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A fundamental assumption used in causal inference with observa-
tional data is that treatment assignment is ignorable given measured
confounding variables. This assumption of no missing confounders
is plausible if a large number of baseline covariates are included in
the analysis, as we often have no prior knowledge of which variables
can be important confounders. Thus, estimation of treatment effects
with a large number of covariates has received considerable atten-
tion in recent years. Most existing methods require specifying certain
parametric models involving the outcome, treatment and confounding
variables, and employ a variable selection procedure to identify con-
founders. However, selection of a proper set of confounders depends
on correct specification of the working models. The bias due to model
misspecification and incorrect selection of confounding variables can
yield misleading results. We propose a robust and efficient approach
for inference about the average treatment effect via a flexible mod-
eling strategy incorporating penalized variable selection. Specifically,
we consider an estimator constructed based on an efficient influence
function that involves a propensity score and an outcome regression.
We then propose a new sparse sufficient dimension reduction method
to estimate these two functions without making restrictive parametric
modeling assumptions. The proposed estimator of the average treat-
ment effect is asymptotically normal and semiparametrically efficient
without the need for variable selection consistency. The proposed
methods are illustrated via simulation studies and a biomedical ap-
plication.
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1. Introduction. Causal inference in observational studies is challenged
by the fact that treatment assignment may depend on some baseline co-
variates known as confounding variables that are also associated with the
outcome of interest. Most existing methods for causal inference can be cast
in terms of potential outcomes under Rubin’s causal model (Rubin, 1974).
A fundamental assumption is that treatment assignment is strongly ignor-
able, i.e., conditionally independent of potential outcomes given measured
confounders; see Rosenbaum and Rubin (1983). A common approach to
understanding causality is to adjust for confounding in a regression model
that relates the outcome to the treatment under investigation. This outcome
regression (OR) approach is straightforward to implement and its validity
depends on correct specification of the OR model. In contrast, many alter-
native methods require a model for the propensity score (PS), that is, the
conditional probability of being treated given the covariates (Rosenbaum
and Rubin, 1983). The estimated PS can be used to match each member of
the treated group with one or more subjects in the untreated group, stratify
the sample so that the resulting two groups are more comparable in each
stratum, or weight each observation by the inverse of the estimated PS, or
one minus it, depending on the actual treatment (Rosenbaum and Rubin,
1984, 1985; Heckman et al., 1998; Robins et al., 2000; Hirano et al., 2003;
Abadie and Imbens, 2006). It is of interest to note that much of the recent
research has focused on doubly robust (DR) estimation that encompasses
both OR and PS models so that the resulting estimators are consistent and
asymptotically normal if either model is correctly specified (e.g., van der
Laan and Robins, 2003; Bang and Robins, 2005; Tan, 2006; Freedman and
Berk, 2008; Cao et al., 2009; Tan, 2010; van der Laan and Rose, 2011; Rot-
nitzky et al., 2012; Chan and Yam, 2014).

For the sake of simplicity, it is often assumed that the PS and OR models
are parametric. However, parametric models may be misspecified, resulting
in asymptotically biased estimators with poor finite sample performance.
On the other hand, the DR estimators are relatively robust against model
misspecification. Yet they would not be efficient if one of the two models is
misspecified, and they could perform rather poorly when both models are
misspecified (Kang and Schafer, 2007; Freedman and Berk, 2008). Hence,
it is desirable to work with less restrictive PS and OR models. In practice,
there can be a large collection of potential confounding variables, of which
only a few have to be adjusted. This leads to variable selection in regression
for causal inference. To this end, Belloni et al. (2014) and Farrell (2015)
proposed penalized estimation procedures for estimating linear PS and OR
models for high-dimensional data. Selection of a proper set of confounding
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variables depends on correct specification of the working models. With a
large sample size, the bias due to model misspecification and incorrect se-
lection of confounding variables becomes pronounced in comparison to sam-
pling variability, and may lead to statistically significant false findings. Thus,
to conduct robust and efficient causal inference, it is essential to employ a
flexible modeling strategy that incorporates variable selection. The need for
such a strategy is particularly crucial in analyzing big data, which frequently
involve a large number of variables measured on a large number of subjects.
On the other hand, big data, which often involve a large sample size, present
an opportunity to employ state-of-the-art methods for dimension reduction
and nonparametric regression to achieve a good balance between flexibility
and parsimony of statistical modeling.

In this article, we propose a sparse sufficient dimension reduction (SSDR)
method to estimate the PS and OR models. It is known that sufficient di-
mension reduction (Li, 1991; Cook and Li, 2002) provides a general and
effective way to reduce the dimension of covariates while preserving infor-
mation on regression. We employ multiple-index models with a small num-
ber of linear combinations of relevant covariates to estimate PS and OR.
Multiple-index models are flexible and contain various parametric and semi-
parametric models as special cases (Yin et al., 2008; Xia, 2008), yet their
estimation is challenging, especially in the high-dimensional setting. To ac-
complish this difficult task, we show that estimation of the directions in a
multiple-index model is equivalent to finding vectors that span the same
subspace as the left-singular vectors of the low-rank coefficient matrix in a
sparse reduced-rank regression problem. We then use sparsity-inducing pe-
nalization to select relevant covariates with group Lasso penalties (Yuan and
Lin, 2006), and employ an Iterative Shrinkage and Thresholding algorithm
for parameter estimation. Our proposed method is able to identify impor-
tant confounders from a large number of candidate variables and character-
ize their roles in treatment assignments and outcome predictions, without
making more restrictive parametric modeling assumptions.

To relax the assumptions on parametric forms, Hahn (1998) proposed
a nonparametric estimator of the average treatment effect (ATE) for low-
dimensional covariates. The resulting estimator attains the semiparametric
information bound. It, however, suffers from the “curse of dimensionality”
with increasing dimension. To alleviate the problem of dimensionality, Luo
et al. (2017) applied minimum average variance estimation (Xia, et al., 2002,
MAVE) to recover the OR function, and Ghosh (2011) employed a single-
index model, together with sufficient dimension and partial least squares
methods, to estimate the PS function. These two methods allow us to es-
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timate ATE via a flexible modeling strategy, yet their computational al-
gorithms and the associated theories are developed for fixed dimensions.
Nevertheless, our proposed estimator can be used for data with both mod-
erate and high dimensions. Specifically, we develop a DR estimation method
for ATE by making use of the SSDR estimates for the PS and OR functions.
The resulting estimator of ATE is shown to be root-n consistent, asymptoti-
cally normal and efficient with high-dimensional covariates. These properties
hold without the requirement of variable selection consistency and restric-
tive parametric modeling assumptions, which is remarkable because post-
selection inference is known to be a challenging task in general (Wasserman
and Roeder, 2009; Berk et al., 2013; Lockhart et al., 2014; van de Geer et al.,
2014; Zhang and Zhang, 2014). In the context of causal inference, Belloni et
al. (2014) demonstrated that standard penalized methods such as Lasso can
lead to the biased estimation of ATE. The construction of the DR estimator,
based on the efficient influence function, can mitigate the bias of the Lasso
estimator and allows for imperfect variable selection.

The rest of the paper is organized as follows. Section 2 introduces the
proposed sparse sufficient dimension reduction method. Section 3 describes
PS and OR, and introduces the DR estimation. Section 4 presents the pro-
posed estimator of ATE. Section 5 establishes the theoretical properties of
the proposed estimator and Section 6 provides the computational algorithm.
In Section 7, we evaluate the finite sample performance via simulation stud-
ies. An empirical example is reported in Section 8. Concluding remarks are
given in Section 9, and all technical proofs are provided in the Appendix
and on-line supplemental materials Ma et al. (2018).

2. Sparse sufficient dimension reduction. We first introduce the
following notation which will be used frequently in this paper. For positive an
and bn, let bn � an denote a−1

n bn = o(1) and bn � an denote lim
n→∞ a−1

n bn = c

for a positive constant c. Moreover, let an ∨ bn = max(an, bn). For a vector
a = (a1, . . . , ap)

�, define ||a||∞ = max(|ai|). For a matrix A = (Ajk) =
(A1, . . . ,Ap)

� = (A·1, . . . ,A·q) ∈ R
p×q, let ||A||2 =

∑∑
A2

jk, vec(A) =

(A�
·1, . . . ,A

�·q)�, and span(A) be the subspace of Rq spanned by the columns
of A. For a subset S ⊆ {1, . . . , p}, let AS be the submatrix of A associated
with the row indices S. For a subset B ⊆ {1, . . . , q}, let A·B be the submatrix
of A associated with the column indices B. For a symmetric matrix A, let
λmin(A) denote the smallest eigenvalue of A. Denote |S| as the cardinality
of a set S.

For DR estimation, it is essential to obtain good estimates for the PS
and OR functions. Assuming a restrictive parametric form on these two
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functions can lead to large biases due to possible model misspecification.
On the other hand, directly estimating them via classical nonparametric
regression is difficult when the dimension of covariates is high. To achieve
modeling flexibility with high-dimensional covariates, we propose a SSDR
method to estimate them. We denote by Z a generic response of interest
and X a vector of p-dimensional covariates. Let Xi = (Xi1, . . . ,Xip)

� be
a vector of covariates and let (Zi,X

�
i )�, i = 1, . . . , n, be independent and

identically distributed (i.i.d.) samples from (Z,X�)�. Our interest is to
estimate the conditional expectation E(Zi | Xi). To facilitate subsequent
illustrations, we assume that E(Xik) = 0 and var(Xik) = 1 for 1 ≤ k ≤ p.
Denote Xi,S = (Xik, k ∈ S)� and X·S = (X1,S , . . . ,Xn,S)�. Without loss of
generality, let Xi = (X�

i,R,X
�
i,I)

�, where R and I are the sets of indices of
relevant and irrelevant covariates, respectively, for E(Zi | Xi).

We consider a SSDR model in which the conditional mean E(Zi | Xi)
depends on r linear combinations of the relevant covariates, so that we have
the sparse multiple-index model:

(1) E(Zi | Xi) = E(Zi | Xi,R) = E(Zi | B�
RXi,R),

where BR is an |R|× r matrix of unknown parameters with r ≤ |R|. Model
(1) implies that the |R|-dimensional vector of relevant covariates can be
replaced by the r-dimensional vector B�

RXi,R without loss of information

in the mean regression. Let B = (B�
R,B

�
I )

�= (B�
R,0

�
(p−|R|)×r)

�, indicating
that the coefficients of irrelevant covariates are zero. Thus model (1) can be
written as

E(Zi | Xi) = E(Zi | B�
RXi,R) = E(Zi | B�Xi).

We next assume that

(A1) Xi, 1 ≤ i ≤ n, are i.i.d. observations from the multivariate normal
distribution N (0, Σ).

For the sake of shortening proofs, we make the above assumption on the
distribution of covariates, and it can be relaxed to the linearity condition
jointly with the constant variance condition (Cook and Lee, 1999; Duan and
Li, 1991; Li, 1992). The same assumption as (A1) is also given in van de
Geer et al. (2014) for studying the de-biased Lasso estimators.

Let Z̃i = Zi − E(Zi). Under Assumption (A1), Duan and Li (1991)
showed that span{Σ−1E(Z̃iXi)} ⊆ span(B). Subsequently, Li (1992) and
Cook and Li (2002) employed principal Hessian directions (pHd) to further
demonstrate that span{Σ−1E(Z̃iXiX

�
i )} ⊆ span(B). These two results im-

ply that span (Σ−1Λ) ⊆ span(B), where Λ ≡ E(Z̃iXiX̃
�
i ) ∈ R

p×(p+1) and
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X̃i = (1,X�
i )�. With the coverage assumption that span(Σ−1Λ) = span(B)

(Li, 1992; Cook and Li, 2002), Σ−1Λ is a matrix with rank r that can be
written as V0A0�, where V0 and A0 are p × r and (p + 1) × r matrices,
and A0 satisfies A0�A0 = I. In addition, span(V0) = span(B) implying
V0

I = 0. Thus, we propose to recover span(B) using V0.
Note that V0 and A0 can be obtained through minimizing

E||W̃ −XVA�||2

subject to A�A = I and VI = 0(p−|R|)×r, where W̃i = X̃iZ̃i, W̃ =

(W̃1, . . . , W̃n)
�, X = (X1, . . . ,Xn)

�, and A is a (p + 1) × r matrix. In
practice, we use the empirical version of Z̃i for estimation. Estimation of
V0 and A0 is a sparse reduced-rank regression (SRRR) problem (Chen and
Huang, 2012). For our purpose, however, we only need to obtain an estimate
of V, which satisfies span(V) =span(V0). Indeed, for any given A satisfy-
ing A�A = I, there is a matrix A⊥ with orthonormal columns such that
(A,A⊥) is an orthogonal matrix. Accordingly, we have

||W̃ −XVA�||2 = ||W̃A−XV||2 + ||W̃A⊥||2.

Thus, for any given A∗ satisfying A∗�A∗ = I,

V∗ = arg min
V∈Rp×r ,VI=0(p−|R|)×r

E||W̃ −XVA∗�||2

= arg min
V∈Rp×r ,VI=0(p−|R|)×r

E||W̃A∗ −XV||2

= arg min
V∈Rp×r ,VI=0(p−|R|)×r

E||XV0A0�A∗ −XV||2 = V0A0�A∗.

The above equation indicates that span(V∗) = span(V0) as long as A0�A∗

is a full rank matrix. Thus, span(V∗) = span(V0) =span(B), and

(2) E(Zi | Xi) = E(Zi | B�Xi) = E(Zi | V∗�Xi).

Based on the above discussion, we make the following assumption for a given
A∗.

(A2) (i) A∗�A∗ = I and (ii) A0�A∗ is a full rank matrix.

Assumption (A2) on A∗ is needed for model identification as explained
above. Without (A2), the column space span(V∗) is not identifiable. Since

(3) V∗ = arg min
V∈Rp×r,VI=0(p−|R|)×r

E||W̃A∗ −XV||2,
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the estimator of V∗ can be obtained by adopting a group Lasso penalized
approach (Yuan and Lin, 2006). Specifically, for the given A∗, we can obtain
the estimator V̂ of V∗ by minimizing

(4) (1/2)||W̃A∗ −XV||2 + λ
∑p

k=1
||Vk||,

where λ is a tuning parameter and Vk is the kth component of V =
(V1, · · · ,Vp)

� with the dimension r × 1. Let R̂ = {k : V̂k 	= 0} be the

set of indices of the nonzero estimated coefficients, and denote ŝ = |R̂| and
Î = R̂c. To ameliorate the bias caused by the penalties, we subsequently
use the selected variables to obtain the refitted unpenalized estimator of V∗,
which is

Ṽ = arg min
V∈Rp×r,V

̂I=0(p−ŝ)×r

||W̃A∗ −XV||2.

The choice of A∗ will be discussed in Section 6.

3. Propensity score, outcome regression, and doubly robust method.
In this section we introduce the DR estimator, which depends on the PS
and OR functions. Let Di denote a dummy variable such that Di = 1 when
the treatment is given to the ith individual, and Di = 0 otherwise. Let
Y0i and Y1i be potential outcomes corresponding to Di = 0 and Di = 1,
respectively. Then Y1i − Y0i is the treatment effect for the ith individual.
However, individual treatment effects are not observed. Instead, we observe
Di and Yi ≡ DiY1i + (1−Di)Y0i. Then the data set consists of (Di, Yi,Xi),
i = 1, . . . , n. Our main interest is to estimate the ATE:

τ ≡ E(Y1i − Y0i).

The major challenge in estimating ATE is that, for each i, we only observe
either Y1i or Y0i, but not both. The PS, defined as

(5) π(x) ≡ P (Di = 1 | Xi = x),

plays an important role in adjusting for confounding. Following Rosenbaum
and Rubin (1983, 1984), we make the following assumption about confound-
ing.

(A3) (i) Di and (Y0i, Y1i) are independent of each other given Xi and (ii)
0 < π(Xi) < 1 for all Xi.

Assumption A3 (i) implies that

(6) τ j(Xi) = E(Yji | Xi) = E(Yji | Di = j,Xi) = E(Yi | Di = j,Xi)
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for j = 0, 1, which is called the OR function (Tan, 2006). Assumption A3
(ii) further ensures identifiability of (6).

For observational data, the PS based method and the OR approach are
two common procedures used for reducing selection bias. Alternatively, one
might consider a DR estimator that makes use of both π(Xi) and τ j(Xi)
given in (5) and (6). The DR estimator can be constructed based on the
efficient influence function (Hahn, 1998) given as:

(7)
Di{Y1i − τ1(Xi)}

π(Xi)
− (1−Di){Y0i − τ0(Xi)}

1− π(Xi)
+ τ1(Xi)− τ0(Xi).

Let τ∗j (Xi) and π∗(Xi) be the postulated models of τ j(Xi) and π(Xi), re-
spectively, for j = 0, 1. By the facts that

E(DiYi | Xi) = E(DiY1i | Xi) = E(Di | Xi)E(Y1i | Xi) = π(Xi)τ1(Xi);

E{(1 −Di)Yi | Xi} = {1− π(Xi)}τ0(Xi),

it can be seen that the expected value of (7) equals τ when either τ ∗j(Xi) =
τ j(Xi) or π∗(Xi) = π(Xi). Then, the DR estimator that is the sample aver-
age of (7) is asymptotically unbiased if either the PS model or the OR model
is correctly specified. However, the DR estimator is not semiparametrically
efficient when one of them is misspecified. Moreover, it can perform poorly
when both models are misspecified (Kang and Schafer, 2007).

To solve the problem of model misspecification, Hahn (1998) employed
nonparametric techniques to estimate τ j(Xi) and π(Xi) consistently without
assuming any specific model structure. Accordingly, the resulting estimator
is root-n consistent and efficient. However, this nonparametric approach is
only applicable in practice for data with low dimensional covariates (gener-
ally one to three). When p becomes large, it is known that the nonparamet-
ric regression method suffers from the “curse of dimensionality”. For high
dimensional data, Belloni et al. (2014) and Farrell (2015) proposed penal-
ized estimation under the postulated parametric PS and OR models. They
showed that their estimators perform well when the parametric models are
correctly specified or have negligible approximation errors to the true mod-
els. Analogous to the low dimensional case, however, those estimators can
be less efficient and more biased if the postulated models are misspecified.
In addition, model selection procedures used in high dimensional data anal-
ysis may fail to identify the key confounders under misspecified models. To
resolve these problems, we consider the SSDR model for the PS and OR
functions and estimate the index parameters in the SSDR model by the
method given in Section 2. In the next section, we present the estimator of
the ATE τ .
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4. Estimation of the average treatment effect. To estimate the
ATE τ , we first obtain the estimator of E(Zi | Xi) given in (2) by mul-
tivariate kernel smoothing. Consider a multivariate kernel density function
K(u1, . . . , ur) and a bandwidth vector h = (h1, . . . , hr)

�. For ease of imple-
mentation, we let h1 = · · · = hr = h. DenoteKh(u) = h−rK(u1/h, . . . , ur/h),
where u = (u1, . . . , ur)

�. For given x = (x1, . . . , xp)
�, the conditional mean

E(Zi | Xi = x) = E(Zi | V∗�Xi = V∗�x) is estimated by

Ê(Zi | Xi = x) = Ê(Zi | Ṽ�Xi = Ṽ�x)

=
∑n

i=1
Kh(Ṽ

�Xi − Ṽ�x)Zi

/∑n

i=1
Kh(Ṽ

�Xi − Ṽ�x).(8)

We let Zi = Di, and obtain the estimator π̂(x) = Ê(Di | x) by (8). Moreover,
by the derivation in (6), we obtain the estimator τ̂ j(x) = Ê(Yji | x) = Ê(Yji |
Di = j, x) of τ j(x) by letting Zi = Yji and using the observations in the
control and treatment groups, respectively, for j = 0, 1. Thus, for Zi = Y1i

and Zi = Y0i, their corresponding sample sizes used for estimating E(Zi |
Xi) are n1 (the sample size of the treatment group) and n0 (the sample
size of the control group). Note n1/n → E(Di), n0/n → 1 − E(Di), and
E(Di) ∈ (0, 1). Hence, n1 � n and n0 � n. Since using either nj (j = 0, 1)
or n does not affect the asymptotic order, we suppress the subscription j
in nj for notational simplicity. Furthermore, Z̃i = Yji − E(Yji | Di = j) for
Zi = Yji, and thus we replace E(Yji | Di = j) with the corresponding sample
analog within the control and treatment groups, respectively, in estimation.

Next, we replace τ1(Xi), τ0(Xi) and π(Xi) in the influence function (7)
by the corresponding estimators given above. Then τ is estimated by

τ̂ = n−1
n∑

i=1

[
Di{Yi − τ̂1(Xi)}

π̂(Xi)
− (1−Di){Yi − τ̂0(Xi)}

1− π̂(Xi)
+ τ̂1(Xi)− τ̂0(Xi)

]
.

In the next section, we present the theoretical properties of the proposed
estimators. Specifically, we first establish estimation consistency for V̂ and
Ṽ. We then derive the asymptotic normality of τ̂ , based on which we can
conduct statistical inference for ATE. We also show that τ̂ achieves the semi-
parametric efficiency bound. It is worth noting that τ̂ enjoys these properties
without the need for variable selection consistency.

5. Inference for the average treatment effect. We first establish
the estimation error bounds for the group Lasso estimator V̂ and the refitted
unpenalized estimator Ṽ. Under Assumption (A2) (i), V∗ = V0A0�A∗ and
it is a p×r matrix with |R| nonzero rows, where |R| ≤ s. Here, s is an upper
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bound on the row sparsity of V∗. Both s and p can depend on the sample
size n such that s ≡ sn and p ≡ pn. For notational convenience, we suppress
n in their expressions. We assume that s � n, p ≥ 2 and log p = O(n�) for
some � ∈ (0, 1).

For a matrix Δ = (Δ1, . . . ,Δp)
� ∈ R

p×r, let R′ be the subset of indices
in I corresponding to the s largest values of ||Δk||. Denote R2s= R′ ∪ R.
For X satisfying (A1), we make the following assumption on Σ.

(R) Let κ(2s) ≡ min{ ||Σ1/2Δ||
||ΔR2s

|| : Δ ∈ R
p×r\{0}, ∑

k∈I
||Δk|| ≤ 3

∑
k∈R

||Δk||}̇.
Assume 0 < κ(2s) < ∞.

In addition, we assume that

(A4) (i) for any a ∈Rp, there exists a constant 0 < ρ < ∞ such that a�Σa ≤
ρ||a||2, and (ii) for each � = 1, . . . , r, V∗�

·� V∗
·� ≤ c� for some constant

0 < c� < ∞.

It is worth noting that (R) is the Restricted Eigenvalue (RE) assump-
tion for random design matrices satisfying (A1) (Zhou et al., 2009). The
RE assumption is needed and commonly used for establishing the estima-
tion error bound of the Lasso estimators (e.g., Zhang and Huang, 2008;
Bickel et al., 2009; Raskutti et al., 2010). For high-dimensional settings with

p ≥ n, the matrix X�X/n is degenerate, i.e., limΔ∈Rp×r\{0}
||XΔ||√
n||Δ|| = 0.

As a consequence, ordinary least squares estimation does not work in this
case, since it requires limΔ∈Rp×r\{0}

||XΔ||√
n||Δ|| > 0. Thus, the Lasso estima-

tor requires a much weaker assumption. Under Assumption (R), we have
λmin(ΣR,R) ≥ κ(2s) > 0, where ΣR,R is the submatrix of Σ with rows
and columns both indexed by the indices in R, so that the parameters in
the sparse regression are uniquely defined. It has been proven in Zhou et
al. (2009) that (A1) and (R) together imply λmin(X

�
·RX·R/n) > 0 and the

random design matrix X behaves nicely with high probability. Moreover,
Assumption (A4) (i) is given below (4.5) of Zhang and Huang (2008). This,
in conjunction with Assumption (A4) (ii), ensures that V∗�

·� Xi follows a
normal distribution with finite variance.

Denote εi = Zi −E(Zi | V∗�Xi) and ε = (ε1, . . . , εn)
�. We assume that

(A5) Zi is bounded, or its error εi satisfies

(i) the noise vector ε has sub-Gaussian tails such that P (|a�ε| > ||a||x) ≤
γ exp(−Cx2) for any vector a ∈Rn and x ≥ 0, and for some positive fi-
nite constants C and γ, (ii) εi and Xi are independent for each i, and (iii)
supXi

|E(Zi | V∗�Xi)| ≤ C̃ for some positive finite constant C̃.
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CAUSAL INFERENCE VIA SPARSE SUFFICIENT DIMENSION REDUCTION 11

Let φmax be the maximum eigenvalue of the matrix X�X/n. For a set
S ⊆ {1, . . . , p}, denote φ(QS ,S) = minδ∈R|S| δ�QSδ/||δ||2, where QS =

X�
·SX·S/n. The following theorem provides estimation error bounds for the

estimators V̂ and Ṽ given in Section 2.

Theorem 1. Under Assumptions (A1), (A2), (A4), (A5) and (R), λ �√
rn log(p ∨ n) and s = o(

√
n/ log(p ∨ n)), for sufficiently large n, we have

that, with probability at least 1− 3(p ∨ n)−1,

||X(V̂ −V∗)|| ≤ 4
√
2λ

√
s/(κ(2s)

√
n);∑p

k=1
||V̂k −V∗

k|| ≤ 32λs/(κ(2s)2n);

ŝ ≤ 128κ(2s)−2φmaxs;

||V̂ −V∗|| ≤ 4
√
2λ

√
s/(κ(2s)

√
n)2.

We further obtain that, with probability at least 1− 3(p∨n)−1, ||Ṽ−V∗|| ≤
c∗λ

√
s/n, where c∗ = min(8

√
2φ(Q

̂R∪R, R̂∪R)−1/2κ(2s)−1, 2{128κ(2s)−2φmax+

1}1/2φ(Q
̂R∪R, R̂ ∪ R)−1).

We subsequently explore the convergence rate of V̂ and Ṽ and an upper
bound of ŝ. To this end, we introduce the following assumption.

(A6) (i) Assume that r is a fixed number. (ii) With probability approaching
one, φmax ≤ Cφ for some constant Cφ ∈ (0,∞), and φ(QS ,S) ≥ cφ > 0

uniformly in S ⊆ {1, . . . , p} with |S| ≤ {128κ(2s)−2φmax + 1}s.

Corollary 1. Suppose Assumptions (A1), (A2), (A4)-(A6) and (R)
hold. For λ � √

rn log(p ∨ n) and s = o(
√

n/ log(p ∨ n)), we have, as
n → ∞, P (ŝ ≤ C∗s) → 1, where C∗ = 128κ(2s)−2Cφ. In addition,

||V̂ −V∗|| = Op(
√

s log(p ∨ n)/n), and ||Ṽ −V∗|| = Op(
√

s log(p ∨ n)/n).

The results in Corollary 1 follow immediately from Theorem 1, and they
are required for establishing the asymptotic distribution of the ATE estima-
tor. For this purpose, we also consider the following conditions.

(C1) The r-dimensional kernel function is a product of r univariate kernel
functions, i.e., Kh(u) = h−rK(u1/h) · · ·K(ur/h), where h is a band-
width and u = (u1, . . . , ur)

�. The univariate kernel function K(·) is
symmetric, has compact support and is Lipschitz continuous on its
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support. Furthermore, it satisfies∫
K(u)du = 1,

∫
uiK(u)du = 0 (i = 1, . . . ,m− 1), and

0 	=
∫

|u|mK(u)du < ∞.

Accordingly, K is a mth order kernel.
(C2) The (m− 1)th derivative of E(Z | V�X) is a locally Lipschitz contin-

uous function of V�X for V in a neighborhood of V∗.
(C3) (i) max{n−1/(2r)(log n)1/r, n−1/(r+2)(log n)1/(r+2)} � h � n−1/(4m),

where r < 2m and m > 1; (ii) s log(p ∨ n) = o(n1/4 + h−m+1 +√
nhr+2/ log(n)).

Conditions (C1) and (C2) are commonly used in the kernel nonparametric
smoothing literature; see, for example, Ma and Zhu (2012). Condition (C3)
states the order requirements for the bandwidth h, the dimension of the
covariates p, and the upper bound of the number of relevant covariates
s. They are needed in order to have the root-n consistency of the ATE
estimator τ̂ . Suppose that h � n−1/(2m+r). Then h achieves the optimal
order in kernel estimation. By Assumption (C3) (ii), s and p need to satisfy
s log(p ∨ n) = o(n1/4 + n(m−1)/(2m+r)/

√
log(n)). Let τ0 be the true ATE.

Theorem 2. Under Assumptions (A1)-(A6) and (R), and Conditions
(C1)-(C3), we have that, for λ � √

rn log(p ∨ n), τ̂ − τ0 = Op(n
−1/2), and

σ−1√n(τ̂ − τ0) → N(0, 1), where

(9) σ2 = E

[
σ2
1(Xi)

π(Xi)
+

σ2
0(Xi)

1− π(Xi)
+ (τ(Xi)− τ0)2

]
,

σ2
1(Xi) =var(Y1i | Xi), σ

2
0(Xi) =var(Y0i | Xi) and τ(Xi) = τ1(Xi)− τ0(Xi).

Remark 1. In Theorem 2, we obtain the root-n consistency and asymptotic
normality of the estimator τ̂ without the need for variable selection consis-
tency, i.e., that P (R̂ = R) → 1. It is worth noting that achieving selection
consistency typically requires a uniform signal strength condition (Zhang
and Zhang, 2014) under which all non-zero regression coefficients should be
greater in magnitude than a threshold value. However, this condition can be
easily violated when weak signals may exist.
Remark 2. The asymptotic variance σ2 given in (9) reaches the semipara-
metric efficiency bound in Theorem 1 of Hahn (1998). Thus, τ̂ is semipara-
metrically efficient.
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Remark 3. The asymptotic variance σ2 given in (9) equals

E

[
Di{Yi − τ1(Xi)}

π(Xi)
− (1−Di){Yi − τ0(Xi)}

1− π(Xi)
+ τ(Xi)− τ0

]2
.

Hence, we estimate it by
(10)

σ2
n = n−1

n∑
i=1

[
Di{Yi − τ̂1(Xi)}

π̂(Xi)
− (1−Di){Yi − τ̂0(Xi)}

1− π̂(Xi)
+ τ̂(Xi)− τ̂

]2
,

where τ̂(Xi) = τ̂1(Xi)− τ̂0(Xi).
We next show that σ2

n is a consistent estimator of σ2.

Theorem 3. Under Assumptions (A1)-(A6) and (R), and Conditions
(C1)-(C3), we have that, for λ � √

rn log(p ∨ n), σ2
n − σ2 = op(1).

Using the results of Theorems 2 and 3, we obtain the distribution of σ−1
n (τ̂−

τ0) below.

Corollary 2. Under Assumptions (A1)-(A6) and (R), and Conditions
(C1)-(C3), we have that, for λ � √

rn log(p ∨ n), σ−1
n

√
n(τ̂−τ0) → N(0, 1).

Remark 4. By Corollary 2, we are able to construct a (1 − α)100% confi-
dence interval for the true ATE, τ0, given as τ̂ ± zα/2σn/

√
n, where zα/2 is

the (1− α/2) quantile of the standard normal.

6. Computational algorithm. After studying the theoretical prop-
erties of the proposed estimators, this section focuses on the computation
of the primary estimator V̂ of V∗. As stated in (3), this estimator can
be obtained by minimizing Qn(V;A∗) =Ln(V;A∗) + λ

∑p
k=1 ||Vk||, where

Ln(V;A∗) =(1/2)||W̃A∗ − XV||2. This is a convex optimization problem
with group Lasso penalties. We employ an Iterative Shrinkage and Thresh-
olding (IST) algorithm, which converges quickly for finding the parameter
estimator with convex penalties (Beck and Teboulle, 2009).

Specifically, for given V(m−1), the estimator V(m) in the IST algorithm is
obtained by solving the proximal operator problem (Gong et al., 2013):

(11) V(m) = argmin
V

(1/2)||V −U(m)||2 + t(m)λ
∑p

k=1
||Vk||,

where U(m) = V(m−1) − ∇Ln(V;A∗)t(m), ∇Ln(V;A∗) = −X�(W̃A
∗ −

XV(m)), and t(m) is the step size in the mth step. Then the minimizer
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in (11) has a closed form solution V
(m)
k = (1 − λt(m)/||U(m)

k ||)+U(m)
k , for

k = 1, . . . , p, where (x)+ = x if x > 0 and 0, otherwise. We use a line search
criterion considered in Gong et al. (2013) to find the step size at step m. The
step size t(m) is acceptable if the following monotone line search criterion is
satisfied:

Qn(V
(m);A∗) ≤Qn(V

(m−1);A∗)−(ζ/2)||V(m) −V(m−1)||2/t(m),

where ζ is a constant in the interval (0, 1). We let t(m) = 0.5ρ, where ρ is
the minimal value that satisfies the above criterion. Following Gong et al.
(2013), we use ζ = 0.01 in our implementation.

In the computational algorithm, we need an A∗ that satisfies Assumption
(A2). We use the convergent value of the sequence A(m) as A∗, where A(m)

and V(m) are obtained by minimizing Qn(V;A) iteratively until conver-
gence. For the given V(m), the minimizer of Qn(V

(m);A) is A(m) = ULU
�
R,

where UL and UR are the left-singular vectors and right-singular vectors
of W̃�XV(m), respectively. In the process, we use the following strategy
to find an initial value V(0) of V. We fit the Lasso regression for each col-
umn of W̃ on X, and obtain the union set of all selected variables, denoted
by R̂(0). Let b̂(0) = argminb∈Rp×(p+1),b

( ̂R(0))c
=0

(p−| ̂R(0)|)×(p+1)
||W̃ − Xb||2.

The initial value V(0) is the r left-singular vectors of b̂(0) multiplied by the
corresponding singular values.

From the penalized estimator V̂, we are able to compute the refitted
unpenalized estimator Ṽ. Then we obtain the estimator Ê(Zi | Ṽ�x) in (8)
by using the Gaussian kernel for estimation and employing the leave-one-out
cross validation approach for the selection of bandwidth h. Finally, we apply
the five-fold cross validation (CV) method to choose the tuning parameter λ
and the order r. It is worth noting that different methods have been proposed
for the determination of r. Some popular approaches with good statistical
properties include the sequential test methods (Li, 1991; Bura and Cook,
2001), the BIC-type methods (Feng et al., 2013) and the cross-validation
type approaches (Xia, et al., 2002; Xia, 2008). Furthermore, Luo and Li
(2016) proposed a new procedure through exploiting a special eigenvalue-
eigenvector pattern to assist order determination. In our framework, the
estimation of parameters is essentially a SRRR problem, so we adopt the
same method as given in Chen and Huang (2012) by using the five-fold CV
to select r.

7. Simulation studies.

7.1. Background and methods used. In this section, we illustrate the fi-
nite sample performance of our proposed method via simulations in which
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we generate data from different PS and OR models.
We call our proposed estimator of ATE as the sparse sufficient dimension

reduction (sparse dim) estimator. We compare it with six other estimators.
Three are feasible estimators, (a) the “sparse linear” estimator from fitting
a sparse logistic linear model and a sparse linear regression model to PS
and OR, respectively, where the variables are selected by Lasso and the es-
timated coefficients are obtained by refitting the models with the selected
variables; (b) the “full dim” estimator from fitting PS and OR with all co-
variates using the pHd method for sufficient dimension reduction without
variable selection; (c) the “kernel” estimator from fitting PS and OR with all
covariates using the nonparametric kernel regression. For comparison pur-
poses, we also consider three infeasible estimators obtained by using the true
covariates with nonzero coefficients, namely (d) the “oracle linear” estima-
tor from correspondingly fitting the linear models with the true covariates
to PS and OR; (e) the “oracle dim” estimator from fitting PS and OR with
the true covariates using the sufficient dimension reduction approach; (f)
the “oracle” estimator from fitting the data with the true PS and OR mod-
els. For methods involving kernel estimation, we use the leave-one-out cross
validation to select the bandwidth. It is expected that the oracle estimate
should perform the best.

7.2. Data generation mechanism and settings. We consider three models,
namely

Model 1: logit{E(Di | Xi)} = (Xi1 +Xi2)(Xi3 + 1)/2,
E(Yi | Di,Xi) = Di +X2

i1 +X2
i2;

Model 2: logit{E(Di | Xi)} = (Xi1 +Xi2 +Xi3)/2,
E(Yi | Di,Xi) = Di + (Xi1 + 2)(Xi2 +Xi3 + 2);

Model 3: logit{E(Di | Xi)} = (Xi1 + 2Xi2 −Xi3)/2,
E(Yi | Di,Xi) = Di(Xi1 +Xi2 + 1) +Xi1 +Xi2 +Xi3 +Xi4,

where Yi = E(Yi | Di,Xi) + εi, Xi are generated from N (0,Σ), Σ = {σjj′},
σjj′ = 0.5|j−j′| for 1 ≤ j, j′ ≤ p, and εi are independently generated from
the standard normal distribution for i = 1, · · · , n.

In Model 1, both PS and OR are nonlinear models with r = 2. In Model
2, PS is a linear model with r = 1, while OR is a nonlinear model with
r = 2. In Model 3, both PS and OR are linear models with r = 1.

We consider p = 20, 40, 100 and n = 1500, 3000, 5000. All simulation re-
sults are based on 500 realizations. Observational studies often have large
sample sizes, so we focus on studying the performance of the proposed es-
timator with moderately large p and large n in different model settings.
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This consideration is consistent with the data setting in our empirical ap-
plications. For the sake of illustration, we also provide simulations for ultra
high-dimensional data in Section S.1 of the supplemental materials Ma et
al. (2018).

Table 1

The empirical coverage rates (rate), and the absolute values of biases (bias) and the
average of the estimated standard deviations (est sd) of the estimated ATE for p = 20.

Model 1 Model 2 Model 3
n rate bias est sd rate bias est sd rate bias est sd

sparse linear 0.000 0.882 0.187 0.958 0.019 0.274 0.982 0.001 0.078
oracle linear 0.000 0.858 0.188 0.958 0.019 0.273 0.984 0.002 0.077

1500 full dim 0.643 0.066 0.084 0.624 0.181 0.107 0.944 0.060 0.108
oracle dim 0.914 0.013 0.065 0.912 0.019 0.062 0.976 0.030 0.096
sparse dim 0.912 0.013 0.064 0.910 0.019 0.062 0.960 0.029 0.095
kernel 0.020 0.331 0.086 0.000 1.530 0.102 0.000 0.837 0.109
oracle 0.960 0.001 0.067 0.960 0.001 0.063 0.978 0.001 0.077
sparse linear 0.000 0.858 0.130 0.950 0.009 0.203 0.996 0.003 0.055
oracle linear 0.000 0.843 0.130 0.952 0.009 0.203 0.992 0.003 0.055

3000 full dim 0.738 0.038 0.063 0.790 0.071 0.066 0.968 0.047 0.072
oracle dim 0.920 0.010 0.050 0.924 0.006 0.043 0.992 0.025 0.070
sparse dim 0.918 0.010 0.050 0.924 0.008 0.044 0.994 0.025 0.069
kernel 0.000 0.318 0.054 0.000 1.458 0.064 0.000 0.810 0.070
oracle 0.950 0.003 0.048 0.956 0.004 0.044 0.992 0.004 0.055
sparse linear 0.000 0.874 0.103 0.960 0.014 0.161 0.980 0.001 0.043
oracle linear 0.000 0.846 0.102 0.964 0.013 0.161 0.978 0.001 0.042

5000 full dim 0.766 0.020 0.037 0.726 0.052 0.045 0.974 0.030 0.054
oracle dim 0.938 0.004 0.038 0.940 0.001 0.033 0.982 0.022 0.050
sparse dim 0.936 0.001 0.038 0.940 0.001 0.033 0.962 0.025 0.050
kernel 0.000 0.260 0.037 0.000 1.365 0.047 0.000 0.763 0.052
oracle 0.948 0.004 0.041 0.948 0.002 0.034 0.976 0.001 0.042

7.3. Results. Tables 1-3 report the empirical coverage rates (rate) of the
95% confidence intervals, and the absolute values of biases (bias) and the
average values of the estimated standard deviations (est sd) of the seven es-
timated ATE for p = 20, 40 and 100, respectively, based on 500 simulation
realizations. For Model 1 and Model 2, we observe that, as n increases, the
coverage rates of the sparse dim estimate and the oracle dim estimate be-
come closer to the nominal rate 95%, the est sd values of these two estimates
are similar to that of the oracle estimate, and their estimation biases are
close to zero. These findings indicate that the sparse dim estimate performs
similarly to the oracle dim estimate by knowing the true covariates and the
oracle estimate by knowing the true models. In contrast, the sparse linear
and oracle linear estimates for Model 1 have zero coverage rates and yield
large estimation biases and est sd values. This implies that when both PS
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Table 2

The empirical coverage rates (rate), and the absolute values of biases (bias) and the
average of the estimated standard deviations (est sd) of the estimated ATE for p = 40.

Model 1 Model 2 Model 3
n rate bias est sd rate bias est sd rate bias est sd

sparse linear 0.000 0.886 0.187 0.960 0.025 0.274 0.980 0.005 0.078
oracle linear 0.000 0.858 0.188 0.958 0.022 0.273 0.984 0.002 0.077

1500 full dim 0.522 0.159 0.091 0.012 0.966 0.121 0.928 0.002 0.126
oracle dim 0.914 0.013 0.065 0.912 0.019 0.062 0.976 0.030 0.096
sparse dim 0.904 0.015 0.064 0.906 0.020 0.069 0.930 0.027 0.090
kernel 0.000 0.398 0.094 0.000 2.261 0.112 0.000 1.231 0.112
oracle 0.960 0.001 0.067 0.960 0.001 0.063 0.978 0.005 0.077
sparse linear 0.000 0.865 0.130 0.976 0.009 0.203 0.992 0.001 0.055
oracle linear 0.000 0.843 0.130 0.952 0.009 0.203 0.992 0.003 0.055

3000 full dim 0.648 0.066 0.055 0.578 0.177 0.086 0.946 0.055 0.078
oracle dim 0.920 0.010 0.050 0.924 0.010 0.044 0.992 0.025 0.069
sparse dim 0.918 0.014 0.050 0.920 0.009 0.050 0.978 0.026 0.069
kernel 0.000 0.320 0.054 0.000 2.118 0.087 0.000 1.138 0.074
oracle 0.950 0.003 0.048 0.956 0.004 0.044 0.992 0.004 0.055
sparse linear 0.000 0.863 0.103 0.968 0.005 0.156 0.984 0.001 0.043
oracle linear 0.000 0.846 0.102 0.964 0.013 0.161 0.978 0.001 0.042

5000 full dim 0.714 0.036 0.039 0.624 0.077 0.061 0.964 0.038 0.057
oracle dim 0.938 0.004 0.038 0.940 0.001 0.033 0.982 0.022 0.050
sparse dim 0.932 0.001 0.037 0.934 0.003 0.033 0.974 0.023 0.050
kernel 0.000 0.268 0.040 0.000 2.055 0.059 0.000 1.085 0.053
oracle 0.948 0.002 0.041 0.948 0.001 0.034 0.976 0.001 0.042

and OR models are nonlinear, the estimates obtained from the parametric
linear model fittings can be very biased and inefficient due to the model mis-
specification. Although both the sparse linear and oracle linear estimates for
Model 2 have better coverage rates, their est sd values are quite large. This
indicates that, for the nonlinear OR model, the linear estimates are ineffi-
cient even though they are unbiased. In Model 3, both models are linear. The
sparse dim estimate and the oracle dim estimate perform reasonably well,
and they are slightly inferior to the linear estimates as expected. Moreover,
we find that the nonparametric kernel estimate has very small coverage rates
that are close to zero for all cases and it has large biases. The performance of
both the full dim and nonparametric kernel estimates deteriorates sharply
as the dimension p becomes larger. This suggests that using all covariates
with the sufficient dimension reduction approach or nonparametric kernel
estimation may not yield a reliable estimate of ATE. In sum, the proposed
sparse dim estimate performs well in estimating ATE with a large set of
covariates even when the true model structure is not known a priori.

To further illustrate the bias and variance of the estimated ATE, τ̂ , cal-
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Table 3

The empirical coverage rates (rate), and the absolute values of biases (bias) and the
average of the estimated standard deviations (est sd) of the estimated ATE for p = 100.

Model 1 Model 2 Model 3
n rate bias est sd rate bias est sd rate bias est sd

sparse linear 0.000 0.890 0.186 0.958 0.036 0.276 0.970 0.003 0.079
oracle linear 0.000 0.858 0.188 0.958 0.019 0.273 0.984 0.002 0.077

1500 full dim 0.192 0.309 0.098 0.000 2.404 0.164 0.002 0.939 0.149
oracle dim 0.914 0.013 0.065 0.912 0.019 0.062 0.976 0.030 0.096
sparse dim 0.902 0.014 0.065 0.904 0.016 0.066 0.920 0.034 0.096
kernel 0.004 0.423 0.104 0.000 2.518 0.168 0.000 1.427 0.150
oracle 0.960 0.001 0.067 0.960 0.001 0.063 0.978 0.001 0.077
sparse linear 0.000 0.878 0.131 0.952 0.007 0.202 0.990 0.001 0.055
oracle linear 0.000 0.843 0.130 0.952 0.009 0.203 0.992 0.003 0.055

3000 full dim 0.192 0.193 0.059 0.000 1.655 0.095 0.786 0.053 0.089
oracle dim 0.920 0.010 0.050 0.924 0.008 0.044 0.992 0.025 0.070
sparse dim 0.908 0.016 0.050 0.904 0.012 0.046 0.972 0.022 0.073
kernel 0.000 0.322 0.058 0.000 2.447 0.094 0.000 1.330 0.082
oracle 0.960 0.002 0.048 0.956 0.004 0.044 0.992 0.004 0.055
sparse linear 0.000 0.876 0.102 0.942 0.006 0.156 0.978 0.001 0.043
oracle linear 0.000 0.846 0.102 0.964 0.013 0.161 0.978 0.001 0.042

5000 full dim 0.358 0.097 0.045 0.000 0.775 0.060 0.894 0.042 0.067
oracle dim 0.938 0.004 0.038 0.940 0.001 0.033 0.982 0.022 0.050
sparse dim 0.918 0.006 0.038 0.930 0.001 0.034 0.976 0.022 0.050
kernel 0.000 0.272 0.050 0.000 2.365 0.064 0.000 1.302 0.068
oracle 0.948 0.004 0.041 0.948 0.002 0.034 0.976 0.001 0.042

culated from the oracle, sparse dim, full dim, and sparse linear estimates,
Figure 1 depicts the kernel density plots of τ̂ for Model 1 and Model 2 when
p = 20, 40, 100 and n = 5000. Figure 1 demonstrates that both sparse dim
and oracle estimates are symmetrically distributed around 1, which is the
true ATE. However, the sparse linear estimate shows a large bias in Model
1, and exhibits large variances in Model 2. As for the full dim estimate, it
becomes a more biased and less efficient estimate as p increases. This implies
that the redundant variables included in the model can significantly affect
the estimation accuracy of ATE when p is large.

We next demonstrate the impact of different methods on the test statis-
tic ϑn ≡ σ−1

n

√
n(τ̂ − τ0). Accordingly, Figure 2 depicts the kernel density

plots of ϑn with four different ATE estimates in Model 1 discussed above
for p = 20, 40, 100 and n = 5000. It shows that the density plots of ϑn cal-
culated from the oracle and sparse dim estimates exhibit a similar pattern,
being symmetric around zero. This indicates that these two estimates yield
a reliable test statistic. In contrast, the density plot of ϑn computed from
the sparse linear estimate exhibits a large bias due to the misspecification of
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Fig 1. The kernel density plots of the estimated average treatments effects, τ̂ , calculated
using the oracle estimate (red thick curves), the sparse dim estimate (blue thin curves),
the full dim estimate (black dashed curves) and the sparse linear estimate (magenta dotted
curves); the upper and lower panels correspond to Model 1 and Model 2.
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both PS and OR models. As for the plot of ϑn calculated from the full dim
estimate, it becomes more biased and less efficient as p increases. Based on
our Monte Carlo studies, we finally conclude that the proposed sparse dim
estimate performs well in estimating and testing the average treatment effect
when the true model is not known a priori.

Lastly, we compare our proposed method “sparse dim” with several other
popular methods for estimating ATE. These methods include the “MAVE”
estimator proposed in Luo et al. (2017) using MAVE to recover the OR
function, the “IPW” estimator which is an inverse probability weighting es-
timator with the propensity score estimated by the method given in Imai
and Ratkovic (2014), the “Matching” estimator obtained based on one-to-
one matching using the R package Matching (Sekhon, 2008), the “TMLE”
estimator which is the targeted maximum likelihood estimator proposed in
van der Laan and Rubin (2006), and the “RF” and “GAM” estimators from
applying random forest and the generalized additive model (GAM), respec-
tively, in G-computation (Robins, 1986; Snowden, 2011). Random forest
(van der Laan et al., 2007) and GAM (Hastie and Tibshirani, 1986) are two
popular nonparametric methods for estimating regression models. We refer
to Luo et al. (2017) for the detailed descriptions of the above methods. Table
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Fig 2. The kernel density plots of the statistic, ϑn ≡ σ−1
n

√
n(τ̂ − τ0), for Model 1, where

the estimated average treatments effects are calculated using the oracle estimate (red thick
curves), the sparse dim estimate (blue thin curves), the full dim estimate (black dashed
curves) and the sparse linear estimate (magenta dotted curves).
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4 reports the biases and the empirical standard deviations (emp sd) of the
estimated ATE by the seven methods for p = 20, 40, 100 and n = 1500 when
the data are generated from Model 2. We exclude the “TMLE” estimate
for p = 100 due to its computational burden for large p. We observe that
our proposed sparse dim estimator has the smallest bias and emp sd values
among all the estimators. It is of interest to note that the MAVE estima-
tor performs better than the other five estimates, whereas its performance
deteriorates as p becomes larger.

Table 4

The biases (“bias”) and empirical standard deviations (emp sd) of the estimated ATE by
the seven methods for p = 20, 40, 100 when data are generated from Model 2.

sparse dim MAVE IPW Matching TMLE RF GAM

p = 20 bias 0.019 0.072 1.572 1.059 0.040 -0.108 0.664
emp sd 0.065 0.087 0.184 0.196 0.070 0.080 0.125

p = 40 bias 0.020 0.092 1.582 1.074 0.455 -0.128 0.664
emp sd 0.072 0.093 0.188 0.211 0.088 0.082 0.115

p = 100 bias 0.016 0.215 1.603 1.152 — -0.182 0.653
emp sd 0.068 0.105 0.178 0.197 — 0.081 0.125

8. Application. In this section, we consider the NIH-AARP Study of
Diet and Health (Schatzkin et al., 2001). We employ our proposed method to
investigate the causal effect of smoking on body mass index (BMI). The con-
founding variables are dietary pattern scores for nutritional intakes, which
were calculated by using the U.S. Department of Agriculture’s (USDA’s)
Healthy Eating Index-2005 (HEI-2005, http://www.cnpp.usda.gov/Healthy
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EatingIndex.htm). The HEI-2005 comprises 12 distinct component scores.
Intakes of each food or nutrient, represented by one of the 12 components
and adjusted for caloric intake (energy), are assessed and given a score. A
higher score represents a better dietary quality. All confounding variables
are centered and standardized in the analysis.

The data consist of 7432 African American women aged 55-70 who had
not been diagnosed with any cancer at baseline and who did not have miss-
ing BMI. In our analysis, let Yi =BMI, Di =indicator for smoking, and
Xi1, . . . ,Xi12 be the dietary scores of Total Fruit (TF), Whole Fruit (WF),
Total Grains (TG), Whole Grains (WG), Total Vegetables (TV), DOL Veg-
etables (DV), Dairy (D), Meat and Beans (MB), Oils, Sodium (S), Saturated
Fat (SF) and Empty Calories (EC), respectively, for i = 1, · · · , 7432.

We apply our proposed sparse sufficient dimension reduction (sparse dim)
method to estimate PS and OR, respectively. By employing the five-fold
CV method, we obtain the estimated number of indices, which is r̂ = 1, in
model (1) for PS and OR, respectively. For comparison, we also consider the
sparse linear method discussed in simulation studies.

Table 5

The selected variables among the 12 dietary intakes by the sparse linear and sparse dim
methods for PS, OR in the smoking group (OR smoke), and OR in the non-smoking

group (OR non-smoke). “
√
” means that the variable is selected.

PS OR smoke OR non-smoke
sparse linear sparse dim sparse linear sparse dim sparse linear sparse dim

TF
√ √ √ √ √

WF
√ √

TG
√ √

WG
√ √

TV
DV

√ √ √
D

√ √
MB

√ √
Oils
S
SF

√ √ √ √
EC

√ √

Table 5 reports the variables selected by these two methods for estimating
PS, OR in the smoking group, and OR in the non-smoking group. The results
show that our approach captures the variables that would be missed by the
sparse linear method. For example, it is evident in other studies that fruit,
vegetable and whole grain intakes influence BMI (Steffen et al., 2003; Heo et
al., 2011; Charlton et al., 2014). However, fruit and vegetable intakes are not
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Fig 3. The plots of τ̂ 1 for the smoking group and τ̂0 for the non-smoking group, respec-
tively, versus the estimated index value ̂V�Xi.
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selected by the sparse linear method for OR of the smoking group and whole
grain intake is not selected by the sparse linear method for both smoking
and non-smoking groups.

To examine the relationship between BMI and dietary intakes, Figure 3
depicts the estimated conditional means τ̂1(·) and τ̂0(·) versus the estimated
index value V̂�Xi for the smoking and non-smoking groups, respectively. It
is of interest to note that the estimated conditional mean in the smoking
group is smaller than that in the non-smoking group at the same index
value. Both plots in Figure 3 clearly show a nonlinear relationship between
BMI and the estimated index value. Specifically, the plot for the smoking
group exhibits a nonlinear increasing pattern along with index value and
the slope becomes flatter as the index value becomes larger. The plot for
the non-smoking group displays a quadratic pattern. It shows that the BMI
of non-smokers decreases along with the index value in the beginning and
then it increases after the index exceeds certain value.

To further illustrate the relationship between BMI and the dietary score of
each nutrient intake, Figure 4 depicts τ̂1(·) and τ̂0(·) versus the dietary score
for Total Fruit, respectively, by fixing the dietary scores of other nutrient
intakes at their means. We use this dietary score for illustration because it
is selected as relevant dietary intakes for OR by the sparse dim method. In
the smoking group, it shows a positive relationship between BMI and the
Total Fruit score, and the slope becomes flatter as the score increases. In
the non-smoking group, the plot shows a quadratic pattern with the Total
Fruit score. Overall, Figure 4 indicates that a better dietary score of Total
Fruit can increase BMI for smokers, and the Total Fruit score is inversely
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Fig 4. The plots of τ̂ 1 for the smoking group and τ̂0 for the non-smoking group, respec-
tively, versus the dietary score of total fruit.
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associated with BMI when the score is less than 3 and their association
becomes positive as the score becomes larger.

Next we compare our proposed sparse dim estimator of ATE with three
other estimators: (a) the “sparse linear” estimator; (b) the “linear dim”
estimator from fitting the sparse logistic linear model to PS and using
the proposed sparse dimension reduction method to estimate OR; (c) the
“dim linear” estimator from using the proposed sparse dimension reduction
method to estimate PS and fitting the sparse linear model to OR.

Table 6 reports the estimated values (“est.”) of ATE and their associ-
ated standard errors (“s.e.”) by these four different methods. It shows that
all four methods have negative values for the estimated ATE. This result
confirms the earlier finding that current smokers have significantly lower
BMI than non-smokers (see Kaufman et al., 2012). Furthermore, the lin-
ear dim and dim linear methods yield the estimates of ATE that are close
to that obtained from the sparse dim method, but they produce larger stan-
dard errors. This is because both linear dim and dim linear methods can
lead to asymptotically unbiased but not efficient estimates due to possible
misspecification of either the PS or the OR model. Moreover, we compare
our sparse dim estimator with the six estimators, MAVE, IPW, Matching,
TMLE, RF and GAM, given in Section 7. Table 7 reports the “est.” and
“s.e.” values of these estimators. The sparse dim estimator has the smallest
standard error value. We also observe that the MAVE and TMLE methods
have estimated values close to that obtained from the sparse dim estimator.
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Table 6

The estimates (“est.”) and standard errors (“s.e.”) of ATE obtained by four different
methods: sparse dim, sparse linear, linear dim, and dim linear.

sparse dim sparse linear linear dim dim linear
est. -1.218 -1.147 -1.195 -1.236
s.e. 0.179 0.189 0.188 0.184

Table 7

The estimates (“est.”) and standard errors (“s.e.”) of ATE obtained by seven different
methods: sparse dim, MAVE, IPW, Matching, TMLE, RF and GAM.

sparse dim MAVE IPW Matching TMLE RF GAM
est. -1.218 -1.173 -1.154 -1.082 -1.189 -0.946 -1.086
s.e. 0.179 0.197 0.185 0.207 0.186 0.193 0.195

9. Discussion. In this paper, we consider an estimator of ATE con-
structed based on an efficient influence function, which involves a PS func-
tion and an OR function. We propose a sparse sufficient dimension reduction
method to estimate these two functions, without making restrictive para-
metric modeling assumptions. Theoretically, we show that the proposed es-
timator is asymptotically normal and semiparametric efficient without the
need for variable selection consistency. Practically, we illustrate the proposed
method through a number of simulation studies and an empirical example.
The numerical studies support our theoretical findings. Our method pro-
vides a new flexible strategy for efficient inference of ATE with big data
which often involve a large number of variables measured on a large number
of subjects. Our proposed method can be extended to estimate quantile,
heterogeneous and longitudinal treatment effects in observational studies.
In sum, these three avenues can shed light on areas of future research that
deserve a thorough study. It is worth noting that in practice one can also
apply other popular approaches such as MAVE (Luo et al., 2017) and ma-
chine learning methods (van der Laan et al., 2007; van der Laan and Rose,
2011) to estimate the working models without imposing restrictive modeling
assumptions. However, careful and thorough investigations are needed to de-
velop the computational algorithms and establish the theoretical properties
of the resulting estimators in high-dimensional settings.
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Associate Editor and the two anonymous referees for their insightful com-
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Appendix. The Appendix contains the technical proofs of Theorems 2
and 3. The proof of Theorem 1 is given in the on-line supplemental materials
Ma et al. (2018).

A.1. Proof of Theorem 2. Let τ j(x) = E(Yji|Xi = x) and gj(x) =
E(Dji|Xi = x) for j = 0 and 1, where D1i = Di and D0i = 1 − Di. In
addition, let τ̂ j(x) and ĝj(x) be the estimators of τ j(x) and gj(x), respec-
tively, and let Ti = (Di, Yi,Xi) be the ith individual observation. Denote

mj(Ti, τ j , gj) =
Dji{Yi − τ j(Xi)}

E(Dji|Xi)
+ τ j(Xi) =

Dji{Yi − τ j(Xi)}
gj(Xi)

+ τ j(Xi).

To prove this theorem, we will show that

(A.1) n−1
∑n

i=1
m1(Ti, τ̂ 1, ĝ1) = n−1

∑n

i=1
m1(Ti, τ1, g1) + op(n

−1/2).

Employing the same techniques as those for obtaining the above result, we
can demonstrate that

n−1
∑n

i=1
m0(Ti, τ̂0, ĝ0) = n−1

∑n

i=1
m0(Ti, τ0, g0) + op(n

−1/2).

By Central Limit Theorem, we have

σ−1√n[n−1
∑n

i=1
{m1(Ti, τ 1, g1)−m0(Ti, τ0, g0)} − τ0] → N(0, 1),

where σ2 is defined in (9). This, together with the Slutsky’s Theorem and
τ̂ = n−1

∑n
i=1{m1(Ti, τ̂ 1, ĝ1)−m0(Ti, τ̂ 0, ĝ0)}, yields the asymptotic result of

τ̂ in Theorem 2. Furthermore, by the weak law of large numbers, we obtain
that

n−1
∑n

i=1
{m1(Ti, τ 1, g1)−m0(Ti, τ0, g0)} − τ0 = Op(n

−1/2),

which implies τ̂ − τ0 = Op(n
−1/2).

To complete the proof, we demonstrate (A.1) below. By the Taylor series
expansion, we have

m1(Ti, τ̂1, ĝ1)−m1(Ti, τ 1, g1)

= −g−2
1 D1i(Yi − τ1)(ĝ1 − g1) + (−g−1

1 D1i + 1)(τ̂ 1 − τ1)

+g̃−2
1 D1i(ĝ1 − g1)(τ̂ 1 − τ1) + g̃−3

1 D1i(Yi − τ̃1)(ĝ1 − g1)
2(A.2)

for some g̃1 between g1 and ĝ1 and τ̃1 between τ1 and τ̂1. Then

n−1
∑n

i=1
m1(Ti, τ̂ 1, ĝ1)− n−1

∑n

i=1
m1(Ti, τ 1, g1)

= ϕn1 + ϕn2 + ϕn3 + ϕn4,(A.3)

imsart-aos ver. 2014/10/16 file: causal_AOS_REV.tex date: February 17, 2018



26 S. MA, L. ZHU, Z. ZHANG, C. L. TSAI, AND R. J. CARROLL

where

ϕn1 = n−1
∑n

i=1
[−g1(Xi)

−2D1i{Yi − τ1(Xi)}]{ĝ1(Xi)− g1(Xi)},
ϕn2 = n−1

∑n

i=1
(−g1(Xi)

−1D1i + 1){τ̂ 1(Xi)− τ1(Xi)},
ϕn3 = n−1

∑n

i=1
g̃1(Xi)

−2D1i{τ̂1(Xi)− τ1(Xi)}{ĝ1(Xi)− g1(Xi)} and

ϕn4 = −n−1
∑n

i=1
g̃1(Xi)

−3Di1{Yi − τ̃1(Xi)}{ĝ1(Xi)− g1(Xi)}2.

It is worth noting that, by definitions of ĝ1(Xi) and g1(Xi), we have

ĝ1(Xi)− g1(Xi) = Ê(Di1|Ṽ�Xi)− E(Di1|V∗�Xi)

= {Ê(Di1|Ṽ�Xi)− Ê(Di1|V∗�Xi)}
+ {Ê(Di1|V∗�Xi)− E(Di1|V∗�Xi)}.(A.4)

Furthermore, let ξi = −g1(Xi)
−2D1i{Yi−τ1(Xi)}. Then, under Assumption

(A3), E(ξi|Xi) = 0.
Applying (A.4) and Lemmas S.1 and S.2 presented in the supplemental

materials Ma et al. (2018), we have ϕn1 = op(n
−1/2). Employing the same

approach, we can show that ϕn2 = op(n
−1/2).

By Condition (C2) and the results of (S.17) and (S.18) in the proof of
Lemma S.2, we obtain that

sup
Xi

|Ê(Di1|Ṽ�Xi)− Ê(Di1|V∗�Xi)|

≤ sup
Xi

|E(1)(Di1|V∗�Xi)| × ||Xi||∞
√

|R∗|||ṼR∗ −V∗
R∗ ||{1 + o(1)}

= Op(
√

log(p ∨ n))Op(
√
s)Op(

√
s log(p ∨ n)/n) = Op(log(p ∨ n)sn−1/2).

Then employing the uniform convergence rate in Mack and Silverman (1982),
we have

sup
Xi

|Ê(Di1|V∗�Xi)− E(Di1|V∗�Xi)| = Op{hm + (nhr)−1/2
√

log n}.

The above two results, together with (A.4), imply that

(A.5) sup
Xi

|ĝ1(Xi)−g1(Xi)| = Op{hm+(nhr)−1/2
√

log n+log(p∨n)sn−1/2}.

Analogously, we can show that
(A.6)
sup
Xi

|τ̂1(Xi)− τ1(Xi)| = Op{hm + (nhr)−1/2
√

log n+ log(p ∨ n)sn−1/2}.
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As a result, (A.5), (A.6), and Condition (C3) imply that there exist constants

c̃ and ˜̃c ∈ (0,∞) such that, with probability approaching 1,

|ϕn3| ≤ c̃ sup
Xi

|ĝ1(Xi)− g1(Xi)| sup
Xi

|τ̂ 1(Xi)− τ1(Xi)|

= O{h2m + (nhr)−1(log n) + {log(p ∨ n)}2s2n−1} = o(n−1/2),

|ϕn4| ≤ ˜̃c sup
Xi

|ĝ1(Xi)− g1(Xi)|2

= O{h2m + (nhr)−1(log n) + {log(p ∨ n)}2s2n−1} = o(n−1/2).

The above results, in conjunction with (A.3), lead to (A.1), which completes
the proof.

A.2. Proof of Theorem 3. Let m̂ji = mj(Ti, τ̂ j , ĝj) andmji = mj(Ti, τ j , gj)
for j = 0 and 1. Based on the results of (A.1) and Theorem 2, we have
n−1

∑n
i=1(m̂1i−m1i) = op(n

−1/2) and τ̂ −τ0 = Op(n
−1/2), respectively. The

above results, together with the definitions of σ2 and σ2
n in (9) and (10),

imply that

σ2
n − σ2 = n−1

∑n

i=1
(m̂1i − m̂0i − τ̂)2 − n−1

∑n

i=1
(m1i −m0i − τ0)

2

=
∑

j,j′=0,1
n−1

∑n

i=1
(m̂ji +mji)(m̂j′i −mj′i) + op(1).

Below we will show that

n−1
∑n

i=1
(m̂1i +m1i)(m̂1i −m1i) = op(1).

Employing the same techniques, we can also demonstrate that n−1
∑n

i=1(m̂ji+
mji)(m̂j′i − mj′i) = op(1) for j = j′ = 0 and j 	= j′. Accordingly, we have
σ2
n − σ2 = op(1), which completes the proof of Theorem 3.
Note that

n−1
∑n

i=1
(m̂1i +m1i)(m̂1i −m1i)

= n−1
∑n

i=1
(m̂1i −m1i)

2 + 2n−1
∑n

i=1
(m̂1i −m1i)m1i.

Hence, we will show that

(A.7) n−1
∑n

i=1
(m̂1i −m1i)

2 = op(1),

(A.8) n−1
∑n

i=1
(m̂1i −m1i)m1i = op(1).
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By (A.2), m̂1i −m1i = ϕ1i + ϕ2i + ϕ3i + ϕ4i, where

ϕ1i = −g−2
1 D1i(Yi − τ1)(ĝ1 − g1),

ϕ2i = (−g−1
1 D1i + 1)(τ̂ 1 − τ1),

ϕ3i = g̃−2
1 D1i(τ̂1 − τ1)(ĝ1 − g1),

ϕ4i = g̃−3
1 Di1(Yi − τ̃1)(ĝ1 − g1)

2.

Using the fact that n−1
∑n

i=1(m̂1i −m1i)
2 ≤ 4

∑4
k=1 n

−1
∑n

i=1 ϕ
2
ki. We only

need to demonstrate that n−1
∑n

i=1 ϕ
2
ki = op(1) for k = 1, ..., 4.

By (A.5), (A.6), |Di1| ≤ 1, and 0 < g1(Xi) < 1, it immediately follows
that n−1

∑n
i=1 ϕ

2
ki = op(1) for k = 2, 3. From Assumption (A3), we have

n−1
∑n

i=1
{−g−2

1 D1i(Yi − τ1)}2

= n−1
∑n

i=1
{−g−2

1 D1i(Y1i − τ1)}2

≤ c′n−1
∑n

i=1
(Y1i − τ1)

2 = c′n−1
∑n

i=1
ε2i

for some constant c′ ∈ (0,∞). By Assumption (A5) (i), n−1
∑n

i=1 ε
2
i = Op(1),

and hence
n−1

∑n

i=1
{−g−2

1 D1i(Yi − τ1)}2 = Op(1).

The above result, in conjunction with (A.5), implies that

n−1
∑n

i=1
ϕ2
1i ≤ sup

Xi

|ĝ1(Xi)− g1(Xi)|2n−1
∑n

i=1
{−g−2

1 D1i(Yi − τ1)}2

= op(1)Op(1) = op(1).(A.9)

Analogously, we can show that

n−1
∑n

i=1
{g̃−3

1 Di1(Yi − τ̃1)}2 ≤ c′′n−1
∑n

i=1
(Yi − τ̃1)

2

≤ c′′2n−1
∑n

i=1
ε2i + c′′2 sup

Xi

|τ̃1(Xi)− τ1(Xi)|2 = Op(1),

for some constant c′′ ∈ (0,∞). Accordingly,

n−1
∑n

i=1
ϕ2
4i ≤ sup

Xi

|ĝ1(Xi)− g1(Xi)|4n−1
∑n

i=1
{g̃−3

1 Di1(Yi − τ̃1)}2

= op(1)Op(1) = op(1).

This, together with (A.9), completes the proof of (A.7).
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It is worth noting that

n−1
∑n

i=1
(m̂1i −m1i)m1i

= n−1
n∑

i=1

ϕ1im1i + n−1
n∑

i=1

ϕ2im1i + n−1
n∑

i=1

ϕ3im1i + n−1
n∑

i=1

ϕ4im1i.

To verify (A.8), we only need to show that n−1
∑n

i=1 ϕ1im1i = op(1). This is
because the proofs of n−1

∑n
i=1 ϕkim1i = op(1) for k = 2, 3, 4 follow the same

arguments. By Assumption (A3)(ii), there exist constants c1, c2 ∈ (0,∞)
such that | − g1(Xi)

−2D1i| ≤ c1 and |g1(Xi)
−1D1i| ≤ c2. Then,

|n−1
∑n

i=1
ϕ1im1i|

≤ sup
Xi

|ĝ1(Xi)− g1(Xi)|n−1
∑n

i=1
| − g−2

1 D1i(Yi − τ1)||D1i(Yi − τ1)

g1
+ τ1|

≤ c1 sup
Xi

|ĝ1(Xi)− g1(Xi)|n−1
∑n

i=1
|εi|(c2|εi|+ C̃)

= c1 sup
Xi

|ĝ1(Xi)− g1(Xi)|{c2n−1
∑n

i=1
ε2i + C̃n−1

∑n

i=1
|εi|} = op(1),

where C̃ is defined in Assumption (A5) (iii). This completes the whole proof.

SUPPLEMENTARY MATERIAL

Supplement to “A robust and efficient approach to causal infer-
ence based on sparse sufficient dimension reduction”
(). The supplement contains the technical proof of Theorem 1, two lem-
mas that will be used in the proof of Theorem 2, and additional simulation
studies.
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