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Abstract

We develop a dynamic model to study the conditions under which assets are sold or

used as collateral. When the borrower has an incentive to falsify the assets’quality, they

cannot be sold directly but can be used as collateral via over-collateralization. Secured

loan contracts can also be optimal by reducing the lender’s incentive to acquire costly

information about the assets’ future value. However, under secured loan contracts,

the borrower may default opportunistically. Thus, an asset sale can be optimal under

some conditions. The model also provides the theoretic explanation on the negative

correlation between interest rates and haircuts.
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1 Introduction

When an asset holder has liquidity needs but cannot issue unsecured debt, he/she can raise

funds with the asset in two different ways: the agent can sell the asset directly, or he/she

can use the asset as collateral to raise funds for liquidity. Existing studies on secured loan

contracts often rely on asymmetric valuation of collateral assets. More precisely, a borrower

values the asset more than a lender (see Lacker 2001, Ferraris and Watanabe 2008, Antinolfi

et al. 2014, Monnet and Narajabad 2012, Zhang 2014, Tomura 2016, Williamson forth-

coming). However, the intrinsic value of financial assets does not necessarily depend on the

identity of the asset holder, and trillions of dollars of financial assets, such as government

bonds and asset-backed securities (ABS), are traded daily in repo and security lending mar-

kets as collateral (see Baklanova, Copeland, and McCaughrin 2015 and Gorton and Metrick

2012). At the same time, financial assets that are traded in these markets are also traded

immediately on a spot market without any repurchase agreement.

Furthermore, the literature has paid relatively little attention to the properties of secured

loan contracts, such as haircuts and over-collateralization. Here, a haircut is the percentage

difference between the collateral value and the loan size, and we state that a loan is over-

collateralized if the collateral value is higher than the value of the repayment on the loan.

For example, suppose an agent borrows $80 at an interest rate of 10% and posts an asset

as collateral whose market value is $100. Then, the haircut is 20%[= (100 − 80)/100] and
the over-collateralization ratio is 12%[= (100−88)/100]. In particular, over-collateralization
is puzzling because standard theory suggests that the risk is priced into the interest rate,

and as long as the repayment value is the same as the collateral value, the lender is fully

insured.1 However, over-collateralization is a common practice in secured loan markets.

For example, data from the Korea Securities Depository shows that during the period from

2010 to 2017, 98.5% of overnight repo transactions between financial institutions in Korea

were over-collateralized. More importantly, in models that do not explicitly consider over-

collateralization, interest rates and haircuts are essentially the same indicator, even though

the denominators are different. Thus, in those types of models, interest rates and haircuts

respond in the same way to all sources of risk, so they have limited ability to explain the

1Collateralized debt contracts can be also under-collateralized, i.e., they can have a negative over-
collateralization ratio, but collateralized debt contracts typically involve over-collateralization.
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recent empirical finding that shows substitution effects between interest rates and haircuts

(see Baklanova et al. 2017).

In this paper, we attempt to make progress in filling the gap between theory and practice

in the real world. In particular, we answer the following questions: Under what conditions

do economic agents use assets as collateral or sell assets to obtain needed liquidity when the

intrinsic value of the assets is the same across all agents? When are secured loan contracts

over-collateralized and for what reason? What are the determinants of the interest rate,

haircut, and over-collateralization ratio of secured loan contracts?

For this purpose, we construct an exchange model of optimal trading arrangement. In

the model, there are two periods and two risk neutral agents. Because of a misallocation of

resources, it is socially effi cient that the borrower consumes the lender’s goods in the first

period and compensates the lender in the second period. However, the borrower cannot issue

unsecured debt due to limited commitment problem. Instead, the borrower owns perfectly

divisible Lucas trees that can be used as a medium of exchange in the first period, and the

trees give stochastic dividends at the end of the second period. In principle, the borrower

can use the trees in the first period as a medium of exchanges in two different ways. First,

the borrower can sell the trees to the lender in exchange for consumption goods (asset sale).

Second, he/she can pledge the trees as collateral to borrow consumption goods from the

lender (secured loan contract). In a standard exchange model, such as the models based on

Lagos and Wright (2005), these two types of trading arrangements generally generate the

same economic result (see Lagos 2010 and Rocheteau 2011).

One of the key assumptions in the model is that in the first period, the lender can acquire

private information about the dividend state of the trees at a cost before trading with the

borrower. For example, an agent can purchase analytic reports that evaluate a company’s

future prospects more precisely than common perceptions before purchasing an equity share

of the company. The borrower, on the other hand, receives the information about the

dividend state of the trees at the beginning of the second period with some probability,

which resonates with the idea of “learning by holding”proposed by Plantin (2009), whereby

the owner of an asset can obtain private information about the future cash flow of the asset

by holding the asset. This implies that if the borrower makes a secured loan contract in the

first period and learns that the value of repayment on the loan is higher than the value of

the collateral trees, the borrower will default on the loan opportunistically.
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The other important assumption is that the borrower can create counterfeit trees at a

cost and use them as a medium of exchange in the first period. This incentive problem

generates a fraud incentive constraint that can restrict the extent to which the trees can

facilitate the exchange process, similar to Li, Rocheteau, and Weill (2012). In the model,

counterfeiting represents the moral hazard problem of misrepresenting the quality of assets,

such as fraudulent asset appraisal in financial markets. These types of fraudulent practices

were prevalent in the U.S. market before the 2008 financial crisis; in particular, securitized

bonds such as mortgage backed securities (MBS) were prey for quality manipulation because

the complicated structure of their securitization made it challenging to pierce the veil of

MBS (see Keys et al. 2010, Gorton and Metrick 2012, and Piskorski, Seru, and Witkin,

2015). Checking the future value of an asset and verifying the authenticity of the asset

clearly require different skills and information. Thus, we assume that the information about

the dividend state that the lender can acquire does not reveal the authenticity of trees.

We first restrict our attention to secured loan contracts that provide the highest pay-

off to the borrower among secured loan contracts. The terms of direct sales, can then, be

easily obtained by imposing the exogenous condition that the borrower always defaults on

loans and thus cedes collateral trees with certainty into the terms of the secured loan con-

tract. The type of secured loan contracts can be categorized into two groups depending

on whether the lender acquires costly information about the dividend state or not. First,

under information insensitive contracts (IIS), the lender does not acquire costly informa-

tion. Second, information sensitive contracts (IS), on the other hand, induce the lender to

acquire costly information about the dividend state. The interest rates of IIS loan contracts

represent compensation for the opportunistic default and may include informational rent

that deters the lender from information acquisition. Under IS loan contracts, the lender ac-

cepts the borrower’s offer only if the dividend state is good, so the borrower cannot default

opportunistically. Instead, the borrower must compensate the lender for the information

acquisition cost in the form of a positive interest rate. It is clearly more likely that IIS loan

contracts will dominate IS loan contracts as the information acquisition cost rises, and vice

versa.

In addition to the information acquisition incentive, the fraud incentive also matters for

the terms of contracts. If the borrower pledges counterfeit trees, he/she can avoid making

repayment without losing genuine trees, so the benefit of fraud increases with the value
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of repayment given the quantity of collateral trees. Therefore, when the fraud incentive

problem matters, the borrower can mitigate the fraud incentive by reducing the size of the

repayment below the value of the collateral asset, i.e., over-collateralizing the loan. In this

case, interest rates and haircuts can respond in a different way to a shock on a particular

set of parameters that represent the economic environment and the asset’s properties, thus

providing a theoretical explanation for the finding of a negative correlation between interest

rates and haircuts (see Baklanova et al. 2017). Furthermore, if the trees are safe, i.e., the

dividend state is good with suffi ciently high probability, then the interest rates on secured

loans can be negative, which sheds light on the episodic experiences of negative interest rates

in repo markets.

In the model, secured loan contracts can be optimal for two reasons. First, when the

fraud incentive to cheat on the authenticity of the trees is severe due to a low counterfeiting

cost, the borrower cannot sell the trees directly to the lender because of the threat of fraud.

However, by over-collateralizing the loan, the borrower can mitigate the fraud incentive, so

the trees can be pledged as collateral. Thus, a secured loan contract is optimal. Second,

under a secured loan contract, the lender seizes the collateral trees only if the borrower

defaults on the loan, rather than with certainty, as is the case with asset sales. Therefore,

the lender has less incentive to obtain costly information about the dividend state compared

to the direct sales of trees. Thus, if the incentive constraint that deters the lender from

information acquisition under information insensitive (IIS) contracts binds, then a secured

loan contract can be better than direct sales of trees because it reduces the lender’s incentive

to obtain costly information. On the other hand, if information sensitive (IS) loan contracts

are the best among secured loan contracts due to a suffi ciently low information acquisition

cost, then direct sales also induce information acquisition, and, in that case, secured loan

contracts are equivalent to the direct sales of trees.

However, when the fraud and information acquisition incentives do not exist due to

high costs of counterfeiting and information acquisition, secured loan contracts only give

the borrower an option to default opportunistically whenever possible. The borrower clearly

must pay a cost to obtain such an option to make the lender accept the offer. Thus, when both

information acquisition incentive and fraud incentive do not exist, secured loan contracts can

be suboptimal because of opportunistic default, and the direct sale of the trees emerges as

the optimal contract.
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Literature review A related stream of literature examines the optimal contract for asset

trades. Tomura (2016) shows that an agent uses assets as collateral instead of selling them

to overcome the hold-up problem in over-the-counter markets. However, he assumed that

a lender values collateral assets strictly less than any other agents, including the borrower,

to generate the hold-up problem. Monnet and Narajabad (2012) examine a dynamic search

model in which agents’valuations of the asset follow a stochastic process, and the authors

show that agents prefer renting assets, which is interpreted as a repo contract, to purchasing

them when they face substantial uncertainty about the exogenous private value of holding

the asset due to the hold-up problem in a bilateral trade. Parlatore (forthcoming) goes a step

further and shows that when an asset is not perfectly liquid and investment opportunities are

persistent, borrowing firms value the asset more than lenders, even though the intrinsic value

of the asset is independent of the identity of the asset holders because firms can raise funds

to invest in profitable projects, so secured loans are optimal. Dang, Gorton, and Holmström

(2012) and Madison (2017) investigate how (potential) information asymmetries regarding

the future value of assets make secured loan contracts optimal for asset trades.

This study differs from the previous literature in two respects. First, while most of

the previous literature focuses on the optimality of secured loan contracts, we also explicitly

analyze economic conditions in which an asset sale strictly dominates secured loan contracts.

Tomura (2016) shows that if the lender cannot dispose of collateral assets when default

occurs, a spot trade can be optimal. However, this result is an outcome of the assumption

that the lender values the assets less than other agents. On the other hand, we show that

asset sales can be optimal even when there is no intrinsic difference in the asset valuations

between agents due to the informational friction.2

Second, we comprehensively analyze the determinants of interest rates, haircuts, and the

ratio of over-collateralization. A few studies have examined the interest rates and haircuts

of secured loan contracts, but to the best of our knowledge, no systematic analysis has con-

ducted on over-collateralization, even though it is common in practice. Dang, Gorton, and

Holmström (2012) and Tomura (2016) derived over-collateralization in their models although

2In Monnet and Narajabad (2012), agents optimally choose how much to sell and rent their assets when
their private valuation of the assets is low. The authors show that agents sell more assets rather than renting
them when they face little uncertainty regarding the future use of the assets, but renting becomes more
prevalent as the level of uncertainty increases. However, their result demonstrates the quantity dominance
of selling or renting rather than the dominance of a particular trading arrangement.

6



they do not discuss it explicitly in their studies. However, over-collateralization occurs in To-

mura (2016) because of asymmetric valuations of collateral assets between the borrower and

the lender, and it exists in Dang, Gorton, and Holmström (2012) because of an assumption

that the interest rates on loans are zero. More precisely, in Dang, Gorton, and Holmström

(2012), the lender may have to sell collateral assets at a lower price when default occurs.

The borrower compensates the lender for taking such a risk by over-collateralizing the loan,

which means a positive haircut given the zero interest rate, so the lender can obtain some

profit when default occurs. Without the zero interest rate assumption, over—collateralization

does not occur in their model. In contrast, over-collateralization occurs in our model to cir-

cumvent the moral hazard problem in financial markets, and more importantly, we analyze

interest rates, haircuts, and over-collateralization together in one framework. By doing so,

our model provides theoretical explanations for the possibility of negative interest rates and

the substitution effects between interest rates and haircuts that were documented in a recent

empirical study when loans are over-collateralized.

Our paper is also related to the literature that studies the effects of information in asset

exchange models. Andolfatto and Martin (2013) and Andolfatto, et al. (2014) show that the

nondisclosure of information about the future value of an asset can enhance the asset’s role

as a medium of exchange, and generally improve the social welfare. Gorton and Ordoñez

(2014) construct a dynamic model to investigate the macro dynamics of a lack of information

production by private agents about collateral assets and show that a small aggregate shock

can cause a credit crunch. While the main focus of these studies is on the implications of

information about assets’liquidity, we are interested in the optimal contract for asset trades.

Furthermore, in our model, information production can facilitate exchanges by eliminating

opportunistic default, in contrast to previous studies.

The macroeconomic implications of the threat of fraudulent practices in financial markets

have been explored recently in a series of papers. Li, Rocheteau, and Weill (2012) introduce

costly counterfeiting technology into Lagos and Wright (2005) framework to investigate how

the counterfeiting incentive affects assets’liquidity, prices, and welfare. In particular, they

show that the cost of producing counterfeit assets generates an upper bound on the quantity

of assets that can be traded in the OTC market. Williamson (forthcoming) examines how

monetary policy affects faking incentives in the banking sector and mortgage market. Kang

(2018) extends Williamson (forthcoming) to analyze the effects of central bank’s private

7



asset purchases when commercial banks have an incentive to misrepresent the quality of

private assets, and the author shows that the central bank should purchase private assets

only if the bank’s moral hazard problem is suffi ciently severe. In all of these models, the

threat of fraud restricts the volume of asset trading, and collateralized debt contracts and

asset sales are equivalent. Our approach goes beyond this earlier literature on fraudulent

practices in financial markets by investigating how the threat of fraud affects the optimal

contract for asset trades. More precisely, we show that the threat of fraud can generate over-

collateralization instead of an upper bound on the quantity of assets that can be traded,

which makes collateralized debt contracts strictly better than asset sales.

The rest of the paper is organized as follows. Section 2 presents the environment of the

model and section 3 solves the bargaining problem to find the optimal contract. Section 4

concludes the paper. All omitted proofs are provided in the Appendix.

2 The Model Economy

We consider an exchange economy that consists of two agents-a borrower (b) and a lender

(l)- and two periods, t ∈ {0, 1}. The utility of each agent is

U b = mcb0 − lb0 + cb1

U l = cl0 − ll0 + cl1,

where m is the marginal value of consumption of the borrower at t = 0, cit and lit are the

utility from the consumption of goods and the disutility from the labor of agent i ∈ {b, l}
in period t. We assume that m > 1, which can be interpreted as the borrower has liquidity

needs in period t = 0. There is a single non-durable consumption good in each period, and

its endowment process is as follows. The lender is endowed with a substantial amount of

consumption good e in period t = 0 and receives nothing in period t = 1. On the other hand,

the borrower does not receive any consumption goods in period t = 0 and is endowed with

e units of consumption goods in period t = 1 with probability 1− α ∈ [0, 1]. In addition to
consumption goods, the borrower is also endowed with a units of the divisible Lucas tree that

can be interpreted as equity, bonds, asset-backed securities, or real assets such as housing at

t = 0. One unit of a tree yields y units of consumption goods at the end of period t = 1 with
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probability σ ∈ [m−1
m
, 1] (good state), and it yields nothing with complement probability

(bad state).3 Let y = σy denote the expected dividend of each tree. We assume that e > ya

so that there are enough consumption goods that can be traded with trees. The dividend

state is realized at the end of period t = 1.

Given the utility functions and endowment process, there are gains from trading in period

t = 0. However, because of a lack of commitment, unsecured credit is not feasible because

the borrower would always default on his/her obligation. Therefore, trees are necessary as

a medium of exchange for a trade to occur in period t = 0. The borrower can finance the

liquidity needs in period t = 0 using trees in one of two ways. On the one hand, the borrower

can sell a′ units of trees to the lender in exchange for q units of consumption goods (an asset

sale). On the other hand, the borrower can borrow consumption goods from the lender by

pledging trees as collateral (secured loan contract). A secured loan consists of three terms,

(q, p, a′): It period t = 0, the borrower receives q units of consumption goods from the lender,

and promises to repay p units of consumption goods in period t = 1. Thus, the interest rate

on the collateralized debt is r = p−q
q
. At the same time, the borrower posts a′ units of trees

as collateral in period t = 0. Thus, if the borrower fails to make repayment, then the lender

seizes the collateral trees. This transaction is akin to a repo contract, in which the borrower

sells a′ units of trees with a repurchase agreement that the borrower can repurchase the

collateral trees with p units of consumption goods in period t = 1.4 When bargaining in

period t = 0, we assume that the borrower makes a take-it-or-leave-it offer to the lender.

In period t = 0, the borrower and the lender value the trees equally, so there is no intrinsic

difference in the tree valuations between agents. In this environment, if there are no other

frictions, then the borrower could purchase ya units of goods from the lender in exchange

for a units of trees in period t = 0, given risk neutral preferences of each agent. At the

same time, the borrower can borrow ya units of goods in period t = 0 by pledging a units of

3If σ ∈
[
0, m−1m

)
, then it is possible that the optimal secured loan contract switches from IS-1 (or IS-2) to

IIS-1 (or IIS-4) in the proposition 1 later. Otherwise, extending the range of σ does not admit any important
insight. For example, it does not affect any properties of secured loan contracts and the economic mechanism
that affects the type of optimal trading arrangement for tree trades.

4In practice, there are some differences in the legal properties between collateralized debt contracts and
repo contracts. In particular, a repo contract is exempt from the automatic stay, so a repo lender can
liquidate the collateral assets immediately once a borrower defaults. Antinolfi et al. (2014) examine how
this exemption from an automatic stay affects the financial market and what is the optimal bankruptcy
policy.
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trees as collateral, and he/she promises to repay ya units of goods in period t = 1 if he/she

receives the endowment. These two types of trading arrangements are incentive compatible,

and socially effi cient. More importantly, the borrower is indifferent between selling trees and

pledging them as collateral. Therefore, absent any additional frictions, secured loans and

asset sales are equivalent, and in the following, we describe the specific frictions that could

break this equivalence result in the economy.

Costly Information Acquisition In reality, an economic agent may want to acquire more

information about the future value of an asset than its expected value before purchasing the

asset. For example, an agent may obtain analytic reports about the financial statements of

a company and its future prospects that might provide more precise information about the

value of an equity share of the company even though there is a common perception about the

expected value of the company’s equity before making the investment decision about that

company. Similarly, when an agent considers purchasing houses, he/she may gather more

detailed information about the living environment and direction of government policy that

could affect housing values in the neighborhood. It is certainly costly to obtain these types

of information. One may have to purchase research reports from analysts or exert one’s own

effort and time to obtain detailed information. To capture this practice, we assume that the

lender can acquire private information about the dividend state of trees before trading with

the borrower in period t = 0. To obtain this information, the borrower must incur a fixed

cost of γ > 0 in terms of labor in period t = 0.

Defaults on a secured loan Under secured loan contracts, a borrower may default on the

loan for two reasons. First, the borrower is not able to repay the loan because he/she does

not have enough resources. This is captured by parameter α in the model. With probability

α, the borrower does not receive any consumption goods in period t = 1, so he/she cannot

make a repayment on the loan. Second, the borrower may default on the loan even though

he/she has suffi cient resources because it is profitable to him. Specifically, the borrower will

compare the value of the collateral to the value of the avoided repayment, and will default

optimally when the latter is higher than the former. We introduce this type of default into the

model in a simple way. As Plantin (2009) argues, the owner of an asset may obtain private

information about the future cash flow of the asset by holding the asset, which is dubbed
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as “learning by holding”. Thus, we assume that the borrower receives private information

about the dividend state of trees at the beginning of period t = 1 with probability η ∈ [0, 1],
before settling any debts. Therefore, if the borrower learns that trees yield nothing, then

he/she will default on the loan in period t = 1. Note that the borrower receives information

about the dividend state after trading with the lender, not before making an offer to the

lender. Thus, the borrower does not have private information when he/she makes an offer to

the lender in period t = 0.5 We make this timing assumption to avoid signaling problems and

to make the analysis as simple as possible but without compromising the economic intuition.

Fraud in financial affairs Misrepresenting the quality of financial assets has been preva-

lent throughout history. Counterfeiting money has a long history that goes back to the

clipping of coins in ancient Rome, and the economic effects of counterfeiting money have

been an important topic in monetary economics (Williamson 2002, Nosal and Wallace 2007,

Li and Rocheteau 2011, Kang 2017). However, money is not the only asset that has been a

victim of fraud. For example, the complicated securitization process of asset backed secu-

rities (ABS) has made it diffi cult to pierce the veil of ABS, and this lack of recognizability

problem in ABS markets made ABS the target of fraudsters. Fraudulent asset appraisals of

ABS with rating deficiencies and false documentation concerning the underlying assets were

common before the financial crisis, and fraudulent activities the in financial market were

criticized as one of key factors in the financial crisis of 2008 (see Barnett 2012, Gourinchas

and Jeanne 2012, and the Financial Crisis Inquiry Report 2011).6 Furthermore, fraudu-

lent practices are not restricted to financial assets. Mortgage markets are also susceptible

to mortgage fraud, such as misrepresenting the quality of collateral houses. One example

is property flipping, which involves the purchase and subsequent resale of property at an

artificially inflated price that enables the purchaser to obtain a greater loan and then de-

5In contrast to our study, Hopenhayn and Werner (1996), Velde, Weber, and Wright (1999), and Ro-
cheteau (2011) examine how informational asymmetries regarding the future value of an asset can affect the
asset’s role in transactions and its liquidity when the owner of the asset has private information about the
future cash flow of the asset before making an offer.

6Robert Lucas, in an interview with the Wall Street Journal (Sep. 24, 2011), also emphasized this
fraudulent practice in the financial market as a key factor in the financial crisis. He argued that “Instead,
the shock came because complex mortgage-related securities minted by Wall Street and “certified as safe”
by rating agencies had become part of the effective liquidity supply of the system. All of a sudden, a whole
bunch of this stuff turns out to be crap. It is the financial aspect that was instrumental in the meltdown of
’08.”
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fault. Although no central repositor collects data on all mortgage fraud, Suspicious Activity

Reports by financial institutions indicate that the size of mortgage fraud is not negligible.

We introduce the incentive problem of misrepresenting asset quality in the following way.

The borrower can produce fraudulent trees that give no dividend at a proportional cost of

k units of labor and can trade them with the lender, similar to the faking technology of

Williamson (forthcoming). We assume that the lender can obtain information about the

dividend state of trees at a cost, but this information does not reveal the authenticity of the

trees. Checking the authenticity of assets would clearly require different information and

skills in reality.

To simplify the signaling problem, we assume that the borrower decides whether to

produce fake trees after making an offer to the lender but before the lender decides whether

to accept the offer. Therefore, the borrower makes a fraud decision given the terms of the

trade, which disciplines the lender’s belief. However, the analysis and results do not hinge on

this timing assumption. Although the borrower makes the faking decision first before making

an offer, we obtain the same results as long as we use the reordering invariance equilibrium

concept proposed by In and Wright (2017) to refine the equilibria as demonstrated by Li,

Rocheteau, and Weill (2012) and Kang (2017). In equilibrium, the borrower will not produce

fake trees, and the fraud possibility generates an incentive constraint (e.g., see Li, Rocheteau,

and Weill, 2012 and Williamson, forthcoming). Figure 1 summarizes the sequence of events

in the economy.

3 Optimal contract for tree trades in period t = 0

In this section, we study the terms of trade that the borrower offers to the lender in period

t = 0. As discussed in the previous section, the borrower can obtain consumption goods

from the lender either by selling trees directly (asset sale) or collateralizing trees (secured

loan contract). However, in the model, we can interpret the tree sale as a special case of a

secured loan with α = 1, because in that case, the borrower cannot repay the loan, and the

lender will seize the collateral trees with certainty. Therefore, we focus on a secured loan

contract from now on, and compare secured loan contracts and tree sales later.
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Figure 1: Timeline of borrower’s and lender’s decision

3.1 Secured loans

Under a secured loan, when the borrower defaults on the loan, the lender seizes the collateral

trees. In that circumstance, the lender’s final payoff from the secured loan contract depends

on the dividend state of the trees. Thus, the lender has an incentive to acquire information

about the dividend state. However, if the lender believes that default will not occur or

will occur with very low probability, he/she will not acquire costly information about the

dividend state of the trees. On the other hand, if the lender has a belief that default could

occur with high probability, he/she may want to check the dividend state of the trees before

trading with the borrower. Thus, the lender’s payoff from the loan contract (q, p, a′) depends

on whether he/she acquires costly information about the dividend state.

First, when the lender does not acquire the information, lender’s expected payoff from a

secured loan contract (q, p, a′) is

πIIS = −q + (1− α)[1− (1− σ)η]p+ αya′. (1)
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Once the lender accepts the borrowers offer, the lender transfers q units of consumption

goods to the borrower in period 0. Then, the lender receives either p units of consumption

goods from the borrower or seizes a′ units of collateral trees in period 1. With probability

α, the borrower does not receive any endowments in period 1, so he/she cannot repay p.

As a consequence, the lender seizes the collateral trees, which give ya′ units of dividend in

expectation. On the other hand, with probability 1− α, the borrower receives consumption
goods in period t = 1, so he/she is able to make repayment p on the loan. However, if

the borrower learns that the trees will give no dividend, then he/she will default on the

loan even if the borrower is able to repay the debt. The term (1− α)(1− σ)ηp in equation
(1) represents the lender’s loss from this opportunistic default because the lender does not

receive any dividend from the collateral trees in that case.

Second, when the lender acquires information about the dividend state of the trees,

he/she will accept the borrower’s offer only if the dividend state is good. Therefore, the

lender’s expected payoff is

πIS = σ [−q + (1− α)p+ αya′]− γ. (2)

Note that the borrower cannot default opportunistically in this case, because the lender only

accepts the borrower’s offer when the dividend state is good. However, the lender must incur

γ units of labor cost to acquire private information.

Given the terms of trade (q, p, a′), if πIIS ≥ πIS, then the lender will accept the borrower’s

offer without information acquisition. On the other hand, if πIIS < πIS, then the lender

acquires costly information about the dividend state first and makes an acceptance decision

based on the information about the dividend state. Following the language of Dang, Gorton,

and Holström (2012), we state that a secured loan contract is information insensitive (IIS)

if it does not trigger information acquisition by the lender, and otherwise, the contract is

information sensitive (IS).

Similarly, the borrower’s surplus from trading depends on the lender’s information ac-

quisition decision. Specifically, an IIS contract ensures a trade with certainty as long as the

lender’s participation constraint is satisfied, but the borrower can conduct a trade only if

the dividend state is good under an IS contract. Thus, our strategy of finding the optimal

secured loan contract is as follows. First, we solve the borrower’s problem under each type
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of loan contract - IIS and IS. Then, we compare the borrower’s payoff under each type, and

choose a secured loan contract that yields the highest surplus to the borrower.

3.1.1 Information insensitive (IIS) loan contracts

We first start with an IIS secured loan contract under which the lender does not acquire

costly information about the dividend state. Note that information about the dividend state

is not produced under IIS loan contracts, so the expected value of collateral trees when a

trade occurs is ya′, given terms of contract (q, p, a′). Therefore, a haircut θ, defined as the

difference between the collateral value and the size of granted loan, is θ = ya′−q
ya′ .

Next, as we explained above, the borrower could make fraudulent trees at the proportional

cost of k. If the borrower pledges fraudulent trees as collateral, then he/she can default in

the next period without losing genuine trees. Thus, the borrower can save (1−α)[1− η(1−
σ)]p + αya′ units of consumption goods from fraud, but he/she has to pay the ka′ units of

labor to produce a′ units of fraudulent trees. Given the terms of trade (q, p, a′), the payoff

from fraud should not be higher than the fraud cost. Otherwise, the lender would not accept

the borrower’s offer. This generates the fraud incentive constraint in the borrower’s problem

below. Then, the borrower’s maximized value under IIS loan contracts, VIIS, is given by

VIIS =Max
q,p,a′

{mq − (1− α)[1− (1− σ)η]p− αya′ + ya} (3)

subject to

−q + (1− α)[1− (1− σ)η]p+ αya′ ≥ 0 (4)

−(1− σ)q + (1− η)(1− α)(1− σ)p+ γ ≥ 0 (5)

ka′ − (1− α)[1− (1− σ)η]p− αya′ ≥ 0 (6)

ya′ − p ≥ 0 (7)

a− a′ ≥ 0 (8)

q, p, a′ ≥ 0 (9)

The objective function (3) consists of the borrower’s surplus from trade, mq − (1 −
α)[1 − (1 − σ)η]p − αya′, and the expected value of the tree holdings ya. The inequality
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(4) is the lender’s participation constraint without information acquisition. (5) is the no-

information acquisition constraint that deters the lender from the production of information

about the dividend state, which means that the lender’s payoff with information acquisition

(2) should not be higher than the payoff without information acquisition (1). Next, (6) is

the fraud incentive constraint that prevents the borrower from producing counterfeit trees.

The inequality (7) implies that the value of the avoided repayment is not higher than the

expected value of the collateral trees, so the borrower has an incentive to make the repayment

unless he/she receives private information stating that the dividend state is bad. Here, if

p < ya′, then we call the secured loan is over-collateralized and define ya′−p
ya′ as the over-

collateralization ratio. Note that if p = ya′, then the positive interest rate on the secured

loan r = p−q
q
manifests itself as the positive haircut θ = ya′−q

ya′ , although the denominator

is different. Thus, we focus on the analysis of the interest rate when p = ya′ and analyze

the interest rate and haircut separately only if the secured loan is over-collateralized, i.e.,

p < ya′. Finally, (8) and (9) are the feasibility constraints.

The solution to problem (3) depends on the fraud cost k, the information acquisition cost

γ, and the probability that the borrower does not receive endowments α because of their

effects on the no-information acquisition constraint (5) and the fraud incentive constraint

(6). Depending on the fraud cost k, the solution can be divided into three groups, and we

analyze each case in a separate lemma that describes the terms of IIS loan contracts in the

following.

Lemma 1 Suppose [1− η(1− α)(1− σ)]y ≤ k and define γ∗IIS ≡ [α + (1− α)ησ] (1− σ)ya
and α∗ ≡ (1−η)(m−1)−ησ

1+(1−η)(m−1)−ησ .

1. [IIS-1] If γ∗IIS ≤ γ, then q = [1− η(1− α)(1− σ)] ya, p = ya, a′ = a, and VIIS =

[m− (m− 1)η(1− α)(1− σ)] ya.
2. [IIS-2] If γ < γ∗IIS and α ≤ α∗, then q = (1− α)(1− η)ya + γ

1−σ , p = ya, a′ = a, and

VIIS = m
[
(1− α)(1− η)ya+ γ

1−σ
]
+ (1− α)(1− σ)ηya.

3. [IIS-3] If γ < γ∗IIS and α > α∗, then q = [1−(1−α)(1−σ)η]γ
[α+(1−α)ησ](1−σ) , p =

γ
[α+(1−α)ησ](1−σ) , a

′ =
γ

[α+(1−α)ησ](1−σ)y , and VIIS =
(m−1)[1−(1−α)(1−σ)η]γ
[α+(1−α)ησ](1−σ) + ya.

When [1−η(1−α)(1−σ)]y ≤ k, the fraud cost is suffi ciently high, so the fraud incentive

constraint (6) does not bind. In this case, the constraint (7) binds, i.e., p = ya′. The type

and terms of the secured loan contract depend on the parameters that affect the lender’s
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incentive for information acquisition: the information acquisition cost γ and the probability

α that the borrower does not receive endowments in period t = 1. Here, the effect of γ

on the lender’s incentive is straightforward. As γ increases, the lender has less incentive to

acquire the information. Next, α is the probability that the borrower is not able to make

a repayment on the loan in the period t = 1. Thus, as α increases, it becomes more likely

that the lender will seize the collateral trees, so the lender has a higher incentive to obtain

the information about the future value of the trees.

If γ ≥ γ∗IIS, then the information acquisition cost is high enough that the lender has no

incentive to acquire information, so the no-information acquisition constraint (5) does not

bind (IIS-1 type). Under a collateralized debt contract, the borrower can default on the

loan in a profitable way when he/she receives private information about the dividend state

at the beginning of period t = 1. Because the lender knows the possibility of opportunistic

default, the borrower has to compensate the lender for taking such a risk. This is given by

the positive interest rate on the loan r = (1−α)(1−σ)η
1−(1−α)(1−σ)η . Note that if η = 0 so the borrower

cannot default opportunistically, then the interest rate is zero. As the probability that the

borrower does not receive endowment α or the probability of good dividend state σ increases,

there is less chance of opportunistic default. Thus, the interest rate falls as α or σ rises.

However, when the information acquisition cost γ is low, such that γ < γ∗IIS, the no-

information acquisition constraint (5) starts to bind. The specific type of IIS loan contract

depends on the probability α that the borrower is not endowed in period t = 1 because of

its effects on the information acquisition incentive of the lender: As α increases, the lender

has more incentive to acquire information.

First, if α ≤ α∗ (IIS-2 type), then the borrower will be able to repay the loan with

relatively high probability, so the lender has relatively less incentive to obtain information

about the dividend state even though the constraint (5) binds. In this case, the borrower

posts all trees as collateral, i.e., a′ = a, and reduces the lender’s incentive to produce

information by reducing the loan size q in (5). Note, that a decrease of q relaxes the lender’s

participation constraint (4) more than the no-information acquisition constraint (5). Since

(4) binds under the IIS-1 contract, the borrower must provide a positive surplus to the

lender under the IIS-2 loan contract in order to discourage the lender from information

acquisition with a reduction of the loan size q. This is the informational rent to the lender,

and the rent rises as the information acquisition incentive increases. Hence, the interest rate,
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r =
[η(1−α)+α]ya− γ

1−σ
(1−α)(1−η)ya+ γ

1−σ
, contains the compensation for the risk of opportunistic default and the

informational rent. Note that even if η = 0, the interest rate on the IIS-2 loan contract is

still positive because of the informational rent.

The effects of η on the interest rate is the same with the IIS-1 case above: a higher η means

a higher probability of opportunistic default, so the borrower must provide a higher interest

rate, similar to the IIS-1 loan contract. However, because of the binding no-information

acquisition constraint (5), the probability of exogenous default α has two opposing effects on

the interest rate. First, as explained above, the borrower has less chance to default on the

loan in an opportunistic way as α increases, which pushes down the interest rate. Second, as

α increases, the probability that the lender ends up holding the ownership of the collateral

trees increases. Therefore, the lender has more incentive to acquire costly information about

the future value of the trees, which raises the informational rent and pushes up the interest

rate. In the IIS-2 case, the second effect dominates the first one, so the interest rate increases

with α. By the same reasoning, as the information acquisition cost γ decreases, the lender’s

information acquisition incentive rises, so the interest rate increases. Finally, because the

lender is concerned about the bad dividend state of the trees, the information acquisition

incentive decreases with σ. Thus, the interest rate on the loan falls as σ rises. In the extreme

case, if the trees always yield dividends, i.e., σ = 1, then the information has no bites, and

(5) does never bind.

Second, if α > α∗ (IIS-3 type), the borrower defaults on the loan with relatively high

probability. Thus, the lender has a high incentive to acquire information about the divi-

dend state. In this circumstance, it is too costly to discourage the lender from information

acquisition by providing the informational rent to the lender. Instead, the borrower posts

only a fraction of the trees as collateral, i.e., a′ < a, and reduces q and p appropriately, to

reduce the lender’s information acquisition incentive. Given all other things equal, as the

quantity of collateral trees decreases, the value of information about the future value of the

trees decreases. Thus, the lender has less incentive to acquire the information given the fixed

cost of information acquisition. Here, the quantity of collateral trees, a′ = γ
[α+(1−α)ησ](1−σ) ,

increases with γ and decreases with α because of their effects on the information acquisition

incentive. Because the borrower does not give the informational rent to the lender in this

case, the interest rate on the collateral loan, r = (1−α)(1−σ)η
1−(1−α)(1−σ)η , is the same as the IIS-1 case.
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Lemma 2 Suppose αy ≤ k < [1 − η(1 − α)(1 − σ)]y, and define γ∗∗IIS ≡
[σηk+(1−η)αy](1−σ)a

1−η(1−σ)
and α∗∗ ≡ k[(m−1)(1−η)−ησ]

m(1−η)y .

1. [IIS-4] If γ∗∗IIS ≤ γ, then q = ka, p = (k−αy)a
(1−α)[1−η(1−σ)] , a

′ = a, and VIIS = (m−1)ka+ya.
2. [IIS-5] If γ < γ∗∗IIS and α ≤ α∗∗, then q = (1−η)(k−αy)a

1−η(1−σ) + γ
1−σ , p =

(k−αy)a
(1−α)[1−η(1−σ)] , a

′ = a,

and VIIS = m
{
(1−η)(k−αy)a
1−η(1−α) + γ

1−σ

}
− ka+ ya.

3. [IIS-6] If γ < γ∗∗IIS and α > α∗∗, then q = [1−η(1−σ)]γk
[ηk+α(1−η)y](1−σ)σ , p =

(k−αy)γ
[ηk+α(1−η)y](1−α)(1−σ)σ ,

a′ = [1−η(1−σ)]γ
[ηk+α(1−η)y](1−σ)σ , and VIIS =

(m−1)[1−η(1−σ)]γk
[ηk+α(1−η)y](1−σ)σ + ya.

Lemma 3 Suppose k < αy. Then, an IIS secured loan contract is not feasible.

Now consider the case where k < [1− η(1−α)(1−σ)]y, so the borrower has an incentive
to use fraudulent trees as a medium of exchange, and hence the lender may be reluctant to

trade with the borrower because of the threat of fraud. In this environment, the borrower

can mitigate the fraud incentive problem in the following way. As explained above, the

borrower can save (1−α)[1−η(1−σ)]p+αya′ units of consumption goods in expectation by
transferring fraudulent trees to the lender. Thus, given the quantity of collateral trees, a′,

the benefit from fraud decreases as p falls, while the cost of producing fraudulent mortgages

does not change. Therefore, the borrower can give a signal about the authenticity of the

collateral trees to the lender by over-collateralizing the loan, i.e., p < ya′.

However, when k < αy, the fraud incentive problem is so severe that the borrower cannot

circumvent it and cannot issue IIS secured debt. On the other hand, if αy ≤ k < [1− η(1−
α)(1− σ)]y, the fraud incentive is not too high, and, hence, an IIS secured loan contract is
feasible with the binding fraud incentive constraint (6) and over-collateralization. The ratio

of over-collateralization, ya
′−p
ya′ , is the same for all types (IIS-4 to IIS-6), as

[1−η(1−α)(1−σ)]y−k
(1−α)[1−η(1−σ)]y ,

and it increases (decreases) with α and σ (k and η), because of their effects on the fraud

incentive: the payoff from fraud, (1 − α)[1 − η(1 − σ)]p + αya′, increases with α and σ,

decreases with η, and the borrower has less incentive to commit fraud as the fraud cost k

increases.

Although the binding fraud incentive constraint (6) generates the over-collateralization,

the effects of γ, α, and a′ on the lender’s information acquisition incentive and the structure

of IIS loan contracts, as one can see from lemmas 1 and 2, are similar to the case with the

non-binding fraud incentive constraint (6). For example, as the lender’s incentive to acquire

information about the dividend state increases, the borrower attempts to deter information
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acquisition by giving informational rent first (IIS-5), and then cuts the quantity of collateral

trees instead of providing informational rent (IIS-6) to deter information acquisition. In the

following, we analyze the interest rate and haircuts because they can respond to a change of

some parameter values differently due to the over-collateralization.

As explained above, IIS-4 and IIS-6 loan contracts do not contain informational rent.

Thus, the interest rate is the same as [α+η(1−α)(1−σ)]k−αy
(1−α)[1−η(1−σ)]k for IIS-4 and IIS-6 types, and it

increases with η and decreases with α and σ because of their effects on the opportunistic

default, similar to the IIS-1 contract. However, in these cases, the fraud cost k affects the

interest rate due to the binding fraud incentive constraint (6). More precisely, an increase in

the fraud cost k raises the repayment p through the binding fraud incentive constraint (6).

This, in turn, increases the loan size q by relaxing the lender’s participation constraint (4)

or the no-information acquisition constraint (5). Then, as one can see from (4) and (5), an

increase in k raises p more than q, so the interest rate of IIS-4 (IIS-6) increases with k. One

interesting result is that if Lucas trees are a safe asset, i.e., σ = 1 so y = y, the interest rate

is α(k−y)
(1−α)k < 0 given k < y. Then, by continuity, if σ ≈ 1, then the interest rate of IIS-4 and

IIS-6 debt contracts will be negative, which sheds light on some evidence on the negative

interest rate of a repo contract in which safe assets are traded.

The interest rate of IIS-5 is slightly more complicated as [α+η(1−α)](k−αy)(1−σ)a−(1−α)[1−η(1−σ)]γ
(1−α){(1−η)(k−αy)(1−σ)a+[1−η(1−σ)]γ}

because of the informational rent. The effects of parameters such as η, γ, and σ on the inter-

est rate are the same as those for IIS-2 by similar reasoning. The interest rate also increases

with the fraud cost k because of its effect on the value of repayment p and the loan size q

as explained above. However, the effects of α on the interest rate are unclear, in contrast

to the IIS-2 type. As we explained above, when the no-information acquisition constraint

binds, an increase in α has two opposing effects on the interest rate. First, it lowers the

possibility of opportunistic default, which pushes down the interest rate. Second, it tightens

the binding no-information acquisition constraint, which pushes up the interest rate. In the

IIS-2 case, the second effect dominates the first one. In the IIS-5 type, there is a third

effect: An increase in α lowers the repurchase price, p, through the binding fraud incentive

constraint (6), which works as a force of lowering the interest rate. Combined together, the

effects of changing α on the interest rate are ambiguous.

We now analyze the haircuts of IIS loan contracts. First, when the fraud incentive

constraint (6) does not bind due to a suffi ciently high fraud cost k as IIS-1 to IIS-3 types,

20



p = ya′. Therefore, the interest rate on loans r = p−q
q
and the haircut θ = ya′−q

ya′ are basically

the same indicators, although the denominators of each variable are different. However,

when the fraud incentive constraint (6) binds, the secured loan is over-collateralized, i.e.,

p < ya′. Thus, it seems worthwhile to spend a little time on the haircut in this case. From

lemma 2, we obtain θ = y−k
y
for IIS-4 and IIS-6 types, so it only depends on the fraud cost k.

The haircut of the IIS-5 type is given as θ = 1− (1−η)(k−αy)(1−σ)a+[1−η(1−σ)]γ
(1−σ)[1−η(1−σ)]ya , and it increases

with η and α and decreases with γ and k. Note that when loans are over-collateralized, the

haircut and interest rate of secured loan contracts can respond differently to shocks on some

parameters. For example, the interest rate of the IIS-4 (IIS-6) type changes in response to

changes in parameters such as η, α, and σ, but the haircut does not change. In the IIS-5 type

case, the haircut increases with α while the effects of α on the interest rate are uncertain.

In particular, as the fraud cost k increases, the interest rates rise, but the haircuts fall when

loans are over-collateralized (IIS-4 to IIS-6).

3.1.2 Information sensitive loan contracts (IS)

If the information acquisition cost γ is too low, such that the lender has a high incentive

to produce information, then it could be too costly for the borrower to deter information

acquisition with IIS contracts. Instead, an offer that induces the lender to acquire information

about the dividend state may be a better option. Notice that the borrower can always decide

not to trade with the lender, which gives the payoff of V = ya in expectation. Thus, if

the information acquisition cost, γ, is not low enough, then the information sensitive (IS)

contract is not profitable, or it may not even be feasible. Here, we focus on IS loan contracts

that give a higher payoff to the borrower than the no trade option and impose the necessary

conditions for those types of contracts to exist.

Under IS loan contracts, the lender trades with the borrower only if the dividend state

is good, so the borrower cannot default opportunistically. Thus, the borrower’s expected

payment to the lender is σ [(1− α)p+ αya′]. Similar to IIS loan contracts, this expected

payment should not be higher than the fraud cost ka′ to prevent the borrower from engaging

in fraud, which generates the fraud incentive constraint for an IS loan contract. Then,

the borrower’s maximized value under an IS loan contract, VIS, is obtained by solving the
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following maximization problem:

VIS =Max
q,p,a′

{σ[mq − (1− α)p− αya′] + ya} (10)

subject to

−σq + (1− α)σp+ αya′ − γ ≥ 0 (11)

(1− σ)q − (1− η)(1− α)(1− σ)p− γ ≥ 0 (12)

ka′ − (1− α)σp− αya′ ≥ 0 (13)

ya′ − p ≥ 0 (14)

a− a′ ≥ 0 (15)

q, p, a′ ≥ 0. (16)

The objective function (10) is the sum of the borrower’s expected surplus from trading

and the expected value of the tree holdings. The inequality (11) is the lender’s non-negative

profit constraint with information acquisition. (12) is the information acquisition constraint

that induces the lender to acquire information about the dividend state of the trees, and

(13) is the fraud incentive constraint that states that the benefit from fraud should not

be higher than the cost of producing fraudulent trees. The inequality (14) is the incentive

constraint for the borrower to make repayments on the loan, and (15) and (16) are the

feasibility constraints. Notice, from (14), that the borrower has an incentive to repay the

loan instead of abandoning the collateral trees as long as p ≤ ya′ because the lender trades

with the borrower only if the dividend state is good.

As explained above, when the lender acquires information about the dividend state, the

borrower must compensate the lender for the information acquisition cost to make the lender

accept the offer. Therefore, for IS loan contracts to exist, the information acquisition cost, γ,

must be suffi ciently low. In other words, there is no {q, p, a′} that satisfies (11) - (16) if γ is
suffi ciently high. For example, if γ > [α+ (1−α)η](1− σ)ya, then (11), (12), (14), and (15)
cannot be satisfied at the same time. Moreover, VIS must be higher than ya because no trade

is always a feasible option. Given these arguments, the next lemma describes information

sensitive (IS) secured loan contracts.
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Lemma 4 Define the cutoff level of γ as γ∗IS ≡ [ηk+α(1−η)y](1−σ)a. Then, an IS secured
loan contract has one of the following forms:

1) (IS-1) If y ≤ k and γ ≤ Min
{
[α + (1− α)η](1− σ)ya, (m−1)ya

m

}
, then q = ya − γ

σ
,

p = ya, a′ = a, and VIS = m(ya− γ).
2) (IS-2) If αy ≤ k < y and γ ≤Min

{
γ∗IS,

(m−1)ka
m

}
, then q = ka−γ

σ
, p = (k−αy)a

(1−α)σ , a
′ = a,

and VIS = (m− 1)ka−mγ + ya.

3) Otherwise, IS secured loan contracts are not feasible or are worse than no trade, i.e.,

a′ = 0.

Similar to IIS loan contracts, if the fraud cost k is lower than αy, then IS loan contracts

are not feasible, and when k is in a moderate range, as αy ≤ k < y (IS-2 type), the IS

loan contract is over-collateralized. The difference from IIS loan contracts is that for IS loan

contracts to be feasible or profitable, the information acquisition cost γ should be suffi ciently

low, as explained above. More precisely, if γ > [ηMin{k, y}+ α(1− η)y] (1 − σ)a, then IS
loan contracts are not feasible because such contracts cannot satisfy the lender’s participation

constraint with costly information production by the lender (see the proof of Lemma 4). On

the other hand, if γ > Min{k,y}(m−1)a
m

, then IS loan contracts are worse than no trade even

though they may be feasible.

Given the information acquisition, trading occurs only if the dividend state is good, and

hence, the lender’s acceptance of the offer reveals this information. Thus, the expected value

of the collateral is ya′, and the ratio of over-collateralization and the haircut are defined as
ya′−p
ya′ and ya′−q

ya′ , respectively. First, the IS-1 loan contract is not over-collateralized, and the

over-collateralization ratio of the IS-2 loan contract is given as y−k
(1−α)y , which increases with α

and decreases with k based on similar reasoning as IIS loan contracts. Second, the haircut is
γ
ya
for IS-1 and ya−ka+γ

ya
for IS-2. Thus, the haircut increases with the information acquisition

cost γ for both cases but decreases with the fraud cost k for the IS-2 loan contract. As one can

see, the over-collateralization ratio and haircuts do not depend on η because opportunistic

default is not possible.

Next, under IS loan contracts, there is no reason for the borrower to provide informational

rent to deter information acquisition, and the expected surplus of the lender is zero. The

interest rate on the loan, γ
ya−γ for IS-1 and

(1−α)γ−α(y−k)a
(1−α)(ka−γ) for IS-2, respectively, represents

compensation for the cost of information acquisition. Thus, the interest rate increases with
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the information acquisition cost γ, in contract to IIS loan contracts. Note that the interest

rate on the IS-2 contract can be negative if γ ≈ 0. Because trading occurs only if the

dividend state is good under IS loan contracts, Lucas trees can be interpreted as a safe asset

if γ ≈ 0. In this sense, the possibility of a negative interest rate on the IS-2 loan contract is
consistent with the result that the interest rate on IIS loan contracts can be negative when

the loans are over-collateralized and the collateral assets are suffi ciently safe. Furthermore,

similar to IIS loan contracts, the correlation between the interest rate and haircuts on the

IS-1 loan contract is positive, but the interest rate and haircut change in opposite directions

for the IS-2 loan contract when k changes.

Finally, the borrower’s maximized value VIS does not depend on the counter-party risk α

and η under IS loan contracts. The intuition is as follows. First, because the borrower cannot

default opportunistically under an IS loan contract, the probability η that the borrower

receives information about the dividend state at the beginning of t = 1 does not matter for

the terms of the contract and the maximized value VIS. Second, under the IS-1 contract, the

probability α that the borrower does not receive endowments does not affect the terms of

the contract because trading occurs when the dividend state is good and p = ya′. However,

the terms of the IS-2 contract with the binding fraud incentive constraint (13) depend on

α because of the effects α on the fraud incentive. More precisely, whenever the loan is

over-collateralized, i.e., p < ya′, it is costlier for the borrower to cede collateral trees a′

than to make repayment p. Therefore, as α increases, the borrower’s expected repayment

to the lender, σ [(1− α)p+ αya′], increases, thus raising the borrower’s incentive to produce

fraudulent trees. To satisfy the binding fraud incentive constraint (13), the repayment p falls.

Therefore, an increase of α has two opposing effects on the borrower’s expected payment: It

increases the probability of losing the ownership of collateral trees, but it lowers the size of

the repayment. These two effects are exactly cancelled out, so the initial loan size q and the

borrower’s maximized value VIS do not change with respect to a change in α.

3.1.3 Induce information acquisition or not?

At t = 0, the borrower will compare the maximized values VIIS and VIS given in equations (3)

and (10), respectively, and choose the one that gives the higher surplus. Thus, the borrower’s

maximized value with secured loans is given as V =Max{VIIS, VIS}. If VIIS ≥ VIS, then an

IIS loan contract dominates an IS loan contract, and vice versa. The type of optimal secured
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loan contract that the borrower would choose among secured loan contracts depends on the

information acquisition cost γ, the fraud cost k, and the exogenous default probability α,

and is described in the following proposition.

Proposition 1 The type of optimal secured loan contract is as follows:

1) Suppose y ≤ k.

1-a) If α ≤ α∗, there is γ̂1 < γ∗IIS, such that the optimal secured loan contract is i) IS-1

for all γ ∈ (0, γ̂1), ii) IIS-2 for all γ ∈ [γ̂1, γ∗IIS), and iii) IIS-1 for all γ ≥ γ∗IIS.

1-b) If α > α∗, there is γ̃1 < γ∗IIS, such that the optimal secured loan contract is i) IS-1

for all γ ∈ (0, γ̃1), ii) IIS-3 for all γ ∈ [γ̃1, γ∗IIS), and iii) IIS-1 for all γ ≥ γ∗IIS.

2) Suppose [1− η(1− α)(1− σ)]y ≤ k < y.

2-a) If α ≤ α∗, there is γ̂2 < γ∗IIS, such that the optimal secured loan contract is i)

IS-2 for all γ ∈ (0,Min {γ̂2, γ∗∗IS}), ii) IIS-2 for all γ ∈ [Min {γ̂2, γ∗∗IS} , γ∗IIS), and
iii) IIS-1 for all γ ≥ γ∗IIS.

2-b) If α > α∗, then there is γ̃2 < γ∗IIS, such that the optimal secured loan contract is

i) IS-2 for all γ ∈ (0,Min {γ̃2, γ∗∗IS}), ii) IIS-3 for all γ ∈ [Min {γ̃2, γ∗∗IS} , γ∗IIS),
and iii) IIS-1 for all γ ≥ γ∗IIS.

3) Suppose αy ≤ k < [1− η(1− α)(1− σ)]y.

3-a) If α ≤ α∗∗, there is γ̂3 < γ∗∗IIS, such that the optimal secured loan contract is

i) IS-2 for all γ ∈ (0, γ̂3), ii) IIS-5 for all γ ∈ [γ̂3, γ∗∗IIS), and iii) IIS-4 for all
γ ≥ γ∗∗IIS.

3-b) If α > α∗∗, there is γ̃3 < γ∗∗IIS, such that the optimal secured loan contract is

i) IS-2 for all γ ∈ (0, γ̃3), ii) IIS-2 for all γ ∈ [γ̃3, γ∗∗IIS), and iii) IIS-4 for all
γ ≥ γ∗∗IIS

4) If k < αy, then a secured loan contract is not feasible.

Although the specific type of optimal secured loan contract depends on the fraud cost

k in proposition 1, it is more likely that IIS loan contracts dominate IS loan contracts as γ

increases. The intuition is in line with our earlier observations. As one can see from lemmas 1

- 4, VIIS weakly increases with the information acquisition cost, γ, while VIS weakly decreases

with γ. This is because an increase in γ relaxes the no-information acquisition constraint
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Figure 2: VIIS and VIS with respect to γ when y ≤ k

(5) for IIS loan contracts, while it means a higher information acquisition cost for IS loan

contracts. Thus, the borrower makes an offer that induces the lender to acquire information

only if the information acquisition cost γ is suffi ciently low. This is illustrated in Figure 2,

which describes VIIS and VIS with respect to γ when y ≤ k, and the maximized value of the

borrower under secured loan contracts, V , is given by the upper line of both graphs. In the

following, we analyze some properties of secured loan contracts that were not examined in

the previous subsection.

First, as k decreases, the fraud incentive starts to matter for IS loan contracts first as

one can see from proposition 1. This is because under IIS loan contracts, the borrower

can default opportunistically, which lowers the expected repayment on the loan. This, in

turn, implies less benefit from producing fraudulent trees. Note that if η = 0, such that

the borrower cannot default opportunistically, then the second case in proposition 1 with

[1− η(1−α)(1− σ)]y ≤ k < y disappears, and the fraud incentive constraint binds for both

IIS loan contracts and IS loan contracts when k < y.

Second, consider two limiting cases: 1) γ → ∞ and 2) γ → 0. When [1 − η(1 −
α)(1 − σ)]y ≤ k, the fraud incentive constraint of IIS loan contracts does not bind. In

that case, as γ → ∞, the IIS-1 loan type is optimal among secured loan contracts and
V = [m− (m− 1)(1− α)(1− σ)η] ya. On the other hand, lim

γ→0
V = mya under the IS-1 loan

contract if y ≤ k, or lim
γ→0

V = (m− 1)ka+ ya under the IS-2 loan contract if k < y. In either

case, the borrower obtains a higher surplus when γ → 0 than when γ → ∞. The reason
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is as follows. Under the IIS-1 loan contract, the borrower can default opportunistically

if he/she receives a private signal about the dividend state. Thus, the borrower has to

compensate the lender for taking this risk. When the lender acquires information, there is

no asymmetric information. Thus, the borrower cannot default in an opportunistic way, and

the borrower does not need to pay for the opportunistic default risk. Note that if η = 0,

such that the borrower does not receive a private signal, then lim
γ→∞

V = lim
γ→0

V . Next, when

k < [1− η(1− α)(1− σ)]y, the fraud incentive constraints of IIS and IS contracts bind. In
this case, VIIS under the IIS-4 type does not depend on η because the loan size q and the

expected payment (1− α)[1− (1− σ)η]p+ αya′ are pinned down as ka through the binding
fraud incentive constraint (6), and lim

γ→∞
V = lim

γ→0
V , even though η > 0.

Third, if the fraud cost k is suffi ciently high, such as k ≥ y, the fraud incentive constraints

- equation (6) for IIS loan contracts and (13) for IS loan contracts - do not bind. In that case,

over-collateralization does not exist, as one can see from lemmas 1 and 4, and the interest rate

and haircut are technically the same indicator. Therefore, the default risk and the lender’s

information acquisition incentive cannot explain the existence of over-collateralization in

secured loan contracts in the model. Instead, interest rates and haircuts reflect the default

risk and the information acquisition incentive.

On a related point, it seems worthwhile to discuss the recent work on repo contracts in

the context of information acquisition presented by Dang, Gorton, and Holmström (2012),

who derived over-collateralization in a similar economic environment. However, they as-

sumed that the interest rate should be zero, and this assumption drives a positive haircut

in secured loan contracts. Given that the repo rate is zero, haircuts are the same as the

over-collateralization ratio, which is defined as the percentage difference between the collat-

eral value and the value of repayment on the loan in this paper. More precisely, a lender in

Dang, Gorton, and Holmström (2012) may have to sell collateral assets at a discounted price

to a third party because the third party can learn the exact value of the collateral assets at

some cost similar to the information acquisition technology in our model. Clearly, when a

borrower and a lender enter into a secured loan contract, the borrower must compensate the

lender in some shape or form for the possibility that the lender may have to sell the collateral

asset at a discounted price. However, Dang, Gorton, and Holmström (2012) did not allow

a positive interest rate in their model, so the compensation was embodied in a secured loan

contract in the form of over-collateralization, which is the haircut in their model. On the
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other hand, we extend the model to allow the lender can provide interest on a secured loan

and show that over-collateralization occurs not because of information acquisition incentive

but because of the threat of fraudulent practices in financial markets.

Deriving over-collateralization endogenously is important to better understand repo mar-

kets. In particular, Baklanova et al. (2017) document a negative correlation between haircuts

and interest rates when dealers borrow cash using U.S. treasuries as collateral. However, if

there is no over-collateralization or over-collateralization is introduced into the model exoge-

nously, haircuts and interest rates always move in the same direction in response to any source

of risk based on the definitions of both variables. By endogenizing over-collateralization

using a moral hazard problem, our model provides the theoretical explanation about the

possibility of a negative correlation between haircuts and interest rates when loans are over-

collateralized. In particular, for instance, the interest rate increases and the haircut falls

as the fraud cost k increases when loans are over-collateralized. Additionally, under the

IIS-5 loan contract, the interest rate falls while the haircut rises with respect to the ex-

ogenous default probability α under appropriate parameter values.7 At the same time, our

model permits the positive correlation between interest rates and haircuts in response to

changes in various parameters, thus supporting the empirical findings of earlier works such

as Benmelech, Garmaise, and Moskowitz (2005).

Finally, if k < αy, secured loan contracts are not feasible because of the threat of fraud.

Furthermore, trees cannot be traded in a direct asset sale because an asset sale is a special

case of a secured loan contract where α = 1. Thus, trees are illiquid when the fraud incentive

problem is severe similar to Li, Rocheteau, andWeill (2012), although a secured loan contract

and an asset sale were treated equivalently in their model. The difference between Li,

Rocheteau and Weill (2012) and our model is that when the fraud incentive problem is

severe, the entire trees are not traded in our model, while only a fraction of an illiquid asset

is not traded in Li, Rocheteau and Weill (2012).

7An increase in α raises the haircut of the IIS-5 loan contract, but its effects on the interest rate are
uncertain. However, the interest rate of the IIS-5 loan contract falls as α increases if 1) the trees are

suffi ciently safe, as σ > (1−η)(k−αy)2a−(y−k)(1−η)γ
(y−k)ηγ+(1−η)(k−αy)2a , or 2) if the default risk is suffi ciently low, i.e., η ≈ α ≈ 0

and k < (
√
9−4σ−1)σ

2 .
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3.2 Secured loan vs. Asset sale

Thus far, we have focused on secured loan contracts. However, as argued previously, the

borrower can potentially sell trees to the lender on the spot in period 0. This asset sale can

be interpreted as a special case of a secured loan contract with α = 1 because, in that case,

the borrower can never be able to repay the loan, so the lender always seizes the collateral

trees. Thus, the borrower’s maximized value with an asset sale, which is denoted as Vα=1, can

be obtained by plugging α = 1 into proposition 1. Because trees are illiquid when k < αy,

we focus on the cases where k ≥ αy.

As one can see from lemmas 2 and 4, the necessary conditions to have binding fraud

incentive constraints are αy ≤ k < [1 − η(1 − α)(1 − σ)]y for IIS-type loan contracts and
αy ≤ k < y for IS-type loan contracts. If α = 1, neither of these two conditions can be

satisfied. Therefore, if the optimal secured loan contract is over-collateralized, then an asset

sale is not a feasible option for tree trading, so a secured loan is the optimal contract. More

precisely, by over-collateralizing secured loan contracts, which is not possible under a direct

sale of trees, the borrower can give the lender a signal about the authenticity of the collateral

trees, thus circumventing the fraud incentive problem. From a technical point of view, this

result implies that it suffi ces to look at the first case of proposition 1, where y ≤ k and hence

the fraud incentive does not exist, when comparing secured loan contracts with tree sales

because in the other cases, tree sales are not feasible. The next lemma shows a property of

the IS-1 loan contract that is a general property of information sensitive (IS) loan contracts,

which provides a useful intermediate step.

Lemma 5 Suppose k ≥ y and γ < Min{γ̂1, γ̃1} given α = α0. Then, IS-1 is the optimal

secured loan contract for all α ≥ α0, and the borrower is indifferent between secured loan

contracts and a direct sale of trees.

In the proof of Lemma 5, we show that γ̂1 ≤ γ̃1 if and only if α ≤ α∗. Therefore, when k ≥
y given α = α0, the IS-1 type is the optimal secured loan contract for all γ < Min{γ̂1, γ̃1}.
Then, Lemma 5 states that the IS-1 loan contract is also optimal for all α ≥ α0, which

implies that a direct sale of trees is also information sensitive because a tree sale equals a

secured loan contract with α = 1. Furthermore, under the IS-1 loan contract, the borrower’s

maximized value does not depend on α (see lemma 4). Therefore, whenever the IS-1 loan

contract is optimal among secured loan contracts, the borrower is indifferent between a
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secured loan contract and a tree sale. In the following, we focus on the case in which the

borrower strictly prefers one type to the other.

First, suppose that η = 0, so the borrower cannot default on the loan in an opportunistic

way in period t = 1. Then, under the IIS-1 loan contract in which the no-information

acquisition constraint does not bind, the borrower’s maximized value, VIIS, does not depend

on α, similar to the case with the information sensitive (IS) loan contracts. On the other

hand, VIIS strictly decreases with α under IIS loan contracts with the binding no-information

acquisition constraint. This means that V = Max{VIIS, VIS} is weakly decreasing in α, so
secured loan contracts are either better than or equivalent to tree sales. Thus, secured

loan contracts are always optimal contracts, similar to previous studies such as Gottardi,

Maurin, and Monnet (2015), and Parlatore (2017). The intuitive explanation for this finding

is as follows. Under a secured loan contract, the borrower takes the collateral trees if he/she

makes a repayment on the loan at t = 1. Hence, the lender has less incentive to acquire costly

information about the dividend state because the dividend state matters only if the lender

seizes the collateral trees. Therefore, the borrower can relax the no-information acquisition

constraint by offering a secured loan contract rather than a direct sale of trees.

On the other hand, if the borrower receives private information about the dividend state

with a positive probability η > 0, the borrower can default on the loan in a profitable way in

period t = 1 even though he/she receives the endowment. The borrower must compensate

the lender for taking the risk of opportunistic default on the loan contract. Because the

borrower can default opportunistically only if he/she receives the endowment e, an increase

in the probability α that the borrower will not receive the endowment lowers the possibility

that the borrower will take advantage of private information under an IIS loan contract.

Therefore, the borrower’s maximized value, V , under the IIS-1 loan contract, in which the

no-information acquisition constraint (5) does not bind, strictly increases with α. However,

when the no-information acquisition constraint binds, an increase in α tightens the binding

no-information acquisition constraint, because as α increases, it is more likely that the lender

will end up owning the collateral trees. This effect of increasing α dominates the first

effect on the opportunistic default possibility, as explained in the previous section. Thus,

an increase in α reduces VIIS under IIS loan contracts with the binding no-information

acquisition constraint.

To obtain more intuition, note from the first case with y ≤ k in proposition 1, that if
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Figure 3: V with respect to α when σy ≤ k

γ ≥ γ∗IIS at α = α0, then the IIS-1 type is the optimal secured loan contract for all α ≤ α0

because γ∗IIS ≡ [α + (1− α)ησ] (1−σ)ya, defined in lemma 1, increases with α. Now suppose
that there exists α′ ∈ (0, 1) such that when α = α′, the IIS-1 contract is the optimal secured

loan contract and the borrower’s maximized value V equals the maximized value with tree

sales Vα=1. Then, a direct sale of trees is optimal for all α < α0 because VIIS under the

IIS-1 contract increases with α, as illustrated in Figure 3. Otherwise, secured loan contracts

are optimal or the borrower is indifferent between both types of trading arrangements if

the secured loan contract is information sensitive. The above analysis leads to the next

proposition.

Proposition 2 1. Suppose αy ≤ k < y. Then an asset sale is not feasible, and, hence,

secured loan contracts are optimal.

2. Suppose y ≤ k. 2-a) If γ < Min{γ̂1, γ̃1}, then secured loan contracts and as-
set sales are information sensitive and the borrower is indifferent between them. 2-b) If

Max
{
(m−1)(1−σ)ya
m−1+m(1−σ) , [1− η(1− σ)](1− σ)ya

}
≤ γ, then for all α ∈

[
0, γ−[1−η(1−σ)](1−σ)ya

η(1−σ)2ya

)
,

tree sales are optimal. 2-c) Otherwise, the borrower prefers secured loan contracts to tree

sales because secured loan contracts reduce the lender’s information acquisition incentive.

The above proposition shows that secured loan contracts can be the optimal contract for

asset trading for two reasons. First, when the fraud incentive problem of misrepresenting the

quality of trees is severe, a secured loan contract is optimal because over-collateralization in
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a secured loan contract mitigates the fraud incentive problem, allowing trees to be tradeable

as a medium of exchange. Thus, whenever a secured loan contract is over-collateralized,

it must be the optimal contract. Second, even when the fraud incentive problem does not

exist, a secured loan contract can still be optimal because it reduces the lender’s incentive to

acquire costly information about the dividend state, as long as the information acquisition

cost γ is neither too high nor suffi ciently low.

However, when the lender does not have any incentive to acquire the information because

of a high acquisition cost, a secured loan contract only allows the borrower to default in a

profitable way whenever possible. Thus, the lender faces the risk of opportunistic default

by the borrower. Because the borrower must compensate the lender for taking this risk to

make him accept the offer, a secured loan contract can be suboptimal, and it is better for

the borrower to sell trees to purchase the lender’s goods in period t = 0.

Tomura (2016) extends his model to show that an asset sale without a repurchase agree-

ment can be better than a repo if the repo is not exempt from the automatic stay. More

precisely, if a borrower defaults on the loan, then the lender cannot dispose of the collateral

assets and must hold them until maturity. The optimality of an asset sale in his model, how-

ever, is a result of the exogenous assumption that the intrinsic value of collateral assets is

lower to the lender than to any other agents. In our model, on the other hand, we show that

an asset sale can be optimal even though all agents value the collateral trees symmetrically

because of the possibility of opportunistic default that comes from informational frictions,

complementing previous studies.

4 Conclusion

When are assets used as collateral or sold directly to raise funds for liquidity needs? In this

paper, we construct a simple model to study the effects of costly information acquisition and

fraudulent practices on the type of optimal contract used in asset trading. In the model, the

dividend of an asset follows a stochastic process, but a lender can acquire private information

about the future value of the dividends at a cost. A borrower who owns the asset in the first

period has an incentive to produce counterfeit assets at a cost. The model is used to examine

the conditions under which secured loan contracts and asset sales are inequivalent, so one or

the other emerges as the optimal contract for asset trading. Secured loan contracts can be

32



optimal for two reasons. When the borrower’s fraud incentive is severe, over-collateralization

reduces the incentive to produce fake assets, making the asset tradable, and, hence, a secured

loan contract is optimal. A secured loan contract can also be optimal because it reduces the

lender’s incentive to acquire costly information. However, under a secured loan contract, the

borrower may default opportunistically. Thus, if both the fraud incentive and the information

acquisition incentive do not exist, an asset sale can be optimal.
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Appendix: Omitted proofs

Proof of Lemmas 1 - 3. Here, we prove lemmas 1 - 3 together by solving the maximization
problem of (3). We define the Lagrangian function for the optimal information insensitive

repo contract problem (3) as

L = mq − (1− α)[1− (1− σ)η]p− αya′ + ya+ λ1 [−q + (1− α)[1− (1− σ)η]p+ αya′]

+ λ2 [−(1− σ)q + (1− η)(1− α)(1− σ)p+ γ] + λ3 [ka
′ − (1− α)[1− (1− σ)η]p− αya′]

+ λ4 [ya
′ − p] + λ5 [a− a′] + λ6q + λ7p+ λ8a

′

where λi for i ∈ {1, . . . 8} are the Lagrange multipliers. The first order conditions are

{q} : m+ λ6 = λ1 + λ2(1− σ) (17)

{p} : λ4 − λ7 = (1− α) {(λ1 − λ3 − 1)[1− η(1− σ)] + λ2(1− η)(1− σ)} (18)

{a′} : λ5 − λ8 = (λ1 − λ3 − 1)αy + λ3k + λ4y. (19)

Case 1 (IIS-1). λ2 = λ3 = 0

From (17) - (19), we obtain λ1 > 0, λ4 − λ7 > 0, and λ5 − λ8 > 0. Thus, a′ = a, p = ya,

q = [1 − η(1 − α)(1 − σ)]ya, and VIIS = (m − 1)[1 − η(1 − α)(1 − σ)]ya + ya. To have

λ2 = λ3 = 0, it must be γ ≥ [α + (1− α)ησ](1− σ)ya and k ≥ [1− η(1− α)(1− σ)]y.
Case 2 (IIS-2). λ2 > 0, λ1 = λ3 = 0

Because (5) binds in this case, q > 0 and λ6 = 0. Suppose a′ = 0. Then, p = 0 by (7),

and (4) cannot be satisfied because q > 0. Thus, it must be a′ > 0 and λ8 = 0. Next, from

(17) and (18), λ4 − λ7 = (1− α)[m− 1− η(m− 1 + σ)]. Suppose η > m−1
m−1+σ . Then, λ4 = 0

and λ7 > 0, which implies q = γ
1−σ by (5). However, from (19), we obtain λ5 − λ8 < 0, so

a′ = 0, a contradiction. Thus, we assume that η ≤ m−1
m−1+σ from now on. Then, λ4 − λ7 ≥ 0.

Thus, p = ya′ and, hence, λ7 = 0. From (17) - (19), we obtain

λ5 = y {(m− 1)(1− η)− ησ − α [(m− 1)(1− η)− ησ + 1]} . (20)

Thus, α ≤ (m−1)(1−η)−ησ
(m−1)(1−η)−ησ+1 must hold and, hence, a

′ = a and p = ya. Then, from the

binding (5), q = (1 − η)(1 − α)ya + γ
1−σ , and the maximized value is given as VIIS =

m
[
(1− η)(1− α)ya+ γ

1−σ
]
+ (1 − α)(1 − σ)ηya. Finally, to have λ1 = λ3 = 0, it must be
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γ ≤ [α + (1− α)ησ](1− σ)ya and k ≥ [1− η(1− α)(1− σ)]y.
Case 3 (IIS-3). λ1 > 0, λ2 > 0, λ3 = 0
Because λ2 > 0, it must be q > 0 by (5) so λ6 = 0. Further, if a′ = 0, then p = 0 by

(7), and (4) cannot satisfied. Thus, a′ > 0 and λ8 = 0 must hold. Next, from (17) - (19), we

obtain

λ4 − λ7 = (1− α) [(m− 1)(1− η) + ησ(λ1 − 1)] (21)

λ5 = y

{
(m− 1)(1− η)− ησ

−α[1 + (m− 1)(1− η)− ησ] + λ1[α + (1− α)ησ]

}
+ λ7y (22)

Suppose λ7 ≥ 0, so p = 0 and λ4 = 0. Then, it must be λ1 ≤ 1 − (m−1)(1−η)
ησ

to satisfy

(21). Then, λ5 − λ8 < 0 by (21) and (22), so a′ = 0, which is a contradiction. Thus, it

must be λ7 = 0. Now, suppose λ4 = 0, which requires λ1 = 1− (m−1)(1−η)
ησ

. Then, we obtain

λ5 < 0 from (22), a contradiction. Thus, it must be λ4 > 0 and p = ya′. Then, from the

binding (4) and (5), we obtain q = [1−η(1−α)(1−σ)]γ
[α+(1−α)ησ](1−σ) and a

′ = γ
[α+(1−α)ησ](1−σ)y . Then, we obtain

p = γ
[α+(1−α)ησ](1−σ) and VIIS =

(m−1)[1−(1−α)(1−σ)η]γ
[α+(1−α)ησ](1−σ) + ya. Now suppose α ≤ (m−1)(1−η)−ησ

(m−1)(1−η)−ησ+1 .

Then, λ5 > 0 by (22), and a′ = a, which is the knife edge case of case 2. Thus, we focus

on the case where a′ < a which requires α > (m−1)(1−η)−ησ
(m−1)(1−η)−ησ+1 . Given this condition, one can

always find λ1 ∈ (0,m) that makes λ4 ≥ 0 and λ5 = 0 in (22). Finally, to have λ3 = 0,

k ≥ [1− η(1− α)(1− σ)]y must hold.
Case 4 (IIS-4). λ2 = 0, λ3 > 0, p > 0
Given p > 0, it must be λ7 = 0. Then, from (17) - (19), we obtain

λ4 = (m+ λ6 − λ3 − 1)(1− α)[1− η(1− σ)] (23)

λ5 − λ8 = y(m+ λ6 − λ3 − 1)[1− η(1− α)(1− σ)] + λ3k. (24)

Suppose λ4 > 0, so p = ya′. Because m+λ6−λ3− 1 > 0 to have λ4 > 0, λ5−λ8 > 0. Thus,
a′ = a and q = [1− η(1−α)(1−σ)]ya by the binding (4) because λ1 = m+λ6 > 0. To have

λ3 > 0, it must be k = [1− η(1− α)(1− σ)]y. This is exactly the knife edge case of case 1.
Thus, from now on, we assume that λ4 = 0, which implies p < ya′. From (23) and (24), we

obtain λ5 − λ8 = λ3k > 0. Thus, a′ = a and λ8 = 0. Next, from the binding constraint (4),
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we obtain

q = (1− α)[1− η(1− σ)]p+ αya > 0, (25)

so λ6 = 0. Given λ3 > 0, the constraint (6) must bind, which gives

p =
(k − αy)a

(1− α)[1− η(1− σ)] . (26)

Thus, it must be αy < k < [1− η(1− α)(1− σ)]y to have p ∈ (0, ya). Substituting (26) into
(25), we obtain q = ka, and VIIS = (m − 1)ka + ya. Finally, to have λ2 = 0, it must be
[σηk+(1−η)αy](1−σ)a

1−η(1−σ) ≤ γ.

Case 5 (IIS-5). λ1 = 0, λ2 > 0, λ3 > 0
From the binding (5), we obtain q = (1− η)(1− α)p+ γ

1−σ > 0, so λ6 = 0 and λ2 =
m
1−σ

by (17). Further, to satisfy the constraint (4), a′ > 0 must hold given q > 0, so λ8 = 0. Now

suppose λ4 > 0 so p = ya′ and λ7 = 0. Then, from the binding constraint (6), we obtain

k = [1− η(1− α)(1− σ)]y. (27)

Then, from (18), (19), and (27), we obtain equation (20). Thus, α ≤ (m−1)(1−η)−ησ
(m−1)(1−η)−ησ+1 must

hold and, hence, a′ = a and p = ya. This is exactly the same as case 2 above.

Thus, we focus on the case where λ4 = 0 and, hence, p < ya′ and λ3 =
(m−1)(1−η)−ησ

1−η(1−σ) by

(18). If p = 0, then k = αy by (6). Then, from (19), λ5 = −αy, which is a contradiction.
Therefore, it must be p > 0 and λ7 = 0. From (18) and (19), we obtain λ5 ≈ k− m(1−η)αy

(m−1)(1−η)−ησ .

Therefore, α ≤ [(m−1)(1−η)−ησ]k
m(1−η)y must hold, and, then, a′ = a. Next, from the binding (5)

and (6), we obtain q = (1−η)(k−αy)a
1−η(1−σ) + γ

1−σ and p =
(k−αy)a

(1−α)[1−η(1−σ)] , and the maximized value

of the objective is given as VIIS = m
{
(1−η)(k−αy)a
1−η(1−α) + γ

1−σ

}
− ka + ya. Because p ∈ (0, ya),

αy < k < [1−η(1−α)(1−σ)]y must hold. Finally, to satisfy the constraint (4) with λ1 = 0,
it must be γ ≤ [σηk+α(1−η)y](1−σ)a

1−η(1−σ) .

Case 6 (IIS-6). λ1 > 0, λ2 > 0, λ3 > 0
Since λ2 > 0 and the constraint (5) binds q > 0 and λ6 = 0 must hold. Therefore, it

must be a′ > 0 and λ8 = 0 to satisfy (4) and (7). Next, the binding constraint (6) gives

ka′ = (1− α)[1− η(1− σ)]p+ αya′. Now suppose λ4 > 0 so p = ya′. If a′ = a, then it is the

knife edge case of case 1. On the other hand, if a′ < a, then the result is the same as case

3. Therefore, we focus on the case where λ4 = 0 and p < ya′.
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From (4) - (6), we obtain q = [1−η(1−σ)]γk
[σηk+α(1−η)y](1−σ) , p =

(k−αy)γ
[σηk+α(1−η)y](1−α)(1−σ) , and a′ =

[1−η(1−σ)]γ
[σηk+α(1−η)y](1−σ) . Next, because p ∈ [0, ya

′), it must be αy ≤ k < [1 − η(1 − α)(1 − σ)]y,
and, we can assume λ7 = 0 without loss of generality. Then, from (17) - (19), we obtain

λ1 =
λ3[1− η(1− σ)]− (m− 1)(1− η) + ησ

ησ
(28)

λ5 =
λ3[(1− η)αy + σηk]− (m− 1)(1− η)αy

ησ
. (29)

Because λ1 > 0, then λ3 >
(m−1)(1−η)−ησ

1−η(1−σ) must hold by (28). Then, substituting λ3 =
(m−1)(1−η)−ησ

1−η(1−σ) into (29), we obtain

λ5 >
[(m− 1)(1− η)− ησ]k − αm(1− η)σy

1− η(1− σ) .

Therefore, if α ≤ [(m−1)(1−η)−ησ]k
m(1−η)y , then a′ = a, which is a knife edge case of case 6. Thus, we

focus on the case where a′ < a, which requires α > [(m−1)(1−η)−ησ]k
m(1−η)y and γ < [σηk+α(1−η)y](1−σ)a

1−η(1−σ)
by the definition of a′ in this case. Then, the value of the objective is given as VIIS =
(m−1)[1−η(1−σ)]γk
[ηk+α(1−η)y](1−σ)σ + ya.

Case 7 (No trade). λ2 = 0, λ3 > 0, p = 0
In this case, we obtain, from (6), ka′ = αya′. Thus, if a′ > 0 so λ8 = 0, it must be

k = αy, and λ5 = [(m − 1)α + λ4]y > 0. Thus, a′ = a and q = ka, which is the knife edge

case of case 4 above. Assume a′ = 0, and hence, q = 0, which means that trees are not

traded in period t = 0. Then, (19) becomes −λ8 = (m + λ6 − 1)αy − λ3(αy − k) + λ4y.

Therefore, the necessary condition for this case to exist is k < αy.

By defining γ∗IIS ≡ [α + (1− α)ησ] (1−σ)ya, γ∗∗IIS ≡
[σηk+(1−η)αy](1−σ)a

1−η(1−σ) , α∗ ≡ (1−η)(m−1)−ησ
1+(1−η)(m−1)−ησ ,

and α∗∗ ≡ k[(m−1)(1−η)−ησ]
m(1−η)y and reorganizing cases 1-7 above, we obtain the results of lemmas

1 - 3.

Proof of Lemma 4. If a′ = 0, then p = 0 by (14). Then, (11) cannot be satisfied. Further,
q > 0 must hold by the constraint (12). Therefore, it must be q > 0 and a′ > 0. Then, the
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first-order conditions are

λ1 = m+
(1− σ)λ2

σ
(30)

λ4 − λ6 = (1− α) [(m− 1)σ + η(1− σ)λ2 − σλ3] (31)

λ5 = (λ1 − λ3 − 1)αy + kλ3 + yλ4, (32)

where λ1, λ2, λ3, λ4, and λ5 are the Lagrange multipliers for (11) - (15), respectively, and λ6
is the Lagrange multiplier for p ≥ 0. Note, from (13), that k ≥ (1−α)σp

a′ + αy. Substituting

this condition and (30) into (32), one can show that λ5 > 0, and, hence, a′ = a. Next,

because λ1 > 0 by (30), the constraint (11) must bind, so

q = (1− α)p+ αya− γ

σ
. (33)

Case 1 (IS-1). λ3 = 0
In this case, λ4 > 0 and λ6 = 0 by (31), so p = ya, q = ya − γ

σ
, and VIS = m(ya − γ).

Then, constraints (12) and (13) require γ ≤ [α+ (1−α)η](1− σ)ya and k ≥ y, respectively.

Finally, the borrower can always choose not to trade, which gives the borrower the payoff ya.

Thus, it must be VIS = m(ya− γ) ≥ ya, which requires γ ≤ (m−1)ya
m

. Combined together, it

must be γ ≤Min
{
[α + (1− α)η](1− σ)ya, (m−1)ya

m

}
for this case to be the optimal IS repo

contract.

Case 2 (IS-2). λ3 > 0
Suppose λ4 > 0, and, hence, λ6 = 0. Then, p = ya and k = σy, which is the knife edge

case of the previous case. Thus, we focus on the case where λ4 = 0 and p < ya. From the

binding (13), p = (k−αy)a
(1−α)σ . Since p ∈ [0, ya), αy ≤ k < y must hold. From (33), we obtain

q = ka−γ
σ
. Then, VIS = (m − 1)ka − mγ + ya. Finally, to satisfy the constraint (12) and

VIS ≥ ya, it must be γ ≤Min
{
[ηk + α(1− η)y](1− σ)a, (m−1)ka

m

}
Note that we impose the condition that an IS secured loan contract gives a higher payoff

than no trade, i.e., VIS ≥ ya. Thus, except for the above two cases, an IS secured loan

contract is either infeasible or worse than no trade, so the borrower would not offer an IS

loan contract to the lender. By defining the cutoff level for γ as γ∗∗IS ≡ [ηk+α(1−η)y](1−σ)a
and summarizing cases 1 and 2 above, we obtain lemma 4.
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Proof of Proposition 1. To save space, let VIIS-i, where i ∈ {1, . . . 6}, denote the max-
imized value of the borrower under the IIS-i type loan contracts. For example, VIIS-1 =

[m− (m− 1)(1− α)(1− σ)η] ya. Similarly, let VIS-1 and VIS-2 denote the maximized value
of the borrower under IS-1 and IS-2 loan contracts, respectively. Then, the optimal secured

loan contract can be obtained by comparing VIIS with VIS. The key is that VIIS is weakly

increasing in γ while VIS is decreasing in γ, which implies that if VIIS = VIS at γ = γ0, then

VIIS R VIS for all γ R γ0.

From lemmas 1 - 4, we can divide analysis into three groups: 1) y ≤ k, 2) [1 − η(1 −
α)(1− σ)]y ≤ k < y, and 3) αy ≤ k < [1− η(1− α)(1− σ)]y.
Case 1. y ≤ k.

In this case, IIS-1, IIS-2, IIS-3, and IS-1 are candidates for the optimal repo contracts.

First, if γ = γ∗IIS, then VIIS-1 − VIS-1 ≈ mα + (1 − α)η(mσ −m + 1) ≥ 0 given σ ≥ m−1
m
.

Thus, for all γ ≥ γ∗IIS, VIIS-1 ≥ VIS-1. Note, from lemmas 1 and 4, that

VIIS-2 ≥ VIS-1 iff γ ≥
{m[α + (1− α)η]− (1− α)(1− σ)η} (1− σ)ya

(2− σ)m ≡ γ̂1 (34)

VIIS-3 ≥ VIS-1 iff γ ≥
(m− 1)[α + (1− α)ησ](1− σ)ya

(m− 1)[1− (1− α)(1− σ)η] +m(1− σ)[α + (1− α)ησ] ≡ γ̃1. (35)

Simple algebra shows that (m−1)ya
m

> γ̃1. Next, note, from the definition of α∗ in lemma 1,

that the necessary condition for IIS-2 to be the optimal IIS loan contract is α ≤ α∗. Then,

using the fact that γ̂1 increases with α, it can be verified that
(m−1)ya

m
> γ̂1 for all α ≤ α∗.

Finally, note that γ∗IIS < [α+ (1−α)η](1− σ)ya by definition of γ∗IIS, and, hence, γ̂1 and γ̃1
are lower than the value, [α + (1 − α)η](1 − σ)ya. From the above analysis, we can obtain

Figure 2, which proves part 1 of proposition 1.8

Case 2. [1− η(1− α)(1− σ)]y ≤ k < y

In this case, IIS-1, IIS-2, IIS-3, and IS-2 are candidates for the optimal secured loan

contracts. Because VIS-2 increases with k and VIS-2 = VIS-1 when k = y, it can be verified

that VIIS-1 > VIS-2 for all γ ≥ γ∗IIS. Thus, IIS-1 is optimal for all γ ≥ γ∗IIS. Next, from

8In Figure 2, we assume that (m−1)ya
m > γ∗IIS . However, it is possible that

(m−1)ya
m < γ∗IIS , but it does

not affect the result because for all γ > γ̂1 or γ > γ̃1, the IS-1 loan contract is strictly dominated by IIS loan
contracts
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lemmas 1 and 4,

VIIS-2 ≥ VIS-2 iff γ ≥
{{1− (1− α)[m(1− η) + (1− σ)η]} ya+ (m− 1)ka} (1− σ)

(2− σ)m ≡ γ̂2

VIIS-3 ≥ VIS-2 iff γ ≥
(m− 1)[α + (1− α)ησ](1− σ)ka

(m− 1)[1− (1− α)(1− σ)η] +m(1− σ)[α + (1− α)ησ] ≡ γ̃2.

In this case, we need to compare (m−1)ka
m

, γ̂2, and γ̃2. First, simple algebra shows
(m−1)ka

m
> γ̃2.

Next, using the fact that γ̂2 increases with α, one can show that
(m−1)ka

m
> γ̂2 for all α ≤ α∗.

However, in this case, it is possible that γ∗∗IS, defined in lemma 2, is smaller than γ̂2 and γ̃2.

If γ∗∗IS < γ̂2, for example, then for all γ ∈ [γ∗∗IS, γ∗IIS), IIS-2 is optimal and IS-2 is optimal for
all γ < γ∗∗IS, when α ≤ α∗. On the other hand, if γ∗∗IS ≥ γ̂2, then for all γ ∈ [γ̂2, γ∗IIS), IIS-2 is
optimal and IS-2 is optimal for all γ < γ̂2, when α ≤ α∗. A similar argument applies to the

case where α > α∗. Combined together, we obtain part 2 of proposition 1.

Case 3. αy ≤ k < [1− η(1− α)(1− σ)]y
In this case, we have to compare IIS-4, IIS-5, and IIS-6 with IS-2. Note that VIIS-4 > VIS-2

for any γ > 0. Thus, for all γ ≥ γ∗∗IIS, IIS-4 is optimal. Next, by definition of VIIS-5, VIIS-6,

and VIS-2, we obtain

VIIS-5 ≥ VIS-2 iff γ ≥
[kη + α(1− η)y](1− σ)σa
(2− σ)[1− (1− σ)η] ≡ γ̂3

VIIS-6 ≥ VIS-2 iff γ ≥
(m− 1)[kη + α(1− η)y]k(1− σ)σa

(m− 1)[1− η(1− σ)]k +m[kη + α(1− η)y](1− σ)σ ≡ γ̃3.

Observe that (m−1)ka
m

> γ̃3. Next, using the fact that γ̂3 increases with α, it can be verified

that (m−1)ka
m

> γ̂3 for all α ≤ α∗∗, where α∗∗ is defined in lemma 1, so an IIS loan is the IIS-5

type. Next, simple algebra shows γ∗IS > Max{γ̂3, γ̃3}, where γ∗IS ≡ [ηk + α(1− η)y](1− σ)a
as defined in lemma 4, given k ≥ αy. Thus, if α ≤ α∗∗, an IS repo contract - either IIS-4

or IIS-5 - is optimal for all γ ≥ γ̂3, and IS-2 is optimal for all γ < γ̂3. A similar argument

applies to the case where α > α∗∗. Combined together, we obtain part 3 of proposition 1.

Case 4. k < αy

From lemmas 1 and 2, one can see that secured loan contracts - either IIS or IS- are not

feasible if k < αy.

Finally, by reorganizing the analysis of the above 4 cases, we obtain proposition 1.
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Proof of Lemma 5. From (34) and (35), it can be verified that γ̂1 and γ̃1 increase with

α. Thus, if γ ≤ Min{γ̂1, γ̃1} when α = α0, then γ < Min{γ̂1, γ̃1} for all α ≥ α0. The next

claim provides an intermediate step.

Claim 1 γ̂1 ≥ γ̃1 if and only if α ≥ α∗ ≡ (m−1)(1−η)−ησ
(m−1)(1−η)−ησ+1 .

Proof of Claim 1. From (34) and (35), one can show that γ̂1 ≥ γ̃1 if and only if{
m[α + (1− α)η]
−(1− α)(1− σ)η

}{
(m− 1)[1− (1− α)(1− σ)η]
+m(1− σ)[α + (1− α)ησ]

}
(36)

≥ m(m− 1)(2− σ)[α + (1− α)ησ].

Let φ ≡ −m(1− α)(1− η) + 1− (1− α)(1− σ)η. Then, (36) becomes

(φ+m− 1) {−φ+m(2− σ)[α + (1− α)ησ]}
≥ m(m− 1)(2− σ)[α + (1− α)ησ]
⇔ φ(1− σ) {mα + η(1− α)(mσ −m+ 1)} ≥ 0.

Because σ ≥ m−1
m
, γ̂1 ≥ γ̃1 if and only if φ ≥ 0, which requires α ≥ α∗ ≡ (m−1)(1−η)−ησ

(m−1)(1−η)−ησ+1 by

definition of φ.

The above claim implies that if γ < Min{γ̂1, γ̃1}, then the IS-1 type is the best among
collateralized debt contracts by the first part of proposition 1 when k ≥ αy. Combined

together, the IS-1 is the best among collateralized debts for all α ≥ α0. Furthermore, the

borrower’s maximized value does not depend on α under the IS-1 loan contract (see lemma

4). Therefore, whenever the IS-1 loan contract is optimal among secured loan contracts, the

borrower is indifferent between a secured loan contract and a tree sale.

Proof of Proposition 2. We already proved the first part in the main body and lemma
3 proves part 2-a). Furthermore, once we prove part 2-b) of proposition 2, then part 2-c) is

straightforward. Thus, we focus on the proof of part 2-b) of proposition 2 here. As one can

see from proposition 1, the type of loan contract with α = 1 can be IIS-1, IIS-3, or IS-1 when

y ≤ k. For tree sales to be optimal, the IIS-1 loan contract should be the best among secured

loan contracts because if another type of secured loan contract is the best among secured
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loan contracts, then a loan contract always yields a higher payoff than tree sales (or at least

the same payoff as tree sales). Thus, we compare the borrower’s maximized value V with the

IIS-1 loan contract and the maximized value with tree sales, Vα=1. For the IIS-1 to be the best

loan contract among secured loan contracts, it must be γ ≥ γ∗IIS ≡ [α + (1− α)ησ] (1−σ)ya,
which implies α ≤ γ−η(1−σ)σya

(1−ησ)(1−σ)ya . Then, it must be

γ > η(1− σ)σya, (37)

because α ≥ 0. Now, we consider three possible cases for the type of loan contract with

α = 1, which is the same as direct sales of trees.

First, suppose that the type of loan contact with α = 1 is the IIS-1. Then, tree sales are

optimal because V is increasing in α. When α = 1, γ∗IIS = (1 − σ)ya. Thus, the necessary
condition for this case is

γ ≥ (1− σ)ya. (38)

Second, suppose that the type of loan contract with α = 1 is the IIS-3, which requires

γ ∈ [γ̃1, γ∗IIS) with α = 1, and the borrower’s maximized value is given by Vα=1 =
(m−1)γ
1−σ +ya.

By substituting α = 1 into the definitions of γ̃1, whose form is given in equation (35), and

γ∗IIS, we obtain the necessary condition for the IIS-3 to be the optimal secured loan contract

with α = 1 as
(m− 1)(1− σ)ya
m− 1 +m(1− σ) ≤ γ < (1− σ)ya. (39)

Next, the borrower’s maximized value, V , under the IIS-1 loan contract is VIIS-1 = (m −
1)[1− η(1− α)(1− σ)]ya+ ya, and a tree sale delivers the payoff Vα=1 = (m−1)γ

1−σ + ya to the

borrower. Thus, a tree sale is better than a secured loan contract, so it is optimal only if

α ≤ γ−[1−η(1−σ)](1−σ)ya
η(1−σ)2ya . Since α ≥ 0, the necessary condition is

[1− η(1− σ)](1− σ)ya ≤ γ. (40)

Third, suppose that the type of loan contract with α = 1 is the IS-1. Then, the maximized
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value is

Vα=1 = m(ya− γ)
< mya−mη(1− σ)σya
≤ [m− η(1− σ)(m− 1)]ya
≤ [m− (m− 1)(1− α)(1− σ)η] ya = VIIS-1,

where we use the condition of (37) to obtain the first inequality, and σ ≥ m−1
m
to obtain the

second inequality. Thus, if the type of loan contract with α = 1 is the IS-1, then the IIS-1

type loan contract dominates tree sales.

Combining (37) - (40), we obtain the necessary condition for tree sales to be optimal

as Max
{
(m−1)(1−σ)ya
m−1+m(1−σ) , [1− η(1− σ)](1− σ)ya

}
≤ γ. Given this condition, tree sales are

optimal for all α ≤ γ−[1−η(1−σ)](1−σ)ya
η(1−σ)2ya , which finishes the proof of 2-b).
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