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Abstract

How much of the spatial distribution of economic activity today is determined by

history rather than by geographic fundamentals? And if history matters for the distri-

bution, does it also matter for the total amount? This paper develops an empirically

tractable theoretical framework that aims to provide answers to these questions. We de-

rive parameter conditions, for arbitrary geographic scenarios, under which equilibrium

transition paths are unique and yet steady states may nevertheless be non-unique —

that is, where initial conditions (“history”) may determine long-run steady-state out-

comes (“path dependence”). We also derive analytical expressions, functions of the

particular geography in question, that provide upper and lower bounds on the aggregate

welfare level that can be sustained in any steady-state. We then estimate the model’s

parameters (which govern the strength of agglomeration externalities and trade and

migration frictions), by focusing on moment conditions that are robust to potential

equilibrium multiplicity, using spatial variation across US counties from 1800 to the

present. Our simulations imply that the location of economic activity in the US today

is highly sensitive to variations geographically local historical shocks, and the analyti-

cal bounds suggest the possibility of larger historical shocks mattering in the long-run.
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Jonathan Eaton and David Nagy, as well as to Rodrigo Adao, Arnaud Costinot, Jonathan Dingel, Gilles
Duranton, Cecile Gaubert, Steve Redding, Stuart Rosenthal, Ivan Werning and many seminar participants,
for comments that improved this paper.
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1 Introduction

Economic activity in modern economies is staggeringly concentrated. For example, almost

20% of value added in the United States is currently produced in just three cities (MSAs)

that take up a mere 1.5% of its land area. But perhaps even more remarkable are the

historical accidents that purportedly determined the location of those same three cities—one

was a Dutch fur trading post, one a pueblo designated by a Spanish governor for an original

22 adult and 22 children settlers, and one a river mouth known to Algonquin residents for

its distinct chicagoua (a wild garlic).

There is no shortage of anecdotes about how the quirks of history have shaped the location

of economic activity. But how widespread should we expect these and similar examples of

path dependence—where initial conditions matter for long-run outcomes—to be in the real-

world economies around us? If the potential for path dependence is widespread, how often

did historical shocks actually matter? If initial conditions matter, do they merely reshuffle

the current location of economic activity? Or does the long arm of history also impact the

total amount of economic activity (and, hence, notions of aggregate welfare) by effectively

concentrating modern agglomerations into fundamentally inferior locations?

In this paper we develop an empirical framework designed to shed light on these ques-

tions. We build on a rich vein of theoretical modeling (as developed in, for example, Fujita,

Krugman, and Venables, 1999) that outlines stylized environments—models with two or

three locations and very little heterogeneity, for example—in which strong agglomeration

spillover effects can give rise to a potential multiplicity of equilibria. From there we set up

a dynamic, overlapping generations model of economic geography with an arbitrary num-

ber of regions separated by arbitrary trading and migration frictions, as well as arbitrary

time-varying locational fundamentals; these features allow us to map the model to empirical

settings in which unobserved heterogeneity is typically substantial. To this basic setup we

add agglomeration spillovers in production and consumption that, if they are sufficiently

strong, can create the possibility for history to matter in determining modern outcomes.

Our main set of theoretical results aim to clarify when path dependence could potentially

occur and quantify how geography constrains its impact. We first characterize a condition

for dynamic equilibria—that is, the transition paths that would take this economy from

any starting point to any presumptive steady-state—to be unique. This condition depends

on two elasticities that promote dispersion (cross-locational elasticities of substitution in

consumption and in migration decisions). It also hinges on the strength of two elasticities

that govern contemporaneous agglomeration because the local attractiveness of a location

at any point in time can potentially rise (due to local amenity and productivity spillovers),
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if these elasticities are strong, because of the presence of other workers in that location at

that same point in time. As long as the agglomeration elasticities are not especially large,

the dynamic paths of our economy will be unique for any path of geographic fundamentals.

However, even if these dynamic equilibria are unique, there may still exist multiple steady-

state equilibria. Our second result clarifies that this can occur in a model such as ours only for

sufficiently large values of a different source of agglomeration externalities—ones that work

historically, whereby a location’s productivity and amenity values might be functions of that

location’s lagged population level. These effects may capture both the accumulation of local

knowledge (either productive or cultural), as well as the enduring payoffs from investments

that previous generations may have made in a location’s productivity (e.g. through improved

roads, or the demarcation of property rights) or in a location’s amenity appeal (e.g. through

earmarking land for parks, or the discovery of an enjoyable climate).

When contemporaneous spillovers are relatively low, and yet historical spillovers are

relatively high, dynamic paths will be unique but steady-states have the possibility to exhibit

multiplicity. And this will be true for any arbitrary (time path of) geographic fundamentals.

In this parameter range, we say that our economy could exhibit path dependence, because

the economy’s initial conditions—such as the distribution of economic activity in some early

starting period, or long-irrelevant productivity shocks—may have an impact on the long-run

steady-state in which the economy will end up. This parameter condition is also a necessary

condition for steady-state multiplicity in a range of particular geographic scenarios, so it is

the weakest geography-invariant condition for uniqueness that could be expected to hold.

In such a setting, steady-states are rankable in terms of aggregate welfare (so it is possible

that unfortunate initial conditions could lead the economy to a particularly inferior steady-

state). Our third theoretical result provides analytical upper and lower bounds, as a function

of the underlying geography, on the aggregate welfare attainable across all possible steady

states. These bounds are the product of four statistics, each of which captures one component

of the underlying geography: the strength of the agglomeration forces, the cost of moving

people, the cost of moving goods, the spatial variance of payoffs. Moreover, we show the

ratio of the upper and lower bounds provides a limit on the extent to which history matters,

which itself has a simple interpretation as the extent to which the underlying geography can

sustain multiple equilibria.

In summary, this model exhibits the potential for rich and yet also well-behaved path-

dependent dynamics. Whether such possibilities can obtain hinges on six elasticities: two

dispersion parameters (the elasticities of trade and migration responses to payoffs), two

contemporaneous spillover parameters (for production and amenities), and two historical

spillover parameters (again, one for each of production and amenities).
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We then set out in Section 3 to estimate these six parameters from a unique dataset

on the long-run spatial history of the United States which allows us to trace local (county-

level) incomes, populations, and migration flows back several centuries (to 1800) when the

US Census began in full force. This estimation strategy uses trade and migration equations

to infer, via market clearing conditions, the apparent attractiveness of each location-year

as an origin and a destination for both trade and migration. Further, the logic of our

contemporaneous and historical spillover effects suggests that these terms should be related

to local contemporaneous and historical scale—and it is these expressions that provide simple

2SLS identifying moments for our estimation strategy.

Because of inevitable endogeneity in these equations we draw on an instrumental variables

strategy that is based on the model’s insight that other locations’ geographic shifters of

productivity (such as soil and elevation) or amenities (such as January temperature) should

not affect any given location’s own productivity or amenity values directly, after controlling

for the location’s own value of these shifters. We use this idea, together with the time

variation driven by initial conditions and the spread of population predicted by the model,

to estimate the six parameters referred to above. Importantly, this logic, and all of our

moment conditions, are valid regardless of the potential for multiplicity (in dynamic paths,

or steady-states) in our economy—so the usual concerns about models with non-uniqueness

lacking invertibility of the mapping from data to model parameters do not arise.

Our elasticity estimates imply that the conditions for potential path dependence de-

scribed above are indeed satisfied (though they are very close to the boundary identified in

Propositions 1 and 2). The remaining simulation exercises in Section 4 then go beyond this

qualitative result in order to assess the quantitative significance of potential path depen-

dence. We do this by randomly reassigning the geographical incidence of various shocks to

different locations—essentially, by swapping pairs of historical conditions from one location

to another among pairs of locations in clusters based on similar (in a multivariate sense)

geographic characteristics.

Our counterfactual simulations shock the transition path (in terms of productivity fun-

damentals) between 1850 and 2000 by reassigning shocks, within geographic clusters, in 1900

and 1950. Throughout, we hold initial conditions (population levels in 1800 and fundamen-

tals in 1850) constant at their values seen in the actual data. Shocks in 2000 are held similarly

constant. This implies that any differences seen in 2000 are only due to the persistent effects

of long-redundant shocks, but those differences can be substantial. In particular, not only is

the distribution of population in 2000 highly variable across our simulations and the spread

of aggregate welfare levels in 2000 across our simulations is wide. While the simulations

converge to the same steady state, they do so slowly, so that even in the year 3000 they
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continue to have modest impacts on aggregate welfare. And our analytical bounds suggest

that no other steady state offers more than 50 percent higher welfare than that to which the

economy is converging.

These results shed new light on both theoretical and empirical studies of economic ge-

ography that have aimed to speak to the phenomenon of path dependence. An important

empirical literature has sought to estimate some of the ingredients of path dependence that

our Propositions 1 and 2 identify. In particular, Dekle and Eaton (1999), Ellison, Glaeser,

and Kerr (2010), Greenstone, Hornbeck, and Moretti (2010), Kline and Moretti (2014) and

Ahlfeldt, Redding, Sturm, and Wolf (2015) all estimate the local agglomeration spillover

effects of contemporaneous populations onto productivity and amenities. We are not aware,

by contrast, of any papers that estimate both the historical and contemporaneous elastic-

ities (effects which are highly correlated and hence difficult to disentangle) as we do here,

and as our theoretical results highlight are independently important for the study of path

dependence in these environments.

A separate empirical literature has focused on the search for direct evidence of path

dependence itself. For example, Davis and Weinstein (2002) document the persistence of

economic geography across locations in Japan over several millennia, including in response

to the displacement and destruction of the second World War. However, evidence from

destruction elsewhere suggests the empirical context may matter for whether or not path

dependence can occur, as Bosker, Brakman, Garretsen, and Schramm (2007) find evidence

of multiple spatial equilibria in Germany after World War II, and Michaels and Rauch (2018)

in England after the fall of the Roman Empire, while persistence was confirmed in Vietnam by

Miguel and Roland (2011).1 More recently, Bleakley and Lin (2012) describe the propensity

for US cities today to be located at portage sites, locations with temporarily high demand for

labor (due to waterway transshipment and other services) in about 1800—and this seems to

be strong evidence for path dependence in that context. Propositions 1 and 2 of our theory

characterize the conditions on parameter values under which such divergent experiences with

path dependence could both arise.

Just because path dependence may exist in a particular context does not necessarily

imply that it is economically relevant at an aggregate level, since differing steady-states may

be associated with similar or even identical welfare levels. To our knowledge, Proposition 3

offers the first analytical relationship between the welfare implications of path dependence

and the underlying geography. We note that the tools used to establish this result may prove

1A separate literature has examined path dependence at the industry-level, with Davis and Weinstein
(2008) documenting persistence at the city-industry level for manufacturing industries in Japan and Redding,
Sturm, and Wolf (2011) uncovering evidence for multiple long-run steady-states in the case of airline hubs
in the division and reunification of Germany.
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helpful in other contexts in which multiplicity of equilibria are possible.

On the theory side, we draw on the insights of a theoretical literature that pioneered

the understanding of the full dynamics of path-dependent geographic settings. Krugman

(1991), Matsuyama (1991), and Rauch (1993), for example, developed models with two

locations and infinitely-lived agents (with timing assumptions that meant that each agent

made one locational decision at the start of her life, or at an an otherwise exogenously

specified time). As fully elucidated in Ottaviano (1999), the dynamics of equilibrium paths

(which includes those “sunspot”-like equilibria in which multiplicity derives purely from self-

fulfilling expectations) in such settings are dauntingly complex, and would leave effectively

no empirical predictability (or scope for parameter estimation) since at any point in time

equilibria exhibit true multiplicity, with no mapping from parameters to data or vice versa.

Counterfactual simulations in such models are similarly challenging due to indeterminacy.

Herrendorf, Valentinyi, and Waldmann (2000) add agent-specific heterogeneity to such a

model and reduce the range of parameter values under which extreme multiplicity does not

arise, but the small number of regions and the symmetric conditions placed on those regions’

fundamental conditions, in the cross-section and over time, make them unsuited to direct

empirical analysis so we have endeavored to extract the core lessons of these setups and

adapt them to our more empirical framework.

Finally, we build on recent work on quantitative economic geography models such as the

static environments of Roback (1982), Glaeser (2008), Allen and Arkolakis (2014), Ahlfeldt,

Redding, Sturm, and Wolf (2015)—summarized and synthesized in the Redding and Rossi-

Hansberg (2017) review article—as well as the recent dynamic models of Desmet, Nagy,

and Rossi-Hansberg (2018), Caliendo, Dvorkin, and Parro (2015), and Nagy (2017). Our

advance is to extend these tools in order to facilitate the explicit study of geographic path

dependence, to estimate, in the case of 200 years of US economic geography, the six key

elasticities that our extended framework highlights as essential for such a theme, and then

to apply the resulting estimates to counterfactual simulations about the consequentiality of

path dependence for the location and aggregate efficiency of economic activity in the US

today.

2 Theoretical framework

In this section we develop a dynamic economic geography model that is amenable to the em-

pirical study of geographic path dependence throughout US history. A large set of regions

possess arbitrary, time-varying fundamentals in terms of productivity and amenities. They

interact in product markets that interact with one another via (costly) trade in goods, and
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in labor markets that interact with one another via (costly) migration. Crucially, produc-

tion and consumption both potentially involve contemporary and historical non-pecuniary

spillovers—the force for potential local agglomeration externalities, and hence path depen-

dence. We now describe each of these ingredients in turn.

2.1 Setup

There are i ∈ {1, ..., N} locations and time is discrete and indexed by t ∈ {0, 1, ....}. Each

individual lives for two periods. In the first period (“childhood”), an individual is born where

her parent lives and chooses where to live as an adult. In the second period (“adulthood”),

an individual supplies a unit of labor inelastically to produce in the location in which she

lives, consumes, and then gives birth to a child. Let Lit denote the number of workers

(adults) residing in location i at time t, where the total number of workers
∑N

i=1 Lit = L̄, is

normalized to a constant in each period t.2 The population in time t = 0, {Li0}, is given

exogenously.

2.1.1 Production

Each location i is capable of producing a unique good—the Armington (1969) assumption.

A continuum of firms (indexed by ω) in location i produce this homogeneous good un-

der perfectly competitive conditions with the following constant returns-to-scale production

function

qit(ω) = Aitlit(ω)

where labor lit(ω) is the only production input, and hence
´
lit(ω)dω = Lit. The productivity

level for the location, Ait, is given by

Ait = ĀitL
α1
it L

α2
it−1 (1)

where Āit is the exogenous (but unrestricted) component of this location’s productivity in

year t. Importantly, the two additional components of a location’s productivity depend on

the number of workers in that location in the current period, Lit, and in the previous period,

Lit−1. We assume that firms take these aggregate labor quantities as given. Hence the

parameter α1 governs the strength of any potential (positive or negative) contemporaneous

agglomeration externalities working through the size of local production. This is a simple

2Our model economy exhibits a form of scale-invariance that means that, for the purposes of our analysis
here, the total number of workers in any time period is irrelevant.
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way of capturing Marshallian externalities, external economies of scale, knowledge transfers,

thick market effects in output or input markets, and the like. The presence of the term

Lα1
it is standard in many approaches to modeling spatial economies, albeit typically in static

models that would combine effects of Lit and Lit−1.

The parameter α2, on the other hand, governs the strength of potential historical agglom-

eration externalities. This allows for the possibility that two cities with equal fundamentals

Āit and sizes Lit today might feature different productivity levels Ait today because they

had differing sizes Lit−1 in the past. There are many potential reasons that one might ex-

pect α2 > 0, and we describe two such sets of microfoundations briefly here (with complete

derivations in Appendix (B.1)).

Consider first the potential persistence of local knowledge. In particular, we present a

model based on Deneckere and Judd (1992), where firms can incur a fixed cost to develop a

new variety, for which they earn monopolistic profits for a single period. In the subsequent

period, the blueprint for the product becomes common knowledge so that the variety is

produced under perfect competition, and we assume the product fully depreciates two periods

after its creation. As in Krugman (1980), the equilibrium number of new varieties will be

proportional to the contemporaneous local population. Given consumers’ love of variety,

new varieties act isomorphically to an increase in the productivity of the single Armington

product, resulting in the precise form of equation (1) with α1 ≡ χ
ρ−1

and α2 ≡ 1−χ
ρ−1

, where

χ is the expenditure share on all new varieties and ρ is the elasticity of substitution across

individual varieties.

Second, consider the potential for durable investments in local productivity. In particular,

we present a model based on Desmet and Rossi-Hansberg (2014), where firms hire workers

to both produce and to innovate, where innovation increases each firm’s own productivity

contemporaneously and increases all firm’s productivity in the subsequent period. If firms

earn zero profits in equilibrium due to competitive bidding over a fixed factor (e.g. land),

then as in Desmet and Rossi-Hansberg (2014), the dynamic problem of the firm simplifies to

a sequence of static profit-maximizing problems. With Cobb-Douglas production functions,

equilibrium productivity can be written as equation (1) with α1 ≡ γ1
ξ
−(1− µ), and α2 ≡ δ γ1

ξ
,

where γ1 governs the decreasing return of innovation to productivity, ξ governs the decreasing

returns of labor in innovation, δ is the depreciation of investment, and µ is the share of labor

in the production function.

Of course, there may be other microfoundations that generate the productivity spillovers

assumed in equation (1). In what follows, we characterize the properties of the model and

estimate the strength of the spillovers without taking a stand on any particular microfoun-

dation.
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2.1.2 Consumption

Adults are the only consumers, and we assume that they care only about their own con-

sumption.3 They have constant elasticity of substitution (CES) preferences, with elasticity

σ, across the differentiated goods that each location can produce. Letting wit denote the

equilibrium nominal wage, and letting Pit be the price index (solved for below), the determin-

istic component of welfare—that is, welfare up to an idiosyncratic shock that we introduce

below—of any adult residing in location i at time t is given by

Wit ≡ uit ·
(
wit
Pit

)
,

where the term uit refers to a location-specific amenity shifter that is given by

uit = ūitL
β1
it L

β2
it−1. (2)

The term ūit allows for flexible exogenous amenity offerings in any location and time period.

Endogenous amenities work analogously to the production externality terms (governed by

the elasticities α1 and α2) introduced above, with the parameters β1 and β2 here capturing

the potential for the presence of other adults in a location to directly affect (either positively

or negatively, depending on the sign of β1 and β2) the utility of any given resident. We

assume that consumers take these terms as given, just as they take factor and goods prices

as given, when making decisions.

As is well understood, a natural source of a negative value for β1 in a model such as

this one is the possibility of local congestion forces that are not directly modeled here; for

example, if non-tradable goods (such as housing and land) are in fixed supply locally and

are demanded in fixed (that is, Cobb-Douglas) proportions then −β1 would equal the share

of expenditure spent on such goods. These effects would work contemporaneously, so they

would govern β1.

As with α2, the parameter β2 captures forces by which the historical population Lit−1

affects the utility of residents in year t directly (that is, other than through productivity,

wages, prices, or current population levels). Again it seems potentially important to allow for

such effects given the likelihood that previous generations of residents may leave a durable

impact, positive or negative, on their former locations of residence. Positive impacts could

include the construction of infrastructure (e.g. parks, sewers, or housing), and negative

impacts could include environmental damage or resource depletion.

3If children consumed a fixed fraction of their parents’ consumption amounts then allowance for consump-
tion in childhood would simply scale up all consumption amounts in our analysis proportionally.
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It is straightforward to construct a model that generates exactly the specification of

equation (2) for amenities. We sketch such a microfoundation here, and present the complete

set of derivations in Appendix B.2. We consider a model where agents consume both a

tradable good and local housing, and each unit of land is owned by a real estate developer who

bids for the rights to develop the land and then chooses the amount of housing to construct.

To build housing, the developer combines local labor and the (depreciated) housing stock

from the previous period. We assume the bidding process ensures developers earn zero profits,

so as in Desmet and Rossi-Hansberg (2014) the dynamic problem of how much housing

to construct simplifies into a series of static profit maximizing decisions. In equilibrium,

the higher the contemporaneous population, the lower the utility of local residents (as the

residents consume less housing), whereas the higher the population in the previous period,

the higher the utility of local residents (as more workers in the previous period results in a

greater housing stock today). In particular, with Cobb-Douglas production functions (with

the share of old housing given by µ), and preferences (with a share 1− λ spent on housing)

β1 = −µ1−λ
λ
< 0 and β2 = ρµ1−λ

λ
> 0, where µ is the fraction of expenditure on the existing

housing stock in the housing production function, λ is the fraction of expenditure spent on

tradable goods, and ρ is the depreciation rate of the housing stock.

As with the productivity spillovers, we emphasize that there may be other microfounda-

tions that also generate the amenity spillovers assumed in equation (2). In in what follows,

there is no need to pursue any one particular microfoundation.

2.1.3 Trade

Bilateral trade from location i to location j incurs an exogenous iceberg trade cost, τijt ≥ 1

(where τijt = 1 corresponds to frictionless trade). Given this, bilateral trade flows take on

the well-known gravity form given by

Xijt = τ 1−σ
ijt

(
wit
Ait

)1−σ

P σ−1
jt wjtLjt, (3)

where Pit ≡
(∑N

k=1

(
τki

wkt
Akt

)1−σ
) 1

1−σ

is the CES price index referred to above.

2.1.4 Migration

Recall from the discussion of timing above that Ljt−1 adults reside in location j at time t−1,

and they have one child each. Those children choose at the beginning of period t—as they

pass into adulthood––where they want to live as adults in order to maximize their welfare.
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As described above, adults who reside in a location j will enjoy a deterministic component

of utility given by Wjt in equilibrium. Similarly to costs of trading, we allow for finite bilateral

impediments to migration µijt ≥ 1 (with frictionless migration denoted by µijt = 1), which

act like utility-shifters conditional on migrating from i to j. This means that the deterministic

utility for a migrant who moves from location i to location j is
Wjt

µijt
. However, we also allow

for idiosyncratic unobserved heterogeneity in how each child will value living in each location

j in adulthood. Letting the vector of such idiosyncratic taste differences be denoted by ~ε,

the actual welfare of a child who receives the draw ~ε while living in location i in time t− 1

who chooses to move to location j as an adult is:

Wijt (~ε) ≡ Wjt

µijt
εj, (4)

so the particular shock for location j, denoted by εj, simply scales up or down the determin-

istic component of utility,
Wjt

µijt
. Hence, a child chooses:

max
j
Wijt (~ε) = max

j

Wjt

µijt
εj

We further assume that ~ε is drawn independently from an extreme-value (Frechet) distri-

bution with shape parameter θ (and a set of location parameters that we normalize to one

without loss of generality). The number of children in location i in time t− 1 who choose to

move to location j in time t, Lijt, is then given by:

Lijt =
(Wjt/µijt)

θ∑N
k=1 (Wkt/µikt)

θ
Lit−1. (5)

For future reference, we note that the expected utility of a child location in location i in time

t− 1 prior to realizing their idiosyncratic shocks ~ε, which we denote by Πit, is:

Πit ≡ E
[
max
j
Wijt (~ε)

]
=

(
N∑
k=1

(Wkt/µikt)
θ

) 1
θ

. (6)

So, summarizing, we can write bilateral migration flows in the gravity equation form as

Lijt = µ−θijtΠ
−θ
it Lit−1W

θ
jt, (7)

where we expect higher migration into destination locations j with high destination welfare

Wjt, out of origin locations i that either have a lot of residents Lit−1 or poor expected utility

at birth Πit or both, and among pairs for which bilateral migration costs µijt are low.
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2.2 Dynamic Equilibrium

An equilibrium in this dynamic economy is a sequence of values of prices and allocations

such that goods and factor markets clear in all periods. More formally, for any initial

population vector {Li0} and geography vector
{
Āit, ūit, τijt, µijt

}
, an equilibrium is a vector

of endogenous variables {Lit, wit,Wit,Πit} such that, for all locations i and time periods t,

we have:

1. Total sales are equal to payments to labor: That is, a location’s income is equal to the

value of all locations’ purchases from it, or witLit =
∑

j Xijt. Using equation (3) this

can be written as

wσitL
1−α(σ−1)
it =

∑
j

KijtL
β(σ−1)
jt W 1−σ

jt wσjtLjt, (8)

with Kijt ≡
(

τij

ĀitL
α2
it−1ūjtL

β2
jt−1

)1−σ

defined as a collection of terms that are either exoge-

nous, or predetermined from the perspective of period t.

2. Trade is balanced: That is, a location’s income is fully spent on goods from all locations,

or witLit =
∑

j Xjit. Using equation (3) this can be written as

w1−σ
it L

β1(1−σ)
it W σ−1

it =
∑
j

KjitL
α1(σ−1)
jt w1−σ

jt . (9)

3. The total population is equal to the population arriving in a location: That is, Lit =∑
j Ljit. From equation (7) this implies

LitW
−θ
it =

∑
j

µ−θjitΠ
−θ
jt Ljt−1. (10)

4. The total population in the previous period is equal to the number of people exiting a

location: That is, Lit−1 =
∑

j Lijt. From equation (7) this can be written as

Lit−1 =
∑
j

µ−θijtΠ
−θ
it Lit−1W

θ
jt,

which can then be written more compactly as

Πθ
it ≡

∑
j

µ−θijtW
θ
jt. (11)
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Summarizing, the dynamic equilibrium can be represented as the system of 4 × N × T

equations (in equations 8-11) in 4×N × T unknowns, {Lit, wit,Wit,Πit}.
This system of equations (8)-(11) comprises a high-dimensional nonlinear dynamic sys-

tem whose analysis can prove challenging. But this task is facilitated by the fact that the

system is a collection of additive power equations, where each of the endogenous variables

{Lit, wit,Wit,Πit} appears, on either the left-hand or right-hand side, to a particular fixed

power, with weights in the system given by an exogenous “kernel” term that comprises vari-

ables that are either exogenous or pre-determined from the perspective of period t (Kijt in

equations 8 and 9, and µ−θijt in equations 10 and 11). This means that the solution of each

cross-sectional system for t, given values of Kijt and hence solutions from the previous period

t− 1, can be solved using the methods in Allen, Arkolakis, and Li (2015). In this manner, a

dynamic path can be characterized by understanding a sequence of linked dynamic problems.

Towards this goal, we define the matrix:

A (α1, β1) ≡

∣∣∣ θ(1+α1σ+β1(σ−1))−(σ−1)
σ+θ(1+(1−σ)α1−β1σ)

∣∣∣ ∣∣∣ (σ−1)(α1+1)
σ+θ(1+(1−σ)α1−β1σ)

∣∣∣∣∣∣ θ/σ̃
σ+θ(1+(1−σ)α1−β1σ)

∣∣∣ ∣∣∣ θ(1−(σ−1)α1−β1σ)
σ+θ(1+(1−σ)α1−β1σ)

∣∣∣
 , (12)

where σ̃ ≡ σ−1
2σ−1

. Given this definition, the following result characterizes a sufficient condition

for existence and uniqueness for environments with symmetric trade costs (and unrestricted

migration costs) and arbitrary positive geographic fundamentals.

Proposition 1. For any initial population {Li0} and geography
{
Āit > 0, ūit > 0, τijt = τjit, µijt > 0

}
,

there exists an equilibrium. The equilibrium is unique if ρ (A (α1, β1)) ≤ 1, where ρ(·) de-

notes the spectral radius operator.

Proof. See Section A.1.

We note that this sufficient condition for uniqueness will be satisfied whenever α1 and

β1 are sufficiently small. Figure 1 illustrates this condition for two particular values of σ

and θ, values at which the sufficient condition of ρ (A (α1, β1)) ≤ 1 is well approximated by

the simple relation of α1 + β1 ≤ 0. Finally, we note that this result concerning uniqueness

of the dynamic equilibrium does not depend on the values of α2 and β2, since the current

generation takes Lit−1 as given.

2.3 Steady-State

Our discussion of path dependence rests on the consideration of the various potential steady-

states of this model economy. Intuitively, if local agglomeration economies are strong
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enough then there could be multiple allocations at which the economy would be in steady-

state—agents who happen to come to reside in a location could find it optimal, on average,

to stay there thanks to the reinforcing logic of local positive spillovers.

To evaluate this possibility we consider a version of the above economy but for which

the potentially time-varying fundamentals
{
Āit
}

and {ūit} and trade {τijt} and migration

{µijt} costs are held constant over time at the values
{
Āi, ūi, τij, µij

}
. The steady-states of

our economy will therefore be a set of time-invariant endogenous variables that we denote

by {Li, wi,Wi,Πi}.4 The following result, analogous to Proposition 1, provides a sufficient

condition for existence and uniqueness of the steady-state of this economy (for arbitrary

geographies with symmetric trade and migration costs). It also shows how this is a “maximal

domain” sufficient condition—the weakest one could impose that would be true for any

geographic fundamentals.

Proposition 2. For any time-invariant geography
{
Āi > 0, ūi > 0, τij = τji, µij = µji

}
, there

exists a steady-state equilibrium and that equilibrium is unique if ρ (A (α1 + α2, β1 + β2)) ≤
1. Moreover, if ρ (A (α1 + α2, β1 + β2)) > 1, there exist many geographies for which there

are multiple steady states.

Proof. See Section A.2.

The condition for uniqueness of the steady-state in Proposition 2 is similar to that for

uniqueness of transition paths in Proposition 1. The only difference is that the latter condi-

tion depends on the size of contemporaneous spillovers α1 and β1, whereas the latter condition

depends on the size of total (that is, contemporaneous plus historical) spillovers α1 +α2 and

β1 +β2. The last part of Proposition 2 demonstrates that the sufficient condition for unique-

ness is indeed necessary for certain geographies, i.e. it is the weakest geography-independent

sufficient condition for uniqueness one can provide.

Combining Propositions 1 and 2, we see that what matters for the potential multiplicity of

steady-states (and hence the potential for initial conditions or temporary shocks to affect the

steady-state that obtains – or equivalently, for path dependence to occur) is the values of α2

and β2. If these historical spillover parameters are large then it is likely for path dependence

to occur. Further, if the values of α1 and β1 are low then dynamic equilibrium paths will be

unique. In this range of parameters (that is, with relatively small α1 and β1 and yet relatively

large α2 and β2) path dependence will both exist and be straightforward to study, since

the complications of genuine multiplicity for estimation, computation, and interpretation of

counterfactuals do not arise. We think of this as well-behaved path dependence.

4Note that while population levels at each location, Li, will be constant in steady-state, and hence net
migration flows are zero, gross migration flows will still be positive in steady-state equilibrium due to the
churn induced by idiosyncratic locational preferences in equation 4.
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Before discussing path dependence further, it is useful to point out two features that will

obtain in any steady-state equilibrium. First, as one might suspect, a notion of welfare is

equalized across locations in steady-state—otherwise, surely gross migration flows, induced

by any spatial welfare arbitrage opportunities, would not be zero. The notion of welfare that

is constant across locations is Ω ≡ E [maxj (WjΠjεj)], the expectation (across the random

draws of idiosyncratic preferences in equation 4) of the maximum welfare that an agent can

achieve when she has no particular attachment to any location. Recall that the welfare

an agent can expect to achieve, conditional on living in location i, is E
[
maxj

Wj

µij
εj

]
. The

essence of the steady-state version of this is to replace the term 1/µij (the relevant penalty

that an agent living in i must pay to get to j and enjoy Wjεj there) with the term Πj (which

is the appropriate weighted average of costs of getting from any location to j). A simple

calculation shows that

Ω = WiΠiL
− 1
θ

i ∀i ∈ {1, ..., N} ,

which includes the term L
− 1
θ

i to account for the fact that, in equilibrium, a heavily populated

location must have an average number of residents there who had relatively unfavorable

idiosyncratic draws, so their average welfare is lower than otherwise.

A second feature of the steady-state is useful for fixing intuition. Algebraic manipulations

of equations of the steady-state versions of equations (8)-(11) imply that the equilibrium

steady state distribution of population can be written as:

γ lnLi = C + (1− σ̃) ln ūi + σ̃ ln Āi + (1− σ̃) ln Πi − lnPi, (13)

where γ ≡ 1
θ

(1− σ̃) − σ̃
σ−1
− (σ̃ + 1) (β1 + β2) + σ̃ (α1 + α2) . This implies that a greater

density of residents can be found, in any steady-state equilibrium, in locations with high

productivity Āi, high amenities ūi, high access to migration destinations Πi, and high access

to imported goods (low Pi), and the elasticities of these characteristics are governed by the

strength of the key spillover elasticities (α1, α2,β1 and β2) via the combined parameter γ.

Of course, while the first two of these determinants of population density, Āi and ūi, are

exogenous in our model, the latter two determinants, Πi and Pi, are endogenous and involve

endogenous features of all other locations. It is the self-reinforcing potential of those cross-

location interactions that leads to the possibility of multiple steady-states and hence multiple

vectors of {Li} that would satisfy the system in equation (13).

Finally, we provide a relationship between the geography of the world and steady state

welfare Ω when multiple steady states (i.e. path dependence) are possible:

Proposition 3. Consider any time-invariant geography
{
Āi > 0, ūi > 0, τij = τji, µij = µji

}
and suppose that ρ ≡ α1 + α2 + β1 + β2 ≥ 0 so that multiple steady states may exist. Then

15



the equilibrium welfare values Ω across all steady states are bounded by:

Ω ≤ Ω ≤ Ω̄,

where the upper bound is given by:

Ω̄ ≡ c1λ̄
1
θ
M λ̄

1
σ−1

T L̄(ρ− 1
θ )

and the lower bound is given by:

Ω ≡ c2λ
1
θ
Mλ

1
σ−1

T

(
L̄

N

)ρ
,

λ̄M and λM are the maximal and minimal eigenvalues (by moduli) of the migration matrix

M ≡
[
µ−θij
]
, λ̄T and λT are the maximal and minimal eigenvalues (by moduli) of the trade

matrix T ≡
[
τ 1−σ
ij Ā

(σ−1)σ̃
i Āσ̃σj ū

σ̃
i ū

(σ−1)σ̃
j

]
, and c1 and c2 are constants (defined in Section A.3)

that capture the variation in location-specific welfare Wi across locations and are equal to

one if Wi = W for all i ∈ S. A sufficient condition for this equalization of welfare is that∑
l

µ−θil
µ−θjl

is constant for all i, j ∈ S).

Proof. See Section A.3.

As the example below illustrates, when the presence of agglomeration forces results in

multiple steady states, different initial conditions may lead to different steady states with

different associated levels of welfare. As a result, each geography may be associated with

multiple levels of potential steady-state aggregate welfare; formally, the function mapping

geography to aggregate welfare Ω is multivalued. Proposition 3 deals with this by provid-

ing both lower and upper bounds to all levels of steady state welfare possible for a given

geography.

The bounds offered by Proposition 3 provide an intuitive explanation for how geography

can matter for welfare. The upper bound is simply the product of four terms: the largest

eigenvalue (i.e. the spectral radius) of the migration matrix (scaled appropriately by the

migration elasticity), the largest eigenvalue of the trade matrix (scaled appropriately by the

trade elasticity), the total labor endowment (scaled by the strength of the net agglomerative

forces ρ), and a term capturing the variation across locations in Wi. The spectral radius of the

migration matrix will be greater the lower the migration costs, while the spectral radius of the

trade matrix will be greater the lower the trade costs, the higher the fundamental amenities,

or the higher the fundamental productivities. Finally, the presence of net agglomeration

forces ρ means that the upper bound is increasing with the aggregate labor endowment. The
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lower bound includes very similar terms to the upper bound, except that the eigenvalues

are now the smallest (in absolute value) of the trade and migration matrix rather than the

largest, and the effect of the net agglomerative forces ρ depends on the aggregate labor

endowment per location (rather than the total labor endowment).5

By providing bounds on the welfare of all possible steady states as a function of the un-

derlying geography, Proposition 3 offers limits on the extent to which path dependence could

matter for welfare in the long run. This is helpful when the curse of dimensionality makes

it too difficult to calculate all possible steady states that could arise over the N -dimensional

space of initial populations {Li0}, as seems likely in many applications including ours. In

particular, if we define Ω̂PD to be the upper bound of the welfare cost of path dependence –

i.e. the best possible steady state welfare for a given geography divided by the worst possible

steady state welfare for that geography – then the welfare cost of path dependence is bounded

above by the ratio of the upper bound to the lower bound. Proposition 3 immediately implies:

Ω̂PD ≤ c1

c2

κ (M)
1
θ κ (T)

1
σ−1 NρL̄−

1
θ , (14)

where κ (A) is the condition number of matrix A. Recall that the condition number of a

matrix measures how close that matrix is to being singular (where κ (A) = 1 only if A is a

scalar multiple of a linear isometry and κ (A) =∞ only if A is singular). Loosely speaking,

equation (14) says that the welfare cost of path dependence is bounded above by the extent

to which the underlying geography can support multiplicity.

We note that the upper and lower bounds provided here may not necessarily be tight for

a given geography. This is clear from the nature of equation (14), which serves to decompose

the sources of welfare variation across multiple steady-states into four different terms—that

due to spatial dispersion in locational welfare Wi that drives c1
c2

; that due to the geography of

migration costs in M; that due to the geography of productivity, amenities and trade costs

in T; and that due to scale economies in Nρ. Steady-state welfare levels are driven by the

combination of each of these four forces, and so no attempt to divide them up into separate

contributions, as in equation (14), could ever provide tight bounds in general.

An illustrative special case arises if we have a set of locations with symmetric fundamen-

5Note too that the upper bound subtracts from the the net agglomerative force 1
θ whereas the lower

bound does not. Loosely speaking, the strongest agglomerative force occurs when all the labor endowment
is in a single location, which comes at the cost of placing individuals in that location that have idiosyncratic
preferences for elsewhere (hence the subtraction of 1

θ ); conversely, the weakest agglomerative force occurs
when the labor is equally spread across all locations, in which case individuals can sort according to their
idiosyncratic preferences which is why the lower bound depends on L̄

N but the agglomerative force is not
reduced by 1

θ .
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tals (Aiui constant across i) and both goods and labor market autarky.6 In this geography,

κ (M) = κ (T) = 1, and any allocation of population to locations would be a steady-state.

With scale economies (ρ > 0), aggregate welfare Ω would be maximized if the population

allocation happened to concentrate people in one location, and would be minimized if people

were spread out evenly; and in this case the range of such possibilities is captured exactly

by Ω̂PD in equation (14), so the bounds are tight. Equally, without scale economies (ρ = 0)

aggregate welfare is equalized across any steady-state, so Ω̂PD = 1 naturally.

2.4 A path dependence example

To see the logic of path dependence in this model more concretely, consider a simple example

of three locations. Suppose, to begin, that these locations have identical and time-invariant

geographies
{
Āit, ūit, τijt, µijt

}
, and trade and migration costs are symmetric across locations.

Figure 2 shows the phase diagram on the two-dimensional phase space of Lit shares in this

economy. To interpret these figures, note that each red dot has associated with it a blue ray;

the direction of the ray illustrates the direction to which the system dynamics move towards

the red dot, and the length of the ray conveys the speed with which those dynamics take

place.

We begin in panel (a) with a setting in which the spillover parameters (α1, β1, α2 and β2)

are all zero. Naturally, this symmetric economy with no spillovers has a unique steady-state,

and this steady-state is located at the center of the simplex because of symmetry. Panels

(b) through (f) then increase α2 but keep all other parameters in the economy constant.

At α2 = 0.1 this increase in α2 has no apparent qualitative impact on the dynamics of the

economy. But at α2 = 0.2 we see a dramatic change. The central location, a unique and

stable steady-state when α2 = 0.1, is still a steady-state but it is no longer stable (all dynamic

rays near that central point lead away from it). And, further, this steady-state is no longer

unique—six additional steady-states have emerged, three stable steady states with relatively

concentrated population shares (the corners of the simplex) in a single location, and three

unstable steady states with equal concentration in two of the three locations (and almost no

population in the third). As we increase α2 even further this basic picture doesn’t change,

though speeds of convergence to steady-state do increase. One final thing to note in this

example is that each steady-state will be surrounded by points that will map dynamically

to it. The locus of such points around any steady-state comprise its basin of attraction.

In this symmetric case, the three symmetric, stable steady-states have symmetric basins

of attraction that partition the space of all possible starting points in the simplex. (The

6Note that this special case, and only this special case, violates our earlier requirement that migration
costs be finite.
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unstable steady-states, of course, have no basin of attraction.)

Now consider the same example but with asymmetric fundamentals. Suppose that loca-

tion 2 has worse fundamental amenity value ūi than do the other two regions. When α2 = 0,

as shown in Figure 3, the steady-state is again unique and relatively central, just as with the

previous symmetric example. But the difference now is that the asymmetric fundamentals

(the relative unattractiveness of location 2 in terms of fundamentals) have shifted the loca-

tion of that unique steady-state—intuitively, it is shifted in the direction of the location 2

axis of the simplex, implying less population at location 2 in steady-state. As we increase α2

from 0 to 0.5 in panels (a) to (f) we see behavior that is similar to that of the symmetric case

in Figure 2. The unique steady-state under α2 ≤ 0.1 shifts to a multiplicity of steady-states,

each displaying relative concentration in the corners of the simplex, for α2 ≥ 0.2. In this

case, however, the three steady-states have different levels of aggregate welfare (in the sense

of Ω described above), this example allows for an economy that might, due to a bad set of

initial conditions, end up in a dominated steady-state. Reassuringly, however, the basin of

attraction of a relatively good steady-state is larger than that of a dominated one. So, in

the space of all possible initial conditions, good steady-states may be more likely to arise.

3 Identification and Estimation

We now describe a procedure for mapping the above model into observable features of the

US economy throughout the past two centuries. The goal is to estimate the elasticity pa-

rameters (α1, β1, α2, β2, σ and θ) that are critical for assessing the likelihood and strength

of path dependence, as well as the geographic fundamentals
{
Āit, ūit, τijt, µijt

}
that shift the

consequences of path dependence.

3.1 Data

We aim to track subnational regions throughout the period from 1800-2000. In each decennial

census, information is available at the county level, but these county border definitions change

over the years, so we track 25km by 25km units (“cells”), allocating each cell to the the

appropriate county in each year. We then apportion uniformly the county-level information

for county c in any year t into each of cell that maps to that county c in year t. In the end,

our sample consists of 12,457 of such cells.

Data limitations mean that obtaining consistent time series on the long sweep of American

economic (county-level) history can be challenging. Thankfully, one variable that is available

throughout is a proxy for internal migration, which then corresponds to Lijt in the model
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above. The decennial US Census tracks, from 1790-present, data on the population by county

of current residence and state of birth (and age). These can be extracted from publicly

available 5% samples for each year. Given that “adults” in the model are the generation that

produces and consumes, we take the number of people aged 20-69 in this dataset, in each

county j and year t, and use these adults’ location of birth as our proxy for the origin of their

adult migration journey, location i. To avoid overlaps of these cohorts of 20-69 year-olds,

we then work only with the Census data for every 50 years, i.e. 1800, 1850, 1900, 1950, and

2000. Residents aged 0-19 or over-69 then play no role in our subsequent analysis. Finally,

we apportion uniformly the number of people born in state s in year t equally into each of

the sub-county units i contained in state s in year t. This procedure delivers our proxy for

migration flows Lijt (and hence also total populations Ljt ≡
∑

i Lijt).

Our second important variable is that for nominal per-capita incomes, wit. The US

Census did not track wage income until 1940, but an available proxy is available for the

value of county-level total agricultural and manufacturing output from 1850-present. Under

the assumption that local expenditure on (and hence income from) non-tradable services

tracks that for agriculture and manufacturing, this data series provides a measure of witLit

and hence wit. Because this essential ingredient of our estimation procedure is only available

from 1850 onwards, we treat 1800 as date 0 (and hence {Li0} comes from Lit in 1800).

The third data ingredient concerns intra-national trade flows, Xijt. To the best of our

knowledge this is only publicly available (within the 1850-2000 period) beginning in the year

1997 from the Commodity Flow Survey (CFS).

Finally, an instrumental variable estimation procedure that we describe below requires

observable proxies for the geographic productivity and amenity terms, for which we collect

contemporary measures of elevation, soil quality, temperature, an precipitation. For the

purpose of constructing valid instruments, we treat these observed geographic characteristics

as time-invariant properties of a location.

3.2 Identification and Estimation

We now describe a three-step estimation procedure designed to recover estimates of the

elasticity parameters (α1, β1, α2, β2, σ and θ) and geographic fundamentals
{
Āit, ūit, τijt, µijt

}
for all locations i and years t from 1850-2000 through the use of the above data on Lijt from

the years 1800-2000, on wit from the years 1850-2000, and on Xijt from one cross-section (in

1997).

In the first step of this procedure we assume that trade and migration costs, τijt and µijt

are functions of observable (potential) shifters of these costs. While there are many such
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potential shifters, we focus on one particularly important one, for now, which is the simple

distance between locations i and j (denoted distij). For now we use only distance and model

these costs as ln τijt = κt ln distij and lnµijt = λt ln distij. Substituting these expressions

into the gravity equations for trade and migration flows, equations (3) and (7) respectively,

we obtain

lnXijt = (1− σ)κt ln distij + γit + δjt + εijt (15)

lnLijt = −θλt ln distij + ρit + πjt + νijt, (16)

where the terms γit, δjt, ρit, and πjt represent fixed effects in these gravity estimation equa-

tions, and we interpret εijt and νijt as potential measurement error (that is uncorrelated with

distance) in trade and migration flows respectively.

In principle, one could estimate a separate κt for any year t in which data on trade flows

Xijt are available. However, as described above, we only have access to such data for one

year, 1997. So we assume that κ is constant over time, as is broadly consistent with the

patterns in international trade data surveyed by Disdier and Head (2008). By contrast,

data on migration flows Lijt are available for all decades from 1850 onwards so we estimate

corresponding λt separately for each year. The result of this first step is an estimate of the

composite parameters (1− σ)κt and θλt.
7

Turning to our second step, we define Tijt ≡ τ̂ 1−σ
ijt = dist

(1−σ)κt
ij , Mijt ≡ µ̂−θijt = dist−θλtij ,

which are identified in step one (as they are a function of observables and the identified

composite parameters only). For notational ease, further define pit ≡ wit
Ait

, and Yit ≡ witLit.

Then the system of equations (8)-(11) defining equilibrium for each period can be written as

pσ−1
it =

∑
j

Tijt

(
Yjt
Yit

)
P σ−1
jt (17)

P σ−1
it =

∑
j

Tjit
(
pσ−1
jt

)−1
(18)

(
W θ
it

)−1
=
∑
j

Mjit
Ljt−1

Lit

(
Πθ
jt

)−1
(19)

Πθ
it =

∑
i

MijtW
θ
jt. (20)

Noting that we have data on Yit and Lit for all locations i and periods t and that the

values Tijt and Mijt were identified in step 1, the following proposition shows that the four

remaining variables in equations (8)-(11) are identified because this system of equations has

7Given data limitations, we estimate the trade gravity regression on bilateral state to state trade flows,
whereas we estimate the migration gravity regression on state (of birth) to county (of residence) population
flows.
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a unique solution given (Yit, Lit, Tijt and Mijt).

Proposition 4. Given observed data on {Yit, Lit, Lit−1} and identified values of {Tijt,Mijt}
from step two there exists unique (up to-scale) values of

{
pσ−1
it , P σ−1

it ,W θ
it,Π

θ
it

}
that satisfy

equations (8)-(11).

Proof. See Section A.4.

An important feature of this second step result is that it does not depend on the values

of the trade or migration elasticities, σ and θ, only on the composite parameters that were

recovered in step 1. The basic intuition of this recovery procedure is that we are recovering

the analogs of the exporter and importer fixed effects of the trade gravity equation (which

allow recovery, by standard arguments, of pσ−1
it and P σ−1

it , respectively) and the origin and

destination fixed effects of the migration gravity equation (W θ
it and Πθ

it, respectively) from

non-bilateral data (unlike the usual approach to recovery of such fixed effects) by making

use of the goods and labor market clearing equations for equilibrium.

Finally, we turn to the third step of our estimation procedure. By definition, pit ≡ wit
Ait

;

therefore, given the definition of Ait = AitL
α1
it L

α2
it−1 we take logs of pσ−1

it to obtain:

ln
(
pσ−1
it

)
= (σ − 1) lnwit + α1 (1− σ) lnLit + α2 (1− σ) lnLit−1 (21)

+ (1− σ) ln Āit.

Recall that the value of pσ−1
it was identified (up to an irrelevant scale parameter) in step

two. Therefore, equation (21) represents an equation that can be used as a simple regression

estimating equation given data on the right-hand side variables, wit, Lit and Lit−1. Consistent

estimates of this equation can therefore identify σ, α1and α2. However, the unobservable

term in equation (21), (1− σ) ln Āit, the error term in this estimating equation, would be

correlated with the regressors wit and Lit—indeed, the migration behavior in equation (7)

suggests that migrants would move to locations with exceptional values of this residual, Āit.

We come back to our (instrumental variables) strategy to deal with this endogeneity problem

below.

Analogous manipulations on the migration side imply

ln
(
W θ
it

)
= θ lnwit +

(
θ

σ − 1

)
ln
(
P 1−σ
it

)
+ β1θ lnLit + β2θ lnLit−1 + θ ln ūit, (22)

which is again an equation that relates a variable recovered from step two, the migration

equation origin fixed-effect W θ
it, on observables (wit, Lit and Lit−1) as well as another variable

recovered from step two, the trade destination fixed-effect P 1−σ
it . Again, this regression
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specification allows the opportunity to estimate three key elasticities (θ, β1 and β2), but

the logic of migration suggests that there is an unavoidable endogeneity problem due to the

correlation between the unobserved amenity shifter ūit, the regression residual in equation

(22), and regressors such as lnwit and lnLit. Finally, we note that equations (21) and (22)

together over-identify the parameter σ, so there are opportunities for testing this restriction.

To construct instrumental variables (IVs) for the endogenous regressors {lnwit, lnLit, lnLit−1, lnPit}
in equations (21) and (22), we draw on model-based simulations of these variables along the

lines of Allen, Arkolakis, and Takahashi (2014) and Adao, Arkolakis, and Esposito (2018).

This proceeds as follows. First, we begin with a candidate guess of the elasticity parameters,

at values motivated by the existing literature.8 We denote these candidate values as (α
(IV )
1 ,

β
(IV )
1 , α

(IV )
2 , β

(IV )
2 , σ(IV ) and θ(IV )). Second, we assume that, for the purposes of construct-

ing IVs, we can model the productivity shifter that will enter our IV, A
(IV )

it , as a function

of a vector of certain time-invariant observable geographic characteristics of location i that

we denote zi; in particular, we let lnA
(IV )

it = γA · zi in any year t. Similarly, we model the

amenity shifter uit as lnu
(IV )
it = γu · zi.9 We note that these assumptions (and in particular

that A
(IV )

it and u
(IV )
it are not time-varying) refer to the construction of the IVs, not the model

that is used for counterfactuals below. Third, in order to estimate the values of γA and γu, we

use the estimates from step two (at the distance elasticities estimated in step one) above to

estimate, along with the candidate guess of our six elasticity parameters, candidate values of

Ait and uit in the year t = 2000. We then use OLS to project lnAi,t=2000 and lnui,t=2000 on zi

in order to estimate what could be thought of as the “zeroth-stage” parameters, γ̂A and γ̂u.
10

Fourth, starting from the observed initial population shares in 1800 as {Li0}, we simulate the

IV-generating model forwards in all years from 1850 onwards, using the candidate elasticities

(α
(IV )
1 , β

(IV )
1 , α

(IV )
2 , β

(IV )
2 , σ(IV ) and θ(IV )) and with the productivity and amenity values for

each location and year set to lnA
(IV )

i = γ̂A ·zi and lnu
(IV )
i = γ̂u ·zi. This procedure generates

8We set β1 = −0.3 to match the interpretation of this parameter as minus the housing share in consump-
tion, as discussed in Section 2, the remaining spillover terms to α1 = α2 = β2 = 0.1 as is roughly in line
with common estimates of agglomeration externalities, σ − 1 = 8 so that the trade elasticity is in the range
estimated by Donaldson and Hornbeck (2016) for the 19th Century US at country-level spatial resolution,
and θ = 8 so that the trade and migration elasticities are equal. In practice our eventual 2SLS parameter
estimates are not much affected by these choices.

9In practice, the geographic variables are a combination of climatic observables (average January tempera-
ture and precipitation), the soil quality variables (the net primary productivity and soil nutrient availability),
and topographic variables (elevation and ruggedness).

10Figure 15 in the Appendix depicts the relationship between the inverted lnAi,t=2000 and lnui,t=2000 (i.e.
the productivities and amenities consistent with the observed data given our gravity estimates and candidate

elasticity values) and lnA
(IV )

i = γ̂A · zi and lnu
(IV )
i = γ̂u · zi (i.e. the productivities and amenities that

depend only on observed geographic variables. As can be seen, the correlation between the two is reasonably
high (0.27 for productivities and 0.51 for amenities), although the variation in the inverted values necessary
to match the observed data is substantially larger than the variation predicted by geography alone.
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predicted values of the model’s endogenous variables, including for the endogenous regressors

{lnwit, lnLit, lnLit−1, lnPit} in equations (21) and (22). We denote those predictions, from

the IV-generating model, as
{

lnw
(IV )
it , lnL

(IV )
it , lnL

(IV )
it−1 , lnP

(IV )
it

}
. Fifth, we use these vari-

ables as IVs when estimating equations (21) and (22) vis 2SLS. Sixth, when estimating these

equations we control directly for zi and Li0 so that the excluded geographical component of

the IV is the effect of these geographical characteristics and initial populations in a other

locations. Finally, we also divide our 25km×25km “cells” into 500km×500km geographi-

cally contiguous “boxes” and include box-year fixed effects in our preferred specification to

control for spatially coarse regional variation in fundamental productivities or amenities that

is time-varying but unobserve.

To summarize, our instrumental variables are simply functions of observed 1800 popu-

lations, the full matrix of bilateral distances, and the stated geographical characteristics of

zi (i.e. climate, soil quality, and topography) of each location. But since we control for

any location’s own 1800 population and geographic characteristics, the excluded instruments

are these variables for all other regions. Our identifying assumption is that those excluded

instruments are uncorrelated with the error terms (unobserved productivity and amenity

terms, Ait and uit) in equations (21) and (22). Formally, this means that any function of

these variables would deliver consistent 2SLS estimates of the parameters (α1, β1, α2, β2, σ

and θ). But given the many such potential functions of this long set of variables, we use the

logic of our model to achieve dimensionality-reduction and effective instrument selection.

Finally, we note that, conditional on obtaining consistent estimates of the elasticity pa-

rameters (α1, β1, α2, β2, σ and θ), equations (21) and (22) allow recovery of the geographic

fundamentals
{
Āit, ūit

}
as well. Combined with the earlier estimates of {Tijt,Mijt} from

step two all model parameters are thereby identified.

3.3 Estimation Results

We begin with estimates from the trade and migration gravity equations in step one. As

is standard, our estimate of the elasticity of trade flows with respect to distance (using the

1997 CFS data to estimate equation 15) is close to minus one: in particular, we estimate

κ(1−σ) = −1.20 (SE = 0.24). Perhaps surprisingly, the migration-distance elasticity is also

close to minus one in all periods that we investigate. These estimates are shown in Figure 4,

where the combination of parameters θλt appears to range from -1.5 to -0.8, with no clear

trend over the 150 years for which we display decadal estimates.11 This is similar to the

11While we explore in Figure 4 these estimates of θλt across each decade, our simulations below apply the
estimates (in step two of our procedure, for the purposes of constructing Mijt) only in the years 1850, 1900,
1950 and 2000.

24



persistence of the trade-distance elasticity over time, as discussed above.

Turning to step three, the parameter values implied by our 2SLS estimates of the co-

efficients in equations (21) and (22) are reported in Table 1.12 These estimates have some

noteworthy features. First, our estimates of σ do differ substantially across columns (1) and

(2), with the more precise estimates from column (1) being closer to standard values in the

literature (if perhaps on the high end, as might be expected given our study of trade among

small, intranational spatial units).13 Second, our estimates of productivity spillovers, α1 and

α2, are both positive, as prior work (on static estimation settings, which lump these two pa-

rameters together) might suggest. The contemporaneous amenity spillover, β1 = −0.341, is

negative and strikingly close to the value predicted by a model of Cobb-Douglas preferences

(with expenditure share on housing of about one-third) and fixed local housing supply. The

estimate of the historical amenity spillovers parameter, β2, is also negative but the actual

point value of -0.004 is very close to zero in practice.

Because the productivity spillovers are positive and the amenity spillovers negative, it

is not clear whether these estimates are in the range for uniqueness of equilibria, and of

steady-states, implied by Propositions 1 and 2. Figure 4 plots these estimates in the ranges

implied by these propositions (which also depend on the estimates of σ and θ). From the

fact that the red star is inside the yellow region we see that the equilibria will be unique at

these parameter estimates; similarly, from the fact that the green star is (just) inside the blue

region we see that multiple steady-states are a possibility (that is, the sufficient condition

for uniqueness of steady-states identified in Proposition 2 is not satisfied by these estimates).

These two findings suggest that path dependent outcomes are indeed a possibility in this

model economy, and that computation of equilibrium paths, given any starting point, is

guaranteed to be straightforward given the equilibrium uniqueness result of Proposition 1.

4 The Geography of Path Dependence

Having estimated all of the ingredients of the model introduced above on data from the

history of US economic geography from 1800 onwards, we now use the estimated model to

12The corresponding first-stage estimates for this 2SLS system are all of the expected signs—implying
that the IV-model predictions are in line, at least qualitatively, with the actual data in these first-stage
moments—and statistically significant (with t-statistics in excess of 10 and hence implied univariate F-
statistics in excess of 100).

13In our counterfactual simulations below we use the value of σ implied by column (1) because of its
greater precision and its greater proximity to values in the existing literature. We also note that the spirit of
using trade data to estimate the trade elasticity, σ − 1, as we do in column (1) is common in the literature,
whereas the method of column (2), which infers the trade elasticity from the responsiveness of migration
flows to the implied price of tradable goods from the destination fixed-effect of the trade gravity equation,
has no parallel in existing literature to our knowledge.
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obtain a quantitative understanding of its path-dependent features. To do so, we assess

both how different historical conditions would affect the distribution of economic activity

and welfare today (i.e. in the year 2000) and in the long-run (i.e. in the steady state).

4.1 The Effect of History on the Distribution of Economic Activity

Today

To assess the affect of history on the distribution of economic activity today, we pursue

a computational approach where we simulate alternative paths of the distribution of US

economic activity under differing historical conditions, holding constant contemporary ge-

ography. Many such historical conditions could be studied in the framework developed

and estimated above. But for now we focus on the question of how sensitive are long-run

outcomes to the spatial distribution of historical location-specific shocks to locational funda-

mentals (
{
Āit
}

in our model). Clearly, in a setting without path dependence long-run (i.e.

steady-state) outcomes would not depend on such historical shocks, but in our model, at our

estimated parameter values, these shocks may matter and we aim to quantify the extent to

which they do.

Our simulations proceed as follows. First, we fix initial population levels {Li0} to those

seen in the data. Second, we fix the values of
{
Āit
}

for the years 1850 and 2000 to those we

have backed out from the estimation procedure above—this means that the starting point

and ending point of each location’s path of fundamentals remain fixed across simulations.

We also fix the amenity values {ūit} at their factual values in all time periods. Finally,

we perturb the path of the historical shocks to
{
Āit
}

, in the years 1900 and 1950, in a

spatially clustered manner. To do that, we define a set of geographically similar clusters

c ∈ C—where C defines a partition of the space of all sub-county locations i—according

to a procedure that we describe below. Within a given cluster c, and within the year of

t = 1900, say, there is a set of observed values of
{
Āit=1900

}
i∈c backed out from the factual

data above. Our simulations then assign counterfactual values of Ā′it=1900 to every location

i ∈ c by redrawing without replacement from the set
{
Āit=1900

}
i∈c. This essentially randomly

reshuffles the values of Āit=1900 in a geographically clustered manner, and allows us to evaluate

whether geographically local changes in fundamentals could have had a lasting impact on

the economy. Finally, we emphasize that because the current (year 2000) productivity and

amenity shifters remain unchanged, the only effect of the path of productivity shocks that

we simulate on current outcomes is through their effects on {Lit=2000} and {Lit=1950}.
To define the geographic clusters c, we use a “k-mean clustering” algorithm that effec-

tively finds the construction of partitions into k different groups of locations that minimizes
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differences on geographic observables within groups. The particular geographic variables

we use for this are the same as those used to define our instrumental variables above (soil

quality, elevation, climate, and water access).

Finally, in practice, to reduce computational burdens (resulting from the large number

of simulations performed below), we work for now with gridded spatial units that are larger

than (i.e. spatial aggregates of) the sub-county units tracked in the data above. There are

570 such spatial grid cells in the simulations reported below, each approximately 125km by

125km. We set k = 57, so that there are 10 grid cells per cluster c. A map of the resulting

clusters is shown in Figure 6, where each of 57 colors refers to a different cluster, but the

absolute color scale is irrelevant.

Figures 7-9 begin to convey a sense of what happens in our simulations. These maps

illustrate the distribution of equilibrium 1900-2000 population for each of our 570 gridded

simulation locations, among the first three of our 200 simulations. Also shown are the actual

population distributions in these years. While these are only three random simulations, a

clear impression emerges of the disruption that even our local geographic reshuffling shocks

can cause.

Consistent with this evidence from just three simulations, Figure 10 demonstrates that

something similar is at work, on average, in all 200 simulations that we have run. In this

figure we plot, for each year from 1850-2000, the spread of population in each location

across all simulations. For each simulation we calculate the rank of each location in the

nationwide population size ranking, and the y-axis reports the tendencies of this ranking

across the simulations—the thin blue bar indicates the max and min, the thicker blue bar

the interquartile range, and the black dot the mean. The locations are then ordered along

the x-axis by their median ranking across simulations. Naturally, the picture from 1850

shows no variance since we are not perturbing any shocks in that year. But, as suggested

by the maps in Figures 7-9, for 1900 and 1950 the counterfactual productivity shocks are

evidently disruptive in terms of generating a wide spread of alternative histories, simply from

reordering local (that is, geographically similar) productivity values. By 2000 the variance

is reduced, but it is still substantial.

These counterfactual re-shuffling of productivity shocks provide insight into how robust

a particular location is to historical shocks. Figure 11 depicts the relationship between the

observed population of each cell in the year 2000 and the variance of its (log) population

across all of the simulations. For interpretability, we have labeled each cell with its largest

city if that city has a population of more than 200,000 people.14 As can be seen, there

14Note, however, that this mapping is imperfect, as some cities (like New York) span multiple cells, in
which case the population of a cell is only part of the population of the city.
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is little systematic relationship between population size and how robust a location is to

productivity shocks: some large cities like Los Angeles remain large across most simulations

(i.e. they are robust to historical shocks), whereas others like Miami vary substantially in

size depending on the particular counterfactual (i.e. they are less robust). Figure 12 shows

that the degree of robustness to historical shocks does exhibit systematic spatial variation,

with Florida, the upper Midwest, and the Rocky Mountain states showing large amounts

of variation of population across different historical shocks, whereas California and Arizona

exhibiting substantially greater robustness to historical shocks.

Consistent with this, Figure 13 shows that the spread of possible aggregate welfare out-

comes across simulations here can be significant, with a 45 log point difference across the

max-min range in these 200 simulations. Another feature of Figure 13 is the fact that the

actual 2000 aggregate welfare in the US (shown with a yellow star) is right in the middle

of the distribution of possible welfare levels across our simulations. So the actual path of

productivity shocks Āit that occurred in 1900-1950 was evidently not that out of line with

what was likely, on average, across our simulations.

4.2 The Long-run Impact of Path Dependence

To assess the long-run impact of path dependence, we pursue complementary analytical and

computational approaches. Computationally, we simulate the model forward in time for

both the observed distribution of economic activity today and each of the 200 historical

simulations. Figure 14 shows, in blue, the path of aggregate welfare levels along which the

US economy would travel, according to our estimates, if all geographic fundamentals were

held at their year 2000 levels for ever more. It also shows, in in green, the corresponding

trajectory for each of our 200 simulations. We find that all 200 simulations converge to

the same steady state as the observed distribution of economic activity, but the speed of

convergence is slow: even after 1,000 years, there exists variation of about 5 log points in

the welfare across different historical shocks.

Of course, the fact that all 200 simulations we consider converge to the same steady state

does not imply that history will not matter for the steady state distribution of economic

activity: it could simply be that the shocks we considered were of insufficient size to push

the economy out of its current basin of attraction. To consider the scope for large welfare

impacts of all possible historical paths, we calculate bounds on the welfare impacts of path

dependence, according to the geography that obtains in our setting, using Proposition 3.
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The upper bound is given by:

Ω̄︸︷︷︸
1.16

≡ c1︸︷︷︸
2.40

× λ̄
1
θ
M︸︷︷︸

0.68

× λ̄
1

σ−1

T︸︷︷︸
1.22

× L̄(ρ− 1
θ )︸ ︷︷ ︸

0.58

,

whereas the lower bound is given by:

Ω︸︷︷︸
0.05

≡ c2︸︷︷︸
0.66

× λ
1
θ
M︸︷︷︸

0.37

×λ
1

σ−1

T︸︷︷︸
0.22

×
(
L̄

N

)ρ
︸ ︷︷ ︸

1

.

Given that the steady state welfare of the steady state we are converging toward is has an

associated welfare of Ω = 0.76, this implies that no historical path could have increased

the steady state welfare of the current path by more than about 50 percent. As a basis of

comparison, this is roughly equal to the range of short-run welfare impacts of the historical

shocks we simulate.

Finally, recall that the ratio of the upper and lower bounds provides a convenient decom-

position of geography of path dependence. From equation (14) we have:

Ω̂PD︸︷︷︸
21.57

≤ c1

c2︸︷︷︸
3.61

×κ (M)
1
θ︸ ︷︷ ︸

1.83

×κ (T)
1

σ−1︸ ︷︷ ︸
5.63

×NρL̄−
1
θ︸ ︷︷ ︸

0.58

.

Hence, the contribution of the trade matrix (which, recall, includes variation in productivities

and amenities across locations) is roughly three times as great as that of the migration matrix

to the geography of path dependence, although both suggest there exists substantial latitude

for history to matter in the long run.

5 Conclusion

It is not hard to look at the geographic patterns of economic activity around us and be-

lieve both that agglomeration forces are important, and that they are strong enough to

be the source of self-reinforcing, stable clustering of economic activity. This opens up the

possibility that there are many such locations at which economic activity could settle in

steady-state—some good, some bad—and the potential for historical accidents, such as ini-

tial conditions or long-defunct technological shocks, to play an outsized role in governing

both where economic activity occurs and how efficiently it occurs overall.

This paper has sought to develop a theoretical framework that can be combined with

historical data to characterize and quantify such path-dependent spatial phenomena. Six
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elasticities matter for geographic path dependence, according to our theory: two dispersion

elasticities coming from the desire for goods and migrants to seek substitute locations, two

elasticities governing the the strength of contemporaneous local productivity and amenity

agglomeration externalities, and two elasticities capturing the propensity for lagged agglom-

eration spillovers to matters. In the steady state, the extent to which historical accidents

affect steady-state welfare (i.e. path dependence) is bounded by simple statistics of these

elasticities and the underlying geography.

When applied to US Census data from 1800 onwards, we estimate values of these elastic-

ities that imply the potential for path dependence in this context. Our simulations of ran-

domly chosen, spatially local permutations in initial conditions and historical shocks suggest

that the location of economic activity in the US today is highly sensitive to the variations in

historical shocks that we consider and the analytical bounds suggest the possibility of larger

historical shocks mattering in the long-run.

While we have developed these empirical and theoretical tools in the hopes of an improved

understanding of inter-city economic geography, these techniques could be applied to other

areas of economics in which increasing returns and coordination failures, and hence multi-

plicity and path dependence, have long appeared as objects of theoretical interest that lack

a corresponding amount of empirical estimation, quantification, and simulation. Potential

areas of application could include: intra-city issues such as residential segregation, sorting,

and so-called “tipping” dynamics (Schelling, 1971; and Card, Mas, and Rothstein, 2008);

traditional “big push” models of economic development (Rosenstein-Rodan, 1943; Murphy,

Shleifer, and Vishny, 1989; and Krugman and Venables, 1995); policy questions surround-

ing technology adoption and competition in the presence of network effects and switching

costs (David, 1985; and Farrell and Klemperer, 2007); and the study of dynamic questions

of political economy such as those surveyed in Acemoglu and Robinson (2005).
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Figure 1: Illustration of Proposition 1

Notes : This figure illustrates the regions of the parameter range (in the space of α1 and β2,
holding σ and θ constant at the example values shown above) that satisfy the condition for
uniqueness of equilibrium, as per Proposition 1.
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Figure 2: Phase diagrams for 3-region symmetric example
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Notes : This figure illustrates phase diagrams for an asymmetric three-region example econ-
omy. The parameters α1, β1, β2, σ and θ are held constant as α2 varies.
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Figure 3: Phase diagrams for 3-region asymmetric example
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(f) α2 = 0.5

Notes : This figure illustrates phase diagrams for an asymmetric three-region example econ-
omy. The parameters α1, β1, β2, σ and θ are held constant as α2 varies.

37



Figure 4: Migration gravity parameter estimates
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Notes : This figure illustrates estimates (and associated 95% confidence intervals) for the
combined parameter θλt from the migration gravity equation (16) estimated in various cross-
section decades, t.
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Figure 5: Parameter Estimates

Notes : This figure illustrates the regions of the parameter range (in the space of α1+α2, along
the x-axis, and β1 + β2, along the y-axis, holding σ and θ constant at the values estimated
in Section 3.3) that satisfy the condition for uniqueness of equilibrium, as per Proposition 1,
and uniqueness of steady-states, as per Proposition 2.
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Figure 6: Map of geographic clusters

Clusters of similar locations

Notes : This figure illustrates a map of the 570 locations in our simulations, as well as
how they are grouped into 57 clusters designed to minimize the within-cluster variation in
geographic characteristics (according to a k-mean clustering algorithm).
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Figure 7: Map of 3 example simulations of random (within-cluster) productivity values in
1900 and 1950

1900Observed population Simulation 1

Simulation 2 Simulation 3

Notes : This figure illustrates (for 1900) the results of the first three of our 200 simulations
of randomized (within the geographically similar cluster regions of Figure 6, drawn without
replacement) productivity values in 1900 and 1950. Also show, at the top left, is the map of
the actual population distribution.
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Figure 8: Map of 3 example simulations of random (within-cluster) productivity values in
1900 and 1950

1950Observed population Simulation 1

Simulation 2 Simulation 3

Notes : This figure illustrates (for 1950) the results of the first three of our 200 simulations
of randomized (within the geographically similar cluster regions of Figure 6, drawn without
replacement) productivity values in 1900 and 1950. Also show, at the top left, is the map of
the actual population distribution.
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Figure 9: Map of 3 example simulations of random (within-cluster) productivity values in
1900 and 1950

2000Observed population Simulation 1

Simulation 2 Simulation 3

Notes : This figure illustrates (for 2000) the results of the first three of our 200 simulations
of randomized (within the geographically similar cluster regions of Figure 6, drawn without
replacement) productivity values in 1900 and 1950. Also show, at the top left, is the map of
the actual population distribution.
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Figure 10: The distribution of population, by year, across 200 simulations of random pro-
ductivity values in 1900 and 1950

Notes : This figure illustrates how a location’s rank in the nationwide population distribution
(within any given year, as shown) can vary across 200 simulations of random (drawn, within-
the geographically similar clusters of Figure 6, without replacement) productivity shocks Ait
in years 1900 and 1950 (but not 1850 or 2000). The x-axis refers to each location, ordered
according to its across-200 simulations median nationwide population rank within the year
shown. Then, for each location, the figure contains box plots (with the max-min range in
narrow blue, the interquartile range in wide blue, and the mean shown with a black circle)
of that location’s cross-simulations distribution of nationwide population rank.
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Figure 11: The robustness of cities to historical shocks
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Notes : This figure illustrates the relationship between “robustness” of a cell to historical
shocks and its actual year 2000 population. Robustness is measured as the standard deviation
of the year 2000 population of a given cell across 200 simulations of random random (drawn,
within-the geographically similar clusters of Figure 6, without replacement) productivity
shocks Ait in years 1900 and 1950 (but not 1850 or 2000). For interpretability, we identify
each cell with its largest city if the largest city has a population of more than 200,000. Note
that cells without such cities are unlabeled, and some cities (e.g. New York) span multiple
cells.
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Figure 12: The geography of robustness to historical shocks

Notes : This figure illustrates the spatial variation in “robustness” to historical shocks, Ro-
bustness is measured as the standard deviation of the year 2000 population of a given cell
across 200 simulations of random random (drawn, within-the geographically similar clusters
of Figure 6, without replacement) productivity shocks Ait in years 1900 and 1950 (but not
1850 or 2000). Yellow indicates less robustness (i.e. a greater variation in year 2000 popula-
tion across simulations), whereas blue indicates more robustness (i.e. less variation in year
2000 population across simulations).
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Figure 13: The distribution of aggregate welfare in 2000 across 200 simulations of random
productivity values in 1900 and 1950
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Notes : This figure illustrates how aggregate (population-weighted average) welfare, in logs,
in 2000 varies across all 200 simulations of random (drawn, within-the geographically similar
clusters of Figure 6, without replacement) productivity shocks Ait in years 1900 and 1950
(but not 1850 or 2000). The yellow star indicates the factual value from 2000.
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Figure 14: The path to steady-states in 200 simulations of random productivity in 1900 and
1950
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Notes : This figure illustrates, in green, the level of aggregate (population-weighted average)
welfare, in logs, across all 200 simulations of random (drawn, within-the geographically
similar clusters of Figure 6, without replacement) productivity shocks Ait in years 1900 and
1950 (but not 1850 or 2000). The blue line indicates the corresponding path given actual
data.
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Table 1: Estimating elasticities and spillovers
(1) (2)

Trade orig. FE Migr. dest. FE
Elasticity of 13.676*** 49.821
substitution (σ) (1.913) (36.513)
Migration elasticity 11.736***
(θ) (1.621)
Contemporaneous 0.239***
productivity spillover (α1) (0.010)
Lagged productivity 0.028***
spillover (α2) (0.003)
Contemporaneous -0.341***
amenity spillover (β1) (0.018)
Lagged amenity -0.004*
spillover (β2) (0.002)
R-squared 0.432 0.628
Observations 44,408 44,408

Notes: Column (1) reports estimates of the parameter estimates implied by the 2SLS esti-
mation of equation (21). The instruments used are model-implied predictions of the three
endogenous variables (the wage, the population level, and the lagged population level), where
the model predictions are formed on the basis of geographical characteristics (soil quality,
elevation, climate, and water access), observed initial population in 1800, and candidate pa-
rameter values (described in Section 3.2) in line with existing work. Column (2) is analogous
but for equation (22). The sample includes the years 1850, 1900, 1950 and 2000. Regressions
control for each location’s own value of initial population and geographical characteristics.
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A Proofs

The following three proofs are special cases of Theorem 3 (parts (i) and (ii)) of Allen,
Arkolakis, and Li (2015), which we restate here for convenience:

Consider the following system of N ×K system of equations

K∏
h=1

(
xhi
)βkh =

K∑
j=1

Kk
ij

[
H∏
h=1

(
xhj
)γkh] ,

where {βkh,γkh} are known elasticities and
{
Kk
ij > 0

}
are known bilateral frictions. Let

B ≡ [βkh] and Γ ≡ [γkh] be the K ×K matrices of the known elasticities. Define A ≡ ΓB−1

and the absolute value (element by element) of A as Ap. Then there exists a strictly positive

set of
{
xhi > 0

}h∈{1,...,K}
i∈{1,...,N} and that solution is unique if the spectral radius (i.e. the absolute

value of the largest eigenvalue, denote ρ (·)) of Ap is weakly less than one, i.e. ρ (Ap) ≤ 1.

A.1 Proof of Proposition 1

When trade costs are symmetric, Allen and Arkolakis (2014) show that the origin and destina-
tion fixed effects of the gravity trade equation are equal up to scale. That is if Xij = Kijγiδj,
Kij = Kji, and

∑
j Xij =

∑
j Xji, then we have:

γi ∝ δi.

15From equation (3), this implies:

w1−σ
i Aσ−1

i ∝ P σ−1
i wiLi ⇐⇒

w1−σ
i Aσ−1

i ∝
(
wiui
Wi

)σ−1

wiLi ⇐⇒

wi ∝ W σ̃
i u
−σ̃
i Aσ̃i L

1
1−2σ

i ⇐⇒

wi ∝ W σ̃
i ū
−σ̃
i Āσ̃i L

(α1−β1+ 1
1−σ )σ̃

i

(
Llagi

)(α2−β2)σ̃

where σ̃ ≡ σ−1
2σ−1

.
We can use this to simplify our equilibrium equations:(

W σ̃
i u
−σ̃
i Aσ̃i L

σ̃
1−σ
i

)σ
Li =

∑
j

τ 1−σ
ij Aσ−1

i uσ−1
j W 1−σ

j

(
W σ̃
j u
−σ̃
j Aσ̃jL

σ̃
1−σ
j

)σ
Lj

Πθ
i =

∑
j

µ−θij W
θ
j

15The exact scale will be determined by the aggregate labor market clearing condition. However, the scale
can be ignored by first solving for the “scaled” labor (i.e. imposing the scalar is equal to one) and then
recovering the scale by imposing the labor market clearing condition. Note that this does not affect any of
the other equilibrium equations below, as they are all homogeneous of degree 0 with respect to labor.
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Li =
∑
j

µ−θji W
θ
i Π−θj Llagj

or equivalently:

W σ̃σ
i L

1+ σ
1−σ σ̃

i =
∑
j

τ 1−σ
ij Aσ−1−σσ̃

i uσ̃σi u
σ−1−σ̃σ
j Aσ̃σj W

1−σ+σσ̃
j L

1+ σ
1−σ σ̃

j

Πθ
i =

∑
j

µ−θij W
θ
j

Li =
∑
j

µ−θji W
θ
i Π−θj Llagj

Let us then use our spillover equations:

Ai = ĀiL
α1
i

(
Llagi

)α2

ui = ūiL
β1
i

(
Llagi

)β2
to get:

W σ̃σ
i L

1+ σ
σ−1

σ̃−α1(σ−1−σσ̃)−β1σσ̃
i =

∑
j

τ 1−σ
ij Āσ−1−σσ̃

i ūσσ̃i β
σ−1−σ̃σ
j Āσ̃σj

(
Llagi

)α2(σ−1−σσ̃)+β2σ̃σ (
Llagj

)β2(σ−1−σ̃σ)+α2(σ̃σ)

×W 1−σ+σσ̃
j L

1+ σ
σ−1

σ̃+α1(σ̃σ)+β1(σ−1−σ̃σ)

j

Πθ
i =

∑
j

µ−θij W
θ
j

Li =
∑
j

µ−θji W
θ
i Π−θj Llagj .

With a little algebra, this simplifies to:

W σ̃σ
i L

σ̃(1−α1(σ−1)−β1σ)
i =

∑
j

τ 1−σ
ij Ā

(σ−1)σ̃
i ūσ̃i β

(σ−1)σ̃
j Āσ̃σj

(
Llagi

)σ̃(α2(σ−1)+β2σ)

×
(
Llagj

)σ̃(α2σ+β2(σ−1))

W
−(σ−1)σ̃
j L

σ̃(1+α1σ+β1(σ−1))
j

Πθ
i =

∑
j

µ−θij W
θ
j

LiW
−θ
i =

∑
j

µ−θji Π−θj Llagj .
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If we order the endogenous variables as L,W,Π, then the matrix of LHS coefficients becomes:

B ≡

σ̃ (1− α1 (σ − 1)− β1σ) σ̃σ 0
0 0 θ
1 −θ 0


and the matrix on the RHS coefficients becomes:

Γ ≡

σ̃ (1 + α1σ + β1 (σ − 1)) − (σ − 1) σ̃ 0
0 θ 0
0 0 −θ

 .

Hence, we have:

A ≡ ΓB−1 =

 θ−σ−β1θ+α1σθ+β1σθ+1
σ+θ+α1θ−α1σθ−β1σθ 0 σ̃(2σ−1)(α1+1)

σ+θ+α1θ−α1σθ−β1σθ
θ/σ̃

σ+θ+α1θ−α1σθ−β1σθ 0 −θ(α1−α1σ)−β1σ+1
σ+θ+α1θ−α1σθ−β1σθ

0 −1 0

 .

Note that the spectral radius of the absolute value will be equal to no less than one given
the −1 in the third row and second column. Hence the uniqueness condition requires the
absolute remainder of the matrix (removing the third row and second column) to feature a
spectral radius no greater than one, i.e.:

ρ

∣∣∣ θ(1+α1σ+β1(σ−1))−(σ−1)
σ+θ(1+(1−σ)α1−β1σ)

∣∣∣ ∣∣∣ (σ−1)(α1+1)
σ+θ(1+(1−σ)α1−β1σ)

∣∣∣∣∣∣ θ/σ̃
σ+θ(1+(1−σ)α1−β1σ)

∣∣∣ ∣∣∣ θ(1−(σ−1)α1−β1σ)
σ+θ(1+(1−σ)α1−β1σ)

∣∣∣
 ≤ 1,

as required.

A.2 Proof of Proposition 2

The proof proceeds similarly to the proof of Proposition 1. If migration costs are symmetric
and we are in the steady state, we have:

∑
i Lij =

∑
j Lji, Lij = Mijgidj, and Mij = Mji.

So then it will be the case that:
gi ∝ di.

In our case, this implies:

WiΠiL
1
θ
i = Ω,

which recall is our measure of steady state welfare.
This simplifies our system of equations as follows:

W σ̃σ
i L

σ̃(1−(α1+α2)(σ−1)−σ(β1+β2))
i =

∑
j

τ 1−σ
ij Ā

(σ−1)σ̃
i ūσ̃i u

(σ−1)σ̃
j Āσ̃σj W

−(σ−1)σ̃
j L

σ̃(1+(α1+α2)σ+(β1+β2)(σ−1))
j

LiW
−θ
i = Ω−θ

∑
j

µ−θij W
θ
j .
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Let us order the endogenous variables as L,W . Define α̃ ≡ α1 + α2 and β̃ ≡ β1 + β2

Then the matrix of LHS coefficients becomes:

B ≡

(
σ̃
(

1− α̃ (σ − 1)− β̃σ
)

σ̃σ

1 −θ

)

and the matrix on the RHS coefficients becomes:

Γ ≡

(
σ̃
(

1 + α̃σ + β̃ (σ − 1)
)
− (σ − 1) σ̃

0 θ

)
.

Hence, we have:

A ≡ ΓB−1 =

 θ−σ−β̃θ+α̃σθ+1

σ+θ(1+(1−σ)α̃−β̃σ)
−(σ−1)(α̃+1)

σ+θ(1+(1−σ)α̃−β̃σ)
θ/σ̃

σ+θ(1+(1−σ)α̃−β̃σ)
−θ(α̃(1−σ)−β̃σ+1)
σ+θ(1+(1−σ)α̃−β̃σ)

 .

As a result, the condition for uniqueness is identical to that above, where we simply replace
α1 and β1 with α̃ ≡ (α1 + α2) and β̃ ≡ (β1 + β2), as required:

ρ


∣∣∣∣ θ(1+α̃σ+β̃(σ−1))−(σ−1)

σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣ ∣∣∣∣ (σ−1)(α̃+1)

σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣∣∣∣∣ θ/σ̃

σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣ ∣∣∣∣ θ(1−(σ−1)α̃−β̃σ)
σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣
 ≤ 1.

The final part of the proof claims that there exists a geography for which if

ρ


∣∣∣∣ θ(1+α̃σ+β̃(σ−1))−(σ−1)

σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣ ∣∣∣∣ (σ−1)(α̃+1)

σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣∣∣∣∣ θ/σ̃

σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣ ∣∣∣∣ θ(1−(σ−1)α̃−β̃σ)
σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣
 > 1,

then there exist multiple equilibria. For readability, we present it this result as a general
theorem, under which our model clearly falls:

Theorem 1. Consider the following mathematical system:

xi,1 = λ1

N∑
j=1

Kij,1x
a11
j,1 x

a12
j,2 (23)

xi,2 = λ2

N∑
j=1

Kij,2x
a21
j,1 x

a22
j,2 , (24)

where {Kij,k}l∈{1,2}i,j∈{1,...,N} are the “kernels” of (exogenous) bilateral frictions, {alk}l,k∈{1,2} are

(exogenous) elasticities, {xi,k}k∈{1,2}i∈{1,...,N} are (endogenous) strictly positive vectors and {λk}k∈{1,2}
are either endogenous scalars determined by additional constraints or are exogenous. If the
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spectral radius of the 2× 2 matrix Ap ≡ [|akl|] is greater than one, then there exists kernels

{Kij,k}l∈{1,2}i,j∈{1,...,N} such that there are multiple solutions to equations (23) and (24).

Proof. The proof proceeds by construction. We begin by performing two transformations
of the problem that simplifies the setup. First, we absorb the scalars into the endogenous

variables. To do so, define yi,k =
(
λ
dk,1
1 λ

dk,2
2

)
xi,k, where D = [dkl] ≡ − (I−A)−1. Note that

this is well defined as long as the spectral radius of A is not equal to one. It is straightforward
to then show that the following equations:

yi,1 =
∑
j

Kij,1y
a11
j,1 y

a12
j,2

yi,2 =
∑
j

Kij,2y
a21
j,1 y

a22
j,2

are equivalent to equations (23) and (24). To see this, substitute in the definition of yi,k,
yielding: (

λd111 λd122

)
xi,1 =

∑
j

Kij,1x
a11
j,1

(
λd111 λd122

)a11
xa12j,2

(
λd211 λd222

)a12
(
λd211 λd222

)
xi,2 =

∑
j

Kij,2y
a21
j,1

(
λd111 λd122

)a21
ya22j,2

(
λd211 λd222

)a22
which rearranging yields:

xi,1 = λ−d11+a11d11+a12d21
1 λ−d12+a11d12+a12d22

2

∑
j

Kij,1x
a11
j,1 x

a12
j,2

xi,2 = λ−d21+a21d11+a22d21
1 λ−d22+a21d12+a22d22

2

∑
j

Kij,2y
a21
j,1 y

a22
j,2

Note that the lambda equations can be written as:

exp ((−D + AD) lnλ) = exp ((− (I−A) D) lnλ) ⇐⇒
= exp

((
(I−A) (I−A)−1) lnλ

)
⇐⇒

= exp (I lnλ) ⇐⇒
= λ,

as claimed.
The second transformation is closely related to the “exact hat” algebra pioneered by

Dekle, Eaton, and Kortum (2008) in the field of trade and considers a “normalized” system
of equations around an observed equilibrium. Suppose we observe a steady state solution
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{yi,k}i∈S,k∈{1,.2} that satisfies:

yi,1 =
∑
j

Kij,1y
a11
j,1 y

a12
j,2

yi,2 =
∑
j

Kij,2y
a21
j,1 y

a22
j,2

We are interested in knowing whether there exists a different steady state solution {xi,k}i∈S,k∈{1,.2}
that also satisfies the same equations: [Note that these x’s are different than the x′s with
the scalar above]

xi,1 =
∑
j

Kij,1x
a11
j,1 x

a12
j,2

xi,2 =
∑
j

Kij,2x
a21
j,1 x

a22
j,2

Define zi,k ≡ xi,k
yi,k

and note that the previous equations can be written as:

zi,1 =
∑
j

Fij,1z
a11
j,1 z

a12
j,2 (25)

zi,2 =
∑
j

Fij,2z
a21
j,1 z

a22
j,2 , (26)

where Fij,k ≡
(
Kij,k
yi,k

yak1j,1 y
ak2
j,2

)
. By construction, note that we have zi,k = 1 as a solution to

this system of equations. Moreover, the matrices Fk are stochastic, i.e.:∑
j

Fij,k = 1 ∀i ∈ S, k ∈ {1, 2} .

In what follows, we will search for stochastic matrices Fk that have two solutions: one in
which zi,k = 1 for all i ∈ {1, .., N} and k ∈ {1, 2} and another in which there exists a zi,k 6= 1.

It turns out to do this requires N = 4. Choose any mk < 1 < Mk for k ∈ {1, 2}. Then
we will construct a set of kernels that have the following solution:

z1,1 z1,2

z2,1 z2,2

z3,1 z3,2

z4,1 z4,2

 =


m̃A

1 m̃A
2

m̃B
1 m̃B

2

m̃C
1 m̃C

2

m̃D
1 m̃D

2

 =


m

1{a11>0}
1 M

1{a11≤0}
1 ; m

1{a12>0}
2 M

1{a12≤0}
2

m
1{a21>0}
1 M

1{a21≤0}
1 ; m

1{a22>0}
2 M

1{a22≤0}
2

m
1{a11≤0}
1 M

1{a11>0}
1 ; m

1{a12≤0}
2 M

1{a12>0}
2

m
1{a21≤0}
1 M

1{a21>0}
1 ; m

1{a22≤0}
2 M

1{a22>0}
2

 . (27)

Before constructing the kernel, we note the following helpful properties.
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First, define ln m ≡
(

lnm1

lnm2

)
, ln M ≡

(
lnM1

lnM2

)
, and the indicator matrix

P ≡
(

1 {a11 > 0} 1 {a12 > 0}
1 {a21 > 0} 1 {a22 > 0}

)

(for “positive”); and 1 ≡
(

1 1
1 1

)
. Then we can write the bounds as follows:

(A ◦P) ln m + (A ◦ (1−P)) ln M ≤ ln m ≤ ln M ≤ (A ◦ (1−P)) ln m + (A ◦P) ln M ⇐⇒
(A ◦P) ln m + (A− (A◦P)) ln M ≤ ln m ≤ ln M ≤ (A− (A◦P)) ln m + (A ◦P) ln M ⇐⇒

A ln M− (A ◦P) (ln M− ln m) ≤ ln m ≤ ln M ≤ A ln m + (A◦P) (ln M− ln m) ⇐⇒
ln B− (A ◦P) (ln M− ln m) ≤ ln m ≤ ln M ≤ ln b + (A◦P) (ln M− ln m) ⇐⇒

ln B− ln D ≤ ln m ≤ ln M ≤ ln b + ln D, (28)

where ln D ≡ (A ◦P) (ln M− ln m) =

ln
(
M1

m1

)a111{a11>0} (
M2

m2

)a121{a12>0}

ln
(
M1

m1

)a211{a21>0} (
M2

m2

)a221{a22>0}

 and Dk ≡

exp ((ln D)k).
Second, we note the existence and uniqueness of weights that can be used to relate the

m̃n
k (n ∈ {A,B,C,D}) variables to other endogenous objects. In what follows, we define

those weights for m̃A
k , but the corresponding results also hold for m̃B

k , m̃C
k , and m̃D

k . Since
mk ≤ m̃A

k ≤Mk, then there exists a weight CA
k ∈ [0, 1] such that:

m̃A
k = CA

k mk +
(
1− CA

k

)
Mk

and there exists a weight cAk ∈ [0, 1] such that:

ln m̃A
k = cAk lnmk +

(
1− cAk

)
lnMk ⇐⇒

m̃A
k = m

cAk
k M

1−cAk
k ⇐⇒

m̃A
k = Mk

(
Mk

mk

)−cAk
(29)

or conversely:

m̃A
k = mk

(
Mk

mk

)1−cAk
(30)
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Note that because m̃A
k = Mk

(
Mk

mk

)−cAk
from equation (29) we can write:

(
m̃A

1

)a11 (
m̃A

2

)a12
=

(
M1

(
M1

m1

)−cA1 )a11 (
M2

(
M2

m2

)−cA2 )a12

⇐⇒

(
m̃A

1

)a11 (
m̃A

2

)a12
= Ma11

1 Ma12
2

((
M1

m1

)a11)−cA1 ((M2

m2

)a12)−cA2
⇐⇒

(
m̃A

1

)a11 (
m̃A

2

)a12
=
B1

D1

D1

((
M1

m1

)a11)−cA1 ((M2

m2

)a12)−cA2
⇐⇒

(
m̃A

1

)a11 (
m̃A

2

)a12
=
B1

D1

((
M1

m1

)a11)1{a11>0}−cA1 ((M2

m2

)a12)1{a12>0}−cA2
(31)

Similarly:

(
m̃A

1

)a21 (
m̃A

2

)a22
=
B2

D2

((
M1

m1

)a21)1{a21>0}−cA1 ((M2

m2

)a22)1{a22>0}−cA2
(32)

Similarly, because m̃A
k = mk

(
Mk

mk

)1−cAk
from equation (30) we can write::

(
m̃A

1

)a11 (
m̃A

2

)a12
=

(
m1

(
M1

m1

)(1−cA1 )
)a11 (

m2

(
M2

m2

)(1−cA2 )
)a12

⇐⇒

(
m̃A

1

)a11 (
m̃A

2

)a12
= ma11

1 ma12
2

((
M1

m1

)a11)(1−cA1 )((M2

m2

)a12)(1−cA2 )
⇐⇒

(
m̃A

1

)a11 (
m̃A

2

)a12
= b1D1

((
M1

m1

)a11)(1−cA1 ) ((
M2

m2

)a12)(1−cA2 )

D1

⇐⇒

(
m̃A

1

)a11 (
m̃A

2

)a12
= b1D1

((
M1

m1

)a11)(1−cA1 )−1{a11>0}((
M2

m2

)a12)(1−cA2 )−1{a12>0}

(33)

Similarly,:

(
m̃A

1

)a21 (
m̃A

2

)a22
= b2D2

((
M1

m1

)a21)(1−cA1 )−1{a11>0}((
M2

m2

)a12)(1−cA2 )−1{a12>0}

(34)

As a result, the system of equations (25) and (26) become:

m̃A
1 = F11,1

B1

D1

+ F12,1
B1

D1

((
M1

m1

)a11)1{a11>0}−cB1 ((M2

m2

)a12)1{a12>0}−cB2
+ F13,1b1D1 + F14,1b1D1

((
M1

m1

)a11)(1−cD1 )−1{a11>0}((
M2

m2

)a12)(1−cD2 )−1{a12>0}
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m̃B
1 = F21,1

B1

D1

+ F22,1
B1

D1

((
M1

m1

)a11)1{a11>0}−cB1 ((M2

m2

)a12)1{a12>0}−cB2
+ F23,1b1D1 + F24,1b1D1

((
M1

m1

)a11)(1−cD1 )−1{a11>0}((
M2

m2

)a12)(1−cD2 )−1{a12>0}

m̃C
1 = F31,1

B1

D1

+ F32,1
B1

D1

((
M1

m1

)a11)1{a11>0}−cB1 ((M2

m2

)a12)1{a12>0}−cB2
+ F33,1b1D1 + F34,1b1D1

((
M1

m1

)a11)(1−cD1 )−1{a11>0}((
M2

m2

)a12)(1−cD2 )−1{a12>0}

m̃D
1 = F41,1

B1

D1

+ F42,1
B1

D1

((
M1

m1

)a11)1{a11>0}−cB1 ((M2

m2

)a12)1{a12>0}−cB2
+ F43,1b1D1 + F44,1b1D1

((
M1

m1

)a11)(1−cD1 )−1{a11>0}((
M2

m2

)a12)(1−cD2 )−1{a12>0}

m̃A
2 = F11,2

B2

D2

((
M1

m1

)a21)1{a21>0}−cA1 ((M2

m2

)a22)1{a22>0}−cA2
+ F12,2

B2

D2

+ F13,2b2D2

((
M1

m1

)a21)(1−cC1 )−1{a11>0}((
M2

m2

)a12)(1−cC2 )−1{a12>0}

+ F14,2b2D2

m̃B
2 = F21,2

B2

D2

((
M1

m1

)a21)1{a21>0}−cA1 ((M2

m2

)a22)1{a22>0}−cA2
+ F22,2

B2

D2

+ F23,2b2D2

((
M1

m1

)a21)(1−cC1 )−1{a11>0}((
M2

m2

)a12)(1−cC2 )−1{a12>0}

+ F24,2b2D2

m̃C
2 = F31,2

B2

D2

((
M1

m1

)a21)1{a21>0}−cA1 ((M2

m2

)a22)1{a22>0}−cA2
+ F32,2

B2

D2

+ F33,2b2D2

((
M1

m1

)a21)(1−cC1 )−1{a11>0}((
M2

m2

)a12)(1−cC2 )−1{a12>0}

+ F34,2b2D2

m̃D
2 = F41,2

B2

D2

((
M1

m1

)a21)1{a21>0}−cA1 ((M2

m2

)a22)1{a22>0}−cA2
+ F42,2

B2

D2

+ F43,2b2D2

((
M1

m1

)a21)(1−cC1 )−1{a11>0}((
M2

m2

)a12)(1−cC2 )−1{a12>0}

+ F44,2b2D2

We now move on to constructing the kernel. Note that given the inequality (28), there
exists constants Pk ∈ (0, 1) and Qk ∈ (0, 1) such that:

mk = Pk
Bk

Dk

+ (1− Pk) bkDk (35)

Mk = Qk
Bk

Dk

+ (1−Qk) bkDk (36)

Combining the last two results (where again we focus on m̃A
k , but the following holds for

m̃B
k , m̃C

k , and m̃D
k as well) note that:

m̃A
k = CA

k mk +
(
1− CA

k

)
Mk

and

mk = Pk
Bk

Dk

+ (1− Pk) bkDk

Mk = Qk
Bk

Dk

+ (1−Qk) bkDk
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so that:

m̃A
k = CA

k

(
Pk
Bk

Dk

+ (1− Pk) bkDk

)
+
(
1− CA

k

)(
Qk

Bk

Dk

+ (1−Qk) bkDk

)
⇐⇒

m̃A
k =

((
CA
k Pk +

(
1− CA

k

)
Qk

)) Bk

Dk

+
(
CA
k (1− Pk) +

(
1− CA

k

)
(1−Qk)

)
bkDk

Moreover, note that:((
CA
k Pk +

(
1− CA

k

)
Qk

))
+
(
CA
k (1− Pk) +

(
1− CA

k

)
(1−Qk)

)
= CA

k Pk +
(
1− CA

k

)
Qk + CA

k (1− Pk) +
(
1− CA

k

)
(1−Qk)

= CA
k (Pk + (1− Pk)) +

(
1− CA

k

)
(Qk + (1−Qk))

= CA
k +

(
1− CA

k

)
= 1

This tells us that m̃A
k can also be written as weighted average of Bk

Dk
and bkDk, with the

weight being ωAk ≡
((
CA
k Pk +

(
1− CA

k

)
Qk

))
.

With all of these properties established, we have enough information to define our kernels:

F1 =


ωA1 0 1− ωA1 0
ωB1 0 1− ωB1 0
ωC1 0 1− ωC1 0
ωD1 0 1− ωD1 0



F2 =


0 ωA2 0 1− ωA2
0 ωB2 0 1− ωB2
0 ωC2 0 1− ωC2
0 ωD2 0 1− ωD2

 .

Note that the zi,k = 1 for all i ∈ {1, .., 4} and k ∈ {1, 2} trivially satisfies the equilibrium
system. But it is also straightforward to confirm that the proposed solution (27) is also an

equilibrium. This is because every equation has a term of
(
Bk
Dk

)
and (bkDk), which we know

every endogenous variable is a weighted average of (see equations (35) and (36)).
Finally, we mention that there are many geographies that deliver this multiplicity for

two reasons. First, the argument above holds for any choice of mk < 1 < Mk. Second,
it is straightforward to show that perturbations of the above kernel also generate multiple
equilibria. Suppose we considered the perturbed system of equations:

F1 =


ωA1 − κε δε 1− ωA1 − (1− κ) ε (1− δ) ε
ωB1 0 1− ωB1 0
ωC1 0 1− ωC1 0
ωD1 0 1− ωD1 0

 ,

where ε > 0, κ ∈ [0, 1] and δ ∈ [0, 1]. The only restriction we place is that ωA1 −κε > 0 ⇐⇒
κε < ωA1 and

(
1− ωA1 − (1− κ) ε

)
> 0 ⇐⇒ ε (1− κ) < 1 − ωA1 . Note that both of these

equations will hold for sufficiently small ε, as ωAk =
(
C l
kPk +

(
1− C l

k

)
Qk

)
and Pk ∈ (0, 1)

and Qk ∈ (0, 1). In what follows, we show for any choice of ε > 0 (that is sufficiently small
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to satisfy these inequalities) and any choice of δ ∈ [0, 1], there exists a κ ∈ [0, 1] that ensures
the multiplicity still holds.

Then the relevant equation becomes:

m̃A
1 = ωA1

B1

D1

− κε
(
B1

D1

)
+ δε

(
B1

D1

((
M1

m1

)a11)1{a11>0}−cB1 ((M2

m2

)a12)1{a12>0}−cB2
)

+
(
1− ωA1

)
b1D1 − (1− κ) εb1D1 + (1− δ) εb1D1

((
M1

m1

)a11)(1−cD1 )−1{a11>0}((
M2

m2

)a12)(1−cD2 )−1{a12>0}

⇐⇒

κε
B1

D1

+ (1− ε) b1D1 = δε
B1

D1

((
M1

m1

)a11)1{a11>0}−1{a21>0}((
M2

m2

)a12)1{a12>0}−1{a22>0}

+ (1− δ) εb1D1

((
M1

m1

)a11)1{a21>0}−1{a11>0}((
M2

m2

)a12)1{a22>0}−1{a12>0}

⇐⇒

κε
B1

D1

+ (1− κ) εb1D1 = δε

(
B1

D1

)
G+ (1− δ) ε 1

G
(b1D1) ⇐⇒

κ
B1

D1

+ (1− κ) b1D1 = δ

(
B1

D1

)
G+ (1− δ) 1

G
(b1D1)

where G ≡
((

M1

m1

)a11)1{a11>0}−1{a21>0} ((
M2

m2

)a12)1{a12>0}−1{a22>0}
. Recall that

B1

D1

=
Ma11

1 Ma12
2(

M1

m1

)a111{a11>0} (
M2

m2

)a121{a12>0}

b1D1 = ma11
1 ma12

2

(
M1

m1

)a111{a11>0}(
M2

m2

)a121{a12>0}

,

i.e. B1/D1 is always the lowest that can be achieved given the signs of the exponents, and
b1D1 is the highest that can be achieved given the sign of the exponents. As a result, we
have:

G

(
B1

D1

)
=

((
M1

m1

)a11)1{a11>0}−1{a21>0}((
M2

m2

)a12)1{a12>0}−1{a22>0}

× Ma11
1 Ma12

2(
M1

m1

)a111{a11>0} (
M2

m2

)a121{a12>0} ⇐⇒

G

(
B1

D1

)
=

Ma11
1 Ma12

2(
M1

m1

)a111{a21>0} (
M2

m2

)a121{a22>0}

1

G
(b1D1) =

ma11
1 ma12

2

(
M1

m1

)a111{a11>0} (
M2

m2

)a121{a12>0}

((
M1

m1

)a11)1{a11>0}−1{a21>0} ((
M2

m2

)a12)1{a12>0}−1{a22>0} ⇐⇒

1

G
(b1D1) = ma11

1 ma12
2

((
M1

m1

)a11)1{a21>0}((
M2

m2

)a12)1{a22>0}

Together this implies that:

B1

D1

≤ G

(
B1

D1

)
,

1

G
(b1D1) ≤ b1D1
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since B1/D1 and b1D1 are designed to be the lowest and highest (respectively) given the
signs of the exponents. As a result, there exists constants (weights) λ1 ∈ [0, 1] and λ2 ∈ [0, 1]
such that:

G

(
B1

D1

)
= λ1

B1

D1

+ (1− λ1) b1D1

1

G
(b1D1) = λ2

B1

D1

+ (1− λ2) b1D1

We now return to the above equation:

κ
B1

D1

+ (1− κ) b1D1 = δ

(
B1

D1

)
G+ (1− δ) 1

G
(b1D1) ⇐⇒

κ
B1

D1

+ (1− κ) b1D1 = δ

(
λ1
B1

D1

+ (1− λ1) b1D1

)
+ (1− δ)

(
λ2
B1

D1

+ (1− λ2) b1D1

)
⇐⇒

κ
B1

D1

+ (1− κ) b1D1 = (δλ1 + (1− δ)λ2)
B1

D1

+ (δ (1− λ1) + (1− δ) (1− λ2)) b1D1 (37)

Choose κ ≡ δλ1 + (1− δ)λ2. Then

1− κ = 1− δλ1 − (1− δ)λ2 ⇐⇒
1− κ = 1 + δ − δ − δλ1 − (1− δ)λ2 ⇐⇒
1− κ = δ (1− λ1) + (1− δ) (1− λ2) ,

so that equation (37) holds. Hence, for any choice of δ, we can find a κ that ensures the
equilibrium still holds. Note that there is nothing in this argument that is particular to m̃A

1 .
As a result, we can construct examples of multiple equilibria of the form:

F1 =


ωA1 − κA1 εA1 ; δA1 ε

A
1 ; 1− ωA1 −

(
1− κA1

)
εA1 ;

(
1− δA1

)
εA1

ωB1 − κB1 εB1 ; δB1 ε
B
1 ; 1− ωB1 −

(
1− κB1

)
εB1 ;

(
1− δB1

)
εB1

ωC1 − κC1 εC1 ; δC1 ε
C
1 ; 1− ωC1 −

(
1− κC1

)
εC1 ;

(
1− δC1

)
εC1

ωD1 − κD1 εD1 ; δD1 ε
D
1 ; 1− ωD1 −

(
1− κD1

)
εD1 ;

(
1− δD1

)
εD1

 ,

F2 =


δA2 ε

A
2 ; ωA2 − κA2 εA2 ;

(
1− δA2

)
εA2 1− ωA2 −

(
1− κA2

)
εA2

δB2 ε
B
2 ; ωB2 − κB2 εB2 ;

(
1− δB2

)
εB2 1− ωB2 −

(
1− κB2

)
εB2

δC2 ε
C
2 ; ωC2 − κC2 εC2 ;

(
1− δC2

)
εC2 1− ωC2 −

(
1− κC2

)
εC2

δD2 ε
D
2 ; ωD2 − κD2 εD2 ;

(
1− δD2

)
εD2 1− ωD2 −

(
1− κD2

)
εD2


for many different chosen values of

{
εlk
}

and
{
δlk
}

.

A.3 Proof of Proposition 3

As a reminder, the steady state system of equations we would like to examine can be written
as:

LiW
−θ
i = Ω−θ

∑
j

MijW
θ
j
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W σ̃σ
i

(
L

1
ρ

i

)
=
∑
j∈S

TijW
−(σ−1)σ̃
j

(
L

1
ρ

j

)a

where Tij ≡ τ 1−σ
ij Ā

(σ−1)σ̃
i Āσ̃σj ū

σ̃
i ū

(σ−1)σ̃
j andMij ≡ µ−θij , p ≡ (σ̃ (1− (α1 + α2) (σ − 1)− σ (β1 + β2)))−1,

and a ≡ (1+(α1+α2)σ+(β1+β2)(σ−1))
(1−(α1+α2)(σ−1)−σ(β1+β2))

. In what follows, we will assume p > 0 and a > 0. In ad-

dition, we have the labor market clearing constraint
∑

i∈S Li = L̄. Our goal is to provide
bounds on Ω.

It proves helpful to define xi ≡
(
Li
L̄

) 1
ρ so that the system of equations become:

LiW
−θ
i = Ω−θ

∑
j

MijW
θ
j (38)

W σ̃σ
i xi

1
ρ = L̄

a−1
ρ

∑
j∈S

TijW
−(σ−1)σ̃
j xaj (39)

where note that the labor market constraint now becomes
∑

i∈S x
p
i = 1. In what follows, we

refer to equation (38) as the “migration equation” and equation (39) as the “trade equation”.
Before continuing with the proof, we remind the reader of a number of helpful mathe-

matical properties. Define ‖x‖p ≡
(∑

i∈S x
p
i

) 1
p . (With some abuse of notation, we refer to

‖x‖p as the “p-norm of x”, even though it is formally a norm only if p ≥ 1). First, we remind
the reader of the relationship between different p norms. For any 0 < p < q, we have the
convenient relationship:

‖x‖q ≤ ‖x‖p . (40)

More generally, for any p < q, we have:

N
1
q
− 1
p ‖x‖p ≤ ‖x‖q ≤ C (p, q)N

1
q
− 1
p ‖x‖p (41)

where N = |S|, C (p, q) ≡
(

p(µq−µp)
(q−p)(µp−1)

) 1
q
(

q(µp−µq)
(p−q)(µq−1)

)− 1
p
, and µ ≥

(
maxi xi
mini xi

)
. Note that if

µ = 1, C (p, q) = 1. The first inequality is the well known generalized mean inequality,
whereas the second inequality is due to the less known result originally due to Specht (1960)
and reprinted (in English) in the textbook by Mitrinovic and Vasic (1970) (see Theorem 1
on p.79).

Second, recall the Cauchy–Schwarz inequality that for any N × 1 vectors x ≡ [xi] and
y ≡ [yi], we have:

∑
i∈S

|xiyi| ≤

(∑
i∈S

x2
i

) 1
2
(∑
i∈S

y2
i

) 1
2

⇐⇒ ‖{xiyi}‖1 ≤ ‖{xi}‖2 ‖{yi}‖2 .

Third, recall that the matrix norm induced by the vector p-norm for square matrix A is

defined as ‖A‖p ≡ sup
{
‖Ax‖p
‖x‖p
|x 6= 0

}
, which immediately implies that ‖Ax‖p ≤ ‖A‖p ‖x‖p

(this is known as the sub-multiplicative property of the matrix norm). Moreover, we have
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‖A‖2 = σ (A), i.e. the matrix norm induced by the Euclidean vector norm is equal to the
largest singular value of matrix A. (If A is normal, then σ (A) is simply the absolute value
of the largest eigenvalue. If A is real and positive, this is the spectral radius (Perron root)
of A. More generally, we have ).

Fourth, recall that if an N×N matrix A is real and symmetric, there exists an eigenvalue-
decomposition such that:

A = QΛQT ,

where Λ is a diagonal matrix of the eigenvalues of A and Q = [qi] is a matrix of the orthonor-
mal eigenvectors, i.e. that q′iqi = 1 for all i ∈ S and q′iqj = 0 for all i 6= j. An implication
of this decomposition is that the quadratic form of A – i.e. x′Ax =

∑
i∈S
∑

j∈S Aijxixj – is

bounded above by λ̄A ‖x‖2, where λ̄A is the absolute value of the largest eigenvalue of matrix
A.

A.3.1 Lemma

We now offer a lemmas which provides a bound on the maximum of the ratio to highest
welfare and lowest welfare across locations within a given equilibrium.

Lemma 1. In any steady state equilibrium, we can bound the ratio of the maximum to
minimum period welfare W ∗ ≡ maxi∈SWi

mini∈SWi
by:

1 ≤ W ∗ ≤ µ, (42)

where µ ≡ (M∗)

∣∣∣∣∣ 1

θ− y1y2

∣∣∣∣∣
, M∗ ≡ maxi,j

∑
l
Mil

Mjl
, and [yk] are the eigenvectors associated with

the largest eigenvalue of matrix A =

(∣∣∣ (1+(α1+α2)σ+(β1+β2)(σ−1))
(1−(α1+α2)(σ−1)−σ(β1+β2))

∣∣∣ ∣∣∣ 2σ−1
(1−(α1+α2)(σ−1)−σ(β1+β2))

∣∣∣
1
θ

1

)
.

We remark that if M∗ = 1, then welfare will be equalized in all locations, i.e. W ∗ = 1.

Proof. We begin by writing the steady state equilibrium system of equations more compactly
as:

Lγ11i W γ12
i = c1

∑
j

Kij,1L
β11
j W β12

j

Lγ21i W γ22
i = c2

∑
j

Kij,1L
β21
j W β22

j ,

where Γ ≡ [γkl] =

(
σ̃ (1− (α1 + α2) (σ − 1)− σ (β1 + β2)) σ̃σ

1 −θ

)
, B ≡ [βkl] =

(
σ̃ (1 + (α1 + α2)σ + (β1 + β2) (σ − 1)) (σ − 1) σ̃

0 θ

)
,

c1 = 1, c2 = Ω−θ, Kij,1 = τ 1−σ
ij Ā

(σ−1)σ̃
i ūσσ̃i u

(σ−1)σ̃
j Āσ̃σj , and Kij,2 = µ−θij .
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We can re-write this system of equations as:

Li = c1W
− γ12
γ11

i

(∑
j

Kij,1L
β11
j W β12

j

) 1
γ11

Wi = c2L
− γ21
γ22

i

(∑
j

Kij,1L
β21
j W β22

j

) 1
γ22

Define Lmax ≡ maxi Li, L
min ≡ mini Li, W

max ≡ maxiWi, W
min ≡ miniWi.

Lmax ≤c1

((
Wmin

)1{ γ12
γ11

>0
}

(Wmax)
1
{
γ12
γ11

<0
})− γ12

γ11

×(∑
j

Kij,1

(
(Lmax)1(β11>0) (Lmin)1(β11<0)

)β11 (
(Wmax)1(β12>0) (Wmin

)1(β12<0)
)β12) 1

γ11
1{γ11>0}

×

(∑
j

Kij,1

(
(Lmax)1(β11<0) (Lmin)1(β11>0)

)β11 (
(Wmax)1(β12<0) (Wmin

)1(β12>0)
)β12) 1

γ11
1{γ11<0}

Similarly, we have:

Lmin ≥c1

(
(Wmax)

1
{
γ12
γ11

>0
} (
Wmin

)1{ γ12
γ11

<0
})− γ12

γ11

×(∑
j

Kij,1

((
Lmin

)1(β11>0)
(Lmax)1(β11<0)

)β11 ((
Wmin

)1(β12>0)
(Wmax)1(β12<0)

)β12) 1
γ11

1{γ11>0}

×

(∑
j

Kij,1

((
Lmin

)1(β11<0)
(Lmax)1(β11>0)

)β11 ((
Wmin

)1(β12<0)
(Wmax)1(β12>0)

)β12) 1
γ11

1{γ11<0}

Define L∗ ≡ maxi Li
mini Li

= Lmax

Lmin
and W ∗ ≡ maxiWi

miniWi
= Wmax

Wmin Then combining the previous two
equations we have:

L∗ ≤ (L∗)

∣∣∣β11γ11

∣∣∣
(W ∗)

∣∣∣ γ12γ11

∣∣∣+∣∣∣β12γ11

∣∣∣
We can proceed similarly for the second equation, which yields:

W ∗ ≤ (L∗)

∣∣∣ γ21γ22

∣∣∣+∣∣∣β21γ22

∣∣∣
(W ∗)

∣∣∣β22γ22

∣∣∣

Define: A ≡

 ∣∣∣β11γ11

∣∣∣ ∣∣∣γ12γ11

∣∣∣+
∣∣∣β12γ11

∣∣∣∣∣∣γ21γ22

∣∣∣+
∣∣∣β21γ22

∣∣∣ ∣∣∣β22γ22

∣∣∣
 =

(∣∣∣ (1+(α1+α2)σ+(β1+β2)(σ−1))
(1−(α1+α2)(σ−1)−σ(β1+β2))

∣∣∣ ∣∣∣ 2σ−1
(1−(α1+α2)(σ−1)−σ(β1+β2))

∣∣∣
1
θ

1

)
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so that our inequalities in matrix notation become:(
lnL∗

lnW ∗

)
≤ A

(
lnL∗

lnW ∗

)
⇐⇒

λ

(
lnL∗

lnW ∗

)
= A

(
lnL∗

lnW ∗

)
,

for some λ > 1. As long as the spectral radius of A is greater than one, the unique solution
to this inequality is that: (

lnL∗

lnW ∗

)
=

(
cy1

cy2

)
,

where

(
y1

y2

)
> 0 is the eigenvector associated with the largest eigenvalue of matrix A and

c > 0 is some scalar. As a result, we have the following equation relating the spatial variation
of welfare and population density across locations:

lnW ∗ =
y2

y1

lnL∗, (43)

We continue by recalling that in the steady state we have the following equality:

W θ
i Πθ

i = ΩθLi

which in turn implies for any equilibrium we have:

L∗ =
W θ
imaxL

Πθ
imaxL

W θ
iminL

Πθ
iminL

,

where imaxL ≡ arg maxi∈S Li and iminL ≡ arg mini∈S Li. As a result, we have:

lnL∗ ≤ θ lnW ∗ + ln
Πθ
imaxL

Πθ
iminL

Note that for any i ∈ S and j ∈ S we have:

Πθ
i

Πθ
j

=

∑
kMikW

θ
k∑

kMjkW θ
k

=
∑
k

MikW
θ
k∑

lMjlW θ
l

≤
∑
k

MikW
θ
k

MjkW θ
k

=
∑
k

Mik

Mjk

Let M∗ ≡ maxi,j
∑

k

(
Mik

Mjk

)
. We then have:

ln
Πθ
imax

Πθ
imin

≤ lnM∗,

so that:
lnL∗ ≤ θ lnW ∗ + lnM∗ (44)
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Combining equations (43) and (44) yields:

lnW ∗ ≤
(
y2

y1

)
(θ lnW ∗ + lnM∗) ⇐⇒(

1− θy2

y1

)
lnW ∗ ≤

(
y2

y1

)
lnM∗.

If θ y2
y1
< 1 we then have:

lnW ∗ ≤

(
y2
y1

)
1− θ y2

y1

lnM∗ (45)

Similarly, we have:

(W ∗)θ =
LimaxW

LiminW

×
Πθ
iminW

Πθ
imaxW

,

where imaxW ≡ arg maxi∈SWi and iminW ≡ arg mini∈SWi so that:

θ lnW ∗ ≤ lnL∗ + ln
Πθ
iminW

Πθ
imaxW

≤ lnL∗ + lnM∗ ⇐⇒

lnL∗ ≥ θ lnW ∗ − lnM∗. (46)

Combining equations (43) and (46) yields:

lnW ∗ ≥
(
y2

y1

)
(θ lnW ∗ − lnM∗) ⇐⇒((

y2

y1

)
θ − 1

)
lnW ∗ ≤

(
y2

y1

)
lnM∗

If θ y2
y1
> 1 we then have:

lnW ∗ ≤

(
y2
y1

)
((

y2
y1

)
θ − 1

) lnM∗ (47)
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Combining equations (45) and (47) then yields:

lnW ∗ ≤

∣∣∣∣∣∣
(
y2
y1

)
(
y2
y1

)
θ − 1

∣∣∣∣∣∣ lnM∗ ⇐⇒

lnW ∗ ≤

∣∣∣∣∣ 1

θ − y1
y2

∣∣∣∣∣ lnM∗ ⇐⇒

W ∗ ≤ (M∗)

∣∣∣∣∣ 1

θ− y1y2

∣∣∣∣∣
,

as required.

A.3.2 The upper bound

We now proceed by constructing the upper bound. The proof proceeds by first constructing
an upper bound for steady state welfare as a function of the norm of the period welfare using
the migration equation. The proof then constructs an upper bound for the norm of period
welfare using the trade equation.

The migration equation We first examine the migration equation (38). Define ωi ≡ W θ
i .

Recall that
∑

i∈S Li = L̄ ⇐⇒ ‖{Li}‖1 = L̄. Then:

LiW
−θ
i = Ω−θ

∑
j

MijW
θ
j ⇐⇒

Li = Ω−θωi
∑
j

Mijωj =⇒

‖{Li}‖1 = Ω−θ

∥∥∥∥∥
{
ωi
∑
j

Mijωj

}∥∥∥∥∥
1

⇐⇒

L̄Ωθ =

∥∥∥∥∥
{
ωi
∑
j

Mijωj

}∥∥∥∥∥
1

⇐⇒

L̄Ωθ = ω′Mω =⇒
L̄Ωθ ≤ λ̄M ‖ω‖2 ⇐⇒

L̄Ωθ ≤ λ̄M

(∑
i∈S

(
W θ
i

)2

) 1
2

⇐⇒

Ω ≤ L̄−
1
θ λ̄

1
θ
M ‖W ‖2θ (48)

where λ̄M is the largest eigenvalue of M. Because M is positive, this is also the spectral
radius, Perron-root, and largest singular value of M.
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The trade equation We now turn to the trade equation (39), which if we define yi ≡

W σ̃σ
i

(
L

1
ρ

i

)
can be written as follows:

Defining yi ≡ W σ̃σ
i

(
L

1
ρ

i

)
so that:

yi =
∑
j

Tijyj

W
−(σ−1)σ̃
j

(
L

1
ρ

j

)a
W σ̃σ
j

(
L

1
ρ

j

) ⇐⇒

yi =
∑
j

TijyjW
1−σ
j L

a−1
ρ

j

We then sum both sides over i ∈ S:

yi =
∑
j

TijyjW
1−σ
j L

a−1
ρ

j =⇒

‖{yi}‖1 =

∥∥∥∥∥
{∑

j

TijyjW
1−σ
j L

a−1
ρ

j

}∥∥∥∥∥
1

=⇒

‖{yi}‖1 ≤

∥∥∥∥∥
{∑

j

Tijyj

}∥∥∥∥∥
2

∥∥∥∥{W 1−σ
j L

a−1
ρ

j

}∥∥∥∥
2

=⇒

‖{yi}‖1 ≤ ‖T‖2 ‖{yi}‖2

∥∥∥∥{W 1−σ
j L

a−1
ρ

j

}∥∥∥∥
2

=⇒

‖{yi}‖1 ≤ L̄
a−1
ρ ‖T‖2 ‖{yi}‖2

∥∥{W 1−σ
i

}∥∥
1

∥∥∥∥{LiL̄
}∥∥∥∥

1

=⇒

‖{yi}‖1 ≤ L̄
a−1
ρ ‖T‖2 ‖{yi}‖1

∥∥{W 1−σ
i

}∥∥
1
⇐⇒(∑

i∈S

W 1−σ
j

)−1

≤ L̄
a−1
ρ ‖T‖2 ⇐⇒

‖W‖1−σ ≤ L̄
a−1
ρ

1
σ−1λ

1
σ−1

T , (49)

where the third line uses the Cauchy-Schwartz inequality, the fourth line uses the property
of matrix norms induced by the vector norm, the fifth line uses the fact that a−1

p
> 1 and(

Li
L̄

)
∈ [0, 1] then

(
Li
L̄

)a−1
p < Li

L̄
, the sixth lines uses the fact that |yi|2 ≤ |yi|1, and the

seventh the fact that |A|2 ≤ λ̄A, i.e. the matrix p-norm with p = 2 is bounded above by
the Perron root), and λ̄T is the largest eigenvalue of T (because T is strictly positive, by
the Perron-Frobenius theorem, the largest eigenvalue is positive) and we used the fact that

1
σ−1

a−1
p

= (α1 + α2) + (β1 + β2).
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The Bound Recall from equation (41) that because (1− σ) < 2θ, we have:

‖W ‖2θ ≤ c ‖W ‖1−σ , (50)

where

c1 ≡

(
(1− σ)

(
µ2θ − µ(1−σ)

)
(2θ + σ − 1) (µ(1−σ) − 1)

) 1
2θ
(

2θ
(
µ(1−σ) − µ2θ

)
((1− σ)− 2θ) (µ2θ − 1)

)− 1
(1−σ)

N
1
2θ

+ 1
σ−1

from equation (28) and µ is defined above in equation (42) from Lemma 1. Combining equa-
tion (50) with the migration bound from equation (48) and the trade bound from equation
(49) then yields:

Ω ≤ c1λ̄
1
θ
M λ̄

1
σ−1

T L̄(ρ− 1
θ ), (51)

where ρ ≡ (α1 + α2) + (β1 + β2) , as claimed.

A.3.3 The lower bound

We now proceed to prove the lower bound. As above, we first consider the migration equation
and then consider the trade equation.

The migration equation We first examine the migration equation. Define µi ≡ LiW
−θ
i

and, with some abuse of notation, M−1
ij ≡M−1

ij . Then:

LiW
−θ
i = Ω−θ

∑
j

MijW
θ
j ⇐⇒∑

j

M−1
ij LjW

−θ
j = Ω−θW θ

i ⇐⇒∑
j

M−1
ij

(
W−θ
i Li

) (
LjW

−θ
j

)
= LiΩ

−θ ⇐⇒∑
j

M−1
ij µiµj = LiΩ

−θ =⇒

µ′M−1µ = L̄Ω−θ =⇒
L̄Ω−θ ≤λ̄M−1 ‖µ‖2 ⇐⇒

L̄Ω−θ ≤λ̄M−1

(∑
i∈S

L2
iW

−2θ
i

) 1
2

=⇒

L̄Ω−θ ≤λ̄M−1

(∑
i∈S

L4
i

) 1
4
(∑
i∈S

W−4θ
i

) 1
4

=⇒

L̄Ω−θ ≤λ̄M−1L̄
(∥∥{(Wi)

−1}∥∥
4θ

)θ ⇐⇒
(λM)

1
θ
(
‖{Wi}‖−4θ

)
≤Ω, (52)
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where λ̄M−1 is the largest eigenvalue (in absolute value) of M−1 and the third to last line
applied the Cauchy–Schwarz inequality, the second to last line used equation (40) to note
that ‖{Li}‖4 ≤ ‖{Li}‖1 = L̄, and the last lined used the fact that λ̄M−1 = (λM)−1, i.e. the
largest eigenvalue (in absolute value) of M−1 is the inverse of the smallest eigenvalue of M.

The trade equation We now turn to the trade equation (39). Again, with some abuse of
notation, define T−1

ij ≡ T−1
ij . As a result, we can write equation (39) as follows:

W σ̃σ
i L

1
ρ

i =
∑
j∈S

TijW
−(σ−1)σ̃
j L

a
ρ

j ⇐⇒

W
−(σ−1)σ̃
i L

a
ρ

i =
∑
j∈S

T−1
ij W

σ̃σ
j L

1
ρ

j ⇐⇒

yiL
a−1
ρ

i =
∑
j∈S

T−1
ij W

σ̃σ
j L

1
ρ

j

yj

W
−(σ−1)σ̃
j L

1
ρ

j

⇐⇒

yi =
∑
j∈S

T−1
ij W

σ−1
j yjL

−(a−1
ρ )

i ,

where yi ≡ W
−(σ−1)σ̃
i L

1
ρ

i . Taking the Euclidean norm of both sides yields:

‖{yi}‖2 =

∥∥∥∥∥
{∑
j∈S

T−1
ij W

σ−1
j L

−a−1
ρ

i yj

}∥∥∥∥∥
2

=⇒

‖{yi}‖2 ≤ max
L

∥∥∥∥∥
{∑
j∈S

T−1
ij W

σ−1
j L

−a−1
ρ

i yj

}∥∥∥∥∥
2

=⇒

‖{yi}‖2 ≤
(
L̄

N

)−a−1
p

∥∥∥∥∥
{∑
j∈S

T−1
ij W

σ−1
j yj

}∥∥∥∥∥
2

=⇒

‖{yi}‖2 ≤
(
L̄

N

)−a−1
p ∥∥T−1

∥∥
2

∥∥{W σ−1
j yj

}∥∥
2

=⇒

‖{yi}‖1 ≤
(
L̄

N

)−a−1
p ∥∥T−1

∥∥
2

∥∥{W σ−1
j

}∥∥
4
‖{yj}‖4 =⇒

‖{yi}‖1 ≤
(
L̄

N

)−a−1
p ∥∥T−1

∥∥
2

∥∥{W σ−1
j

}∥∥
4
‖{yj}‖1 =⇒

1 ≤
(
L̄

N

)−a−1
p ∥∥T−1

∥∥
2

∥∥{W σ−1
j

}∥∥
4
⇐⇒

(λT )
1

σ−1

((
L̄

N

) 1
σ−1

a−1
p

)
≤ ‖{Wj}‖4(σ−1) , (53)
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where the second line took a maximum over all possible distributions of labor, the third
line used the fact that the solution to that maximization is Li = L̄

N
, fourth line used a

property of matrix norms, the fifth line used Cauchy-Schwartz, the sixth line used the fact
that ‖{yj}‖4 ≤ ‖{yj}‖1, seventh line used the fact that λT = λ̄−1

T−1 .

The Bound Recall from equation (41) that because −4θ < 4 (σ − 1), we have:

c2 ‖W ‖4(σ−1) ≤ ‖W ‖−4θ , (54)

where

c2 ≡

( (−4θ)
(
µ4(σ−1) − µ(−4θ)

)
(4 (σ − 1) + 4θ) (µ(−4θ) − 1)

) 1
4(σ−1)

(
4 (σ − 1)

(
µ(−4θ) − µ4(σ−1)

)
((−4θ)− 4 (σ − 1)) (µ4(σ−1) − 1)

) 1
4θ

N
1

4(σ−1)
+ 1

4θ

−1

from equation (28) and µ is defined above in equation (42) from Lemma 1. Combining
equation (52) from the migration bound with equation (53) from the trade bound then
yields:

Ω ≥ c2 (λT )
1

σ−1 (λM)
1
θ

(
L̄

N

)ρ
, (55)

where ρ ≡ (α1 + α2) + (β1 + β2) , as claimed.

A.4 Proof of Proposition 3

The two systems of equations are:

pσ−1
it =

∑
j

Tijt

(
Yjt
Yit

)
P σ−1
jt

P σ−1
it =

∑
j

Tjit
(
pσ−1
jt

)−1

and:

(
W θ
it

)−1
=
∑
j

Mjit
Ljt−1

Lit

(
Πθ
jt

)−1

Πθ
it =

∑
i

MijtW
θ
jt.
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Both systems of equations can be written as:

xi =
∑
j

KA
ijyj

yi =
∑
j

KB
ijx
−1
j

which has a corresponding LHS matrix of coefficients:

B ≡
(

1 0
0 1

)
and the matrix on the RHS coefficients becomes:

Γ ≡
(

0 1
−1 0

)
Hence, we have:

A ≡ ΓB−1 =

(
0 1
−1 0

)
,

so that Ap =

(
0 1
1 0

)
. It is straightforward to check that ρ (Ap) = 1, as required.

B Possible Microfoundations for Spillovers

B.1 Productivity spillovers

B.1.1 The Accumulation of ideas

We follow Deneckere and Judd (1992). Suppose that firms can pay a fixed cost fi (in
terms of local labor) to create a new variety, over which they have monopoly rights over
for one period (the period in which they introduce the variety). In the subsequent period,
the new variety exists but is produced under conditions of perfect competition. In the
following period (two periods after its introduction), we assume the variety no longer exists
(i.e. it fully depreciates). Finally, we assume that consumers have Cobb-Douglas preferences
(within location) over the the new varieties and the old varieties, and CES preferences across
respectively.

Setup

Demand Let Ωnew
it be the set of varieties created by monopolistically competitive firms

in period t in location i ∈ S and Ωold
i,t be the set of varieties created in the previous period

that are now produced under perfect competition. We assume that consumers have Cobb-
Douglas preferences over CES aggregates of the two types of goods within location and then
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CES aggregates of the Cobb-Douglas combinations across locations, i.e.:

Cjt =

∑
i∈S

(ˆ
Ωnewit

qijt (ω)
ρ−1
ρ dω

) ρ
ρ−1

χ(ˆ
Ωoldit

qijt (ω)
ρ−1
ρ dω

) ρ
ρ−1

1−χ
σ−1
σ


σ
σ−1

,

where qijt (ω) is the quantity consumed in country j of variety ω from location i, ρ is the
elasticity of substitution between varieties of a given type from a given location, χ is the
Cobb-Douglas share of the CES composite of new varieties from a given location, and σ is
the elasticity of substitution of the Cobb-Douglas aggregate across locations.

The total quantity a consumer in country j ∈ S in period t will demand from firm ω in
location i can be written as:

qij,t (ω) =


χpij,t (ω)−ρ

(
P new
i,t

)ρ−1 ×
τ1−σij

(
(Pnewi,t )

χ
(P oldi,t )

1−χ)1−σ
∑
k∈S τ

1−σ
ij

(
(Pnewk,t )

χ
(P oldk,t )

1−χ)1−σYj,t if ω ∈ Ωnew
it

(1− χ) pij,t (ω)−ρ
(
P old
i,t

)ρ−1 ×
τ1−σij

(
(Pnewi,t )

χ
(P oldi,t )

1−χ)1−σ
∑
k∈S τ

1−σ
ij

(
(Pnewk,t )

χ
(P oldk,t )

1−χ)1−σYj,t if ω ∈ Ωold
it

(56)
where: (

P new
i,t

)1−ρ ≡
ˆ

Ωnewit

pij,t (ω)1−ρ dω (57)

(
P old
i,t

)1−ρ ≡
ˆ

Ωoldit

pij,t (ω)1−ρ dω (58)

is the Dixit-Stiglitz price index of the inner CES nest.

Supply Let ci,t ≡ wi,t
Āi,t

denote the marginal cost of production by a firm., where Āi,t is

the (exogenous) productivity. The optimization problem faced by firm ω is:

max
{qij(ω)}j∈S

∑
j∈S

(pij,t (ω) qij (ω)− ci,tτijqij,t (ω))− wi,tfi

subject to consumer demand given by equation (56).
As a result, conditional on positive production (more on that below), the first order

conditions imply:

pij,t (ω) =
ρ

ρ− 1
ci,tτij (59)

so that the price index across new varieties within a location is:

P new
i,t ≡ (Mnew

it )
1

1−ρ

(
ρ

ρ− 1
ci,t

)
(60)
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Profits of monopolistically competitive firms Firms profits of a firm ω ∈ Ωnew
i,t are:

πi,t (ω) ≡
∑
j

(pij,t (ω)− ci,tτij) qij,t (ω)− wi,tfi (61)

Substituting the consumer demand expression (56) and the price expression (59) into equa-
tion (61) yields:

πi,t (ω) = χ
1

ρ

(
ρ

ρ− 1

)1−ρ∑
j

(ci,tτij)
1−ρ (P new

i,t

)ρ−1
τ 1−σ
ij

((
P new
i,t

)χ (
P old
i,t

)1−χ
)1−σ

∑
k∈S τ

1−σ
ij

((
P new
k,t

)χ (
P old
k,t

)1−χ
)1−σYj,t − wi,tfi

It turns out that in this framework, the profits of a firm have a simple relationship to the
quantity the firm produces, which greatly simplifies the equilibrium. To see this, we first
relate the profits a firm to its revenues. Note that from the consumer demand equation (56)
and the price expression (59) that the revenue a producer receives is:

ri (ω) ≡
∑
j∈S

pij,t (ω) qij,t (ω) ⇐⇒

ri (ω)

(
ρ

ρ− 1

)ρ−1
1

χ
=
∑
j

(ci,tτij)
1−ρ (P new

i,t

)ρ−1
τ 1−σ
ij

((
P new
i,t

)χ (
P old
i,t

)1−χ
)1−σ

∑
k∈S τ

1−σ
ij

((
P new
k,t

)χ (
P old
k,t

)1−χ
)1−σYj,t

(62)

so that variable profits are simply equal to revenue divided by the elasticity of substitution,
i.e.:

πi,t (ω) + wi,tfi =
1

ρ
ri (ω) . (63)

Free entry From the free entry condition, total profits of a firm are zero, i.e. πi,t (ω) = 0.
Applying the free entry condition to equation (63) yields:

wi,tfi =
1

ρ
ri (ω) (64)

Substituting equation (64) into equation (62) yields:

∑
j

τ 1−ρ
ij w−ρi,t A

ρ−1
i,t

(
P new
i,t

)ρ−1
τ 1−σ
ij

((
P new
i,t

)χ (
P old
i,t

)1−χ
)1−σ

∑
k∈S τ

1−σ
ij

((
P new
k,t

)χ (
P old
k,t

)1−χ
)1−σYj,t =

1

χ

(
ρ

ρ− 1

)ρ−1

ρfi,

(65)

where we use the fact that ci,t = wi,t/Ai,t.
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Perfectly competitive varieties The price charged for the perfectly competitive varieties
ω ∈ Ωnew

i,t is simply the marginal cost:

pij,t (ω) = τijci,t ∀ω ∈ Ωnew
i,t

so that:

P old
i,t =

(
M old

it

) 1
1−ρ ci,t (66)

Labor market clearing Let Mnew
i,t ≡

∣∣Ωnew
i,t

∣∣ and M old
i,t ≡

∣∣Ωold
i,t

∣∣ denote the measure of
new and existing varieties, respectively.

Labor market clearing requires that the total labor used by all firms (for entry and
production of the new varieties as well as production of the existing varieties) must equal to
the total number of workers in the location, Li,t.

The total amount of labor required by new varieties is:

Lnewi,t =

ˆ

Ωnewi,t

(∑
j∈S

τij
qij (ω)

Āi,t
+ fi

)
dω ⇐⇒

Lnewi,t = ρfiM
new
i,t ,

where the last line used the free entry equation (65).
The total amount of labor required by old varieties is:

Loldi,t =

ˆ

Ωoldi,t

(∑
j∈S

τij
qij (ω)

Āi,t

)
dω ⇐⇒

Loldi,t = Mnew
it

1− χ
χ

ρfi,

where the second to last line used the equations for the old and new variety price indices
from equations (60) and (66).

Total labor used by all firms is hence:

Lnewi,t + Loldi,t = Li,t ⇐⇒

Mnew
i,t = χ

Li,t
ρfi

, (67)

so that the measure of new firms is proportional to the labor supply.

The micro-foundation Combining the old and new variety price indices from equations
(60) and (66) yields:((

P new
i,t

)χ (
P old
i,t

)1−χ
)1−σ

= (ci,t)
1−σ ρ

ρ− 1

(1−σ)χ

(Mnew
it )χ(

1−σ
1−ρ ) (M old

it

)(1−χ)( 1−σ
1−ρ )
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Total trade flows from i ∈ S to j ∈ S in time t is determined by simply aggregating
across all firms of both types. The total trade of new varieties is:

Xnew
ijt =

ˆ
Ωnewi,t

pij,t (ω) qij,t (ω) dω ⇐⇒

Xnew
ijt = χ

(τijci,t)
1−σ (Mnew

it )χ(
1−σ
1−ρ ) (M old

it

)(1−χ)( 1−σ
1−ρ )∑

k∈S (τkjck,t)
1−σ (Mnew

kt )χ(
1−σ
1−ρ ) (M old

kt

)(1−χ)( 1−σ
1−ρ )

Yj,t

Similarly, the total trade of existing varieties is:

Xold
ijt =

ˆ
Ωoldi,t

pij,t (ω) qij,t (ω) dω ⇐⇒

Xold
ijt = (1− χ)

(τijci,t)
1−σ (Mnew

it )χ(
1−σ
1−ρ ) (M old

it

)(1−χ)( 1−σ
1−ρ )∑

k∈S (τkjck,t)
1−σ (Mnew

kt )χ(
1−σ
1−ρ ) (M old

kt

)(1−χ)( 1−σ
1−ρ )

Yj,t

so that the total trade flows are:

Xij,t = Xnew
ij,t +Xold

ij,t ⇐⇒
Xij,t = τ 1−σ

ij w1−σ
i,t Aσ−1

i,t P σ−1
j,t Yj,t,

where:
P 1−σ
j,t ≡

∑
k∈S

τ 1−σ
kj w1−σ

k,t A
σ−1
k,t

and:

Ai,t ≡ Āi,tf
1
ρ−1

i × Lα1
i,t × L

α2
i,t−1

and α1 ≡ χ
ρ−1

and α2 ≡ 1−χ
ρ−1

, as claimed.

B.1.2 Durable Investment

Setup In each location i ∈ S, there There is a measure of firms in all locations, each
endowed with that compete a la Bertrand. Firms can hire workers either to produce or
to innovate, where the total quantity produced at location i ∈ S and time t depends on
the amount of labor used in the production Li,t, the amount of land Hi,t, the amount of
innovation φi,t and some productivity shifter Bi,t:

Qi,t = φγ1i,tBi,tL
µ
i,tH

1−µ
i,t ⇐⇒

qi,t = φγ1i,tBi,tl
µ
i,t,

where in what follows we focus on the output per unit land qi,t and the labor per unit land
li,t. We assume the parameters µ < 1 (due to the diminishing marginal product of labor per
unit land) and γ1 < 1 (due to the diminishing marginal product of innovation).

To employ a level of innovation φi,t, a firm must hire νφξi,t additional units of labor, where
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ξ < γ1/ (1− µ). We assume that innovation today has an affect on the level of productivity
tomorrow so that:

Bi,t = φδγ1i,t−1B̄i,t, (68)

where B̄i,t is an exogenous shock and δ < 1 indicates the extent to which innovation decays
from one period to the next.

We assume the cost per unit of land ri,t is determined by a competitive auction, so that
firms obtain zero profits.

Profit maximization Even though innovations today affect innovations in future periods,
because firms earn zero profits in the future, the dynamic problem reduces to a sequence of
static profit maximizing problems (see Desment and Rossi-Hansberg ’14).

As a result the firms profit maximization problem becomes:

max
li,t,φi,t

pi,tBi,t

(
φγ1i,t
)
×
(
lµi,t
)
− wi,t li,t︸︷︷︸

# of production workers

−wi,t
(
νφξi,t

)
︸ ︷︷ ︸

# of innovation workers

−ri,t

which has the following first order conditions:

γ1Bi,tpitφ
γ1−1
i,t lµi,t = ξνwi,tφ

ξ−1
i,t

µBi,tpi,tφ
γ1
i,tl

µ−1
i,t = wi,t

which combined yields:

γ1

µ
li,t = ξνφξi,t ⇐⇒(

γ1

µξν
li,t

) 1
ξ

= φi,t (69)

Total employment l̃i,t per unit land is equal to the sum of the production workers and the
innovation workers:

l̃i,t = li,t + νφξi,t ⇐⇒

l̃i,t =

(
1 +

γ1

µξ

)
li,t

Rent and income Equilibrium rent ensures profits per unit land are equal to zero:

ri,t = Bi,tpi,tφ
γ1
i,tl

µ
i,t + wi,tli,t + νwi,tφ

ξ
i,t ⇐⇒

ri,t =

(
1

µ
+ 1 +

γ1

µξ

)
wi,tli,t
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Note that total income per unit labor in a location is:

Yi,t = ri,tHi,t + wi,tL̃i,t ⇐⇒

Yi,t

L̃i,t
=

 1
µ

+ 1 + γ1
µξ(

1 + γ1
µξ

) + 1

wi,t

The productivity microfoundation The output price is:

µBi,tpi,tφ
γ1
i,tL

µ−1
i,t = wi,t ⇐⇒

pi,t =
1

Bi,t

(
1

µ

(
ξνµ

γ1

) γ1
ξ

)
wi,tl

1−µ− γ1
ξ

i,t

total output is:

qi,t = φγ1i,tBi,tl
µ
i,t ⇐⇒

Qi,t =

(
γ1

µξν

) γ1
ξ

Bi,tL̃
µ+

γ1
ξ

i,t H
1−µ− γ1

ξ

i,t ,

where L̃i,t is total employment in location i at time t. Combining equations (68) and (69)
yields:

Bi,t = φδγ1i,t−1B̄i,t ⇐⇒

Bi,t =

 γ1
µξν(

1 + γ1
µξ

) L̃i,t−1

Hi,t−1

δ
γ1
ξ

B̄i,t

so that in total we have:

Qi,t =

(
γ1

µξν

) γ1
ξ


 γ1

µξν(
1 + γ1

µξ

) L̃i,t−1

Hi,t−1

δ
γ1
ξ

B̄i,t

 L̃
µ+

γ1
ξ

i,t H
1−µ− γ1

ξ

i,t ⇐⇒

Qi,t = Āi,tL̃
α1
i,t L̃

α2
i,t−1L̃i,t,

where Āi,t ≡
(
γ1
µξν

) γ1
ξ

((
γ1
µξν

(1+
γ1
µξ)

L̃i,t−1

Hi,t−1

) γ1
ξ

B̄i,t

)
H

1−µ− γ1
ξ

i,t , α1 ≡ γ1
ξ
− (1− µ), and α2 ≡ δ γ1

ξ
,

as required.
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B.2 Amenity spillover

B.2.1 Setup

Demand Suppose that consumers have Cobb-Douglas preferences over land and a con-
sumption good, so that their indirect utility function can be written as:

Wi,t =
(Yi,t/Li,t)

(Pi,t)
λ (rHi,t)1−λ ,

where rHi,t is the rental cost of housing. Let Hi,t denote the (equilibrium quantity) of housing
and let Ki denote the (exogenous) quantity of land in a location, so that hi,t ≡ Hi,t/Ki,t is
the housing density (e.g. square feet of housing per acre of land).

Given the Cobb-Douglas preferences (and, from balanced trade, that income equals ex-
penditure, Yi,t = Ei,t), we have:

rHi,tHi,t = (1− λ)Yi,t

wi,tLi,t = λYi,t

so that we can write the payment to housing as a function of the payment to labor:

rHi,t =

(
1− λ
λ

)
1

Hi,t

wi,tLi,t

Note then that we can write:

Wi,t =
(Yi,t/Li,t)

(Pi,t)
λ (rHi,t)1−λ ⇐⇒

W̃i,t =
1

λ (1− λ)
1−λ
λ

wi,t
Pi,t

(
Hi,t

Li,t

) 1−λ
λ

, (70)

where W̃i,t ≡ W
1
λ
i,t is a positive monotonic transform of Wi,t and hence can be our measure

of welfare.

Supply We now determine the equilibrium stock of housing Hi,t. Suppose that each unit of
land is owned by a representative developer, who decides how much to upgrade the housing
tract. The amount of housing per unit land (hit ≡ Hi,t

Ki
) is a function of the housing stock

that has survived from the previous period

(
hexistingi,t ≡ Hexisting

i,t

Ki

)
and the amount of labor

that the firm chooses to hire to rebuild it:

hi,t =
(
hexistingi,t

)µ (
ldi,t
)1−µ ⇐⇒

Hi,t =
(
Hexisting
i,t

)µ (
Ldi,t
)1−µ
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In what follows, we assume for simplicity that the existing housing stock from period t − 1
in period t is some fraction of the development in the previous period:

Hexisting
i,t = C̄i,t

(
Ldi,t−1

)ρ
, (71)

where C̄i,t is an (exogenous) shock.

B.2.2 Profit maximization

A developer solves:

max
ldi,t

rHi,thi,t − wi,tldi,t − fi,t ⇐⇒

max
ldi,t

rHi,t
(
hexistingi,t

)µ (
ldi,t
)1−µ − wi,tldi,t − fi,t,

where fi,t is a fixed cost (a “permit cost”) that is remitted back to local residents and is
set via a competitive bid, ensuring that the firm earns zero profits (and hence the dynamic
problem simplifies into a series of static profit maximization problems, as above).

First order conditions are:

(1− µ) rHi,t
(
hexistingi,t

)µ (
ldi,t
)−µ

= wi,t ⇐⇒(
hexistingi,t

)µ (
ldi,t
)1−µ

=
1

1− µ
1

rHi,t
wi,tl

d
i,t

Note that the fixed “permit costs” are then:

fi,t = rHi,t
(
hexistingi,t

)µ (
ldi,t
)1−µ − wi,tldi,t ⇐⇒

fi,t =

(
µ

1− µ

)
wi,tl

d
i,t,

which recall are remitted to workers and ensure profits are zero.
We can combine this with the rental rate above to calculate the fraction of workers hired

in the development of the land:

hi,t =
(
hexistingi,t

)µ (
ldi,t
)1−µ ⇐⇒

(1− µ)

(
1− λ
λ

)
Li,t = Ldi,t,

so we require as a parametric restriction (so that only a fraction of workers are hired as local
developers):

(1− µ)

(
1− λ
λ

)
< 1 ⇐⇒

1 < µ+ λ+ (1− µ)λ
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Since a constant fraction of local workers are hired, we can express the housing density solely
as a function of the local population, the local land area, and the

hi,t =
(
hexistingi,t

)µ (
ldi,t
)1−µ ⇐⇒

Hi,t =

(
(1− µ)

(
1− λ
λ

))(1−µ)+ρµ

C̄µ
i,t (Li,t−1)ρµ (Li,t)

1−µ (72)

B.2.3 Microfoundation

We substitute equation (72) for the equilibrium stock of housing into the welfare equation
(70) to yield:

W̃i,t =
1

λ (1− λ)
1−λ
λ

wi,t
Pi,t

(
Hi,t

Li,t

) 1−λ
λ

⇐⇒

W̃i,t =
wi,t
Pi,t

ūi,tL
β1
i,tL

β2
i,t−1,

where ūit ≡ 1

λ(1−λ)
1−λ
λ

(
(1− µ)

(
1−λ
λ

)) 1−λ
λ

((1−µ)+ρµ)
C̄

1−λ
λ

i,t , β1 ≡ −µ1−λ
λ

, and β2 ≡ ρµ1−λ
λ

.
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C Additional Tables and Figures

Figure 15: The “0th stage”: Predicting productivities and amenities from geographic observ-
ables
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Notes : This figure shows the relationship between the observed productivities and amenities
in the year 2000 (given estimates of migration and trade frictions and candidate elasticity val-
ues) and the predicted productivities and amenities using variation in observed geographic
variables, namely climatic variables average January temperature and precipitation), soil
quality variables (the net primary productivity and soil nutrient availability), and topo-
graphic variables (elevation and ruggedness). The (time-invariant) predicted productivities
and amenities are then used to construct the model-based instruments used in the 2SLS
procedure detailed in Section 3.2.
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