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Abstract

This paper develops a novel technique that allows us to obtain optimal multiplica-

tive biases for asymmetric Tullock contests—i.e., the weights placed on contestants’

effort entries in the contest success function. Generally, Tullock contests with asym-

metric valuations have no closed-form solutions when the impact functions are nonlin-

ear. This prevents us from obtaining the optimum by the usual implicit programming

approach, which requires an explicit solution to the equilibrium effort profile. We pro-

vide an alternative that allows us to circumvent the difficulty without solving for the

equilibrium explicitly. Our approach is not limited to total effort maximization, and

applies to contest design problems with noncanonical objective functions. Using this

approach, we further establish that linear impact functions with zero headstarts are

optimal under a broad class of contest objectives when the contest designer is able

to choose any form of regular concave impact functions. In another application, we

reexamine the classical issue of comparing all-pay auctions and lottery contests under

alternative design objectives.
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1 Introduction

Contest-like competitive activities are ubiquitous in economic and social landscapes: Con-

tenders sink irreversible effort or costly bids to vie for limited prizes, while their competitive

outlays are nonrefundable regardless of the outcome. Such competitions can be exemplified

by a plethora of observations, ranging from electoral competitions, lobbying, R&D races,

and college admissions to sporting events. An enormous amount of research effort has been

devoted to exploring economic agents’ strategic interactions in contests and how these inter-

actions depend on the institutional rules that govern the competition. This sparks extensive

interest in contest design that varies the structural elements of a contest to achieve the

designer’s stated goal.

Our study focuses on optimal contest design when contestants differ in their strength—

i.e., prize valuations—or bidding efficiency. This heterogeneity affords the designer the flexi-

bility to administer biased treatments that are tailored to contestants’ individual character-

istics: She can strategically favor or handicap contestants to alter the competitive balance

of the contest, in order to favor her own interests. The contest literature has convention-

ally espoused the merits of a more level playing field for fueling competition. Consider,

for instance, the preferential government policies that favor small and medium-sized enter-

prises (SMEs) in public procurement to support local entrepreneurship in various countries

(Che and Gale, 2003; Epstein et al., 2011). Prestigious colleges often allocate bonus points

to minority applicants when practicing affirmative action in admissions (Fu, 2006; Franke,

2012). In competitions for a vacant position, existing workers are often ex ante preferred

to external candidates to incentivize productive efforts (Chan, 1996). Alternatively, the In-

ternational Table Tennis Federation (ITTF) substantially enlarged the ball’s size to limit

Chinese players’ dominance (Wang, 2010).

An evolving literature has been developed to explore the optimal biased contest rules

that maximally exploit contestants’ heterogeneity. This paper develops a tractable and lucid

approach to this classical optimization problem in a substantially generalized setting. Its

novelty, compared with previous literature can be seen in two main respects.

First, it renders a closed-form solution to the optimum in a broader setting and allows

for an enriched design space. The application of existing techniques is limited by parametric

restrictions, while our approach largely relaxes these constraints.

Second, it allows for optimization regarding a wider array of objectives. The literature

has typically assumed the maximization of total effort, while alternative objectives often

cause technical difficulties when existing techniques are adopted. Our approach provides an

avenue to bypass the complications.

We now provide a brief account of our setting and the logic underlying our approach.

Specifically, we adopt the frequently used framework of lottery contests to model the stochas-
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tic mechanism that converts contestants’ effort entries into their winning odds. Imagine

an asymmetric n-player winner-take-all contest in which the n players differ in both their

valuations of the prize and their contest technologies. For a given set of effort entries

x ≡ (x1, . . . , xn), a contestant wins the prize with a probability

pi(x) =
fi(xi)∑n
j=1 fj(xj)

,

where fi(·) is conventionally called the impact function of contestant i ∈ {1, . . . , n} mapping

one’s effort outlays into his effective entry. This form of contest success function (CSF) has

been axiomatized by Skaperdas (1996) and Clark and Riis (1998).1

The literature often assumes that the impact function fi(·) takes the form fi(xi) = αi ·xrii ,

in which case the lottery CSF boils down to the popularly adopted Tullock contest. The

set of weights α ≡ (α1, . . . , αn) measures the fairness of the competitive environment, which

arguably depends on the prevailing institutional rules of the contest. The weight is thus

often viewed as a design variable: A contest designer chooses the set of weights α before

the contest begins, and contestants subsequently compete for the prize in response to the

prevailing rules.

The optimization problem entails a mathematical programming with equilibrium con-

straints (MPEC). The typical approach requires one to solve for contestants’ equilibrium

bidding strategies under every possible weight α, then plug the solution to equilibrium

efforts—as a function of α—into the objective function. The objective function can thus

be rewritten as a function of α, which, in turn, allows us to optimize by searching for the

maximizing α. The search for the optimal weights α has been a notoriously difficult problem

in the literature. Although the optimum has been fully characterized in two-player contests

(see, for example, Wang, 2010; Epstein et al., 2011), the solution has long been missing

when more than two contestants are involved. First, as pointed out by Franke et al. (2013),

a complex nonsmooth optimization problem occurs because a contestant can choose to stay

inactive, and the set of active contestants depends on the weights α, which complicates the

search for a global optimum. Second, the solution to the equilibrium effort strategies is, in

general, unavailable.

Franke et al. (2013) make a pioneering contribution by providing a solution to the optimal

biases for an n-player Tullock contest. However, the technique that solves for the equilibrium

in the n-player asymmetric contest game requires linear impact functions, i.e., ri = 1 for all

i ∈ {1, . . . , n}. Further, Franke et al. focus on the maximization of total effort; however,

the technique may not apply when other objective functions are considered, even if ri is set

to one. The pursuit of alternative objectives is not uncommon in practice. Consider, for

1Jia (2008) and Fu and Lu (2012) uncover its statistical foundation.
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instance, that a college presumably cares about only the academic quality of its admitted

student body (see Fu, 2006). In a crowdsourcing competition for a technical solution, the

buyer would only value the quality of the winning entry. More suspense regarding the

outcome of a sporting event makes promoting it easier (see Chan et al., 2008). Alternatively,

in public procurement, a government could care about both domestic suppliers’ efforts as a

buyer and their welfare as a social planner (see Epstein et al., 2011).

Our analysis takes up the challenge to generalize the optimization problem in two dimen-

sions: (i) a broader range of contest settings and (ii) a larger set of design objectives. The

weights placed on effort entries determine the competitive balance of the contest, which ulti-

mately determines the distribution of winning probabilities among contestants. We identify

a correspondence among contestants’ equilibrium winning probabilities, their equilibrium

efforts, and the weights assigned to their effort entries. This allows us to adopt an indi-

rect approach to the optimization problem. Specifically, we do not optimize over the choice

of the weights α. Instead, we borrow a perspective from the mechanism design literature

and allow the designer to assign winning probabilities directly to contestants. That is, the

winning probability distribution is treated as a design variable; we first search for the most

desirable winning probability distribution that maximizes the given objectives, then recover

the the optimal weights through the aforementioned correspondence.

This simple transformation allows us to bypass the technical difficulty of solving explic-

itly for equilibrium effort strategies. Without an explicit solution to the equilibrium, this

approach precisely predicts the equilibrium outcome—i.e., the distribution of contestants’

winning probabilities—in the optimum. It applies broadly to a wide spectrum of contest de-

sign, including contest design problems with various noncanonical objective functions, and

simplifies enormously the search for the optimum.

In addition, based on this approach, we further generalize the contest design problem

beyond the restriction of optimizing over the choice of multiplicative bias. Instead, the

designer is allowed to choose an arbitrary form for concave impact functions under minimum

regularity restrictions. It is shown that linear impact functions with zero headstarts—i.e.,

f(xi) = αi ·xi— are optimal for a broad class of contest objectives. It is thus without loss of

generality to search for the set of optimal weights α. Examples are provided to demonstrate

the flexibility and efficiency of our approach to the search for optimal contest rules in a broad

context.

As mentioned above, our paper is closely related to the seminal study of Franke et al.

(2013) that takes the first step in providing a complete solution to the optimization of n-

player asymmetric lottery contests. Our paper allows for an enriched design space that

includes nonlinear impact functions and optimization toward alternative objectives.2 The

2In an earlier version of Franke et al. (2018), they show that linear impact functions outperform any
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approach can be applied in a wide array of contexts. For example, we are able to explore

further the classical issue of the comparison between lottery contests and all-pay auctions,

which has been studied extensively in the literature. Assuming fair contests without biases,

Fang (2002) finds that an n-player Tullock contest can outperform an all-pay auction when

contestants are heterogeneous. Applying the approach developed by Franke et al. (2013),

Franke et al. (2014) demonstrate that when the contest designer is able to place multiplicative

biases on contestants’ effort entries, the optimal all-pay auction always outperforms. Franke

et al. (2018) further allow for additive headstarts in the designer’s toolkit and develop a

ranking in total revenue between all-pay auctions and lottery contests when different design

instruments are used, which reaffirms the dominance of all-pay auctions. All of these studies,

however, focus on comparison in terms of the total effort. Epstein et al. (2011), in contrast,

assume that the designer cares about both effort supply and contestants’ welfare, but the

comparison is conducted in a two-player setting. Enabled by our approach, the designer

in our setting is given substantially more freedom in manipulating the impact functions; a

ranking between all-pay and lottery contests is concluded in n-player settings for the expected

winner’s effort, as shown in this paper.

Our paper is also related to Nti (2004), who considers optimal contest success functions

in two-player asymmetric contests. Dasgupta and Nti (1998) study optimal contest success

functions in n-player contests with symmetric contestants.

The rest of the paper proceeds as follows. Section 2 describes the baseline setting and the

contest design problem; it furthers develops a novel optimization approach that characterizes

the optimal asymmetric Tullock contests. Section 3 generalizes our analysis by allowing for

an enriched design space and a larger set of design objectives. Section 4 provides two

applications of our approach. Section 5 concludes. All proofs missing from the text are

relegated to the Appendix.

2 Optimization of Asymmetric Tullock Contests: Base-

line Setting

In this part, we first depict the contest model and set up the design problem. Next, we

provide a brief review of existing analytical approaches, which demonstrates the challenges

for further studies. Finally, we lay out our analysis to develop an alternative approach that

takes the challenge.

concave alternatives. However, the optimization problem focuses on the maximization of total effort.
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2.1 Preliminaries: Baseline Model and Contest Design Problem

There are n risk-neutral contestants competing for a prize. The prize bears a value

vi > 0 to each contestant i ∈ N ≡ {1, . . . , n}, which is commonly known. To win the

prize, contestants simultaneously submit their effort entries xi ≥ 0. One’s bid incurs a unity

marginal effort cost.

For a given effort profile x ≡ (x1,, . . . , xn), a contestant i wins the prize with a probability

pi(x) =


fi(xi)∑n
j=1 fj(xj)

if
∑n

j=1 fj(xj) > 0,

1
n

if
∑n

j=1 fj(xj) = 0,
(1)

where the function fi(·), known as the impact function in the contest literature, converts

one’s effort entry into his effective bid in the lottery contest. It is clear that contestant i ∈ N
is excluded from the contest if fi(xi) = 0 for all xi ≥ 0. In the extreme case in which one

contestant has an increasing impact function, while every other contestant’s impact function

is a zero constant, we assume that the contestant wins automatically.3

The set of impact functions
{
fi(·)

}n
i=1

, together with contestants’ valuations v ≡ (v1, . . . , vn),

defines a simultaneous-move contest game.

Definition 1 (Regular Concave Contests) A contest (v,
{
fi(·)

}n
i=1

) is called a regular

concave contest if the impact function for contest i ∈ N is either a nonnegative constant or

a twice differentiable function, with f ′i(xi) > 0, f ′′i (xi) ≤ 0 and fi(0) ≥ 0.

The above definition simply says that the impact function is concave. This restriction

guarantees that a contestant’s payoff function is concave in effort, and is commonly assumed

in the literature. Szidarovszky and Okuguchi (1997) prove the existence and uniqueness of

equilibria in the above game, assuming that fi(0) = 0 for all i ∈ N . Therefore, their result

cannot be applied directly to contests in which headstarts are in place, i.e., fi(0) > 0 for

some i ∈ N . The following theorem generalizes their result by relaxing this zero-headstart

assumption.

Theorem 1 (Existence and Uniqueness of Equilibrium) There exists a unique pure

strategy Nash equilibrium in a regular concave contest game (v,
{
fi(·)

}n
i=1

).

Contest Design: Mathematical Program with Equilibrium Constraints (MPEC)

We now set up the contest design problem. We consider a two-stage structure for the game.

3This assumption is imposed simply for the sake of expositional convenience, and is not crucial to our
result.
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In the first stage, the contest designer sets the contest rule and announces it publicly. In the

second stage, contestants commit to their effort entries in the competition.

For now, we focus on a baseline setting and will relax the restrictions in Section 3. First,

we focus on Tullock contests, assuming that the impact function taking the form

fi(xi) = αi · xrii , for all i ∈ N . (2)

In the competition stage, each contestant sinks his effort xi to maximize his expected payoff

πi(x,α) =


αi·x

ri
i∑n

j=1 αj ·x
rj
j

vi − xi if x 6= 0,

1
n
vi if x = 0.

The parameter ri ∈ (0, 1] indicates the contestant’s efficiency in converting his effort

into an effective bid. It is worth noting that in contrast to the usual setups, we allow ri

to be heterogeneous among contestants. Contestants are therefore heterogeneous in two

dimensions: valuations vi and bidding efficiency ri. We assume that ri is exogenously given,

while the weight on a contestant’s effective bid, αi ≥ 0, is a design variable. The contest

designer chooses the vector of weights α ≡ (α1, . . . , αn) prior to the competition, which is

commonly known when contestants sink their bids. We allow for a larger design space in

Section 3.

Second, we focus on two specific objective functions for contest design in this section.

To put it formally, the designer chooses weights α ≡ (α1, . . . , αn) to maximize an objective

function Λ(x,α)—which is a function of contestants’ effort profile x ≡ (x1,, . . . , xn) and

the designer’s choice of weights α ≡ (α1, . . . , αn)—for a given contest (α, r,v), with r ≡
(r1, . . . , rn) and v ≡ (v1, . . . , vn).

The optimal contest design problem yields a mathematical program with equilibrium

constraints (MPEC): Contestants’ equilibrium effort profile, x, is endogenously determined

in the equilibrium as a function of the bias rule, α, set by the designer. Theorem 1 has

established the existence and uniqueness of a pure-strategy equilibrium in the underlying

contest game for given α. That is, the designer chooses α ∈ Rn
+ \ 0 for the optimization

problem

max
x,α∈Rn+\0

Λ(x,α), subject to xi = arg max
xi≥0

πi(x,α).

The two objective functions are formally given by (i) maximization of aggregate effort—

i.e., Λ(x,α) :=
∑n

i=1 xi—and (ii) maximization of the expected winner’s effort—i.e., Λ(x,α) :=∑n
i=1 pi(x) · xi, where pi(x) is a contestant i’s winning odds. We focus on the two objective

functions in this part. It is noteworthy, however, that the technical approach to be developed

subsequently applies to a substantially larger set of design problems, which will be shown in
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Section 3.

2.2 Existing Techniques and Their Challenges

In this section, we provide a brief review of the existing approach to the optimization of

asymmetric Tullock contests and elaborate on the gap in the literature our analysis aims to

fill.

2.2.1 A Brief Review of the Existing Approach

The aforementioned MPEC typically requires an implicit programming approach. It first

solves for the unique equilibrium solution xi = xi(α) and then rewrites the mathematical

program as

max
α∈A

Λ
(
x(α),α

)
,

where x(α) ≡
(
x1(α), . . . , xn(α)

)
. The seminal study of Franke et al. (2013) provides a

remarkable generalization of optimizing asymmetric lottery contests by setting optimal α

for the case of r1 = . . . = rn = 1. Their approach proceeds in the following two steps.

Step I: Fix an arbitrary strictly positive bias rule α ≡ (α1, . . . , αn) ∈ Rn
++.4 Without

loss of generality, we assume that the players are ordered as 1
α1v1
≤ . . . ≤ 1

αnvn
. Denote the

set of active contestants by K(α) ⊆ N . Stein (2002) shows that the set K(α) can be fully

characterized as

K(α) =

i ∈ N
∣∣∣∣∣ (i− 1)

1

αivi
<

i∑
j=1

1

αjvj

 .

The equilibrium requires the first-order conditions ∂πi(x,α)
∂xi

= 0, which can be simplified as∑
j∈K(α)\i αjxj(∑
j∈K(α) αjxj

)2 =
1

αivi
, for i ∈ K(α). (3)

Summing up all the first-order conditions in (3) yields

∑
j∈K(α)

αjxj =
k(α)− 1∑
j∈K(α)

1
αjvj

, (4)

4Franke et al. (2013) assume that the weight αi > 0 for all i ∈ N , whereas we allow αi to be zero.
Note that these two specifications yield exactly the same optimum. Allowing the contest designer to set
αi = 0 corresponds to explicitly excluding the contestant in our setup. This outright elimination can also
be achieved by placing excessively small weights on the same contestant.
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where k(α) :=
∣∣K(α)

∣∣. Combining (3) and (4), we can solve for the equilibrium effort effort

profile in closed form as

xi(α) =


1
αi
× k(α)−1∑

j∈K(α)
1

αjvj

×
(

1− 1
αivi
× k(α)−1∑

j∈K(α)
1

αjvj

)
, if i ∈ K(α),

0 , if i /∈ K(α).

(5)

Step II: An effort-maximizing contest designer thus chooses the bias rule α from the

feasible set Rn
++ to maximize

θ(α) :=
∑
i∈K(α)

xi(α).

It is worth noting that the existence of a maximizer for the above program is a priori unclear,

and Franke et al. (2013) provide a rigorous and elegant proof for that.5

Denote one optimal bias rule by α∗ ≡ (α∗1, . . . , α
∗
n). Clearly, the optimum requires that

∇θ(α∗) = 0, which is equivalent to

−
∑

j∈K(α∗)

1

α∗j
+ 2(k∗ − 1)

∑
j∈K(α∗)

1

(α∗j )
2vj

= −vi + 2(k∗ − 1)
1

α∗i
, for i ∈ K(α∗), (6)

where k∗ :=
∣∣K(α∗)

∣∣. Franke et al. (2013) show, in the proof of their Theorem 4.2, that

the above nonlinear system of equations can be transformed into a linear one. Specifically,

summing up (6) over all i ∈ K(α∗) yields

−
∑

j∈K(α∗)

1

α∗j
+ 2(k∗ − 1)×

∑
j∈K(α∗)

1

(α∗j )
2vj

= − 1

k∗
×

∑
j∈K(α∗)

vj +
2(k∗ − 1)

k∗
×

∑
j∈K(α∗)

1

α∗j
. (7)

Combining (6) and (7), we obtain

1

α∗i
− 1

k∗
×

∑
j∈K(α∗)

1

α∗j
=

1

2(k∗ − 1)
×

vi − 1

k∗
×

∑
j∈K(α∗)

vj

 , for i ∈ K(α∗). (8)

Note that the above equations now constitute a linear system of equations of
(

1
α∗1
, . . . , 1

α∗
k∗

)
,

from which a candidate optimal bias α∗ can be solved explicitly once K(α∗) is known.

5Note that first, the continuity of the objective function θ(·) is nontrivial because the set K(·) may change
at points arbitrarily close to the optimum. Second, the feasible set for α is unbounded and is not closed.
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2.2.2 The Challenge for Further Generalization

Two remarks are in order concerning further generalization of the MPEC. First, as

pointed out by Franke et al. (2013), the implicit programming approach relies on the as-

sumption of ri = 1 for all i ∈ N . To see that more clearly, let us consider the case in

which all impact functions share the same bidding efficiency, i.e., r1 = . . . = rn =: r. It is

straightforward to verify that the first-order conditions in (3) become∑
j∈K(α)\i αj(xj)

r[∑
j∈K(α) αj(xj)

r
]2 × r(xi)

r−1 =
1

αivi
, for i ∈ K(α). (9)

The term r(xi)
r−1 on the left-hand side degenerates to a constant in the case of r = 1, which

is crucial to transform the FOCs into a system of linear equations, as Step I illustrates.

However, this term is a nonlinear function of xi for r < 1, and thus complicates the derivation

of the equilibrium effort profile. In fact, although the existence of equilibrium has been well

established by Szidarovszky and Okuguchi (1997) and Cornes and Hartley (2005), in general

a closed-form solution cannot be obtained.

Second, note that in Step II, the system of first-order conditions (6) can again be trans-

formed into a linear system (8). This property plays a critical role in solving for the optimal

α∗ that maximizes total effort. It is absent, however, when alternative objectives are to be

considered. Imagine, for instance, that the contest designer aims to maximize the expected

winner’s effort. Then the objective function becomes

θ̃(α) :=
n∑
i=1

[
pi
(
x(α)

)
· xi(α)

]
≡
∑

i∈K(α)

[
xi(α)

]r+1∑
i∈K(α)

[
xi(α)

]r .

It can be verified that a linear system can no longer be obtained, even for the case r = 1.

Therefore, an alternative approach is required in demand to tackle the more general

MPEC studied in this paper; the following analysis addresses this issue.

2.3 Optimal Contest Design: Our Approach

We now conduct formal analysis to introduce our approach. We first reformulate the

designer’s MPEC, and then present the optimization result obtained by the approach.
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2.3.1 Reformulation of the Designer’s Problem

With the impact functions specified in expression (2), the first-order condition ∂πi(x,α)
∂xi

= 0

for an active contestant i is ∑
j 6=i αj(xj)

rj[∑n
j=1 αj(xj)

rj

]2 × ri(xi)
ri−1 =

1

αivi
.

The above condition, together with the winning probability pi(x) specified in Equation (1),

implies immediately that

pi(1− pi)vi =
(xi)

ri

ri(xi)ri−1
=
xi
ri
,

and thus

xi = pi(1− pi)viri. (10)

Note that the above condition also holds for an inactive contestant, as xi = 0 is associated

with pi = 0. In other words, if a contestant stands zero chance of winning in a Tullock

contest, he must have exerted zero effort. From Equation (10), an equilibrium effort profile

is uniquely associated with a distribution of contestants’ winning probabilities. We further

establish the following.

Lemma 1 Fix any distribution of equilibrium winning probabilities p ≡ (p1, . . . , pn) ∈ ∆n−1.

Then:

i. If pj = 1 for some j ∈ N , then p ≡ (p1, . . . , pn) can be induced by the following set of

biases α(p) ≡
(
α1(p), . . . , αn(p)

)
:

αi(p) =

{
1 if i = j,

0 if i 6= j.

ii. If there exist at least two active contestants, then p ≡ (p1, . . . , pn) can be induced by

the following set of biases α(p) ≡
(
α1(p), . . . , αn(p)

)
:

αi(p) =


(pi)

1−ri

[(1−pi)v̂i]
ri if pi > 0,

0 if pi = 0.
(11)

The lemma formally states that the contest designer can properly set the weights α in the

Tullock contest success function to induce any desirable distributions of winning probabilities

in equilibrium.
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By Equation (10) and Lemma 1, we are ready to reformulate the designer’s optimization

problem. Instead of setting α directly, we treat the distribution of winning probabilities p

as the design variable: She maximizes the objective function over feasible distributions of

equilibrium winning probabilities. Upon obtaining the maximizer, the optimal weights can

then be obtained by invoking (11).

To put it formally, an effort-maximizing contest designer chooses the winning probabilities

p ≡ (p1, . . . , pn) to maximize

TE(p;v, r) :=
n∑
i=1

xi =
n∑
i=1

pi(1− pi)viri, (12)

subject to the constraints:

n∑
i=1

pi = 1, and pi ≥ 0, for i ∈ N . (13)

It can be seen from the reformulated objective function (12) that the effort-maximizing

contest design problem boils down to a simple quadratic programming problem.

Similarly, if the contest designer aims to maximize the expected winner’s effort, then she

faces the same constraints (13) as an effort-maximizing contest designer does; the objective

function can be rewritten as the following:

WE(p;v, r) :=
n∑
i=1

pi · xi =
n∑
i=1

p2
i (1− pi)viri. (14)

2.3.2 Characterization of the Optimal Contest Rule

We now characterize the optimal contest for a contest designer under each stated objec-

tive. Reformulation enormously simplifies the MPEC. The above objective functions (12)

and (14) are continuous in all arguments. Furthermore, the constraints (13) form a unit

(n − 1)-simplex, which is closed and bounded. Therefore, a maximizer must exist for ei-

ther objective function. Treating the distribution of equilibrium winning probabilities as the

design variable, together with the condition of Equation (10), allows us to transform the

well-known nonsmooth optimization problem6 into a smooth one.

The reformulated MPEC demonstrates several useful properties. First, it follows imme-

diately from (12) and (14) that the optimal contest design problem with two-dimensional

heterogeneity—i.e., bidding efficiency ri and valuations vi—can effectively be reduced to one

with one-dimensional heterogeneity:7 The heterogeneity is subsumed by the product viri; the

6The reader is referred to Franke et al. (2013) for more detailed discussion.
7It is clear that dimensionality reduction of contestant heterogeneity is not restricted to these two specific
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program is thus equivalent to one in which all contestants are equally efficient with ri = 1,

while each contestant has a valuation v̂i ≡ vi · ri and contestants differ only in terms of v̂is.

This is formalized by the following lemma.

Lemma 2 (Dimensionality Reduction) Suppose that the contest designer aims to max-

imize the total effort or the expected winner’s effort. Then the optimal contest under (r,v)

yields the same equilibrium effort profile, the same equilibrium winning probabilities, and the

same payoff to the contest designer as that under (r̂, v̂) ≡
(
(r̂1, . . . , r̂n), (v̂1, . . . , v̂n)

)
, where

r̂i ≡ 1 and v̂i ≡ viri for all i ∈ N .

The adjusted valuation v̂ ≡ (v̂1, . . . , v̂n) provides a simple measure of a contestant’s

overall strength. Denote, respectively, by p∗ ≡ (p∗1, . . . , p
∗
n) and p∗∗ ≡ (p∗∗1 , . . . , p

∗∗
n ) the

optimal distribution of winning probabilities that maximizes the total effort and expected

winner’s effort. The second useful property is established as follows.

Lemma 3 (Bottom-up Exclusion) Suppose that v̂i > v̂j. Then p∗i ≥ p∗j and p∗∗i ≥ p∗∗j .

Lemma 3 states that in the optimal contest that maximizes either total effort or the

expected winner’s effort, an ex ante stronger contestant—i.e., a larger v̂i—must win with a

(weakly) higher probability. This implies that when the designer excludes contestants—i.e.,

by assigning zero or excessively small weights to discourage participation—it must target

the weakest.

We are now ready to characterize the optimal contest for each of the objectives.

Maximization of Total Effort The reformulated MPEC is a simple quadratic program.

We lay out a sketch of the proof in the text, as it demonstrates the simplicity and efficiency of

this approach and the roles played by the useful properties established by Lemmata 2 and 3.

It should be noted, however, that Lemma 2 implies that we can transform our optimization

problem to an alternative one with ri = 1 and heterogeneous valuations, as in Franke et al.

(2013) and Franke et al. (2014). Their results can then be converted and revived in this

broader context.

To characterize the optimal equilibrium winning probabilities p∗ ≡ (p∗1, . . . , p
∗
n), we con-

sider the following sequence of auxiliary problems (P-m): For each m = 2, . . . , n, the contest

designer maximizes TE(p; v̂, r̂) in (12) subject to the plausibility constraint
∑n

i=1 pi = 1,

ignoring the nonnegativity constraint pi ≥ 0 for i ∈ {1, . . . ,m} and setting pi = 0 for

i ∈ N \{1, . . . ,m}. The solution to the auxiliary equality constrained optimization problem

contest objectives in (12) and (14). In fact, as long as the designer’s objective does not directly include
v ≡ (v1, . . . , vn), the dimensionality of contestant heterogeneity can be reduced to one.
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(P-m), which we denote by p̌m ≡ (p̌m1 , . . . , p̌
m
n ), can be solved explicitly by computing the

first-order conditions, and is given by

p̌mi =


1
2

(
1− 1

v̂i
× m−2∑m

j=1
1
v̂j

)
if i ∈ {1, . . . ,m},

0 if i ∈ N \ {1, . . . ,m}.

Lemma 3 implies immediately that the maximizer of the original problem must be the

solution to one of the above n − 1 auxiliary problems. It is straightforward to see that

p̌m1 ≥ . . . ≥ p̌mm. Therefore, if p̌mm > 0, then p̌m ≡ (p̌m1 , . . . , p̌
m
n ) is a candidate maximizer to

the original maximization problem under the contest (r̂, v̂). Define

κ := max
{
m = 2, . . . , n | p̌mm > 0

}
≡ max

m = 2, . . . , n

∣∣∣∣∣ m− 2∑m
j=1

1
v̂j

< v̂m

 . (15)

It can be verified that κ is well defined and unique.8 Next, note that TE(p̌m; v̂, r̂) is in-

creasing in m. Therefore, p̌κ ≡ (p̌κ1 , . . . , p̌
κ
κ, 0, . . . , 0) is the unique solution to the original

maximization problem under contest (r̂, v̂), which also constitutes the optimal winning prob-

abilities under contest (r,v) by Lemma 2.

The above discussions are summarized below.

Theorem 2 (Effort-maximizing Contests) Assume without loss of generality that con-

testants are ordered such that v̂1 ≥ v̂2 ≥ . . . ≥ v̂n > 0. Suppose that the contest designer

aims to maximize total effort in the contest. Then the equilibrium winning probabilities

p∗ ≡ (p∗1, . . . , p
∗
n) are given by

p∗i =


1
2

(
1− 1

v̂i
× κ−2∑κ

j=1
1
v̂j

)
if i ∈ {1, . . . , κ},

0 if i ∈ N \ {1, . . . , κ},
(16)

where κ is given by Equation (15). Moreover, the corresponding weights, denoted by α∗ ≡
(α∗1, . . . , α

∗
n), that induce p∗ ≡ (p∗1, . . . , p

∗
n) are given by

α∗i =


(p∗i )

1−ri[
(1−p∗i )v̂i

]ri if p∗i > 0,

0 if p∗i = 0.

The variable κ indicates the number of active contestants in the optimal contest. Theo-

8To see this more clearly, note that p̌22 = 1
2 > 0. Therefore, the set

{
m = 2, . . . , n | p̌nn > 0

}
is finite and

nonempty.
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rem 2 provides a complete characterization of the effort-maximizing contest for the case of

ri ≤ 1.

Optimization of the Expected Winner’s Effort As stated above, our approach also

allows us to explore contest design with alternative objective functions, such as maximiza-

tion of the expected winner’s effort. Although the program involves cubic polynomials [see

Equation (14)], which incurs additional complexity, the optimum can again be obtained in

closed form. Our next result fully characterizes the optimal contest that maximizes the

expected winner’s effort.

Theorem 3 (Optimal Contest that Maximizes the Expected Winner’s Effort)

Assume without loss of generality that contestants are ordered such that v̂1 ≥ v̂2 ≥ . . . ≥
v̂n > 0. Suppose that the contest designer aims to maximize the expected winner’s effort.

Then the equilibrium winning probabilities p∗∗ ≡ (p∗∗1 , . . . , p
∗∗
n ) under the optimal contest are

p∗∗1 =

 v̂1−2v̂2+
√
v̂21−v̂1v̂2+v̂22

3(v̂1−v̂2)
if v̂1 > v̂2

1
2

if v̂1 = v̂2

, p∗∗2 = 1− p∗∗1 , and p∗∗3 = . . . = p∗∗n = 0. (17)

Moreover, the corresponding weights, denoted by α∗∗ ≡ (α∗∗1 , . . . , α
∗∗
n ), that induce p∗∗ ≡

(p∗∗1 , . . . , p
∗∗
n ) are given by

α∗∗i =


(p∗∗i )

1−ri[
(1−p∗∗i )v̂i

]ri if i ∈ {1, 2},

0 if i ≥ 3.

2.3.3 Total Effort vs. the Expected Winner’s Effort

The optimal contests differ substantially under the two objectives. The following result

regarding the number of active players can be immediately obtained from Theorems 2 and 7.

Corollary 1 Suppose that n ≥ 3. Then the optimal contest that maximizes total effort allows

for at least three active contestants—i.e., κ ≥ 3—while the optimal contest that maximizes

the expected winner’s effort allows for only two active contestants.

Corollary 1 shows that a minimum number of contestants, i.e., two, are allowed to remain

active in the contest when maximizing the expected winner’s effort. This result is intuitive:

This objective stresses individual incentive, while a larger contest dilutes it. In contrast, if

the contest designer aims to maximize total effort, she engages at least three active contes-
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tants,9 although exclusion could happen in the optimum (i.e., κ < n) when contestants are

heterogeneous for n ≥ 4.

In both scenarios, we observe (i) that the optimal contests balance the playing field

among active contestants, and (ii) the assigned weights do not entirely offset the initial

asymmetry.10 Franke et al. (2013) state (i) in the context of r = 1, using a numeric example

for the maximization of total effort. A similar conclusion can be expected in our setting,

given the fact that the problem with nonlinear impact functions can be transformed to an

equivalent problem with linear impact functions. A formal proof for (i) is infeasible in general

for effort-maximizing contests: Equilibrium winning probabilities cannot be obtained in the

benchmark context with α1 = . . . = αn = 1, because there is no explicit solution to the

equilibrium effort profile. It is straightforward, however, to verify part (ii) of the statement:

Theorem 2 implies that in the optimum, two active contestants, i, j, have the same winning

probabilities if and only if they have the same adjusted valuation, i.e., p∗i = p∗j = 1
κ

if and

only if v̂i = . . . = v̂j.

More formal analysis can be conducted for the maximization of the expected winner’s

effort because only two active contestants remain in the optimum. We conclude the following.

Corollary 2 When maximizing the expected winner’s effort, the optimal contest handicaps

the strongest contestant, but does not fully level the playing field, i.e., v̂2
v̂1+v̂2

< p∗∗2 < p∗∗1 <
v̂1

v̂1+v̂2
for v̂1 > v̂2.

If the two active contestants are equally treated (i.e., α1 = α2), it is well known from the

literature that the favorite wins with probability v̂1
v̂1+v̂2

in equilibrium, while the underdog

does with probability v̂2
v̂1+v̂2

. The fact that p∗∗1 < v̂1
v̂1+v̂2

and p∗∗2 > v̂2
v̂1+v̂2

indicates that the

favorite is handicapped in the optimal contest. The handicap is incomplete, though, because

p∗∗2 < p∗∗1 .

3 Optimization in a Broader Setting

In this section, we generalize our analysis in two dimensions. First, we relax our restriction

on the functional form of the impact functions. Instead of focusing on Tullock contests, we

allow the designer to choose an arbitrary form for each contestant’s impact function fi(·), as

long as it satisfies the requirements stated in Section 2, which are formally summarized as

follows.

9Franke et al. (2013) obtain the same result in their Theorem 4.6.
10In contrast, it can be verified that p∗1 = p∗2 = 1

2 if n = 2 for all pairs of adjusted values (v̂1, v̂2). In other
words, an effort-maximizing contest designer would completely level the playing field in a two-player contest.

15



Assumption 1 (Concave Impact Function) fi(·) is a nonnegative constant function

or is twice differentiable, with f ′i(xi) > 0, f ′′i (xi) ≤ 0 and fi(0) ≥ 0.

With Assumption 1 in place, we consider a regular concave contest as defined previously.

A unique bidding equilibrium is shown to exist in Theorem 1. Optimal design is thus feasible.

Second, we consider a general objective function that addresses a broad spectrum of

interests. Let the objective function Λ(·) be written as a function of effort profile x ≡
(x1, . . . , xn), the profile of winning probability p ≡ (p1, . . . , pn), and the profile of winning

values v ≡ (v1, . . . , vn). Without loss of generality, we assume that contestants are ex ante

ranked in descending order in terms of their valuations, i.e., v1 ≥ . . . ≥ vn > 0. We make

the following assumption on the contest designer’s objective function.

Assumption 2 (Objective Function) Fixing p ≡ (p1, . . . , pn) and v ≡ (v1, . . . , vn),

Λ(x,p,v) is weakly increasing in xi for all i ∈ N .

Clearly, Assumption 2 is satisfied if the contest designer maximizes the aggregate effort

of the contest (i.e., Λ(x,p,v) =
∑n

i=1 xi) or maximizes the expected winner’s effort (i.e.,

Λ(x,p,v) =
∑n

i=1 pi · xi). The MPEC can thus be stated as follows:

max
{fi(·)}n

i=1

Λ(x,p,v)

subject to xi = arg max πi(x, p),

pi(x) =


fi(xi)∑n
j=1 fj(xj)

if
∑n

j=1 fj(xj) > 0,

1
n

if
∑n

j=1 fj(xj) = 0.

Recall that our approach uses the profile of winning probabilities, p ≡ (p1, . . . , pn), as the

direct choice variable for the contest design problem. However, it is noteworthy that the ob-

jective function addresses broad concerns and allows the designer to have a direct preference

not only on contestants’ effort profiles, but also the distribution of winning probabilities.

For example, in sports competitions, spectators often not only appreciate contenders’

efforts, but also demand more suspense about the outcome of the game (see Chan et al.,

2008). The preference for a closer race can be represented by the following noncanonical

objective function:

Λ(x,p,v) :=
n∑
i=1

xi − γ
n∑
i=1

(
pi −

∑n
j=1 pj

n

)2

.

The contest design serves to both elicit efforts and maintain the competitive balance. The

latter is measured by the term −
∑n

i=1

(
pi −

∑n
j=1 pj

n

)2

, which is the variance (or standard
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deviation) of the winning probabilities. Such a preference is also assumed by Fort and Quirk

(1995), Szymanski (2003), and Runkel (2006). However, these studies focus on two-player

settings. It is straightforward to observe that Assumption 2 is satisfied. We show below that

our approach enables analysis of such an objective function in an n-player setting, in which

case the model yields substantially different implications than in a two-player environment.

In contrast, consider the objective function Λ(x,p,v) :=
∑n

i=1 pi · xi, in which case the

designer maximizes the expected winner’s effort. The designer cares about the distribution

of contestants’ efforts, which implicitly depends on the distribution of winning probabilities

through the channel of contest success functions. However, she does not have a direct

preference on the distribution of winning probabilities.

Alternatively, consider a scenario in which the contest designer cares about both effort

supply and contestants’ welfare (e.g., Epstein et al., 2011). Define ui to be a contestant i’s

expected utility. This preference can be formally expressed as

Λ(x,p,v) := τ
n∑
i=1

ui + (1− τ)
n∑
i=1

xi. (18)

Given the fact that ui = pi · vi − xi, the objective function can be rewritten as

Λ(x,p,v) := τ
n∑
i=1

pivi + (1− 2τ)
n∑
i=1

xi.

This objective function satisfies the requirement of Assumption 2 whenever τ ≤ 1
2
.

Based on our approach, we obtain the following important result.

Theorem 4 (Optimality of Linear Impact Functions with Zero Headstarts) Sup-

pose that Assumptions 1 and 2 are satisfied. Then the optimum can be achieved by setting

each contestant’s impact function fi(xi) in the form of fi(xi) = αi · xi, with αi ≥ 0.11

The proof of Theorem 4 is collated in the Appendix. The proof proceeds in two steps.

First, we establish an upper bound for the functional value of Λ(x,p,v) that can possibly

be achieved with any set of concave impact functions. Second, we show that to achieve that

upper bound, it is sufficient to properly set the set of weights α ≡ (α1, . . . , αn), i.e., linear

impact functions with zero headstarts.

This result substantially simplifies the search for the optimal contest structure, as we

can focus, without loss of generality, on setting the linear coefficient αi. Consider, for

instance, the optimization problem studied by Epstein et al. (2011) in a two-player Tullock

11In the working paper version, Franke et al. (2018) establish the same result under the objective of effort
maximization.
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contest setting. Let us allow for an n-player setting and let the designer choose any form

of concave impact functions that satisfy Assumption 1. The objective function (18), by the

correspondence between equilibrium probability and equilibrium effort, can be rewritten as

Λ(x,p,v) : = τ
n∑
i=1

pivi + (1− 2τ)
n∑
i=1

xi

=
n∑
i=1

pi
[
(1− τ)− (1− 2τ)pi)

]
vi.

A standard quadratic program results, and a technique similar to the proof of Theorem 2

can be applied to obtain the solution.

4 Applications

In this section, we consider two scenarios to demonstrate the flexibility of our optimization

approaches. We first consider the optimization of the aforementioned noncanonical objective

function. In the second example, we reexamine the comparison between lottery contests and

all-pay auctions (e.g., Epstein et al., 2011; Franke et al., 2014; Franke et al., 2018).

4.1 Contest Design with Closeness Concerns

We now examine the case in which the designer maximizes the following objective func-

tion:

Λ(x,p,v) :=
n∑
i=1

xi − γ
n∑
i=1

(
pi −

∑n
j=1 pj

n

)2

.

The designer cares about both the effort supply and the closeness of the competition. When

γ = 0, the closeness concern fades away, and her objective degenerates to effort maximization.

The solution to the optimization problem can be obtained in a few simple steps. De-

note the optimal distribution of winning probabilities by p∗1c ≡ (p∗1c, . . . , p
∗
nc), where we use

the subscript c to indicate “closeness concerns.” First, it is straightforward to verify that

Λ(x,p,v) strictly increases in xi for all i ∈ N , which satisfies Assumption 2. Theorem 4

states that it suffices to search for the optimum by focusing on linear impact functions with-

out positive headstarts, i.e., fi(xi) = αi · xi. Second, recall by the analysis in Section 2.3

that the correspondence between equilibrium efforts and winning probabilities is

xi = pi(1− pi)vi,
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which in turn allows us to rewrite the objective function as the following:

Λ
(
x(p),p,v

)
=

n∑
i=1

pi(1− pi)vi − γ
n∑
i=1

p2
i −

3γ

n
.

Despite the noncanonical form of the objective function, a standard quadratic program

results. Third, the proof of Lemma 3 can be applied to establish the bottom-up exclusion

rule in this context, which states p∗1c ≥ . . . ≥ p∗nc in the optimum. Finally, a similar approach

to that in the proof of Theorem 2 allows us to obtain the optimum. Define the variable κc

as follows:

κc := max

m = 2, . . . , n

∣∣∣∣∣
∑m

j=1
vj

vj+γ
− 2∑m

j=1
1

vj+γ

< vm

 . (19)

It can be verified that κc is well defined and unique. We are then ready to obtain the

optimum.

Theorem 5 (Optimal Contest with Closeness Concerns) Suppose that contestants

are ordered such that v1 ≥ . . . ≥ vn > 0. Then the equilibrium winning probabilities p∗1c ≡
(p∗1c, . . . , p

∗
nc) under the optimal contest are given by

p∗ic =


1
2

(
vi

vi+γ
− 1

vi+γ
×

∑κc
j=1

vj
vj+γ

−2∑κc
j=1

1
vj+γ

)
for i ≤ κc,

0 for i > κc.

(20)

The proof is similar to that in Theorem 2 and is omitted for brevity. By Theorem 5, κc

indicates the number of active contestants in the optimum. Consider this as a function of γ,

with κc := κc(γ). A closer look at Equation (19) leads to the following result.

Corollary 3 Suppose that γH > γL ≥ 0, then κc(γH) ≥ κc(γL).

Corollary 3 formally establishes the comparative statics of κc with respect to γ. With

closeness concerns in place, the contest designer is given extra incentives to balance the

playing field. Underdogs are favored more to ensure a more even distribution of winning

probabilities. Exclusion is thus less likely, which leads to the observation of Corollary 3.

It is worth noting that the implications in the general setting run in sharp contrast to

those obtained in a two-player case. In the latter scenario, the designer’s concerns about

effort supply and closeness are perfectly aligned. Recall the correspondence xi = pi(1−pi)vi,
which implies that in a two-player case, total effort can be expressed as∑2

i=1
xi = p1(1− p1)v1 + p2(1− p2)v2

= p1(1− p1)(v1 + v2),
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given the fact that p2 = 1 − p1. Maximization of total effort requires fully balancing the

playing field, i.e., p∗1 = p∗2 = 1
2
, which is in line with maximizing the uncertainty of the contest

outcomes. However, the two concerns diverge when n exceeds two: A fully balanced playing

field is no longer optimal, which leads to the above observation that closeness concerns

require the designer to further favor underdogs.

4.2 Lottery Contests vs. All-pay Auctions

We now apply our technique to address the classical question in the contest literature:

the comparison between an optimally designed all-pay auction and an optimally designed

lottery contest. As stated previously, the literature mainly focuses on comparison in terms

of total effort.12 Our approach allows us to provide a ranking in terms of the expected

winner’s effort. This objective is often adopted for optimal design in all-pay auction models

(see Moldovanu and Sela, 2006; Fu, 2006), while studies in lottery-contest settings have been

relatively scarce, partly due to the technical difficulty described in Section 2.2.2.

All-Pay Auctions We first consider the optimal design of all-pay auctions. As in Franke

et al. (2018), we allow the designer to choose a combination of multiplicative bias and

additive headstart. For an all–pay auction with biases α ≡ (α1, . . . , αn) ≥ 0 and headstarts

β ≡ (β1, . . . , βn) ≥ 0, the winning rule can be written as

pai (x) :=



1, if αi · xi + βi > αj · xj + βj for all j 6= i,

1
d+1

,
if αi · xi + βi = αj · xj + βj for d contestants,

and αi · xi + βi > α` · x` + β` for all other contestants ` 6= i,

0, if αi · xi + βi < αj · xj + βj for some j 6= i,

where we use the superscript a to denote “all-pay auctions.” Each contestant i ∈ N receives

a score of αi ·xi+βi and the prize is awarded to the contestant with the highest score. In the

case in which a tie occurs, the prize is distributed randomly with equal probability among

the contestants with the highest scores. We now limit our attention to a design problem

with only two instruments, i.e., multiplicative biases and headstarts. However, as will be

shown later, this suffices for our purpose.

The optimal all-pay auction with two players has been well established in the literature

(see Fu, 2006; Epstein et al., 2011; Li and Yu, 2012). The optimum with more than two play-

ers involves substantially more subtlety when headstart is involved as a design instrument.

12Epstein et al. (2011) provide a notable exception, but the analysis is placed in a two-player setting.
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Franke et al. (2018) argue that the optimum could involve more than two active players,

which stands in sharp contrast to the design with multiplicative biases as the sole design

variable.

As in Franke et al. (2018), we do not derive the optima, but establish a lower bound for

the expected winner’s effort an optimal all-pay auction can possibly induce.

Proposition 1 (Lower Bound for the Expected Winner’s Effort in All-pay Auc-

tions) Fixing v ≡ (v1, . . . , vn) with v1 ≥ . . . ≥ vn > 0, an optimally designed all-pay contest

generates the expected highest effort of no less than v1+v2
3

.

The lower bound for the expected winner’s effort is obtained by the contest rule α ≡
(α1, α2, α3, . . . , αn) = (v2

v1
, 1, 0, . . . , 0), β ≡ (β1, . . . , βn) = (0, . . . , 0). That is, the contest

designer uses only the multiplicative biases but not the headstarts, and includes only the

two strongest contestants.

Lottery Contests We now consider optimally designed lottery contests. A lottery contest

is resolved with a contest success function

pi(x) =
fi(xi)∑n
j=1 fj(xj)

.

The designer is allowed to choose arbitrary forms of impact functions {fi(·)}ni=1 that satisfy

Assumption 1.

By Theorem 4, it is sufficient to focus our attention on linear impact functions fi(xi) =

αi · xi, with αi ≥ 0. Denote by WEmax(v) the maximal expected winner’s effort optimal

contests can achieve when contestants have the valuations v ≡ (v1, . . . , vn). Theorem 7

states that the optimum requires that only the two strongest contestants remain active, and

optimal weights depend purely on the two top dogs’ characteristics. The following can be

obtained by standard techniques based on Theorem 7.

Proposition 2 Consider a lottery contest in which contestants have the valuations v ≡
(v1, . . . , vn), with v1 ≥ . . . ≥ vn. Let the designer choose any form of impact functions

{fi(xi)}ni=1 that satisfy Assumption 1 to maximize the expected winner’s effort. The maxi-

mum expected winner’s effort is given by

WEmax(v) =


[
v1+v2+

√
v21−v1v2+v22

]
×
[
(v21−4v1v2+v22)+(v1+v2)

√
v21−v1v2+v22

]
27(v1−v2)2

if v1 > v2,
v1
4

if v1 = v2.
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Comparison between Lottery Contests and All-pay Auctions We are now ready

to conclude the following dominance results.

Theorem 6 (Concave Lottery Contests vs. All-Pay Auctions) An optimally de-

signed all-pay auction strictly dominates any Tullock contest with impact functions that sat-

isfy Assumption 1 in terms of the expected winner’s effort, i.e.,

WEmax(v) <
v1 + v2

3
.

Theorem 6 states that the optimally designed all-pay auction strictly outperforms the

optimally designed lottery contest in terms of maximizing the expected winner’s effort. The

result reaffirms all-pay auctions’ dominance when an alternative design objective—i.e., the

maximization of the expected winner’s effort—is considered and the designer is endowed

with a larger design space.

5 Concluding Remarks

In this paper, we study the optimal contest design of asymmetric lottery contests. We first

develop a technical approach to address the open question raised by Franke et al. (2013):

The search for the optimal multiplicative biases—i.e., the weights placed on contestants’

effort entries—in n-player asymmetric Tullock contests. In contrast to the previous studies,

our approach allows us to obtain the optimum in Tullock contests with nonlinear impact

functions. Moreover, the objective for contest design is no longer limited to total effort

maximization. Based on this approach, we take a further step in generalizing our exercise of

optimal contest design: The designer is given full discretion in choosing the form of (regular

concave) impact functions in lottery contests, and it is shown that linear impact functions

with zero headstarts are optimal for a wide array of design objectives.

We demonstrate that our technique can be applied broadly to simplify the search for

optimal contest rules, including design problems with noncanonical objective functions. We

also apply the technique to reexamine the classical issue of comparing all-pay auctions and

lottery contests when alternative design objectives are in place. Our paper considers a static

contest; this approach can also be applied in dynamic settings. For instance, Fu and Wu

(2018) consider a two-stage contest in which the designer assigns weights on contestants’

second-stage effort entries based on their first-stage ranking.

Several interesting questions arise that can be pursued in future studies. First, this paper

considers lottery contests with complete information, and it would be interesting to exercise

this approach in an environment with incomplete information. Second, our study provides

a general technique to solve for optimal contest rules when contestants have asymmetric
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valuations. It would be interesting to explore how optimal contest rules specifically depend

on the distribution of contestants’ valuations. We leave the exploration of these possibilities

to future research.
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Appendix: Proofs

Proof of Theorem 1

Proof. Note that xi = 0 is a strictly dominant strategy for contestant i if fi(·) is a constant.

Therefore, it suffices to prove the theorem for the case in which fi(·) satisfies f ′i(xi) > 0,

f ′′i (xi) ≤ 0 and fi(0) ≥ 0 for all i ∈ N .

For notational convenience, define yi := fi(xi), δi := fi(0), f̃i(xi) := fi(xi) − δi, and

gi(yi) := f̃−1
i (yi− δi)/vi. It follows immediately that xi = gi(yi) · vi. Moreover, we have that

g′i > 0 and g′′i ≥ 0. The expected payoff of contestant i ∈ N choosing yi ≥ δi is equal to[
yi∑n
j=1 yj

− gi(yi)

]
· vi.

It remains to show that there exists a unique equilibrium y∗ ≡ (y∗1, . . . , y
∗
n) that satisfies

y∗i ≥ δi for all i ∈ N . Let s :=
∑n

j=1 yj. It is clear that s ≥
∑n

j=1 δj ≡ δ. The first-order

condition of the above expected utility with respect to yi yields the following:

s− yi
s2
− g′i(yi) ≤ 0, with equality if yi > δi.

Fixing s, let us define yi(s) as the following:

yi(s) :=

δi if s2g′i(δi)− s+ δi ≥ 0,

The unique solution to s− yi = s2g′i(yi) otherwise.
(21)

It is straightforward to verify that yi(s) is well defined and continuous in s ∈ [δi,∞]. More-

over, we must have that yi(s) ∈ (δi, s) if s2g′i(δi)− s+ δi < 0.

Suppose that there exists an interval of s such that yi(s) > δi. It follows immediately

from the implicit function theorem that

y′i(s) =
1− 2sg′i(yi)

1 + s2g′′i (yi)
=

2yi(s)− s[
1 + s2g′′i (yi)

]
s
, (22)

where the second equality follows from s−yi = s2g′i(yi). Therefore, yi(s) is strictly decreasing

in this interval if 2yi < s and strictly increasing otherwise. By Equation (21), the latter case

occurs if and only if

s− 1

2
s > s2g′i

(
s

2

)
⇔ 2sg′i

(
s

2

)
< 1.

Note that 2sg′i
(
s
2

)
is strictly increasing in s, which implies that there exists at most one

solution to 2sg′i
(
s
2

)
= 1. Denote the solution by ŝi whenever it exists.
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Next, we denote the two different real number solutions of s2g′i(δi)− s+ δi = 0 by s†i and

s††i respectively, with s†i < s††i , whenever they exist. The above analysis, together with the

fact that the expression s2g′i(δi)− s+ δi in Equation (21) is quadratic in s, implies that the

function yi(s) must fall into one of the following four cases:

Case I: There exist no different real number solutions of s2g′i(δi)−s+δi = 0 for s ∈ [δ,∞].

Then we must have that s2g′i(δi) − s + δi ≥ 0 for all s ≥ δ, which in turn implies that

yi(s) = δi for all s ≥ δ by Equation (21). To slightly abuse the notation, we let s††i := δ for

this case.

Case II: s†i ≤ δ ≤ s††i and yi(δ) ≤ 1
2
δ. Then yi(s) is strictly decreasing in s for s ∈ [δ, s††i ],

and yi(s) = δi for s ∈ [s††i ,∞].

Case III: s†i ≤ δ ≤ s††i and yi(δ) >
1
2
δ. It can be verified that δ < ŝi < s††i . Therefore,

yi(s) is strictly increasing in s for s ∈ [δ, ŝi], is strictly decreasing in s for s ∈ [ŝi, s
††
i ], and

yi(s) = δi for s ∈ [s††i ,∞].

Case IV: δ < s†i < s††i . It can be verified that s†i < ŝi < s††i . Moreover, yi(s) is strictly

increasing in s for s ∈ [s†i , ŝi]; is strictly decreasing in s for s ∈ [ŝi, s
††
i ]; and yi(s) = δi for

s ∈ [δ, s†i ] ∪ [s††i ,∞].

The four different cases are depicted in Figure 1 graphically. For Case I and Case II, we

define si := δ; for Case III and Case IV, we define si := ŝi ≥ δ. It is straightforward to

verify that yi(s) >
1
2
s holds if s < si for all four cases. Without loss of generality, we order

the contestants such that

s1 ≥ s2 ≥ . . . ≥ sn ≥ δ.

Define Y (s) :=
∑n

i=1 yi(s) − s. It remains to show that Y (s) = 0 has a unique positive

solution. First, note that no solution exists for s < s2 because

Y (s) :=
n∑
i=1

yi(s)− s ≥ y1(s) + y2(s)− s > 1

2
s+

1

2
s− s = 0, for s < s2.

Next, we claim that Y (s) is strictly decreasing in s for s ≥ s2. Clearly, Y (s) is strictly

decreasing in s for s ≥ s1. Moreover, for s ∈ [s2, s1], Y (s) can be rewritten as

Y (s) =
n∑
i=2

yi(s)︸ ︷︷ ︸
first term

+
[
y1(s)− s

]︸ ︷︷ ︸
second term

.
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(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 1: yi(s).

Because s ≥ s2 ≥ . . . ≥ sn, the first term is weakly decreasing in s. Taking derivative of the

second term with respect to s yields

y′1(s)− 1 =
2y1(s)− s

[1 + s2g′′1
(
y1(s)

)
]s
− 1 ≤ 2y1(s)− s

s
− 1 =

2

s

[
y1(s)− s

]
< 0,

where the first equality follows from Equation (22); the first inequality follows from g′′i ≥
0 and y1(s) ≥ s

2
; and the second inequality follows from yi(s) < s [see Equation (21)].

Therefore, the second term is strictly decreasing in s, which in turn implies that Y (s) is

strictly decreasing for s ∈ [s2,∞].

It is straightforward to see that for all four cases, we have that yi(s) = δi for s ≥ s††i . Let
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s†† := s2 +
∑n

i=1 s
††
i +

∑n
i=1 δi. It is clear that s†† ≥ s2. Moreover, we have that

Y (s††) =
n∑
i=1

yi(s
††)− s†† =

n∑
i=1

δi −

s2 +
n∑
i=1

s††i +
n∑
i=1

δi

 = −s2 −
n∑
i=1

s††i ≤ 0.

Therefore, there exists a unique positive solution to Y (s) = 0 for s ∈ [s2, s
††]. This completes

the proof.

Proof of Lemma 1

Proof. Part (i) of the proposition is trivial, and it remains to show part (ii). It is clear that

xi = 0 is a strictly dominant strategy if αi = 0. For (pi, pj) > (0, 0), we must have (xi, xj) >

(0, 0). Therefore, the following first-order conditions must be satisfied by Equation (10):

xi = pi(1− pi)viri ≡ pi(1− pi)v̂i,
xj = pj(1− pj)vjrj ≡ pj(1− pj)v̂j,

Therefore, it remains to show that the weights (α1(p), . . . , αn(p)) specified in Equation (11)

satisfy
xi
xj

=
pi(1− pi)v̂i
pj(1− pj)v̂j

. (23)

Note that Equation (1) implies that

pi
pj

=

αi·x
ri
i∑n

j=1 αj ·x
rj
j

αj ·x
rj
j∑n

j=1 αj ·x
rj
j

=
αi · xrii
αj · x

rj
j

.

Therefore, Equation (23) is equivalent to

xi
xj

=
αi · xrii
αj · x

rj
j

× (1− pi)v̂i
(1− pj)v̂j

⇔ 1 =
αi · [pi(1− pi)v̂i]ri−1

αj · [pj(1− pj)v̂j]rj−1
× (1− pi)v̂i

(1− pj)v̂j

⇔ αi
αj

=
(pi)

1−ri[(1− pi) v̂i]−ri(
pj
)1−rj

[(
1− pj

)
v̂j

]−rj .
The last equation clearly holds for the set of weights specified in Equation (11). This

completes the proof.

Proof of Lemma 3
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Proof. We first prove the result for total effort maximization. Suppose to the contrary that

there exists a pair (i, j) such that v̂i > v̂j and p∗i < p∗j in the optimal contest. We consider

the following two cases depending on p∗i + p∗j relative to 1.

Case I: p∗i + p∗j < 1. Switching the winning probability between these two contestants

generates a strictly higher amount of total efforts to the contest designer. To see this, it

suffices to show that

v̂ip
∗
i (1− p∗i ) + v̂jp

∗
j(1− p∗j) < v̂ip

∗
j(1− p∗j) + v̂jp

∗
i (1− p∗i )

⇔ (v̂i − v̂j) · (p∗i − p∗j) · (1− p∗i − p∗j) < 0.

It is evident that the last inequality holds due to the postulated v̂i > v̂j, p
∗
i < p∗j and

p∗i + p∗j < 1.

Case II: p∗i + p∗j = 1. Then only two contestants are active in equilibrium. It is clear that

p∗i ∈ (0, 1) and p∗j ∈ (0, 1). Together with the postulated p∗j > p∗i , we have that p∗j >
1
2
> p∗i .

Next we show that increasing p∗i by a sufficiently small ε > 0 and decreasing p∗j by the same

amount lead to a strictly higher payoff to the contest designer. Define TE(ε) as

TE(ε) := (p∗i + ε)(1− p∗i − ε)v̂i + (p∗j − ε)(1− p∗j + ε)v̂j,

Simple algebra yields that

TE ′(0) = (1− 2p∗i )v̂i − (1− 2p∗j)v̂j = (p∗j − p∗i )(v̂i + v̂j) > 0,

where the second equality follows from p∗i + p∗j = 1 and the strict inequality follows the

postulated p∗j > p∗i .

The proof for the expected winner’s effort maximization is similar. Suppose to the con-

trary that there exists a pair (i, j) such that v̂i > v̂j and p∗∗i < p∗∗j in the optimal contest.

Again, we consider the following two cases depending on p∗∗i + p∗∗j relative to 1.

Case I: p∗∗i + p∗∗j < 1. It suffices to show that

v̂i(p
∗∗
i )2(1− p∗∗i ) + v̂j(p

∗∗
j )2(1− p∗∗j ) < v̂i(p

∗∗
j )2(1− p∗∗j ) + v̂j(p

∗∗
i )2(1− p∗∗i )

⇔ (v̂i − v̂j) · (p∗∗i − p∗∗j ) ·
[
p∗∗i + p∗∗j − (p∗∗i )2 − (p∗∗j )2 − p∗∗i p∗∗j

]
< 0. (24)
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Because p∗∗i + p∗∗j < 1, we have that

p∗∗i +p∗∗j −(p∗∗i )2−(p∗∗j )2−p∗∗i p∗∗j = p∗∗i (1−p∗∗i )+p∗∗j (1−p∗∗j )−p∗∗i p∗∗j > 2p∗∗i p
∗∗
j −p∗∗i p∗∗j = p∗∗i p

∗∗
j ≥ 0.

Therefore, the strict inequality (24) holds.

Case II: p∗∗i + p∗∗j = 1. In this case only two contestants remain active. Fixing v̂i > v̂j,

it can be verified that p∗∗i =
v̂i−2v̂j+

√
v̂2i−v̂iv̂j+v̂2j

3(v̂i−v̂j) > 1
2
, which in turn implies that p∗∗i > 1

2
>

1− p∗∗i = p∗∗j . This completes the proof.

Proof of Theorem 7

Proof. It is useful to state an intermediary result.

Lemma 4 The following must hold in the optimal contest that maximizes the expected win-

ner’s effort: (i) if v̂i > v̂j, p
∗∗
i > 0 and p∗∗j > 0, then p∗∗i + p∗∗j > 2

3
; (ii) if v̂i = v̂j, p

∗∗
i > 0

and p∗∗j > 0, then p∗∗i + p∗∗j ≥ 2
3
.

Proof. Fix a ∈ (0, 1]. Consider the following function ϕ(x) := x2(1 − x)v̂i + (a −
x)2
[
1− (a− x)

]
v̂j with domain x ∈ [0, a]. To prove the lemma, it suffices to show that

ϕ(x) is maximized at either x = 0 or x = a if: (i) v̂i > v̂j and a ≤ 2
3
; or (ii) v̂i = v̂j and

a < 2
3
.

Note that ϕ(x) can be rewritten as

ϕ(x) = −(v̂i − v̂j)x3 +
[
v̂i + (1− 3a)v̂j

]
x2 + a(3a− 2)v̂jx+ a2(1− a)v̂j.

Taking derivative of ϕ(x) with respect to x yields

ϕ′(x) = −3(v̂i − v̂j)x2 + 2
[
v̂i + (1− 3a)v̂j

]
x+ a(3a− 2)v̂j.

Case I: v̂i > v̂j and a ≤ 2
3
. Note that

v̂i + (1− 3a)v̂j ≥ v̂i +

(
1− 3× 2

3

)
v̂j = v̂i − v̂j > 0.

Moreover, it can be verified that

ϕ′(0) = a(3a− 2)v̂j ≤ 0,

and

ϕ′(a) = −3(v̂i − v̂j)a2 + 2
[
v̂i + (1− 3a)v̂j

]
a+ a(3a− 2)v̂j = (2− 3a)av̂i ≥ 0.
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Therefore, ϕ(x) is first decreasing and then increasing in x for x ∈ [0, a], indicating that

ϕ(x) is maximized at either x = 0 or x = a.

Case II: v̂i = v̂j and a < 2
3
. Then ϕ′(x) can be simpled as

ϕ′(x) = 2(2− 3a)v̂ix+ a(3a− 2)v̂i = (2− 3a)(2x− a)v̂i.

It is straightforward to see that ϕ′(x) < 0 for x < a
2

and ϕ′(x) > 0 for x > a
2
. Therefore,

ϕ(x) is again maximized at either x = 0 or x = a. This completes the proof.

Now we can prove Theorem 7. It is clear that a contest with only one active contestant

in equilibrium is never optimal to the contest designer. Next we show that it is suboptimal

to induce three or more active contestants in the optimum. Suppose to the contrary that

there exist three contestants i, j and k with v̂i ≥ v̂j ≥ v̂k such that p∗∗i > 0, p∗∗j > 0, and

p∗∗k > 0. Then we have the following two cases:

Case I: v̂i > v̂j > v̂k, v̂i > v̂j = v̂k, or v̂i = v̂j > v̂k. Lemma 4 implies instantly that

p∗∗i + p∗∗j ≥ 2
3
, p∗∗i + p∗∗k ≥ 2

3
and p∗∗j + p∗∗k ≥ 2

3
, with one of the inequalities at least being

strict. Summing up the three inequalities yields that

p∗∗i + p∗∗j + p∗∗k > 1,

which is a contradiction to p∗∗i + p∗∗j + p∗∗k ≤ 1.

Case II: v̂i = v̂j = v̂k. Lemma 4 implies that p∗∗i +p∗∗j ≥ 2
3
, p∗∗i +p∗∗k ≥ 2

3
and p∗∗j +p∗∗k ≥ 2

3
.

Therefore, we must have that p∗∗i = p∗∗j = p∗∗k = 1
3
, and the corresponding expected winner’s

effort is

(p∗∗i )2(1− p∗∗i )v̂i + (p∗∗j )2(1− p∗∗j )v̂j + (p∗∗k )2(1− p∗∗k )v̂k =
2

9
v̂i.

However, by inducing (pi, pj, pk) = (1
2
, 1

2
, 0), the contest designer can obtain

(pi)
2(1− pi)v̂i + (pj)

2(1− pj)v̂j + (pk)
2(1− pk)v̂k =

1

4
v̂i >

2

9
v̂i,

which is again a contradiction.

Therefore, an optimally designed contest must induce exactly two active contestants in

equilibrium, and Lemma 3 indicates instantly that it is without loss of generality to assume

that contestants 1 and 2 are active. Therefore, the contest designer’s maximization problem
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can be simplified as the following:

max
{p1,p2}

p2
1(1− p1)v̂1 + p2

2(1− p2)v̂2,

subject to p1 + p2 = 1, p1 ≥ 0, and p2 ≥ 0. It is straightforward to verify that p∗∗1 = 1
2

if

v̂1 = v̂2, and p∗∗1 =
v̂1−2v̂2+

√
v̂21−v̂1v̂2+v̂22

3(v̂1−v̂2)
if v̂1 > v̂2. This completes the proof.

Proof of Corollary 1

Proof. It suffices to show that κ ≥ 3 for the case n ≥ 3, or equivalently, p̌3
3 > 0 from

Equation (15). Simple algebra yields that

p̌3
3 =

1

2
×

1− 1

v̂3

× 1∑3
j=1

1
v̂j

 =
1

2
×

(
1− 1

v̂3
v̂1

+ v̂3
v̂2

+ 1

)
> 0.

This completes the proof.

Proof of Corollary 2

Proof. It follows from v̂1 > v̂2 and Equation (28) that

p∗∗1 =
v̂1 − 2v̂2 +

√
v̂2

1 − v̂1v̂2 + v̂2
2

3(v̂1 − v̂2)
,

and

p∗∗2 =
2v̂1 − v̂2 −

√
v̂2

1 − v̂1v̂2 + v̂2
2

3(v̂1 − v̂2)
.

It is straightforward to show that p∗∗2 < p∗∗1 . Moreover, p∗∗1 < v̂1
v̂1+v̂2

is equivalent to

(v̂1 + v̂2)×
√
v̂2

1 − v̂1v̂2 + v̂2
2 < 2

(
v̂2

1 − v̂1v̂2 + v̂2
2

)
,

which can be further simplified as

(v̂1 + v̂2)2 < 4
(
v̂2

1 − v̂1v̂2 + v̂2
2

)
⇔ 3 (v̂1 − v̂2)2 > 0.

The last inequality holds clearly. Therefore, we have p∗∗1 < v̂1
v̂1+v̂2

, and thus p∗∗2 = 1 − p∗∗1 >

1− v̂1
v̂1+v̂2

= v̂2
v̂1+v̂2

. This completes the proof.

Proof of Theorem 4
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Proof. The proof proceeds in two steps. We first establish an upper bound of Λ(·) for any

combination of equilibrium winning probability p? ≡ (p?1, . . . , p
?
n) that the contest designer

would like to induce. In a second step, we construct a set of linear impact functions, with

fi(xi) = αi · xi, to achieve this upper bound.

Step I: Denote the set of active players the designer would like to induce by N ? ⊆ N , and

the equilibrium effort profile by x? ≡ (x?1, . . . , x
?
n). Then the following first-order condition

must be satisfied: ∑
j 6=i fj(x

?
j) · f ′i(x?i )[∑n

j=1 fj(x
?
j)
]2 =

1

vi
, for all i ∈ N ?.

The above condition can be rewritten as,∑
j 6=i fj(x

?
j)∑n

j=1 fj(x
?
j)
× fi(x

?
i )∑n

j=1 fj(x
?
j)

=
1

vi
× fi(x

?
i )

f ′i(x
?
i )
, for all i ∈ N ?,

which is equivalent to,

p?i (1− p?i )vi =
fi(x

?
i )

f ′i(x
?
i )
, for all i ∈ N ?. (25)

Next, note that

fi(x
?
i )

f ′i(x
?
i )
≥ fi(x

?
i )− fi(0)

f ′i(x
?
i )

=

∫ x?i
0
f ′i(t)dt

f ′i(x
?
i )

≥ f ′i(x
?
i )x

?
i

f ′i(x
?
i )

= x?i , for all i ∈ N ?. (26)

where the first inequality follows directly from fi(0) ≥ 0 and the second inequality follows

from f ′′i (xi) ≤ 0. Define x?i := p?i (1 − p?i )vi and x? := (x?1, . . . , x
?
n). The above inequality,

together with Equation (25), implies that

x?i ≤ p?i (1− p?i )vi ≡ x?i , for all i ∈ N ?.

For i ∈ N \ N ?, it is clear that

x?i = 0 ≤ p?i (1− p?i )vi ≡ x?i , for all i ∈ N \ N ?.

Because the contest designer’s objective function is weakly increasing in xi by Assumption 2,

we have that

Λ(x?,p?,v) ≤ Λ(x?,p?,v).

Step II: Next, we construct a set of linear impact functions with zero headstarts to induce

the vector of the desired winning probability p? ≡ (p?1, . . . , p
?
n) and the equilibrium effort
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profile x? ≡ (x?1, . . . , x
?
n) simultaneously. It is straightforward to verify that the set of biases

α(p?) ≡
(
α1(p?), . . . , αn(p?)

)
constructed in Lemma 1, after setting ri = 1 for all i ∈ N

in Equation (11), induces the desired equilibrium effort profile x? ≡ (x?1, . . . , x
?
n) and the

distribution of winning probabilities p? ≡ (p?1, . . . , p
?
n). This completes the proof.

Proof of Corollary 3

Proof. Carrying out the algebra, κc in Equation (19) can be written as

κc := max

m = 2, . . . , n

∣∣∣∣∣
m∑
j=1

vj − vm
vj + γ

< 2

 .

Define G(m, γ) as

G(m, γ) :=
m∑
j=1

vj − vm
vj + γ

.

It follows immediately that

G(m+ 1, γ)− G(m, γ) =
m+1∑
j=1

vj − vm+1

vj + γ
−

m∑
j=1

vj − vm
vj + γ

=
m∑
j=1

vj − vm+1

vj + γ
−

m∑
j=1

vj − vm
vj + γ

=
m∑
j=1

vm − vm+1

vj + γ
≥ 0.

Therefore, G(m, γ) is weakly increasing in m. Moreover, it is straightforward to see that

G(m, γ) is weakly decreasing in γ. These two facts imply instantly that κc(γ) is weakly

increasing in γ. This completes the proof.

Proof of Proposition 1

Proof. We first establish the following intermediate result.

Lemma 5 (Epstein et al., 2011 and Franke et al., 2014) Suppose that α1 = v2/v1,

α2 = 1, α3 = . . . = αn = 0 and βi = 0 for all i ∈ N . Then in equilibrium, contestant i ∈
{3, . . . , n} is inactive. Moreover, contestant 1 bids uniformly between [0, v1], and contestant

2 bids uniformly between [0, v2]. That is, x∗1 = U [0, v1] and x∗2 = U [0, v2].

It can be verified that the expected winner’s effort under the set of contest biases con-
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structed in Lemma 5 is

Pr(α1x
∗
1 ≥ α2x

∗
2)× E

(
x∗1|α1x

∗
1 ≥ α2x

∗
2

)
+ Pr(α1x

∗
1 ≤ α2x

∗
2)× E

(
x∗2|α1x

∗
1 ≤ α2x

∗
2

)
=

1

v1v2

×

[∫ v1

0

∫ α1b1

0

b1db2db1 +

∫ v1

0

∫ v2

α1b1

b2db2db1

]

=
1

v1v2

×
[∫ v1

0

α1b
2
1db1 +

∫ v1

0

1

2

(
v2

2 − α2
1b

2
1

)
db1

]
=

1

3
(v1 + v2) ,

which is the lower bound of the expected winner’s effort from an optimally designed all-pay

auction. This completes the proof.

Proof of Proposition 2

Proof. The expression of WEmax(v) follows immediately from Equations (10), (14), and

(28). This completes the proof.

Proof of Theorem 6

Proof. It follows from Theorem 7 that p∗∗1 > 0, p∗∗2 > 0, and p∗∗3 = . . . = p∗∗n = 0. Therefore,

we have that p∗∗1 + p∗∗2 = 1 and

WEmax(v) = p∗∗1
[
p∗∗1 (1− p∗∗1 )

]
v1 + p∗∗2

[
p∗∗2 (1− p∗∗2 )

]
v2

≤ 1

4
p∗∗1 v1 +

1

4
p∗∗2 v2 ≤

v1 + v2

4
<
v1 + v2

3
,

where the equality follows from Equation (14); the first inequality follows from 0 ≤ p∗∗1 (1−
p∗∗1 ) ≤ 1

4
and 0 ≤ p∗∗2 (1 − p∗∗2 ) ≤ 1

4
; and the second inequality follows from 0 ≤ p∗∗1 ≤ 1 and

0 ≤ p∗∗2 ≤ 1. This completes the proof.
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6 Limited Resources and Optimal Contest Design

Suppose that the contest designer has amount of resource (e.g., capital) that is normalized

to one. The weighting rule α = (α1, . . . , αn) ≥ 0 is interpreted as the resource allocation.

Contestant i has the following production technology: fi(xi) = αix
r
i , where αi is the resource

allocated to contestant i and r ≤ 1 reflects the diminishing marginal return. Each contestant

receives a score si = fi(xi)+εi, where εi follows the Gumbel distribution. The prize is awarded

to the contestant with the highest score.

Instead of total effort
∑

i∈N xi, the contestant designer aims to maximize the total output

from the contest, that is,
∑

i∈N αix
r
i , subject to constraint

∑
i∈N αi ≤ 1. Because the contest

bias αi is interpreted as resources and has direct impact on the output, the analysis becomes

more complicated. Clearly, we have
∑

i∈N αi = 1. For notational convenience, let us denote

the set of contestants with a strictly positive equilibrium winning probability by N+(p):

N+(p) :=
{
i = 1, . . . , n | pi > 0

}
.

A lemma that is in parallel to Lemma 1 can then be established.

Lemma 6 Fix any distribution of equilibrium winning probabilities p ≡ (p1, . . . , pn) ∈ ∆n−1.

Then:

i. If r = 1, then αi(p) = 1
(1−pi)v̂i ×

1
η(1)

, where η(p, 1) :=
∑

j∈N+(p)
1

(1−pj)v̂j .

ii. If r < 1, then αi(p) = (pi)
1−ri

[(1−pi)v̂i]
ri × 1

η(r)
, where η(p, r) :=

∑
j∈N

(pj)
1−rj[

(1−pj)v̂j
]rj .

Given the resource allocation established in Lemma 6 and Equation (10), we can derive

the total output as the following:

∑
i∈N

αix
r
i =

∑
i∈N

αi
[
pi(1− pi)v̂i

]r
=

1

η(p, r)
, for r ∈ (0, 1]. (27)

Therefore, the contest designer chooses p ≡ (p1, . . . , pn) to minimize η(p, r), subject to

constraints (13).

Theorem 7 (Optimal Contest that Maximizes the Total Output) Assume without

loss of generality that contestants are ordered such that v̂1 ≥ v̂2 ≥ . . . ≥ v̂n > 0. Suppose that

the contest designer aims to maximize the total output. Fixing r ∈ (0, 1], then the equilibrium

winning probabilities p∗∗∗ ≡ (p∗∗∗1 , . . . , p∗∗∗n ) under the optimal contest are

p∗∗∗1 =

√
M2 + 4χ+M√
M2 + 4χ+M+ 2

, p∗∗∗2 = 1− p∗∗∗1 , and p∗∗∗3 = . . . = p∗∗∗n = 0, (28)
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where χ :=
(
v1
v2

)r
≥ 1 andM := (χ−1)(1−r)

r
. Moreover, the corresponding resource allocation,

denoted by α∗∗∗ ≡ (α∗∗∗1 , . . . , α∗∗∗n ), that induces p∗∗∗ ≡ (p∗∗∗1 , . . . , p∗∗∗n ) are given by

α∗∗∗i =


(p∗∗∗i )

1−r[
(1−p∗∗∗i )vi

]r
/[

(p∗∗∗1 )
1−r[

(1−p∗∗∗1 )v1
]r +

(p∗∗∗2 )
1−r[

(1−p∗∗∗2 )v2
]r
]

if i ∈ {1, 2},

0 if i ≥ 3.

Proof. We first show that only the two strongest contestants would remain active in the

optimal contest. Similar to Lemma 3, we can show that p1 ≥ . . . ≥ pn in the optimal contest.

We consider the following two cases:

Case I: r = 1. Consider the following sequence of auxiliary problems (P-m): For each

m = 2, . . . , n, the contest designer minimizes η(p, r) in (12) subject to the plausibility

constraint
∑n

i=1 pi = 1, ignoring the nonnegativity constraint pi ≥ 0 for i ∈ {1, . . . ,m} and

setting pi = 0 for i ∈ N \ {1, . . . ,m}. The solution to the auxiliary equality constrained

optimization problem (P-m), which we denote by p̈m ≡ (p̈m1 , . . . , p̈
m
n ), can be solved explicitly

by computing the first-order conditions, and is given by

p̈mi =

 1− 1√
v̂i
× n−1∑m

i
1√
v̂i

if i ∈ {1, . . . ,m},

0 if i ∈ N \ {1, . . . ,m}.

The corresponding η can be derived as the following:

η(p̈m, r) =

(∑m
i=1

1√
v̂i

)2

m− 1
.

Next, we show that η(p̈m, r) < η(p̈m+1, r) for m ∈ {2, . . . , n− 1}, which is equivalent to∑m
i=1

1√
v̂i∑m

i=1
1√
v̂i

+ 1√
v̂m+1

<

√
m− 1√
m

.

Note that
∑m

i=1
1√
v̂i
≤ m√

v̂m+1

due to the fact that v̂1 ≥ . . . ≥ v̂n. Therefore, we have that∑m
i=1

1√
v̂i∑m

i=1
1√
v̂i

+ 1√
v̂m+1

≤ m
m+1

and hence it remains to show that m
m+1

<
√
m−1√
m

, which can be easily

shown to hold after some algebra. Therefore, only two contestants remain active in the

optimal contest if r = 1.

Case II: r < 1. It is useful to state an intermediary result.
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Lemma 7 Suppose 0 < ω < 2
3
, ξ ≥ 1 and p ∈ (0, ω), then

(p)1−r

(1− p)r
+ ξ × (ω − p)1−r

(1− ω + p)r
>

ω1−r

(1− ω)r
.

Proof. Define G(ω, p) as

G(ω, p) :=
(p)1−r

(1− p)r
+ ξ × (ω − p)1−r

(1− ω + p)r
− ω1−r

(1− ω)r
.

We want to show G(ω, p) > 0 for ω > p. Fixing p, let us view G(·) as a function of ω. Clearly,

we have that G(p, p) = 0. Moreover, we have that

G
(

2

3
, p

)
=

(p)1−r

(1− p)r
+ ξ ×

(
2
3
− p
)1−r(

1
3

+ p
)r − 2

3

1−r

1
3

r ≥
(p)1−r

(1− p)r
+

(
2
3
− p
)1−r(

1
3

+ p
)r − 2

3

1−r

1
3

r ,

where the inequality follows from the postulated ξ ≥ 1. It can be verified that (p)1−r

(1−p)r +

( 2
3
−p)

1−r

( 1
3

+p)
r −

2
3

1−r

1
3

r ≥ 0 for (p, r) ∈ [0, 2
3
] × (0, 1). Therefore, to prove the lemma, it suffices to

show that G(ω, p) is single-peaked or increasing in ω.

Carrying out the algebra, we have that

∂G(ω, p)

∂ω
= ξ × (1− ω + p)− (1− 2ω + 2p)r

(ω − p)r(1− ω + p)1+r
− (1− ω)− (1− 2ω)r

ωr(1− ω)1+r
.

It can be verified that ∂G(ω,p)
∂ω

> 0 is equivalent to

Z(ω, p, r) := log(ξ) + log
(
(1− ω + p)− (1− 2ω + 2p)r

)
− log

(
(1− ω)− (1− 2ω)r

)
− r log

(
ω − p
ω

)
− (1 + r) log

(
1− ω + p

1− ω

)
> 0.

Note that Z(p, p, r) =∞. To prove that G(ω, p) is single-peaked or increasing in ω, it suffices

to show that Z(ω, p, r) is strictly decreasing in ω, that is,

∂Z(ω, p, r)

∂ω
=

2r − 1

(1− ω + p)− (1− 2ω + 2p)r
− 2r − 1

(1− ω)− (1− 2ω)r
+ r

(
1

ω
− 1

ω − p

)
+ (1 + r)

(
1

1− ω + p
− 1

1− ω

)
< 0, for (ω, p, r) ∈ (0,

2

3
)× (0, ω)× (0, 1).

38



Carrying out the algebra, ∂Z(ω,p,r)
∂ω

< 0 is equivalent to

W(r) :=
(2r − 1)2[

(1− ω + p)− (1− 2ω + 2p)r
]
×
[
(1− ω)− (1− 2ω)r

]− r

(ω − p)ω
− 1 + r

(1− ω + p)(1− ω)
< 0.

For r ≤ (0, 1
2
], W(r) can be bounded above by

W(r) =
(2r − 1)2[

(1− ω + p)− (1− 2ω + 2p)r
]
×
[
(1− ω)− (1− 2ω)r

] − r

(ω − p)ω
− 1 + r

(1− ω + p)(1− ω)

<
(2r − 1)2[

(1− ω + p)− (1− 2ω + 2p)r
]
×
[
(1− ω)− (1− 2ω)r

] − 1

(1− ω + p)(1− ω)

≤ (1− 2r)2

(1− ω + p)(1− ω)(1− r)2
− 1

(1− ω + p)(1− ω)

=
1

(1− ω + p)(1− ω)
×

[
(1− 2r)2

(1− r)2
− 1

]
< 0,

where the first inequality follows from r > 0; the second inequality follows from (1 − ω) −
(1 − 2ω)r = (1 − ω)(1 − r) + ωr ≥ (1 − ω)(1 − r) and (1 − ω + p) − (1 − 2ω + 2p)r =

(1 − ω + p)(1 − r) + (ω − p)r ≥ (1 − ω + p)(1 − r); and the last inequality follows from
1−2r
1−r < 1.

Similarly, for r ∈ (1
2
, 1), we have that

W(r) =
(2r − 1)2[

(1− ω + p)− (1− 2ω + 2p)r
]
×
[
(1− ω)− (1− 2ω)r

] − r

(ω − p)ω
− 1 + r

(1− ω + p)(1− ω)

≤ (2r − 1)2

(ω − p)ωr2
− r

(ω − p)ω
− 1 + r

(1− ω + p)(1− ω)

=
1

(ω − p)ω
× 1− r

r2
×
(
r2 − 3r + 1

)
− 1 + r

(1− ω + p)(1− ω)
< 0,

where the first inequality follows from (1− ω)− (1− 2ω)r = (1− ω)(1− r) + ωr ≥ ωr and

(1 − ω + p) − (1 − 2ω + 2p)r = (1 − ω + p)(1 − r) + (ω − p)r ≥ (ω − p)r; and the second

inequality follows from r2 − 3r + 1 < 0 for r ∈ [1
2
, 1). This completes the proof.

By Lemma 7, if p∗∗∗i > 0 and p∗∗∗j > 0, then we must have that p∗∗∗i + p∗∗∗j ≥ 2
3
. Applying

the same argument in the proof of Theorem 7, we can show that there are at most three

active players in the optimum. Moreover, in the case that three contestants remain active,

we must have that p∗∗∗1 = p∗∗∗2 = p∗∗∗3 = 1
3
, which can be easily proved to be suboptimal.

Therefore, only the two strongest players would remain active in the optimum.

Next, we characterize the optimal winning probabilities p∗∗∗ ≡ (p∗∗∗1 , . . . , p∗∗∗n ). Because

p∗∗∗i = 0 for i ∈ {3, . . . , n}, we must have p∗∗∗2 = 1 − p∗∗∗1 . Therefore, the contest designer’s
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optimization problem can be simplified as the following:

min
p1∈(0,1)

(p1)1−r

(1− p1)r
+ χ

(1− p1)1−r

(p1)r
,

where χ :=
(
v1
v2

)r
≥ 1. The first-order condition with respect to p1 yields

p1

1− p1

− χ1− p1

p1

=
(χ− 1)(1− r)

r
=:M,

from which p∗∗∗1 can be solved as the following:

p∗∗∗1 =

√
M2 + 4χ+M√
M2 + 4χ+M+ 2

.

This completes the proof.

Corollary 4 (“National Champion” vs. Handicapping) Suppose that v1 > v2 > 0.

Then α1 ≷ α2 if and only if r ≶ 1
2
.

Proof. It is straightforward to verify that α1 > α2 if and only if p∗∗∗1 > χ
χ+1

, which can be

simplified as

M > χ− 1⇔ (χ− 1)(1− r)
r

> χ− 1⇔ r <
1

2
.

This completes the proof.
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