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Abstract

We develop new high-frequency-based inference procedures for analyzing the re-
lationship between jumps in instantaneous moments of stochastic processes. The
estimation consists of two steps: the nonparametric determination of the jumps as
differences in local averages, followed by a minimum-distance type estimation of the
parameters of interest under general loss functions that include both least-square
and more robust quantile regressions as special cases. The resulting asymptotic
distribution of the estimator, derived under an infill asymptotic setting, is highly
non-standard and generally not mixed normal. We establish the validity of a novel
bootstrap algorithm for making feasible inference including bias-correction, and fur-
ther justify its practical use through a series of Monte Carlo simulation experiments.
We apply the new methods to study the relationship between trading intensity and
spot volatility in the U.S. equity market at the time of important macroeconomic news
announcement, as well as the relationship between these jumps and announcement
surprises.

Keywords: high-frequency data, jumps, robust regression, semimartingale, news announce-
ments, news surprises, investor disagreement, volume, volatility.
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1 Introduction

Many stochastic processes of practical empirical interest exhibit jump-like behavior. We

propose a new statistical framework for analyzing the relationship between such jumps and

other explanatory variables, as well as the relationship between simultaneously occurring

jumps in multiple stochastic processes. Our approach relies crucially on the availability

of high-frequency data for nonparametrically estimating the jumps together with a gen-

eral minimum distance type estimator and accompanying bootstrap procedure for making

robust inference about the parameters describing the relationship of interest.

Our new procedure is broadly applicable for studying the relationship between jumps of

instantaneous moment processes associated with semimartingales. In financial applications,

arguably the most important example of these instantaneous moments is the spot covariance

matrix of asset prices, formally defined as the local second moment of the return process.

However, the local moment processes of other market variables such as trading volume, the

time between trades, and quoted spreads, to name a few, are also of empirical interest as

measures of trading activity and market liquidity. Jumps in these local moments are often

triggered by macroeconomic news announcements occurring at specific times.

To illustrate, Figure 1 plots the price and trading volume of the S&P 500 E-mini futures

contract on September 18, 2013, when the Federal Open Market Committee (FOMC)

announced its decision not to taper the quantitative easing in place at the time. As the

figure clearly shows, following the 2pm announcement there was a sharp increase in the

volatility of the price (i.e., a positive volatility jump). This increase in the volatility was

accompanied by an equally abrupt increase in trading activity (i.e., a positive volume

jump). These types of jumps associated with clearly identifiable news events provide an

ideal framework for studying the economic mechanisms at work, as exemplified by the

economic theory of [25] and the recent empirical study of [11] concerning the relationship

between jumps in the spot volatility and volume intensity at FOMC announcement times.

This same “identification-by-discontinuity” empirical strategy using jumps has also been

used in many other settings; see, for example, [23], [33], [3], [9], among others.

The key statistical challenge in analyzing these types of jump relations stems from

the fact that the jumps are latent processes. Only if the full continuous-time sample

path of the underlying processes were available would the jumps be exactly identified.

In practice, however, empirical researchers are almost always limited to discretely, albeit

sometimes very finely, sampled data. As such, the jumps are invariably latent quantities

that need to be estimated. Moreover, in our application, the local moments (such as the spot
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Figure 1: Price and Volume around an FOMC Announcement

Note: The figure shows the price and volume of the S&P 500 E-mini futures on September

18, 2013. On that day, the FOMC announced its decision not to taper the quantitative

easing in effect at the time.

volatility of an asset) are themselves latent, creating an additional source of estimation error

uncertainty. Our new two-step estimation procedure for addressing these issues builds on,

and importantly extends, the least-squares approach of [11] to allow for the use of general

convex loss functions and corresponding minimum-distance type estimators to assess the

relationship between the first-stage jump estimates. Notably, this includes lin-lin loss, in

which case the second-stage may be implemented via quantile regressions, as a special case.

Our motivation for considering more general loss functions is twofold. Firstly, compared

to the quadratic loss employed by [11], the lin-lin loss is known to be more robust against

influential observations in the sense of [21] (see, e.g., [29], [28]). This type of robustness

is especially relevant in the high-frequency data setting to help guard against overly in-

fluential “observations” associated with “noisy” data and potentially imprecise first-stage

nonparametric jump estimates. Secondly, in parallel to standard quantile regressions, esti-

mators based on different lin-lin losses have the potential to reveal heterogeneous responses

across quantiles (see, e.g., [30]). As such, the different estimates may be used as a diag-

nostic tool for examining the assumption of a homogeneous response that is routinely, but

implicitly, imposed in most empirical work. In our leading empirical example, discussed

further below, we find that this is indeed a relevant concern.
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The generalization to accommodate more general, possibly non-smooth loss functions

like lin-lin, also requires the use of a distinctly different asymptotic theory and method of

proof from that of existing work. The strategy typically adopted to address the complica-

tions stemming from the use of non-smooth loss functions relies on a quadratic expansion

of an appropriately defined limiting criterion function, as the latter will be smooth in con-

ventional settings (see, e.g., [20], [38], [28]). However, this approach does not work in the

present setting, as the aggregation in the second-step estimation is based on only a fixed

number of jumps. Hence, the non-smoothness of the loss function cannot simply be “aver-

aged away.” Instead, we derive the asymptotic distribution of our new estimator (in terms

of stable convergence in law) using a novel convexity argument (as in, e.g., [26], [27]), in

which the distribution is characterized as the argmin of a localized version of the limiting

objective function.

Our theoretical results include those of [11] based on the quadratic loss, for which the

asymptotic distribution is mixed normal, as a special case. However, the mixed normality

property that obtains under the quadratic loss does not hold true more generally with

non-smooth loss functions, like lin-lin. Our theoretical arguments are also related to those

underlying the so-called jump regressions recently analyzed by [33, 34]. In contrast to that

setting, however, which involves the jumps inferred from discretely observable processes,

our setting entails an “extra layer” of latency associated with the nonparametric estimation

of the local moment processes, in turn resulting in an overall slower rate of convergence.

The non-standard asymptotic distribution of the proposed estimator also renders rou-

tine “studentization” infeasible. Instead, we propose an easy-to-implement bootstrap al-

gorithm as a natural alternative for conducting feasible inference (see, e.g., [15], [18], [14]).

The bootstrap consists of two steps: resampling the data in an i.i.d. fashion within local

windows around the jump times, followed by repeating the estimation using the resam-

pled data (after proper re-centering). The use of a local resampling scheme conveniently

addresses the issue of data heterogeneity, which constitutes one of the key complications

for bootstrapping in the high-frequency data setting (see [16]). We prove the asymptotic

validity of the bootstrap in this non-standard statistical setting under general conditions

that permits both data heterogeneity and strong persistence. In particular, we do not need

the data to be actually i.i.d. for the bootstrap to work. As such, our approach is distinctly

different from the bootstrap used in conventional quantile regressions (see, e.g., [7], [17]). It

also differs from the block-bootstrap sometimes used for capturing time-series dependency

(see, e.g., [12], [31]).

Going one step further, we demonstrate how the resampled bootstrap estimates readily
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allow for the implementation of finite-sample bias-correction (as in [15], [19]). An em-

pirically realistically calibrated Monte Carlo experiment further shows that the resulting

bootstrap confidence intervals have good coverage properties, and that the bias-correction

is indeed useful in reducing any finite-sample biases.

We apply the proposed method in two different applications. In the first application, we

study how the estimated jumps in the spot volatility and volume intensity around macroe-

conomic news announcements are related to the magnitude of the announcement surprises.

These results further build on and importantly extend the recent study of [32] concerning

news announcement surprises and jumps in the directly observable prices themselves. In

the second application, we apply the new method to study the relationship between the vol-

ume and volatility jumps, and how that relationship is affected by investors’ disagreement.

Consistent with the implications from an extensive theoretical literature in economics (see,

e.g., [25]), we find that the volume-volatility elasticity is generally below unity and decreas-

ing in the level of investors’ disagreement. These findings confirm the recent results of [11].

Importantly, however, we also find that these relations not only hold true “on average,”

but across a broad range of different quantiles. At the same time, we also uncover notable

systematic heterogeneity in the elasticity estimates for certain types of announcements,

thus directly highlighting the empirical relevance of using the more general loss functions

and corresponding inference procedures developed here.

The rest of the paper is organized as follows. Section 2 introduces the statistical setting

and describes a few motivating empirical examples. Section 3 presents the statistical in-

ference methods. Section 4 reports the results from a Monte Carlo simulation experiment

designed to investigate the finite-sample performance of the proposed methods. Section 5

details our main empirical findings. Section 6 concludes. The appendix contains additional

technical assumptions and detailed proofs. Various robustness checks for the simulation

and empirical results are collected in an online supplemental appendix.

2 The setting

2.1 Underlying stochastic processes

We begin by introducing the general statistical setting. We assume that the data are

observed at discrete times i∆n, 0 ≤ i ≤ [T/∆n], and that the sampling interval ∆n → 0

asymptotically over the fixed sample span [0, T ]. This hypothetical setting of ever finer

sampled data over a fixed time-interval is now standard in the analysis of high-frequency
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intraday financial data (see, e.g., [2] and [22]). Our statistical analysis concerns two types

of high-frequency data: asset prices, which following standard practice we model as a

semimartingale, and other possibly discrete-valued market variables, for which we rely on

a more general state-space representation.

More specifically, let P denote the (log) price vector of the d assets. We will assume

that P may be described by a continuous-time Itô semimartingale of the form,

dPt = αtdt+ σtdWt + dJt, (1)

where αt denotes the drift vector, σt is a d×d′ stochastic volatility matirx, Wt is a standard

d′-dimensional Brownian motion, and Jt collects the jumps in the price process. The key

component of interest is the stochastic covariance matrix process ct ≡ σtσ
>
t , defined as the

instantaneous covariance of the diffusive price moves, i.e.,

ct = Et
[
(σtdWt) (σtdWt)

>
]/

dt. (2)

We relegate the specifics of the regularity conditions concerning the σt volatility process

to the technical appendix. However, the assumptions are extremely general, allowing for

intraday periodicity, stochastic volatility-of-volatility, volatility jumps, leverage effects, and

long-memory type dynamic dependencies.

In contrast to the (log) price process, other types of market data have only limited

support. For instance, trading volume or quote spreads are typically integer multiples of a

given lot or tick size. This in turn necessitates a different modeling framework from the Itô

semimartingale in (1). Hence, following [35] and [11], we consider a d̃-dimensional process

V generated by the state-space model on the same discrete-time sampling grid,

Vi∆n = V (ζi∆n , εi) , 0 ≤ i ≤ [T/∆n] , (3)

where ζi∆n is a latent state process, εi is a random shock, and the function V (·, ·) transforms

these two variables into the observed times series (Vi∆n)i≥0. By integrating out the random

shock εi with respect to its distribution Fε(·), one naturally obtains the instantaneous mean

process of V , i.e.,

mi∆n ≡
∫
V (ζi∆n , ε)Fε(dε). (4)

This type of state-space representation embodies two useful features that we exploit in

our statistical inference. Firstly, by assuming that the shocks (εi) are i.i.d., the observations

(Vi∆n) become conditionally (given the state process ζ) independent. However, uncondi-

tionally, V is still allowed to be highly serially dependent (and heterogeneous) through

6



the state process ζ. Secondly, we do not need to impose any specific assumptions on the

transformation function V (·, ·). Instead, we merely require some rather mild smoothness

conditions on the m and ζ processes to allow for the construction of valid nonparametric

inference procedures (see Assumptions 2 and 4 below for the technical details).

Our analysis focuses on the jumps in the local instantaneous moments, i.e., the c and

m processes. Formally, for a generic process Z, its jump at time τ is defined by ∆Zτ ≡
Zτ −Zτ−, where Zτ− = lims↗τ Zs is the left limit. We are primarily concerned with jumps

that occur at known (announcement) times, corresponding to the setup commonly used in

event-type studies. However, the proposed statistical methods remain valid with a finite set

of unobserved jump times, provided that the jump times can be recovered with probability

approaching one up to the sampling precision ∆n. As a case in point, in the setting of

[33], the times of “large” price jumps may be consistently recovered using the thresholding

technique of [36].

2.2 Motivating examples

Intuitively, the jumps in economic variables may be seen as capturing “abnormal” moves in-

duced by the arrival of new “lumpy” information, a prime example being regularly scheduled

macroeconomic news announcements. Unlike “everyday” trading environments, in which

it is difficult to clearly pinpoint specific shocks that drive the market, important macroe-

conomic announcements provide a convenient “laboratory” for isolating well-defined news

from other confounding factors (see, e.g., the discussion in [5]). Correspondingly, insights

as to what drive the jumps and the relationship among the jumps in different variables can

help shed new light on the underlying economic mechanisms at work.

To fix idea, we discuss two motivating examples. We will later return to these examples

in our empirical analysis. Both examples concern the price volatility σ and the volume

intensity m, defined as the (square root of) the local second moment of returns and the

local mean of the observed trading volume, respectively. For each announcement time τ ,

we denote the jumps in the log levels of these local moment processes as,

∆ log (στ ) ≡ log(στ )− log(στ−), ∆ log (mτ ) ≡ log(mτ )− log(mτ−). (5)

Empirically, as illustrated in Figure 1 above and documented more systematically below,

∆ log (στ ) and ∆ log (mτ ) are both generally positive at the time of important macroeco-

nomic news announcements.

In a recent paper, [32] study how the surprise component of an announcement determine

price jumps. Taking this analysis one step further, it is possible to examine more broadly
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the relationship between surprises and jumps in local moments, such as the volatility and

the volume intensity. This empirical question in turn motivates the following specification,

∆ log (Yτ ) = θ>Xτ , Y ∈ {σ,m}, (6)

where the explanatory variable Xτ would include proxies for the announcement surprises,

and possibly other control variables. The expression in equation (6) is naturally inter-

preted as an instantaneous moment condition, necessitating the use of specialized inference

procedures.

The study of volume and volatility jumps is also related to the large existing literature

on volume-volatility relations more generally (see, e.g., [13] and [39]). In particular, follow-

ing the analysis of [11], the oft-cited Kandel–Pearson equilibrium model ([25]) predicts that

the volume-volatility elasticity should be below unity, and a decreasing function of the level

of investor disagreement. Meanwhile, since the Kandel–Pearson theory concerns “abnor-

mal moves” of market variables induced by news announcements, this naturally suggests

identifying the elasticity as the slope coefficient θ2 in the following log-linear specification

(this is also the specification adopted by [11]),

∆ log (mτ ) = θ1 + θ2∆ log (στ ) . (7)

In parallel to equation (6) above, this baseline specification may also be extended to include

covariates. Specifically, one may investigate the hypothesis that the elasticity is indeed a

decreasing function of the level of investors’ disagreement, by parameterizing the elasticity

(and the intercept) as a linear function of other explanatory variables (X1,τ ,X2,τ ), that is,

∆ log (mτ ) = θ>1X1,τ + (θ>2X2,τ ) ∆ log (στ ) . (8)

A test of the aforementioned hypothesis thus amounts to testing whether the component

of the θ2 parameter associated with the investor disagreement proxy is negative.

The instantaneous moment conditions in (6) and (8) may both be seen as specific

examples of the following more general form,

G (mτ−,mτ , cτ−, cτ ) =
K∑
k=1

θ>kXk,τHk (mτ−,mτ , cτ−, cτ ) , (9)

where G (·) and Hk (·) are continuously differentiable functions, and θ = (θ1, . . . ,θK) de-

notes the parameter vector of interest. This more general instantaneous moment condition

in (9) also readily accommodates a multivariate setting and the joint analysis of the in-

stantaneous moments for multiple assets. We turn next to the development of the new

statistical methods designed to allow for robust inference in this general setting.
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3 Statistical methods

3.1 Estimation procedure

The practical estimation of θ is complicated by the fact that the local moments σ and

m (and hence their jumps) are not directly observable. In response to this, we rely on

a two-step estimation procedure in which we first recover the jumps nonparametrically

through the use of properly designed “spot” estimators, followed by a minimum-distance

type estimation of θ.

Specifically, for each announcement time τ associated with the jumps, let i(τ) = τ/∆n+

1 denote the corresponding observation count. The volume intensity and spot volatility

after/before time τ (denoted by +/−) are then estimated by,

m̂τ± ≡
1

kn

kn∑
j=1

V(i(τ)±j)∆n , ĉτ± ≡
1

kn∆n

kn∑
j=1

r(i(τ)±j)r
>
(i(τ)±j), (10)

where ri ≡ Pi∆n − P(i−1)∆n denotes the ith return, and the integer sequence kn used in

determining the size of the local window formally satisfies kn → ∞ and kn∆n → 0. In

general, one could also apply the thresholding technique of [36] to construct a jump-robust

estimator for the spot covariance matrix, although this is not formally needed under our

maintained assumption of finitely active jumps.

Armed with these spot estimators, the sample analogue of (8) may be expressed as,

̂∆ log (mτ ) = θ>1X1,τ + (θ>2X2,τ ) ̂∆ log (στ ) + eτ , (11)

with the corresponding jump estimates defined by,

̂∆ log (mτ ) ≡ log (m̂τ+)− log (m̂τ−) , ̂∆ log (στ ) ≡ (log (ĉτ+)− log (ĉτ−)) /2. (12)

The error term eτ in (11) arises from the estimation errors associated with the local moments

c and m. Similarly, the sample analogue for the more general possibly non-linear functional

form in (9) may be expressed as,

G (m̂τ−, m̂τ+, ĉτ−, ĉτ+) =
K∑
k=1

θ>kXk,τHk (m̂τ−, m̂τ+, ĉτ−, ĉτ+) + eτ . (13)

In view of equations (11) and (13), the θ parameter could in principle be estimated by

linear least squares. However, as is well-known in the literature on robust statistics, the
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implicit use of a quadratic loss function is potentially problematic for at least two reasons.

Firstly, the estimates may be driven by a few highly influential “extreme” observations

that manifest in the high frequency data. Secondly, it rules out the possibility that the

strength of the relationship is not necessarily the same across all announcements included in

the estimation (i.e., heterogeneous responses). Hence, we adopt a more general minimum-

distance type estimation framework,

θ̂n ≡ argmin
θ

Qn(θ),

Qn (θ) ≡
∑
τ∈T

L

(
G (m̂τ−, m̂τ+, ĉτ−, ĉτ )−

K∑
k=1

θ>kXk,τHk (m̂τ−, m̂τ+, ĉτ−, ĉτ )

)
,

(14)

where the set T identifies the specific announcements (as given by the announcement times)

included in the estimation.

In the formal analysis below, we will further assume that the loss function L(·) satisfies

the following very general set of assumptions.

Assumption 1. The loss function L(·) is convex, and for some constant p > 0, L(cx) =

|c|p L(x) for all c, x ∈ R.

This setup differs from the setting commonly studied in the literature on M-estimation

with possibly non-smooth objective functions (see, e.g., [20], [38], [28]). In that extant

literature, the distribution of the estimator is typically characterized through the use of

a quadratic approximation to a smooth limiting objective function, even if the sample

objective function is non-smooth. By contrast, in the present setting with high-frequency

data sampled over a fixed time span, the aggregation in (14) is invariably over finitely

many announcement times T , thereby rendering the use of a quadratic approximation

to a possibly non-smooth L(·) loss function inappropriate, and in turn complicating the

characterization of the θ̂n estimator by conventional methods.

The setup also differs from that of more conventional robust quantile regressions. In

particular, even though the lin-lin loss function (i.e., L(x) = x(q − 1{x<0}) for q ∈ (0, 1))

satisfies Assumption 1 and directly mirrors the loss function used in standard quantile

regressions (see, e.g., [29], [30], [28]), the θ̂n estimator is distinctly different as it involves

nonparametrically estimated (latent) jumps, as opposed to directly observed data.

Assumption 1 pertaining to the form of the loss function obviously also includes quadratic

loss (i.e., L(x) = x2) as a special case. Further assuming the linear functional form in (11),

θ̂n may be expressed in closed form as a function of the nonparametric jump estimates. In
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this situation, it is also relatively straightforward to show that the asymptotic distribution

of θ̂n is centered at the true value with a mixed Gaussian distribution (that is indeed the

method of proof adopted in [11]). However, that same method of proof is not applica-

ble for more general possibly non-smooth loss functions. Correspondingly, the asymptotic

distribution of θ̂n is generally not mixed Gaussian either.

For the empirical results reported below, we will primarily rely on the non-smooth lin-

lin loss function. As noted above, our motivation for doing so is twofold. Firstly, since

the lin-lin loss is less sensitive to outliers than the quadratic loss traditionally used in

high-frequency estimation, the resulting estimators will be more robust against data im-

perfections in the sense of [29] and [21]. This feature is particularly desirable in our study

of (major) news announcements, as the market tends to be especially turbulent during such

times. Secondly, estimators associated with different quantiles may reveal heterogeneous

responses across announcements, with their own distinct economic interpretations. This

feature of the lin-lin loss function has also previously been emphasized by [30] as provid-

ing a useful tool for detecting heteroskedasticity and evaluating the validity of a given

specification more generally.

To derive the limit distribution of θ̂n, it is helpful to reparametrize the sample objective

function via a change of variable θ → θ0+k
−1/2
n h, where θ0 denotes the true parameter, and

the local parameter h = (h1, . . . ,hK) quantifies the deviation of θ from the true parameter

in a k
−1/2
n -neighborhood (this also corresponds to the convergence rate of the nonparametric

jump estimates in (12) that enter the objective function in (14)). Correspondingly, we define

the reparametrized objective function as,

Mn(h) ≡ kp/2n Qn(θ0 + k−1/2
n h), (15)

where the scaling factor k
p/2
n is included to ensure that Mn(·) is well behaved asymptotically.

It follows readily that since θ̂n minimizes Qn(θ), the normalized estimator ĥn = k
1/2
n (θ̂n−

θ0) minimizes Mn(h), that is,

ĥn = argmin
h

Mn(h). (16)

Moreover, under mild regularity conditions, the localized objective functionMn(·) converges

stably in law (i.e., joint with any bounded random variables that are measurable to the

underlying σ-field) to a limiting process, say M(·), thereby providing a framework for

deriving the distribution of θ̂n through that of ĥn.

Some additional notation is required for characterizing the process M (·). For each t, we

set vt ≡
∫
V (ζt, ε)V (ζt, ε)

> Fε(dε)−mtm
>
t . Further, let ∂G(x; dx) and ∂Hk (x; dx) denote
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the first differential of G (·) and Hk (·), respectively. In order to represent the asymptotic

distribution, we consider the random variables (ηm,τ−, ηm,τ+, ηc,τ−, ηc,τ+)τ∈T that are, con-

ditionally on F , mutually independent, centered Gaussian, and satisfy (i) ηm,τ− and ηm,τ+

are d̃-dimensional and E
[
ηm,τ±η

>
m,τ±|F

]
= vτ± and (ii) ηc,τ− and ηc,τ+ are d × d matrices

such that

E
[
η

(jk)
c,τ±η

(lm)
c,τ±|F

]
= c

(jl)
τ± c

(km)
τ± + c

(jm)
τ± c

(kl)
τ± ,

where the superscript (jk) denotes the (j, k) element of a matrix. These η variables capture

the sampling variability of the spot estimators. Finally, we set,

ξτ ≡ ∂G (mτ−,mτ , cτ−, cτ ; ηm,τ−, ηm,τ+, ηc,τ−, ηc,τ+) ,

ξ′k,τ ≡ ∂Hk (mτ−,mτ , cτ−, cτ ; ηm,τ−, ηm,τ+, ηc,τ−, ηc,τ+) ,
(17)

and define the limiting process M(·) as

M(h) =
∑
τ∈T

L

(
ξτ −

K∑
k=1

θ>0,kXk,τξ
′
k,τ −

K∑
k=1

h>kXk,τHk (mτ−,mτ , cτ−, cτ )

)
. (18)

Since the objective function Mn(·) converges stably in law to M(·) in finite dimensions, we

can appeal to a convexity argument (as in [26], [27]) to deduce that ĥn converges stably in

law to the argmin of the M(·) limiting process, that is,

ĥ ≡ argmin
h

M(h). (19)

In the special case when the loss function L(·) is quadratic, the limit minimization prob-

lem in (19) may be solved analytically. In that situation, it is also relatively straightforward

to show that the distribution of ĥ is centered mixed Gaussian. In general, however, with

non-quadratic loss, even though ĥ is symmetrically distributed, the estimator will not be

mixed Gaussian. For example, with absolute deviation loss (i.e., L(x) = |x|), the distribu-

tion of ĥ is given by that of the regression coefficient in a median regression for the mixed

Gaussian variables ξτ −
∑K

k=1 θ
>
0,kXk,τξ

′
k,τ against Xk,τHk (mτ−,mτ , cτ−, cτ ), 1 ≤ k ≤ K,

for τ in the finite set T (see Section 3.1 of [28] for details on the finite-sample behavior of

regression quantiles).

The following theorem summarizes the asymptotic behavior of Mn(·) and ĥn in terms

of M(·) and ĥ, and in turn the distribution of θ̂n, for general loss functions L(·).

Theorem 1. Under Assumptions 1 and Assumption 2–4 in the Appendix, the sequence

Mn(·) of processes converges stably in law to M(·) in finite dimensions. Moreover, if ĥ

uniquely minimizes M(·) almost surely, then ĥn ≡ k
1/2
n (θ̂n− θ0) converges stably in law to

ĥ.
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Proof: See the technical appendix.

Theorem 1 establishes that θ̂n is indeed a k
1/2
n -consistent estimator of the true θ0

parameter. Moreover, it characterizes the limiting distribution of the normalized estimator

k
1/2
n (θ̂n − θ0) in terms of the argmin (i.e., ĥ) of the M(·) limiting process. However, as

the discussion above makes clear, the resulting asymptotic distribution of θ̂n can be highly

non-standard.

3.2 Feasible inference via bootstrap

The non-standard distribution of θ̂n that obtains under general non-smooth loss does not

allow for the use of standard Gaussian-based inference procedures. Instead, we propose

an easy-to-implement bootstrap approach for computing confidence intervals for the true

parameter θ0. The bootstrap has two distinct advantages in the current setting. First,

since the asymptotic distribution of θ̂n is generally not (mixed) Gaussian, there is no clear

way to render the estimator pivotal via “studentization.” By contrast, the bootstrap read-

ily approximates the non-standard asymptotic distribution. Second, the same bootstrap

resampling scheme may be used for multiple competing estimators associated with differ-

ent loss functions, thereby facilitating any formal statistical comparisons of the different

estimators.

The bootstrap algorithm consists of the following four steps.

Algorithm 1.

Step 1: For each τ ∈ T , generate i.i.d. draws (V ∗i(τ)−j, r
∗
i(τ)−j)1≤j≤kn and (V ∗i(τ)+j, r

∗
i(τ)+j)1≤j≤kn

from (Vi(τ)−j, ri(τ)−j)1≤j≤kn and (Vi(τ)+j, ri(τ)+j)1≤j≤kn , respectively.

Step 2: Compute (m̂∗τ−, m̂
∗
τ+, ĉ

∗
τ−, ĉ

∗
τ+)τ∈T the same way as (m̂τ−, m̂τ+, ĉτ−, ĉτ+)τ∈T except

that the original data (Vi(τ)+j, ri(τ)+j)1≤|j|≤kn are replaced with (V ∗i(τ)+j, r
∗
i(τ)+j)1≤|j|≤kn .

Step 3: Estimate θ̂
∗
n = argminθQ

∗
n(θ), where

Q∗n(θ) ≡
∑
τ∈T

L

(
G
(
m̂∗τ−, m̂

∗
τ+, ĉ

∗
τ−, ĉ

∗
τ+

)
− ε̂τ −

K∑
k=1

θ>kXk,τHk

(
m̂∗τ−, m̂

∗
τ+, ĉ

∗
τ−, ĉ

∗
τ+

))
,

ε̂τ ≡ G (m̂τ−, m̂τ+, ĉτ−, ĉτ+)−
K∑
k=1

θ̂
>
kXk,τHk (m̂τ−, m̂τ+, ĉτ−, ĉτ+) .

Step 4: Repeat steps 1–3 a large number of times. Use the Monte Carlo distribution of

k
1/2
n (θ̂

∗
n − θ̂n) to approximate that of k

1/2
n (θ̂n − θ0). In particular, a symmetric two-sided
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confidence interval for θ0,j (i.e., the jth element of θ0) is given by CIn = [θ̂n,j−zn,1−α/2, θ̂n,j+
zn,1−α/2], where zn,1−α/2 is the (1−α/2)-quantile of |θ̂∗n,j − θ̂n,j| in the Monte Carlo sample.

�

The bootstrap described in Algorithm 1 relies on an i.i.d. resampling scheme within

local windows before and after the announcement times τ ∈ T to account for temporal het-

erogeneity in the data. Intuitively, within each of these local windows, the state processes σ

and ζ are approximately constant, thereby permitting the use of an i.i.d. scheme. However,

it is important to stress that the validity of this bootstrap does not require the data to

actually be i.i.d. We only require the observations of V to be conditionally independent,

which allows for both heterogeneity and persistence in the underlying processes. As such,

the bootstrap theory is also very different from the type of bootstrap traditionally used in

quantile regressions (see, e.g., [7], [17]).

Theorem 2 formally establishes the asymptotic validity of this bootstrap procedure.

Theorem 2. Under the same conditions as in Theorem 1, the conditional distribution

function of k
1/2
n (θ̂

∗
n−θ̂n) given data converges in probability to the F-conditional distribution

of ĥ under the uniform metric. Consequently, the confidence interval CIn described in the

bootstrap Algorithm 1 has asymptotic level 1− α.

Proof: See the technical appendix.

In addition to constructing confidence intervals, the same bootstrap algorithm may also

be used in correcting finite-sample biases in the θ̂n estimator and the bootstrap confidence

intervals (see also the discussion in [19]). In particular, the bias in θ̂n − θ0 is naturally

approximated by,

β̂n ≡ Med∗
[
θ̂
∗
n − θ̂n

]
,

where Med∗ denotes the median in the bootstrap sample. This in turn suggests the bias-

corrected estimator,

θ̂
c

n ≡ θ̂n − β̂n.

Similarly, let zcn,1−α/2 denote the (1−α/2)-quantile of |θ̂∗n,j− θ̂n,j− β̂n,j| in the Monte Carlo

sample. A bias-corrected confidence interval may then be constructed as,

CIcn ≡ [θ̂cn,j − zcn,1−α/2, θ̂cn,j + zcn,1−α/2].

Since k
1/2
n β̂n is op(1) (by Theorem 2), it follows readily that θ̂

c

n (resp. CIcn) will have the

same asymptotic properties as θ̂n (resp. CIn) described in Theorem 1 (resp. Theorem

14



2). However, as shown by the Monte Carlo simulations discussed below, the bias-corrected

estimator and confidence intervals tend to be better behaved in finite samples.

3.3 Intraday patterns and difference-in-difference estimation

A further complication, and a potential source of finite-sample bias, that arise in the

analysis of high-frequency financial data stems from the marked intraday periodic patterns

that exist in such data. In particular, volatility, trading activity, bid-ask spreads and many

other financial variables all tend to be higher around the time of market opening and closing

(see, e.g., [41] for some of the earliest empirical evidence). To further complicate matters,

these intraday patterns also may vary somewhat both over time and across assets. A failure

to account for this may result in systematically biased parameter estimates if the jumps

underlying the estimation occur at specific times-of-day. To remedy this, [11] proposed

a simple difference-in-difference (DID) type approach based on an appropriately control

group. This same DID strategy may be applied in the current more general setting.

Formally, for each announcement time τ , define the control group C (τ) of NC non-

announcement times, the implicit assumption being that that the processes of interest do

not jump at time τ in the control group. The intraday patterns in the “raw” jump esti-

mators defined in (12) may then be controlled for by “differencing out” the corresponding

estimates averaged within the control group,

˜∆ log (mτ ) ≡ ̂∆ log (mτ )−
1

NC

∑
η∈C(τ)

̂∆ log (mη),

˜∆ log (στ ) ≡ ̂∆ log (στ )−
1

NC

∑
η∈C(τ)

̂∆ log (ση).
(20)

In our empirical analysis below, we take C (τ) to be the same time-of-day as τ over the

previous NC = 22 non-announcement days (roughly corresponding to the length of one

trading month).

These DID jump estimators can be incorporated in the estimation straightforwardly by

allowing the G (·) and Hk (·) transformations in the instantaneous moment condition (9) to

also depend on the spot estimators in the control group. To simplify the notation, define

Ŝτ ≡ (m̂τ−, m̂τ+, ĉτ−, ĉτ+) and S̃τ ≡ (Ŝt)t∈{τ}∪C(τ). The DID estimator for θ is then given

15



by,

θ̃n ≡ argmin
θ

Q̃n(θ),

Q̃n (θ) ≡
∑
τ∈T

L

(
G(S̃τ )−

K∑
k=1

θ>kXk,τHk(S̃τ )

)
.

(21)

Compared to the no-DID objective function Qn, the DID counterpart involves the addi-

tional spot estimators in the control groups. Since the different control groups may overlap

with each other, possibly in a highly irregular fashion, the asymptotic distribution of θ̃n
becomes much more cumbersome to characterize analytically than that of θ̂n. However,

the bootstrap Algorithm 1 is readily adapted to accommodate this additional complication.

Algorithm 2 spells out the necessary adjustments.

Algorithm 2.

Step 1: For each τ ∈ T ∪ (∪τ ′∈T C (τ ′)), generate i.i.d. draws (V ∗i(τ)−j, r
∗
i(τ)−j)1≤j≤kn and

(V ∗i(τ)+j, r
∗
i(τ)+j)1≤j≤kn from (Vi(τ)−j, ri(τ)−j)1≤j≤kn and (Vi(τ)+j, ri(τ)+j)1≤j≤kn , respectively.

Step 2: Compute S̃
∗
τ the same way as S̃τ , except that the original data (Vi(τ)+j, ri(τ)+j)1≤|j|≤kn

are replaced with (V ∗i(τ)+j, r
∗
i(τ)+j)1≤|j|≤kn .

Step 3: Estimate θ̃
∗
n = argminθQ̃

∗
n(θ), where

Q̃∗n(θ) ≡
∑
τ∈T

L

(
G(S̃

∗
τ )− ε̃τ −

K∑
k=1

θ>kXk,τHk(S̃
∗
τ )

)
,

ε̃τ ≡ G(S̃τ )−
K∑
k=1

θ̃
>
kXk,τHk(S̃τ ).

Step 4: Repeat steps 1–3 a large number of times. Use the Monte Carlo distribution

of k
1/2
n (θ̃

∗
n − θ̃n) to approximate that of k

1/2
n (θ̃n − θ0). In particular, a symmetric two-

sided confidence interval for θ0,j (i.e., the jth element of θ0) is given by C̃In = [θ̃n,j −
z̃n,1−α/2, θ̃n,j + z̃n,1−α/2], where z̃n,1−α/2 is the (1−α/2)-quantile of |θ̃∗n,j − θ̃n,j| in the Monte

Carlo sample. �

The theoretical justification for the DID estimator and Algorithm 2 essentially mirrors

the theory described in the previous subsection. To proceed with the details, define the

modified limiting variables corresponding to (17) as,

ξ̃τ ≡ ∂G((mt−,mt, ct−, ct)t∈{τ}∪C(τ) ; (ηm,t−, ηm,t+, ηc,t−, ηc,t+)t∈{τ}∪C(τ)),

ξ̃′k,τ ≡ ∂Hk((mt−,mt, ct−, ct)t∈{τ}∪C(τ) ; (ηm,t−, ηm,t+, ηc,t−, ηc,t+)t∈{τ}∪C(τ)),
(22)

16



and, correspondingly, modify the definition in (18) as,

M̃(h) =
∑
τ∈T

L

(
ξ̃τ −

K∑
k=1

θ>0,kXk,τ ξ̃
′
k,τ −

K∑
k=1

h>kXk,τHk

(
(mt−,mt, ct−, ct)t∈{τ}∪C(τ)

))
.

(23)

Theorem 3, below, characterizes the asymptotic distribution of the DID estimator θ̃n and

justifies the asymptotic validity of Algorithm 2.

Theorem 3. Under the same conditions as Theorem 1, the following statements hold:

(a) The sequence M̃n(h) = k
p/2
n Q̃n(θ0 + k

−1/2
n h) of processes converges stably in law to

M̃(h) in finite dimensions. Moreover, if h̃ uniquely minimizes M̃(·) almost surely, then

k
1/2
n (θ̃n − θ0) converges stably in law to h̃.

(b) The conditional distribution function of k
1/2
n (θ̃

∗
n− θ̃n) given data converges in prob-

ability to the F-conditional distribution of h̃ under the uniform metric. Consequently, the

confidence interval C̃In described in the bootstrap Algorithm 2 has asymptotic level 1− α.

Proof: See the technical appendix.

Note that the same bootstrap-based bias correction used in adjusting the non-DID

estimates described in the previous subsection may similarly be used in bias correcting the

DID estimates. The requisite modifications to the expressions for θ̂
c

n and CIcn are obvious,

albeit notationally cumbersome, and we omit the details for brevity.

3.4 Discussion

The proposed new methods are related to several studies on regression-type analysis of

jumps. In particular, [33] first introduced the notion of least-squares jump regressions for

analyzing the relationship among price jumps, while [34] extend that framework to allow for

the use of general loss functions. Unlike these prior studies, however, the present analysis

pertains to the jumps in local moments, such as price volatility and volume intensity, rather

than the jumps in the price process itself. The estimation and inference for these types of

jumps are notably more complicated. For one, jumps in the local moments are estimated at

a nonparametric rate, whereas the price jumps can be recovered at a parametric rate. The

much more pronounced intraday diurnal patterns that exist in both volatility and trading

volume, and the the DID estimation strategy based on the inclusion of irregularly spaced

control groups developed here to address this issue, also results in additional sampling
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errors that are quite cumbersome to characterize analytically. Our new bootstrap-based

inference procedure conveniently solves this problem.

The current paper is also closely related to the recent work of [11] and the analysis

therein pertaining to regressions involving jumps in volume intensity and spot volatility.

However, our method generalizes this prior work by allowing for non-linear functional

forms and general possibly non-smooth loss functions, like the lin-lin loss function. It also

extends the analysis to a multivariate setting. All of this in turn necessitates a different

strategy for developing the asymptotic distribution of the estimators. Thus, even though

our i.i.d. bootstrap resampling scheme bears close resemblance to that of [11], the validity

of the bootstrap inference for our new estimator demands its own (new) and very different

method of proof.

The present paper also extends the scope of the possible empirical investigations from

the univariate volume-volatility relations analyzed in [11] to more general event type anal-

ysis involving the jumps in other instantaneous moments as well as the joint analysis of

multiple assets. Further along these lines, we also explicitly recognize a nontrivial finite-

sample bias in this type of analysis that could severely distort any empirical conclusions.

Our new bootstrap provides a simple, yet effective, way of correcting this bias.

It would be interesting to extend the new theory developed here to explicitly allow

for the presence of microstructure noise in the spot volatility estimation. The same proof

strategy underlying Theorem 1 could in principle be used to characterize the asymptotic

distribution, provided that the joint asymptotic distribution of the spot volatility estima-

tor and the m̂τ± local mean estimator is known. Results on noise-robust spot volatility

estimation (see, e.g., [10]) could possibly be extended to verify this “high-level” condition.

The more difficult issue concerns the verification of practically feasible inference proce-

dures. Even in the current (simpler) setting without microstructure noise, the asymptotic

distribution of the DID estimator is very complicated to characterize due to its depen-

dence on the spot estimators from both the events themselves and the (irregularly spaced)

control groups. Extending our current simple-to-implement bootstrap method designed to

deal with this complication to an even more challenging setting with noise-robust volatility

estimation appears very difficult, if not impossible, from a formal theoretical perspective.

Incidentally, this is also why we rely on a relatively coarse one-minute sampling frequency

in the actual empirical applications as a simple way to guard against market microstructure

noise.
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4 Monte Carlo study

This section discusses the results from a Monte Carlo simulation study designed to assess

the finite sample behavior of the new estimators and bootstrap inference procedures in an

empirically realistic setting that closely mimic our actual empirical analysis. For concrete-

ness, we focus on the estimation of the volume-volatility elasticity as discussed further in

Section 5.3 below. We begin by describing the data generating process.

4.1 Data generating process

We normalize the unit of time to be one day, and set the total span of the sample to 2, 500

days. The log price and stochastic volatility processes are then simulated according to the

following stochastic differential equations,

dPt = σtdWt + ϕP,tdNt,

d log(σt) = −0.03 log(σt)dt+ 0.1
(
ρdWt +

√
1− ρ2dBt

)
+ ϕσ,tdNt,

where Wt and Bt are independent standard Brownian motions, ρ = −0.6 accounts for

the widely documented “leverage effect” (see, e.g., [40], [24], [1]), and the jump sizes

when a jump occurs (i.e., dNt = 1) are drawn according to ϕP,t ∼Uniform[−1, 1] and

ϕσ,t ∼Uniform[0.25, 2], respectively. The occurrences of jumps in turn are determined

by simulating 100 equally-spaced announcement times over the sample, with Nt denot-

ing the counting process for the total number of jumps within the [0, t] time interval. The

continuous-time model is approximated using an Euler scheme on a 5-second grid, and then

aggregated to a ∆n = 1 minute sampling interval, paralleling the discrete-time sampling in

our actual empirical applications.

Our analysis and new estimation procedures only involve data in local windows before

and after the announcement times, or τ ∈ T , corresponding to dNt = 1 in the above

notation. We simulate the log volume intensity in the relevant local windows according to,

log(mi∆n) = 7 + (0.7− 0.06Xτ ) ·∆−1
n

∫ i∆n

(i−1)∆n

log(σs)ds, i∆n ∈ [τ − kn∆n, τ),

log(mi∆n) = 7.8 + (0.7− 0.06Xτ ) ·∆−1
n

∫ i∆n

(i−1)∆n

log(σs)ds, i∆n ∈ [τ, τ + kn∆n],

where the parameters are calibrated using data from our empirical analysis. We rely on

the same Xτ disagreement measure used in our empirical analysis below, defined as the
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dispersion in the survey of professional forecasters for the one-quarter-ahead unemployment

rate (see the discussion in Section 5.3 below for additional details). Finally, the volume

data that actually enters the estimation is simulated as,

Vi∆n = V (mi∆n , εi) = mi∆nεi,

where εi = ε̃i/df , and ε̃i are i.i.d. draws from a chi-square distribution with df ∈ {10, 30}
degrees-of-freedom. Note that even though the simulated Vi∆n series is conditionally inde-

pendent given m, it is unconditionally serially correlated. In fact, the specific choices of

df = 10 and 30 are purposely calibrated so that the range of the autocorrelations for the

simulated volume series bracket those observed in the actual volume data.

Altogether, this simulation setup implies that the log volume intensity and log volatility

jumps around announcement times satisfy the following relation,

∆ log(mτ ) = θ1 + (θ2 + θ3Xτ ) ∆ log(στ ),

with the true value of θ = (θ1, θ2, θ3) being (0.8, 0.7,−0.06). Since the specific value of θ1

is of little economic interest, we focus on the performance of the new statistical procedures

for making valid inference about the θ2 and θ3 parameters that characterize the volume-

volatility elasticity.

4.2 Simulation results

We report the results for both least-square regression estimates (corresponding to a quadratic

loss function) and q-quantile regression estimates with q ∈ {0.1, 0.25, 0.5, 0.75, 0.9} (cor-

responding to a lin-lin loss function, L(x) = x(q − 1{x<0})). In addition to the θ2 and θ3

parameter estimates, we also compute the 90% and 95% level two-sided symmetric con-

fidence intervals (CI) based on the bootstrap Algorithm 1, along with the bias-corrected

versions thereof. In line with [11], and the actual empirical application discussed below, we

fix the local window parameter kn = 30 for all of the estimates, corresponding to half an

hour before and after each announcement. In results not presented here (see the supple-

mental appendix), we find that varying the window kn between 25 to 35 has little impact

on the simulation results. Table 1 (resp. Table 2) reports the results where the εi shocks

are drawn from a scaled chi-square distribution with df = 10 (resp. df = 30) degrees-of-

freedom. Both of the tables are based on a total of 1,000 Monte Carlo replications.

We begin our discussion with Table 1, pertaining to df = 10 and the more weakly

autocorrelated trading volume process. Looking first at the results in Panel A for the
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Table 1: Monte Carlo Simulation Results: Weakly Autocorrelated Trading Volume

Uncorrected Estimator Corrected Estimator

Bias RMSE 90% CI 95% CI Bias RMSE 90% CI 95% CI

Panel A: θ2

Least-square -10% 0.079 83% 88% -2% 0.048 87% 91%

q = 0.10 -12% 0.108 86% 91% -3% 0.083 88% 93%

q = 0.25 -10% 0.091 85% 90% -2% 0.063 87% 92%

q = 0.50 -9% 0.083 85% 90% -2% 0.058 88% 92%

q = 0.75 -8% 0.083 85% 90% -2% 0.062 87% 92%

q = 0.90 -7% 0.090 88% 93% -2% 0.076 91% 94%

Panel B: θ3

Least-square -2% 0.012 94% 96% 0% 0.012 92% 95%

q = 0.10 -12% 0.021 94% 97% -2% 0.022 91% 96%

q = 0.25 -6% 0.016 94% 97% 0% 0.017 91% 96%

q = 0.50 -1% 0.015 93% 96% 1% 0.015 91% 96%

q = 0.75 3% 0.017 92% 96% 0% 0.016 92% 96%

q = 0.90 8% 0.022 93% 96% 0% 0.020 93% 97%

Note: This table reports the relative bias (Bias), root mean squared error (RMSE) and the

coverage rates for 90% and 95% confidence intervals (CI) for the elasticity slope parameters

θ2 (Panel A) and θ3 (Panel B) in the specification ̂∆ log(mτ ) = θ1+(θ2+θ3Xτ ) ̂∆ log(στ )+eτ .

The results are based on a total of 1,000 Monte Carlo replications. The local window used

in the estimation is fixed at kn = 30. The degrees-of-freedom in the chi-square distribution

for ε̃i is set to df = 10. The number of bootstrap resampling is 1,000. Results for the

uncorrected and bias-corrected procedures are reported in the left and right set of columns,

respectively. The rows labeled least-square report the least-squares regression estimates.

The rows labeled q = 0.10, ..., 0.90 report the corresponding quantile-regression estimates.
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Table 2: Monte Carlo Simulation Results: Strongly Autocorrelated Trading Volume

Uncorrected Estimator Corrected Estimator

Bias RMSE 90% CI 95% CI Bias RMSE 90% CI 95% CI

Panel A: θ2

Least-square -10% 0.075 77% 82% -2% 0.040 81% 87%

q = 0.10 -12% 0.103 82% 87% -3% 0.067 85% 90%

q = 0.25 -11% 0.089 78% 85% -3% 0.053 82% 88%

q = 0.50 -10% 0.078 80% 85% -2% 0.046 83% 89%

q = 0.75 -8% 0.072 83% 88% -2% 0.049 86% 91%

q = 0.90 -7% 0.074 87% 91% -2% 0.058 89% 94%

Panel B: θ3

Least-square -2% 0.009 92% 95% 0% 0.010 89% 94%

q = 0.10 -16% 0.019 90% 94% -4% 0.019 87% 92%

q = 0.25 -9% 0.014 90% 94% -2% 0.014 87% 93%

q = 0.50 -2% 0.011 93% 96% -1% 0.012 92% 94%

q = 0.75 5% 0.013 92% 96% 1% 0.012 92% 96%

q = 0.90 11% 0.017 94% 97% 0% 0.014 95% 98%

Note: This table reports the relative bias (Bias), root mean squared error (RMSE) and the

coverage rates for 90% and 95% confidence intervals (CI) for the elasticity slope parameters

θ2 (Panel A) and θ3 (Panel B) in the specification ̂∆ log(mτ ) = θ1+(θ2+θ3Xτ ) ̂∆ log(στ )+eτ .

The results are based on a total of 1,000 Monte Carlo replications. The local window used

in the estimation is fixed at kn = 30. The degrees-of-freedom in the chi-square distribution

for ε̃i is set to df = 30. The number of bootstrap resampling is 1,000. Results for the

uncorrected and bias-corrected procedures are reported in the left and right set of columns,

respectively. The rows labeled least-square report the least-squares regression estimates.

The rows labeled q = 0.10, ..., 0.90 report the corresponding quantile-regression estimates.
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estimates of θ2, we find that the coverage rates of the CIs associated with the uncorrected

estimators (reported in the left part of the table) are all close to, albeit mostly slightly

below, the corresponding nominal levels. At the same time, the relative biases in the

uncorrected estimates are nontrivial. By contrast, the bootstrap bias-correction (reported

in the right part of the table) substantially reduces the relative bias from roughly -10% to

just -2%. The bias correction generally also improves the size of the CIs.

Turning to Panel B and the estimates for the θ3 parameter, the results again indicate

quite good coverage properties of the CIs, although the intervals now appear to be somewhat

conservative. The relative biases for the θ3 parameter are generally smaller than for the θ2

parameter, but sill quite large for some of the more extreme uncorrected quantile estimates.

Meanwhile, the corrected estimates are effectively all unbiased. Interestingly, the relative

biases for the uncorrected least-square and median (q = 0.5) regressions are both close to

zero, even without any bias-correction, suggesting that finite-sample bias is not a major

concern for properly assessing the “central” dependency of the slope coefficient on other

covariates.

The results in Table 2 for df = 30 and the more persistent volume process are fairly

similar to those in Table 1. Again, we find that the bootstrap method effectively reduces the

finite sample biases, and that the coverage rates of the CIs are close to the corresponding

nominal levels. The θ2 coefficients have slightly larger size distortions in this situation, but

the CIs for the θ3 coefficients still exhibit quite good coverage properties.

All-in-all, the Monte Carlo results clearly underscore the reliability of the new estima-

tion method and accompanying bootstrap inference procedures in a realistically calibrated

simulation setting. In particular, the bootstrap-based bias correction is quite effective in

reducing the finite-sample bias for all of the estimators. We turn next to a discussion

of two separate empirical applications of the new statistical procedures involving actual

high-frequency financial data.

5 Macroeconomic news, volume, and volatility

5.1 Data description

Our primary data consists of intraday observations on trading volume and transaction

prices for the E-mini futures contract on the S&P 500 index obtained from TickData. We

sample the data at every minute to help mitigate the effect of market microstructure noise

(see, e.g., the discussion in [42]). The sample spans 7:00am to 4:15pm from July 1, 2003 to
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Table 3: Average Volatility and Volume Intensity Jumps

Events FOMC NFP FOMC NFP

No-DID DID

Log Spot Volatility 1.052 0.718 1.001 0.632

(0.026) (0.021) (0.027) (0.022)

Log Volume Intensity 1.649 1.562 1.539 1.258

(0.019) (0.019) (0.020) (0.019)

Note: This table reports the average jump sizes for the spot volatility and volume intensity

around FOMC and non-farm payroll (NFP) announcement times. The standard errors

in parentheses are obtained via the boostrap Algorithms 1 and 2 by regressing the no-

DID and DID jump estimates on a constant term, using 1,000 bootstrap replications.

The control groups consists of the 22 non-announcement days immediately preceding each

announcement.

March 2, 2017. We further removed days with irregular trading hours. In the end, we were

left with a total 3,383 trading days, comprising 1,880,948 one minute return and trading

volume observations.

In addition to the price and volume data, we also utilize information about the date and

time of two important macroeconomic announcements: namely the Federal Open Market

Committee (FOMC) rate decisions and statements about monetary policy, and the non-

farm payroll (NFP) employment report. These particular announcements are generally

considered to be the two most important macroeconomic news announcements (see, e.g.,

[5], [6]). The FOMC decision is typically announced every six-week at 2:15pm, while the

NFP report is released at 8:30am on the first Friday of each month. We rely on Bloomberg’s

Economic Calendar to pinpoint the exact time and date. Importantly, our use of futures

data spanning several hours before the opening of the “cash” market at 9:30am allows us

to study the all-important NFP report (this contrasts with many other studies, including

[11], which rely on data during regular trading hours only). In total our sample contains

110 FOMC and 157 NFP announcements.

To set the stage for our two more detailed empirical applications concerning the deter-

minants of and the interplay among the jumps in the spot volatility and volume intensity at

FOMC and NFP news announcement times, Table 3 reports the estimates for the average
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jump sizes (in log). To highlight the import of the DID method, we report results both

with and without the use of a control group. More specifically, we estimate the jumps

using (12) and (20) with the 22 non-announcement days immediately preceding each of the

announcements as controls, and regress the resulting jump estimates on a constant term in

order to determine the average jump sizes. The standard errors (reported in parentheses)

are computed from 1,000 bootstrap resamples using Algorithms 1 and 2 for the no-DID

and DID estimates, respectively. In parallel to the simulation setup, we set the local win-

dow kn = 30 throughout (in results reported in the supplemental appendix, we show that

varying kn in a window around that value leads to little change in any of our empirical

findings).

The evidence for jumps at announcement times is ubiquitous. Not only are the jumps

statistically significant, they are also economically large. Using the DID method, the aver-

age (log) jump sizes around FOMC announcements equal 1.539 and 1.001 for the volume

intensity and spot volatility processes, respectively, while for the NFP announcements the

average jump sizes equal 1.258 and 0.632, respectively. This corroborates the idea that

investors do indeed update their beliefs in a discrete manner upon receiving the new infor-

mation embodied in these two important announcements (see [25] and [37] for additional

economic discussion and justification). Interestingly, the generally positive spot volatility

jumps at the times of the news arrivals documented here, contrast with the decline in the

longer-run options implied volatilities around FOMC announcements recently documented

by [4]. Taken together, this points to an interesting term structure in the volatility along

with differential pricing of the different dynamically dependent volatility components.

The results in Table 3 also clearly underscore the need for the DID adjustment. The

“raw” (i.e., no-DID) jump estimates are both slightly higher than the DID estimates for

the FOMC announcements, and substantially more so for the NFP announcements. This

reflects the relatively strong intraday upward trend in both trading volume and volatility

around 8:30am when the NFP is announced, whereas the intraday patterns are fairly “flat”

around 2:15pm and FOMC announcement times. In view of these nontrivial biases, we will

rely exclusively on the DID method in our subsequent empirical investigations.

5.2 Announcement surprise and jumps

The estimates in Table 3 show that the spot volatility and volume intensity both typically

jump upwards at announcement times. This naturally raises the question of whether the

sizes of the jumps are related to investors’ surprises about the news? Along these lines,
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[32] have recently analyzed the relationship between price jumps and news announcement

surprises, as measured the differences between the actual announcements and investors’

pre-announcement expectations (see also the earlier work by [5], [6]). Here we go one step

further and use the proposed new methods to investigate how the volatility and volume

jumps depend on the magnitude of the announcement surprises. More precisely, we consider

the model,
˜∆ log (Yτ ) = θ1 + θ2Xτ + eτ , (24)

where the left-hand side of the equation denotes the DID estimate of the jumps at an-

nouncement time τ in either the spot volatility or the volume intensity, and Xτ represents

some proxy for the announcement surprise.

Following the extant literature (the recent study by [32] included), we measure the an-

nouncement surprise as the difference between the actual announcement and the median

forecast among the survey of professional forecasters, as reported by Bloomberg. To allow

for easy interpretation, we further normalize this variable using its sample standard devi-

ation, and take the absolute value as our measure for the magnitude of the announcement

surprise (this same normalization has also previously been used by many other studies,

see, e.g., [5]). Since a nontrivial part of our sample consist of the zero-lower-bound period

(for the federal funds rate), the surprise in the announced interest rate is trivially zero

during that time. As such, this renders the measured surprise in the announced interest

rate a mute measure for the actual surprise in the FOMC statement (in addition to the rate

itself, the FOMC statement also contains more general monetary policy announcements,

including the possible use of other policy instruments). Hence, following [32] we exclude

the FOMC announcement jumps from this part of our analysis, and focus exclusively on

the impact of the surprises in the nonfarm payroll (NFP) employment reports and the

jumps observed at those times.

Figure 2 plots the resulting least-square and quantile-regression estimates for the θ2 co-

efficient that measures the sensitivity of the NFP jumps to the NFP surprises, along with

their 90% confidence intervals. Looking at the left panel and the results for the volatility

jumps, we find the least-square θ2 estimate −0.038 to be very close to zero and statistically

insignificant. This finding suggests that, while the volatility jumps observed at NFP an-

nouncement times are sizable, the magnitude of the jumps does not typically depend on the

magnitude of the surprises. Of course, this could possibly reflect heterogeneous responses

across announcements that happen to “averaged out” in the least-square estimation. How-

ever, the richer quantile-regression estimates rule out this possibility, revealing a generally

insignificant relation across all quantiles. This finding is both new and interesting.
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Figure 2: Jumps and Nonfarm Payroll Surprises
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Note: This figure reports the relationship between jumps in the spot volatility and vol-

ume intensity and the surprises in the nonfarm payroll (NFP) news announcement. The

figure shows the least-square (solid line) and quantile-regression (circles) estimates of

the θ2 coefficient, along with their confidence intervals (CI), based on the specification
˜∆ log(Yτ ) = θ1 + θ2Xτ + eτ , where Xτ denotes the news announcement surprise. The left

(resp. right) panel gives the estimates for the spot volatility (resp. volume intensity).
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In sharp contrast, the right panel in Figure 2 reveals a highly significant relationship be-

tween the volume intensity jumps and the surprise variable. The least-square estimate for

the θ2 coefficient implies that a one-standard deviation change in the (normalized) surprise

is associated with a 0.429 jump in the log volume intensity. The quantile-regression esti-

mates further corroborate this, and indicate a quite stable and robust positive relationship

between the volume intensity jumps and the level of the surprise across all quantiles. In

other words, it takes more trading to move the market from one equilibrium to another, if

the new equilibrium is “more unexpected.” Interestingly, however, the moves to the “more

unexpected” equilibria are generally not accompanied by an increase in the volatility.

5.3 Volume-volatility elasticity and investor disagreement

As a final empirical application, we investigate the direct relationship among volatility

and volume jumps, by revisiting the analysis in [11] pertaining to the volume-volatility

elasticity. Our baseline specification, corresponding to equation (7) above, takes the form,

˜∆ log (mτ ) = θ1 + θ2
˜∆ log (στ ) + eτ , (25)

where again ˜∆ log (mτ ) and ˜∆ log (στ ) denote the DID jump estimates of the volume in-

tensity and spot volatility, respectively. Based on least-square estimation methods, [11]

found the elasticity (i.e., θ2) to be generally below unity, which according to the economic

theory of [25] is indicative of disagreement among investors in interpreting the macroeco-

nomic news announcements. Furthermore, by parameterizing the elasticity as a function

of proxies of investors’ disagreement Xτ ,

˜∆ log (mτ ) = θ1 + (θ2 + θ3Xτ ) ˜∆ log (στ ) + eτ , (26)

[11] also found the elasticity to be generally lower for higher levels of disagreement (i.e., θ3

is negative). This again accords with the theoretical implications derived from [25].

Following the analysis in [11], we will consider two different disagreement proxies.

Namely, (i) the dispersion in the forecasts in the Survey of Professional Forecasters (SPF)

for the one-quarter-ahead unemployment rate (the unemployment rate serves a natural

gauge for the state of the macro economy, but the dispersion in the forecasts for other

macroeconomic variables, like GDP growth, leads to very similar results), and (ii) the Eco-

nomic Policy Uncertainty (EPU) index of [8] (a more detailed rationale for the use of this

specific disagreement proxy is provided in [11]).
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Our analysis advances [11] in three important ways. First, our use of futures data, which

is available before the regular trading hours for the SPY ETF used by [11], allow us to study

the all-important NFP announcement. Second, we complement the least-square estimation

strategy used by [11] with the new quantile-regression type estimators formally developed

here, so as to uncover (potentially) heterogeneous responses in the volume-volatility rela-

tionship across quantiles. Third, since the regressors in (25) and (26) are estimated with

error, the findings reported in [11] could be affected by finite-sample “attenuation” biases,

which our new bootstrap bias-correction technique conveniently circumvents.

To begin, Figure 3 plots the least-square and quantile-regression estimates for the θ2

volume-volatility elasticity parameter based on the baseline specification in (25), along with

their 90% two-sided CIs. For the FOMC (resp. NFP) announcements reported in the left

(resp. right) panel, the bias-corrected least-square elasticity estimate equals 0.714 (resp.

0.733). Although both of these estimates exceed their uncorrected counterparts (equal to

0.697 and 0.687, respectively), they are still significantly below unity, consistent with the

implications from the economic theory of [25] and the presence of disagreement among

investors.

The median regression estimate (q = 0.5) of 0.703 for the FOMC announcements is

also very close to the least-square estimate of 0.714. Hence, the least-square estimate

appears robust, in the sense that it is not driven by a few influential outliers. Importantly,

all of the elasticity estimates for the FOMC announcements are also below unity and

generally statistically significantly so. As such , this further buttresses the idea that investor

disagreement plays an important role in the functioning of markets.

The quantile regression estimates for θ2 for the NFP announcements are also mostly be-

low unity. However, in contrast to the fairly homogeneous FOMC quantile estimates, there

is a clear downward pattern in the quantile elasticity estimates for the NFP announcements.

In particular, the estimates for the lower quantiles are all close to, and from a statistical

perspective equivalent to, unity. This therefore suggests that for the all-important NFP

announcements a rational-expectation type interpretation, in which most investors agree,

is sometimes operative.

A central tenet of all economic disagreement models, the Kandel–Pearson model [25]

included, is that higher levels of disagreement among investors should “loosen” the rela-

tionship between trading volume and volatility. More specifically, following the analysis of

[11] this should manifest in the volume-volatility elasticity being a decreasing function of

the level of disagreement. To examine this hypothesis, Figure 4 plots the least-square and

quantile-regression estimates for the θ3 parameter from the specification in (26), along with
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Figure 3: Baseline Volume-Volatility Elasticity Estimates
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Note: This figure reports the least-square (solid line) and quantile-regression (circles) es-

timates of the θ2 elasticity coefficient, along with their confidence intervals (CI), for the

baseline specification without any covariates, ˜∆ log(mτ ) = θ1 + θ2
˜∆ log(στ ) + eτ . The left

(resp. right) panel gives the estimates around FOMC (resp. NFP) announcements.
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Figure 4: Volume-Volatility Elasticity and Disagreement
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Note: This figure reports the least-square (solid line) and quantile-regression (circles) esti-

mates of the θ3 coefficient, along with their confidence intervals (CI), for the specification
˜∆ log(mτ ) = θ1 + (θ2 + θ3Xτ ) ˜∆ log(στ ) + eτ , where Xτ denotes the disagreement proxy.

The top (resp. bottom) row reports the results based on the dispersion measure among

professional forecasters (SPF) (resp. the Economic Policy Uncertainty (EPU) index). The

left (resp. right) panel gives the estimates around FOMC (resp. NFP) announcements.

31



their 90% two-sided CIs. The left (resp. right) two panels report the estimates for FOMC

(resp. NFP).

Looking first at the results in the top row based on the use of the forecast dispersion

among professional forecasters (SPF) as a measure of disagreement, the θ3 estimates for

both the FOMC and NFP announcements are generally below zero across all quantiles,

and often significantly so. This finding is quite remarkable, as it suggests that the negative

relationship between the volume-volatility elasticity and disagreement predicted by the

economic theory, holds not only on average (consistent with the least-square estimates

previously reported in [11]), but across all quantiles. In other words, this negative relation

is a robust feature that does not seem to depend on a particular set of announcements.

The results reported in the bottom row based on the Economic Policy Uncertainty (EPU)

index further reinforces this same conclusion. In fact, if anything these results are even

stronger, with all of the estimates below zero.

In sum, our new bias-corrected estimators confirm prior (potentially biased) empiri-

cal evidence that the volume-volatility elasticity around important news announcements

is generally below unity. Moreover, this holds true not only on average, but across all

quantiles. It also holds true not only for FOMC announcements, but also for the nonfarm

payroll employment report, often referred to as the “king” of announcements by market

participants. Finally, further corroborating the underlying economic theory and the import

of investor disagreement, the new methods reveal the elasticity to be a robustly decreasing

function of aggregate levels of disagreement.

6 Conclusion

We propose a general minimum-distance type estimator for estimating the relationship

between jumps in instantaneous moments of stochastic processes. The asymptotic distri-

bution of the proposed estimator, derived under an in-fill asymptotic setting, is generally

non-standard. We propose an easy-to-implement bootstrap algorithm for conducting fea-

sible inference and bias-correction. Using high-frequency intraday data for the S&P 500

E-mini futures contract, we apply the new methods to study the behavior of trading in-

tensity and spot volatility at the time of important macroeconomic news announcement.

We show that the volume-intensity jumps are positively related to announcement surprises,

while the volatility jumps are not. In addition, consistent with the implications from eco-

nomic theory and a model in which investors agree-to-disagree, we find that the estimated

volume-volatility elasticities are below unity and negatively related to the level of investor
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disagreement, not only “on average,” but across all quantiles.

7 Appendix

This appendix presents the technical details underlying our statistical inference procedures

discussed in Section 3. Section 7.1 collects the regularity conditions. Section 7.2 provides

the proof of Theorem 3, which include the proofs of Theorems 1 and 2 as special cases.

7.1 Assumptions

Assumption 2. (i) The price process P is defined by (1) on some probability space

(Ω,F ,P) for

Jt =

∫ t

0

ϕsdNs +

∫ t

0

∫
R
δ(s, z)µ(ds, dz),

where the processes α and σ are càdlàg (i.e., right continuous with left limit) and adapted;

the process ϕ is predictable and locally bounded; N is a counting process that jumps at the

scheduled announcement times which are specified by the set T ; δ is a predictable function;

µ is a Poisson random measure with compensator ν(ds, dz) = ds ⊗ λ(dz) for some finite

measure λ.

(ii) The process V satisfies (3). The state process ζ is càdlàg and adapted. The error

terms (εi) take values in some Polish space, are defined on an extension of (Ω,F), i.i.d.

and independent of F .

(iii) For a sequence of stopping times (Tm)m≥1 increasing to infinity and constants

(Km)m≥1, we have E ‖σt∧Tm − σs∧Tm‖
2 + E ‖ζt∧Tm − ζs∧Tm‖

2 ≤ Km|t − s| for all t, s such

that [s, t] ∩ T = ∅.
(iv) The process X is adapted.

Assumption 2 is fairly standard in the study of high-frequency data. Condition (i)

allows the price process to contain jumps at both scheduled times and random times.

Condition (ii) separates the conditional i.i.d. shocks (εi∆n) at observation times from the

latent continuous-time state process (ζt). This condition only mildly restricts the V series,

which can still exhibit essentially unrestricted conditional and unconditional heterogeneity

through the (typically highly persistent) time-varying state process (ζt). Condition (iii) im-

poses a mild smoothness condition on σ and ζ only in expectation, while allowing for general

forms of jumps in their sample paths. This condition is satisfied for any semimartingales
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with absolutely continuous predictable characteristics (possibly with discontinuity points

in T ) and for long-memory type processes driven by the fractional Brownian motion.

In addition, we need the following conditions for the nonparametric analysis, where we

denote Mq (·) = (M
(j)
q (·))1≤j≤d̃ and M

(j)
q (·) ≡

∫
V(j) (·, ε)q Fε (dε) for q ≥ 1, with V(j) being

the jth component of V .

Assumption 3. kn →∞ and k2
n∆n → 0.

Assumption 4. The function M1(·) is Lipschitz on compact sets and the functions M2(·)
and M4(·) are continuous.

Assumption 3 specifies the growth rate of the local window size kn. As typical in non-

parametric analysis, this condition features a type of undersmoothing (i.e., kn � ∆
−1/2
n ),

so as to permit feasible inference. Assumption 4 imposes some smoothness conditions that

are very mild.

7.2 Proofs of main results

We note that Theorems 1 and 2 are special cases of Theorem 3 with the control group

being empty. Hence, it suffices to prove Theorem 3. Below, we denote A ≡ T ∪ (∪τ∈T C (τ)),

which collects all times for announcements and associated control groups. In the setting of

Theorems 1 and 2, C (τ) = ∅ and A = T .

Proof of Theorem 3(a). Denote

ξ̂τ ≡ k1/2
n

[
G
(

(m̂t−, m̂t, ĉt−, ĉt)t∈{τ}∪C(τ)

)
−G

(
(mt−,mt, ct−, ct)t∈{τ}∪C(τ)

)]
,

ξ̂′k,τ ≡ k1/2
n

[
Hk

(
(m̂t−, m̂t, ĉt−, ĉt)t∈{τ}∪C(τ)

)
−Hk

(
(mt−,mt, ct−, ct)t∈{τ}∪C(τ)

)]
.

By a multivariate extention (via the Cramér–Wold device) of the proof of Theorem 1 in

[11], we can show that

k1/2
n (m̂τ− −mτ−, m̂τ+ −mτ , ĉτ− − cτ−, ĉτ+ − cτ )τ∈A

L-s−→ (ητ )τ∈A = (ηm,τ−, ηm,τ−, ηc,τ−, ηc,τ+)τ∈A ,

where
L-s−→ denotes stable convergence in law. By the delta method, we further have

(ξ̂τ , (ξ̂
′
k,τ )1≤k≤K)τ∈A

L-s−→
(
ξ̃τ , (ξ̃

′
k,τ )1≤k≤K

)
τ∈A

.
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Recall that, at the true parameter value,

G
(

(mt−,mt, ct−, ct)t∈{τ}∪C(τ)

)
=

K∑
k=1

θ>0,kXk,τHk

(
(mt−,mt, ct−, ct)t∈{τ}∪C(τ)

)
.

Hence,

G
(

(m̂t−, m̂t, ĉt−, ĉt)t∈{τ}∪C(τ)

)
−

K∑
k=1

(θ0,k + k−1/2
n hk)

>Xk,τHk

(
(m̂t−, m̂t, ĉt−, ĉt)t∈{τ}∪C(τ)

)
= G

(
(mt−,mt, ct−, ct)t∈{τ}∪C(τ)

)
+ k−1/2

n ξ̂τ

−
K∑
k=1

(θ0,k + k−1/2
n hk)

>Xk,τHk

(
(mt−,mt, ct−, ct)t∈{τ}∪C(τ)

)
−

K∑
k=1

(θ0,k + k−1/2
n hk)

>Xk,τk
−1/2
n ξ̂′k,τ

= k−1/2
n

(
ξ̂τ −

K∑
k=1

θ0,kXk,τ ξ̂
′
k,τ −

K∑
k=1

h>kXk,τHk

(
(mt−,mt, ct−, ct)t∈{τ}∪C(τ)

)
+ op(1)

)
.

In view of the property that L(cx) = |c|p L(x), we further deduce

M̃n(h) =
∑
τ∈T

L

(
ξ̂τ −

K∑
k=1

θ>0,kXk,τ ξ̂
′
k,τ −

K∑
k=1

h>kXk,τHk

(
(mt−,mt, ct−, ct)t∈{τ}∪C(τ)

)
+ op(1)

)
.

Since L(·) is convex, it is necessarily continuous. Therefore, by the continuous mapping the-

orem, we deduce that for anym ≥ 1 and h(1), . . . ,h(m), the variables (M̃n(h(1)), . . . , M̃n(h(m)))

converges stably in law to (M̃(h(1)), . . . , M̃(h(m))).

Fix any bounded F -measurable random variable U . Given the finite-dimensional con-

vergence above, there exists a probability space, on which processes M̄n(·) and M̄(·) and

variable Ū are defined, such that (M̄n(·), M̄(·), Ū) has the same finite-dimensional distri-

butions as (M̃n(·), M̃(·), U) and M̄n(h)→ M̄(h) almost surely. Let

h̄n = argmin
h

M̄n(h), h̄ = argmin
h

M̄(h).

Since M̃n(·) is convex, we can use the same argument as in Lemma A of [26] to deduce

that (h̄n, Ū)→ (h̄, Ū) almost surely. This further implies that (h̃n, U) converges to (h̃, U)

in law. Since U is arbitrary, we deduce that h̃n converges stably in law to h̃. �
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Proof of Theorem 3(b). Denote G ≡ F ∨ σ(εi : i ≥ 0). Below, we denote

ξ̂∗τ ≡ k1/2
n

[
G
((
m̂∗t−, m̂

∗
t+, ĉ

∗
t−, ĉ

∗
t+

)
t∈{τ}∪C(τ)

)
−G

(
(m̂t−, m̂t+, ĉt−, ĉt+)t∈{τ}∪C(τ)

)]
,

ξ̂′∗k,τ ≡ k1/2
n

[
Hk

((
m̂∗t−, m̂

∗
t+, ĉ

∗
t−, ĉ

∗
t+

)
t∈{τ}∪C(τ)

)
−Hk

(
(m̂t−, m̂t+, ĉt−, ĉt+)t∈{τ}∪C(τ)

)]
.

By a multivariate extention (via the Cramér–Wold device) of the proof of Theorem 1(b) in

[11], we can show that

k1/2
n

(
m̂∗τ− − m̂τ−, m̂

∗
τ+ − m̂τ+, ĉ

∗
τ− − ĉτ−, ĉ∗τ+ − ĉτ+

)
τ∈A

L|G−→ (ηm,τ−, ηm,τ+, ηc,τ−, ηc,τ+)τ∈A,

where
L|G−→ denotes the convergence in probability of the G-conditional distribution functions

under the uniform metric. Consequently, by the delta method,

(ξ̂∗τ , (ξ̂
′∗
k,τ )1≤k≤K)τ∈A

L|G−→ (ξ̃τ , (ξ̃
′
k,τ )1≤k≤K)τ∈A.

We now note that

G(S̃
∗
τ )− ε̃τ −

K∑
k=1

θ>kXk,τHk(S̃
∗
τ )

= G(S̃
∗
τ )−G(S̃τ ) +

K∑
k=1

θ̃
>
kXk,τ

(
Hk(S̃

∗
τ )− k−1/2

n ξ̂′∗k,τ

)
−

K∑
k=1

θ>kXk,τHk(S̃
∗
τ )

= k−1/2
n ξ̂∗τ − k−1/2

n

K∑
k=1

θ̃
>
kXk,τ ξ̂

′∗
k,τ −

K∑
k=1

(θk − θ̃k)>Xk,τHk(S̃
∗
τ ).

Furthermore, with the reparameterization θk = θ̃k + k
−1/2
n hk, we can rewrite the above as

k−1/2
n

(
ξ̂∗τ −

K∑
k=1

θ̃
>
kXk,τ ξ̂

′∗
k,τ −

K∑
k=1

h>kXk,τHk(S̃
∗
τ )

)
.

Consider the reparameterized objective function M̃∗
n(h) = k

p/2
n Q̃∗n(θ̃n + k

−1/2
n h). From the

derivation above, we see that M̃∗
n(h) can be rewritten as

M̃∗
n (h) =

∑
τ∈T

L

(
ξ̂∗τ −

K∑
k=1

θ̃
>
kXk,τ ξ̂

′∗
k,τ −

K∑
k=1

h>kXk,τHk(S̃
∗
τ )

)
.

We now show that M̃∗
n(h)

L|G−→ M̃(h) for any fixed h. Consider any subsequence N1 ⊆ N.

Since θ̃n
P−→ θ0 and (ξ̂∗τ , (ξ̂

′∗
k,τ )1≤k≤K)τ∈A

L|G−→ (ξ̃τ , (ξ̃
′
k,τ )1≤k≤K)τ∈A, there exists a further
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subsequence N2 ⊆ N1 such that, along N2, θ̃n → θ0 and the G-conditional distribution

of (ξ̂∗τ , (ξ̂
′∗
k,τ )1≤k≤K)τ∈A converges to that of (ξ̃τ , (ξ̃

′
k,τ )1≤k≤K)τ∈A almost surely. On each

path with these convergences, we also see that Hk(S̃
∗
τ )

P−→ Hk((mt−,mt, ct−, ct)t∈{τ}∪C(τ))

under the transition probability conditionally on G. Hence, by the continuous mapping

theorem, we deduce that the G-conditional distribution of M̃∗
n (h) converges to that of

M̃(h) almost surely along N2. By another use of the subsequence argument, we see that

M̃∗
n(h)

L|G−→ M̃(h) as wanted.

It is easy to extend M̃∗
n(h)

L|G−→ M̃(h) to a joint convergence on finite-dimensions. By

Lemma A of [26], we deduce that k
1/2
n (θ̃

∗
n − θ̃n)

L|G−→ h̃. The assertions concerning the

coverage rates of the confidence intervals readily follows from this convergence and the

symmetry of the conditional distribution of h̃. �
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