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Abstract. A game of love and hate is one in which a player’s payoff is a function of her own action
and the payoffs of other players. For each action profile, the associated payoff profile solves an inter-
dependent utility system, and if that solution is bounded and unique for every profile we call the game
coherent. Coherent games generate a standard normal form. Our central theorem states that every Nash
equilibrium of such a game is Pareto optimal, in sharp contrast to the general prevalence of inefficient
equilibria in the presence of externalities. While externalities in our model are restricted to flow only
through payoffs there are no other constraints: they could be positive or negative, or of varying sign.
We further show that our coherence and continuity requirements are tight.

1. INTRODUCTION

A game with payoff-based externalities, or more colorfully, a game of love and hate, is a strategic setting
in which each player’s payoff depends on her own action, and the payoffs of some or all of the other
players. Other actions enter a player’s payoff only via the payoffs they generate for other players.

Payoff-based externalities are, of course, natural in situations of altruism or envy (see, for example,
Pearce 1983, Ray 1987, Bergstrom 1999, Kockesen, Ok and Sethi 2000, or Vasquez and Weretka 2016).
In its purest form, we might derive our happiness or hatred directly from the extent to which others are
enjoying themselves, and not from how they are doing so. But payoff-based externalities also occur in
situations in which there is no love or hate as such, but there are pecuniary externalities generated by
firm profits, say, via demand (Murphy, Shleifer and Vishny 1989), or in which the payoffs of others
serve as reference points or aspirations for an individual (Genicot and Ray 2017).

The interacting cascade generated by interdependent payoff functions can get out of hand, leading to
implosions or explosions of utility, or multiple utility solutions for some fixed action profile. Familiar
Hawkins-Simon-like conditions guarantee coherence; i.e., a bounded utility system with unique solution
for every action profile (Pearce 1983, Hori and Kanaya 1989, Bergstrom 1999). This paper directly
imposes coherence. Then our setting with payoff-dependent externalities can be reduced to a standard
game with payoffs derived from action profiles. We have just one main result to report:

For every coherent game of love and hate satisfying a mild continuity condition on payoff functions,
every equilibrium is Pareto-optimal.
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Mitra — advisor, colleague and dear friend — on the occasion of his 70th birthday. His sense of aesthetics, minimalism and
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The purpose of our paper is to state, prove and discuss this theorem. It is worth mentioning here that this
result is independent of the sign of the externalities. “Love” creates full efficiency — despite the fears
of a coordination failure, but so does “hate,” and so does any mixture of the two — a player could hate
some individuals and love others, or indeed could love and hate the same individual at different points
on the domain of her payoff function. It is a remarkable result that appears to depend fundamentally —
but only — on the presumption that all externalities are transmitted via payoffs.

But a bit more is involved. One is naturally drawn to explaining just why games such as the Prisoner’s
Dilemma or the Coordination Game, which have inefficient equilibria, cannot be written as games of
love and hate. The answer is that they can be so written (see Observation 1), but no matter which payoff
function we use to implement that conversion, either the continuity condition or the coherence condition
must fail. This leads to a new and more subtle interpretation of the coherence restriction.

This discussion should not be taken to mean that we believe Nash equilibria to be efficient, or even
efficient “most of the time.” Our result is general, but it is general within the particular class of coherent
games with pure payoff externalities. Such games do have applications (see Section 3), but our aim is
not to argue that this class is widespread, or to provide algorithms to verify that a game belongs to
this class. What we do find interesting is the fact that equilibria of coherent games of love and hate
behave the way they do. In particular, we are drawn to the philosophical implications of our efficiency
theorem, knowing well as we do that Nash equilibria of games with externalities are “typically” Pareto-
suboptimal.

For instance, a common and obvious criticism of the libertarian doctrine is that when externalities
are involved, behavior in accordance with libertarian philosophy can lead to Pareto-inferior outcomes
(Sen 1970). Of course, we agree with this position. It is nevertheless of some interest that when all
externalities are “non-paternalistic,” in the sense of being transmitted entirely via payoffs, a liberal
cannot but be a Paretian.1

2. THE SETTING

The set of agents is N “ t1, . . . nu. Each agent i P N has a strategy set Xi. Let X “
ś

iXi. For each
i, utility ui depends on her own action xi, and on all other utilities u´i ” tujuj‰i:

(1) ui “ fipxi, u´iq.

A collection pN, tXi, uiuq where tuiu is a utility system satisfying (1), is a game of love and hate. Such
a game is continuous if for each i and strategy xi, fi is continuous in u´i. No continuity condition is
imposed with respect to xi; in fact, no topological restrictions are placed on the strategy sets.

Define the function f : X ˆ IRN Ñ IRN by:2

fpx, uq “ f1px1, u´1q ˆ . . .ˆ fipxi, u´iq ˆ . . .ˆ fnpxn, u´nq.

For any x, the mapping fpx, ¨q is an instance of an “interdependent utility system,” governed by n
component equations fipx, ¨q, where for every i, the component fi that generates ui is defined on the
vector of other payoffs u´i. Such a system is said to be coherent if for every x,

1See also Bergstrom (1970) in the special context of a distributive Lindahl equilibrium with non-malevolent agents.
2For S Ď N , IRS denotes |S|-dimensional Euclidean space with coordinates indexed by members of S.
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(i) there is Bpxq ă 8 such that ‖fpx, uq‖ ă ‖u‖ whenever ‖u‖ ą Bpxq, where ‖¨‖ is the sup norm;

(ii) the mapping fpx, ¨q has a unique fixed point.

We impose coherence for our main result, but explore the implications of this restriction in some detail
below. We also ask for “reduced game coherence” on every sub-situation generated by holding fixed
the payoffs to a subset S of players, say at ūS . That is, for every action profile txjujPN´S , we impose
coherence on the resulting utility system on player setN´S given by fipxi, uN´S´i, ūSq, for i P N´S.

Coherence is our starting point. Without it we are unable to unambiguously assign a utility profile
to a profile of actions. With it, we can: fpx, .q has a unique fixed point for every strategy profile x;
call it upxq. So the system of utilities generates a well-defined normal form with payoffs upxq, where
upxq “ fpx, upxqq. Pearce (1983), Hori and Kanaya (1989), and Bergstrom (1999) provide sufficient
conditions for coherence in specific cases. Vasquez and Weretka (2016) discuss implications of the lack
of coherence (though they impose boundedness).

The following definitions are standard. A strategy profile x˚ is a Nash equilibrium (or simply equilib-
rium) if for every i and action xi,

uipx
˚q ě uipxi, x

˚
´iq.

A strategy profile x P X is Pareto optimal or efficient if there does not exist x1 P X with upx1q ą upxq.3

3. EXAMPLES

Here are four examples that illustrate the concept.

Example 1. A “genuine” game of love and hate. For some bounded g,

ui “ g

ˆ

ai,

ř

j‰i uj

n´ 1

˙

´ a2i ,

where ai is an investment with return g, which is also influenced by the average payoff to others. This is
like a reference point or aspiration.4 Such a reference point might serve to inspire or frustrate investment
— the cross-partials of g will determine that outcome — but the point is that each individual’s payoffs
are affected by her own actions and the payoffs of others.

Example 2. A not-so-genuine game of love and hate. Consider the Prisoner’s Dilemma:

Player 2
x̄2 x˚2

Player 1
x̄1 c, c b, a
x˚1 a, b d, d

where a ą c ą d ą b. Intuitively, this is not a game of pure payoff externalities. A player’s payoff
depends on the actions of her opponent and not on the payoff he derives from it. That said, it is mathe-
matically possible to write the game as one of payoff externalities; consider any bounded continuous fi

3For vectors a and b, “a ě b” means ai ě bi in every component, “a ą b” implies a ě b and a ‰ b, and “a " b” means
ai ą bi in every component.

4See, e.g., Ray (2006), Dalton, Ghosal and Mani (2016), Genicot and Ray (2017).
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such that for i “ 1, 2,

fipx̄i, cq “ c, fipx̄i, aq “ b, fipx
˚
i , bq “ a, fipx

˚
i , dq “ d.

Of course, the function needs to be defined for all utility vectors but that isn’t a problem. As we shall
see below, though, such a representation must fail coherence or continuity.

Example 3. A genuine game of love (without any love in it). We borrow from the multiple equilibrium
notion of industrialization in Rosenstein-Rodan (1943), and specifically invoke the baseline model of
Murphy, Shleifer and Vishny (1989). The players are n firms, each producing a distinct good. Each
good can be produced by a cottage technique y “ `, where ` is labor. This technique is available to a
competitive fringe. Our firms can also choose a “industrial technique” in each sector, where y “ α`´F
for some α ą 1 and fixed cost F ą 0. Each firm chooses a binary action: to industrialize or not.

Consumers have a utility function
ř

i lnpciq, and so spend their income equally on the n goods. The
demand curve for good i is therefore Di “ Y {npi, where Y is national income. National income,
in turn, equals wage income plus profit, which generates the payoff externality as follows. If m firms
industrialize, each limit-prices the fringe and therefore:

Y pmq “ m

„

1´
1

α



Y pmq

n
´mF ` L,

where we’ve normalized wages to 1 and the labor force is L. We thus have the aggregate profits of
industrializing firms affecting national income and therefore the profit of every firm, so creating a
strategic complementarity in payoffs.

Example 4. A genuine game of hate (without any hate in it). Again there are n firms. Each makes
an investment xi to generate revenue rpxiq at cost cpxiq. Society (or a collective regulator) receives a
payoff γpuq from the vector u of firm payoffs, where γ is assumed decreasing. A lower γ increases the
chances that a regulation will be placed on the firms, creating a penalty πpγq. The payoff for each firm
is therefore given by

ui “ fipxi, γq “ rpxiq ´ cpxiq ´ πpγq.

The new feature here is that we define γ on the net payoff of each firm, with everything taken into
account, including the penalty. Nevertheless, our specification allows the regulator’s payoffs to decline
with an individual firm’s overall fortunes, thereby creating a potential externality imposed by one firm
on all firms.

4. MAIN RESULT

Our main result is:

THEOREM 1. Every equilibrium of a continuous, coherent and reduced-game coherent game of love
and hate is Pareto optimal.

Of course, externalities can result in inefficient outcomes or market failure. Game theory is replete with
such examples. It turns out that restricting externalities to be payoff-based, and assuming coherence
as well as reduced game coherence, is enough to show that every equilibrium is efficient. Apart from
these restrictions, we assume little else. We ask for the continuity of all payoffs in the payoffs of
others. We allow for both positive and negative externalities, or indeed both on different sub-regions
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of the domain. No assumptions are made on payoffs as a function of own actions; indeed, there is no
topological structure on action sets. No assumption is made on the curvature of payoffs as a function of
the payoffs of others.

The context in which this theorem might be easiest to understand is a game with strategic comple-
mentarities. Such is the case with Example 3, on “industrialization,” where the profits of one firm
positively affect those of other firms. But even in this “best-case scenario,” there may be multiple
Pareto-dominated equilibria as in any coordination game. And yet, as noted by Murphy, Shleifer and
Vishny (1989), this particular example — or its competitive analogue, to be more exact — has a unique
equilibrium. The equilibrium is also efficient, which is an implication of our theorem. But our theorem
goes way beyond the complementarities in Example 3, and as already mentioned, it is independent of
the direction of the externalities.

Perhaps the theorem is best appreciated by reading its proof in detail, but as the argument is long, we
provide the reader with an outline. We will establish the following claim, which is a bit stronger than
what we need, but is nevertheless the more convenient to prove, as we proceed by induction and will
need the additional power to complete the inductive step.

CLAIM. There is no profile x˚ with upx˚q “ u˚ such that for some other action profile x̄ and utility
profile ū,

(2) fpx̄, ūq ě ū ą u˚ ě fpx̄, u˚q.

Theorem 1 follows from this Claim. Suppose that x˚ is an equilibrium, but it is not Pareto-optimal.
Then it is Pareto-dominated by some x̄ with ū “ upx̄q, so that

(3) fpx̄, ūq “ ū ą u˚.

At the same time, because x˚ is an equilibrium, it follows that

(4) u˚i “ uipx
˚q ě uipx̄i, x

˚
´iq for all i,

because a unilateral deviation to x̄i from x˚i cannot be profitable for i. A central observation (Lemma 2)
proves that the absence of a profitable deviation, as just described in (4), is equivalent to the absence of
a “naively profitable” deviation, in which player i deviates under the (possibly mistaken) premise that
other payoffs will not change — even though they generally will. That is, (4) is equivalent to

(5) u˚ “ fpx˚, u˚q ě fpx̄, u˚q.

But (3) and (5) together imply (2), which contradicts the Claim.

The remainder of the proof establishes the Claim using induction on n. Specifically, we show that if
(2) is true for a game with n players, where n ě 2, then we can find a game with a smaller number of
players where (2) is true as well. But it is very easy to see that for a single-person game, (2) must be
false. After all, for a one-person game, fpx̄, ūq “ fpx̄, u˚q, simply because there are no other players.
Echoing the induction upwards as the number of players increases, we see that (2) can never be true.

5. PROOF OF THE MAIN RESULT

Let pN, tXi, uiuq be a game of love and hate that is continuous, coherent and reduced-game coherent.
We begin with some notation. Consider the reduced game resulting from the removal of some subset S
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of players, with their payoffs pegged at uS . It has player set N ´ S, and payoff functions

fSj pxj , u´jq ” fjpxj , ut´j,Su, uSq,

for j P N ´S, where with some mild abuse of notation, the term u´j on the left-hand side is presumed
to exclude all players in S. (Notice that u´j may have no components left; after all, a single player
game would be induced if |S| “ n´ 1.) For every action profile x in the original game, reduced-game
coherence ensures a unique payoff profile in the reduced game; call it vSpx, uSq. Note that vSpx, uSq
depends only on xN´S and uS ; it is insensitive to xS . Because fipxi, .q is continuous for all i and xi,
the fixed points of each reduced game are upper-hemicontinuous in uS . Uniqueness of the fixed point
then implies that for each x, vSpx, uSq is continuous in uS .

A special reduced game is obtained by excluding just one player i with utility ui. For any action profile
x, then, the payoffs to N ´tiu are given by the vector vipx, uiq. It will useful to introduce notation that
describes how vipx, uiq maps back to i’s payoff in the original game. That is, define

φipui, xq “ fipxi, v
ipx, uiqq.

In words, for a fixed action profile, we consider the reduced utility system that results when player i’s
utility is pegged at ui, extract the unique fixed point of that reduced system, and now evaluate player i’s
utility at her action choice xi when other players enjoy that fixed point. It follows from the continuity
of vipx, uiq in ui that φipui, xq is a continuous function of ui.

LEMMA 1. (a) For every action profile x and every i, the well-defined payoff uipxq uniquely solves
uipxq “ φipuipxq, xq.

(b) For any pair of action profiles x1, x2 P X , let u1 “ upx1q and u2 “ upx2q. Then u1i ą u2i if and only
if φipu2i , x

1q ą φipu
2
i , x

2q “ u2i .

Proof. (a) Let upxq be the unique solution to (1). Because vipx, uipxqq is the unique solution to
the reduced system given x and uipxq, we have u´ipxq “ vipx, uipxqq. Therefore φipuipxq, xq “
fipxi, v

ipx, uipxqqq “ fipxi, u´ipxqq “ uipxq; i.e., uipxq is a fixed point of φip¨, xq. In fact it is the
unique fixed point. For if not, there is ũi ‰ ui with ũi “ φipũi, xq. Let ũ´i “ vipx, ũiq. Then ũ
satisfies (1), but because ũi ‰ ūi, this contradicts the assumption that there is a unique solution to (1).

(b) Suppose φipu2i , x
1q ą u2i . Since φip., x1q is continuous and φipM,x1q ă M for M large (by

coherence), the intermediate value theorem tells us that there is ũi ą u2i with ũi “ φipũi, x
1q. By (a),

ũi “ u1i, so u1i ą u2i . Conversely, if φipu2i , x
1q ď u2i , then using the fact that φip´M,x1q ě ´M for M

large enough (by coherence), we know that there is ũi ď u2i such that ũi “ φipũi, x
1q. By (a), ũi “ u1i,

which implies u1i ď u2i .

A deviation by player i from x˚ to xi is profitable if uipxi, x˚´iq ą uipx
˚q. It is naively profitable if

fipxi, u´ipx
˚qq ą fipx

˚
i , u´ipx

˚qq, i.e., player i profits under the “naive” presumption that all other
utilities will remain unchanged.

LEMMA 2. A unilateral deviation is profitable if and only if it is naively profitable.

Proof. Suppose i deviates from x˚ to xi. Let u˚ “ upx˚q and y “ pxi, x˚´iq. By Lemma 1,

(6) uipyq “ uipxi, x
˚
´iq ą u˚i if and only if φipu˚i , yq ą u˚i .
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Because vipx, uiq is insensitive to xi and y´i “ x˚´i, we have vipx, u˚i q “ vipy, u˚i q, so that

φipu
˚
i , yq “ fipxi, v

ipy, u˚i qq “ fipxi, v
ipx, u˚i qq “ fipxi, u

˚
´iq.

Substituting this in (6) we have:

(7) uipyq “ uipxi, x
˚
´iq ą u˚i if and only if fipxi, u˚´iq ą u˚i ,

which establishes the desired result.

Proof of Theorem 1. We first prove the Claim described in Section 4 by induction on the number of
players. To begin the induction argument, consider any game with a single player: 1. Fix any action x˚1
with utility u˚1 . For any other action x̄, it is immediate that fpx̄, ūq “ fpx̄, u˚q, because there are no
other players. So (2) can never hold.

Now for the inductive step. Suppose that the Claim is true of every game with m ă n players and
satisfying the conditions of the Theorem, where n ě 2. Consider a game with player set N , where
|N | “ n. Suppose, contrary to the Claim, that there are profiles x˚ and x̄ with associated payoff
profiles u˚ and ū such that (2) is satisfied. Now we consider the following possibilities.

Case 1. There is a player j with ūj “ u˚j . Define S by the set of all j satisfying this equality. Because
ū ą u˚, S is a strict subset of N .

Case 2. ū " u˚ and there is a player, say k, such that in the reduced game without k (and with uk “ u˚k)
all the others obtain a higher payoff than u˚´k, i.e.,

(8) vkpx̄, u˚kq " u˚´k.

In this case, define S “ tku, which is again a strict subset of N .

Case 3. ū " u˚, and for every k (8) fails. Pick any k. It follows that for some j ‰ k, we have

(9) vkj px̄, u
˚
kq ď u˚j .

Pick the largest value ûk P ru˚k, ūks such that (9) holds for some j ‰ k. Because ū " u˚, we have

(10) u˚k ď ûk ă ūk.

Because vkpx̄, .q is continuous, (10) implies that

(11) vkj px̄, ûkq “ u˚j

for every j ‰ k for which (9) holds at uk “ ûk. Define S to be this set of agents. Note that k R S (so
once again S is a strict subset of N ), and if some other i ‰ k is also not in S, then

(12) vki px̄, ûkq ą u˚i .

In each of the three cases, S is a strict subset of N . Consider the reduced game induced on players
N ´ S by setting uS “ u˚S . It has payoff functions

fSi pxi, u´iq ” fipxi, ut´i,Su, u
˚
Sq, for all i P N ´ S,

where we recall that u´i on the left-hand side excludes all players in S.
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Consider the profile x̄ in the reduced game. In Cases 1 and 2, define a utility profile ur on N ´ S by
ur “ vSpx̄, u˚Sq. In Case 3, in which uk “ ûk, define ur on N ´ S by

(13) uri “

"

ûk for i “ k,
vki px̄, ûkq for i ‰ k, i P N ´ S

We claim that in the reduced game,

(14) fSpx̄, urq ě ur ě u˚N´S while fSpx̄, urq ‰ ur or ur ‰ u˚N´S .

To establish (14), notice that in Cases 1 and 2, vSpx̄, u˚Sq “ ur, so fSpx̄, urq “ ur. In Case 1,
ur “ ūN´S " u˚N´S and in Case 2, it follows from (8) that ur " u˚N´S . In both cases, therefore,

fSpx̄, urq “ ur " u˚N´S ,

which establishes (14) right away.

It remains to verify (14) in Case 3, where k R S. If there is i P N ´ S with i ‰ k, combine (12) and
(13) to see that

(15) uri “ vki px̄, ûkq ą u˚i for all i P N ´ S ´ k.

We also claim that

(16) uri “ fSi px̄, u
r
´iq for all i P N ´ S ´ k.

To this end, and noting that fk stands for the payoff function in another reduced game where just player
k is removed (with uk “ ûk), we have:

uri “ vki px̄, ûkq “ fki px̄, u
r
´ti,k,Su, u

˚
Sq “ fSi px̄, u

r
´ti,k,Su, ûkq “ fSi px̄, u

r
´iq, for all i P N ´ S ´ k,

where the first equality is just (13), the second equality comes from ur´k “ vk
´tk,Supx̄, ûkq (see (13))

and u˚S “ vkSpx̄, ûkq (see (11)), the third equality switches reduced games to now exclude S but include
k, and the last equality comes from urk “ ûk (see (13) again), also remembering that ur excludes all
indices in S. This yields (16). Combining (15) and (16), we can conclude that

(17) fSi pxi, u
r
´iq “ uri ą u˚i for all i P N ´ S ´ k.

It remains to consider i “ k P N ´ S. We first claim that

(18) φkpûk, x̄q ą ûk.

For if (18) were false, then φkpûk, x̄q ď ûk. Because φkp´M, x̄q ě ´M for M large enough and
φk is continuous, there exists u1k ď ûk such that φipu1k, x̄q “ u1k. But that generates a utility solution
pu1k, v

kpx̄, u1kqq at the action profile x̄ of the original game. It is distinct from ū because u1k ď ûk ă ūk,
where the last inequality follows from (10). That violates coherence.

Next, observe that

(19) φkpûk, x̄q “ fkpx̄, v
kpx̄, ûkqq “ fkpx̄, u

r
´k, u

˚
Sq “ fSk px̄, u

r
´kq,

where the first equality is just the definition of φk, the second equality follows from ur´k “ vk
´tk,Supx̄, ûkq

(see (13)) and u˚S “ vkSpx̄, ûkq (see (11)), and the last equality is just the translation to the reduced game,
where S is excluded with payoff u˚S .
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Combining (18) and (19) along with urk “ ûk ě u˚k (the equality is from (13) and the inequality from
(10)), we must conclude that

(20) fSk px̄k, u
r
´kq ą urk ě u˚k.

Combining (17) and (20), we obtain (14) for the reduced game. This proves that (14) holds in each of
the three Cases.

We now use (14) to prove that (2) holds for the reduced game. First, because we maintain that (2) holds
for the original game, we have

u˚i ě fipx̄i, u
˚
´iq for all i P N ´ S.

Because ui “ u˚i for all i P S, fSi px̄i, u
˚
´iq “ fipx̄i, u

˚
´iq for all i P N ´ S. That implies

(21) u˚i ě fSi px̄, u
˚
´iq for all i P N ´ S.

Now combine (14) and (21) to see that

(22) fSpx̄, urq ě ur ě u˚N´S ě fSpx̄, u˚N´Sq, with either fSpx̄, urq ‰ ur or ur ‰ u˚N´S (or both).

To obtain (2) from (22), we claim that ur ą u˚N´S . If not, then (given that (22) holds) it must be
that ur “ u˚N´S , and so fSpx̄, urq ą ur. But ur “ u˚N´S , so that’s just the same as saying that
fSpx̄, u˚N´Sq ą u˚N´S . That means the very last inequality in (22) cannot hold, a contradiction. So
ur ą u˚N´S , as claimed, and (2) holds for the reduced game.

Now, the reduced game of a coherent and reduced-game coherent game, with payoff functions continu-
ous in others’ payoffs, inherits all these just-named properties. But then, by the the induction hypothesis,
(2) cannot hold for that reduced game, a contradiction.

As already noted in Section 4, our Theorem follows from the Claim. Formally, suppose there is an
equilibrium x˚ Pareto dominated by x̄. Let u˚ “ upx˚q and ū “ upx̄q. Then

fpx̄, ūq “ ū ą u˚ ě fpx̄, u˚q,

where the last inequality makes use of Lemma 2 and the fact that x˚ is an equilibrium. But this implies
(2), a contradiction.

6. DISCUSSION

6.1. Some Intuition for Differentiable Games. Assuming payoff functions to be differentiable and
quasi-concave makes it easier to elicit some intuition about why equilibria might be Pareto optimal. The
exposition that follows aims to do this, but is not meant to be rigorous or complete. And by no means is
it meant to be a substitute for the proof of our theorem, which follows a completely different approach,
relying only on the continuity of the payoff functions in other payoffs and imposing no topological
structure on actions.

Suppose that for all i, uipxq is continuously differentiable in x and quasi-concave in xi. An equilibrium
can then be characterized in terms of the first order conditions for each player. Using the equivalence
of profitable and naively profitable deviations (Lemma 2), these conditions are:

(23)
Bfipxq

Bxi
“ 0 for all i.
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Now consider the problem of a social planner, who seeks to maximize
ÿ

j

λjujpxq

where λ ”i pλ1, . . . , λnq
J is a system of nonnegative weights summing to unity. Assuming that the

relevant solutions are all interior, the first-order conditions are given by
ÿ

j

λj
Bujpxq

Bxi
“ 0 for all i.

Collect this in matrix form to write

(24) Dxλ “ 0,

where Dx is the matrix of cross-effects

Dx “

¨

˚

˚

˚

˚

˝

Bu1pxq
Bx1

Bu2pxq
Bx1

. . . Bunpxq
Bx1

Bu1pxq
Bx2

Bu2pxq
Bx2

. . . Bunpxq
Bx2

...
...

. . .
...

Bu1pxq
Bxn

Bu2pxq
Bxn

. . . Bunpxq
Bxn

˛

‹

‹

‹

‹

‚

By the chain rule,
Bujpxq

Bxi
“

ÿ

k

Bfj
Buk

Bukpxq

Bxi

for j ‰ i, and for j “ i:
Buipxq

Bxi
“
Bfi
Bxi

`
ÿ

k

Bfi
Buk

Bukpxq

Bxi
,

so that

(25) Dx “ F `DxDu,

where

F “

¨

˚

˚

˚

˚

˝

Bf1pxq
Bx1

0 . . . 0

0 Bf2pxq
Bx2

. . . 0
...

...
. . .

...
0 0 . . . Bfnpxq

Bxn

˛

‹

‹

‹

‹

‚

and Du “

¨

˚

˚

˚

˚

˝

Bf1
Bu1

Bf2
Bu1

. . . Bfn
Bu1

Bf1
Bu2

Bf2
Bu2

. . . Bfn
Bu2

...
...

. . .
...

Bf1
Bun

Bf2
Bun

. . . Bfn
Bun

˛

‹

‹

‹

‹

‚

,

the latter written with the understanding that Bfi{Bui “ 0 for all i. Rewriting (25), we see that

(26) Dx “ F rI ´Dus
´1,

where the presumption that I´Dx has an inverse is closely connected to coherence; see Pearce (1983).
Combining (24) and (26), we must conclude that the first order conditions for a solution to the planner’s
problem are

(27) F rI ´Dus
´1λ “ 0.
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We can open this out as follows. Let bij be a generic entry for the matrix rI ´ Dus
´1; then (27) is

equivalent to the condition

(28)
„

Bfi
Bxi



«

n
ÿ

j“1

bijλj

ff

“ 0 for all i.

Using (23), we must conclude that a solution to the equilibrium first order conditions are also solutions
to the planner’s first-order conditions (28), suggesting that equilibria are Pareto-optimal, or at least solve
necessary conditions for planner optimality. We reiterate that this is suggestive but not rigorous (even
with the smoothness and curvature assumptions in place). For more discussion, see the Appendix.

6.2. Connection with the First Theorem of Welfare Economics. There is a literature that studies the
relationship between competitive equilibria and Pareto optimality in the presence of externalities.5 In
general, of course, competitive equilibria need not be Pareto optimal (so the first welfare theorem need
not hold) and it may not be possible to decentralize every Pareto optimal allocation as a competitive
equilibrium (so the second welfare theorem need not hold either). However, interesting connections can
be identified when externalities are payoff-based; see Winter (1969), Ledyard (1971), Osana (1972),
Rader (1980) and Parks (1991).

To explore the relationship of this literature to our paper, observe that our main theorem appears sim-
ilar to the first welfare theorem of competitive equilibrium: it claims that every equilibrium is Pareto
optimal. However, our conclusion holds regardless of the nature of the externalities, as long as these
are purely payoff-based. It doesn’t matter whether agents are benevolent or malevolent toward some or
all opponents, or indeed whether they are affected in some non-monotone way by the payoffs of others.
There is no hope of an analogous first welfare theorem (even for an exchange economy) at this level of
generality. The reason is simple. If agents are benevolent they may well wish to allocate a larger part of
the resources to some agent(s) than is feasible through the market, given that wealth redistribution is not
permitted. In fact, as Winter (1969) and Bergstorm (1970) observe, even allowing agents to unilaterally
transfer wealth to others may not suffice to restore the first welfare theorem. This literature does look
for conditions for the first welfare theorem to hold in the presence of externalities; see, e.g., Ledyard
(1971), Osana (1972) and Parks (1991). It identifies a form of “non-benevolence,” which is not quite
the same as the condition that all externalities are negative, but the point is that no such restriction is
needed for the analogous result here.

Theorem 1 is cast in a parallel setting — games as opposed to competitive equilibrium — but the two
models are quite distinct. A central difference is that in a game the feasible strategy profiles span
the entire set of social outcomes whereas in an exchange economy they don’t — specifically, agents
cannot alter the wealth distribution. This means that the planner in an exchange economy has an extra
instrument compared to the agents, which makes it harder for an equilibrium to satisfy Pareto optimality.
While the first welfare theorem tells us that this does not impede Pareto-optimality in the classical
setting, it clearly matters when there are externalities. On the other hand, in the game-theoretic model
the planner doesn’t have the advantage of an extra instrument. The game-theoretic analogue of the
classical competitive setting is one in which externalities are central, and efficiency routinely fails.
The restriction to the subclass of pure payoff externalities restores that efficiency, no matter what the
particular form of those externalities. In this sense, ours is a stronger answer to a weaker question.

5We are grateful to Peter Hammond for alerting us to the existence of this literature.
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Of course, there is also a second welfare theorem for competitive equilibrium, and corresponding to
that we have the parallel question for games: might every Pareto optimum be a Nash equilibrium? In
terms of our first-order conditions, one might look for the reverse implication: “does (28) imply (23)?”
This is not a question we investigate here in any generality, though the Appendix contains a discussion.

Finally, we should note that the literature on welfare theorems with externalities finesses the coherence
issue, by postulating private as well as social preferences for each consumer. Consider the case where
preferences are represented by utility functions. Suppose each consumer has a “private utility function”
wipxiq and a true/social utility function which is Bergsonian:

uipxq “ hipw1px1q, . . . , wnpxnqq.

Utilities are not truly interdependent in our sense, and so the coherence issue can be side-stepped.6 As
we are about to see in Section 6.3, coherence plays a critical role in more ways than one, and its explicit
consideration is a central feature of this paper.

6.3. The Role Played by Coherence. In Pearce (1983), Hori and Kanaya (1989), Bergstrom (1999),
and Vasquez and Weretka (2016), there is a concern with explosive or multiple utility representations.
That concern is often at some philosophical level: “should” utility representations explode? (no: bound
them — as in Vasquez and Weretka 2016), or: “should” utility representations exhibit the wrong com-
parative statics? (no: find a conditions that guarantee uniqueness — as in Pearce 1983, Hori and Kanaya
1989 or Bergstrom 1999). In short, given some game of love and hate, its coherence has intrinsic appeal.

The purpose of this section is to argue that coherence plays a more subtle role, which is related to the
intuitive appropriateness of the love-hate representation for certain classes of games. To understand
this, begin with a standard game in normal form. We will now assume that the strategy spaces Xi are
compact for every i, and that the payoff function ui : X Ñ IR — now to be thought of as the primitive
— is continuous in the product topology on X . We will say that such a game is regular if for every
player i and action xi P Xi, and for every pair of action profiles x´i and x1´i for the other players,

uipxi, x´iq ‰ uipxi, x
1
´iq implies u´ipxi, x´iq ‰ u´ipxi, x

1
´iq.

This is a mild restriction, stating that if player i is sensitive to some change in the actions of others, then
so is at least one other player. Then the following must be true:

OBSERVATION 1. Every regular game with continuous payoffs can be represented as a continuous
game of love and hate.

We relegate the formal proof to the Appendix, but it is easy to see the argument. For player i, and action
xi, let U´i be the compact set of utility profiles u´i of the other players, such that u´i “ u´ipxi, x´iq
for some action profile x´i. Define a function fi on xi and this sub-domain U´i by

fipxi, u´iq “ uipxi, x´iq,

where x´i is any action profile such that u´i “ u´ipxi, x´iq (the exact choice of x´i is unimportant,
by regularity). The Appendix verifies the continuity of fi on U´i, and a standard extension argument
extends fi for every i and xi to all opponent utility profiles on IRn´1.

6Parks (1991) shows that under certain assumptions the various non-malevolence and non-benevolence conditions used in
this literature imply the Bergsonian form described above.
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But equilibrium inefficiency is rife among games in general. How can Theorem 1 be reconciled with
Observation 1? The answer is that either coherence or reduced-game coherence must fail for any con-
tinuous love-hate representation, whenever the game has an inefficient equilibrium.7 We alluded to this
already in Example 2. To explain further, consider a 2ˆ 2 family of regular symmetric games:

Player 2

x̄2 x˚2

Player 1
x̄1 c, c b, a

x˚1 a, b d, d

To cut down on the number of cases, suppose that a, b, c, d are all distinct numbers. Suppose x˚ “
px˚1 , x

˚
2q is a Nash equilibrium that is Pareto dominated by x “ px̄1, x̄2q. This means that

(29) c ą d ą b.

Two cases of particular interest for us are (i) a prisoner’s dilemma, in which a ą c, so that the unique
equilibrium is the Pareto-inferior outcome x˚ with payoffs pd, dq; and (ii) a coordination game, in which
c ą a so that x˚ and x are both equilibria, the former Pareto-dominated.

Both cases yield inefficient equilibria. But these games are regular (and trivially continuous), and so
have continuous representations as games of love and hate. Because reduced game coherence holds
trivially in a game with two players, it follows from Theorem 1 that no such representation can be
coherent. It is instructive to directly verify this assertion. To this end, let tf1, f2u be a continuous love-
hate representation of our two-player game. Without any loss of generality, we can choose any bounded
continuous tfiu such that for i “ 1, 2,

fipx̄i, cq “ c, fipx̄i, aq “ b, fipx
˚
i , bq “ a, and fipx˚i , dq “ d.

Then, even though f1px̄1, dq is not pinned down by the payoff matrix, Lemma 2 and the fact that x˚ is
an equilibrium (which is implied by b ă d, as assumed in (29)) imply:

(30) f1px̄1, dq ď d.

Given the continuity of f1, (30) and f1px̄1,´Mq ě M for large M (coherence) together imply, by the
intermediate value theorem, that there is e ď d such that f1px̄1, eq “ e. By symmetry, f2px̄2, eq “ e
as well. The uniqueness of the payoffs at x̄ must then mean that e “ c. Because e ď d and c ‰ d, this
implies that c ă d, which contradicts (29). (As we shall see in Example 5, however, coherence can be
restored if the representing payoff functions are allowed to be discontinuous.)

6.4. Is Coherence Alone Sufficient for Theorem 1? We’ve already seen from the discussion in Sec-
tion 6.3 that coherence cannot be dropped from the statement of our theorem. For instance, the pris-
oner’s dilemma can be transformed into a game of love and hate. Because reduced game coherence
holds trivially for two-person games, any such transformation must lack coherence.

7Recall that coherence asks for a unique vector of utilities at every action profile, given the payoff functions fi. That is,
it is not asking for the demanding — and unreasonable — restriction that there should be just one set of representing payoff
functions, but only that there be one set of payoff numbers (per profile), given the representation.
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But Theorem 1 relies on two further restrictions. First, it assumes that payoff functions are continuous
in the payoffs of others. Second, it assumes that the game in question is not only coherent, it is reduced-
game coherent. In this Section, we argue that neither restriction can be dropped free of charge.

Example 5. The need for continuity. Consider a prisoner’s dilemma:

Player 2

x̄2 x˚2

Player 1
x̄1 3, 3 1, 4

x˚1 4, 1 2, 2

It is easy to verify that this normal form is generated by the following game of love and hate:

fipx
˚
i , ujq “

"

6´ 2uj if uj ď 3
3 if uj ą 3

fipx̄i, ujq “

"

9´ 2uj if uj ď 4.5
4.5 if uj ą 4.5

for i, j “ 1, 2 and j ­“ i. We now verify that this game is coherent, which (given just two players)
implies that it is also reduced-game coherent. Begin with the profile x “ px˚1 , x

˚
2q. If uj ą 3, then

ui “ fipx
˚
i , ujq “ 3. But then uj “ fjpx

˚
j , uiq “ 0, a contradiction. Therefore uj ď 3, so that

ui “ 6 ´ 2uj for i, j “ 1, 2 and j ‰ i, the unique solution to which is u1 “ u2 “ 2. By a similar
argument, upx̄2, x̄2q “ p3, 3q. Finally, consider px˚i , x̄jq. If uj ą 3, ui “ fipx

˚
i , ujq “ 3, which implies

that uj “ fjpx̄j , , uiq “ 3, a contradiction. So uj ď 3. By a similar argument, ui ď 4.5. Together,
these imply ui “ 6 ´ 2uj and uj “ 9 ´ 2ui, or upx˚i , x̄jq “ p4, 1q. That completes the verification of
coherence. Of course, these functions are discontinuous, a property necessitated by Theorem 1.

While we often view continuity as a mere technical device, here it emerges as having real conceptual
power. The prisoner’s dilemma is not, intuitively, a game of love and hate. Yet it mathematically can
be straitjacketed into one. If we attempt that straitjacketing with continuous payoff functions, then —
as already seen — coherence must fail. This example shows that one can also impose coherence, but
then continuity must fail, and that failure is not a technicality. Indeed, as a parallel to Observation
1, one could also ask if every regular game has a love-hate representation satisfying coherence and
reduced-game coherence, if one is willing to sacrifice continuity. We do not pursue this question here.

Example 6. The necessity of reduced-game coherence. To show that reduced game coherence cannot be
dropped from Theorem 1, we construct a continuous and coherent game with an inefficient equilibrium.
Our example will have three players (with two, reduced game coherence is satisfied trivially). Let
Xi “ tx

˚
i , x̄iu for i “ 1, 2, X3 “ tx3u. Define the following payoff functions on r0, 1s2 with range in

r0, 1s:8

f1px
˚
1 , u2, u3q “

$

&

%

0.95 if u2 ď 0.6
95pu2 ´ 0.7q2 if 0.6 ď u2 ď 0.7
0 if u2 ě 0.7

(31)

f1px̄1, u2, u3q “ u3(32)

8These functions have trivial bounded extensions to all of IR2, changing none of what follows.
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FIGURE 1. Verifying coherence at the strategy profile x̄ in Example 6.

f2px
˚
2 , u1, u3q “ 0.5 for all pu1, u3q(33)

f2px̄2, u1, u3q “

«

u
1{p1`u1q

3

1` u
1{p1`u1q

3

` 0.4` 0.1
b

2u1 ´ u21

ff2`2u1

(34)

f3px3, u1, u2q “ u1`u1
2(35)

Let x˚ ” px˚1 , x
˚
2q and x̄ ” px̄1, x̄2q. (Player 3 has only one strategy, so we don’t need to take note of

this.) We make the following three claims.

Claim 1. The game is coherent, and payoff functions are continuous in others’ payoffs.

Claim 2. x˚ is an equilibrium that is Pareto dominated by x̄: upx̄q " upx˚q.

Claim 3. Reduced-game coherence fails (as implied by Theorem 1 and the previous two Claims).

Proof of Claim 1. Continuity is immediate on inspecting (31)–(35). To prove coherence we need to
show that for any strategy profile x, fpx, .q has a unique fixed point.

Consider the strategy profile x˚. In this case upx˚q must satisfy (31), (33) and (35). It’s easy to see that
these equations have the unique solution upx˚q “ p0.95, 0.5, 0.51.95q.

Next, consider the strategy profile x̄. Suppose u is a fixed point of fpx̄, .q. Eliminating u3 from (32),
(34) and (35) we have:

u1 “ u1`u1
2 and u2 “

«

u
1{p1`u1q

1

1` u
1{p1`u1q

1

` 0.4` 0.1
b

2u1 ´ u21

ff2`2u1

,

so that

(36)

«

u
1{p1`u1q

1

1` u
1{p1`u1q

1

` 0.4` 0.1
b

2u1 ´ u21

ff2`2u1

´ u
1{p1`u1q

1 “ 0.
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FIGURE 2. More on coherence and reduced-game coherence in Example 6.

One solution to this is clearly u1 “ 1. Moreover, as Figure 1 (plotted using Mathematica) shows, the
left hand side of this equation is strictly positive for all u1 ă 1; see Panel A. The unique fixed point of
fpx̄, .q is therefore upx̄q “ p1, 1, 1q. Further verification can be provided by examining the derivative
of this function to the left of 1; see Panel B in Figure 1.

There are two remaining cases to consider. In the first of them, x1 “ x̄1 and x2 “ x˚2 . Then u1 “
0.51`u1 . The function gpu1q “ 0.51`u1 ´ u1 is strictly decreasing in u1. Moreover, gp0q ą 0 and
gp1q ă 0, which implies that gpu1q “ 0 has a unique solution strictly between between 0 and 1. The
accompanying values of u2 and u3 are obviously unique.

In the second case, x1 “ x˚1 and x2 “ x̄2. In this case the relevant equations are (31), (34) and (35).
Substituting (31) and (35) into (34) we have

„

u2
1` u2

` 0.4` 0.1
b

2u1 ´ u21

2`2u1

´ u2 “ 0

Given (31), there are three distinct possibilities, depending on whether u2 P r0, 0.6s, u2 P p0.6.0.7q or
u2 P r0.7, 1s. The Appendix shows that the only solution is one that corresponds to the first case:

(37)
„

u2
1` u2

` 0.4` 0.1
a

1.9´ .952
3.9

´ u2 “ 0 with u2 ď 0.6

Panel A of Figure 2 (again plotted using Mathematica) depicts the left hand side of (37). It shows that
fpx, .q has a unique fixed point and completes the proof of Claim 1.

Proof of Claim 2. Recall that upx˚q “ p0.95, 0.5, 0.51.95q and upx̄q “ p1, 1, 1q. To see that x˚ is an
equilibrium, we verify that u1px̄1, x˚2q ď u˚1 “ 0.95 and u2px˚1 , x̄2q ď u˚2 “ 0.5. The former inequality
follows from the fact that u1px̄1, x˚2q is the solution to 0.51`u1 “ u1, as we saw in the proof of Claim
1. It is easy to see that the solution is strictly less than 0.95. For the latter, observe that u2px˚1 , x̄2q is the
(unique) solution to (37). As Panel A of Figure 2 shows, that solution is strictly less than 0.5.

Proof of Claim 3. By Theorem 1, reduced game coherence fails. Consider the reduced game f1 with
players 2 and 3, and u1 “ 0.95. Let x2 “ x̄2. A fixed point of f1 is equivalent to a solution of (37), but
with u2 P r0, 1s rather than in r0, 0.6s. And there are three solutions to this equation for u2 P r0, 1s as
Panel B of Figure 2 shows. The only difference between the two panels is that in [B], the range of u2
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is r0, 1s rather than r0, 0.6s. The piecewise construction of f1px˚, .q was designed to ensure a unique
solution to the utility system at px˚1 , x̄2q but not when the utility of player 1 is fixed at u1px˚q “ 0.95.

In fact, it follows from the proof of our theorem that if an equilibrium x˚ is Pareto dominated by x̄, then
there must exist a reduced game in which the player(s) that have been removed get upx˚q, the others
play x̄, and the reduced game is not coherent. In the current example this is the case for the reduced
game with player 1’s payoff fixed at u˚1 . We leave it to the reader to verify that in this example this
feature does not hold for a reduced game in which one of the other players is removed.

6.5. Coherence: An Afterword. Theorem 1, as well as the subsequent discussion centered on Obser-
vation 1, tells us that a lot is hidden under the coherence rug. By no means do we suggest that coherence
is a universally desirable property. It is desirable only if we believe that the situation at hand is truly a
game with pure payoff externalities — as in Examples 1, 3 and 4 — and that too, not always.9 In the
wider world, replete with inefficient Nash equilibria, coherence is not an appropriate restriction (see the
implications of Observation 1). Whether coherence is a “good” condition or not is deeply contextual.
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APPENDIX

A. More on Differentiable Games, Pareto Optima and Equilibria. Section 6.1 of the main text recorded nec-
essary (and under quasi-concavity, sufficient) conditions for a Nash equilibrium, taking advantage of smoothness,
as well as the equivalence of profitable and naively profitable deviations (Lemma 2):

(38)
Bfipxq

Bxi
“ 0 for all i.

We then considered the problem of a social planner, who seeks to maximize
ÿ

j

λjujpxq

where λ ” pλ1, . . . , λnqJ is a system of nonnegative weights summing to unity. Assuming the solution is interior,
the first-order conditions are described as follows. Let bij be a generic entry for the matrix rI ´Dus

´1; then:

(39)
„

Bfi
Bxi



«

n
ÿ

j“1

bijλj

ff

“ 0 for all i.

Equation (39) has the flavor of a complementary slackness condition. To understand it, note that bij can be inter-
preted as the direct and indirect effects of a change in player i’s utility on that of player j, with the direct effects
(summarized by Bfj{Bui) and all indirect effects (echoing through the “utility matrix”) factored in. Condition
(39) says that as long as this weighted sum of direct and indirect effects is nonzero — as we change the utility of
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player i by varying her action — we should have player i at a stationary point in her own action at the planner
optimum (Bfi{Bxi “ 0). On the other hand, if the former weighted sum hits a zero somewhere, the planner might
need to prevent player i from maximizing her utility through her own choice of action.

Using (38), we concluded that the equilibrium conditions are also solutions to the planner’s first-order conditions
(39), suggesting that equilibria solve necessary conditions for planner optimality. That raises the question:

(a) Are the second order conditions for the planner’s problem satisfied, so that (39) characterizes all the (local)
optima for the planner’s problem?

One might also ask the reverse question: are all Pareto optima in a coherent game of love and hate supportable as
equilibria? In terms of first-order conditions, that would be related to:

(b) Does (39) imply (38)?

In general, the answer to both questions could be negative, as our next example illustrates.

First, the answer to (a) may be negative because the planner’s objective may not be concave in every xi even
when, for all i, uip.q is concave in xi. As we shall see in Example A.1 below, for some weights λ it may be
convex in some xi, which means that (39) may not even describe a local optimum to the planner’s problem.
This illustrates the difficulties of a “differential approach” even when the primitive functions are well-behaved.
Because the quasiconcavity of the planner’s objective function is not guaranteed we cannot use the fact that (38)
implies (39) to argue that an equilibrium is Pareto optimal.

Second, and now moving in the reverse direction, even if (39) holds at a Pareto optimum, it may not imply (38),
because it’s possible that

řn
j“1 bijλj “ 0 for some i. Given our assumption that uip.q is quasi-concave in xi

for all i, this implies that the Pareto optimum in question is not an equilibrium. In this situation, the optimal xi
imposes a zero marginal effect on the planner’s payoff, which could lead to a possible suppression of the best
response of agent i.

Example A.1. Pareto-optima may not be equilibria. Consider a two-person game where X1 “ X2 “ r0, 1s, and
each player’s payoff is strictly concave in her own action and decreasing in the other player’s payoff.

f1px1, u2q “1.5´ 1.5p0.5´ x1q
2 ´ 0.5u2

f2px2, u1q “1.5´ 1.5p0.5´ x2q
2 ´ 0.5u1.

This game is coherent (and trivially reduced-game coherent). For each x P X1 ˆX2,

u1pxq “1´ 2p0.5´ x1q
2 ` p0.5´ x2q

2

u2pxq “1´ 2p0.5´ x2q
2 ` p0.5´ x1q

2

The unique equilibrium is x˚ “ p0.5, 0.5q, with payoff profile u˚ “ p1, 1q. The planner’s problem, given
λ “ pλ1, λ2q where λi P r0, 1s and λ1 ` λ2 “ 1, is:

max
xPX1ˆX2

λ1u1pxq ` λ2u2pxq.

Substituting for uipxq, the planner objective function is λ1r1 ´ 2p0.5 ´ x1q
2 ` p0.5 ´ x2q

2s ` λ2r1 ´ 2p0.5 ´
x1q

2 ` p0.5´ x2q
2s which can be rewritten as:

(40) 1` pλ2 ´ 2λ1qp0.5´ x1q
2 ` pλ1 ´ 2λ2qp0.5´ x2q

2.

If λ P p1{3, 2{3q, the coefficients for p0.5´ x1q2 and p0.5´ x2q2 are both negative, (40) is strictly concave in x,
and the unique solution to maximizing (40) is x˚ “ p0.5, 0.5q. For λ in this range the answer to both (a) and (b)
is in the affirmative. If λ1 “ 1{3 the planner’s welfare is independent of x1 and optimality is consistent with any
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FIGURE 3. Pareto frontier for Example 5.

x1 P r0, 1s, while x2 “ 0.5. This corresponds to b11λ1 ` b12λ2 “ 0 in (39), and the answer to (b) is negative:
(39) does not imply (38).10 Of course, the players’ utilities do depend on x1. The case λ1 “ 2{3 is symmetric.

If λ1 ă 1{3, the planner’s objective function, (40), becomes convex in x1. If λ ą 2{3 it becomes convex in x2. In
either case, (39) is not consistent with the maximization of the planner’s objective, (40). Of course, x˚ continues
to satisfy these conditions but is not a solution to the planner’s problem for λ1 R r1{3, 2{3s.

The utility possibility frontier can be shown to have the form

u2 “

"

1.5´ 0.5u1 if u1 ď 1
3´ 2u1 otherwise

and is depicted in Figure 3. There is only one utility profile on the Pareto frontier, u˚, that matches the equilibrium
utility profile upx˚q “ p1, 1q. It is a solution to the planner’s problem for λ P r1{3, 2{3s. For λ not in this range,
(39) does not describe a solution to the planner’s problem. Moreover, every solution to the planner’s problem
requires that one of the players must be made to choose an action that is sub-optimal.

It should be noted that the situation we have just described cannot happen in a game with complementarities. To
see this, recall that for every i ‰ j, bij can be viewed as the full effect on uj of changing ui at any state x; that is,

bij “
Bvijpx, uiq

Bui
.

evaluated at ui “ uipxq, where vijpx, uiq is given by reduced-game coherence. If these effects are all positive as
in a game with payoff complementarities, then

řn
j“1 bijλj can never be zero, and so the first-order conditions for

a Nash equilibrium must hold throughout. With complementarities, equilibria and Pareto-optima are equivalent.

We return to a discussion of the connections between the welfare theorems of general equilibrium, and our
results. This time our focus is on the second welfare theorem. That second theorem is related to question (b).
With differentiability, it can be phrased as a comparison of two first-order conditions: “does (39) imply (38)?” As
we saw in Example A.1, the answer to this can be negative. But that won’t happen if all agents are non-malevolent
in the sense that their utilities are (weakly) positively related to that of others, or more generally if the game is one
of complementarities. Relatedly, Winter (1969) shows that if no consumer is malevolent, then the second welfare

10It can be shown that pb11, b12q “ p4{3,´2{3q.
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FIGURE 4. Verifying coherence at the strategy profile x̄ in Example 6.

theorem holds:11 every Pareto optimal allocation is sustainable as a competitive equilibrium with redistribution.12

It is therefore possible that the second welfare theorem exhibits a closer parallel across games and competitive
equilibrium, though this paper is not about the second welfare theorem or its analogue in game theory.

B. Proof of Observation 1. For each player i, and action xi, define compact U´i and fipxi, ¨q on U´i as in
the main text. Let um´i be a sequence of utility profiles in U´i converging to some u´i P U´i. Let xm´i be
some corresponding sequence of action profiles. By compactness, all the limit points of xm´i are bonafide action
profiles, and by regularity, uipxi, x´iq “ uipxi, x

1
´iq for any possible pair of limit points px´i, x

1
´iq. It follows

that fipxi, um´iq Ñ fipxi, u´iq, so fipxi, ¨q is continuous on U´i. By the Tietze extension theorem (see, for
example, Willard 1970, p. 99), fipx,¨q can be extended to a bounded continuous function on IRn´1.

C. Missing Details for Claim 2 in Example 6. The only detail for Example 6 that we need to supply is from
Claim 2. This is the demonstration that upxq is unique when x “ px˚1 , x̄2q. As we showed in the main text, this
requires us to show that there is a unique solution to:

„

u2
1` u2

` 0.4` 0.1
b

2u1 ´ u21

2`2u1

´ u2 “ 0

According to (31), substituting for u1 in this equation gives us three distinct possibilities:

(41)
„

u2
1` u2

` 0.4` 0.1
a

1.9´ .952
3.9

´ u2 “ 0 with u2 ď 0.6

(42)
„

u2
1` u2

` 0.4` 0.1
?

95pu2 ´ 0.7q
a

2´ 95pu2 ´ 0.7q2
2`190pu2´0.7q2

´ u2 “ 0 with 0.6 ă u2 ă 0.7

or

(43)
„

u2
1` u2

` 0.4

2

´ u2 “ 0 with u2 ě 0.7

11See also Rader (1980) and Parks (1991).
12In passing, take note of the tension between the conditions for each welfare theorem. While non-malevolence restores

the second welfare theorem, it is non-benevolence that appears to help with the first welfare theorem. Asking for both these
conditions to hold is to rule out externalities altogether; see Remark 8 in Parks (1991).
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Only the graph of the left hand side of (41) was shown in the main text. Figure 4 plots all three equations. Clearly,
only (41) has a solution. This shows that fpx, .q has a unique fixed point and completes the proof of Claim 2.


