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Abstract

Researchers are often interested in the relationship between treatment effects and ob-

served individual heterogeneity. This paper proposes the first nonparametric monotonic-

ity test under the popular regression discontinuity framework. The proposed test ex-

amines whether the average treatment effect or the local average treatment effect has a

monotonic relationship with some of the observed individual characteristics. We show

consistency and asymptotic uniform size control of the proposed test. We apply the test

to study the heterogeneous effect of attending a more selective high school with respect

to peer quality.
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1 Introduction

In program evaluation, researchers are often interested in knowing the whole picture of

a treatment effect that is beyond the overall population average. Estimators and tests

of treatment effect heterogeneity (e.g., Heckman et al., 1998; Abadie, 2002; Hotz et al.,

2005; Firpo, 2007; Crump et al., 2008; Wager and Athey, forthcoming, among many

others) therefore play an important role in the literature. Researchers use these methods

to quantify treatment effects for different groups of individuals, to look for relationships

between the effects and observed factors, to understand how a policy intervention can

affect tails of an outcome distribution, or to design extensions of the analyzed treatment

to other populations.

Treatment effect heterogeneity analysis is also important in program evaluation stud-

ies that use the regression discontinuity (RD) design, which has become very popular in

applied microeconomics, following pioneering works of Angrist and Lavy (1999), Black

(1999), and van der Klaauw (2002). In this paper, we propose the first nonparametric

RD monotonicity test for examining whether an average treatment effect (ATE) identi-

fied under a sharp RD design or a local average treatment effect (LATE) identified under

a fuzzy RD design has a monotonic relationship with some of the observed individual

characteristics.

The proposed test is important to the RD literature as applied economists are often

interested in testing for such a relationship. For example, Ito (2015) studies the treatment

effect of an electricity rebate program in California and is interested in knowing whether

the effect on electricity consumption increases with average temperature or decreases with

household income. Carneiro et al. (2015) investigate the impact of increased maternity

leave on children’s long-term outcome in Norway and examine how the effect changes with

family characteristics such as mothers’ education, distance to grandparents, and income.

Barone et al. (2015) study the effect of being exposed to slanted information on decision

making using a quasi-natural experiment in Italy. They find that switching to digital TV,

which has tenfold more programs, decreased Italians’ vote share of Berlusconi’s coalition

and the effect was stronger in towns with older and less educated voters.

Despite its popularity, tools used in the applied literature to test for monotonic re-
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lationships between treatment effects and observed individual heterogeneity are quite

informal. Both Ito (2015) and Barone et al. (2015) use a naive interaction term method

that adds interaction terms between additional controls of interest and the dummy vari-

able indicating whether an observation passes the cut-off value of an underlying variable

that affects treatment take-up decisions. The method would conclude that the treatment

effect increases (decreases) with certain observable if the corresponding interaction term

is positive (negative) and statistically significant. Carneiro et al. (2015), on the other

hand, subsample the population by grouping individuals with quartiles of continuous ran-

dom variables such as mothers’ months of unpaid leave and log income and run separate

subsample RD analysis. However, the interaction term method is parametric and subject

to model misspecification, while the subsampling method is ad-hoc and often results in

loss of information. In contrast, our proposed test is nonparametric and robust against

all forms of deviations from the null.

Our test also contributes to the regression monotonicity literature in statistics and

econometrics. Existing nonparametric regression monotonicity tests (e.g., Ghosal et al.,

2000; Hall and Heckman, 2000; Chetverikov, 2013; Hsu et al., 2017), to the best of our

knowledge, consider only the case of interior estimation. Since the RD treatment effect is

estimated through nonparametric boundary estimation, none of the existing monotonicity

tests could be applied to the RD setup. Our proposed test is hence the first regression

monotonicity test that is compatible with nonparametric boundary estimation.

This paper is also related to the large literature on regression discontinuity, especially

some recent developments that also look at treatment effect heterogeneity. Relevant

papers include Frandsena et al. (2012) and Shen and Zhang (2015) for distributional RD

analysis, Dong and Lewbel (2015) and Angrist and Rokkanen (2015) for extrapolating RD

effects away from the cut-off, Bertanha (2016) and Cattaneo et al. (2016) for analyzing

heterogeneous treatment effect when the RD design has multiple cut-offs, Bertanha and

Imbens (2014) for examining the external validity of LATE under the fuzzy RD design,

and Hsu and Shen (2016) for testing whether a treatment effect is heterogeneous among

individuals with different observed characteristics.

To construct our test, we first formulate the null hypothesis of regression monotonicity

as a conditional moment inequality that conditions on both the running variable of the
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RD model and some other controls. We then use instrumental functions to transform the

moment inequality into a series of conditional moment inequalities that condition only

on the running variable and build our test statistic upon the latter. Critical values are

constructed through multiplier bootstrap. The proposed nonparametric RD monotonicity

test has several advantages. First, the test statistic does not involve nonparametric

derivative estimation and is of order (nh)−1/2, the same rate of convergence as the classic

RD treatment effect estimators. Second, the proposed test has uniform size control

over a broad set of data generating processes. Last but not least, the test is robust

to weak identification of the conditional local average treatment effect (CLATE) under

fuzzy RD designs. This is important because even when the identification of LATE is

strong, the CLATE could be weakly identified for some subpopulations due to first stage

heterogeneity.

The instrumental function approach adopted in the paper is related to Andrews and

Shi (2013, 2014) and Hsu et al. (2017), who propose to reduce the dimension of the con-

ditioning set in conditional moment equalities/inequalities by transforming the outcome

variable with a series of countably many instrumental functions. They also show that

such a transformation brings no loss of information. Our test is most related to Hsu et al.

(2017), who extend the instrumental function approach in Andrews and Shi (2013, 2014)

to test generalized regression monotonicity. However, as is discussed earlier, the general

method developed in Hsu et al. (2017) cannot be applied to the RD framework because

their test is not compatible with nonparametric boundary estimators. Our proposed test

extends the testing idea in Hsu et al. (2017) to the RD setting.

Monte Carlo experiments show that our proposed test has great size and power prop-

erties. We apply the test to study the impact of attending a more selective high school

in Romania following Pop-Eleches and Urquiola (2013). Mean analysis in Pop-Eleches

and Urquiola (2013) finds that going to a better high school significantly improves grade

averages in the Baccalaureate exam but does not seem to affect the probability of a

student taking the Baccalaureate exam. In contrast, our monotonicity test reveals that

the effect on the exam-taking rate increases monotonically with peer quality of the more

selective school, indicating that the insignificant mean effect found in Pop-Eleches and

Urquiola (2013) comes from the cancelation of positive and negative treatment effects
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among different schools.

The paper is organized as follows. Section 2 sets up the RD model and proposes

the benchmark monotonicity test for the general fuzzy RD case. Section 3 discusses

the asymptotic property of the proposed test. Section 4 extends the benchmark test to

the special case of sharp RD. Section 5 examines the small sample performance of the

proposed test and Section 6 carries out the empirical application. Proofs of all lemmas

and theorems are provided in the Appendix.

2 Testing Treatment Effect Monotonicity Under the Fuzzy

RD Design

2.1 Model Set-up and Null Hypothesis

Let Y denote the outcome of interest and T the treatment status of an individual. T is

binary; T = 0 if an individual does not take the treatment and T = 1 if he/she does.

Use Y (0) and Y (1) to denote potential outcomes when T = 0 and T = 1, respectively.

The observed outcome is Y = T · Y (1) + (1− T ) · Y (0). Whether an individual receives

treatment or not depends at least partially on an underlying variable Z, called the running

variable. A policy intervention encourages an individual to receive treatment if Z is

larger than or equal to some known cut-off value c. Let T (1) and T (0) be the potential

treatment decisions of an individual depending on whether he/she is encouraged or not.

The observed treatment status is then T = T (1)1(Z ≥ c) + T (0)1(Z < c). Let X

be a set of covariates with compact support X ⊂ Rdx . Without loss of generality, we

assume that X = ×dxj=1[0, 1]. For notational simplicity, we assume that X includes only

continuous variables. Our results could be easily extended to cases where X includes

discrete variables.

The RD model follows a sharp design if the treatment decision T is a deterministic

function of the running variable Z, or in other words T = 1(Z ≥ c). The model follows

a fuzzy design if T is a probabilistic function of Z. In this section, we focus on the more

general fuzzy RD case. We will discuss the sharp RD case in Section 4.

Let P be the underlying distribution of (Z, T,X, Y ) and use EP to denote expectation
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under P . Let Xz ⊆ X be the support of X conditional on Z = z and use Xc ⊂ X to denote

the compact support of X conditional on Z = c. For any δ > 0, letNδ,z(c) = {z : |z−c| ≤

δ} denote a neighborhood of Z around Z = c. The following assumption collects the

identifying conditions for the conditional local average treatment effect (CLATE), defined

as

CLATE(x) = EP [Y (1)− Y (0)|X = x, Z = c, T (1)− T (0) = 1],

for the general fuzzy RD set-up.

Assumption 2.1 For a running variable Z continuously distributed in Nδ,z(c) for some

δ > 0, assume that

(i) EP [Y (t)|T (1)−T (0) = 1, X = x, Z = z] and EP [Y (t)|T (1) = T (0) = t′, X = x, Z =

z] are continuous in x and z on Xc ×Nδ,z(c) for t, t′ ∈ {0, 1};

(ii) EP [T (1) − T (0) = 1|X = x, Z = z] and EP [T (1) = T (0) = t|X = x, Z = z] are

continuous in x and z on Xc ×Nδ,z(c) for t ∈ {0, 1};

(iii) T (1) ≥ T (0);

(iv) EP [T (1)− T (0)|X = x, Z = c] > 0 for all x ∈ Xc.

Assumption 2.1(i) requires the continuity of average potential outcomes for always-

takers (individuals with T (0) = T (1) = 1), compliers (individuals with T (1)−T (0) = 1),

and never-takers (individuals with T (0) = T (1) = 0) along both the running variable Z

and the additional control X near the cutoff value Z = c. Assumption 2.1(ii) requires

that the proportion of each group be continuous along both Z and X near Z = c.

Assumption 2.1(iii) and (iv) require no defiers and non-trivial presence of compliers,

respectively. Assumption 2.1(i), (ii) and (iv) are stronger than their counterparts that

are unconditional on X (c.f. Dong and Lewbel, 2015) as we are interested in identifying

the CLATE conditional on the additional covariate X. Under Assumption 2.1, it is easy

to show that CLATE is identified by

CLATE(x) =
limz↘cEP [Y |X = x, Z = z]− limz↗cEP [Y |X = x, Z = z]

limz↘cEP [T |X = x, Z = z]− limz↗cEP [T |X = x, Z = z]
.
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See Hsu and Shen (2016) for details. The dependence of LATE and CLATE(x) on P is

suppressed for notational simplicity.

Researchers are often interested in testing whether the CLATE monotonically in-

creases with some elements in X while keeping the rest fixed. To formalize the test,

partition X such that X = (W,S) with W ∈ W = [0, 1]dw and S ∈ S = [0, 1]ds ; dw ≥ 1,

ds ≥ 0 and ds + dw = dx, and define the null and alternative hypotheses as

H0,FRD : CLATE(x) is non-decreasing in w on W for all s ∈ S; (2.1)

H1,FRD : H0,FRD does not hold.

To test the null, a direct approach is to take partial derivative of CLATE(x) with

respect to w and examine the sign of the derivative function for all values of w and s.

This direct approach requires both the numerator and the denominator of CLATE(x) to

be differentiable with respect to w. It also requires the use of nonparametric derivative

estimation, which has a slow convergence rate. In this paper, we take an alternative route.

Following Hsu et al. (2017), we transform the null hypothesis H0,FRD to conditional

moment inequalities that do not involve derivatives.

2.2 Transformation of the Null Hypothesis

For any w1, w2 ∈ W, s ∈ S, and q ∈ Z+, where Z+ denotes the set of positive intergers,

define

Cw1,q ≡
dw∏
j=1

[
w1j , w1j +

1

q + 1

]
, Cw2,q ≡

dw∏
j=1

[
w2j , w2j +

1

q + 1

]
,

Cs,q ≡
ds∏
j=1

[
sj , sj +

1

q

]
,

where w1j , w2j , and sj are the j-th dimension of w1, w2 and s. Also, when dw ≥ 2,

denote w1 ≥ w2 iff w1j ≥ w2j for all j = 1, . . . , dw; denote w1 > w2 iff w1j ≥ w2j for all

j = 1, . . . , dw, and w1k > w2k for some k ∈ {1, . . . , dw}; denote w1 � w2 iff w1j > w2j

for all j = 1, . . . , dw.

Lemma 2.1 Let λ(w, s) be a continuous function in (w, s) on W×S, and 0 < h(w, s) ≤

M <∞ be a weight function. The following two statements are equivalent:
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(i) λ(w1, s) ≥ λ(w2, s) whenever w1 ≥ w2 for any w1, w2 ∈ W and s ∈ S;

(ii) for any q ∈ Z+, and w1 ≥ w2 such that (q + 1) · w1, (q + 1) · w2 ∈ {0, 1, 2, · · · , q}dw

and q · s ∈ {0, 1, 2, . . . , q − 1}ds,∫
Cw1,q×Cs,q

λ(w̃, s̃) · h(w̃, s̃)dw̃ds̃∫
Cw1,q×Cs,q

h(w̃, s̃)dw̃ds̃
≥

∫
Cw2,q×Cs,q

λ(w̃, s̃) · h(w̃, s̃)dw̃ds̃∫
Cw2,q×Cs,q

h(w̃, s̃)dw̃ds̃
.

Lemma 2.1 states that the monotonicity condition of any continuous function could

be re-formulated as countably many moment inequalities. Lemma 2.1 could be applied

to simplify the null hypothesis H0,FRD.

To be specific, set λ(w, s) to CLATE(w, s), then the statement (i) in Lemma 2.1

reduces to the null hypothesis H0,FRD. Let the weight function in (ii) be h(w, s) =

EP [T (1) − T (0)|W = w, S = s, Z = c] · fW,S|Z=c(w, s), the inequality in Lemma 2.1.(ii)

reduces to

EP [gw1,`(W )gs,`(S)(Y (1)− Y (0))(T (1)− T (0))|Z = c]

EP [gw1,`(W )gs,`(S)(T (1)− T (0))|Z = c]

≥
EP [gw2,`(W )gs,`(S)(Y (1)− Y (0))(T (1)− T (0))|Z = c]

EP [gw2,`(W )gs,`(S)(T (1)− T (0))|Z = c]
, (2.2)

where gwκ,`(.) = 1(. ∈ Cwκ,q) for κ = 1, 2, gs,`(.) = 1(. ∈ Cs,q), and ` = (w1, w2, s, q) ∈

W2 × S × Z+.

To further identify the conditional expectations in above inequality, we make the

following continuity assumption on the conditional density of X given Z.

Assumption 2.2 fX|Z(x|z), the probability density function of X|Z = z, is continuous

and uniformly bounded in z and x on Nδ,z(c)×Xc.

Under both Assumptions 2.1 and 2.2, the conditional mean EP [gwκ,`(W )gs,`(S)(Y (1)−

Y (0))(T (1) − T (0))|Z = c] in the above inequality (2.2) for κ = 1, 2 could be identi-

fied by limz↘cEP [gwκ,`(W )gs,`(S)Y |Z = z] − limz↗cEP [gwκ,`(W )gs,`(S)Y |Z = z], and

the conditional mean EP [gwκ,`(W )gs,`(S)(T (1) − T (0))|Z = c] could be identified by

limz↘cEP [gwκ,`(W )gs,`(S)T |Z = z]− limz↗cEP [gwκ,`(W )gs,`(S)T |Z = z].

For ` ∈ W2×S×Z+ and κ = 1, 2, define m
(κ)
P,+(`) = limz↘cEP [gwκ,`(W )gs,`(S)Y |Z =

z], m
(κ)
P,−(`) = limz↗cEP [gwκ,`(W )gs,`(S)Y |Z = z], q

(κ)
P,+(`) = limz↘cEP [gwκ,`(W )gs,`(S)T |Z =
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z], q
(κ)
P,−(`) = limz↗cEP [gwκ,`(W )gs,`(S)T |Z = z], ρ

(κ)
P (`) = m

(κ)
P,+(`) − m

(κ)
P,−(`), and

%
(κ)
P (`) = q

(κ)
P,+(`)− q(κ)

P,−(`). The following lemma summarizes the hypothesis transforma-

tion result discussed above.

Lemma 2.2 Under Assumption 2.1 and 2.2, the null hypothesis H0,FRD is equivalent to

H ′0,FRD : µP (`) ≡ ρ(2)
P (`)%

(1)
P (`)− ρ(1)

P (`)%
(2)
P (`) ≤ 0, for all g` ∈ G, (2.3)

where G = {g` = (gw1,`, gw2,`, gs,`) : ` ∈ L} is a set of the indicator functions of countable

hypercubes with

L =
{

(w1, w2, s, q) : (q + 1) · (w1, w2) ∈ {0, 1, 2, · · · , q}2dw , w1 ≥ w2,

q · s ∈ {0, 1, 2, · · · , q − 1}ds , for q = 1, 2, 3 · · ·
}
. (2.4)

Proof of Lemma 2.2 is given in the appendix. Note that the inequality in (2.3) also

avoids the use of fraction terms in inequality (2.2). The monotonicity test built upon

(2.3) is therefore robust to weak identification. This is important for the proposed test to

have good small sample performance because first stage heterogeneity can easily result

in weak identification of CLATE(x) for some values of x even when the identification of

LATE is strong.

Before we move on to the next section to construct test statistic for the null hypothesis

H ′0,FRD, we would like to point out that Assumption 2.2 required in Lemma 2.2 is not a

strong condition. In fact, Assumption 2.2 is a direct implication of the “no precise control

over the running variable” rule introduced by Lee and Lemieux (2010) and well-accepted

in the applied RD literature. See discussions in Hsu and Shen (2016) for details.

2.3 Test Statistic

Let {Zi, Ti, Xi, Yi}ni=1 be a sample of size n randomly drawn from the underlying dis-

tribution of (Z, T,X, Y ). In the following, we introduce the nonparametric local linear

estimator of the moment function µP (`) defined in equation (2.3), and then the test

statistic.

For ` ∈ L and κ = 1, 2, let m̂
(κ)
n,+(`), m̂

(κ)
n,−(`), p̂

(κ)
n,+(`) and p̂

(κ)
n,−(`) be the local linear

estimators of m
(κ)
P,+(`), m

(κ)
P,−(`), p

(κ)
P,+(`) and p

(κ)
P,−(`). Let K(.) be the symmetric kernel
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function and h the bandwidth; estimators m̂
(κ)
n,+(`), m̂

(κ)
n,−(`), p̂

(κ)
n,+(`) and p̂

(κ)
n,−(`) are the

constant terms of the following minimization problems, respectively.

(m̂
(κ)
n,+(`), b̂

(κ)
n,m+(`)) = arg min

a,b

n∑
Zi≥c

K

(
Zi − c
h

)[
gwκ,`(Wi)gs,`(Si)Yi − a− b(Zi − c)

]2
,

(m̂
(κ)
n,−(`), b̂

(κ)
n,m−(`)) = arg min

a,b

n∑
Zi<c

K

(
Zi − c
h

)[
gwκ,`(Wi)gs,`(Si)Yi − a− b(Zi − c)

]2
,

(q̂
(κ)
n,+(`), b̂

(κ)
n,q+(`)) = arg min

a,b

n∑
Zi≥c

K

(
Zi − c
h

)[
gwκ,`(Wi)gs,`(Si)Ti − a− b(Zi − c)

]2
,

(q̂
(κ)
n,−(`), b̂

(κ)
n,q−(`)) = arg min

a,b

n∑
Zi<c

K

(
Zi − c
h

)[
gwκ,`(Wi)gs,`(Si)Ti − a− b(Zi − c)

]2
.

Following Fan and Gijbels (1992), for l = 0, 1, 2, define

S+
n,l =

n∑
i=1

1(Zi ≥ c)K
(
Zi − c
h

)
(Zi − c)l, S−n,l =

n∑
i=1

1(Zi < c)K

(
Zi − c
h

)
(Zi − c)l,

w+
ni =

1(Zi ≥ c)K(Zi−ch )[S+
n,2 − S

+
n,1(Zi − c)]

S+
n,0S

+
n,2 − S

+
n,1S

+
n,1

, w−ni =
1(Zi < c)K(Zi−ch )[S−n,2 − S

−
n,1(Zi − c)]

S−n,0S
−
n,2 − S

−
n,1S

−
n,1

.

Then estimators m̂
(κ)
n,+(`), m̂

(κ)
n,−(`), q̂

(κ)
n,+(`) and q̂

(κ)
n,−(`) could be re-written as

m̂
(κ)
n,+(`) =

n∑
i=1

w+
ni ·m

(κ)(Yi,Wi, Si, `), m̂
(κ)
n,−(`) =

n∑
i=1

w−ni ·m
(κ)(Yi,Wi, Si, `),

q̂
(κ)
n,+(`) =

n∑
i=1

w+
ni · q

(κ)(Ti,Wi, Si, `), q̂
(κ)
n,−(`) =

n∑
i=1

w−ni · q
(κ)(Ti,Wi, Si, `).

wherem(κ)(Yi,Wi, Si, `) = gwκ,`(Wi)gs,`(Si)Yi, and q(κ)(Ti,Wi, Si, `) = gwκ,`(Wi)gs,`(Si)Ti,

for ` ∈ L and κ = 1, 2.

Let ρ̂
(κ)
n (`) = m̂

(κ)
n,+(`)−m̂(κ)

n,−(`), %̂
(κ)
n (`) = q̂

(κ)
n,+(`)−q̂(κ)

n,−(`), and µ̂n(`) = ρ̂
(2)
n (`)%̂

(1)
n (`)−

ρ̂
(1)
n (`)%̂

(2)
n (`) be the estimators of ρ

(κ)
P (`), %

(κ)
P (`), and νP (`), respectively. These estima-

tors are uniformly consistent over ` ∈ L under proper regularity conditions. Furthermore,

under suitable conditions, we can show that uniformly over ` ∈ L,

√
nh(µ̂n(`)− µP (`))

=
n∑
i=1

%
(1)
P (`) · φ(2)

ρ,ni(`) + ρ
(2)
P (`) · φ(1)

%,ni(`)− %
(2)
P (`) · φ(1)

ρ,ni(`)− ρ
(1)
P (`) · φ(2)

%,ni(`) + op(1)

≡
n∑
i=1

φµ,ni(`) + op(1),
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with φ
(κ)
ρ,ni(.) =

√
nh(w+

ni(m
(κ)(Yi,Wi, Si, .)−m(κ)

P,+(.))−w−ni(m
(κ)(Yi,Wi, Si, .)−m(κ)

P,−(.)))

and φ
(κ)
%,ni(.) =

√
nh(w+

ni(q
(κ)(Ti,Wi, Si, .) − q

(κ)
P,+(.)) − w−ni(q

(κ)(Ti,Wi, Si, .) − q
(κ)
P,−(.))).

This influence function representation will be used to derive the weak limit of µ̂n(.) in

Section 3.

For any ` ∈ L, let σ̂2
µ,n(`) =

∑n
i=1 φ̂

2
µ,ni(`), where φ̂µ,ni(`) is the estimated influence

function with ρ
(κ)
P (`) and %

(κ)
P (`) in φµ,ni(`) replaced by ρ̂

(κ)
n (`) and %̂

(κ)
n (`), respectively. In

Lemma B.4 in the appendix, we show that σ̂2
µ,n(`) is a consistent estimator for the asymp-

totic variance of
√
nh(µ̂n(`)− µP (`)) under proper regularity conditions. Let ε be some

small positive number and `0 = (1/2,0,0, 1). Let σ̂2
µ,ε(`) = max

{
σ̂2
µ,n(`), ε · σ̂2

µ,n (`0)
}

,

which manually bounds the variance estimator away from zero. To test the null hy-

pothesis H ′0,FRD described in the previous section, we use the Kolmogorov-Smirnov type

statistic

T̂n,FRD = sup
`∈L

√
nh

µ̂n(`)

σ̂µ,ε(`)
.

Under regularity conditions, the test statistic converges to a known limiting distribu-

tion when the monotonicity condition in H0,FRD is true and diverges if the monotonicity

condition is violated.

2.4 LFC and GMS Based Critical Values and Decision Rules

In this section, we introduce two simulated critical values for the proposed tests. The

first is based on the least favorable condition (LFC), which is simple and popular but

potentially conservative for moment inequality tests. The second is based on the gener-

alized moment selection (GMS) method introduced by Andrews and Soares (2010) and

Andrews and Shi (2013, 2014, 2017), which is often employed to improve the power of

inequality tests over the LFC method. 1

To construct the simulated critical values, we introduce a multiplier bootstrap method

that can simulate a process that converges to the same limit as
√
nh(µ̂n(`)− µP (`)).

1The recentering method proposed by Hansen (2005), Donald and Hsu (2016), as well as the contact set

approach proposed in Linton et al. (2010) could also be adopted to improve the power of our monotonicity

tests.
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Let {Ui : 1 ≤ i ≤ n} be a sequence of i.i.d. random variables that satisfy the following

conditions.

Assumption 2.3 {Ui : 1 ≤ i ≤ n} is a sequence of i.i.d. random variables that is

independent of the sample path of {(Yi, Xi, Zi, Ti) : 1 ≤ i ≤ n} such that E[Ui] = 0,

E[U2
i ] = 1, and E[|Ui|4] < M for some M > 0.

Construct the simulated process as

Φ̂u
µ,n(`) =

n∑
i=1

Ui · φ̂µ,ni(`), (2.5)

where φ̂µ,ni(`) are the estimated influence functions defined earlier. For significance level

α < 1/2, define the LFC critical value as

ĉη,LFCn,FRD(α) = sup

{
q
∣∣∣P u( sup

`∈L

Φ̂u
µ,n(`)

σ̂µ,ε(`)
≤ q
)
≤ 1− α+ η

}
+ η,

where P u is the multiplier probability measure. The LFC critical value is therefore the

(1−α+η)-th quantile of the simulated distribution of sup`∈L
Φ̂uµ,n(`)

σ̂µ,ε(`)
plus a small positive

constant η. We will reject the null if the test statistic T̂n,FRD is larger than the critical

value ĉη,LFCn,FRD(α). The small positive constant η is required for our testing approach to

have uniform size control over a broad range of data generating processes (DGPs). If

pointwise size control is desired, η could be set to zero.

Alternatively, one could adopt a GMS method to construct the simulated critical

value.

Assumption 2.4 Assume that

(i) Let an be a sequence of non-negative numbers satisfying limn→∞ an = ∞ and

limn→∞ an/
√
nh = 0;

(ii) Let Bn be a sequence of non-negative numbers satisfying that Bn is non-decreasing,

limn→∞Bn =∞ and limn→∞Bn/an = 0.

Define the GMS critical value as

ĉη,GMS
n,FRD(α) = sup

{
q
∣∣∣P u(sup

`∈L

(
Φ̂u
µ,n(`)

σ̂µ,ε(`)
+ ψ̂µ(`)

)
≤ q

)
≤ 1− α+ η

}
+ η,

ψ̂µ(`) = −Bn · 1
(√

nh · µ̂n(`)

σ̂µ,ε(`)
< −an

)
.
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Compared with the LFC critical value, the GMS critical value uses the ψ̂µ(`) term to

suppress the influence of negative moment functions on the simulated critical value and

improve the power of the proposed test. The tuning non-negative sequences an and Bn

used to define the ψ̂µ(`) term are required to satisfy the conditions in Assumption 2.4.

In practice, we follow Andrews and Shi (2013, 2014) and use an = (0.3 ln(n))1/2, Bn =

(0.4 ln(n)/ ln ln(n))1/2, and η = 10−6. Again, the decision rule is to reject the null when

the test statistic is larger than the critical value.

3 Asymptotics of Proposed Tests

In this section, we study the asymptotic properties of the proposed tests based on both

decision rules discussed in the previous section.

3.1 Regularity Conditions and Asymptotics of the Local Linear Esti-

mators

Let fz(z) and fxz(x, z) denote the marginal density function of Z, and the joint density

of X and Z, respectively. Let ζP,+(x, z) = EP [Y |X = x, Z = z], σ2
P,+(x, z) = VP (Y |X =

x, Z = z) and ςP,+(x, z) = EP [T |X = x, Z = z] for z ≥ c and ζP,−(x, z) = EP [Y |X =

x, Z = z], σ2
P,−(x, z) = VP (Y |X = x, Z = z) and ςP,−(x, z) = EP [T |X = x, Z = z] for

z < c. Let N+
δ,z(c) = {z : 0 ≤ z− c ≤ δ} be a neighborhood of Z from the cut-off value c

to the right and N−δ,z(c) = {z : 0 < c− z ≤ δ} be a neighborhood from c to the left. Let

Pz denote the distribution of Z under P , and let P denote the collection of distributions

P . We make the following assumptions.

Assumption 3.1 Assume that for some δ > 0 and all P ∈ P, the following conditions

are satisfied.

(i) Xz = Xc for all z ∈ Nδ,z(c).

(ii) The random vaiable Z has the same distribution across all P ∈ P and its density

fz(z) is uniformly bounded away from zero and twice continuously differentiable in

z on Nδ,z(c).
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(iii) fxz(x, z) is twice continuously differentiable in z on Nδ,z(c) for all x ∈ Xc, and

∂2fxz(x, z)/∂x∂z is uniformly bounded on ∈ Xc ×Nδ,z(c).

(iv) for all x ∈ Xc, ζP,+(x, z), ςP,+(x, z), ζP,−(x, z), and ςP,−(x, z) are all twice contin-

uously differentiable in z on N+
δ,z(c).

(v) ∂ζP,+(x, z)/∂z, ∂2ζP,+(x, z)/∂x∂z, ∂ςP,+(x, z)/∂z, ∂2ςP,+(x, z)/∂x∂z, ∂zζP,−(x, z)/∂z,

∂2ζP,−(x, z)/∂x∂z, ∂ςP,−(x, z)/∂z, and ∂2ςP,−(x, z)/∂x∂z are all uniformly bounded

on Xc ×N+
δ,z(c).

(vi) Both σ2
P,+(x, z) and σ2

P,−(x, z) are uniformly bounded and uniformly bounded away

from zero on Xc ×N+
δ,z(c).

(vii) EP [Y 4|Z = z] is uniformly bounded for all z ∈ Nδ,z(c).

(viii) EP [T (1)− T (0)|Z = c] is uniformly bounded away from zero.

Assumption 3.1(i) is assumed for notational simplicity. We can allow Xz to depend

on z, and the theory will be the same, but it is more tedious in terms of notation.

Assumption 3.1(ii)-(iv) are standard in nonparametric estimation. Assumption 3.1(v) is

needed to show that the bias terms of the ν̂(`) are asymptotically negligible uniformly

over ` ∈ L and P ∈ P. Assumption 3.1(vi) and (vii) are required for the covariance

estimator of the limiting process to be uniformly consistent, which is in turn used for the

showing the validity of the multiplier bootstrap. Similar conditions are also assumed in

Andrews and Shi (2014), Hsu (2016) and Hsu and Shen (2016). Assumption 3.1(viii) is

assumed such that the group of compliers which is the subpopulation of interest under

fuzzy design is not of mass zero. Assumption 3.1(vi) and (viii) imply that the asymptotic

limit of σ̂2
µ,ε(`) defined in Section 2 is bounded away from zero for all ` ∈ L.

Assumption 3.2 Assume that

(i) K(·) is a non-negative symmetric bounded kernel with a compact support in R, and∫
K(u)du = 1;

(ii) h→ 0, nh→∞ and nh5 → 0 as n→∞.
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Assumption 3.2(i) is a standard assumption on the kernel function. The triangular

kernel (K(u) = (1 − |u|) · 1(|u| ≤ 1)), which is the most frequently used kernel function

in RD estimation and testing, satisfies the stated conditions. Assumption 3.2(ii) is the

standard undersmoothing condition for local linear estimation. It helps to eliminate

the nuisance bias term and obtain centered asymptotic distributions of the local linear

estimators.

Let m̈(`) = (m(1)(Y,W, S, `),m(2)(Y,W, S, `), q(1)(T,W, S, `), q(2)(T,W, S, `))′ be a 4×

1 random vector. Let h+
2,P (`1, `2) = limz↘cCovP (m̈(`1), m̈(`2)|Z = z) and h−2,P (`1, `2) =

limz↗cCovP (m̈(`1), m̈(`2)|Z = z) be the left and right limit of its conditional variance-

covariance matrix of m̈(`) at Z = c. For j = 0, 1, 2, let ϑj =
∫∞

0 ujK(u)du. Define

Ck =
∫∞
0 (ϑ2−uϑ1)2K2(u)du

(ϑ2ϑ0−ϑ21)2·fz(c)
. Let h1,P (`) = (−%(2)

P (`), %
(1)
P (`), ρ

(2)
P (`),−ρ(1)

P (`)) be a 1 × 4

matrix. The following lemma states the asymptotic limit of the local linear estimator of

ν̂n for a fixed underlying distribution Pn.

Lemma 3.1 Under Assumptions 2.1, 2.2, 3.1, and 3.2, we have

√
nh(µ̂n − µP )⇒ ΦCkh2,µ,P

where h2,µ,P (`1, `2) = h1,P (`1)
(
h+

2,P (`1, `2) + h−2,P (`1, `2)
)
h1,P (`2)′ and ΦCkh2,µ,P is a

mean zero Gaussian processes with covariance kernel Ckh2,µ,P .

As is discussed in Section 2, the limiting process Ckh2,µ,P could be approximated

by the proposed multiplier bootstrap method. The following lemma summarizes the

asymptotic property of the simulated process Φ̂u
µ,n for a fixed underlying distribution Pn.

Lemma 3.2 Under Assumptions 3.1–3.2, Φ̂u
µ,n ⇒ ΦCkh2,µ,P with probability approaching

1.

Note that the weak convergence results in both Lemma 3.1 and 3.2 are for a fixed

underlying distribution P , which is sufficient to show the pointwise size control and

consistency results of the proposed test. However, to show that the test also has uniform

size control and consistency properties over a broad set of underlying DGPs, we need

the above discussed weak convergence results to hold for any Pkn , with subsequence kn

of n. The corresponding results are stated and proven in Lemmas B.1 and B.3 in the

appendix.
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3.2 Uniform Size Control and Consistency of the Proposed Test

Define H1 = {h1,P (·) : P ∈ P}, H+
2 = {h+

2,P (·, ·) : P ∈ P}, and H−2 = {h−2,P (·, ·) : P ∈ P}.

Let H = H1×H+
2 ×H

−
2 . For any two functions h = (h1, h

+
2 , h

−
2 ) and h̃ = (h̃1, h̃

+
2 , h̃

−
2 ) in

the space of H, define metric d as

d(h, h̃) = max
{
d1(h1, h̃1), d2(h+

2 , h̃
+
2 ), d2(h−2 , h̃

−
2 )
}
,

where d1(h1, h̃1) = sup`∈L

∥∥∥h1(`)− h̃1(`)
∥∥∥, d2(h2, h̃2) = sup`1,`2∈L

∥∥∥h2(`1, `2)− h̃2(`1, `2)
∥∥∥

and ‖ · ‖ is the Euclidean norm.

Assumption 3.3 Let P0 be the subset of P that satisfies Assumption 3.1 such that the

null hypothesis in (2.1) holds under P if P ∈ P0.

Define Lo(P ) = {` : µP (`) = 0} which is the collection of indices satisfying µP (`) = 0

under P . Then we have the following results of the proposed monotonicity test.

Theorem 3.1 Suppose that Assumptions 3.1-3.3 hold. Then, for every compact subset

of Hcpt of H, we have

(a) lim supn→∞ sup{P∈P0: hP∈Hcpt} P (T̂n,FRD > ĉη,LFCn,FRD(α)) ≤ α;

(b) lim supn→∞ sup{P∈P0: hP∈Hcpt} P (T̂n,FRD > ĉη,GMS
n,FRD(α)) ≤ α;

(c) if there exists PLFCc ∈ P0 such that Lo(PLFCc ) = L and h2,µ,PLFCc
is not a zero

function, then

lim
η→0

lim supn→∞ sup
{P∈P0: hP∈Hcpt}

P (T̂n,FRD > ĉη,LFCn,FRD(α)) = α;

(d) if there exists Pc ∈ P0 such that Lo(Pc) is not empty and h2,µ,Pc restricted to Lo(Pc)×

Lo(Pc) is not a zero function, then

lim
η→0

lim supn→∞ sup
{P∈P0: hP∈Hcpt}

P (T̂n,FRD > ĉη,GMS
n,FRD(α)) = α.

Parts (a) and (b) of Theorem 3.1 show that our tests based on both LFC and GMS

critical values have uniform asymptotic size control over a compact subset of covariance

kernels which is similar to Theorem 2(a) of Andrews and Shi (2013). Theorem 3.1(c)
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shows that our test based on the LFC critical value is at most infinitesimally conservative

asymptotically when there exists at least one PLFCc satisfying the LFC condition: µP (`) =

0 for all ` ∈ L. Theorem 3.1(d) shows that our test based on the GMS critical value is at

most infinitesimally conservative asymptotically when there exists at least one Pc such

that Lo(Pc) is not empty and h2,µ,Pc restricted to Lo(Pc)×Lo(Pc) is not a zero function.

Last, we show that the proposed tests based on both decision rules are consistent, as

is summarized in the following theorem.

Theorem 3.2 Suppose that Assumptions 3.1-2.4 hold and that under P ∗ ∈ P, there exist

w∗1, w
∗
2 ∈ W with w∗2 > w∗1 and s∗ ∈ S such that CLATE(w∗2, s

∗) < CLATE(w∗1, s
∗).

Then

(a) limn→∞P
∗(T̂n,FRD > ĉη,LFCn,FRD(α)) = 1.

(b) limn→∞P
∗(T̂n,FRD > ĉη,GMS

n,FRD(α)) = 1.

4 Special Case: Sharp RD

When the treatment status is a deterministic function of the running variable such that

T = 1(Z ≥ c), the RD model follows the sharp RD design. In this case, every individual

is a complier, and the identification restrictions for the fuzzy RD case in Assumption 2.1

reduce to the following conditions.

Assumption 4.1 For a running variable Z continuously distributed in Nδ,z(c) for some

δ > 0, EP [Y (t)|X = x, Z = z] is continuous in x and z on Xc ×Nδ,z(c) for t = 0, 1.

Under Assumption 4.1, the conditional average treatment effect (CATE) EP [Y (1)−

Y (0)|X = x, Z = c] is identified as

CATE(x) = lim
z↘c

EP [Y |X = x, Z = z]− lim
z↗c

EP [Y |X = x, Z = z].

Recall that X = (W,S). The test of interest then examines whether the CATE(x) is

monotonically increasing in w for all values of s. Mathematically, the null and alternative

hypotheses could be written as

H0,SRD : CATE(x) is non-decreasing in w on W for all s ∈ S;

H1,SRD : H0,SRD does not hold.
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Under Assumption 4.1, it is easy to see that CATE(x) is continuous in x ∈ X . Similar

to the discussion in Section 2.2, testing the null H0,SRD is equivalent to testing

H ′0,SRD : νP (`) ≡ ρ(2)
P (`)p

(1)
P (`)− ρ(1)

P (`)p
(2)
P (`) ≤ 0, for all ` ∈ L,

where p
(κ)
P = EP [gwκ,`(W )gs,`(S)|Z = c] for κ = 1, 2, and L is defined in Lemma 2.2.

First, we note that p
(κ)
P is a special case of %

(κ)
P with T = 1(Z ≥ c). So the monotonicity

test for H ′0,SRD could be carried out using the same test statistic and decision rules for

testing H ′0,FRD.

More efficiently, one could estimate p
(κ)
P (`), κ = 1, 2. by nonparametrically regressing

p(κ)(Wi, Si, `) = gwκ,`(Wi)gs,`(Si) on Zi using data from both sides of the cut-off c. Let

p̂
(κ)
n (`) be the constant term solving of the following minimization problem:(

p̂(κ)
n (`), b̂(κ)

n,p(`)
)

= arg min
a,b

n∑
i=1

K

(
Zi − c
h

)[
gwκ,`(Wi)gs,`(Si)− a− b(Zi − c)

]2
.

For l = 0, 1, 2, define Sn,l =
∑n

i=1K(Zi−ch )(Zi − c)l and wni =
K(

Zi−c
h

)[Sn,2−Sn,1(Zi−c)]
S0,2Sn,2−S2

n,1
. It

then follows straightforwardly that p̂
(κ)
n (`) =

∑n
i=1 wni · p(κ)(Wi, Si, `) for both κ = 1, 2.

Let ν̂n(`) = ρ̂
(1)
n (`)p̂

(2)
n (`)− ρ̂(2)

n (`)p̂
(1)
n (`) be the estimator of νP (`). Then the influence

function representation of ν̂n(`) could be formulated as

√
nh(ν̂n(`)− νP (`)) =

n∑
i=1

φν,ni(`) + op(1),

where φν,ni(`) is defined similar to φµ,ni(`) in Section 2 except that %
(κ)
P (`) and φ

(κ)
%,ni(`)

in φµ,ni(`) are replaced by p
(κ)
P (`) and φ

(κ)
p,ni(`) = wni(p

(κ)(Wi, Si, `) − p(κ)
P (`)) for ` ∈ L

and κ = 1, 2.

Let φ̂ν,ni(`) be the estimated influence function and σ̂2
ν,n(`) =

∑n
i=1 φ̂

2
ν,ni(`) be the

variance estimator of ν̂n(`). Let σ̂2
ν,ε(`) = max

{
σ̂2
ν,n(`), ε · σ̂2

ν,n (`0)
}

. Then we can define

the test statistic for the sharp RD case as

T̂n,SRD = sup
`∈L

√
nh

ν̂n(`)

σ̂ν,ε(`)
.

The LFC and GMS simulated critical values are defined as

ĉη,LFCn,SRD(α) = sup

{
q
∣∣∣P u( sup

`∈L

Φ̂u
ν,n(`)

σ̂ν,ε(`)
≤ q
)
≤ 1− α+ η

}
+ η, and

ĉη,GMS
n,SRD (α) = sup

{
q
∣∣∣P u(sup

`∈L

(
Φ̂u
ν,n(`)

σ̂ν,ε(`)
+ ψ̂ν(`)

)
≤ q

)
≤ 1− α+ η

}
+ η
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respectively, with Φ̂u
ν,n(`) =

∑n
i=1 Ui · φ̂ν,ni(`) being the process simulating the limiting

process of
√
nh(ν̂n(`) − νP (`)) and ψ̂ν(`) = −Bn · 1

(√
nh ν̂n(`)

σ̂ν,ε(`)
< −an

)
. If we reject

the null hypothesis H0,SRD when T̂n,SRD > ĉη,LFCn,SRD(α) or when T̂n,SRD > ĉη,GMS
n,SRD (α), the

resulting tests are consistent and have uniform size control in the limit. The asymptotic

properties are similar to those given in Section 3 for the fuzzy RD case and we omit the

details for brevity.

5 Simulations

In this section, we investigate the small sample performance of the proposed tests. For

all data generating processes (DGPs), the running variable Z, the additional control X,

and the error term u in the outcome equation are generated as following

Z ∼ 2Beta(2, 2)− 1; X ∼ U [0, 1]; u ∼ N(0, 1).

The outcome Y and the treatment decision T are DGP specific. All DGPs are either

estimated from the empirical example or modified from the data-driven DGPs to demon-

strate specific properties of the proposed tests.

We use DGPs 1-3 to illustrate the small sample performance of the proposed mono-

tonicity tests under the sharp RD design. DGPs 1-2 are estimated from the empirical

dataset. DGP 3 is altered from DGP 2 to have a U-shaped CLATE to demonstrate

the potential power gain of the GMS method. The DGPs are plotted in Figure 1 with

detailed DGP generating procedures described in the footnote.

DGP 1: Sharp RD, Homogeneous Zero Effect

Y =

 −0.373 + 0.545Z − 0.056Z2 + 0.1u if Z ≥ 0

−0.531 + 0.556Z + 0.192Z2 + 0.1u if Z > 0

DGP 2: Sharp RD, Monotonically Increasing Treatment Effect

Y =

 −0.755− 0.254W + 0.742Z − 0.219WZ − 0.063Z2 + 1.175W 2 + 0.1u if Z ≥ 0

−0.607− 0.220W + 0.386Z + 0.228WZ + 0.204Z2 + 0.469W 2 + 0.1u if Z < 0
.

DGP 3: Sharp RD, Inverse-U Shape Treatment Effect

Y =

 −0.755− 5.080W + 0.742Z − 0.219WZ − 0.063Z2 + 5.875W 2 + 0.1u if Z ≥ 0

−0.607− 0.220W + 0.386Z + 0.228WZ + 0.204Z2 + 0.469W 2 + 0.1u if Z < 0
.
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The null hypotheses of interest are “H0 : CATE(w) is non-decreasing in w for all

w ∈ [0, 1]” and “H0 : CATE(w) is non-increasing in w for all w ∈ [0, 1]”. For each

DGP, three different sample sizes n = 2, 000, n = 4, 000 and n = 8, 000 are used. For

each DGP and sample size combination, 2,000 simulation samples are drawn and the

proposed monotonicity test is conducted in each Monte Carlo simulation. In each test,

the bootstrap critical value is calculated using 1,000 bootstrap simulations. All tests

carried out in this section use the triangular kernel and bandwidths selected according

to the formula hCCT ×n1/5−1/k, where hCCT is the robust bandwidth following Calonico

et al. (2014) (CCT) and k is the under-smoothing parameter. In all simulation tables,

we report results with k = 4.25, 4.5 and 4.75. The cubes defined in equation (2.4)

have side-lengths 1/q for q = 1, ..., Q. We use benchmark Q = 10 which includes 165

combinations of overlapping Cw1,10 and Cw2,10 intervals. We also report robustness checks

with Q = 15, which includes 560 combinations of overlapping Cw1,15 and Cw2,15 intervals.

When n = 2, 000 the bandwidth of DGPs 1-3 is around 0.18-0.25, which means that the

expected effective sample size of the smallest Cw1,15 and Cw2,15 intervals ranges from 27

to 36 when Q = 10 and 18 to 24 when Q = 15 (for each local linear regression on one

side of the RD cut-off).

Table 1 summarizes the rejection proportions of the proposed tests for the sharp RD

case, with p
(κ)
P (`) estimated using the full sample method as is discussed in the second

half of Section 4. We see from the table that, regardless of whether the simulated critical

value uses the LFC or the GMS method, the proposed monotonicity test controls size

well in small samples and have power going to one as the sample size increases. The

GMS method brings the size of the proposed test closer to the nominal level (5%) when

the null of monotonic effect holds but not with equality (columns (1)-(3) and (7)-(9) in

DGP 2) and increases the power when the null of monotonic effect is violated (DGP 3

and columns (4)-(6) and (10)-(12) in DGP 2). The power gain is especially large for DGP

3. This is because, with the inverse U-Shape model in DGP3, the GMS method can get

rid of the influence of about half of the hypercubes on critical value calculation when

testing either direction of monotonicity. Last but not least, we notice that the simulation

performance of the proposed test is not very sensitive to either the choice of bandwidth
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Figure 1: DGP 1-3
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Note: The DGPs are estimated from the data of the empirical section. To obtain the models, we first rescale

the running variable (i.e., transition score) in the data set to [−1, 1] to match the support of the generated X

variable. Then for the outcome equation in DGP 1, we regress the outcome (i.e., score in Baccalaureate exam) on

the running variable and its second order polynomial term separately for the subsample to the left and the right

of the cutoff value (i.e., 0). To get the outcome equation in DGP 2, we add the additional control of interest (i.e.,

average peer admission score), its second order polynomial term, and its interaction with the running variable to

the set of regressors. To get the outcome equation in DGP 3 (bottom left graph), we take the model for DGP 2

and multiply the slope coefficient of the additional control variable by 20 and the slope coefficient of its second

order polynomial term by 5.
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Table 1: Small Sample Performance of Proposed Monotonicity Tests, Sharp RD

LFC Critical Value GMS Critical Value

H0: Non-decreasing H0: Non-increasing H0: Non-decreasing H0: Non-increasing

c=4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Q = 10

DGP 1: Homogeneous Zero Effect

n=2000 0.019 0.020 0.022 0.017 0.020 0.020 0.024 0.026 0.026 0.019 0.023 0.022

n=4000 0.025 0.026 0.032 0.023 0.025 0.030 0.028 0.030 0.036 0.027 0.030 0.035

n=8000 0.042 0.042 0.043 0.039 0.039 0.041 0.048 0.045 0.048 0.044 0.044 0.044

DGP 2: Monotonically Increasing Treatment Effect

n=2000 0.005 0.005 0.006 0.329 0.373 0.418 0.009 0.008 0.009 0.334 0.378 0.429

n=4000 0.008 0.007 0.007 0.721 0.783 0.838 0.010 0.012 0.011 0.725 0.785 0.840

n=8000 0.006 0.005 0.005 0.970 0.981 0.990 0.011 0.012 0.013 0.970 0.981 0.990

DGP 3: Inverse U-Shaped Treatment Effect

n=2000 0.049 0.058 0.066 0.337 0.401 0.472 0.069 0.075 0.086 0.364 0.425 0.495

n=4000 0.180 0.205 0.236 0.833 0.895 0.927 0.214 0.244 0.277 0.844 0.900 0.929

n=8000 0.428 0.490 0.546 0.995 0.998 0.999 0.498 0.562 0.611 0.995 0.999 0.999

Q = 15

DGP 1: Homogeneous Zero Effect

n=2000 0.006 0.008 0.006 0.006 0.007 0.008 0.006 0.009 0.008 0.008 0.008 0.008

n=4000 0.010 0.012 0.013 0.010 0.012 0.014 0.012 0.014 0.014 0.010 0.012 0.015

n=8000 0.027 0.033 0.030 0.030 0.027 0.031 0.030 0.038 0.033 0.032 0.031 0.034

DGP 2: Monotonically Increasing Treatment Effect

n=2000 0.002 0.002 0.001 0.180 0.220 0.260 0.004 0.003 0.002 0.189 0.226 0.268

n=4000 0.004 0.002 0.004 0.556 0.636 0.710 0.006 0.006 0.006 0.564 0.640 0.712

n=8000 0.004 0.004 0.005 0.933 0.956 0.976 0.007 0.008 0.008 0.933 0.956 0.976

DGP 3: Inverse U-Shaped Treatment Effect

n=2000 0.017 0.022 0.030 0.170 0.219 0.272 0.023 0.029 0.036 0.184 0.234 0.296

n=4000 0.090 0.110 0.132 0.701 0.772 0.841 0.106 0.135 0.161 0.721 0.788 0.852

n=8000 0.320 0.390 0.453 0.984 0.992 0.997 0.374 0.449 0.500 0.986 0.992 0.997

Note: Reported are rejection proportions among 2,000 simulations, where all tests are carried out using the 5%

significance level. For each test, the simulated critical value is calucalted with 1,000 bootstrap repetitions.

choice or that of Q.

DGPs 4-6 illustrate the small sample performance of the proposed monotonicity tests

under the fuzzy RD design. The outcome equations in these DGPs are the same as those
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in DGPs 1-3, respectively. The selection equation is modeled by

T =

 1(0.331 + 0.277Z + 0.049Z2 + u > 0) if Z ≥ 0

0 if Z > 0
,

which is estimated from the data using probit regression. Table 2 summarizes the rejec-

tion proportions of the proposed tests. We observe similar small sample performances as

those reported in Table 1, although the tests generally have lower power under the fuzzy

RD design due to the extra noise in the first stage.

6 Empirical Example: The Effect of Going to a Better High

School

As is discussed in Pop-Eleches and Urquiola (2013), in Romania, a typical elementary

school student takes a nationwide test in the last year of elementary school and applies

to a list of high schools (and tracks). The admission decision is entirely dependent on

the student’s transition score, an average of the student’s performance on the national

test and grade point average, as well as a student’s preference for schools. A student is

eligible to a high school if his/her transition score passes the school’s cut-off.

Using an administrative dataset, Pop-Eleches and Urquiola (2013) find that attending

a better school on average improves a student’s performance on the Baccalaureate exam

but does not significantly affect his/her probability of taking the exam. In this section,

we apply the proposed monotonicity test to study how the effects of attending a more

selective high school interact with peer quality of the school. As in Shen and Zhang

(2015) and Hsu and Shen (2016), we focus on two-school towns because score cutoffs

within a town are often quite close to each other and having more than one discontinuity

point within the estimation window can introduce severe estimation bias.

In this application, the running variable (Z) is a student’s standardized transition

score subtracting individual school cut-off and the cut-off value (c) for having an offer

from the more selective high school is zero for all students. The treatment variable

(T ) indicates whether a student attends the more selective high school in town. The

outcome variable (Y ) is a student’s decision of whether to take the Baccalaureate exam
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Table 2: Small Sample Performance of Proposed Monotonicity Tests, Fuzzy RD

LFC Critical Value GMS Critical Value

H0: Non-decreasing H0: Non-increasing H0: Non-decreasing H0: Non-increasing

c=4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Q = 10

DGP 4: Homogeneous Zero Effect

n=2000 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001

n=4000 0.002 0.002 0.002 0.004 0.005 0.005 0.003 0.003 0.004 0.004 0.005 0.006

n=8000 0.010 0.011 0.014 0.009 0.010 0.012 0.014 0.012 0.016 0.010 0.014 0.014

DGP 5: Monotonically Increasing Treatment Effect

n=2000 0.000 0.000 0.000 0.117 0.138 0.161 0.000 0.001 0.000 0.118 0.139 0.165

n=4000 0.000 0.000 0.001 0.404 0.468 0.546 0.001 0.001 0.001 0.407 0.472 0.550

n=8000 0.001 0.001 0.002 0.840 0.894 0.932 0.002 0.002 0.002 0.840 0.895 0.932

DGP 6: Inverse U-Shaped Treatment Effect

n=2000 0.021 0.024 0.030 0.127 0.170 0.214 0.028 0.032 0.038 0.139 0.185 0.234

n=4000 0.112 0.144 0.186 0.645 0.740 0.809 0.154 0.198 0.246 0.666 0.760 0.827

n=8000 0.479 0.568 0.658 0.994 0.998 1.000 0.574 0.664 0.742 0.994 1.000 1.000

Q = 15

DGP 4: Homogeneous Zero Effect

n=2000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

n=4000 0.001 0.000 0.000 0.001 0.002 0.002 0.0005 0.000 0.000 0.001 0.002 0.002

n=8000 0.008 0.009 0.011 0.008 0.009 0.009 0.011 0.012 0.014 0.010 0.013 0.013

DGP 5: Monotonically Increasing Treatment Effect

n=2000 0.000 0.000 0.000 0.056 0.072 0.088 0.000 0.000 0.000 0.058 0.076 0.090

n=4000 0.000 0.000 0.000 0.236 0.301 0.358 0.000 0.000 0.000 0.239 0.304 0.361

n=8000 0.001 0.001 0.001 0.635 0.689 0.762 0.002 0.001 0.002 0.640 0.699 0.768

DGP 6: Inverse U-Shaped Treatment Effect

n=2000 0.008 0.009 0.014 0.060 0.078 0.103 0.010 0.013 0.017 0.064 0.084 0.114

n=4000 0.046 0.066 0.086 0.448 0.552 0.646 0.066 0.085 0.112 0.466 0.574 0.666

n=8000 0.319 0.380 0.428 0.747 0.789 0.820 0.354 0.424 0.461 0.754 0.809 0.835

Note: Reported are rejection proportions among 2,000 simulations, where all tests are carried out using the 5%

significance level. For each test, the simulated critical value is calucalted with 1,000 bootstrap repetitions.
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(exam take) and his/her Baccalaureate exam grade (exam grade) conditional on taking

the exam. The additional control variable (X) is the leave-one-out average transition

score in the more selective high school in town, which is used to proxy the peer quality

of the school. As is discussed in the simulation section, the proposed monotonicity test

is carried out using the triangular kernel, the undersmoothed CCT bandwidth and the

cubes defined in equation (2.4) with Q = 50 and 75. When Q = 75, for example, there is

a total of 70,300 combinations of overlapping Cw1,75 and Cw2,75 intervals. The effective

sample size of the smallest Cw1,75 and Cw2,75 intervals ranges from 50 to 62 for each local

linear regression on one side of the RD cut-off.2

Table 3 reports the results of the monotonicity tests. First, we discuss the effect of

attending a more selective high school on a student’s probability of taking the Baccalau-

reate exam. As we see from the table, regardless of the choice of the under-smoothing

parameter, the number of cubes, or whether to use the LFC or GMS critical value, we

fail to reject the null of monotonically non-decreasing effect with very high p-values and

reject the null of monotonically non-increasing effect with p-values ranging between 1-3%.

These results suggest that the effect of attending a better high school on a marginal indi-

vidual’s probability of taking the Baccalaureate exam increases monotonically with peer

quality. The finding indicates that the insignificant mean effect found in Pop-Eleches and

Urquiola (2013) comes from the cancelation of positive and negative treatment effects

among different schools. The result is also in line with the results of uniform sign tests

conducted in Hsu and Shen (2016), which find that the effect on the Baccalaureate exam

taking rate is positive for some subpopulation of schools and negative for the others.

In contrast, the effect on the exam grade outcome is likely homogeneous among schools

with different peer quality as we fail to reject both nulls of monotonically non-decreasing

and monotonically non-increasing effects at the 10% significance level. Note that the

p-values associated with the GMS method are always the same or smaller than those

2Notice that in the simulation section the effective sample size of smallest cubes is kept around 20.

For the empirical sample, due to its immense sample size, this rule-of-thumb will result in a Q value as

large as around 200 and a total of 1,333,300 combinations of overlapping Cw1,200 and Cw2,200 intervals,

which is computationally infeasible. Instead, we report results with both Q = 50 and 75. We find our

empirical results insensitive to the Q choice.
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Table 3: P-values of Monotonicity Tests

LFC GMS

c=4.5 c=4.75 c=5 c=4.5 c=4.75 c=5

Q = 50

H0: the effect is non-decreasing

First Stage 0.001 0.000 0.000 0.001 0.000 0.000

Exam Take 0.801 0.794 0.747 0.776 0.774 0.723

Exam Grade 0.360 0.335 0.353 0.347 0.322 0.336

H0: the effect is non-increasing

First Stage 0.032 0.024 0.016 0.025 0.019 0.012

Exam Take 0.027 0.016 0.009 0.027 0.016 0.009

Exam Grade 0.196 0.144 0.140 0.196 0.144 0.139

Q = 75

H0: the effect is non-decreasing

First Stage 0.001 0.000 0.000 0.001 0.000 0.000

Exam Take 0.807 0.802 0.757 0.786 0.787 0.734

Exam Grade 0.374 0.349 0.345 0.362 0.333 0.326

H0: the effect is non-increasing

First Stage 0.032 0.024 0.016 0.025 0.019 0.012

Exam Take 0.027 0.016 0.009 0.027 0.016 0.009

Exam Grade 0.219 0.163 0.156 0.215 0.159 0.152

Notes: Data are from Pop-Eleches and Urquiola (2013). Nonpara-

metric local linear estimations are conducted using the triangular

kernel, the undersmoothed CCT bandwidth defined in the simula-

tion section, and the cubes defined in equation (2.4). All simulated

critical values are calculated with 1,000 bootstrap repetitions.

associated with the LFC method. This is because the GMS method potentially improves

the power of the proposed monotonicity test, as is discussed in the theoretical section of

the paper.

In Table 3, we also report the results of the monotonicity tests for the first stage

enrollment decision. The tests are carried out using the sharp RD test discussed in

Section 4. We reject both nulls of monotonically non-decreasing and monotonically non-

increasing first stage effects with very small p-values. The testing results suggest that the

first-stage enrollment decision is strongly heterogeneous, but its relationship with peer

quality in the more selective high school is not simple and not monotonic.
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APPENDIX

A Proofs of Lemmas in Section 2

This section proves the Lemmas in Section 2 that illustrate the equivalence between the

original null hypothesis in (2.1) to the transformed null hypothesis in (2.3).

Proof of Lemma 2.1:

For notational simplicity and without loss of generality, we prove the lemma for the case

with dw = ds = 1. Proof for the higher dimension case follows the same idea but requires

more complicated notations.

First, we prove that (i) implies (ii). For any w1 = w2, the inequality in (ii) holds

trivially with equality. For any w1 > w2 and any q = 1, 2, 3, . . ., such that (q + 1) ·

w1, (q + 1) · w2 ∈ {0, 1, 2, · · · , q}, we have w1 ≥ w2 + 1/(q + 1). By (i), this implies that

λ(w, s) ≥ λ(w′, s) for all w ∈ [w1, w1 + 1/(q+ 1)] and w′ ∈ [w2, w2 + 1/(q+ 1)] and s ∈ S.

Therefore, the weighted average of λ(w, s) over w ∈ [w1, w1 + /(q + 1)] and s ∈ Cs,q has

to be greater or equal to that of λ(w′, s) over w′ ∈ [w2, w2 + 1/(q + 1)] and s ∈ Cs,q.

Equivalently,∫
Cw1,q×Cs,q

λ(w̃, s̃) · h(w̃, s̃)dw̃ds̃∫
Cw1,q×Cs,q

h(w̃, s̃)dw̃ds̃
≥

∫
Cw2,q×Cs,q

λ(w̃, s̃) · h(w̃, s̃)dw̃ds̃∫
Cw2,q×Cs,q

h(w̃, s̃)dw̃ds̃
.

We prove the inequality in (ii).

Second, we prove that (ii) implies (i) by contradiction. Suppose that λ(w, s′) <

λ(w′, s′) for some s′ and w ≥ w′. By continuity of λ(w, s), there exist wu > wl >

w′u > w′l and su > sl so that λ(w, s′) < λ(w′, s′) for all w ∈ [wl, wu], w′ ∈ [w′l, w
′
u]

and s′ ∈ [sl, su]. In turn, we can find a q large enough such that for some w1, w2,

and s, (q + 1) · w1, (q + 1) · w2 ∈ {0, 1, 2, · · · , q}, and q · s ∈ {0, 1, 2, · · · , q − 1} so that

[w1, w1 + 1/(q + 1)] ⊆ [wl, wu], [w2, w2 + 1/(q + 1)] ⊆ [w′l, w
′
u] and [s, s + 1/q] ⊆ [sl, su].

Then the weighted average of λ(w, s) over w ∈ [w1, w1 +1/(q+1)] and s ∈ [s, s+1/q] has

to be strictly less than that of λ(w′, s) over w′ ∈ [w2, w2 + 1/(q+ 1)] and s ∈ [s, s+ 1/q].
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That is,∫
Cw1,q×Cs,q

λ(w̃, s̃) · h(w̃, s̃)dw̃ds̃∫
Cw1,q×Cs,q

h(w̃, s̃)dw̃ds̃
<

∫
Cw1,q×Cs,q

λ(w̃, s̃) · h(w̃, s̃)dw̃ds̃∫
Cw1,q×Cs,q

h(w̃, s̃)dw̃ds̃
.

This completes our proof. 2

Proof of Lemma 2.2:

Since CLATE(w, s) is continuous on both w and s, we can set λ(w, s) to CLATE(w, s)

and apply the results of Lemma 2.1. Let λ(w, s) = CLATE(w, s) = EP [(Y (1) −

Y (0))(T (1) − T (0))|W = w, S = s, Z = c]/EP [T (1) − T (0)|W = w, S = s, Z = c]

and h(w, s) = EP [T (1) − T (0)|W = w, S = s, Z = c] · fW,S|Z=c(w, s). Then, for both

κ = 1, 2,∫
Cwκ,q×Cs,q

λ(w, s) · h(w, s)dwds

=EP [gwκ,`(W )gs,`(S)EP [(Y (1)− Y (0))(T (1)− T (0))|W = w, S = s, Z = c]|Z = c]

=EP [gwκ,`(W )gs,`(S)EP [Y (1)T (1) + Y (0)(1− T (1))|W = w, S = s, Z = c]|Z = c]

− EP [gwκ,`(W )gs,`(S)EP [Y (1)T (0) + Y (0)(1− T (0))|W = w, S = s, Z = c]|Z = c]

= lim
z↘c

EP [gwκ,`(W )gs,`(S)EP [Y (1)T (1) + Y (0)(1− T (1))|W = w, S = s, Z = c]|Z = z]

− lim
z↗c

EP [gwκ,`(W )gs,`(S)EP [Y (1)T (0) + Y (0)(1− T (0))|W = w, S = s, Z = c]|Z = z]

= lim
z↘c

EP [gwκ,`(W )gs,`(S)EP [Y |W = w, S = s, Z = z]|Z = z]

− lim
z↗c

EP [gwκ,`(W )gs,`(S)EP [Y |W = w, S = s, Z = z]|Z = z]

= lim
z↘c

EP [gwκ,`(W )gs,`(S)Y |Z = z]− lim
z↗c

EP [gwκ,`(W )gs,`(S)Y |Z = z],

≡ρ(κ)
P (`).

The third equality holds from Assumptions 2.1 and 2.2. Specifically, Assumption 2.2 im-

plies that for all ε > 0, there exists δ > 0 such that supw,s |fW,S|Z(w, s|z)−fW,S|Z(w, s|c)| <

ε for all |z− c| < δ. Then given that gwκ,`(W )gs,`(S)EP [Y (1)T (1) +Y (0)(1−T (1))|W =

w, S = s, Z = c] is uniformly bounded (due to Assumption 2.1 and the fact that a

continuous function on a compact set is uniformly bounded), we know that there ex-

ists some C > 0, such that |EP [gwκ,`(W )gs,`(S)EP [Y (1)T (1) + Y (0)(1 − T (1))|W =
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w, S = s, Z = c]|Z = z] − EP [gwκ,`(W )gs,`(S)EP [Y (1)T (1) + Y (0)(1 − T (1))|W =

w, S = s, Z = c]|Z = c]| ≤ C · ε for all |z − c| < δ. A similar result also hold for

EP [gwκ,`(W )gs,`(S)EP [Y (1)T (0) + Y (0)(1− T (0))|W = w, S = s, Z = c]|Z = z]. There-

fore, the limiting result in the third equality holds. The fourth equality holds by the

fuzzy RD set-up and the continuity conditions in Assumption 2.1. The fifth equality

holds by the law of iterated expectation.

Similarly, we can show that∫
Cwκ,q×Cs,q

h(w, s)dwds

= lim
z↘c

EP [gwκ,`(W )gs,`(S)T |Z = z]− lim
z↗c

EP [gwκ,`(W )gs,`(S)T |Z = z]

≡%(κ)
P (`).

Applying the results in Lemma 2.1, we know that testing the null hypothesis H0,FRD

is equivalent to testing

ρ
(2)
P (`)%

(1)
P (`)− ρ(1)

P (`)%
(2)
P (`) ≤ 0

for all q = 1, 2, 3, · · · , and w1 ≥ w2 such that (q + 1) · (w1, w2) ∈ {0, 1, 2, · · · , q}2dw , and

q · s ∈ {0, 1, 2, · · · , q − 1}ds .

B Proofs of Theorems in Section 3

To prove the theorems for the asymptotic properties of the proposed tests, we first give

auxiliary lemmas that will be used in the proof of the main results. The auxiliary lemmas

also include results in Lemma 3.1 and 3.2 as special cases. Then we give the proofs of

the main theorems in Section 3.

B.1 Auxiliary lemmas

Let EZ denote the expectation conditional on sample path {Z1, Z2, . . .}.

Lemma B.1 Let {Pn : n ≥ 1} be a sequence of distributions. Pn ∈ P for all n so

each of the distribution satisfies Assumption 3.1. Suppose 3.2 also holds. Then for any
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subsequence {Pkn} of {Pn} such that limn→∞ d2(h+
2,Pkn

, h∗+2 ) = 0 for some h∗+2 ∈ H+
2 and

limn→∞ d2(h−2,Pkn
, h∗−2 ) = 0 for some h∗−2 ∈ H−2 , we have

√
knh


m̂

(1)
kn,+

(·)−m(1)
Pkn ,+

(·)

m̂
(2)
kn,+

(·)−m(2)
Pkn ,+

(·)

q̂
(1)
kn,+

(·)− q(1)
Pkn ,+

(·)

q̂
(2)
kn,+

(·)− q(2)
Pkn ,+

(·)

⇒ ΦCkh
∗+
2

(·) ,

√
knh


m̂

(1)
kn,−(·)−m(1)

Pkn ,−
(·)

m̂
(2)
kn,−(·)−m(2)

Pkn ,−
(·)

q̂
(1)
kn,−(·)− q(1)

Pkn ,−
(·)

q̂
(2)
kn,−(·)− q(2)

Pkn ,−
(·)

⇒ ΦCkh
∗−
2

(·) ,

where ΦCkh
∗+
2

and ΦCkh
∗−
2

are independent mean zero Gaussian processes with covariance

kernel Ckh
∗+
2 and Ckh

∗−
2 .

Proof of Lemma B.1:

Here we prove the first weak convergence result. The second one follows by essentially

the same proof but with the + notation replaced by −. The resulting two limiting

Gaussian processes are independent because the local linear estimators involved in the

two convergence results use different subsamples and the data are independent.

By the Cramér-Wold Theorem, it is sufficient to show the m
(1)
Pkn ,+

(`) case. Note that√
knh(m̂

(1)
kn,+

(`)−m(1)
Pkn ,+

(`))

=

kn∑
i=1

√
knh(w+

kni
(m(1)(Yi,Wi, Si, `)−m(1)

Pkn ,+
(`)))

=

kn∑
i=1

√
knh(w+

kni
(m(1)(Yi,Wi, Si, `)− EZ [m(1)(Yi,Wi, Si, `)]))

+

kn∑
i=1

√
knh(w+

kni
(EZ [m(1)(Yi,Wi, Si, `)]−m(1)

Pkn ,+
(`))).

We first consider the second term which is the bias term. By Theorem 4 of Fan and

Gijbels (1992), we know that

kn∑
i=1

√
knh(w+

kni
(EZ [m(1)(Yi,Wi, Si, `)]−m(1)

Pkn ,+
(`))) = Op(

√
knh5) = op(1).
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Note that the first equality holds because the magnitude of the bias is proportional to

the second derivative of m
(1)
Pkn ,+

(`) with respect to z. By Assumption 3.1, we know that

for all Pkn , ∂2ζPkn ,+(x, z)/∂z∂z is uniformly bounded on x ∈ Xc and z ∈ N+
δ,z(c). Since

m
(1)
Pkn ,+

(`) = limz↘cEPkn [gw1,`(W )gs,`(S)Y |Z = z], m
(1)
Pkn ,+

(`) is uniformly bounded as

well. Then given the additional assumption that knh
5 → 0, we know that the above

op(1) result holds uniformly over ` ∈ L.

Therefore, uniformly over ` ∈ L, we have

√
knh(m̂

(1)
kn,+

(`)−m(1)
Pkn ,+

(`))

=

kn∑
i=1

√
knh(w+

kni
(m(1)(Yi,Wi, Si, `)− EZ [m(1)(Yi,Wi, Si, `)])) + op(1).

It is then easy to show that {(m(1)(Yi,Wi, Si, `) : 1 ≤ i ≤ kn, n ≥ 1} satisfies the

manageability condition in the functional central limit theorem (FCLT), or Theorem 10.6

of Pollard (1990). The arguments are similar to those in the proof of Lemma 3.2 of Hsu

and Shen (2016) and hold along the sequence {Pkn : n ≥ 1}. 2

Lemma B.2 Let {Pn} be a sequence of distributions such that each of them satisfies

Assumption 3.1. Suppose 3.2 also holds. Then for any subsequence {Pkn} of {Pn} such

that such that for limn→∞ d(hPkn , h
∗) = 0 for some h∗ ∈ H, we have

sup
`∈L

∣∣∣√knh(µ̂kn(`)− µPkn (`))−
kn∑
i=1

φµ,kni(`)| = op(1), and

√
knh(µ̂kn(·)− µPkn (·))⇒ ΦCkh

∗
2,µ

where h∗2,µ = h∗1(h∗+2 + h∗−2 )h∗1
′.

Proof of Lemma B.2: First, note that Lemma B.1 implies that for κ = 1, 2,

sup
`∈L
|ρ̂(κ)
kn

(`)− ρ(κ)
Pkn

(`)| = Op((knh)−1/2),

sup
`∈L
|%̂(κ)
kn

(`)− %(κ)
Pkn

(`)| = Op((knh)−1/2). (B.1)
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Next, note that√
knh(ρ̂

(2)
kn

(`)%̂
(1)
kn

(`)− ρ(2)
Pkn

(`)%
(1)
Pkn

(`))

=%̂
(1)
kn

(`)
√
knh

(
ρ̂

(2)
kn

(`)− ρ(2)
Pkn

(`)
)
− ρ(2)

Pkn
(`)
√
knh

(
%̂

(1)
kn

(`)− %(1)
Pkn

(`)
)

=%
(1)
Pkn

(`)
√
knh

(
ρ̂

(2)
kn

(`)− ρ(2)
Pkn

(`)
)
− ρ(2)

Pkn
(`)
√
knh

(
%̂

(1)
kn

(`)− %(1)
Pkn

(`))
)

+
√
knh

(
ρ̂

(2)
kn

(`)− ρ(2)
Pkn

(`)
)(
%̂

(1)
kn

(`)− %(1)
Pkn

(`))
)

=%
(1)
Pkn

(`)
√
knh

(
ρ̂

(2)
kn

(`)− ρ(2)
Pkn

(`)
)
− ρ(2)

Pkn
(`)
√
knh

(
%̂

(1)
kn

(`)− %(1)
Pkn

(`))
)

+ op(1)

where the op(1) result holds uniformly over ` ∈ L due to Equation (B.1). Further, since

√
knh(ρ̂

(κ)
kn

(`)− ρ(κ)
Pkn

(`)) =

kn∑
i=1

φ
(κ)
ρ,kni

(`),
√
knh(%̂

(κ)
kn

(`)− %(κ)
Pkn

(`)) =

kn∑
i=1

φ
(κ)
%,kni

(`),

for all ` ∈ L, we have that√
knh(ρ̂

(2)
kn

(`)%̂
(1)
kn

(`)− ρ(2)
Pkn

(`)%
(1)
Pkn

(`))

=

kn∑
i=1

%
(1)
Pkn

(`)φ
(2)
ρ,kni

(`)−
kn∑
i=1

ρ
(2)
Pkn

(`)φ
(1)
%,kni

(`) + op(1).

and the op(1) result holds uniformly over ` ∈ L.

Similarly, we can write√
knh(ρ̂

(1)
kn

(`)%̂
(2)
kn

(`)− ρ(1)
Pkn

(`)%
(2)
Pkn

(`))

=

kn∑
i=1

%
(2)
Pkn

(`)φ
(1)
ρ,kni

(`)−
kn∑
i=1

ρ
(1)
Pkn

(`)φ
(2)
%,kni

(`) + op(1).

Finally, we have√
knh(µ̂kn(`)− µPkn (`))

=
√
knh(ρ̂

(2)
kn

(`)%̂
(1)
kn

(`)− ρ(2)
Pkn

(`)%
(1)
Pkn

(`)− ρ̂(1)
kn

(`)%̂
(2)
kn

(`) + ρ
(1)
Pkn

(`)%
(2)
Pkn

(`))

=

kn∑
i=1

%
(1)
Pkn

(`)φ
(2)
ρ,kni

(`)− ρ(2)
Pkn

(`)φ
(1)
%,kni

(`)− %(2)
Pkn

(`)φ
(1)
ρ,kni

(`) + ρ
(1)
Pkn

(`)φ
(2)
%,kni

(`) + op(1)

=

kn∑
i=1

φµ,kni(`) + op(1).

with the op(1) result holding uniformly over ` ∈ L.

The above equation shows the first part of Lemma B.2. To show the second part,

we will apply the Theorem 10.6 of Pollard (1990). Define our triangular array as
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{φµ,kni(`) : ` ∈ L, i ≤ kn, 1 ≤ n}. Note the by the same argument as in Lemma

A1 of Hsu et al. (2017), we can show that the triangular is manageable so the part (i)

of Theorem 10.2 of Pollard (1990) holds. We can apply similar arguments of Lemma 3.2

of Hsu and Shen (2016) to show that Parts (ii)-(v) hold too. These would complete our

proof and we omit the details for brevity. 2

Lemma B.3 Assume that Assumptions 3.1, 3.2, and 2.3 hold. For any subsequence of

kn of n such that limn→∞ d(hPkn , h
∗) = 0 for some h∗ ∈ H, we have the simulated process

Φ̂u
µ,kn

(·)⇒ ΦCkh
∗
2,µ

(·) conditional on sample path with probability approaching 1.

Proof of Lemma B.3: Recall that Φ̂u
µ,kn

(·) =
∑kn

i=1 Ui · φ̂µ,kni(·). It is straightforward

to see that {Ui · φ̂µ,kni(`) : ` ∈ L, i ≤ kn, 1 ≤ n} is manageable. Define ḧ2,kn,µ(`1, `2) =∑kn
i=1 φ̂µ,kni(`1)φ̂µ,kni(`2). We know that sup`1,`2∈L |ḧ2,kn,µ(`1, `2) − Ckh∗2,µ(`1, `2)| p→ 0.

The rest of the proof is similar to that for Lemma 3.3 of Hsu and Shen (2016) and we

omit the details. 2

Lemma B.4 Let σ̂2
µ,kn,ε

(`) = max{σ̂2
µ,kn

(`), ε · σ̂2
µ,kn

(`0)} . Assume that Assumptions

3.1 and 3.2 hold. For any subsequence of kn of n such that limn→∞ d(hPkn , h
∗) = 0

for some h∗ ∈ H, we know that sup`∈L |σ̂µ,kn,ε(`)−1 − σ∗µ,ε(`)−1| p→ 0, where σ∗µ,ε(`) =

max{
(
Ckh

∗
2,µ(`, `)

)1/2
,
(
ε · Ckh∗2,µ(`0, `0)

)1/2}.
Proof of Lemma B.4: Since σ̂µ,kn(`) = ḧ2,kn,µ(`, `), where ḧ2,kn,µ(`, `) is defined in the

proof of Lemma B.3, we know that sup`∈L |σ̂µ,kn(`)−
(
Ckh

∗
2,µ(`, `)

)1/2| p→ 0. Next, by the

fact that the maximum operator is a continuous functional, we have sup`∈L |σ̂µ,kn,ε(`)−

σ∗µ,ε(`)|
p→ 0. Further, since σ∗µ (`0) is bounded away from zero under Assumption 3.1,

it follows that sup`∈L |σ̂µ,ε(`)−1 − σ∗µ,ε(`)−1| p→ 0. This completes the proof of Lemma

B.4. 2

B.2 Proofs of Theorems

Proof of Lemma 3.1: Lemma 3.1 is a special case of Lemma B.2 proven in the last

section.

Proof of Lemma 3.2: Lemma 3.2 is a special case of Lemma B.3 proven in the last

section.
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Proof of Theorem 3.1: Note that by construction, ĉη,LFCn,FRD(α) ≥ ĉη,GMS
n,FRD(α), so the

size of the test based on the LFC critical value is always smaller than that based on

ĉη,GMS
n,FRD(α). Therefore, it is sufficient to show that the test based on ĉη,GMS

n,FRD(α) has

uniform size control. To show this, we can apply the same arguments as in the proof

of Theorem 4.1 of Hsu et al. (2017) given Lemmas B.2, B.3 and B.4 and we omit the

details.

To show part (d) of the theorem, note that if there exists Pc ∈ P0 such that Lo(Pc)

is not empty and h2,µ,Pc restricted to Lo(Pc) × Lo(Pc) is not a zero function, then by

the same proof based on the pointwise asymptotics as in Lemma 1 of Donald and Hsu

(2016) and by Tsirel’Son (1976), we have that under Pc, the CDF function, G(.), of the

limiting null distribution of T̂n,FRD is continuous and is strictly increasing on (0,∞),

and G(0) > 1/2. Then, by the same proof for Theorem 2(b) of Andrews and Shi

(2013), it is true that under Pc, limη→0 P (T̂n,FRD > ĉη,GMS
n,FRD(α)) = α which implies

that limη→0 lim supn→∞ sup{P∈P0: hP∈Hcpt} P (T̂n,FRD > ĉη,GMS
n,FRD(α)) ≥ α. Then by com-

bining the result in part (b) of the Theorem, we obtain the uniform size control result in

part (d).

To show part (c) of the theorem, the asymptotic results in Lemmas B.2, B.3 and

B.4 directly imply that limη→0 P
LFC
c (T̂n,FRD > ĉη,LFCn,FRD(α)) = α under PLFCc . Then we

know limη→0 lim supn→∞ sup{P∈P0: hP∈Hcpt} P (T̂n,FRD > ĉη,LFCn,FRD(α)) ≥ α. Combining

the result in part (a) of the theorem, we obtain the result in part (c). This completes

our proof. 2

Proof of Theorem 3.2:

Suppose CLATE(w∗2, s) > CLATE(w∗1, s) for some w∗2 < w∗1 and some s. Then

by continuity of CLATE(w, s), we can find w′2 � w′1 such that CLATE(w′2, s) >

CLATE(w′1, s). Again, by continuity of CLATE(w), we can find a small δ such that

for all w′′2 ∈ Nδ,w(w′2), w′′1 ∈ Nδ,w(w′1), and s′′ ∈ Nδ,s(s), we have w′′2 � w′′1 and

CLATE(w′′2 , s
′′) > CLATE(w′′1 , s

′′). Then we can find a q large enough and ῭ =

(ẅ1, ẅ2, s̈, q) ∈ L such that Πdw
j=1[ẅj1, ẅj1 +1/(q+1)] ⊆ Nδ,w(w′1), Πdw

j=1[ẅj2, ẅj2 +1/(q+

1)] ⊆ Nδ,w(w′2), and Πds
j=1[s̈j , s̈j + 1/q] ⊆ Nδ,s(s). It is then straightforward to see that

µP ∗(῭) > 0.

By the definition of T̂n,FRD, we know that T̂n,FRD ≥
√
nhµ̂n(῭)/σ̂µ,ε(῭), and T̂n,FRD
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will diverge to positive infinity when n → ∞, because
√
nhµ̂n(῭) will diverge to posi-

tive infinity and σ̂µ,ε(῭) is bounded in probability. Also, both simulated critical values

ĉη,LFCn,FRD(α) and ĉη,GMS
n,FRD(α) are bounded in probability. The consistency result of the

proposed monotonicity tests then follows. 2
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