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We consider mechanisms that provide the opportunity to exchange commodity i for 
commodity j, for certain ordered pairs i j. Given any connected graph G of opportunities, 
we show that there is a unique “G-mechanism” that satisfies some natural conditions 
of “fairness” and “convenience”. Next we define time and price complexity for any 
G-mechanism as (respectively) the time required to exchange i for j, and the information 
needed to determine the exchange ratio (each for the worst pair i j). If the number of 
commodities exceeds three, there are precisely three minimally complex G-mechanisms, 
where G corresponds to the star, cycle and complete graphs. The star mechanism has a 
distinguished commodity — the money — that serves as the sole medium of exchange and 
mediates trade between decentralized markets for the other commodities. Furthermore, for 
any weighted sum of complexities, the star mechanism is the unique minimizer of the sum 
for large enough m.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this paper is to study the transition from a barter economy to a money-based economy, a phenomenon 
that seems to have occurred in almost all primitive societies at some stage in their development. Our main result offers a 
novel rationale for this phenomenon, which is based solely on certain complexity considerations, and which is independent 
of any notion of economic equilibrium or, indeed, even of any behavioral assumptions — utilitarian or otherwise — regarding 
the traders.

The need for money in an exchange mechanism has, of course, been the topic of much discussion, and it would be 
impossible to summarize that literature here. We give some references that are indicative, but by no means exhaustive. (For 
a detailed survey, see Shubik, 1999 and Starr, 2012.)

Several search-theoretic models, involving random bilateral meetings between long-lived agents, have been developed 
following Jevons (1875) (see, e.g., Bannerjee and Maskin, 1996; Iwai, 1996; Jones, 1976; Kiyotaki and Wright, 1989, 
1993; Li and Wright, 1998; Ostroy, 1973; Trejos and Wright, 1995 and the references therein). These models turn on 
utility-maximizing behavior and beliefs of the agents in Nash equilibrium, and shed light on which commodities are 
likely to get adopted as money. A parallel, equally distinctive, strand of literature builds on partial or general equilib-
rium models with other kinds of frictions in trade, such as limited trading opportunities in each period, or transaction 
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costs (see, e.g., Foley, 1970; Hahn, 1971; Heller, 1974; Heller and Starr, 1976; Howitt and Clower, 2000; Norman, 1987;
Ostroy and Starr, 1974, 1990; Starr, 2012; Starr and Stinchcombe, 1999; Starret, 1973; Wallace, 1980). In many of these 
models, a specific trading mechanism is fixed exogenously, and the focus is on activity within the mechanism that is in-
duced by equilibrium, based again on the optimal behavior of utilitarian individuals.

Our approach complements this literature in two salient ways, and brings to light a new rationale for money that is 
different from those proposed earlier, but not at odds with them, in that the door is left open to incorporate their concerns 
within our framework. First and foremost, our focus is purely on mechanisms of trade with no regard to the characteristics 
of the individuals such as their endowments, production technologies, preferences or beliefs. Second, no specific mechanism 
is specified ex ante by us. We start with a welter of mechanisms and cut them down by four natural conditions and certain 
complexity criteria, ultimately ending up with the “star” mechanism in which money plays the central role.

It is worth reiterating that ours is a purely “mechanistic”, as opposed to a “utilitarian” or “behavioral”, approach to the 
emergence of money.1 In the technical parlance of game theory, we are concerned with the “game form” behind the game 
or — to be more precise — with the mechanism that underlies the game form itself. Indeed, with the same mechanism as 
the foundation, several different game forms can be constructed by introducing other considerations, such as whether net-
ting of commodities is permitted or not, and if so to what extent; or whether certain commodities can be borrowed prior to 
trade and on what terms, along with rules for the settlement of debt in the event of default.2 These are no doubt important 
economic issues, bearing on the “liquidity” in the system and the efficiency of its equilibria. They have been discussed at 
length, often in terms of the star mechanism which conforms to the well-known Walrasian model once there is perfect com-
petition and “sufficient liquidity” (see, e.g., Dubey and Shapley, 1994; Dubey and Geanakoplos, 2003). However, to even raise 
these issues, we first need a mechanism in the background. It is this background alone that forms the domain of our inquiry.

The bulk of our analysis is carried out in the oligopolistic setting of finitely many traders. However, in Section 4 we show 
that it readily extends to the case of “perfect competition”, where there is a continuum of traders and our mechanisms 
induce “price-taking” behavior as in the Walrasian model.

This paper would not have been possible without the pioneering work of Lloyd Shapley in the area of strategic market 
games, especially his elaboration (in Shapley, 1976; Shapley and Shubik, 1977; Dubey and Shapley, 1994) of the decentral-
ized “trading posts” model due to Shubik (see Shubik, 1973), i.e. the star mechanism; as well as his sharply juxtaposed 
model of centralized “windows”, i.e. the complete mechanism. Our analysis here (and in Dubey et al., 2015), builds squarely 
upon (Dubey and Sahi, 2003), which in turn was inspired by these two models.3 The windows model has been thoroughly 
examined in Sahi and Yao (1989) (see also the closely related model in Sorin, 1996).4 Various strategic market games, based 
upon trading posts, have been analyzed, with commodity or fiat money in Dubey and Shubik (1978), Peck et al. (1992), Peck 
and Shell (1991), Postlewaite and Schmeidler (1978), Shapley (1976), Shapley and Shubik (1977), Shubik (1973), Shubik and 
Wilson (1977); most of these papers also discuss the convergence of Nash equilibria (NE) to Walras equilibria (WE) under 
replication of traders.5 For a continuum-of-traders version, with details on explicit properties of the commodity money (its 
distribution and desirability) or of fiat money (its availability and the harshness of default penalties), under which we obtain 
equivalence (or near-equivalence) of NE and WE, see Dubey and Shapley (1994), Dubey and Geanakoplos (2003); and, for 
an axiomatic approach to the equivalence phenomenon, see Dubey et al. (1980).

Strategic market games differ in a fundamental sense from the Walrasian model, despite the equivalence of NE and WE. 
In the WE framework, agents always optimize generating supply and demand, but markets do not clear except at equilib-
rium. We are left in the dark as to what happens outside of equilibrium. In sharp contrast, in the NE framework, markets 
always clear, producing prices and trades based on agents’ strategies; but agents do not optimize except at equilibrium. 
The very formulation of a game demands that the “game form”, i.e., the map from strategies to outcomes, be defined prior 
to the introduction of agents’ preferences on outcomes; thus disentangling the physics of trade from its psychology.6 Our 
mechanisms are firmly in this genre, and indeed form the bases upon which many market games are built. To be precise: 
game forms arise from our mechanisms by introducing private endowments and the rules of trade (including the degree of 
netting or borrowing permitted); and strategic market games then arise by further introducing preferences.

1 There is a faint touch of rationality that we assume regarding the traders, but it an order-of-magnitude milder than utilitarian (or other behavioral) 
considerations. See Remark 16.

2 Netting means that if an individual ex ante offers x units of commodity i to the mechanism, and is ex post entitled to receive y units of i from it, then 
he is deemed to owe max {0, x − y} or else to receive max {0, y − x}. In this scenario, one may think that “offers” consist of promises to deliver commodities, 
rather than commodities themselves; and that the mechanism calls upon traders to make (take) net deliveries (receipts) of actual commodities. But note the 
a priori need for a mechanism with respect to which netting can be formulated (or, for that matter, borrowing and default, or any other trade regulation). 
Also note that these regulations do not come without a cost (see Remark 8).

3 Indeed Dubey and Sahi (2003) provide an axiomatic characterization of the finite set of “G-mechanisms” (see Section 2) that include both trading posts 
and windows as special cases.

4 The windows model was described verbally by Shapley to Sahi and Yao, which led to Sahi and Yao (1989). It is also referenced by Mertens (2003) as 
“personal communication” from Shapley.

5 As for the windows model, the convergence of NE to CE under replication is immediate, as is their equivalence in the presence of a continuum of 
traders.

6 To put it bluntly, the insistence on a game form pertains to the following situation in the real world. People exercise choice all the time through their 
actions; and the world goes merrily on, by well-defining the outcome of those actions — it does not come to a standstill until they can explain why they 
have acted as they did!
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Finally, the authors feel a real sense of privilege to be able to dedicate this paper, and its companion (Dubey et al., 2015), 
to the fond memory of Lloyd Shapley — friend, philosopher, and guide. Lloyd’s work ranged over a wide array of topics in 
Game Theory, and he had a profound impact on everything he touched. However his seminal contributions to the theory of 
strategic market games, seem to be relatively less known. We hope that these papers will serve to bring them more into 
the light.

2. The emergence of money

The mechanisms we consider are Cournotian in spirit,7 and the setting for them is simple, in keeping with our aim of 
showing that the need for money can arise at a very rudimentary level.

Let {1, . . . ,m} be a fixed set of commodities and {1, . . . ,n} a variable set of traders, n = 1, 2, 3, . . ..
A mechanism M on {1, . . . ,m} operates as follows. For certain ordered pairs i j, pre-specified by M , each trader in 

{1, . . . ,n} may offer any quantity of commodity i in order to obtain commodity8 j. Once all offers are in, the mechanism 
redistributes to the traders the commodities it has received, holding back nothing. The returns to the traders are calculated 
by an algorithm9 that is common knowledge. Not only the population {1, . . . ,n} of traders, but also the offers they might 
bring, can be arbitrary: any n-tuple of offers that goes as input to the mechanism M will be converted to an output 
consisting of a corresponding n-tuple of returns, by the algorithm of M , for n = 1, 2, 3, . . . . (See Section 3 for an algebraic 
description of such an abstract mechanism.)

Let us emphasize that, in our scenario, a mechanism M only knows, and only needs to know, the offer of commodities 
that each trader brings to it. It is irrelevant how he brings them or why he brings them; the mechanism simply accepts every 
offer and — based upon the conglomeration of all offers — computes the return to each one who made an offer. (Thus a 
“trader” is simply tantamount to his offer, from the point-of-view of M .)

To sum up, one may think of the mechanism M as an institution for the exchange of commodities, which operates on a 
universal domain of offers, so as to be of service for “generations to come”.

2.1. The graph of opportunities G

When a mechanism M permits the offer of commodity i in order to obtain j, we shall refer to the ordered pair i j as 
an (exchange) opportunity in M . Any such opportunity may be visualized as a directed edge i j of a graph whose vertices 
correspond to the commodity set {1, . . . ,m}. Thus the collection of opportunities in M give rise to a directed graph G . We 
assume throughout that G is connected, i.e., M permits iterative exchange of any i for any j.

At this level of generality, there are infinitely many mechanisms (algorithms) for any given graph G . However, we shall 
show that only one of them satisfies some natural conditions of “fairness” and “convenience” (see Section 3). This special 
mechanism is denoted MG and will be described precisely in the next Section 2.2.

Remark 2 (Unrestricted domain). At first glance, the restriction that one may offer i only for some (and not all) j may appear 
artificial.10 However these restrictions only apply within a particular mechanism. Our domain is made up of mechanisms 
corresponding to every possible (directed, connected) graph G . In particular, we admit the “complete” mechanism (see 
below) in which each commodity can be exchanged for every other. It is left to our complexity criteria to select among the 
plethora of mechanisms in this unrestricted domain.

2.2. The mechanism MG

Let G be a directed and connected graph11 with vertex set {1, . . . ,m}, corresponding to a fixed set of commodities. We 
define a particular mechanism MG which operates over any set of traders {1, . . . ,n}, where n may be arbitrary, as follows. 
Each trader α can use every opportunity in MG , i.e., place arbitrary weights aα

i j on the edges i j of G , representing his 

7 It is our purpose to see how far matters may develop in an elementary Cournot framework. In particular, note that ex ante there are no “prices” to 
refer to, upon which a trader may condition his offers. We do show that prices can be “admitted” (see Remark 3 below) but this happens ex post once 
unconditional offers of commodities have come into the mechanism. Our mechanisms are thus a far cry from the more complex Bertrand mechanisms, in 
which traders use prices alongside quantities in order to make contingent statements to protect themselves against vagaries of the market (see, e.g., Dubey, 
1982 and Mertens, 2003 for Bertrandian analogues of the “star” and “complete” mechanisms). An analysis analogous to ours might well be possible in the 
Bertrand setting, but that is a topic for future exploration.

8 Thus the offer of a trader consists of non-negative quantities (possibly zero) placed on every permissible pair i j in M .
9 There is no presumption that the algorithm be “informationally decentralized”. Indeed even the return to a simple offer of i, made only via the pair i j, 

may well depend on all the offers at every kl ∈ G; and may thus require a lot of information for its computation.
10 Such restrictions do often occur in practice. Think, for example, of a currency exchange, where not all currencies are directly convertible to one another.
11 In this paper by a graph we mean a directed simple graph. Such a graph G consists of a finite vertex set V G , together with an edge set EG ⊆ V G × V G

that does not contain any loops, i.e., edges of the form ii. For simplicity we shall often write i ∈ G , i j ∈ G in place of i ∈ V G , i j ∈ EG but there should be no 
confusion. By a path ii1i2 . . . ik j from i to j we mean a nonempty sequence of edges in G of the form ii1, i1 i2, . . . , ik−1 ik, ik j. If k = 0 then the path consists 
of the single edge i j, otherwise we insist that the intermediate vertices i1, . . . , ik be distinct from each other and from the endpoints i, j. However we do 
allow i = j, in which case the path is called a cycle. We say that G is connected if for any two vertices i �= j there is a path from i to j.
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offer of i for j. Let bij = ∑
α aα

i j denote the total weight on i j (i.e., the aggregate amount of commodity i offered for j by 
all traders). We shall specify what happens when bij > 0 for every edge i j in G , i.e., when there is sufficient diversity in 
the population of traders so that each opportunity is active. Denote b = (bij)i j∈G and let � denote the set of rays in Rm++
representing prices.12 It is well-known that (with bij understood to be 0 if i j is not an edge in G) there is a unique ray13

p = p(b) in � satisfying∑
i

pibi j =
∑

i
p jb ji for all j. (1)

Note that the left side of (1) is the total value of all the commodities “chasing” j, while the right side is the total value of 
commodity j on offer; thus (1) is tantamount to “value conservation”.

It turns out that (1) has an explicit combinatorial solution, which we now describe. Let Ti be the collection of all 
“spanning” trees in G that are rooted at i (i.e., subgraphs of G in which there is a unique directed path to i from every
j �= i); and for any subgraph H , define bH = ∏

i j∈H bij ; then we have14

pi =
∑

T ∈Ti
bT . (2)

The principle of value conservation, which determines prices, also determines trade. A trader who offers aα
i j units of i via 

opportunity i j (and nothing on all other edges) gets back r(aα
i j , b) units of j (and nothing of the other commodities), where 

piaα
i j = p jr(aα

i j, b). More generally, if a trader offers aα = (aα
i j)i j∈G ≥ 0 across all edges of G , he gets a return r(aα, b) ∈ Rm+

whose components are given by

r j(a
α,b) =

∑
i
(pi/p j)a

α
i j for all j (3)

(which incidentally implies p · r(aα, b) = p · aα ).
This specifies a map from any n-tuple (aα)α=1,...,n of offers to a corresponding n-tuple 

(
r(aα,b)

)
α=1,...,n of returns, for 

arbitrary n = 1, 2, 3, . . .; and thereby completes the definition of the G-mechanism MG .
Note that commodities are conserved by the map, i.e., 

∑
α, j aα

i j = ∑
α ri(aα, b) (with, recall, aα

i j understood to be zero if 
i j /∈ G).

Remark 3 (Price mediation). At a formal level — which will be emphasized in Section 3 below — the mechanism MG is a 
family of maps from n-tuples of offers to n-tuples of returns, one map for each n, with no prices in the middle. Indeed one 
may substitute from equation (2) into (3) and obtain an explicit formula for each such map, eliminating prices altogether. 
However were we to “conjure” prices, in accordance with (2), this would give economic meaning to the map. Note that 
prices are determined uniquely from the aggregate offers of the traders on the various edges of G , and they mediate trade in 
the following strong sense: first, the return to any trader depends only on his own offers and the prices15; second, the total 
value — under the prevailing prices — of every trader’s offers is equal to that of his returns. The upshot of price mediation 
is that the returns to any trader can be calculated in a transparent manner from the prices and his own offers. We may 
therefore think of prices as being “admitted”, or “implicit”, in MG .

By (2) and (3), the return to a trader depends only on his offer a and the price ratios pi/p j , which are well-defined 
functions of b (unlike the price vector p = (pi) which is only defined up to a scalar multiple). It might be instructive to see 
the formulae for price ratios (and thereby also for returns, thanks to equation (3)) for specific mechanisms. Let us, from now 
on, identify two mechanisms if one can be obtained from the other by relabeling commodities. There are three mechanisms 
of special interest to us called the star, cycle, and complete mechanisms; with the following edge-sets and price ratios:

Graph G Star Cycle Complete
Edge-set EG {mi, im : i < m} {12,23, . . . ,m1} {i j : i �= j}

Price ratio pi/p j bmib jm/bimbmj b j, j+1/bi,i+1 ∗
For the star and cycle mechanisms, the right-hand side of (2) involves a single tree and, in the ratio pi/p j , several factors 
cancel leading to the simple expressions in the table above. However, for the complete mechanism there is no cancellation 
and in fact here each price ratio depends on every bij .

12 Prices are to be thought of as consistent exchange rates between commodities, i.e. the ratios pi/p j . Thus they correspond to rays in Rm++ , each of 
which is represented by a vector p in Rm++ (and identified with all its scalar multiples λp for λ > 0).
13 To avoid notational clutter, we write p instead of p(b) throughout this section, with the understanding that b is held fixed. Later p will be thought of 

as a function (defined on a large domain of variable b). There should be no confusion; the meaning will always be clear from the context.
14 Formula (2) expresses each pi as a polynomial in the components of b. It has a short proof Sahi (2014) but a long history. It seems to be originally due 

to Hill (1966) but has been rediscovered several times (see the discussion in Anantharam and Tsoucas, 1989). It often goes by the name of “The Markov 
Tree Theorem” because in the context of a Markov chain, where the bij are transition probabilities from i to j, formula (2) gives the unique steady state 
distribution.
15 This is not to say that he does not affect prices by his offers; he invariably does, since we are in an oligopolistic framework.
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The class of G-mechanisms is the set

M(m) = {MG : G is a directed, connected graph on {1, . . . ,m}} . (4)

Although finite, M(m) is rather large, indeed super-exponential in m.

2.3. Time and price complexity

We shall show that if one invokes natural complexity considerations, based on the time needed to exchange any com-
modity i for j and the information needed to determine the exchange ratio pi/p j , then the welter of mechanisms in M(m)

is eliminated and we are left with only three mechanisms of minimal complexity, namely those that arise from the star, 
cycle and complete graphs (Theorem 4). Indeed, provided m is large enough, just the star mechanism remains (Theorem 5) 
in which one commodity emerges endogenously as money and mediates trade across decentralized markets for the other 
commodities.16

Consider a trader who interfaces with M ∈ M(m) in order to exchange i for j. A natural concern for him would be: what 
is the minimum number of time periods τi j (M) needed to accomplish this exchange? We define the time-complexity of M
to be

τ (M) = max
i �= j

τi j (M) . (5)

It is evident that τi j (M) is the length of the shortest path in G from i to j and τ (M) is the diameter17 of the graph G .
The other concern of our trader would be: how much of commodity j can he get per unit of i? It follows from equations 

(2) and (3) that he can calculate this from the “market state” b of the mechanism which determines the price ratio pi/p j . 
Thus the question can be rephrased: how many components of b does he need to know18 in order to calculate pi/p j? 
The table above indicates that it is easier to compute pi/p j for the star and cycle mechanisms than, say, the complete 
mechanism.

To make this notion precise, if f is a function of several variables x = (
x1, . . . , xl

)
, let us say that the component i of x

is influential if there are two inputs x, x′ , differing only in the i-th place, such that f (x) �= f
(
x′). Define πi j(M) to be the 

number of influential components of b in the price ratio function pi/p j . For example, from the expression for pi/p j for the 
star mechanism in the previous table, it is clear that πi j(M) is 4 unless one of i or j is m, in which case it is 2. We define 
the price complexity of M to be19

π(M) = max
i �= j

πi j(M). (6)

See Section 2.6 for further elaboration of this notion.

2.4. The main results

We now define a quasiorder � (reflexive and transitive) on M(m) by

M � M ′ ⇐⇒ τ (M) ≤ τ ′(M ′) and π(M) ≤ π ′ (M ′) . (7)

We are ready to state our main result.20

Theorem 4. If21 m > 3 then the three special mechanisms are precisely the �-minimal22 elements of M(m). Their complexities are 
as follows:

16 To be precise: the price of any commodity i = 1, . . . , m − 1, in terms of money m, depends only on the aggregate offers on edges im and mi; and 
therefore so does the trade between i and m. Hence the pair {im,mi} of edges may be viewed as a decentralized market (or, “trading post”) for i and m. 
See Section 3.1 for more discussion.
17 Any commodity exchange in M must occur on an edge of its underlying graph G of opportunities, and each such exchange may be thought of as taking 

one unit of (transaction) time. Thus the length of a path from i to j in the graph serves a proxy for the time taken for successive exchanges along that 
path in order to convert i to j. Thus if a trader always chooses the most efficient (shortest) path to exchange any i for j, “diameter G” is the minimum 
time needed to effect the exchange for an arbitrary ordered pair i j.
18 And, since he always knows his own offer, this is the same as asking: how many components does he need to know of the aggregate offer of the 

others?
19 Recall that prices are not announced by the mechanism, but only implicit in it, as was pointed out in Remark 3. The trader has to “explicate” the ratio 
pi(b)/p j(b) by computing it from b, and for this purpose he must inform himself about the relevant components of b. Looking at the worst case scenario 
across all market states b, the numbers πi j(M) and π(M) reflect the “informational complexity” in the mechanism M that is encountered by a trader who 
interfaces with M . (This term could well be used in lieu of “price complexity”.)
20 A word about the numbering system used in this paper: all theorems, remarks, conditions, lemmas etc. are arranged in a single grand sequence. Thus 

the reader shall see, in order of appearance: Theorem 1, Theorem 2, Remark 3, Condition 4, . . . . This does not mean that Condition 4 is the fourth condition; 
in fact it is the first condition, but it has fourth place in the grand sequence (and, the marker 4 makes the condition easy to locate).
21 When m = 3, we get a fourth mechanism with complexities 4, 2 identical to the star mechanism. And when m = 2, we must change 4 to 2 in the table 

(the three graphs become identical with complexities 2, 2 for each).
22 M is said to be �-minimal in M(m) if there is no M ′ ∈M(m) for which τ (M ′) ≤ τ (M) and π(M ′) ≤ π(M), with strict inequality in at least one place.
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Star Cycle Complete
π(M) 4 2 m(m − 1)

τ (M) 2 m − 1 1

This has the following immediate consequence.

Theorem 5. Given any choice of strictly positive weights λ, μ > 0, there exists an integer m0 such that for m ≥ m0 the star mechanism 
is the unique minimizer in M(m) of λπ(M) + μτ(M).

Theorem 5 says that, so long as traders ascribe positive weight to both time and price complexity, the star mechanism 
with money is the unique optimal mechanism as soon as the number of commodities is sufficiently large.

Remark 6 (Sufficient commodities). In fact m0 does not have to be too large. We only require 4λ + 2μ < 2λ + (m − 1)μ and 
4λ + 2μ < m(m − 1)λ + μ for the star to beat the cycle and complete mechanisms, respectively; which may be rearranged

m > 2

(
λ

μ

)
+ 3 and m2 − m >

μ

λ
+ 4

So, for example, if at least 10% weight is accorded to both π and μ, then λ/μ and μ/λ can each be at most 9 and the 
above inequalities will hold if m > 18 + 3 and m2 − m > 9 + 4; thus m0 = 22 does the job.

Remark 7 (Computational complexity). Our notion πi j(M) of price complexity counts the number of components of the mar-
ket state b that are needed for the computation of price ratios pi/p j . The difficulty of that computation is not taken into 
account. However, even if it were, the star would perform well relative to the other G-mechanisms. To see this, recall (from 
the first table in Section 2) that pi/p j = bmib jm/bimbmj in the star mechanism, a simple formula whose “computational 
complexity” is hardly worth the mention. (In contrast, most graphs G have multiple spanning trees rooted at some of their 
vertices, which leads — via (2) — to more complicated expressions for pi/p j .)

Remark 8 (Netting of deliveries). If promises to deliver commodities — rather than commodities themselves — are being traded 
and “netting” of deliveries is permitted (recall footnote 3), an individual could trade i for j in one go, instead of trading 
iteratively along the path that connects i to j. This reduction of time complexity is quite illusory, however. It requires 
bookkeeping — carried out by a centralized clearing-house? — to determine the net due to, or owed by, any individual 
across his many trades. Thus netting simply transfers time complexity to the complexity of bookkeeping.

Remark 9 (Contingent commodities). Once promises can be traded, the door is open for contingent commodities “ilts” a la
Arrow–Debreu, namely promises which call for the delivery of i in location l at time t if state of nature s occurs. This, of 
course, creates a bewildering number m of promises (quadruples ilts) to be traded. Our result shows that the star mechanism 
alone scales well with m, since its time and price complexities remain 2 and 4 regardless of m, making it the most felicitous 
among all G-mechanisms (in the sense of Theorems 4 and 5).

Remark 10 (Only time complexity). If price complexity is dropped, and only time complexity retained (i.e., λ = 0 and τ > 0
in Theorem 5), it is evident that the complete mechanism will be the unique minimal mechanism in M(m). To see this, 
consider any (directed, connected) graph G on vertex set {1, . . . ,m} and suppose G is not complete. Then there must exist 
two vertices i and j such that there is no directed edge i j in G . In this case, the shortest path from i to j has length at 
least 2, and hence the diameter of G is not less than 2. On the other hand the diameter of the complete graph is obviously 
1, establishing its minimality. Thus price complexity is crucial for arriving at the star (money) mechanism. (If one were to 
try to restrict the domain of mechanisms so that time complexity by itself leads to the star, one would need to exclude not 
only the complete mechanism but also all G-mechanisms — except for “star” — whenever G has diameter 2. We do not see 
any natural way of doing this.)

2.5. Outline of the proof

Let us give a brief outline of the proof of Theorem 4, which immediately implies Theorem 5.
We focus first on price complexity, which plays the decisive role in our argument. (The key to this was provided for us 

by Sahi (2014), in which a general version of (2) is established.)
Since any (directed, connected) graph G gives rise to a unique mechanism MG (see Section 3), we may write π(MG ) =

π(G). Using equation (2), it is straightforward to show that

π(G) = 2, if G is a cycle

and

π(G) = 4, if G is either a chorded cycle or a k-rose
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(A chorded cycle is a cycle with a path between two of its nodes that is distinct from the cycle, and a k-rose is a set of k
cycles with which have a common vertex but are otherwise disjoint. The formal definitions are given in Section 5.1. Note 
that the star is an m-rose.)

We establish the following fundamental Theorem 21, that may be of independent mathematical interest:

If G is not a cycle or a chorded cycle or a k-rose, then π(G) ≥ 5

The proof of Theorem 21 is intricate, and involves several ideas from graph theory. (Its outline is given just after the 
statement of Theorem 21 in Section 5.1.) Based on Theorem 21, the rest of the proof of Theorem 4 proceeds as follows. 
It is evident that τ (G) = 1 if, and only if, G is the complete graph; and in this event (again using equation (2)) it is easy 
to check that π(G) = m(m − 1), i.e., (τ (G), π(G)) = (1, m(m − 1)). Next, as is obvious, τ (G) = 2 if G is a star, so — from 
the second display above — (τ (G), π(G)) = (2, 4). Thus for any graph G which is not complete, and which therefore has 
τ (G) ≥ 2, we must require π(G) ≤ 4 for G to remain in the reckoning, otherwise G will be worse than star according to �. 
If π(G) ≤ 4, Theorem 21 implies that G must be either a cycle or a k-rose. If G is a cycle, it is immediate that τ (G) = m − 1
and hence — from the first display above — (τ (G), π(G)) = (m − 1, 2). If G is a k-rose that is not a star, it can be easily 
verified that τ (G) ≥ 3 whenever m > 3, so that — again from the second display above — (τ (G), π(G)) = (3+, 4), showing 
that G is worse than star in the quasi-order �. This establishes Theorem 4.

2.6. Literal vs marginal exchange rates

Consider a trader who wants to convert x units of i to j along some path Pij = ii1 . . . ik j from i to j in the graph G
of the mechanism M = MG . Let b denote the aggregate offer (market state) before x is brought on the market and assume 
throughout that others’ offers stay fixed according to b. If x is small, then it will have negligible effect on the prices and we 
may treat prices p = p(b) as fixed. So — to a first order of approximation — the trader will get xi1 = (pi/pi1 )x units of i1 on 
the edge ii1, then xi2 = (pi1/pi2 )xi1 units of i2 on the edge i1i2 and so on, winding up with (pi/pi1 )(pi1/pi2 )....(pik /p j) =
(pi/p j)x units of j. Thus pi/p j represents the marginal exchange rate23 between commodity i and j, and it is independent 
of the path Pij .

When x is not small, its influence on prices is not negligible, and matters are no longer so simple. Each time the trader 
makes an offer on an edge, he perturbs the market state, and thereby the prices as well as his returns, which in turn 
constitute his offer on the next edge of the path P . Thus the literal exchange rate from i to j is a complicated function of 
the vector (b, x), as well the path P = Pij . Holding P fixed, let us denote this function by F P

i j and further denote24

π∗
i j(MG , P ) = number of influential components of b in the function F P

i j (b, x);
π∗

i j(MG) = min
{
π∗

i j(P ) : P is a path from i to j in G
}

;
and

π∗(MG) = max
{
π∗

i j(MG) : 1 ≤ i, j ≤ m and i �= j
}

.

In view of equations (2) and (3), F P
i j is a rational function (a ratio of two polynomials in b and x) whose denominator 

remains positive as x goes to zero.25 Thus F P
i j is continuous at x = 0 for any fixed b, i.e., F P

i j (b, x) −→ pi(b)/p j(b) as x −→ 0

for all b. This implies that the number of influential components of b in the function F P
i j cannot jump up at the limit when 

x −→ 0. To see this, suppose that μ is an influential component of the function pi/p j , i.e., pi(b)/p j(b) �= pi(d)/p j(d) where 
b and d differ only in component μ. Since F P

i j (b, x) −→ pi(b)/p j(b) and F P
i j (d, x) −→ pi(d)/p j(d) as x −→ 0, it follows that 

F P
i j (b, x) �= F P

i j (d, x) for all small x, showing that μ is also an influential component of b in the function F P
i j (b, x). Thus we 

have shown that

πi j(MG) ≤ π∗
i j(MG); and hence π(MG) ≤ π∗(MG)

for all G-mechanisms, i.e., the literal exchange rate is never less than the marginal exchange rate. On the other hand, it is 
readily verified that

πi j(MG) = π∗
i j(MG) if G is a star

(This equality essentially stems from the fact that the star mechanism is made up of decentralized markets.) From the last 
two displays and our main Theorem 5, it is immediate that the variant of Theorem 5, with π∗ in place of π , also holds.

23 This is a rate that pertains solely to the input–output map of our mechanism and has nothing to do with marginal utilities of the traders (indeed recall 
that such utilities do not exist in our model).
24 The trader already knows his own offer x. What he needs to find out, in order to compute how much j he will get against x via the path P , are all the 

components of b on which the function F P
i j (b, x) depends. (Recall that F P

i j is defined on the domain of all (b, x) such that x > 0 and such that bij > 0, if 
and only if, i j is an edge in G .)
25 This is so since b is positive on all the edges of G .
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In short, the variant Theorem for the complicated literal rates π∗ is an easy corollary of our current Theorem 5 for the 
simple marginal rates π , not the other way round!

3. Characterization of G-mechanisms

Our analysis above was carried out on the domain M(m). We now show how to derive M(m) from a more general 
standpoint. To this end, let us first define an abstract exchange mechanism on commodity set {1, . . . ,m} and with trading 
opportunities given by a directed, connected graph G on {1, . . . ,m}. Such a mechanism allows individuals in {1, . . . ,n} to 
trade by means of quantity offers in each commodity i across all edges i j in G . (Here m is fixed and n can be arbitrary.) 
The offer of any trader can thus be (conveniently) viewed as an m × m non-negative matrix in the space

S = {
a : aij = 0 if i j /∈ G , aij ≥ 0 otherwise

}
Define

S+ = {
a ∈ S : aij > 0 if i j ∈ G

}
Also define

a = (
a1, . . . ,am

)
where ai = ∑

j ai j is the i-th row sum of a and denotes the total amount of commodity i involved in sending offer ai . Let 
Sn be the n-fold Cartesian product of S with itself, and (with a = (a1, . . . , an)) let

S(n) =
{

a ∈ Sn :
n∑

α=1

aα ∈ S+

}
denote the n-tuples of offers that are positive on aggregate. Also let C = Rm+ denote the commodity space; and Cn its n-fold 
product.

An exchange mechanism M , for a given set {1, . . . ,m} of commodities and with trading opportunities in accordance with 
the graph G , is a collection of maps (one for each positive integer n) from S(n) to Cn such that, if a ∈ S(n) leads to returns 
r ∈ Cn , then we have

n∑
α=1

aα =
n∑

α=1

rα,

i.e., there is conservation of commodities. It is furthermore understood, in keeping with our concept of opportunity i j, that 
for an offer a ∈ S whose only non-zero components are 

{
aij : j = . . .

}
, the return will consist exclusively of commodity j.

We shall impose four conditions on the mechanisms which reflect “convenience” and “fairness” in trade. The first con-
dition is that the mechanism must be blind to all other characteristics of a trader except for his offer (and rules out 
discrimination on irrelevant grounds):

Condition 11 (Anonymity). Let (r1, . . . , rn) ∈ Cn denote the returns from (a1, . . . , an) ∈ S(n). Then for any permutation σ the returns 
from (aσ(1), . . . , aσ(n)) are (rσ(1), . . . , rσ(n)).

The second condition is that if any trader pretends to be two different persons by splitting his offer, the returns to the 
others is unaffected. In its absence, traders would be faced with the complicated task of tracking everyone’s offers. It is 
easier (and sufficient!) to state this condition for the “last” trader.

Condition 12 (Aggregation). Suppose a ∈ S(n) and b ∈ S(n + 1) are such that aα = bα for α < n and an = bn + bn+1 . Let r, s denote 
the returns that accrue from a, b respectively. Then rα = sα for α < n.

Anonymity and Aggregation immediately imply that, regardless of the size n of the population, the return to any trader 
may be written r(a, b),where a ∈ S is his own offer and b ∈ S+ is the aggregate of all offers.

Let ν denote his net trade:

ν(a,b) = r(a,b) − a

The third condition is Invariance. Its main content is that the maps which comprise M are invariant under a change of 
units in which commodities are measured. This makes the mechanism much simpler to operate in: one does not need to 
keep track of seven pounds or seven kilograms or seven tons, just the numeral 7 will do.

In what follows, we will consistently use a for an individual’s offer and b for the positive aggregate offer; so, when we 
refer to the pair a, b it will be implicit that a ∈ S , b ∈ S+ and a ≤ b.
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Condition 13 (Invariance). ν(λa, λb) = λν(a, b) for all a, b and any m × m strictly positive diagonal matrix λ.

The fourth, and last, condition is that no trader can get strictly less than his offer (otherwise, such unfortunate traders 
would tend to abandon the mechanism).

Condition 14 (Non-dissipation). If ν(a, b) �= 0, then νi(a, b) > 0 for some component i.

It turns out that these four conditions categorically determine a unique mechanism.

Theorem 15. Let M be an exchange mechanism on commodity set {1, . . . ,m} and let G be the (directed, connected) graph induced by 
the trading opportunities in M. If M satisfies Anonymity, Aggregation, Invariance and Non-dissipation, then M = MG .

3.1. Comments on the conditions

Aggregation does not imply that if two individuals were to merge, they would be unable to enhance their “oligopolistic 
power”. For despite the Aggregation condition, the merged individuals are free to coordinate their actions by jointly picking a 
point in the Cartesian product of their action spaces. Indeed all the mechanisms we obtain display this “oligopolistic effect”, 
even though they also satisfy Aggregation.

It is worthy of note that the cuneiform tablets of ancient Sumeria, which are some of the earliest examples of written 
language and arithmetic, are in large part devoted to records and receipts pertaining to economic transactions. Invariance
postulates the “numericity” property of the maps r(a, b) (equivalently, ν(a, b)) making them independent of the underlying 
choice of units, and this goes to the very heart of the quantitative measurement of commodities. In its absence, one would 
need to figure out how the maps are altered when units change, as they are prone to do, especially in a dynamic economy. 
This would make the mechanism cumbersome to use.

Non-dissipation (in conjunction with Aggregation, Anonymity, and the conservation of commodities) immediately implies 
No-arbitrage: for any a, b neither ν(a, b) � 0 nor ν(a, b) � 0. To check this, we need consider only the case a ≤ b and 
rule out ν(a, b) � 0. Denote c = b − a. Then ν(a, b) + ν(c, b) = ν(a + c, b) = ν(b, b) = 0, where the first equality follows 
from Aggregation, and the last from conservation of commodities. But then ν(a, b) � 0 implies ν(c, b) � 0, contradicting 
Non-dissipation.

Our four conditions are tight: dropping any one of them will allow for mechanisms other than our graphical MG and 
cause Theorem 15 to break down. For instance, the mechanism M̃ studied in Amir et al. (1990), with the underlying 
complete graph of exchange opportunities, satisfies Aggregation, Anonymity and Invariance but not Non-dissipation.26 There 
are m(m − 1)/2 “trading posts” in M̃ , one for each unordered pair i j of commodities, which function as follows: all i j-offers 
and ji-offers exchange proportionately against each other, unaffected by the offers on edges other than i j or ji. In this 
sense, a trading post i j in M̃ does represent a decentralized market for i and j. However, while M̃ admits prices pij (the 
ratio of aggregate j to aggregate i at trading post i j), they are rarely consistent : indeed pij(b)p jk(b) �= p jk(b) for almost all 
market states b of the mechanism.

The mechanism M̃ with m(m − 1)/2 trading posts was also the center of attention in Starr and Stinchcombe (1999), 
though in a context which is quite different from, and complementary to, ours. In Starr and Stinchcombe (1999), a Walras 
Equilibrium (WE) is specified exogenously, and the problem is to execute the WE trades (at WE prices) via the trading posts. 
There is a set up cost for each trading post (also specified exogenously) and it is shown that the star mechanism will be 
most cost-efficient.

In our framework, the star is the only mechanism which is composed exclusively of trading posts. Indeed, for any graph 
G other than the star, there will exist at least one edge i j where the exchange (between i and j in MG ) is affected by offers 
on some edge lk that is different from both i j and ji (in the event that ji exists in G), exhibiting lack of “decentralization”. 
In contrast to Amir et al. (1990) and Starr and Stinchcombe (1999), the decentralized trading posts are a matter of deduction
for us (via the star mechanism), and we do not postulate them.

Returning to the backdrop of a pre-specified WE (as in Starr and Stinchcombe, 1999), there is an equally striking paper 
of Norman (1987) in which a broker is introduced, whose task is to arrange a sequence of commodity transfers between 
individuals in order to achieve their WE trades. An in-depth analysis is presented of the computational complexity of 
the broker’s task. One of the central results in Norman (1987) is that the presence of money minimizes this complexity. 
Roughly speaking, money enables the broker to create interim credit in the sequence, which need net to zero only by 
the end, considerably simplifying his task. (Computational complexity, in the context of our mechanisms, is discussed in 
Remark 7.)

26 We leave it to the reader to construct the easy examples which show that none of Aggregation, Anonymity, Invariance can be dropped unilaterally 
without violating Theorem 15.
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It is worth noting that the approach taken in both Starr and Stinchcombe (1999) and Norman (1987) focuses on the 
interaction between traders (as in much of the literature27). In contrast, our primary focus is on the interaction between 
commodities, once they are offered to the mechanism; from which we derive, in turn, the interaction between traders.28

Remark 16 (Touch of rationality). There is a “touch” of rationality, imputed to the traders, in these conditions. Non-dissipation
implies that commodities are liked and an uncompensated loss of them is not tolerable. (This is compatible with any
monotonic utility function and hardly very restrictive.) Anonymity rules out discrimination among traders on extra-economic 
grounds. Aggregation and Invariance, as well our notion of the complexity of a mechanism, reflect the fact that traders 
find complicated computations inconvenient. These requirements are minimalistic and an order-of-magnitude milder than 
the standard utilitarian (or other behavioral) assumptions. In fact, our mechanisms permit arbitrary utility functions to be 
ascribed to the traders in order to build a game (see, e.g., Shapley, 1976; Dubey and Shubik, 1978; Sahi and Yao, 1989 and 
the references therein).

3.2. Alternative characterizations of G-mechanisms

The formula (3) for the return function of a G-mechanism immediately implies

p(b) = p(c) =⇒ r(a,b) = r(a, c) for all a ≥ 0 and b, c > 0 (8)

In Dubey and Sahi (2003), a mechanism was supposed to produce both trades and prices, based upon everyone’s offers; and 
the property (8) was referred to as Price Mediation. It was shown in Dubey and Sahi (2003) that M(m) is characterized by 
Anonymity, Aggregation, Invariance, Price Mediation and Accessibility (the last representing a weak form of continuity).

An alternative characterization of M(m), which assumes — as we do here — that a mechanism produces only trades 
(and no prices), was given in Dubey et al. (2014). Here we have presented a simplified version of the analysis in Dubey et 
al. (2014), and established that MG arises “naturally” once we assume that trading opportunities are restricted to pairwise 
exchange of commodities, i.e., correspond to the edges of a connected graph G . In contrast, in both Dubey and Sahi (2003)
and Dubey et al. (2014), the opportunity structure G was itself an object of deduction, starting from a more abstract 
viewpoint; and is the theme of our companion paper (Dubey et al., 2015) (extracted from Dubey et al., 2014).

4. The case of perfect competition

When the set of traders is finite, each trader invariably influences the market state b via his offer, and thereby the price 
vector p = p(b). (See equation (2), and recall that b is the aggregate of everone’s offers.) This is but to be expected in an 
oligopolistic framework. However we may easily accommodate the Walrasian world of perfect competition by considering a 
continuum of traders. In this event, b corresponds to an integral which no trader can influence by unilateral variations of 
his own offers, with the upshot that he is rendered a “price taker”. The literal and marginal exchange rates of Section 2.6
now coincide, leading to a simpler economic interpretation of price complexity. Moreover, all our results remain intact, by 
essentially the same arguments. Indeed, the one change we need to make is to combine the Aggregation and Anonymity con-
ditions into a single condition. (See Section 8 for the details.) The rest of the paper can be reread word for word, interpreting 
b throughout as an integral instead of a finite sum.

Finally, as was already mentioned in the introduction, the star mechanism leads to equivalence (or, near-equivalence) of 
Nash and Walras equilibria under suitable postulates regarding the commodity or fiat money. (See Dubey and Shapley, 1994
for a detailed discussion.) In the complete mechanism — where every commodity is akin to money in that it can trade with 
all other commodities — there are no liquidity constraints, and the equivalence is automatic in the presence of a continuum.

5. Proofs

5.1. Graphs with complexity ≤ 4

Let G be a connected graph on {1, . . . ,m} as in Section 2.3, and write

πi j (G) = πi j (MG) and π (G) = π (MG)

If G consists of a single vertex then π (G) = 0 by definition.

Lemma 17. If G is a cycle then π (G) = 2.

27 See the references in the third paragraph of introduction (on models involving “search”, “random matching”, etc.).
28 We are grateful to an anonymous referee for the eloquence of this distinction.
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Proof. Each vertex i in a cycle has a unique outgoing edge, and we denote its weight by29 ai . For each i we have pi = bG/ai
where bG = ∏

i j∈G bij = ∏
i ai as in (2); hence pi/p j = a j/ai and the result follows. �

By a chorded cycle we mean a graph that is a union G = C ∪ P where C is a cycle and P , the chord, is a path that 
connects two distinct vertices of C , but which is otherwise disjoint from C .

Lemma 18. If G = C ∪ P is a chorded cycle then π (G) = 4.

Proof. Let i be the initial vertex of the path P , then i has two outgoing edges, i j and ik say, on the cycle and path 
respectively. Any vertex l �= i has a unique outgoing edge, and we denote its weight by al as before. Let x be the terminal 
vertex of the path P . If x = j then G has two j-trees, otherwise there is a unique j-tree; similarly if x = k then there are 
two k-trees, otherwise there is a unique k-tree. Thus we get the following table30:

x = j x = k x �= j,k

p j/bG a−1
j

(
b−1

ik + b−1
i j

)
a−1

j b−1
ik a−1

j b−1
ik

pk/bG a−1
k b−1

i j a−1
k

(
b−1

ik + b−1
i j

)
a−1

k b−1
i j

In every case, the ratio p j/pk depends on all 4 variables a j, ak, bij, bik , thus π (G) ≥ 4.
On the other hand, since all vertices other than i have a unique outgoing edge, it follows that if x is any vertex then 

every x-tree contains all the outgoing edges except perhaps the edges bij, bik and ax (if x �= i); thus px is divisible by all 
other weights. It follows that for any two vertices x, y the ratio px/p y can only depend on the variables bij, bik, ax, ay . Thus 
we get π (G) ≤ 4 and hence π (G) = 4 as desired. �
Remark 19. A special case of a chorded cycle is a graph T0 with three vertices that we call a chorded triangle.

3
↑↓ ↖
1 −→ 2

p1 b23b31

p2 b12b31

p3 b23 (b12 + b13)

p1/p2 b23/b12

p2/p3 b12b31/b23 (b12 + b13)

p3/p1 (b12 + b13) /b31

For future use we note that for each index j there is an i such that πi j ≥ 3.

By a k-rose we mean a graph that is a union C1 ∪ · · · ∪ Ck , where the Ci are cycles that share a single vertex j, but which 
are otherwise disjoint. Thus a 0-rose is a single vertex and a 1-rose is a cycle. If G is a k-rose for some k ≥ 2 then we will 
simply say that G is a rose.

If each cycle in a rose G has exactly two vertices, i.e., is a bidirected edge, then we say that G is a star.

Lemma 20. If G is a rose then π (G) = 4.

Proof. Let G be the union of cycles C1 ∪ · · · ∪ Ck with common vertex j as above. Let a1, . . . , ak be the weights of the 
outgoing edges from j in cycles C1, . . . , Ck respectively, and for all other vertices x let bx denote the weight of the unique 
outgoing edge at x. It is easy to see that there for each vertex v of G there is a unique v-tree, and thus the price vectors 
are given as follows:

p j =
∏
x�= j

bx, px = ai p j

bx
if x �= j is a vertex of Ci

Thus we get

p j/px = bx/ai, p y/px = bxal/byai if y �= j is a vertex of Cl

Taking i �= l, we see that p y/px depends on 4 variables, and π (G) = 4. �
Our main result is a classification of connected graphs with π (G) ≤ 4.

29 This is a departure from our convention heretofore that a shall refer to an individual’s offer, and b to the aggregate offer; but there should be no 
confusion.
30 Let us explain the entry in row 1, column 1. (The argument for the other entries in this table, as well as entries in tables that come later, is in the same 

vein.) There are two spanning trees 	1 and 	2 in this case, coming into j, each of which omits exactly two edges of the graph. Both omit the unique edge 
going out of j; and, furthermore, 	1 omits ik while 	2 omits i j. Therefore the weight of 	1 (resp. 	1), divided by bG , is (a jbik

)−1 (resp. (a jbi j
)−1). The 

rest follows from the formula (2) for prices.
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Theorem 21. If G is not a chorded cycle or a k-rose, then π (G) ≥ 5.

We give a brief sketch of the proof of this theorem, which will be carried out in the rest of this section. The actual proof 
is organized somewhat differently, but the main ideas are as follows.

We say that a graph H is a minor of G , if H can be obtained from G by removing some edges and vertices, and collapsing 
certain kinds of edges. Our first key result is that the property π (G) ≤ 4 is a hereditary property, in the sense that connected 
minors of such graphs also satisfy the property. The usual procedure for studying a hereditary property is to identify the 
forbidden minors, namely a set 	 of graphs such that G fails to have the property iff it contains one of the graphs from 	. 
We identify a finite collection of such graphs. The final step is to show that if G is not a chorded cycle or a k-rose then it 
contains one of the forbidden minors.

We note the following immediate consequence of the results of this section.

Corollary 22. If G is not a cycle then πi j (G) ≥ 4 for some i j.

5.2. Subgraphs

Throughout this section G denotes a connected graph. We say that a graph H is a subgraph of G if H is obtained from G
by deleting some edges and vertices.

Proposition 23. If G ′ is a connected subgraph of G then π (G) ≥ π
(
G ′).

Proof. For a vertex i in G ′ let p′
i and pi denote its price in G ′ and G respectively; we first relate p′

i to a certain specialization 
of pi .

Let E, E ′ be the edge sets of G, G ′ respectively, and let E0 (resp. E1) denote the edges in E \ E ′ whose source vertex is 
inside (resp. outside) G ′ . Let p̄i be the specialization of pi obtained by setting the edge weights in E0 and E1 to 0 and 1
respectively. Then we claim that

p′
i = |F | p̄i, (9)

where F is the set of directed forests φ in G such that

1. the root vertices of φ are contained in G ′ ,
2. the non-root vertices of φ consist of all G-vertices not in G ′ .

Indeed, consider the expression of pi as a sum of i-trees in G . The specialization p̄i assigns zero weight to all trees with 
an edge from E0. The remaining i-trees in G are precisely of the from τ ∪φ where τ is an i-tree in G ′ and φ ∈ F , and these 
get assigned weight wt (τ ). Formula (9) is an immediate consequence.

Now if i, j are vertices in G ′ , then formula (9) gives

p′
i

p′
j

= p̄i

p̄ j

Thus the i j price ratio in G ′ is obtained by a specialization of the ratio in G . Consequently the former cannot involve more
variables. Taking the maximum over all i, j we get π (G) ≥ π

(
G ′) as desired. �

5.3. Collapsible edges

We write out(k) for the number of outgoing edges at the vertex k. In a connected graph we have out(k) ≥ 1 for all 
vertices, and we will say k is ordinary if out(k) = 1 and special if out(k) > 1. Among special vertices, we will say that k is 
binary if out(k) = 2 and tertiary if out(k) = 3.

Definition 24. We say that an edge i j of a graph G is collapsible if

1. i is an ordinary vertex,
2. ji is not an edge of G ,
3. there is no vertex k such that ki and kj are both edges of G .

Definition 25. If G has no collapsible edges we will say G is rigid.

If G is a connected graph with a collapsible edge i j, we define the i j-collapse of G to be the graph G ′ obtained by 
deleting the vertex i and the edge i j, and replacing any edges of the form li with edges l j. The assumptions on i j imply 
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that the procedure does not introduce any loops or double edges, hence G ′ is also simple (and connected). Moreover each 
vertex k �= i has the same outdegree in G ′ as in G .

Lemma 26. If G ′ is the i j-collapse of G as above, then π (G) ≥ π
(
G ′).

Proof. Let k be any vertex of G ′ then k is also a vertex of G . Since i is ordinary every k-tree in G must contain the edge 
i j; collapsing this edge gives a k-tree in G ′ and moreover every k-tree in G ′ arises uniquely in this manner. Thus we have a 
factorization

pk (G) = aij pk
(
G ′) .

Thus for any two vertices k, l of G ′ we get pk (G) /pl (G) = pk
(
G ′)/pl

(
G ′) and the result follows. �

We will say that H is a minor of G if it is obtained from G by a sequence of steps of the following kind: a) passing to a 
connected subgraph, b) collapsing some collapsible edges. By Proposition 23 and Lemma 26 we get

Corollary 27. If H is a minor of G then π (H) ≤ π (G).

5.4. Augmentation

Throughout this section G denotes a connected graph.

Notation 28. We write H � G if H is a connected subgraph of G, and write H � G to mean H � G and H �= G.

We say that H � G can be augmented if there is a path P in G whose endpoints are in H , but which is otherwise 
completely disjoint from H . We refer to P as an augmenting path of H , and to K = H ∪ P as an augmented graph of H ; 
note that K is also connected, i.e. K � G . It turns out that augmentation is always possible.

Lemma 29. If H � G then H can be augmented.

Proof. If G and H have the same vertex set then any edge in G \ H comprises an augmenting path. Otherwise consider 
triples (k, P1, P2) where k is a vertex not in H , P1 is a path from some vertex in H to k, and P2 is a path from k to some 
vertex in H . Among all such triples choose one with e (P1) + e (P2) as small as possible. Then P1 and P2 cannot share any 
intermediate vertices with H or with each other, else we could construct a smaller triple. It follows that P = P1 ∪ P2 is an 
augmenting path. �

We are particularly interested in augmenting paths for H that consist of one or two edges; we refer to these as short 
augmentations of H .

Corollary 30. If H � G then G has a minor that is a short augmentation of H.

Proof. Let K = H ∪ P be an augmentation of H . If P has more than two edges, then we may collapse the first edge of P
in K . The resulting graph is a minor of G , which is again an augmentation of H . The result follows by iteration. �
Lemma 31. If K = H ∪ P with P = { jk,kl}, then for any vertex i of H we have πik (K ) = πi j (H) + 2.

Proof. The edges ( j,k) and (k, l) are the unique incoming and outgoing edges at k. It follows that every i-tree in K is 
obtained by adding the edge kl to an i-tree in H , and every k-tree in K is obtained by adding the edge jk to a j-tree in H . 
Thus if a jk and akl are the respective weights of the two edges in the path P then we have

pi (K ) = akl pi (H) , pk (K ) = a jk p j (H) =⇒ pi (K )

pk (K )
= akl

a jk

pi (H)

p j (H)

Thus the price ratio in question depends on two additional variables, and the result follows. �
Corollary 32. If G contains the chorded triangle T0 as a proper subgraph then π (G) ≥ 5.

Proof. By Corollary 30, G has a minor K = T0 ∪ P , which is a short augmentation of T0, and it is enough to show that 
π (K ) ≥ 5. If P consists of two edges { jk,kl} then by Remark 19 we can choose i such that πi j (T0) = 3; now by Lemma 31, 
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we have cik (K ) = 5 and hence π (K ) ≥ 5. If P consists of a single edge then K is necessarily as below, and once again 
π (K ) ≥ 5.

2
↑↓ ↘
1 � 3

p1/ p3

b31 (b21 + b23)

b23b12 + b23b13 + b21b13

�

5.5. The circuit rank

As usual G denotes a simple connected graph, and we will write e (G) and v (G) for the numbers of edges and vertices 
of G .

Definition 33. The circuit rank of G is defined to be

c (G) = e (G) − v (G) + 1

The circuit rank is also known as the cyclomatic number, and it counts the number of independent cycles in G , see e.g.
(Berge, 2001).

Example 34. If G is a k-rose then c (G) = k, and if G is a chorded cycle then c (G) = 2.

We now prove a crucial property of c (G).

Proposition 35. If H � G then there is some K � G such that H � K and c (K ) = c (H) + 1.

Proof. Let K = H ∪ P be an augmentation of H . If P consists of m edges, then K has e (H) + m edges and v (H)+ m − 1
vertices; hence c (K ) = c (H) + 1. �
Corollary 36. Let G be a connected graph.

1. If H � G then c (H) < c (G).
2. c (G) = 0 iff G is a single vertex.
3. c (G) = 1 iff G is a cycle.
4. c (G) = 2 iff G is a chorded cycle or a 2-rose.

Proof. The first part follows from Proposition 35, the other parts are completely straightforward. �
Lemma 37. If G is not a rose and c (G) > 3, then there is some K � G such that K is not a rose and c (K ) = 3.

Proof. Let R be a k-rose in G with c (R) = k as large as possible, then R � G by assumption. If c (R) ≤ 2 then any K � G
with c (K ) = 3 is not a rose. Thus we may assume that c (R) > 2, and in particular R has a unique special vertex i and at 
least three loops. Since R �= G , R can be augmented, and S = R ∪ P is an augmentation, then P cannot both begin and end 
at i, else R ∪ P would be a rose, contradicting the maximality of R . Since there are at most two endpoints of P , we can 
choose two distinct loops L1 and L2 of R , such that L1 ∪ L2 contains these endpoints of P . Then K = L1 ∪ L2 ∪ P is the 
desired graph. �
5.6. Covered vertices

Definition 38. Let i be an ordinary vertex of G with outgoing edge i j. We say that a vertex k covers i, if one of the following 
holds:

1. the edges ki and kj belong to G ,
2. j = k and the edge ki belongs to G .

If there is no such k then we say that i is an uncovered vertex.

We emphasize that the terminology covered/uncovered is only applicable to ordinary vertices in a graph G . The main 
point of this definition is the following simple observation.
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Remark 39. An ordinary vertex is uncovered iff its outgoing edge is collapsible.

Lemma 40. Suppose G is a connected graph.

1. If v (G) ≥ 3 then an ordinary vertex cannot cover another vertex.
2. If v (G) ≥ 4 then a binary vertex can cover at most one vertex.
3. A tertiary vertex can cover at most three vertices.
4. If G is a rigid graph with c (G) = 3, then v (G) ≤ 4.

Proof. If k is an ordinary vertex covering i then G must contain the edges ki and ik. Thus i and k do not have any other 
outgoing edges, and if G has a third vertex j then there is no path from k or i to j, which contradicts the connectedness 
of G , thereby proving the first statement.

If k is a binary vertex covering the ordinary vertices i and j then G must contain the edges ki, kj, i j, ji. The vertices 
i, j, k cannot have any other outgoing edges, so a fourth vertex would contradict the connectedness of G as before. This 
proves the second statement.

If a vertex k covers i then there must be an edge from k to i. Thus if out(k) = 3 then k can cover at most three vertices.
If c (G) = 3 then G has either 2 binary vertices or 1 tertiary vertex, with the remaining vertices being ordinary. If 

v (G) > 4 then by previous two paragraphs G would have an uncovered vertex, which is a contradiction. �
5.7. Proof of Theorem 21

Proposition 41. If c (G) ≥ 3 and G is not a rose, then π (G) ≥ 5.

Proof. By Proposition 23 and Lemma 37 we may assume that c (G) = 3. By Lemma 26, we may further assume that G is 
rigid, and thus by Lemma 40 that v (G) ≤ 4. We now divide the argument into three cases.

First suppose that G contains a 3-cycle C . We claim that at least one of the edges of C must be a bidirected edge in G , 
so that G properly contains a chorded triangle T0, whence π (G) ≥ 5 by Corollary 32. Indeed if G has no other vertices 
outside C , then G must have 5 edges and 3 vertices and the claim is obvious. Thus we may suppose that there is an outside 
vertex l. We further claim that C contains two vertices i, j such that i covers j. Granted this, it is immediate that G contains 
either the bidirected edge i j and ji, or the bidirected edge jk and kj where k is the third vertex of C . To prove the “further” 
claim we note that the special vertices of G consist of either a) one tertiary vertex, or b) two binary vertices. In case a) the 
connectedness of G implies that the tertiary vertex must be in C , and hence it must cover both the ordinary vertices in C . 
In case b) either C contains both binary vertices, one of which must cover the unique ordinary vertex of C ; or C contains 
one binary vertex, which must cover one of the two ordinary vertices of C .

Next suppose that G does not contain a 3-cycle, but does contain a 4-cycle labeled 1234, say. Now G has two additional 
edges, which cannot be the diagonals 13, 31, 24, 42, since otherwise G would have a 3-cycle; therefore G must have two 
bidirected edges. The bidirected edges cannot be adjacent else G would have a collapsible vertex, therefore G must be the 
first graph below, which has π (G) ≥ 5.

2 −→ 3
↑↓ ↑↓
1 ←− 4

p1/ p3

b21b34b41

b23b12 (b41 + b43)

2 � 3
↑↓ ↑↓
1 4

p1/ p4

b21b32b43

b34b23b12

Finally suppose G has no 3-cycles or 4-cycles. Then every edge must be a bidirected edge, and G must be a tree with all 
bidirected edges. Since G is not a star, this only leaves the second graph above, which has π (G) ≥ 6. �

We can now finish the proof of Theorem 21.

Proof of Theorem 21. If c (G) ≤ 2 then, by Corollary 36, G is a single vertex, a cycle, chorded cycle or a 2-rose. If c (G) ≥ 3
then the result follows by Proposition 41. �
6. Proof of Theorem 4

In this section, after a couple of preliminary results, we apply Theorem 21 to prove Theorem 4.

Lemma 42. If G is a chorded cycle on 4 or more vertices, then τ (G) ≥ 3.

Proof. We can express G as a union of two paths P , Q from 1 to 2, say and a third path R from 2 to 1. At least one of the 
first two paths, say P must have an intermediate vertex, say 3. Since m ≥ 4 there is an additional intermediate vertex 4 on 
one of the paths.
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If m = 4 then we get three possible graphs depending on the location of the vertex 4:

3 → 4
↑ ↓
1 � 2

3 → 2
↑ ↗ ↓
1 ← 4

3 → 2
↑ ↙ ↑
1 → 4

For these graphs we have τ24 = 3, τ42 = 3 and τ34 = 3, respectively. Thus τ (G) ≥ 3 in all three cases.
If m > 4 then G can be realized as one of these graphs, albeit with additional intermediate vertices on one or more of 

the paths P , Q , R . These additional vertices are ordinary uncovered vertices, with collapsible outgoing edges. Collapsing one 
of these edges does not increase time complexity, and produces a smaller chorded cycle G ′ . Arguing by induction on m we 
conclude τ (G) ≥ τ

(
G ′) ≥ 3. �

Lemma 43. If G is the complete graph, then πi j (G) = m (m − 1) for all i �= j.

Proof. Fix a pair of vertices i �= j in G . Then we claim that the price ratio pij (G) depends on each of the m (m − 1) edge 
weights bkl . Indeed if H is any “spanning” connected subgraph of G then pij (H) is obtained from pij (G) by specializing to 
0 the weights of all edges outside H . Therefore it suffices to find a connected subgraph H such that pij (G) depends on bkl .

We consider two cases. If {i, j} = {k, l} then exchanging i, j if necessary we may assume i = k, j = l. Let H be an m-cycle 
two of whose edges are i j and hi (say); then pi/p j = bhi/bij depends on bkl = bij .

If {i, j} �= {k, l} then let H be an 2-rose with loops C1 and C2 such that

1. k is the special vertex, and kl is an edge in C1
2. i belongs to C1 and j belongs to C2

Then pi and p j are each given by unique directed trees Ti and T j . Moreover Ti involves kl while T j does not. Hence 
pij (H) depends on bkl . �
Proof of Theorem 4. (Completion) Let S denote the set consisting of the three special mechanisms: star, cycle and com-
plete. We need to show that M� = S, where M� denotes the set of �-minimal elements of M = M(m).

Let us say that G is a minimal graph if MG is a minimal mechanism of M. Now the star mechanism has complexity 
(τ ,π) = (2,4). Therefore if G is any minimal graph then either τ (G) = 1 or π (G) ≤ 4. For τ (G) = 1 we get the com-
plete graph, which has complexity (τ ,π) = (1,m (m − 1)) by Lemma 43. The graphs with π (G) ≤ 4 are characterized by 
Theorem 21, and we have three possibilities for G:

1. Chorded cycle. In this case we have (τ ,π) = (
3+,4

)
by Lemma 42, and so G is not minimal.

2. Cycle. In this case we have (τ ,π) = (m − 1,2) by Lemma 17.
3. k-rose, k ≥ 2. If each petal of G has exactly 2 edge then G is the star mechanism. Otherwise after collapsing edges, we 

obtain the following minor with τ12 = 3

1
↓ ↖
· → · � 2

Thus G has complexity (τ ,π) = (
3+,4

)
and so is not minimal.

Thus the three graphs in the statement of Theorem 4 are the only possible minimal graphs, and have the indicated 
complexities. Since they are incomparable with each other, each is minimal. Thus we conclude M� =S as desired. �
Remark 44. For m = 3, Lemma 42 does not hold and we have an additional strongly minimal mechanism with (τ ,π) =
(2,4), namely the chorded triangle

·
↓ ↖
· � ·

7. Proof of Theorem 15

Note that a mechanism is determined uniquely by its net trade function ν(a, b) := r(a, b) − a which, although initially 
defined for a ≤ b, admits a natural extension as follows.
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Proposition 45. The function ν admits a unique extension to S × S+ satisfying

ν(λa + λ′a′,b) = λν(a,b) + λ′ν(a′,b), ν (a, λb) = ν (a,b) for λ,λ′ > 0

Proof. Since ν(a, b) := r(a, b) − a, it suffices to show

r(λa + λ′a′,b) = λr(a,b) + λ′r(a′,b), r (a, λb) = r (a,b) for λ,λ′ > 0 (10)

But this is just Lemma 1 of Dubey and Sahi (2003), whose proof we now reproduce for the sake of completeness.
First observe that, by the conservation of commodities, r(a, b) ≤ b for all a ≤ b; moreover if a and a′ in S are such that 

a + a′ ≤ b, then Aggregation implies the functional (Cauchy) equation r(a + a′, b) = r(a, b) + r(a′, b).
From Corollary 2 in Aczel and Dhombres (1989) we conclude that, for all non-negative λ and λ′ such that λa + λ′a′ ≤ b, 

the first equality of (10) holds.
Next let a ≤ b and choose λ ≥ 1. Then the argument just given shows that r(λa, λb) = λr(a, λb). On the other hand, 

Invariance implies that the left side equals λr(a, b). Comparing these expressions we obtain the second inequality of (10).
Thus even for a not less than b, we may define r(a, b) via (10) by choosing λ sufficiently large. This extends r to all of 

S × S+ . �
In view of the above result, we drop the restriction a ≤ b when considering ν (a,b).
The net trade vector can have negative and positive components, and hence belongs to Rm . The next definition pertains 

to such vectors in Rm .

Definition 46. By an i-vector, we mean a vector whose ith component is positive and all other components are zero. By an 
ı̄ j-vector we mean a vector that has a negative i-component, a positive j-component and zeros in all other components.

Proposition 47. For b ∈ S+ and any i �= j there is a ∈ S such that ν(a, b) is an ̄ı j-vector.

Proof. Since the graph G underlying the mechanism is connected, there is a directed path from i to j. Denote the nodes 
on the path by i = 1, . . . , t = j. Let w1 be an i-vector which can be offered on edge 12 to get a return w2 �= 0 consisting 
only of commodity 2 (here w2 �= 0 by Non-dissipation); then w2 can be offered on edge 23 to get w3 �= 0 consisting only of 
commodity 3, and so on. This yields a sequence w1, . . . , wt such that

wi + ν
(

wi,b
)

= wi+1 for i = 1, . . . , t − 1

If w = ∑
wi then by Proposition 45 we have

ν (w,b) = ∑
ν

(
wi,b

)
= wt − w1

which is an ı̄ j-vector. �
It will be convenient to write an ı̄ j-vector in the form (−x, y) after suppressing the other components. In the context of 

the above proposition if ν (a,b) = (−x, y) then by linearity ν (a/x,b) = (−1, y/x), and we will say that the offer a (or a/x) 
achieves an i j-exchange ratio of y/x at b.

Proposition 47 shows that there exists at least one offer a to achieve an ı̄ j-vector in trade, at any given b. But a is by 
no means unique. There may be many paths from i to j, along which i can be exchanged exclusively for j; and, also, there 
may be more complicated trading strategies, that use edges no longer confined to any single path, to accomplish such an 
exchange. These could give rise to offers different from a and yield (for the fixed aggregate b) other ı̄ j-vectors in trade. But, 
as the following lemma shows, the same exchange ratio obtains under all circumstances.

Lemma 48. If a′, a′′achieve i j-exchange ratios α′, α′′ at b, then α′ = α′′ .

Proof. By Proposition 47 there exists an a such that ν (a,b) is a j̄i-vector; if α is the corresponding exchange ratio then by 
rescaling a, a′, a′′ we may assume that

ν (a,b) = (1,−α) ,ν
(
a′,b

) = (−1,α′) , ν
(
a′′,b

) = (−1,α′′) .

By Proposition 45 we get

ν
(
a + a′,b

) = (
0,α′ − α

)
Now by Non-dissipation we get α ≤ α′ , and exchanging the roles of i and j we conclude that α′ ≤ α and hence31 that 
α = α′ . Arguing similarly we get α = α′′ and hence that α′ = α′′ �
31 Equivalently: no-arbitrage of subsection 3.1 directly implies that α = α′ .
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Lemma 49. Denote the net trade function of M by ν . Then there is a unique map p: RK++ → Rm++/ ∼ satisfying p(b) · ν(a, b) = 0.

Proof. Fix b ∈ S+ and consider the vector

p = (1, p2, . . . , pm)

where p−1
j is the 1 j-exchange ratio at b, as in Lemma 48. We will show that p satisfies the budget balance condition, i.e.

that

p · ν (a,b) = 0 for all a. (11)

We argue by induction on the number d (a,b) of non-zero components of ν (a,b) in positions 2, . . . , m. If d (a,b) = 0 then 
ν (a,b) = 0 by Non-dissipation (enhanced to no-arbitrage, see Subsection 3.1) and (11) is obvious. If d (a,b) = 1 then ν (a,b)

is either an 1̄ j-vector or a j̄1 vector, which by the definition of p j and Lemma 48 is necessarily of the form(
−x, xp−1

j

)
or

(
x,−xp−1

j

)
;

for such vectors (11) is immediate. Now suppose d (a,b) = d > 1 and fix j such that ν j (a,b) �= 0. Then we can choose a′
such that ν

(
a′,b

)
is a 1̄ j or a j̄1- vector such that ν j (a,b) = −ν j

(
a′,b

)
. It follows that d 

(
a + a′,b

)
< d and by linearity we 

get

p · ν (a,b) = p · ν (
a + a′,b

) − p · ν (
a′,b

)
.

By the inductive hypothesis the right side is zero, hence so is the left side.
Finally the uniqueness of the price function is obvious, because the return function of the mechanism dictates how many 

units of j may be obtained for one unit of i, yielding just one possible candidate for the exchange rate for every pair i j. �
We can now prove Theorem 15

Proof of Theorem 15. (Completion) To prove that M = MG it is enough to show that p and r satisfy (1) and (3).
Let us write, as before,

b =
∑

aα, p = p(b) and ν (a,b) = r(a,b) − a.

Consider replacing trader α by m traders α1, . . . , αm , where trader α j makes only the offers 
{

aα
i j : 1 ≤ i ≤ m

}
in aα that 

entitle α to the return of commodity j. By Aggregation this will have no effect on traders other than α; and hence α j will 
get precisely the return r j(aα, b). By Lemma 49, applied to each such trader α j , we have

p jr j(a
α,b) =

∑
i

pia
α
i j (12)

which is just (3).
Now (1) follows by summing (12) over all α. �

8. A continuum of traders

Our analysis easily extends to the case where the set of individuals T is the unit interval [0,1], endowed with a 
nonatomic population measure.32 Let S denote the collection of all integrable functions a : T �→ S such that 

∫
T a ∈ S+ . 

(An element of S represents a choice of offers by the traders in T which are positive on aggregate.) In the same vein, let R
denote the collection of all integrable functions from T to C , whose elements r : T �→ C represent returns to T . An exchange 
mechanism M , on a given set of m commodities, is a map from S to R such that, if M maps a to r then we have (reflecting 
conservation of commodities):∫

T

a =
∫
T

r

We wrap the Aggregation and Anonymity conditions into one, and directly postulate that the return to any individual 
depends only on his own offer and the integral of everyone’s offers, and that this return function is the same for everyone. 
Thus we have a function r from S × S+ to C such that r(t) = r(a, b), where a = a(t) and b = ∫

T a. The following lemma is 
essentially from Dubey et al. (1980).

32 Denote the measure μ. And since μ is to be held fixed throughout, we may suppress it, abbreviating ∫T f (t)dμ(t) by ∫T f for any measurable function 
f on [0,1].
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Proposition 50. r(a, b) is linear in a (for fixed b) and r(a, λb) = r(a, b) for any a, b and positive scalar λ.

Proof. We will first show that if a, c ∈ S and 0 < λ < 1, then

r(λa + (1 − λ)c,b) = λr(a,b) + (1 − λ)r(c,b)

There clearly exists an integrable map d from T = [0, 1] to space of offers S such that (i) positive mass of traders choose 
a in d; (ii) positive mass of traders choose c in d; and (iii) the integral of d on T is b. So 

∫
T r(dα,b)dμ(α) = ∫

T r(d,b) = b
since commodities are conserved. Shift ελ mass from a to λa + (1 − λ)c and (1 − λ)ε mass from c to λa + (1 − λ)c, letting 
the rest be according to d. This yields a new function (from T to S ) which we call e. Clearly the integral of e on T is also b. 
Therefore, once again by conservation of commodities, we must have 

∫
T r(e,b) = b, hence 

∫
T r(d,b) = ∫

T r(e,b). But this can 
only be true if the displayed equality holds, proving that (every coordinate of) r is affine in a for fixed b.

Now r(0, b) ≥ 0 by assumption. Suppose r(0, b) � 0. Partition T into two non-null sets T1 and T2. Consider the case 
where all the individuals in T1 offer 0, and all in T2 offer b/μ(T2). Then, since everone in T1 gets the return r(0, b) � 0, by 
conservation of commodities everyone in T2 gets b − μ(T1) r(0, b) � b/μ(T2), contradicting non-dissipation. So r(0, b) = 0, 
showing r is linear.

Finally λr(a, b) = r(λa, λb) = λr(a, λb), where the first equality comes from Invariance and the second from linearity. �
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