|125 7.9 | 20.9 8.9
1.3 1223 2135 31|47 41|62 51|78 6.1 99 7.1| 134 81| 26.5 9.1
14 13|25 23|37 33|50 43|65 53|82 63105 73| 145 83| 39.9 9.3
1.6 15|27 25|40 35|53 45|68 55|86 65| 11.1 751|159 85| 574 9.4
1.8 17|30 27|42 37|56 47|71 57|90 6.7 |11.7 77| 179 8.7 | 1000 9.48

Table 1: 1 — a quantile of the conditional distribution with density given in (2.12)),
cv=c1_q (k1,k — 1) at different values of the conditioning variable #;. Computed by numerical
integration.

we tabulate the conditional critical value function for different £ — 1 and « over a grid of
points A1, 7 = 1,...,J, say, and conditional critical values for any given &; are obtained
by linear interpolationﬁ Specifically, let ¢1_q ;(k — 1) denote the 1 — o quantile of the
distribution whose density is given by with &; replaced by &; ;. The end point of the
grid /1, s should be chosen high enough so that ¢1_q,;(k — 1) = x;_;,_,- For any realization
of k1 < /%LJH find j such that &y € [Ryj_1, k1 ] with R19 =0 and g1_a0(k — 1) =0, and let

A ’%1'_/%1 ’%l_l%l —1
ol —1) = T (1) B (1) 2.13
1 (K’l ) l‘%l,j . f%l,j—IQI J—1 ( ) + f%l’j . /%17‘7'—1 41 5J ( ) ( )

Table (1] gives conditional critical values at significance level 5% for a fine grid for the condi-
tioning statistic 4, for the case k — 1 = 4. To mitigate any slight over-rejection induced by
interpolation, the reported critical values have been rounded up to one decimal.

We will see that by using ¢;_, (A1,k — 1) as a critical value for the subvector AR test,
one obtains a close to similar test, except for small values of ;. Note that &;, the largest
root of the characteristic polynomial in is comparable to the first-stage F statistic in
the case my, = 1 for the hypothesis that Iy, = 0™ (v is unidentified) under the null
hypothesis Hy : 8 = Sy in ([2.3). So given a, ¢1_q (R1,k — 1) is a data-dependent critical
value that depends only on the integer &k — 1 (the number of IVs minus the number of
untested parameters), and the nonnegative scalar &; which is a measure of the strength of

identification of the unrestricted coefficient ~.

3For general myy, discussed in the next subsection, the role of k — 1 is played by k — my .

“When &1 > #1,7, we can define ¢;_q (R1, k — 1) using nonlinear interpolation between #;,; and oo, i.e.,
Clea (R1,k—1) = (1 —=F(R1 — k1,7)) 1—a,g (k= 1)+ F(k1 — /%u)xi_m_a, where F' is some distribution
function.



2.2 Definition of the conditional subvector AR test for general my

We will now define the conditional subvector AR test for the general case when my, > 1.

The conditional subvector AR test rejects Hy at nominal size « if
ARn(ﬁo) > Cl—a(/%ly k — mw), (214)

where ¢;_, (+,-) has been defined in for any argument consisting of a vector with
first component in ; U {co} and second component in N. Tables of critical values for
significance levels @ = 10%, 5%, and 1%, and degrees of freedom k — my = 1 to 5 are
provided in Appendix [B] and for degrees of freedom k — my = 6 to 20 are provided in
Appendix |C|in the SM. Since AR, (6y) = f,, the associated test function can be written as

e (k) :==11[kp > c1_a(k1, k —mw)], (2.15)

where 1[-] is the indicator function, & := (k1,k,) and the subscript ¢ abbreviates “condi-
tional”.

The subvector AR test in GKMC that uses xj_,,,, critical value has test function
varxme (R) == 1[ky > c1_q (00, k —my)]. (2.16)

Since €14 (2,+) < ¢1-4(00,-) for all z < oo, it follows that F [p. (k)] > E[ecrmc (R)],
i.e., the conditional subvector AR test ¢, has strictly higher power than the (unconditional)
subvector AR test parrc in GKMC.

2.3 Finite-sample size of . when myy =1

As long as the conditional critical values ¢;_,(~1, kK —my/ ) guarantee size control for the new
test ., the actual quality of the approximation to the true conditional density is not
of major concern to us, and the main purpose of was to give us a simple analytical
expression to generate data-dependent critical values.

We next compute the size of the conditional subvector AR test, and because we don’t
have available an analytical expression of the NRP, we need to do that numerically. This can
be done easily because the nuisance parameter x; is one-dimensional, and the density of the
data is analytically available, so the NRP of the test can be estimated accurately by Monte
Carlo simulation or numerical integration. Using (low-dimensional) simulations to calculate
the (asymptotic) size of a testing procedure has been used in several recent papers, see e.g.
Elliott et al.| (2015]).
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Figure 2: Null rejection probability of 5% level conditional (solid) and GKMC subvector AR
(dotted) tests as a function of the nuisance parameter kyy,,,. The number of instruments is k = 5
and the number of nuisance parameters is myy = 1. Computed by numerical integration of the
exact density.

Figure [2| plots the NRPs of both ¢, and the subvector AR test ¢arrc of GKMC in
at a = 5% as a function of k; for £ = 5 and my = 1. The conditional test ¢, is
evaluated using the critical values reported in Table [I] with interpolation[]

We notice that the size of the conditional subvector AR test ¢, is controlled, because the
NRPs never exceed the nominal size no matter the value of x;. The NRPs of the subvector AR
test par e are monotonically increasing in x; in accordance with Theorem . Therefore the
proposed conditional test ¢, strictly dominates the unconditional test pgiarc. The results

for other significance levels and other values of k are the same, and they are reported in
Table 23] in the SM. We summarize this finding in the following theorem.

Theorem 2 Under Assumption A and my = 1, the finite-sample size of the conditional
subvector AR test p. defined in (2.15) at nominal size « is equal to v for o € {1%,5%, 10%}
and k —my € {1,...,20}.

Comment. To reiterate, the proof of Theorem [2| for given k& — my, and nominal size
« is a combination of an analytical step that shows that the null rejection probability of
the new test depends on only a scalar parameter and of a numerical step where it is shown

by numerical integration and Monte Carlo simulation that none of the NRPs exceeds the

°E.g. if &1 = 2.4 which is an element of [2.3,2.5], then from Table [1| the critical value employed would
be 2.2. To produce Figure [2] we use a grid of 42 points for 1, evenly spaced in log-scale between 0 and 100.
In this figure, the NRPs were computed by numerical integration using the Quadpack in Ox, see [Doornik
(2001). The densities were evaluated using the algorithm of Koev and Edelman| (2006) for the computation
of hypergeometric functions of two matrix arguments. The NRPs are essentially the same when estimated
by Monte Carlo integration with 1 million replications, see Appendix E] in the SM.

11



nominal size. Using the tables of critical values provided in Appendix [B] one can obtain
certain bounds on the p-value of the conditional subvector AR test. With further simulation

effort, one can also obtain additional tables for other o and & — my, combinationsﬂ

2.4 Power analysis when my =1

One main advantage of the conditional subvector AR test is its computational simplic-
ity. For general my,, there are other approaches one might consider based on the information
in the eigenvalues (A, ..., Am,, ) that, at the expense of potentially much higher computa-
tional cost, might yield higher power than the conditional subvector AR test. For example,
one could apply the critical value function approach of Moreira et al.| (2016) to derive condi-
tional critical values. One could condition on the largest my, eigenvalues rather than just the
largest one. The objective of this section is to assess the potential scope for power improve-
ments over the subvector AR test by computing power bounds of all tests that depend on the
data only through the statistic (K1, ..., Ry, ). We first provide some theoretical insights that
help to implement this analysis economically. These insights are valid for arbitrary my,. For
the actual computation of the power bound, we then restrict attention to my, = 1 because
the computational effort for larger my, is overwhelming.

Recall from that under Hy : 5 = [y in , the joint distribution of (&1, ..., ;) only
depends on the vector of eigenvalues (K1, ..., Km,, ) of ©};Ow, where Oy € R¥*™W appears
in the noncentrality matrix M = (Ok, @W) of =~ N (M, I},). It follows easily from (A.13)
in the Appendix that if Il ranges through all matrices in R¥*™W then (s, ..., K, )’ ranges
through all vectors in [0, c0)™W.

Define A := E(Z'(y — Y By, W)) € R**P and consider the null hypothesis

Hy: p(A) < my versus Hy : p(A) = p, (2.17)

where again p (A) denotes the rank of the matrix A. Clearly, whenever H, holds H|, holds too,
but the reverse is not true; by in the Appendix, H| holds iff Iy, is rank deficient or
Iy (8 — Bo) € span(Ily ). It is shown in the Appendix (Case 2 in Subsection[A.2) that under
H] the joint distribution of (&1, ..., %p) is the same as the one of the vector of eigenvalues of
a Wishart matrix W, (k, I,, M’ M) with rank deficient noncentrality matrix and therefore
depends only on the vector of the largest my, eigenvalues (K1, ..., Ky ) € ™ of M/M.
The important implication of that result is that any test ¢(Ay,...,&,) € [0,1] for some

measurable function ¢ that has size bounded by o under Hy also has size (in the parameters

6We provide code to do that here: https://sites.google.com/site/sophoclesmavroeidis/ GKM _replication_code.zip.
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(8,7, 1y, Iy )) bounded by o under Hy. In particular, no test ¢(iy, ..., ,) that controls size
under Hy has power exceeding size under alternatives H{\ Hy.

While the theoretical analysis in the previous two paragraphs holds for arbitrary myy,
we now assume my = 1 for computational feasibility. To assess the potential scope for
power improvements over the subvector AR test, we compute power bounds of all tests that
depend on the statistic (A1, k2). These are point-optimal bounds based on the least favorable
distribution for the nuisance parameter x; under the null that ko = 0, see Appendix in
the SM for details. We consider both the approximately least favorable distribution (ALFD)
method of |[Elliott et al. (2015) and the one-point least favorable distribution of (Andrews
et al.| 2008, section 4.2), but report here only the ALFD bound for brevity and because it is
very similar to the |Andrews et al.| (2008) upper bound. The results based on the Andrews
et al.| (2008) method are discussed in Appendix in the SM.

We compute the power of the conditional and unconditional subvector tests ¢. and
varxmc at the 5% level for k = 5 and the associated power bound for a grid of values
of the parameters k; > Ky > 0 under the alternative, see Appendix in the SM for
details. The power curves are computed using 100,000 Monte Carlo replications without
importance sampling (results for other k are similar and given in the SM). The left panel
of Figure |3| plots the difference between the power function of the conditional test ¢. and
the power bound across all alternatives. Except at alternatives very close to the null, and
when k; is very close to kg (so the nuisance parameter is weakly identified), the power of the
conditional subvector test . is essentially on the power bound. The fact that the power of
@, for small k; is somewhat below the power bound can be explained by the fact that the test
is not exactly similar, so its rejection probability can fall below « for some alternatives. The
right panel of Figure |3 plots the power curves for alternatives with x; = Ky, which seem to
be the least favorable to the conditional test. The power of the conditional test is mostly on
the power bound, while the subvector test pgi e is well below the bound. Two-dimensional
plots for other values of k; — ko are provided in the SM. As k1 — ko gets larger, the power

of warmc gets closer to the power envelope, as expected.

2.5 Size of v, when my > 1 and inadmissibility of oo c

We cannot extend the monotonicity result of Theorem (I to the general case my, > 1. This
is because the distribution of the subvector AR statistic depends on all the myy eigenvalues
of MM in ([2.10)), and the method of the proof of Theorem [If only works for the case that
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Figure 3: Power of conditional and GKMC 1D subvector AR tests, ¢. and par o, and
point optimal power envelope computed using the ALFD method of Elliott et al. (2015). The left
panel plots the power of ¢, minus the power bound across all alternatives. The right panel plots
the power curves for both tests and the power bound when k1 = ko.

p(M'M) = 1] However, Theorem [3 below provides a theoretical result that suffices to
establish correct finite-sample size of the proposed conditional subvector AR test and
the inadmissibility of the subvector test pgx e in in the general case.

To state the result we first need to introduce some notation. Recall that = ~ N (/\/l, Ik(mw+1)) ,
with M nonstochastic and p (M) < my under the null hypothesis in (2.3)). Partition = as

ol P (2.18)
Z21 S22

where Ell is (k' — mw + 1) ><2, 512 is (kf — mwy + 1) X (mW — 1) s 521 is (mW — 1) X2, and EQQ

[1]

is (my — 1) X (my — 1) . Partition M conformably with =. Let u;, i = 1, ..., my,, denote the
possibly nonzero singular values of M (the order doesn’t matter for the arguments below).

Without loss of generality, we can set

Mll Ok—mw+1XmW—1
M= ( 12 7 (2.19)
0 My
where
Ok—mwxl Ok—mwxl
My = 0 p , and Moy == diag (i, -ty —1) - (2.20)
myy

"See (Perlman and Olkin, 1980, p. 1337) for some more discussion of the difficulties involved in extending
the result to the general case.
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Finally, let

— —m—lr——1— \—1/2 = ==l —1lm = =11\ —1/2
O = (12 + —21—22 —22 ‘—‘21) —21—22 (Imw—l + —22 —21—21—22 ) c Rpxp
T _=—1= (I _'_':/ =l=s-1= )_1/2 (] +':—1:' =/ :‘—1/)_1/2 ’
—22 —21 \12 —21—22 —22 —21 my —1 —22 —21—21—22

(2.21)

Theorem 3 Suppose that Assumption A holds with my > 1. Denote by =1, € RF—mw+1x2
the upper left submatrix ofé =20 € R**P. Then, under the null hypothesis Hy : 3 = [3y

é'llléllyO ~ W2 <k — mw + 17 127-/\;1?[1/\;111) )

where My, is defined in in the Appendiz and satisfies p(./\;l'n./\;ln) <1.

As the next couple of lines establish, Theorem [3| allows us to prove correct size of the
conditional subvector AR test by showing that any null rejection probability of the new test
is bounded by the probability of an event that conditional on O has the same statistical
structure as the event of the conditional subvector AR test rejecting under the null when
my = 1 studied in the section above. By Theorem [2| we know that the latter event has
probability bounded by the nominal size a. Theorem [3|can therefore be viewed as a dimension
reduction tool.

Recall that kpin(A) and Kyax(A) denote the smallest and largest eigenvalues of a matrix

A, respectively. Note that

AR, (Bo) = kmm (Z'2) = limin(élé) < ﬁmin(élnén) < /imax(élnéu) < /-@max(élé) = Kmax (2 2),
(2.22)

where the first and third inequalities hold by the inclusion principle, see (Liitkepohl, 1996],

p. 73) and the second and last equalities hold because O is orthogonal. Therefore, at least

for the values of @ and k — my given in Theorem [2],

P(AR, (80) > ¢1—a(Fmax (2Z) , k=mw)) < P(kmin(E1,211) > 1—a(fmax(Z4,211), k—mw)) < a,

(2.23)
where the first inequality follows from (2.22]). The second inequality follows from Theorem
for the case myy = 1 and from Theorem |3 by conditioning on O, where the role of k is
now played by & — my + 1. Hence, the conditional subvector AR test has correct size for
any my . Because ¢1_q(Kmax (2'Z) , k = mw) < Xi_pmyp1_a» it follows that the subvector AR
test Yaxme given in is inadmissible. We summarize these findings in the following
Corollary to Theorems [2] and
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Figure 4: Left panel: NRP of (2.15), GKMC (2.16)) and adjusted subvector AR tests, ¢., Yqrrmc
and @gqq;. Right panel: comparison of power curves when 1 = k2 to point optimal power envelope
computed using the ALFD method of Elliott et al. (2015).

Corollary 4 Under Assumption A and my > 1, (i) the finite-sample size of the conditional
subvector AR test @, defined in (2.15) at nominal size v is equal to « for a € {1%, 5%, 10%}
and k —mw € {1,...,20}. (1) The subvector AR test parmc is inadmissible.

An analogous comment as the one to Theorem [2] applies here, namely that the size result

likely extends to other a and k—myy constellations but would require additional simulations.

2.6 Refinement

Figure [2[ shows that the NRPs of test ¢, for nominal size 5% is considerably below 5% for
small values of 1, which causes a loss of power for some alternatives that are close to Hy, see
Figure |3l However, we can reduce the under-rejection by adjusting the conditional critical
values to bring the test closer to similarityﬁ For the case k = 5, my = 1, and o = 5%, let
©adj be the test that uses the critical values in Table (I| where the smallest 8 critical values
are divided by 5 (e.g., the critical value for £y = 2.5 becomes 0.46). Figure {4| shows that
©aqj still has size 5%, that it is much closer to similarity than ., and does not suffer from
any loss of power relative to the power bound near Hy. This approach can be applied to all

other values of a and k, but needs to be adjusted for each case.

3 Asymptotics

In this section, Assumption A is replaced by

Assumption B: The random vectors (e;, Z;, Vy-; Vi) fori = 1, ..., nin (2.1)) arei.i.d. with
distribution F.

8We thank Ulrich Miiller for this suggestion.
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Therefore, the instruments are random, the reduced form errors are not necessarily nor-
mally distributed, and the matrix Q = ErV;V/ is unknown. We define the parameter space
F for (v, w, Iy, F) under the null hypothesis Hy : f = fy exactly as in GKMCH Namely,
for U = (gi + Viy.v, Viys)' (which equals (vy; — V.8, Viy,;)') let

F ={(y, Iy, Uy, F) : v € R™ Ty, € R 1, € REmy |
Er(||T3||*™) < B, for T; € {vec(Z;U}), Ui, Z;},
Ep(Z;V]) = 0D - Br(vee(Z,U)) (vece(ZUY))) = Ep (UU}) ® Er (Z:Z)),
Kmin(A) > 6 for A € {Ep (Z;Z)) , Ep (U;U])}} (3.1)

for some 0 > 0 and B < 0o, where “®” denotes the Kronecker product of two matrices and
vec(+) the column vectorization of a matrix. Note that the factorization of the covariance
matrix into a Kronecker product in line three of is our definition of homoskedasticity,
which is a weaker assumption than conditional homoskedasticity. Note that the role of Q(f5)
is now played by ErU;U.

Rather than controlling the finite-sample size the objective is to demonstrate that the
new conditional subvector AR test has asymptotic size, that is the limit of the finite-sample

size with respect to F, equal to the nominal size.

We next define the test statistic and the critical value for the case here where € is
unknown. With some abuse of notation (by using the same symbol for another object than
above), the subvector AR statistic AR, (/) is defined as the smallest root &y, of the roots

Rin, © = 1,...,p (ordered nonincreasingly) of the characteristic polynomial

i, — U, (Yo, W) Py (Yo, W)U,

—0, (3.2)

where

Up = ((n— k) (Yo, W) My (Yo, W)~ 12 (3.3)

and ﬁn_ 2 is a consistent estimator (under certain drifting sequences from the parameter space
F) for Q(By) in (2.4), see Lemma |1| in the Appendix for details. The conditional subvector

AR test rejects Hy at nominal size « if

ARn(ﬂO) > Cl—a("%lna k— mw), (34)

9Regarding the notation (v, Iy, Iy, F) and elsewhere, note that we allow as components of a vector
column vectors, matrices (of different dimensions), and distributions.
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where ¢;_, (-, -) has been defined in (2.13)) and &y, is the largest root of (3.2)).

Theorem 5 Under Assumption B, the conditional subvector AR test in (3.4) implemented
at nominal size o has asymptotic size equal to « for the parameter space F defined in (3.1)
and for o € {1%,5%,10%} and k —my € {1,...,20}.

Comments. 1. The proof of Theorem [5]is given in Section in the Appendix. It
relies on showing that the limiting NRP is smaller or equal to o along all relevant drifting
sequences of parameters from F. This is done by showing that the limiting NRPs equal
finite-sample NRPs under Assumption A. Therefore the same comment applies to Theorem
as the comment below Theorem [2 The analysis is substantially more complicated here
than in GKMC, in part because the critical values are also random.

2. Theorem [5| remains true if the conditional critical value ¢;_,(f1n, k — my ) of the
subvector AR test is replaced by any other critical value, ¢1_(R1n, kK — my ) say, where
C1-a(+,k — my) is a continuous non-decreasing function such that the corresponding test
under Assumption A has finite-sample size equal to «. In particular, besides the critical

values obtained from Table 1 by interpolation also the critical values suggested in Section
[2.6] could be used.

4 Power loss for robustness to heteroskedasticity

The heteroskedasticity-robust version of the AR test of hypotheses on the full vector of
the parameters is asymptotically equivalent to the standard AR test when the data is ho-
moskedastic. This is because under homoskedasticity, the heteroskedastic (HAR) and ho-
moskedastic (AR) test statistics are such that HAR — AR = 0, (1), and also the critical
values of both tests are the same. The same argument applies to heteroskedasticity-robust
versions of other weak-identification robust tests, such as the CLR test. Therefore, at least
asymptotically, there is no sacrifice of power for robustness to general forms of heteroskedas-
ticity for full-vector inference. It is interesting to ask whether this property applies to the
subvector case or whether, unlike the full-vector case, robustness to heteroskedasticity for
subvector testing entails a loss of power when the data is homoskedastic.

We investigate this issue by comparing the power of our conditional subvector AR test
against a comparable test that controls size under general forms of heteroskedasticity. We
use a Bonferroni-type test as in (Chaudhuri and Zivot| (2011) and Andrews (2017)), which
controls asymptotic size under heteroskedasticity and is asymptotically efficient under strong
instruments. The test requires two steps. The first step constructs a confidence set for ~

of size 1 — ay, and the second step performs a size ay subvector C' (a)-type test on 3 for
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each value of v in the first-step confidence set. To avoid conservativeness under strong
identification, the second-step size as is chosen using the identification category selection
(ICS) rule proposed by |Andrews| (2017)), see Appendix in the SM for details. We report
results only for the just-identified case, in which the various C («)-type tests all coincide.
We use an AR test for the first step, for reasons discussed in |Andrews (2017)), and denote
the resulting two-step test as a0z, see Appendix in the SM for details.

We compute the power of the three tests pacz, vaxmc, and . of (2.3)) in model (2.1))
with the following parameter settings: n = 250, my = my = 1, k = 2, V; ~iidN (0, Q) with

1 08 08
Q=108 1 03],
08 03 1

Z; ~idN (0, Iy), Iy = (Wg/\/ﬁ) (1,—1)" and Iy = (7?#\/%) (1,1)". The parameters
mg and m, govern the strength of identification of 3 and -, respectively. We consider the
three cases (mg,m,) € {(4,1),(4,2),(4,4)} corresponding to weak, moderate, and strong
identification of . The first-step size of the p 407 test is set to a; = 0.5% and a is determined
by the ICS rule described in Appendix in the SM. All tests are at nominal size o = 5%.

Figure [5| reports the results based on 10,000 Monte Carlo replications. We notice that
the power of the conditional subvector AR test (. is uniformly above the power of the
heteroskedasticity robust oz test, and the difference is decreasing in the strength of iden-
tification of «. Notice that ¢ 407 seems to be dominated even by the unconditional subvector
AR test parae. This is because the second-step critical value of w40z is either equal to
or higher than that of @GKMCE All in all, these results seem to indicate that there is a

trade-off between power and robustness to heteroskedasticity in subvector testing.

5 Empirical illustration

We use an application from a well-cited study in experimental development economics to
illustrate our method. In particular, we consider the homoskedastic linear IV regressions
reported in (Tanaka et al., 2010, Table 5) — henceforth TCN. Using experimental data they
collected from Vietnamese villages, TCN estimate linear IV regressions to study determinants
of risk and time preferences. The dependent variable in their models is the curvature of the

utility function, denoted by ¢ in their notation. They report two specifications, replicated in

101t is equal when ap = 5%, which happens when  is strongly identified, and it is higher when oy = 4.5%,
which occurs frequently when ~y is weakly identified.
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Figure 5: Comparison of power of the two-step test of Chadhuri and Zivot (2011) and Andrews
(2017) pacz against the subvector AR test wgrarc and the conditioanl subvector AR test ..
k =2, n =250 and 10000 Monte Carlo replications.

Table 2l Both specifications include the same exogenous covariates, Chinese, Age, Gender,
Education, Distance to market, and South, and the same excluded exogenous variables used
as instruments, Rainfall and “Head of Household can’t work”, but differ in the way house-
hold income enters the model. Income is treated as endogenous (indicated by (IV) in the
table following TCN’s original notation) to address the possible simultaneous causation of
preferences and economic circumstances. The first specification contains a single endogenous
regressor, Income, which is simply household income. The second specification uses, instead,
a decomposition of household income into mean village income (Mean income), and relative
income within the village (Relative income). It therefore contains two endogenous regressors.
Their sample is random by design and TCN assume homoskedasticity. The coefficients in
these models are interpreted in the usual way as the marginal effects of each variable on
households’ risk preferences. TCN are particularly interested in the effect of income on risk
preference, but they also comment on other determinants, such as gender (=1 for male).
We start with the first specification which contains a single endogenous regressor and is
overidentified. We consider subvector tests and confidence intervals on single coefficients in
the model. First, we note from Table [2[ that the first-stage F statistic is 5.96. An application

of the well-known rule-of-thumb pretest for weak instruments of F' > 10 would lead one to
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Dependent variable

o(Value function curvature)

Specification 1

Specification 2

Chinese 0.035  (0.143) ~0.096  (0.138)
Age ~0.006  (0.003)%* 1 —0.006  (0.002)%** t
Gender 0.022  (0.073) ~0.006  (0.059)
Education —0.029  (0.010)**t++ —0.028 (0.010)*** it
Income (IV) 0.010 (0.006)
Relative income (IV) 0.049 (0.148)
Mean income (IV) 0.010 (0.006)*, Tt
Market ~0.012 (0.017) ~0.013  (0.015)
South —0.155  (0.094)* ~0.148  (0.080)*, 1
Constant 0.980  (0.174)%** 0.992  (0.160)%**
First-stage F' statistic 5.963 {0.008}
Sub. AR statistic (ID) 11.925  {0.008} 6.070  {0.014}
Conditioning statistic 00 93.10
95% Confidence intervals
Gender
Wald [—0.098, 0.143]

cond. sub. AR [—0.136,0.302]

uncond. sub. AR (GKMC) [—0.141,0.307]

Mean income

Wald
cond. sub. AR
uncond. sub. AR (GKMC)

[—0.0006,0.0211]
[ 0.0008,0.0206]
[—0.0005, 0.0222]

X kk skekek
) ’

Table 2: Replication of (Tanaka et al., 2010, Table 5). Sample size is 181. Number of instruments
is two, namely, Rainfall and “Head of Household can’t work” (dummy). 2SLS point estimates
reported with standard errors in parentheses.
5%, and 1% level, resp.; T,71,T T 1 indicates ‘significant’ using conditional subvector AR test at 10%,
5%, and 1% level, resp.. Unconditional p-values in curly brackets.
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conclude that the instruments are weak, and that t tests are unreliable. However, reliable
inference can be based on the AR test irrespective of the outcome of the pretest. Here,
both the conditional and the unconditional subvector AR tests for the coefficient of Income
coincide with the usual AR test, since there are no endogenous regressors to partial out (in
the notation of our paper, my, = 0 for hypotheses on that coefficient). We therefore turn to
subvector inference on the coefficient of an exogenous regressor. For instance, let 8 denote
the coefficient on Gender (the same procedure obviously applies to test hypotheses on the
coefficients of each of the other exogenous regressors). The size-a conditional subvector AR
test of the hypothesis Hy : 8 = [y against Hy : 8 # 5y can be performed using the following
steps:

Algorithm 1.

1. Partial out exogenous regressors: Let X denote the exogenous regressors in the model
other than Gender whose coefficient is under test[] Set y equal to the residuals
of the orthogonal projection of o (the dependent variable) on X, y = Mo, where
Mx = I — Py and Px = X(X'X)"'X'. Similarly, set Y = Mx(Gender), W =
Mx (Income), and Z = Mx(Gender, Rainfall, Head of household can’t work). Set n =
(# of observations) — (# of variables in X)) (=175) and k = # of variables in Z (=3).

2. Compute the eigenvalues of the matrix ESS-(n — k) RSS™!, where ESS := (}70, W), Py
(YO,W), RSS = (Yo, W),MZ (}7{), W), and Yy = y — YB. The smallest eigenvalue
Ron 1s the subvector AR statistic and the largest eigenvalue &4, is the conditioning

statistic.

3. Look up critical value ¢;_o(f1p, k —my ) corresponding to Ay, for k —my = 2 in Table

, and reject Hy if and only if ko, > ¢1_o(R1n, £ — mw).

The unconditional subvector AR test in GKMC follows the same steps 1-2, but the final
step is replaced with: Reject Hy if and only if A, > x3,_,, Where x3 ,_, is the 1 —a quantile
of the x? distribution with 2 degrees of freedom.

Table 2] reports significance of each of the regressors using the conditional subvector AR
test at the 1%, 5% and 10% levels and contrasts them to the nonrobust results reported by
TCN using t tests. Only education is significant at the 1% level, while age is significant at
the 10% instead of 5% level, and the rest of the covariates are not significant at the 10%

level.

11X consists of Constant, Chinese, Age, Education, Distance to market, and South.
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A (1 — a)-level confidence set for 5 can be obtained by grid search over a sufficiently
large range of values for ). An illustration of this approach is given in Figure [6]

Before discussing Figure[6], we note that both the conditional and unconditional subvector
AR confidence sets can be unbounded when the instruments are sufficiently weak. The
hypothesis of an unbounded confidence set is mathematically equivalent to the hypothesis
that the k x (my + my ) coefficient matrix on the instruments in the first-stage regression
— (ITy, ) in the notation of equation — is of reduced rank, see |[Kleibergen| (2015). In
other words, the hypothesis that the confidence set is bounded is equivalent to the hypothesis
that the model is identified. This can be tested using a conditional subvector AR test by
applying Algorithm [I] replacing Y, with Y in step 2. The resulting test statistic is reported
in the row “Sub. AR (ID) statistic” in Table , with the corresponding conditioning statistic
in the row “conditioning statistic”, and unconditional (GKMC) p-value in curly bracketsm
(The value of the “sub. AR (ID) statistic” for specification 2 is obtained using Algorithm
similarly replacing Yy with Y in step 2). The (1 — a)-level conditional and unconditional
subvector AR confidence sets are unbounded if and only if this test fails to reject at level a.
The p-value 0.008 of the identification subvector AR test indicates that the 99% confidence
sets on the parameters are bounded. If, instead, one used the first-stage F' rule to discard
the model, because F' < 10 (effectively concluding it is unidentified), the resulting inference
(unbounded confidence intervals) would be grossly inefficient.

The graph on the left in Figure [6] plots the subvector AR statistic for the coefficient
of Gender in the first specification, together with the conditional and unconditional 10%,
5% and 1% critical values. Note that the conditional critical values vary with [, as the
conditioning statistic changes. The resulting 95% confidence intervals are reported in Table
2l We notice that the conditional confidence interval is shorter than the corresponding one
in GKMC as expected, though the difference is small. Both confidence intervals are wide and
include zero, thus corroborating the finding reported in TCN that there are no significant
effects of gender on risk preferences.

Next, turn to the second specification in Table[2], with two endogenous regressors, Relative
income and Mean income. A conditional subvector AR test of the coefficient on Mean income

can be implemented with the following modification of Algorithm [T}

Algorithm 2.

12Tn the present example where Y is an exogenous variable (Gender) and W consists of only one endogenous
variable (Income), it turns out that K1, = oo and hence the conditional subvector AR test of identification
coincides with the unconditional one. Moreover, <o, = 2F where F is the standard first-stage F statistic
for testing the exclusion of the additional instruments (Rainfall and Head of household can’t work) from the
first-stage regression for W.
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Figure 6: Subvector AR statistic (solid) for Gender in specification 1 of Table and Mean income
in specification 2 of Table [2 with conditional (dashed) and unconditional (dotted) critical values.
Vertical lines indicate 95% confidence intervals reported in Table

1. Partial out all of the included exogenous regressors X ﬁ Set y = Mxo,Y = Mx(Mean
Income), W = Mx(Relative income), Z = Mx(Rainfall, Head of household can’t
work). Set n =174 and k = 2.

2-3. Same as in Algorithm [T but for & — my = 1.

The significance of each coefficient in the second specification is reported in Table [2|
The results mostly agree with the conclusions from the non-robust t tests, except for the
significance of Mean income, which is stronger using our method (5% instead of 10%).

The graph on the right in Figure [6] plots the subvector AR statistic for the coefficient
of Mean income in the second specification, alongside conditional and unconditional critical
values. The resulting 95% confidence intervals are reported in Table 2l We notice that the
GKMC test fails to reject the null hypothesis that the coefficient is zero at the 5% level,
while the conditional test does. Moreover, it is remarkable that the conditional subvector AR
confidence interval is even smaller than the nonrobust Wald confidence interval. Therefore,
use of our conditional subvector AR test strengthens the results reported in TCN. Finally,
notice that both the conditional and the unconditional subvector AR confidence sets are
unbounded at 99% coverage, but the latter contains the entire real line, while the former
excludes two intervals, thus being non-convex.

All of the above results together took less than 5 seconds to compute (using grids of 10000
points for the graphs) on a standard computer. This application is yet another example of
a setting where one can do informative inference, i.e., not leading to unbounded confidence
sets, using weak-instrument-robust methods, as opposed to unreliable inference using Wald /t

tests.

13X consists of Constant, Chinese, Age, Gender, Education, Distance to market, and South.
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6 Conclusion

We show that the subvector AR test of GKMC is inadmissible by developing a new condi-
tional subvector AR test that has correct size and uses data-dependent critical values that are
always smaller than the Xzfmw critical values in GKMC. The critical values are increasing
in a conditioning statistic that relates to the strength of identification of the parameters not
under test. Our proposed test has considerably higher power under weak identification than
the GKMC procedure. We show, using an empirical example, that the implementation of
our method is easy and fast, and can make a difference to empirical conclusions in practice,
in the sense that effects that are insignificant using GKMC become significant using our new
method. A crucial assumption maintained throughout the paper is homoskedasticity. If one
allows for arbitrary forms of heteroskedasticity both the GKMC test and the new conditional
subvector AR test suffer from size distortion. We are currently working on extending these

methods to heteroskedastic settings, which is a much harder problem.

Appendix

A Proofs and derivations

A.1 Proofs of Theorems [1 and [3]

Proof of Theorem (1} The monotonicity follows from (Perlman and Olkin| |1980, Theorem 3.5).
The proof relies on the following result, available in (Muirhead, 2009, Theorem 10.3.8), which states

that a 2x2 non-central Wishart matrix with noncentrality matrix of rank 1 can be expressed as

T'T, where
T tir ti2
0 tyn)’

2, ~ X3 (k1) (non-central x? with noncentrality parameter k1), t3 ~ X3, tiz ~ N (0,1), and

t11,t12, too are mutually independent. The minimum eigenvalue of T'T, Ry, iS given by

2
X th + th + 135 — \/(tfl +1y +15,)" — 4t 13,
Kmin = 9 .

It is straightforward to show that Amin < t%Q, which establishes the upper bound in the distribution
of Amin in GKMC. It is also straightforward to establish that A, is monotonically increasing in t%l,
and since t2; is stochastically increasing in 1 (see, e.g., (Johnson and Kotz, 1970, ch. 28)), then
Fmin 18 stochastically increasing in k1, as shown formally in (Perlman and Olkin, 1980, Theorem

. . . d
3.5). Finally, Amin — 39 20 as kp — (because 2, TN o0), and therefore, Apyin — Xiflﬂ as
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required. [

Proof of Theorem (3| l Using (2.18)) and ( we have

E=z0="" Z9?), (A1)
0 Eo
where
= —_ _ 11— 1/2
Ei1 = (B — ~12~221~21) (I + :21~221L221~21) & (A.2)

Moreover, since =91 and Egy are independent of 217 and Z;2, and O’O = I, +1, conditional on O,

=11 € fk—mw+1)X2 js Gaussian with covariance matrix IQ(k_mW+1) and mean

~ —_—1— N 1/2
M= (Mll — M125221:21) (IQ + _421_4221/_4221._,21) /
===l —1/2

Since p(Mj1) < 1 by (2.20), the same holds for p (Mll) . Hence, conditional on O, Z},Z;; ~
Wa(k — mw + 1,[2,./\;(/11/\;(11) with p <M/11M11> <10

A.2 Joint distribution of the vector of eigenvalues of eigenproblem (2.7))

We study the joint distribution of the vector of eigenvalues (&1, ..., Ry, ) of the eigenproblem that
defines the subvector statistic AR, (f8y) when the hypothesized y does not necessarily equal the
true slope parameter 3. Recall the model (2.1)) and the eigenproblem of the subvector AR statistic

(2.7). Pre/post-multiplying (2.7 by

1 0
( > yields 0 = [kX — (u, W) Pz (u, W)| (A4)
- ImW
an equivalent eigenproblem, where
Ouu EuVW
u=y—YB—Wy=e+Y (B0, 2= |, ) (A.5)
EuVW EVWVW

and o, and X’ Wiy € R™W denote the variance of u and the covariance between u and Vi, re-
spectively. Note that u does not equal the structural error € in unless = [y. Note that

for

~1/2
C = o 0 ith =3 v, D € Rmwxmw,
= 2—1/2 / —1 —1/2 Wl VwVw . -= &2V Viy = ZuVyy ZuViy Ty
- Vw Vi .u uVyy Oun Vw Vv .u
(A.6)
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CXC" = I, holds. Therefore, pre and postmultiplying (A.4) by |C| leads to

0= |k, — <u/a;{?, <W - u%:y) 2;;/3W.H>IPZ <u/03“/3, (W - u%ﬁ> E;V%V.u) ’ (A7)
or
0 = KLy oy — ( /€L5u /fq’ﬁw.u ) 7 (A.-8)
Ewaubu  Ewauswa
where

o= (22)"? Z'ujol? € R* and &y, = (2/2) " 2/ (W - uE“VW> Sy e phxmw

Cun Vww Vv .u
(A.9)
Now,
E(6)=E(Z Z) 272V (8- po) Jol?
:(Z ) y (B — ﬁo)/cfl/2 and
B (§w.)=(2'2)" <HW My (8 — fo) “VW> Sy (A.10)
Hence,
E = [&u, ] ~ N (M, Ii,) and Z'E ~ W), (k‘, I, M’M) , where
M= (Z’Z)l/Q |:HY (ﬁ — ﬁo) /0'11“/?, <HW _ HY (ﬁ - ﬁO) E;,VW) Evvlv/‘%wu:| . (All)

Case 1) Assume that Hy in (2.3)) holds. In that case u = ¢ and we write

o ( Oce Ml > (A.12)

/
EaVW 2VWVW

and Xy, vy e 1= Xviy Vi — E'EV Yeviy 0o - Defining
Ow = (Z’Z)l/2 My Do 2 e phxmw (A.13)

VW VW 154

it follows that M = (0, Oy).
Case 2) Assume instead that H{) in (2.17)) holds. Note that

A=Z7'Z [y (B — Bo) + Hw, My (A.14)
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and therefore for M defined in (A.11])

—1/2 1/011L£2 _%E;Vl‘//‘%wu
M=(2'2) /" AT for T := T vy o 1/2 : (A.15)

1/2
—V/Jué (I + Vﬁ)szvw.u
Because (Z’Z)_l/2 and T are both of full rank it follows that p (M) = p (A)

A.3 The approximate conditional distribution

This section replicates the analysis in Muirhead (1978, Section 6). As a special case of (James,
1964, eq. (68)), the joint density of the eigenvalues &1 and ko of Z'E ~ Wy (k, I, M’ M) can be

written as

2 1 k=3 k=3
f,ghpw (ml,a?g; /11,/12) = 2kF2 (k/?) 1_‘2 (1) exrp (—2 (xl + $2)> x12 3;22 (1'1 — 372) (A.lﬁ)

1 1 1/k 0 x1 0
X exp <—2 (Hl +f€2)> 0F1(2) <2/€§ 1 ( 01 n2> ) < 01 x2>>

for 21 > x9 > 0, where I'y, (a) := a™Mm=D/AT[™ T (a— 1 (i — 1)) and 0F1(2) is the hypergeometric
function of two matrix arguments. Thus, I's (a) := 7'/2T (a) T'(a — $), o (1) := /21 (1) rG)=n
and Ty (k/2) = 7'/2T (k/2) I'(551). So, the joint density (A.16) can also be written as

rl/2 1 k=3 k=3
2T (h/2)T (%) exp <—2 (x1 + x2)> x? xy? (21— 22)
X exp (—; (k1 + Hg)> 0F1(2) (;k‘, i <I?)1 132) , (%1 ;2>> . (A.17)
Under the assumption that k1 > kg = 0, where k1 is large, Leach (1969) has shown that
1.1 (k1 0 0 2'7 :
0F1(2) <2k‘; 1 <T)1 @) , <%1 x2>> ~ TF (k/2) exp ((x1&1)5> (A.18)

x (kaz) T (k1 (21 — 2)) 72 .

Substituting equation (|A.18)]) into equation (A.17)) gives an asymptotic representation for the density

14To see the former, note that T is of full rank iff

= —1/2
_’y EVW/Vw’U. + ’)/C/

is of full rank, where ¢’ := EuVWE\_/‘i,/\iw,uU;ul/? But whenever f(al,aé)’ = (P it follows that a; — c'as =0

—1/2 —-1/2 _ Am
and —Yaq +ZVWVW-H VWVW.ua2 =0mw

and thus az = 0™W. The latter implies a; = 0. Finally, (Z'Z)

as+vc ay = 0™W . Inserting the former into the latter equality yields X

~1/2 45 of full rank by Assumption A 2.
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function of #; and ko under the assumption that x; is large,

D=

= 1/2 1 _k k4 1
mexp <—2/-£1> Ky YRyt exp [—2561 + (21K1) ] (A.19)

1 k=3 1
X exp <—2a:2> xo? (21— 22)2.

This is a special case of Muirhead (1978, (6.5)) with his k&, m, and n corresponding to 1,p = 2, and
k, respectively, and using k2 = 0. Integrating the second line of (A.19) w.r.t. xo yields

/ exp <— x2> (x1 — ;1:2)% dxo
0

o el (53 k—1 k+2 z
- 2 T F(é) 1F1< ) sy T T~ ] (AQO)

where 1 F} (a, ¢; ) is the confluent hypergeometric function. Combined with (A.19)), the approximate

conditional distribution of Ao given &7 is

N|=

L (

filin (x2lB1) = o 2)

The last equation reduces to (2.12) if we use the definition of the density of x2_,, f.2 (z2) =
k=10 x4

E—1 ! 3322
2 o (k=L

(2.12)) is given by

) 2050 (- foz) 1,7 o
) ﬁ 1F1 <kg7k,

(A.21)

ESI N ES
N | w-{-
—
w\m\w H

e 7. Hence, the integrating constant g (k1) in the approximate conditional density

k41
r(52)2=
P’ .
~2 k=1 k+2. k&
/ifﬁ 1F1 <?, %7 —%)

The result that ¢ (00, k — 1) = X%_l 1_q, follows from the fact that limg, o f}i’;zml (|k1) =

(A.22)

g(f1) =

fxi,l (1) . This can be proven using the property that 1 Fj (a,c; —2) 2* = T'(¢) /T (c — a) as z — oo
B (31 —a0) /20 (£2 (k2 k1 3
(Olver, 1997, p. 257, eq. 10.08). It follows that —— == "L(HE) 2 2 T(2-A50) QFV(;)
Frmepn) | VT

=1as x; — o0.

A.4 Proof of Theorem [5

Uniformity Reparametrization To prove that the new subvector AR test has asymptotic size
bounded by the nominal size o we use a general result in Andrews, Cheng, and Guggenberger
(2011, ACG from now on). To describe it, consider a sequence of arbitrary tests {¢, : n > 1} of a
certain null hypothesis and denote by RP, (\) the null rejection probability of ¢, when the DGP

is pinned down by the parameter vector A € A, where A denotes the parameter space of A. By
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definition, the asymptotic size of ¢, is defined as

AsySz = lim sup sup RP,()). (A.23)
n—00 A\eA
Let {hn(\) : n > 1} be a sequence of functions on A, where hp(A) = (hn1(N), ..., by, s(X)) with
hni(A) € Ry =1,...,J. Define

H=1{he (RU{£c0})’ : hy, (Mw,) — h for some subsequence {wy}
of {n} and some sequence {\,, € A:n>1}} (A.24)

Assumption B in ACG: For any subsequence {w, } of {n} and any sequence {\,,, € A : n > 1} for
which Ry, (A, ) = h € H, RPy, (Aw,) — [RP~(h), RP*(h)] for some RP~(h), RP*(h) € (0,1)[7]

The assumption states, in particular, that along certain drifting sequences of parameters A,
indexed by a localization parameter h the NRP of the test cannot asymptotically exceed a certain
threshold RP(h) indexed by h.

Proposition 1 (ACG, Theorem 2.1(a) and Theorem 2.2) Suppose Assumption B in ACG holds.
Then, infrey RP~(h) < AsySz < suppcy RP*(h).

We next verify Assumption B in ACG for the subvector AR test and establish that supy,cz RP1(h) =
« when the test is implemented at nominal size «. To do so, we use Andrews and Guggenberger
(2015, AG from now on), namely Proposition 12.5 in AG, to derive the joint limiting distribution
of the eigenvalues K;,, i = 1,...,p in . We reparameterize the null distribution F' to a vector
A. The vector A is chosen such that for a subvector of A convergence of a drifting subsequence of
the subvector (after suitable renormalization) yields convergence in distribution of the test statistic

and the critical value. For given F' define
Qr = (EpZ; Z)Y? and Up := Q(Bo)~V/? == (EpUU}) /2. (A.25)
Let

Br denote a p x p orthogonal matrix of eigenvectors of Uz (Iyy, Uy ) Q%Qr Uy, iy )Up
(A.26)

ordered so that the p corresponding eigenvalues (91 r, ..., mpr) are nonincreasing. Let

CF denote a k x k orthogonal matrix of eigenvectors of Qg (ITy~, Iy ) UrUs(Iy, HW)'Q'FE
(A.27)

15By definition, the notation x,, — [1,00, T2,00] means that 1 o < liminf, o 2, < limsup,,_,. o, <

T2,00-
16The matrices Br and Cr are not uniquely defined. We let Br denote one choice of the matrix of
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The corresponding k eigenvalues are (i, ..., mpF, 0, ..., 0). Let
(T1F, ..., Tpr) denote the singular values of Qr(Ilyy, Iy )Up € RFxP, (A.28)

which are nonnegative, ordered so that 7,7 is nonincreasing. (Some of these singular values may
be zero.) As is well-known, the squares of the p singular values of a k x p matrix A equal the p
largest eigenvalues of A’A and AA’. In consequence, 7,p = T]-ZF for j = 1,...,p. In addition, njr =0
forj=p+1,.. k.

Define the elements of A to bd™]

>\1,F = (7‘1F, ...,TpF), S %p’
>\2,F = Bp € %po,

kxk
)\37F::CFE§RX,

/
Mr = (A1, oo Adp1r) = (”FTPF> € [0,1]7"!, where 0/0 := 0,
TIF Tp—1F

Xsri= Qp € RFF,
e p = Up € RP*P,
A7 p = F, and
A= Ap = ALy oo A ). (A.29)

The parameter space A for A and the function h,(\) (that appears in Assumption B in ACG)
are defined by

A={Xx:Xx= (A p,..., \r ) for some F € F},
hn(X) == (n'2 X1 p, Ao, P, As sy Ao ). (A.30)

We define A and h,(\) as in and because, as shown below, the asymptotic
distributions of the test statistic and conditional critical values under a sequence {F), : n > 1} for
which h,(Ag,) — h depend on lim n1/2)\17Fn and lim A\, g, for m = 2,...,9. Note that we can view
h € (RU{+o0})’ (for an appropriately chosen finite J € N).

For notational convenience, for any subsequence {w, : n > 1},

{Awn,n i m > 1} denotes a sequence {\, € A :n > 1} for which Ay, (Aw,) = h. (A.31)

eigenvectors of Ug (I, Iy )’ Q%Qr (I, Iy )Up and analogously for Cp.

Note that the role of ErG; in AG, Section 12, is played by (w1, IIyy) € RF*P and the role of Wp is
played by Qp.

"For simplicity, as above, when writing A\ = (A, Fy-s M0,F) O As.p = (A5 1,7, -, A5,3 r) (and likewise in
similar expressions) we allow the elements to be scalars, vectors, matrices, and distributions.
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It follows that the set H defined in is given as the set of all h € (RU {£oco})” such that
there exists {\,, n : n > 1} for some subsequence {w, : n > 1}.

We decompose h analogously to the decomposition of the first six components of \: h =
(h1, ..., he), where A\, p and hy, have the same dimensions for m =1, ...,6. We further decompose
the vector hy as hy = (hy1, ..., h1p)’, where the elements of hy could equal co. Again, by definition,

under a sequence {\, 5 : n > 1}, we have

1/2

n'"T;r, —)hl,j ZOVjZl,...,p, /\m,Fn — hp Vm =2, ...,6. (A.32)

Note that hyp, = 7,5, = 0 because p(Ily, Iy ) < p. By Lyapunov-type WLLNs and CLTSs, using
the moment restrictions imposed in (3.1]), we have under A, 4,

—I/ZZI Viv Y
nV2pec(zUy = [ " (E+Vwm) \ [ &n )y <0pk><1’ e’ @ h§> 7
vec (n‘1/2Z’VW) d \ &vip.h

N p(n1Z2'Z) = Iy, (A.33)
p

)

where the random vector (&, &y, ;)" is defined here.
Asymptotic Distributions Let ¢ = ¢, € {0,...,p — 1} be such that
hi; = oo for 1 <j < g and hy; < oo for g, +1 <5 <p, (A.34)

where hy; := limn'/2r;p > 0 for j = 1,....p by and the distributions {F,, : n > 1}
correspond to {X,; : n > 1} defined in (A.31). This value ¢ exists because {hy; : j < p} are
nonincreasing in j (since {7;r : j < p} are nonincreasing in j, as defined in ) Note that
q is the number of singular values of Qr, (IlyyyVn, ywn)UR, € RFXP that diverge to infinity when

1/2

multiplied by n'/¢. Note again that ¢ < p because p(Ily v, Hwn) < p.

An analogue to Lemma 12.4 in AG is given by the following statement. Define
Dy = (2'2)712" (Yo, W) and Q, := (n"'2'Z)/2. (A.35)

Lemma 1 Under all sequences { A, : n > 1} with Ay, p € A, nl/g(]jn — (MwnYn, Mwn)) —a D,
where

Dy ~ h? (& pyvec,, (Evin)) € RV,

[752 —Q(Bo) —p OP*P and @n —QF, —p 0P where vec,;}nw(-) denotes the inverse vec operation
that transforms a kmyy vector into a k X my matriz and U, is defined in 1’
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Proof of Lemma [It We have

n'/2(Dy, — (Mwnyn, Twn))

:nl/Q((Z'Z)lel(y — YB[L W) - (HWn’Yna HWn))

:n1/2((ZIZ)712/(ZHWn'Yn + Viwvyn + ¢, Zllw, + Vw) - (HWn’Yna HWn))

_ (TLilZ/Z)ilnil/QZ/(VW’Yn +e, VW) —d bh’ (ASG)

where the first equality uses the definition of ﬁn in l) the second equality uses the formulas in
(2.1)), and the convergence results holds by the (triangular array) CLT and WLLN in (A.33). Also,

[77:2 (n—k)_l (?O,W),MZ (?Q,W)
(n— k)" (Vivyn + &, Viw) Mz(Vivyn + €, Viv)
(n— &) ' (Vivyn + &, Viw) (Vivrn + €, Viv) + 0p(1), (A.37)

where the first equality uses the formulas in and the fact that MzZ = 0"** and the second
equality follows directly from . Because 2 (80) = E(Viy;v + & Viy.)' (Vipy + €6, Vi) an
application of WLLNs as in yields the desired convergence result. Likewise, an application
of a WLLN using the uniform moment conditions on Z; in F in and the continuous mapping
theorem immediately imply the desired result @n - QF, —p 0k*k O

nonincreasingly, and Ky, is the subvector AR test statistic. To describe the limiting distribution of

(Rins .-, Kpn) we need additional notation, namely:

ho = (hg,q, hz’p_q), hy = (h?,,q, h3,k—q),
09%(P—9)
<1>7p*q = Diag{hlyq_i_l, ceey hl,p—b O} (= §]%k><(p*q)7
0k=p)x(p—q)
Zh T (Zhﬂ’zhvp_q) € §Rk‘><p’ Zh,q = h3,q € %kxqv

Zh,p—q = hghip_q + h5ﬁhh6h27p_q S §Rk><(p—q)’ (A.38)

where hg, € RPX9, hy g € RP¥XP=D g, € RF¥9 Ry € REXE=D Ay € R} and Ay, , €
sk x (p—q) [1]

Let T, := Br,S, and S, := Diag{(n'?*mp,)", ..., (n'?1,5,)"1,1,...,1} € RP*P. The same
proof as the one of Lemma 12.4 in AG shows that n/2Q FnﬁnU 7, T, —q Ap under all sequences

18There is some abuse of notation here. E.g., ho , and ha,_, denote different matrices even if p — g equals
q.
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{Ann :n>1} with A, 5, € A. The following proposition is an analogue to Proposition 12.5 in AG.

Proposition 2 Under all sequences {\, , : n > 1} with A\, 5, € A,

(a) Kjn —p 00 for all j < g,

(b) the (ordered) vector of the smallest p—q eigenvalues ofnﬁ[lﬁ;@\n@nﬁnﬁn, i€, (Fig1)ns -+
Rpn), converges in distribution to the (ordered) p—q vector of the eigenvalues on}Lp_th_qhg,H
X Nppq € RP-O* (=0

(¢) the convergence in parts (a) and (b) holds jointly with the convergence in Lemma (1|, and

(d) under all subsequences {wy} and all sequences {\y,, n : n > 1} with Ay, n € A, the results

in parts (a)-(c) hold with n replaced with wy,.

Comments. 1. The proof of Proposition [2] follows directly from Proposition 12.5 in AG. Note
that Assumption WU in AG is fulfilled with the roles of Wop, Wg, Usp, and Ur in AG played
here by Qr, Qr, Up = Q(ﬁo)_l/Q, and Up while the roles of W7 and U; in AG are played by the
identity function. The roles of Wgn and /V[7n in AG are both played by @n and those of both ﬁgn
and Un by Un Lemma (1| shows consistency Wgn — War, —p 0F*E and Ugn — Usp,, —p 0P”P under
sequences {\,  : n > 1} with A, , € A and trivially the functions W; and U; are continuous in our
case. Note that by the restrictions in F in the requirements in the parameter space Fyyy in
AG, namely “kpmin(Qr) and Kmin(Ur) are uniformly bounded away from zero and ||Qr|| and ||Ur||
are uniformly bounded away from infinity”, are fulfilled.

2. Proposition yields the desired joint limiting distribution of the p eigenvalues in . Using
repeatedly the general formula (C’'® A)vec(B) = vec(ABC) for three conformable matrices A, B, C,

we have
vec(hg,ﬁhhf;):vec(hgl(fgjh,vec,;inw(ﬁijh)) he)
EViw b
~vec(v, ..., Up), (A.39)
where, by definition, v;, j = 1,...,p are ii.d. normal k-vectors with zero mean and covariance

matrix [, and the distributional statement follows by straightforward calculations using (A.33)).
Therefore, by Lemma the definition of Ay, in 1' and by noting that

Diag{hi,g+1,---, h1p-1,0} ) (A.40)

/ <o —
3.k—gM8MT p—q = ( 0(k—p)x(p—q)
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we obtain

—_ Diag{hL _|_1,...,h17 _1,0}
g,k—th,P—q = ( O(Ij—p)x(p—q)p + hg,k—q(vla ) Up)hlp*q

- < Diag{h1,q+1, ceey hl,p—l, 0}

0(k—p)x(p—q) > + (w1, Wp—g), (A.41)

where, by definition, wj, j = 1, ..., p—q are i.i.d. normal (k—g)-vectors with zero mean and covariance
matrix Ij_,. The distributional equivalence in the second line holds because (v1,...,vp)hop—q ~
(V1 ey Vp—q), Where U5, j = 1,..,p — g are iid. N(0% I}) as ha,—, has orthogonal columns of
length 1. Analogously, hg’qu@l, ey Up—q) ~ (w1, ..., wp—q) because hj_, has orthogonal columns
of length 1.

E.g. when ¢ = p—1 = myy (which could be called the ”strong IV” case), we obtain from (A.41])
hg,k_qzh,p,q = w; € RF—"w | Therefore Zﬁl,p,qhg,k,qhgvk_q&,p,q ~ X%—mw and thus by part (b)
of Proposition [2| the limiting distribution of the subvector AR statistic is Xzfmw in that case, while
all the larger roots in (3.2)) converge in probability to infinity by part (a).

Proof of Theorem [5. By construction, for o € (0, 1), ¢1_(2, k—my ) is an increasing continuous
function in z on (0, 00), where ¢1_q(z, kK —mw ) is defined in with %1 replaced by z. Further-
more, ¢1_q(z,k — my) — Xi_mw,l_a as z — oo. Thus, defining ¢1_q (00, k — my) := Xi—mw,l—cw
we can view c¢1_q(z, kK — my) as a continuous function in z on (0, oc]. Finally, for a € (0,1) we
have P(kp = ci—a(k1,k —mw)) = 0 whenever &, and #; are the smallest and largest eigenvalues
of the Wishart matrix Z'2 ~ W, (k, I, M'M) and any choice of eigenvalues (ki, ..., Kmy,,0) of
M M € RP*P,

According to Proposition (1] in order to show that AsySz < « it is sufficient to establish that
RP*(h) < a for all h € H, where RP*(h) appears in Assumption B in ACG. We therefore need
to establish that for every drifting sequence {\,,n € A : n > 1} the null rejection probability
of the conditional subvector AR test RP,,, (A, 1) satisfies RPy,, (Ay, ) — [RP~(h), RPT(h)] for
some RPT(h) < . We also show that under strong IV sequences the limiting rejection probability
equals « which then implies that the asymptotic size equals a. For notational simplicity we write
n instead of wy,.

By the discussion below Proposition [2l when ¢ = p — 1 = myy, the strong IV case, AR, (80) —4
X%—mw under {\, 5, € A : n > 1} while the largest root &1, goes off to infinity in probability. Thus,

by the definition of convergence in distribution and the features of ¢1_,(z, k —my ) described above

RP,(Anp) = P, (ARn(Bo) > c1—a(fin, k —mw)) = RPT(h) = P(Xg_mw > Xiemyp.1-a) = Q-
(A.42)
When 0 < ¢ < my, then, just like above, the largest root &1, goes off to infinity in prob-
ability and ci—o(Rin,k — mw) —p X%—mw,l—a' By Proposition (b) the limiting distribution
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of Kpp = AR, (Bo) in (3.2)) equals the distribution of the smallest eigenvalue, x(p — ¢q) say, of
. — o — _ . ~ _

Ahm_qhg’k,qhé’k_th’p,q € RP~9XP~4_ where hg,k—th,p*q = (W1, ..., Wp—q), where w; € R*~7 for
j =1,...,p — q are independent N(mj, I_,) with m; = (Oj_ll,thﬂ-,Ok_q_j')’ for j < p—q and

mpy_q = 0%~4, respectively. Therefore,
RP,(Ann) = Pr,(ARy(B0) > c1-a(Rin, k—mw)) = RPT(h) = P(k(0—q) > Xi_ymyy,1-a)s (A:43)

where the convergence holds by the features of ¢1_(2,k — my) described above. Consider a
finite-sample scenario as in in Section [2| with the roles of k,p, = and M played by k — ¢q,p —
q, hg,kf qZh,p_q, and (myq, ..., mp_gq), respectively. From the discussion below Theorem (3| we know
that P(k(p—q) > c1—a(k(1),k—mw)) < « for any choice of k(1) > 0, where k(1) denotes the largest
eigenvalue of Z;W_qhg,k_qhg,quzh,p_q. But given that ¢1_o(k(1),k — my) is increasing in k(1)
and converges to X%—mw,l—a as k(1) — oo, it must also hold that P(x(p —¢q) > XZ—mW,l—a) <o

By Proposition [(b) when ¢ = 0, the limiting distribution of the two roots (Kin, AR, (50))
in equals the distribution of the largest and smallest eigenvalues, k(1) and k(p) say, of
Z;whg,khg’kzh’p € RP*P where hfakzh’p = (W1, ..., Wp), where w; € R* for j = 1,...,p are in-
dependent N(myj,I)) with m; = (0/=V hy;,08=9") for j < p and m, = 0, respectively. Con-
sider a finite-sample scenario as in in Section [2| with the roles of = and M played by
h;@hm and (mi,...,mp), respectively. From the discussion below Theorem |3 we know that
P(k(p) > c1—a(k(1), k —mw)) < a. Therefore,

RP,(Anp) = Pr, (AR, (Bo) > ci—a(Rin, k—mw)) — RPT(h) = P(k(p) > c1_a(k(1), k—mw)) < a,
(A.44)

where the convergence holds again from the features of ¢1_,(z, kK — my) described above. O

B Tables of critical values

10%, 5% and 1% conditional critical values ¢j_q (k1,k —my ) were computed by numerically
integrating the density at different values of the conditioning variable & for the cases
k —mw = 1,..,5. The results are reported in Tables [3| to [7] Tables of critical values for the
cases k — my = 6,...,20 are reported in Appendix [C] in the SM. The conditional quantiles are
rounded upwards to one decimal place, and the initial value of %1 in each table is the smallest &4

for which the rounded quantile is less than <.
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a = 10%

03 0209 06|17 10|27 14|40 18 6.4 22| 15.2 2.6
04 0311 0719 11|30 15|45 19 7.4 23| 276 2.7
05 0413 08|21 12|33 16|50 20 8.8 2.4 | 1000 2.703
0.7 0515 09|24 13|36 17|56 21| 11.0 2.5 oo 2.706

a=5%
kK1 ¢ev| Rl ¢ev| ki c¢v| Rl c¢v| Rl c¢v R1 cv R1 cv
05 0413 10]23 16|36 22|55 28 9.8 3.4 oo 3.841
06 05|15 1125 1.7/39 23|60 29| 114 3.5
07 06|16 12|27 18|41 24|65 3.0 139 3.6
09 0718 1329 19|44 25|70 3.1 185 3.7
1.0 08|20 14|31 2048 26|78 32| 29.7 3.8
1.2 0921 15|34 21|51 27|86 3.3]| 1000 3.838

a=1%
ki ¢ev| R c¢ev| Rl c¢v| Rl c¢v| R cv k1 cv k1 cv
1.0 0920 18|32 27|45 36|62 45 9.0 54| 19.3 6.3
1.1 1.0(21 19|33 28|47 37|65 4.6 9.5 5.5 | 23.8 6.4
1.2 1122 20(34 29|48 38|67 4.7 10.0 5.6 | 32.2 6.5
1.3 1224 21|36 30|50 39|70 48| 10.6 5.7 | 53.1 6.6
14 13(25 22|37 31|52 40|72 49| 11.3 5.8 | 1000 6.628
1.5 14126 23|39 32|54 41|75 50| 122 5.9 o 6.635
1.6 15|28 24|40 33|56 42|79 51| 13.3 6.0
1.8 16|29 25|42 34|58 43|82 52| 14.7 6.1
1.9 17130 26|43 35|60 44|86 53| 16.6 6.2

Table 3: 1 — « quantile of the conditional distribution, with density given in {'
cv=ci_q (k1,k —myp ) at different values of the conditioning variable #;. Computed by numer-
ical integration.

37



a=10%
kK1 ¢v| Ri ¢ev| Rl c¢cv| R c¢v k1 ¢V k1 cv R1 cv
05 04|14 11|25 18|39 25| 57 32 9.2 3.9 | 47.2 4.6
06 05|16 12|27 19|41 26| 6.1 3.3 10.1 4.0 | 1000 4.601
07 06|17 13|29 20|43 27| 65 34| 11.2 4.1 oo 4.605
08 07|19 14|31 21|46 28| 6.9 3.5 ]| 12.7 4.2
1.0 0820 15|33 22|48 29| 73 3.6 15.0 4.3
1.1 09(22 16|35 23|51 30| 79 37| 18.6 4.4
1.3 1024 17|37 24|54 31| 85 38| 259 4.5
a = 5%
I%l Ccv /231 Ccv /%1 Ccv I%l CV 1%1 Ccv /%1 (&A% /%1 Ccv
07 06|16 14|27 22|40 30| 55 338 7.8 4.6 | 13.0 5.4
08 07|18 15|29 23|42 31| 58 39 8.2 4.7 | 14.5 5.5
09 08|19 16|30 24|43 32| 6.0 4.0 8.6 4.8 | 16.5 5.6
1.0 09]20 17|32 25|45 33| 63 4.1 9.1 49| 195 5.7
1.1 10|22 18|33 26|47 34| 65 4.2 9.7 5.0 | 24.7 5.8
1.3 11123 19|35 2749 35| 6.8 43| 10.3 5.1 | 354 5.9
14 1224 20(36 28|51 36| 7.1 44| 11.0 5.2 | 1000 5.985
1.5 1326 21|38 29|53 37| 75 45| 11.9 5.3 oo 5.991
a=1%
I%l Ccv /231 Cv /%1 Ccv /%1 CV 1%1 Ccv /%1 Ccv /%1 Ccv
1.6 1529 27|46 41|65 55| 9.2 6.9 | 15.3 8.3 oo 9.210
1.7 16|31 29|48 43|69 57| 97 7.1 | 175 8.5
1.8 17133 31|51 45|72 591|103 73| 21.1 8.7
20 19136 3354 47|75 6.1|11.0 7.5 28.3 8.9
22 21|38 35|56 49|79 6.3 |11.7 7.7| 49.5 9.1
24 23|41 37|59 51|83 6.5|126 7.9]| 89.0 9.2
27 25143 3962 53|87 6.7]13.8 81| 1000 9.201

Table 4: 1 — «a quantile of the conditional distribution, with density given in

(2.12),cv=c1_q (A1, k — mw ) at different values of the conditioning variable #;. Computed by

numerical integration.
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a=10%
I%l Ccv l%l Ccv /%1 Cv /%1 Ccv 1%1 Ccv /%1 Ccv l%l Ccv
06 05|17 14|29 23|44 32| 62 41| 91 5.0/ 188 5.9
0.7 06|18 15|31 24|46 33| 65 42| 96 51| 226 6.0
08 07|19 16|32 25|47 34| 68 43]102 52| 29.6 6.1
09 08|21 1734 26149 35| 70 441|108 53| 46.0 6.2
1.0 09|22 18|35 27|51 36| 73 45| 11.5 54| 1000 6.245
1.2 10|23 19|37 28|53 37| 76 46| 123 5.5 oo 6.251
1.3 1125 20(39 29|56 38| 80 477|133 5.6
14 12|26 21|40 30|58 39| 83 48| 146 5.7
1.5 13|28 22|42 31|60 40| 87 49163 5.8
a=5%
I%l CcVv 1%1 Ccv I%l (@Y% 1%1 (Y I%l (@Y% 1%1 cv 1%1 (@Y%
09 08|21 1935 30|51 41| 71 521|102 6.3 20.9 7.4
1.0 09|23 20|37 31|53 42| 74 53|10.6 64| 24.5 7.5
1.1 1024 21|38 32|55 43| 76 54 |11.1 6.5| 304 7.6
1.2 11|25 22|39 33|56 44| 78 55|11.6 6.6 | 41.9 7.7
1.3 12|26 23|41 34|58 45| 81 56| 121 6.7| 73.6 7.8
14 13|27 24|42 35|60 46| 83 57|12.8 6.8 | 1000 7.807
1.5 14129 25|44 36|6.2 47| 86 58| 135 6.9 oo 7.815
1.6 15|30 26|45 37|63 48| 89 59|144 7.0
1.8 16|31 27|47 38|65 49| 9.2 6.0 | 154 7.1
1.9 17133 28|48 39|67 50| 95 6.1]16.7 7.2
20 18134 29|50 40|69 51| 98 6.2|185 7.3
a=1%
1%1 (&A% /%1 Ccv /%1 Ccv /%1 (A% 1%1 Ccv /%1 Ccv /%1 Ccv
22 21137 35|55 51|76 6.7]103 83151 9.9 | 1000 11.334
23 22139 3758 53|79 69107 85163 10.1 oo 11.345
24 23|41 39160 5582 7.1|11.2 871|177 10.3
26 25|44 41163 57|85 73|11.6 89| 19.8 10.5
28 27|46 4365 59|88 751|122 9.1 ]229 10.7
30 29|48 45168 6.1]92 777|128 93283 10.9
32 31|50 4771 6395 779|134 9.5 403 11.1
35 33|53 49|73 65199 81 |142 97|84 11.3

Table 5: 1 — a quantile of the conditional distribution, with density given

in

(2.12),cv=c1_q (F1,k — my ) at different values of the conditioning variable #1. Computed by
numerical integration.
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a=10%
kK1 c¢cv| Rl c¢v| k1 cv k1 cv R1 cv R1 cv R cv
0.8 0721 18|35 29| 52 40| 72 51103 6.2| 19.7 7.3
09 08122 19|37 30| 53 41| 74 522|107 6.3 224 7.4
1.0 09|23 2038 31| 55 42| 77 53 |11.1 64| 26.6 7.5
1.1 10|25 21139 32| 57 43| 79 54116 6.5| 33.9 7.6
1.2 11|26 2241 33| 58 44| 82 55121 6.6| 493 7.7
1.3 12|27 2342 34| 60 45| 84 56127 6.7 1000 7.772
1.5 13|28 24|44 35| 62 46| 87 57]134 6.8 oo 7.779
1.6 14|30 25|45 36| 64 47| 90 58142 6.9
1.7 15|31 26|47 37| 66 48| 93 59]151 7.0
1.8 16|32 2748 38| 68 49| 96 6.0|163 7.1
19 17134 28|50 39| 70 50| 99 6.1 |177 72
a=5%
ki c¢v| k1 c¢cv| R cv k1 cv k1 cv k1 cv k1 cv
1.2 11|25 23142 37| 62 51| 86 6.5 (125 79| 399 9.3
1.3 12|27 25145 39| 65 53| 90 6.7|134 81| 574 9.4
14 13|30 2747 41| 68 55| 94 69145 83| 1000 9.478
16 15|32 29|50 43| 71 57| 99 71]159 85 oo 9.488
1.8 17|35 31|53 45| 74 59|105 773|179 87
21 1937 33|56 47| 78 6.1 |11.1 7.5]209 89
23 21|40 35|59 49| 82 63 |11.7 7.7]265 9.1
a=1%
/%1 (&A% I%l Ccv I%l Ccv /%1 Ccv I%l Cv f%l Ccv /%1 Ccv
27 2644 42|64 60| 87 78114 96| 16.0 11.4 | 83.7 13.2
28 27|46 44|66 62| 89 80 |11.8 9.8 16.8 11.6 | 1000 13.264
29 28|48 46|69 64| 92 82122 100|178 11.8 oo 13.277
31 3050 48|71 66| 95 84126 10.2|19.1 12.0
33 32153 50|74 68| 98 86|13.0 104|207 12.2
35 34155 52|76 70]10.1 88135 10.6|229 124
3.7 36|57 54|79 722|104 90 |14.0 108 26.3 12.6
39 38159 56|81 74107 92 |14.6 11.0]| 320 12.8
41 40162 58|84 76| 11.1 94152 11.2|44.1 13.0

Table 6: 1 — «a quantile of the conditional distribution, with density given

in

(2.12),cv=c1_q (F1,k — mw ) at different values of the conditioning variable #;. Computed by

numerical integration.
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numerical integration.
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