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Abstract

We study incentives of low-quality sellers to disclose negative information when the only way

to communicate one’s quality is cheap-talk messages. This setting limits ability of high-quality

sellers to separate as any communication strategy they pursue can be costlessly imitated by low-

quality sellers. Two factors that can incentivize low-quality sellers to communicate their quality

are buyers’ risk-attitude and competition. Quality disclosure reduces buyers’ risk increasing

their willingness to pay. It also introduces product differentiation softening the competition.

We show that equilibria where low-quality sellers separate exist under monopoly and duopoly.

Equilibria where high-quality sellers separate exist under duopoly only.
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1 Introduction

Is honesty the best policy for sellers when it comes to revealing negative aspects of their products?

Arguably, in the presence of asymmetric information about product quality, low-quality sellers

would be better off concealing information about weaknesses of their products. Many empirical

studies also support this view by documenting multiple instances where negative information dam-

ages sales and purchases likelihood, through various routes such as publicity, negative customer

reviews, or word-of-mouth (Berger, Sorensen & Rasmussen 2010). Therefore, it seems natural for

sellers to hide negative information about their products from their customers.
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At the same time, we can find many cases where sellers voluntarily share negative information

about their products, contrary to what one would have expected. For example, Chipotle Mexican

Grill’s website highlighted their drawbacks in its “Room for Improvement“ section, in addition to

explaining positive aspects of their ingredients.1 Woot.com is famous for its preemptive revelation

of the disadvantages of listed products, stating that they would prefer customers not buying from

them to regretting their purchases.2

Many online retailers choose to disclose negative information about their products, albeit indi-

rectly, through customers’ reviews on their websites. In the early days of online trading, consistent

with the view that negative information can only damage sellers’ profit, sellers were reluctant to

allow customers to freely leave feedbacks on their websites. For example, online retailers working

with Amazon were “initially terrified” of Amazon’s product review policy, worrying about what bad

reviews could do to their bottom line. However, according to Craig Berman, Amazon’s then vice

president of global communications, its product review system turned out to have positive effects

on their performances despite the initial fears (Webley 2010). Ghose and Ipeirotis (2011) have an-

alyzed user-generated online product reviews with text-mining techniques and found that negative

product reviews are associated with increased product sales when the review text is informative

and detailed, so that it reduces customers’ uncertainty about the product.

Voluntary disclosure of negative information can also be found in many consumer-to-consumer

online marketplaces. Sellers at eBay often voluntarily describe weaknesses of their listed prod-

ucts, both via cheap-talk messages such as “the product is in fair condition”, and via verifiable

information such as pictures of specific damages and scratches. Notably, sellers at Craigslist also

often reveal negative information about their listings even though there is no reputation building

mechanisms and most sales are one-time interactions with no repeated-game incentives of being

honest. Jin and Kato (2006) found that many online sellers of collectible baseball cards revealing

low grades were actually honest about their claims, even though buyers could not correctly evaluate

the quality prior to purchase.

Several empirical studies have also found some evidences that negative information may not

necessarily hurt profits. A frequently observed practice of two-sided advertising, wherein sellers

provide certain negative information about their products in conjunction with asserting positive

claims, has been shown to help sellers by enhancing credibility and positively affecting consumer

choices (Crowley & Hoyer 1994; Eisend 2006, 2007; Settle & Golden 1974). Similarly, the blemishing

effect, which is an introduction of small amount of negative information, has been shown to enhance

positive image of the product, both in the lab and in the field settings (Ein-Gar, Shiv & Tormala

2012).3

Even though the phenomenon of seller honesty is not as uncommon as one would expect, it

1https://www.bloomberg.com/news/articles/2013-06-18/the-genetically-modified-burrito-chipotle-tells-all
2 http://www.woot.com/faq?ref=ft_wiw_faq. Archived version: https://archive.is/b9cxI
3In the literature, the blemishing effect is considered to be different from the two-sided message’s effect. While the

former is just about highlighting a single minor flaw or downside, the latter is about addressing negatives, offering

more complete information, or seeming more balanced (Ein-Gar et al. 2012, p. 856).
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has not received much attention in the academic literature especially from theoretical perspective,

and the extensive literature on information disclosure has focused primarily on the tension between

consumers who want more information on quality and low-quality sellers who would like to hide it

(Dranove & Jin, 2010). This paper thus attempts to fill this gap by investigating the incentives of

low-quality sellers to disclose, rather than conceal, negative information about their products.

To focus on the incentives of low-quality sellers, we consider a model where buyers cannot

evaluate the quality of the products,4 and standard tools that high-quality sellers can use to signal

their quality are not available. More specifically, there are no repeated purchases, no reputation

concerns, no warranties, and buyers do not use prices to infer quality. The only tool available

to sellers to affect buyers’ beliefs about product’s quality is cheap-talk messages. The cheap-talk

setting limits the ability of high-quality sellers to separate, as any communication strategy they

employ can be costlessly imitated by low-quality sellers, thereby shifting the focus to incentives of

low-quality sellers’ in any information transmission. We identify two factors that can incentivize

low-quality sellers to reveal their quality in our model. First, revealing one’s quality, whether it is

low or high, reduces the risk associated with the purchase, and increases buyers’ willingness to pay.

The literature has generally agreed that risk has a major negative influence on customers’ purchase

decisions (Bauer 1960; Dowling 1986; Markin, Jr. 1974; Ross 1975; Stone & Winter 1985; Taylor

1974). In an online setting, Dewally and Ederington (2006) showed empirically that risk reduction

increases the valuation of listed products on online auctions. Second, revealing one’s quality allows

a seller to differentiate one’s product from the competitor’s, thereby softening the competition and

increasing one’s profits. Jin and Sorensen (2006) have shown that hospitals’ decisions to disclose

quality scores, either being positive or negative, are driven by incentives to differentiate themselves

from competitors.

To separate the roles of these two factors, we first consider the setting with a monopolistic seller

and then extend it by adding the second seller afterwards. The model’s setup is as follows. In the

case of the monopolistic setting, the seller observes his type and sends a cheap-talk message. Buyers

update their beliefs about the product’s quality based on the received message, and then buyers’

demand is determined by the updated beliefs. The seller sets the profit-maximizing price given the

demand, and buyers decide whether to purchase the product. The duopoly setting is similar, except

that there are two sellers and their prices are determined by an equilibrium of a pricing subgame.

Sellers are risk-neutral profit-maximizers and buyers are not risk-neutral and dislike uncertainty

about product quality. We model buyers’ risk-attitudes using two alternative frameworks: risk-

aversion and loss-aversion. Buyers differ in their degree of loss- or risk-aversion. Other things being

equal, buyers with higher (lower) loss/risk-aversion are more (less) likely to prefer the product with

certain but lower quality over the product with uncertain but higher expected quality.

In our setting, sellers, when deciding whether to reveal their types or not, face a potential

trade-off between a quality advantage of pretending to be of a higher quality, and an information

advantage of revealing their (lower) quality and removing uncertainty. The strength of these two

4In other words, there exists information asymmetry about quality, and the products are high in experience or

credence attributes.
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effects determine whether revealing one’s quality can occur in equilibrium. In the monopoly setting

we show that low-quality and only low-quality sellers can separate. Were high-quality sellers able to

separate, low-quality sellers would always find it optimal to imitate them. A low-quality seller, on

the other hand, can choose to separate as long as the benefits of information disclosure are higher

than the benefits of a high-quality claim. Furthermore, since benefits of separation for low-quality

sellers are not as high, imitating the low-quality type who chooses to reveal its quality is not as

attractive.

In the second part of the paper, we study how incentives and opportunities to disclose quality

information change in the duopoly environment with two sellers. It turns out that equilibria under

the duopoly setting include outcomes that were not possible under monopoly setting. First, there

are equilibria where the highest-quality type separates, and the low-quality type chooses not to

imitate it. Second, in the case of risk-averse buyers, there are equilibria where the seller with

the lowest quality separates. Both types of equilibria become possible because of the effect that

competition has on the quality advantage. Different from the monopoly setting, sellers’ profit

depends not only on their expected quality but also on the competition intensity. If a message

associated with higher quality is likely to result in a more intensive competition, it weakens the

quality advantage, which in turn weakens the incentives of low-quality sellers to pool with high-

quality types. That allows for a possibility of high-quality sellers to separate in equilibrium and,

in the case of risk-averse buyers, allows for an equilibrium where the lowest-quality seller chooses

separation over pooling with high-quality types.

Overall, this study contributes to the literature on information disclosure by focusing on the

incentives of low-quality sellers to reveal negative information. First, we show that even when the

ability to communicate one’s quality is limited to cheap-talk messages, and when there are no market

frictions, such as search or matching, information transmission is nonetheless possible. Second, due

to the limited ability of high-type sellers to communicate their quality, the information transmission

is driven by incentives of low-quality sellers. Third, we identify two factors—buyers’ risk-attitude

and increased product differentiation—that can incentivize low-quality sellers to separate. We

analyze the role of each factor on information disclosure and show how they interact with each

other. Finally, despite the cheap-talk nature of information transmission, we show that under

certain conditions low-quality sellers might choose not to imitate high-quality sellers, allowing for

cheap-talk equilibria where high-quality sellers separate.

The paper is organized as follows. In Section 2 we review related literature. In Section 3 we

introduce our benchmark model assuming monopoly, and in Section 4 we consider the effect on

competition by examining the duopoly situation. Section 5 provides an extension of the model by

showing what happens when price is used as a signal of quality. We summarize and discuss the

findings of this paper in Section 6. All proofs are provided in the appendix.
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2 Literature Review

The literature on information disclosure and information asymmetry has been primarily centered

on the analysis of conflicting interests of high-quality sellers who want to credibly communicate

their quality information to customers, and low-quality sellers who want to hide it. Studies on

unraveling, for example, have argued that full disclosure naturally begins from the seller with the

highest quality and advances to the sellers with lower quality (Grossman 1981; Milgrom 1981;

Viscusi 1978), without considering how low-quality sellers might initiate information disclosure.

Empirical literature has mainly examined how negative information hurts sellers, suggesting little

basis for low-quality sellers’ information disclosure. For example, many studies have shown that

negative information decreases sales and purchase likelihood through publicity (Tybout, Calder &

Sternthal 1981; Wyatt & Badger 1984), word-of-mouth (Arndt 1967; Engel, Kegerreis & Blackwell

1969; Haywood 1989; Laczniak, DeCarlo & Ramaswami 2001; Mizerski 1982; Wright 1974), and

customer reviews (Basuroy, Chatterjee & Ravid 2003; Chevalier & Mayzlin 2006; Clemons, Gao &

Hitt 2006; Dellarocas, Zhang & Awad 2007; Reinstein & Snyder 2005).

Our paper differs from that strand of literature and belongs to a smaller group of papers that

study incentives of low-quality sellers to disclose quality information. Board (2009) has shown

that in the framework with risk-neutral buyers where information disclosure is costless, credible,

and verifiable, low-quality sellers may disclose their types if the loss from lower perceived value is

smaller than the gain from decreased competition with high-quality sellers. Guo and Zhao (2009)

have considered a duopoly setting where private information can be credibly and truthfully, though

not costlessly, disclosed. In their setting, duopoly sellers consider voluntarily disclosing quality

information even when the quality is not the highest, in order to achieve differentiation and avoid

direct competition. Our paper has a similar trade-off between information disclosure and product

differentiation, but in a different setting, where private information cannot be credibly communi-

cated and buyers are not risk-neutral. In the setting where quality information is not verifiable,

Gardete (2013) has applied a cheap-talk model to a market with a search good, where customers

know the true quality before purchase. He shows that if customers differ in their marginal valua-

tions for quality, then low-quality firms may want to reveal their types to attract those customers

with low marginal valuations for quality. Kim (2012) has shown that, in the presence of search and

matching frictions and when it is buyers who make offers, low-quality sellers can use cheap-talk

messages to reveal their types in order to attract more buyers and intensify competition among

them. Similar to Gardete (2013) and Kim (2012), we assume that quality information is com-

municated via cheap-talk messages. However, in our paper, buyers cannot learn quality prior to

purchase, and there are no search and matching frictions. Finally, Tadelis and Zettelmeyer (2015)

have performed a large-scale field experiment in wholesale automobile auctions and proved that

disclosure of negative information can increase the revenue of sellers through matching buyers with

different quality preferences to appropriate markets.

Our paper is also related to the literature on cheap-talk communication between customers

and sellers when their incentives do not align, information disclosure is payoff-irrelevant, and there
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is no credibility cost (Aumann & Hart 2003; Gardete 2013; Li 2005; Yi Zhu & Dukes 2015).

Various instruments, such as properly termed revenue-sharing contracts (Li 2005) and advertising

(Gardete 2013), have been found to match the incentives of sellers and buyers, thereby making the

cheap-talk communication credible. In our setting, the information transmission also occurs via

cheap-talk messages, and the incentives of sellers and buyers are originally misaligned as sellers want

to hide weaknesses of their products while buyers would like to have that information. However,

the consideration of risk and risk-attitudes of customers play the role of matching buyers’ and

sellers’ incentives and making credible information disclosure mutually beneficial. Therefore, our

paper contributes to this literature by suggesting that consideration of risk can facilitate cheap-talk

communications by aligning the incentives of both parties.

3 Monopoly

3.1 Basic setup

We first consider a model with a seller that sells a product with exogenously given quality that is

unobserved by buyers. The quality is distributed with a cdf F (v) on an interval [vL, vH ] and the

distribution can be either discrete, or continuous with a positive density on [vL, vH ]. The marginal

cost of the product with quality v is cv. Unless explicitly stated otherwise, we assume that cv and

v− cv are strictly increasing functions of v. If the seller of type v serves share sv of buyers at price

pv, his expected profit is

Uv = (pv − cv)sv.

There is a continuum of buyers that we normalize to 1. Buyers’ utility is determined by the

price, p, at which they purchase the product, as well as their beliefs about the product’s quality, µ.

Buyers are not risk-neutral and dislike uncertainty about product quality. We model buyers’ risk-

attitude using two alternative frameworks. The first framework assumes that buyers are loss-averse

with the references point endogenously determined by the expected quality. Among a variety of

reference-dependent models with endogenous reference points (see e.g. Gul, 1991; Shalev, 2000; or

Köszegi & Rabin, 2006) the framework that we employ in the paper “... has proven quite popular

in applications, as the reference point is neither stochastic nor recursively defined, but is simply

the expected consumption utility of the lottery.” (Masatlioglu and Raymond, 2016, p. 2765).5

Specifically, if, given beliefs µ and price p, the buyer purchases the product of quality v, then his

5To see how relation to Köszegi & Rabin (2006), consider a simple case of two qualities (vL, vH) with probabilities

(qL, qH). Define the reference point as getting the product with quality Ev with probability 1. Ignoring price p, for

the sake of example, the agents’ utility from getting the product is Ev + qL(λ − 1)(vL − Ev). Here λ corresponds

to notations from Köszegi & Rabin (2006), and is the slope in the domain of losses. According to notations in our

paper λ − 1 = b. Expression Ev + qL(λ − 1)(vL − Ev) is exactly the equation (2) in our paper. The difference

between preferences used in our paper and Köszegi & Rabin (2006) is in the utility of not buying the product. In

our paper it is 0. For the KR-agents, utility from not buying is not zero but −λEv. Thus for the KR preferences,

it is a personal equilibrium to have reference point “quality Ev with probability 1” and decision “to buy” whenever

Ev + qL(λ− 1)(vL − Ev) > −λEv. In our paper, it’s simpler. Buyers buy whenever Ev + qL(λ− 1)(vL − Ev) > 0.
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utility is

ub(v, p, µ) =

{
v − p if v ≥ Eµv
v − p+ b(v − Eµv) if v < Eµv

(1)

Eµv is a reference point that determines whether the outcome is viewed as a gain or a loss. Pa-

rameter b ≥ 0 measures the degree of loss-aversion. If the purchased product has the quality below

what the buyer had expected, then the buyer experiences the loss. When b = 0, the buyer is

risk-neutral. Higher b means higher degree of loss-aversion. In what follows, we assume that buyers

differ in their degree of loss-aversion. We assume that b is distributed with a positive differentiable

log-concave density φ(b) and support [0, B]. At the same time, as equation (1) indicates, all buyers

value quality equally and have the same price-quality trade-off.

Taking expectations of (1) over v we get

ULAb (p, µ) = Eµv − p+ b

∫ Eµv

vL

(v − Eµv)f(v)dv = Eµv − p− b · ELossµ, (2)

where ELossµ = −E[(v − Eµv) · 1v<Eµv] > 0 is the buyer’s expected loss, which is defined to be

positive.

The second framework is the expected utility framework with risk-averse buyers. Buyers have

concave Bernoulli utility function, u(·), with constant absolute risk-aversion. Buyers’ utility from

purchasing a product with uncertain quality v at price p is

UEUb (p, µ) = Eµu(v − p). (3)

Given the CARA assumption, we do not need to specify the initial wealth. Buyers differ in the

degree of absolute risk-aversion, γ. With a slight abuse of notations, we will denote the distribution

of buyers’ risk-aversion as Φ(γ). Density φ(γ) is assumed to be positive, differentiable, and log-

concave.6

Sellers can communicate their product’s quality to buyers using cheap-talk message, m ∈ M.

We assume that M is rich enough that it includes the support of F (v). The timing is as follows.

First, the seller learns his type, v. Second, the seller sends a publicly observable cheap-talk message

m ∈ M. Third, buyers observe the message and form posterior beliefs µ(m) about the quality

distribution, which determines their demand for the seller’s product. Fourth, the seller chooses the

price p, and, finally, buyers decide whether to purchase the product or not.

6Both loss-aversion and expected-utility frameworks capture the idea that buyers receive dis-utility when the

product’s quality is uncertain. The loss-aversion framework has a simpler functional form, making it more tractable.

However, just like many non-EU frameworks such as variance-aversion frameworks, the loss-aversion preferences can

violate state-dominance. For example, when b is high, the buyer might prefer a product with known low quality over

the product whose quality can be either low or high. It violates state-dominance as the latter option will result in

either the same (low) quality as the former option, or in the better (high) quality. Yet, buyers with high b will prefer

the former. Our results, however, are not based on the violation of state-dominance, as state-dominance holds in the

expected-utility framework.
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Definition 1 An equilibrium is a quadruple (m(v), p(m, v), µ(m), s(µ, p)) where m(v) is the seller’s

messaging strategy, p(m, v) is the seller’s pricing strategy, µ(m) is the buyers’ beliefs about the

quality distribution, and s(µ, p) is the share of buyers who purchase the product such that the

following conditions hold:

a) given m and buyer’s demand s(µ(m), p), the seller of type v chooses price, p(m, v), that

solves his profit-maximization problem:

max
p

(p− cv)s(µ(m), p);

b) the seller of type v sends message m that maximizes his profit given buyers’ beliefs and

purchasing decisions

max
m∈M

(p(m, v)− cv)s(µ(m), p);

c) buyers’ purchasing decision is optimal, that is

s(µ, p) = Pr({Ub(p, µ) ≥ 0});

d) if message m is sent with positive probability, buyers beliefs µ(m) are derived from m(v) by

the Bayes’ rule.

Some remarks are due here. First, we assume that prices are determined after the message, and

not jointly. This assumption is not essential in the case of a monopolistic seller. We do impose it

for the sake of the similarity with the duopoly setting. Second, buyers’ beliefs, µ, depend only on

cheap-talk message m. The model is stripped away from standards mechanisms that are identified

in the literature as a way for high-quality sellers to credibly signal their quality. There are no

repeated purchases, warranties, reputation, and buyers do not use prices to infer a product’s quality.

Limiting the ability of high-quality sellers to signal their quality puts focus on the incentives of low-

quality sellers who, if they choose to, can costlessly imitate any strategy pursued by high-quality

sellers. If any information about low-quality product is revealed, it is driven not by high-quality

sellers’ ability to separate, as is the case in unraveling or education-as-signaling models, but by

low-quality sellers’ intent not to pool with high-quality sellers. Finally, even though sellers with

different qualities will set different profit-maximizing prices given the same beliefs µ, we assume

that prices do not have the signaling role, as they do not affect buyers’ beliefs.7 That is the case

when, for example, buyers do not have information regarding the underlying sellers’ cost structure,

or demand conditions to infer quality from sellers’ prices. From an empirical point of view, the

literature has identified product categories for which there is a weak or no relationship between

perceived quality and prices.8 From a theoretical point of view, it is well-known that under certain

7An alternative way to ensure that prices do not serve as signals is by letting an uninformed party — buyers, in

our case — make a price offer (see e.g. Kim 2012).
8Rao and Monroe (1989) and Lichtenstein and Burton (1989) have found that customers are not capable of

predicting quality from price signal for durable, higher-priced, or non-frequently purchased products. In their recent

meta-study that covered 23 studies on price-perceived quality relationship, Vöckner and Hofmann (2007) have shown

that durable goods as well as services have much weaker price-perceived quality relationships than fast-moving
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conditions prices can serve as credible signals of quality resulting in the fully revealing equilibrium.

What our setting allows us to demonstrate is that, even if prices are not perceived to be informative

about products’ quality, information transmission is, nonetheless, possible. In Section 5, we relax

this assumption and consider an extension where prices serve as signals of quality.

3.2 Equilibrium Analysis

We now begin analysis of our framework. As a benchmark, we first look at the case of risk-neutral

buyers. Proposition 1 shows that there is no equilibrium with any relevant information being

transmitted, where by relevant information we mean information that changes buyers’ valuation

of the product. This proposition is trivial, so no formal proof is provided. Intuitively, if two on-

equilibrium messages result in different beliefs about expected quality, then no seller would find it

optimal to send the message with lower expected quality.

Proposition 1 If buyers are risk-neutral, then for any on-equilibrium message m, posterior beliefs,

µ, are such that Eµ(m)v = Ev. After any equilibrium messages, the seller, regardless of the product’s

quality, charges price p(m, v) = Ev and serves the whole market.

Consider now a case when buyers are not risk-neutral. In what follows, we say that message

ms ∈M is a separating message if Pr(v = vs|ms) = 1 for some type vs. We say that mp ∈M is a

pooling message if there is more than one type that sends mp. We say that a seller separates if he

sends a separating message with positive probability. Otherwise, we say that a seller pools.

It is straightforward to derive the buyers’ demand and the seller’s optimal price as a function

of buyers’ beliefs. We will do it for the case of loss-averse buyers, and the case of risk-averse buyers

is similar. If a seller with quality v sends a separating message ms, then buyers no longer face

uncertainty about the seller’s quality. All buyers know the quality of the product to be v. The

seller will set price p = v, all buyers will purchase the product, and the seller will earn the profit of

v− cv. If a seller with quality v sends a pooling message mp, then the customer indifferent between

purchasing and not has loss-aversion b0 such that:

Eµ(mp)v − p− b0ELossµ(mp) = 0,

where µ(mp) are buyers’ beliefs about the quality distribution conditional on mp. Only buyers with

b < b0 will purchase the product, and therefore the demand function is given by Φ

(
Eµ(mp)v − p
ELossµ(mp)

)
.

The optimal price for type v is then determined from maxp Φ

(
Eµ(mp)v − p
ELossµ(mp)

)
(p− cv).

consumer goods. This is relevant to our paper, given that durable goods, as any other complex products, and services

are generally low in search attributes and high in experience and credence attributes. According to Vöckner and

Hofmann (2007), with fast-moving goods, consumers are more likely to simplify the decision-making process and rely

on readily available cues, such as prices. With services and durable goods, on the other hand, consumers are more

motivated to engage in an extensive decision-making process instead of relying on prices.
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The next Proposition characterizes properties of equilibrium messaging strategy in the case

of loss-averse buyers. There exists threshold v̄ such that types with higher quality, v ≥ v̄, send

messages according to the partition vL ≤ v̄ = v1 ≤ · · · ≤ vN+1 = vH . All sellers in the interval

[vi, vi+1] send the same message mi, and for sellers with v ∈ (vi, vi+1) message mi is strictly optimal.

Types with lower quality, those with v < v̄, are indifferent between on-equilibrium messages and

set the price low enough to serve the whole market. The price has to be the same, regardless of

the message the low types send, since otherwise a seller charging a lower price could profitably

deviate. When it is not possible to serve the whole market, i.e. when B is sufficiently high, then

v̄ = vL meaning that the equilibrium messaging strategy will only have the interval structure. The

last part of Proposition 2 is to show that all prices charged by sellers in [vi−1, vi] are lower than

prices charged by sellers in [vi, vi+1]. That is, even though buyers do not infer quality from prices,

in equilibrium one cannot have a seller claiming “my quality is in interval [1, 2]” charging a price

higher than a seller claiming “my quality is in interval [2, 3]”.

The proof of Proposition 2 relies on the fact that consumers’ demands given different buyers’

beliefs satisfy the single-crossing condition. The proof does not depend on whether the quality

distribution is discrete or continuous. That is, nowhere in the proof it is assumed that type v̄ or

types {vi} belong to the support of the quality’s distribution F (v).

Proposition 2 Assume that buyers are loss-averse. Assume that no two messages m and m′ result

in beliefs such that Eµ(m)v = Eµ(m′)v and ELossµ(m) = ELossµ(m′). Let v̄ be the highest quality

type that serves the whole market, if it exists, and let M̄ be the set of equilibrium messages sent by

types with v ≤ v̄. Then

i) all types v ≤ v̄ charge the same price, serve the whole market, and are indifferent between

any message from M̄;

ii) if there are two types v1 and v2 such that v̄ ≤ v1 < v2 and that weakly prefer message m

over any other messages, then any v ∈ (v1, v2) will strictly prefer m over any other messages;

iii) for any v1 and v2 such that v̄ ≤ v1 < v2, type v1 will charge a strictly lower price.

As an application of Proposition 2, consider a setting with three quality levels where vL =

0 < vM < vH and cL = 0 < cM < cH . Assume that each quality level has prior probability

of 1/3 and that vM < Ev so that the medium quality is below average. Buyers are loss-averse

with b ∼ U [0, B]. Consider an equilibrium where vM separates. For the sake of example, we

look at equilibria with only two on-equilibrium messages: a pooling message mp, and a separating

message ms. Then types vL and vH send mp with probability 1, and type vM sends ms with

a positive probability and mp with a complementary probability. Then µ(mp) = (σ, τ, σ) where

σ = Pr(v = vL|mp) = Pr(v = vH |mp). Given the prior, 1/3 ≤ σ ≤ 1/2. For example, if vM sends

ms with probability 1 then σ = 1/2; if vM sends ms with probability 0 then σ = 1/3.

Conditional on ms, type vM sets optimal price pM = vM and serves the whole market, earning

profit vM − cM . To calculate optimal price given mp, we first calculate buyers’ demand, which is

determined by ELossµ and Evµ where:
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ELossµ = −[τ(vM − τvM − σvH) + σ(vL − τvM − σvH)]

= −σ(vMτ − vH(τ + σ)) = σ[(vH − vM )− σ(vH − 2vM )],

and Eµv = vM + σ(vH − 2vM ). Given mp, the demand faced by a seller is

s(µ, p) =
1

B

Eµv − p
ELossµ

=
1

B

vM + σ(vH − 2vM )− p
σ[(vH − vM )− σ(vH − 2vM )]

. (4)

From Proposition 2.i) follows that in equilibrium two conditions must hold: it is optimal for both

vL and vM to serve the whole market, and the price they charge must be equal to vM .

Type vM has a higher cost, so it is sufficient to check the first condition for vM only. Given µ,

the highest price to serve the whole market is pw = Eµv − B · ELossµ. By the second condition

pw = vM . Price p = vM is optimal for the medium-quality seller given mp when

σ(vH − 2vM ) + vM − cM
2σ(vH − 2vM )

≥ 1. (5)

From pw = Eµv −B · ELossµ = vM , we can solve for σ, which is equal to

σ =
vH − vM
vH − 2vM

− 1

B
, (6)

and by plugging it into (5) we get

cM ≤ (vH − 2vM )
1−B
B

. (7)

It is easy to verify that if parameters are such that σ ∈ [1/3, 1/2] and (7) is satisfied then an

equilibrium where type vM separates exists. We already established that vL and vM are indifferent

between pooling and separating. The only thing left is to show that it is optimal for vH to pool.

If vH deviates and sends ms, the optimal price is p = vM and the profit is vM − cH . If vH sends

mp, it can guarantee itself the profit of vM − cH by setting p = vM . But this is a lower bound on

vH ’s profit since its optimal price, given mp, can differ from p = vM . Thus, vH weakly prefers mp

over ms. Note that B can be neither too high nor too low. It cannot be too high as otherwise too

many loss-averse buyers would make separation attractive for other types. It cannot be too low

since otherwise separation is not profitable.

An example of equilibrium where type vM separates is given below.

Example 1 Consider vH = 3, vM = 1 and vL = 0. The probability of each quality is 1/3. The

cost is ci = 1/4vi. The loss-aversion is distributed with b ∼ U [0, B], where B = 2/3. vM sends

separating message ms with probability 1, and vL and vH send pooling message mp with probability

1. Prices are pL = 1, pM = 1, and pH = 9/8. Demand conditional on mp is given by
1

B

3/2− p
3/4

,

where 3/2 = (vH + vL)/2 is the expected quality of the product conditional on mp, and 3/4 is the

expected loss. Profits are πL = 1, πM = 3/4, πH = 9/32.
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3.3 Equilibria with Separation

In the general setting, as defined above, the set of equilibria is very rich. In what follows, we will

focus on equilibria which satisfy an additional property that there exists a type that separates with

a positive probability, just like in Example 1.

Proposition 3 shows that in any equilibrium at most one type can separate, and if a seller

separates, his quality must be below average. The first part is trivial. If two types, v1 < v2,

separate then type v1 will optimally deviate and imitate v2. The second part follows from the

fact that high- and low-quality sellers differ in their incentives and ability to separate. When

low-quality sellers, those with quality below average, separate, they face the trade-off between the

information advantage of revealing their (lower) quality but removing quality uncertainty and the

quality advantage of pooling with higher-quality sellers. High-quality sellers, on the other hand, do

not face such a trade-off. For them, if they can separate, they get both the information advantage

and the quality advantage. But then their separation is impossible in an equilibrium as there will

always exist a low-quality type that would find it profitable to imitate the separating high-quality

seller.

The next proposition formalizes this argument. It holds for both loss- and risk-averse buyers.

Proposition 3 In equilibrium, at most one type separates. There is no equilibrium where type

v > Ev separate.

Proposition 3 have shown that types with too high quality cannot separate. The natural question

then is whether types with too low quality can separate or not. Clearly, for a product of lower

quality, the quality advantage of imitating higher types is greater and can dominate the information

advantage of separation.

To answer this question we look at the lowest-quality type vL and whether it is able to separate

or not. It turns out that the answer differs based on whether buyers are loss- or risk-averse. In the

case of the loss-averse buyers there exist equilibria where even the lowest quality type separates.

In the case of risk-averse buyers such equilibrium do not exist. To illustrate this point, we first

present an example of an equilibrium with loss-averse buyers where vL separates.

Example 2 Let vL = 1, vM = 2 and vH = 3. Assume that ci = (1/4)vi, Pr(v = vL) = 1/2,

P r(v = vM ) = Pr(v = vH) = 1/4, and b ∼ U [0, B] where B = 147/16. In equilibrium, vL mixes

between separating, ms, and pooling, mp, messages with equal probabilities. Other types send mp.

Conditional on mp, beliefs are Evmp = 2 and ELossmp = 1/3. Conditional on ms, vL sets price 1,

and earns profit of 3/4. Conditional on mp, vL sets price 9/8, serves 6/7 of the market and earns

profit of 3/4. For other types: pM = 5/4 and πM = 9/49; pH = 11/8 and πH = 25/196.

Next, we prove that with risk-averse buyers, type vL cannot separate in equilibrium. Proof by

contradiction. Assume the lowest type separates with message mL. It then charges price p = vL

and earns profit vL− cL. Consider another on-equilibrium message, call it m, that generates beliefs

µ. Given µ, the product has a positive probability of having quality above vL and, by definition
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of vL, zero probability of having quality below vL. Thus Eµ(m)u(w + v − vL) > u(w), where w is

initial wealth. It then turns out that type vL has a profitable deviation from equilibrium message

mL. The seller can send message m and charge the price vL + ε where ε is sufficiently small. Just

as in the case of sending separating message mL, the seller will serve the whole market but at a

higher price. Indeed, for any risk-averse buyer Eµ(m)u(w+ v− vL− ε) > u(w) as long as ε is small

enough, so that all buyers prefer purchasing the product with uncertain quality at price vL+ε over

not purchasing it. Then the seller’s deviation profit is vL + ε− cL and the deviation is profitable.

This establishes the following proposition.

Proposition 4 Let vL be the lowest possible quality. When buyers are loss-averse, there exist

parameter values such that there exists an equilibrium where the seller with vL separates. When

buyers are risk-averse, there is no equilibrium where the seller with vL separates.

The difference between loss-aversion and risk-aversion cases is that risk-aversion respects state-

dominance. Risk-averse buyers will always have a higher willingness to pay for a product whose

quality can be either vL or better than for a product with certain quality of vL. This is why it is

never optimal for vL to separate. For loss-averse buyers, on the other hand, if degree of loss-aversion

is high enough, a buyer can have higher willingness-to-pay for a product of certain quality vL over

a product that can be either vL or better. That makes separation of vL possible in equilibrium.

4 Duopoly

4.1 Equilibrium. Risk-neutral benchmark.

In the section we consider how competition affects sellers’ incentives to reveal negative information.

We extend the framework from the previous section by assuming that there are two sellers on

the market. The seller’s quality is exogenously given and is pure private information, i.e. it is

unobserved by buyers and by the other seller. The quality distribution is the same for both sellers

and is given by a cdf F (v). The distribution can be either discrete or continuous with a positive

density on [vL, vH ].

The game has three stages. The first stage is the messaging stage, where both sellers simulta-

neously send costless messages (mi,mj) that are publicly observed. The second stage is the pricing

stage. Given (mi,mj), sellers simultaneously determine prices for their products (pi, pj). The third

stage is the purchasing stage. Buyers observe messages and prices of both sellers and choose which

product to purchase. Utility of buyers and sellers is the same as in the monopoly case. Sellers

are risk-neutral maximizers of their expected profit, and buyers can be either loss- or risk-averse.

Furthermore, we assume that buyers’ valuation of the product is high enough that they always

purchase a product. The equilibrium in this model is defined as follow.

Definition 2 An equilibrium of the duopoly setting is a set of messaging and pricing strategies,

mi(vi), mj(vj), pi(mi,mj , vi), pj(mi,mj , vj); buyers’ beliefs µi(mi), µj(mj); and buyers’ purchasing

strategies si(µi, µj , pi, pj), sj(µi, µj , pi, pj) such that
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a) messaging strategy mi(vi) maximizes i’s profit given seller j’s messaging and pricing strate-

gies, and buyers’ beliefs and purchasing strategies:

max
mi∈M

Evj (pi(mi,mj , vi)− cvi)si(µi, µj , pi, pj); 9

b) pricing strategy pi(mi,mj) maximizes i’s profit given mi, mj, seller j’s pricing strategy, and

buyers’ beliefs and purchasing strategies:

max
pi

Evj (pi − cvi)si(µi, µj , pi, pj);

c) buyers purchasing decisions are optimal:

si(µi, µj , pi, pj) = Pr({Ub(pi, µi) ≥ Ub(pj , µj)}),

and they always purchase a product: si(µi, µj , pi, pj) + sj(µi, µj , pi, pj) = 1;

d) if message mi is sent with positive probability, buyers’ beliefs on the quality of seller i, µi(mi),

are derived from mi(vi) by Bayes’ rule.

As the definition of equilibrium reveals, we have made several simplifying assumptions. First, we

assume that prices are determined after the message, not jointly. The assumption is reasonable as

long as it is quicker to adjust pricing strategy so that sellers can react with their pricing decision to

the type of information disclosed (Janssen & Teteryatnikova 2016). Second, we ignore participation

constraints and assume that buyers’ valuation is sufficiently high so that all buyers make purchases.

Thus, sellers always directly compete with each other. Finally, as in the monopoly case, buyers do

not use prices to update their beliefs about a seller’s quality.

The general duopoly setup, as defined above, is quite complicated to analyze as it is a cheap-talk

model with multiple senders and with a non-trivial subgame — the Hotelling model with incomplete

information — that follows the messaging stage.10 For our purposes, however, it will be sufficient

to use a simpler setting. Throughout this section, we will assume that sellers have two quality types

vL and vH , where vL < vH , and costs of both types are zero. The probability of the product being

high-quality is q. There are two possible messagesM = {L,H}. We will use words “low” or “high”

when referring to the actual quality; and labels L or H when referring to cheap-talk messages. For

example, expression an H-seller will refer to a seller who sends message H, regardless of the actual

product’s quality.

4.2 Equilibria with Separation.

In the monopoly setting, we identified two effects that affect benefits of separation. The first effect

comes from removing buyers’ uncertainty. It is always positive, as it increases buyers’ willingness-

to-pay. Earlier, we referred to it as the information advantage. The second effect comes from a

9For the sake of brevity, we omit arguments of pricing and messaging strategies.
10Even in the simplest case of risk-neutral buyers the pricing subgame is a rather complex model of Bertrand

competition with unknown costs. It is similar to the standard auction setting, and the symmetric case has been

analyzed by Spulber (1995). The asymmetric case, which in our setting naturally arises after different messages, is

similar to auctions with asymmetric bidders, where with few exceptions the explicit solution does not exist.
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change in buyers’ beliefs about the product’s quality. For high-quality sellers the second effect is

likely to be positive, for low-quality sellers the second effect is likely to be negative.

It turns out that competition introduces another factor that affects seller’s incentives to sepa-

rate. In addition to removing buyers’ uncertainty about the product, separation affects the intensity

of competition. This changes the relative strength of both the quality and information effects, as

sellers’ profit depends not only on buyers’ beliefs about the product’s quality but also on the com-

petition intensity. Consider, for example, an equilibrium where all types send the same messages.

In this equilibrium, buyers’ information about both products’ quality is identical and they will

purchase the cheapest product, resulting in intense Bertrand competition. In contrast, if seller i

sends a separating message while seller j sends a pooling message, buyers have different beliefs

about those two products, introducing product differentiation. Some buyers with a low degree

of loss/risk-aversion have stronger preferences for higher expected quality; other buyers with a

high degree of loss/risk-aversion have stronger preferences for better information about the quality.

Therefore, buyers from the latter group are more likely to purchase seller i’s product, even if it has

lower quality or is more expensive. This product differentiation softens the competition, benefiting

both sellers.

The duopoly setting allows for two outcomes that were not possible under the monopoly setting.

First, in the case of risk-averse buyers, there are equilibria where the lowest-quality seller can

separate. Second, there are equilibria where the highest quality seller can separate. In both

cases, low-quality sellers choose not to imitate high-quality sellers and instead disclose negative

information. Both outcomes can happen in equilibria because now imitating higher-quality sellers

can be less attractive if a likelihood of intense competition is high. But then if pooling with high-

quality sellers is less attractive, it becomes possible for high-quality types to separate, and, in the

risk-averse case, for the lowest-quality type to choose separation over pooling.

4.2.1 Risk-Averse Buyers. Separation of the Lowest-Quality Type

Consider the following messaging strategy m∗(v): a high-quality seller sends message H with

probability 1, and a low-quality seller mixes between messages L and H with probabilities λ and

1− λ. Given m∗(v), message L is the separating message which is sent by the lowest-quality type,

vL. We will determine conditions when m∗(v) is a messaging strategy in a symmetric equilibrium.

We solve for equilibrium using backward induction. First, we look at the purchasing stage. If

both sellers send the same messages (L,L) or (H,H) then, from buyers’ point of view, the two

sellers are identical. Therefore, buyers will purchase the product with the lowest price. Consider

now the purchasing decision given messages (L,H), and prices (pL, pH). The L-product has a

certain quality of vL. The H-product may be of low quality with probability qLH = Pr(v = vL|H),

or of high quality with probability 1− qLH . Given m∗:

qLH =
(1− λ)(1− q)

(1− λ)(1− q) + q
.
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A buyer is indifferent between L- and H-products if

u(vL − pL) = qLHu(vL − pH) + (1− qLH)u(vH − pH),

or equivalently

e−γ
0(pH−pL) − qLH − (1− qLH)e−γ

0(vH−vL) = 0, (8)

where γ0 is the risk-aversion degree of an indifferent buyer. Given the CARA utility function, a

buyer’s initial wealth does not affect the indifference condition, so we do not specify it here.

Proposition 5 The indifference condition

e−γ
0(pH−pL) = qLH + (1− qLH)e−γ

0(vH−vL),

has at most one solution γ0 > 0. When the solution exists, all buyers with γ > γ0 prefer an

L-product while all buyers with γ < γ0 prefer H-product.

Next, we consider the pricing stage. Suppose at the messaging stage both sellers sent the same

messages (L,L) or (H,H). Then, as established earlier, buyers will purchase the cheapest product.

Thus, the pricing equilibrium is for both sellers to charge pL = pH = 0. Consider now the (L,H)-

subgame. From Proposition 5 follows that demand for the L-product is (1 − Φ(γ0(pL, pH)), and

demand for the H-product is Φ(γ0(pL, pH)). The L-seller chooses price pL to maximize maxpL(1−
Φ(γ0(pL, pH)) · pL, and the H-seller chooses price pH to maximize maxpH Φ(γ0(pL, pH)) · pH . The

corresponding first-order conditions are

− φ(γ0)
∂γ0(pL, pH)

∂pL
pL + (1− Φ(γ0)) = 0, (9)

and

φ(γ0)
∂γ0(pL, pH)

∂pH
pH + Φ(γ0) = 0. (10)

Finally, at the messaging stage, a low-quality seller should be indifferent between L and H when

the competitor plays the equilibrium strategy. This condition is

λ(1− q)πLL + (1− λ(1− q))πLH = λ(1− q)πHL + (1− λ(1− q))πHH . (11)

Here, the LHS is the expected profit of the low-quality seller from sending message L and the RHS

is the expected profit from sending message H; λ(1 − q) is the probability that the competitor

sends message L, and (1 − λ(1 − q)) is the probability that the competitor sends message H. As

we established earlier, πLL = πHH = 0. Notice that since both types have the same cost, the high-

quality seller is also indifferent between L and H; therefore, message H is optimal for high-quality

type. Combining equations (8), (9), (10) and (11), an equilibrium is determined by the following

system of equations: 

e−γ
0(pH−pL) = qLH + (1− qLH)e−γ

0(vH−vL).

−φ(γ0)
∂γ0(pL, pH)

∂pL
pL + (1− Φ(γ0)) = 0

−φ(γ0)
∂γ0(pL, pH)

∂pL
pH + Φ(γ0) = 0

(1− λ(1− q))(1− Φ(γ0))pL = λ(1− q)Φ(γ0)pH .

(12)
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As the next proposition shows, whether the solution to system (12) exists depends on the

distribution of γ.

Proposition 6 Assume that there are two quality types, and buyers are risk-averse with CARA

utility function. Then the equilibrium where the lowest-quality type separates does not exist if

i) Φ(γ) is a uniform distribution; or

ii) Φ(γ) is a convex function.

The equilibrium where the lowest-quality type separates exists if

iii) Φ(γ) has infinite support.

Furthermore,

iv) for any concave Φ(γ) there exists α0 > 0 such that for any α ∈ (0, α0), if risk-aversion is

distributed with cdf Φ(αγ), the equilibrium where the lowest-quality type separates exists.

The intuition is as follows. Consider the pricing stage after messages (L,H). In terms of quality,

the H-product is superior to the L-product, The L-product is guaranteed to be of low quality, while

the H-product can be of either low or high quality. Regardless of γ, all risk-averse buyers have

higher willingness-to-pay for the H-product. However, for those who are more risk-averse, the

difference in willingness-to-pay between the H- and the L-products is smaller. Thus, the only way

the L-seller can get a positive share of the market is by competing with the H-seller for risk-averse

buyers with high γ (see also Proposition 5). The H-seller’s willingness to compete for those buyers

depends on two factors: a) how high γ can get; and b) how large the share of buyers with high γ is.

If Γ is low or if there are too many buyers with high γ, then it is optimal for the H-seller to simply

outprice the L-seller away, and serve the whole the market. In the first case, when Γ is low, even

the most risk-averse buyers are not too concerned about quality uncertainty. In the second case,

when there are sufficiently many buyers with high risk-aversion, it is suboptimal for H to choose

not to serve them. But then from vL’s point of view, if either of the two conditions is satisfied, it is

not optimal to send message L, as every pricing subgame results in zero profits. Thus, only when

there are sufficiently risk-averse buyers but their share is sufficiently low, it is possible to have an

equilibrium where vL separates.

Proposition 6 captures that notion of having “sufficiently risk-averse buyers but their share is

sufficiently low” using convexity and support of Φ(γ). For any Φ(γ) with infinite support, the

equilibrium with the lowest-type separation exists. First, there are sufficiently risk-averse buyers.

Second, there exists γ̃ high enough that φ(γ) can be made arbitrarily small for any γ > γ̃. The

marginal benefit of decreasing pH to serve buyers with γ > γ̃ then will be too small due to low

increase in the market share. In equilibrium L and H will split the market.

For uniform or convex cdfs, no matter how high Γ is, φ(γ) never approaches to zero for high

values of γ. Marginal decrease in pH to attract buyers with high-risk aversion is always optimal,

and seller L will be priced out of the market. With concave distributions, more buyers have a low

degree of risk-aversion. Concavity alone, however, is not enough to guarantee the existence. One

also needs to have φ(γ) to be sufficiently small when γ is close to Γ. One way to do this is to stretch

Φ(γ) to a larger support, and Proposition 6 offers one way how it can be achieved. Notably, as
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the next example shows, one does not need unrealistic levels of risk-aversion for the equilibrium to

exist.

Example 3 Let the degree of risk-aversion γ be distributed with Φ(γ) =
√
γ on [0, 1]. Let vH−vL =

3 and q ≈ 0.484.11 One can verify that the following is equilibrium: γ0 ≈ 0.713, pL ≈ 0.184, pH ≈ 1,

λ ≈ 0.063 and qLH = 1/2.

In this example, the probability of buying from a low-quality seller is slightly above 1/2, 1− q ≈
0.52. The low-quality seller reveals the negative information with probability 6.3%. If one seller

announces L and the competitor announces H then both prices are above the marginal cost and

both sellers make positive profits. The indifferent buyer is located at γ0 ≈ 0.713. The market share

served by the L-seller is 1−
√
γ0 ≈ 15.6%, and the market shares served by the H-seller is 84.4%.

In the (L,H) subgame, sellers profits are πH ≈ 0.84 and πL ≈ 0.03.

It is worth highlighting that it is the competitive environment that makes it possible for the

lowest-quality seller to separate. As argued earlier, in the monopoly case with risk-averse buyers, it

is never optimal for vL to separate, as he is guaranteed to get higher profit by pooling with the high-

quality sellers. In a symmetric equilibrium of duopoly case, if types vL of sellers i and j pool with

vH with probability 1, they earn zero Bertrand profit. This makes pooling with high-quality sellers

less attractive. By separating with positive probability, type vL creates product differentiation,

which allows it to earn a positive profit.

4.2.2 Separation of Highest-Quality Type

In this section, we assume that buyers are loss-averse. Consider the following messaging strategy

m∗(v): a high-quality seller randomizes between sending messages L and H with probabilities λ

and 1−λ, and a low-quality seller sends message L with probability 1. Given m∗(v), message H is

the separating message which is sent by the highest-quality type vH only. In what follows we will

determine conditions when m∗(v) is a messaging strategy in a symmetric equilibrium.

As before, buyers will purchase the product with the lowest price after (L,L) or (H,H) messages,

so that both sellers charge prices equal to the marginal cost and earn zero profit. Consider now the

purchasing decision given message profile (L,H) and prices (pL, pH). The H-product has a certain

quality of vH . The L-product may be of low quality with probability qLL = Pr(v = vL|L), or of

high quality. Given m∗, qLL is equal to
1− q

1− q + qλ
. The loss-aversion of the indifferent buyer is

given by

vH − pH = qLLvL + (1− qLL)vH − pL + b0qLL(vL − qLLvL − (1− qLL)vH).

Buyers with b > b0 will purchase from the H-seller and buyers with b < b0 will purchase from the

L-seller, so that the profit of the H-seller is (1−Φ(b0))pH , and of the L-seller is Φ(b0)pL. Combining

the buyers’ indifference condition and the FOCs for L and H-sellers, we get

11Numerically, it is simpler to start with qLH instead of q. The equilibrium in this example was calculated based

on qLH = 1/2. Values of q and λ were then calculated from (γ0, pL, pH) and qLH using the fourth equation of (12).
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b0 =

pH − pL
qLL(1− qLL)∆v

− 1

1− qLL
φ(b0)

∂b0(pL, pH)

∂pL
pH + (1− Φ(b0)) = 0

φ(b0)
∂b0(pL, pH)

∂pL
pL + Φ(b0) = 0

(13)

We do not specify the indifference condition, as one can use the equivalent of Lemma 2 in the

appendix to show that, if a solution to (13) exists, the equilibrium exists.

By subtracting the second equation from the third equation, and using the expression for b0 to

calculate its derivative with respect to prices, we get

1− Φ(b0)

φ(b0)
− Φ(b0)

φ(b0)
− b0 =

1

1− qLL
.

For a given qLL, the solution to (13) exists if and only if

max
b

{
1− Φ(b)

φ(b)
− Φ(b)

φ(b)
− b
}
>

1

1− qLL
.

For distributions with log-concave densities, the expression inside the parenthesis is a decreasing

function of b0. By Theorem 1 of Bergstrom and Banoli (2006), if φ(b) is log-concave, then so is Φ(b).

Term (1−Φ(b))/φ(b) is a decreasing function of b by Corollary 2 in Bergstrom and Banoli (2006).

Term Φ(b)/φ(b) is an increasing function of b by definition of log-concavity, and is decreasing when

multiplied by minus one. Therefore, the maximum of the expression in the parenthesis is reached

at b = 0. Thus, for a given qLL, the equilibrium exists if and only if

1

φ(0)
>

1

1− qLL
. (14)

Since qLL ≥ 1− q, a necessary condition for the equilibrium where high type separates to exist is

1

φ(0)
>

1

q
. (15)

Whether (15) puts any restriction on B or not depends on the underlying distribution. For example,

when Φ(b) is uniform, condition (15) becomes B > 1/q. When Φ(b) = (b/B)2, condition (15) is

satisfied for any B.

The intuition is as follows. The H-product is superior to the L-product in that its quality is

both higher and certain. In order for the L-seller to be able to have positive profit, two conditions

have to be satisfied: the L-product should be sufficiently differentiated from the H-product, and

there should be sufficiently few buyers with low loss-aversion to make it suboptimal for the H-seller

to compete for them and price the L-seller out of the market. The first condition requires q to be

sufficiently high. When q is low, the L-product is very likely to have low quality, in which case

there is not enough product differentiation between H- and L-sellers to generate positive profit for

the L-seller. Indeed, the product differentiation comes from the difference in riskiness of the H-

and L- products, and when the riskiness is similar the product differentiation is not sufficient for
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the L-seller to compete against the H-seller.12 The second condition requires φ(0) to be sufficiently

low. The intuition is similar to that behind Proposition 6 from the previous section. The only

difference is that in the previous case the seller of the inferior product, L-seller, was competing for

buyers with high-degree of risk-aversion, whereas now it competes for buyers with a low degree of

loss-aversion. In order for the H-seller to find it suboptimal to serve the whole market, value of

φ(0) should be sufficiently small.

Figure 1 depicts equilibrium parameters in equilibria where high-quality seller separates. It is

plotted for b distributed uniformly on [0, 3], and ∆v = 3. On the horizontal axis is qLL, which is the

probability of getting low-quality product from the L-seller. qLL varies from 0 to 2/3, where 2/3

is the highest value of qLL that satisfies condition (14). We use qLL, not q, for the horizontal axis

because, as one can see from Figure 1, q has to be extremely close to 1 in order for an equilibrium

to exist. Not surprisingly, the price of the H-product in the (H,L)-subgame is much higher than

that of the L-product as the the H-product is superior to the L-product. However, in equilibrium,

the high profit of the H-seller in the (H,L)-subgame comes at a cost of very high likelihood of the

(H,H)-subgame and zero profit. For the L-seller, a low profit in the (H,L)-subgame comes with a

benefit of having very low likelihood of being in the (L,L)-subgame and earning zero profit.

[INSERT FIGURE 1 HERE]

5 Extension: Prices Used as Signals

Up to this point we have assumed away the possibility that buyers can infer products’ quality from

prices, following the findings from the empirical literature. In this section, we discuss what happens

when buyers use prices to update their beliefs. We will focus on the case of loss-averse buyers and a

monopolistic seller. All other assumptions are the same as before. The new equilibrium is defined

as follows.

Definition 3 An equilibrium is a triple (p(v), µ(p), s(µ, p)), where p(v) is the seller’s pricing strat-

egy, µ(p) is the buyers’ beliefs about the quality distribution given p, and s(µ, p) is the share of

buyers who purchase the product, such that the following conditions hold:

a) the seller of type v chooses price p that maximizes his profit given buyers’ beliefs µ(p) and

buyers’ purchasing decision:

max
p

(p− cv)s(µ(p), p);

12With risk-averse buyers, as in the previous subsection, Proposition 6 did not depend on q. Since the risk-averse

model is harder, conditions required for existence were only established for sufficiently large Γ. For a given q, one

can always find Γ large enough so that the equilibrium exists, which is, effectively, what Proposition 6 did. With

loss-averse buyers, a closed-form solution is easy to derive. The existence of equilibrium can be established without

requiring B to be arbitrarily large, which makes it possible to highlight the role of q and the role of the product

differentiation motive. The fact that this subsection looks at the case when the highest-quality type separates is

not crucial. An earlier version of the paper showed that with loss-averse buyers there is an equilibrium where the

lowest-quality type separates iff B +
1

φ(B)
>

1

1 − q
. Therefore, again, the existence of the equilibrium depends not

only on B and φ(B), but also on q.
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b) buyers’ purchasing decision is optimal:

s(µ, p) = Φ({b|Ub(p, µ) ≥ 0});

c) if a given price p is chosen with positive probability, buyers’ beliefs µ(p) are derived from p(v)

by Bayes’ rule.

The case when cv is an increasing function of v is well understood: when the single-crossing

condition is satisfied and it is the informed party that makes an offer, sellers can separate even in

the case of risk-neutral buyers. Unlike the cheap-talk setting considered above, neither loss/risk-

aversion nor competition is necessary for separation. A simple example below illustrates this point.

Example 4 Let’s assume that there are two types: {vL, vH} with vL = 1, cL = 0 and vH =

2, cH = 1/2. The separating prices are pL = 1 and pH = 2. The corresponding sales are qL = 1

and qH = 1/2. Buyers are indifferent between purchasing or not, so the purchasing decisions are

optimal for both prices. The corresponding profits are πH = 3/4 and πL = 1. If type vH imitates

type vL its profit is strictly lower, 1/2. If type vL imitates type vH its profit is the same, 1. The off-

equilibrium beliefs that support this equilibrium are: Pr(vH |p) = 1 for any p ≥ 2 and Pr(vH |p) = 0

for any p < 2.

Thus, in this section we consider the case when the single-crossing condition is not satisfied. To

make our result as clean as possible, we consider the case where the cost is a decreasing function

of quality.13 It turns out that, when the single-crossing condition is not satisfied, the setting with

loss-averse buyers allows for more information transmission than the setting with the risk-neutral

buyers.

It is straightforward to characterize equilibria in this setting. All equilibria must have an interval

structure, whereby if any two types choose the same price then all types in between must choose the

same price. Furthermore, since costs are decreasing, it has to be the case that low-quality/high-

cost sellers charge higher prices and serve lower share of the market. This holds regardless of

buyers’ risk-attitude as it is fully driven by firms’ incentives. What buyers’ risk-attitude affects is

informativeness of equilibiria. When buyers are risk-neutral, at most two on-equilibrium prices can

be charged. Intuitively, let p1 be the price charged by vL. It has to be the case that p1 ≤ Ep1v

in order for vL to make any positive sales. Since higher-quality types have to charge lower prices,

we then have pi < Epiv for any on-equilibrium pi. It implies that for any on-equilibrium price,

p 6= p1, sellers would serve the whole market. But then there can be at most one on-equilibrium

price which differs from p1. When buyers are loss-averse, on the other hand, one can sustain any

finite number of on-equilibrium prices, as demonstrated in Proposition 8.

13Needless to say, assuming that cost is a decreasing function of quality is an unrealistically extreme assumption.

It is employed merely to illustrate our point, which is that loss/risk-aversion allows for more information transmission

when the single-crossing condition fails. A less extreme example of the single-crossing condition failure is the assump-

tion that cost is not a monotonically increasing function of quality. This assumption is more realistic. A textbook

(Besanko et al. 2009) example is Miller and Friesen (1986)’s study of consumer durable industries. Miller and Friesen

(1986) have shown that firms which appeared to have achieved cost advantage also scored highly on measures related

to benefit advantage, such as product quality.
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Proposition 7 In any equilibrium with risk-neutral buyers, there can be at most two different

on-equilibrium prices. An equilibrium with two on-equilibrium prices exists.

Proposition 8 Fix integer N > 0. When buyers are loss-averse, there exists an equilibrium with

N on-equilibrium prices.

6 Conclusion

Although we often observe the cases where sellers voluntarily disclose negative information to

buyers, the literature has mostly focused on the incentives and possibility to credibly reveal positive

information. Therefore, this study attempts to fill this gap by examining sellers’ incentives to reveal

negative information regarding their products.

We thus focus on those markets where customers cannot assess the quality of the products

and there is no reputation concern. Unlike previous literature, our model limits the ability of

high-quality sellers to separate themselves, based on the assumption that buyers only update their

beliefs through cheap-talk messages. As low-quality sellers can costlessly imitate any messages sent

by high-quality sellers, the quality is only credibly revealed when low-quality sellers voluntarily

choose not to imitate high-quality sellers. This is different from classical information asymmetry

models such as unraveling or education-as-signaling, where the separation is driven by high-quality

types.

We identify two factors that can allow low-quality sellers to prefer separation over pooling with

high-quality sellers: buyers’ aversion to quality uncertainty and product differentiation. When

choosing to reveal one’s type, low-quality sellers face the trade-off between a quality advantage of

pretending to be of a higher-quality type by pooling with high-quality sellers, and an information

advantage of revealing one’s low quality but removing quality uncertainty. In the monopoly setting,

where there is no competition, as long as there are sufficient loss- or risk-averse buyers, the informa-

tion advantage can dominate the quality advantage, making separation optimal for the low-quality

seller. In the duopoly setting, the trade-off between quality and information advantages is fur-

ther affected by the fact that different information about competitors’ products results in product

differentiation and weaker competition. This leads to two new outcomes that were impossible in

the case of the monopolistic sellers: high-quality types can separate and, in the case of risk-averse

buyers, the lowest-quality seller can also choose to separate. Both can happen in equilibrium if the

competition makes quality advantage too small so that it is not optimal for the low-quality sellers

to pretend to be of high quality.

Overall, this paper shows how honesty may work as an effective communication strategy. We

believe our finding can be widely applied to various market settings where information asymmetry is

high, providing valuable insights to both the field and the academia. For managers, this paper can

provide helpful strategic implications on how to wisely consider buyers’ uncertainty aversion while

communicating the information about the weaknesses of their products. For academic researchers,

this paper provides a theoretical explanation about an important market phenomenon that has been
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somewhat neglected in the literature. More specifically, this paper suggests that the consideration

of risk might establish the incentive of low-quality sellers to voluntarily reveal their types.

On a final note, we hope that this study provides motivations for further empirical and theo-

retical research regarding the effect of revealing negative information under various other settings,

which can lead to a better understanding about information asymmetry in markets.

7 Appendix: Proofs

Proof of Proposition 2: Proof of i): First, we show that if type v0 serves the whole market then

any types ν < v0 also serves the whole market. Let p0 denote the price charged by type v0, and c0

its marginal cost. Let sν denote the share of the market served by type ν, pν its price and cν its

marginal cost. Proof by contradiction. Assume that sν < 1. Then,

(pν − cν)sν ≥ (p0 − cν) · 1

(pν − c0)sν + (c0 − cν)sν ≥ (p0 − c0) · 1 + (c0 − cν) · 1

(pν − c0)sν ≥ (p0 − c0) · 1 + (c0 − cν)(1− sν) > (p0 − c0) · 1.

Here the first inequality comes from the fact that type ν prefers its equilibrium strategy over

imitating type v0 and charging price p0. The last inequality is strict because sν < 1, and it implies

that type v0 has a profitable deviation of sending the same message as type ν and charging price

pν . Contradiction.

Proof of ii):14 Consider the two types v1 and v2 such that v̄ ≤ v1 < v2, and that weakly prefer

message m to all other messages. Let µ denote buyers’ beliefs given message m. Consider now a

different message m′ and let µ′ be buyers’ beliefs given m′. Let π(µ, v) = (p∗v − cv)s(µ, p∗v), where

p∗v is optimal price for type v given µ, and s(µ, p∗v) = Φ

(
Eµv − p∗v
ELossµ

)
.

Lemma 1 Take beliefs µ and µ′ and assume that either Eµv 6= Eµ′v or ELossµ 6= ELossµ′, or

both. Then there exist at most one type with quality above v̄ such that ∂π(µ, v)/∂v = ∂π(µ′, v)/∂v.

Proof. By the envelope theorem, ∂π(µ, v)/∂v = −(cv)
′s(µ(m), p∗v) = −(cv)

′Φ

(
Eµv − p∗v
ELossµ

)
.

When for a given quality type, profit derivatives are equal it implies that Φ

(
Eµv − p∗v
ELossµ

)
=

Φ

(
Eµ′v − p′∗v
ELossµ′

)
. From monotonicity of Φ(·) then

Eµv − p∗v
ELossµ

=
Eµ′v − p′∗v
ELossµ′

. (16)

14As mentioned in the main body of the paper, the proof does not depend on whether the quality distribution

is discrete or continuous. In equilibrium, the only thing that quality distribution affects is buyers’ posterior beliefs

µ(m). Given µ(m), one can then calculate optimal sellers’ behavior for any quality v regardless of whether the quality

belongs to the support of F (v) or not. In particular, nowhere in the proof it is required that variables v1, v2, v0 or ṽ

that we introduce during the proof belong to the support of the quality distribution.
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Since p∗v and p′∗v are optimal prices and the quality is above v̄, they must satisfy the FOCs

Φ

(
Eµv − p∗v
ELossµ

)
− 1

ELossµ
(p∗v − cv)φ

(
Eµv − p∗v
ELossµ

)
= 0

Φ

(
Eµ′v − p′∗v
ELossµ

)
− 1

ELossµ′
(p′∗v − cv)φ

(
Eµ′v − p′∗v
ELossµ′

)
= 0.

Combined with (16) it follows from the FOCs that

p∗v − cv
ELossµ

=
p′∗v − cv
ELossµ′

. (17)

Adding equations (16) and (17) we have

Eµv − cv
ELossµ

=
Eµ′v − cv
ELossµ′

. (18)

Notice that functions
Eµv − x
ELossµ

and
Eµ′v − x
ELossµ′

intersect at most ones, which means that there can

exist at most one type where Φ

(
Eµv − p∗

ELossµ

)
= Φ

(
Eµ′v − p′∗

ELossµ′

)
, and that’s the type which cost

satisfies (18).

Take types v1 and v2 that weakly prefer m to any message and assume that there is type

v0 ∈ (v1, v2) that weakly prefers message m′ over m. There are two possibilities: either there is

more than one type that weakly prefers m′ or such type is unique. Consider the first possibility.

By continuity then, there exist at least two types that are indifferent between m and m′. With a

slight abuse of notation denote them as v1 and v2. By the mean value theorem there exists type

v ∈ (v1, v2) such that π′(µ, v) = π′(µ′, v) and by Lemma 1 such type is unique. Furthermore, by the

mean value theorem and Lemma 1, type v strictly prefers m′ over m. Since derivatives of π(µ, ·)
and π(µ′, ·) are equal to each other at most once there cannot be three different types that are

indifferent between m and m′.

From, π(µ, v) < π(µ′, v) and s(µ, p∗v) = s(µ′, p′∗v ) follows that p∗v < p′∗v . Consider now type

v2. By its definition, π(µ, v2) = π(µ′, v2). From the fact that v2 > v and Lemma 1 follows that

π′(µ, v2) > π′(µ′, v2). By the envelope theorem then s(µ, p∗v2) < s(µ′, p′∗v2). Since profits at v2 are

equal it means that p∗v2 > p′∗v2 . By continuity there exists ṽ ∈ (v, v2) such that p∗ṽ = p′∗ṽ , which we

will denote simply as p̃∗. Since ṽ > v we know that s(µ, p̃∗) < s(µ′, p̃∗) and, therefore,

Eµv − p̃∗

ELossµ
<
Eµ′v − p̃∗

ELossµ′
. (19)

From the FOCs (17) it follows that when the prices are equal then

ELossµ ·
Φ

(
Eµv − p̃∗

ELossµ

)
φ

(
Eµv − p̃∗

ELossµ

) = ELossµ′ ·
Φ

(
Eµ′v − p̃∗

ELossµ′

)
φ

(
Eµ′v − p̃∗

ELossµ′

) . (20)
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By log-concavity of Φ(·) term Φ/φ is an increasing function. Then from (19) and (20) follows that

ELossµ > ELossµ′ . We reached a contradiction. When ELossµ > ELossµ′ then equality (18) and

inequality (19) cannot be satisfied simultaneously. This is because p̃∗ is an optimal price charged

by type with a cost higher than cv. Therefore, p̃∗ > cv. But then given ELossµ > ELossµ′ , the

inequality in (19) must be reversed.

Now consider the second case where type v0 ∈ (v1, v2) is unique. Then, π(µ, v0) = π(µ′, v0) and

π′(µ, v0) = π′(µ′, v0). By the envelope theorem, the latter implies that s(µ, p∗v0) = s(µ′, p′∗v0) and,

therefore, p∗v0 = p′∗v0 . Then p∗v0 satisfies Equation (20) which would imply that ELossµ = ELossµ′ .

But then s(µ, p∗v0) = s(µ′, p′∗v0) would imply that Eµv = Eµ′v, which is a contradiction.

Proof of iii): Take any v1 < v2. If they both belong to the same interval, say [vi, vi+1], then both

types face the same demand function and, by a standard argument, type v2 will charge a higher price

because it has higher cost. Take type vi+1. It is indifferent between messages mi and mi+1. But

types slightly higher than vi+1 strictly prefer mi+1. Then, π′(µ(mi), vi+1) < π′(µ(mi+1, vi+1) which

by the envelope theorem implies that s(µ(mi), p
∗
vi+1

) > s(µ(mi+1, p
′∗
vi+1

). Since vi+1 is indifferent

between mi and mi+1 we then have that p∗vi+1
< p′∗vi+1

. This means that all types in [vi, vi+1] will

charge price less than p′∗vi+1
and all types on [vi+1, vi+2] will charge prices higher than p′∗vi+1

. By

applying the argument inductively, one can establish that price is a strictly increasing function on

[v̄, vH ]. �

Proof of Proposition 3: Proof by contradiction. Assume that there are two types that separate:

v1 < v2 with messages m1 6= m2. Then these types will set prices p1 = v1 and p2 = v2 and will

serve the whole market. But that cannot happen since type v1 would deviate and send the message

m2. Thus at most one type separates. Label this type v0, and let m0 be its separating message.

After m0, it will charge the price p0 = v0 and will serve the whole market. By Proposition 2, all

types below v0 will also serve the whole market.

Consider first the case of loss-averse buyers. If v0 separates and v0 = vL then we are done

as vL < Ev. Otherwise, take type ν < v0. Let m(ν) be the message sent by type ν and µ(ν)

be corresponding beliefs about the quality. Since all sellers with lower quality, including seller ν,

serve the whole market, they will charge price pν = Eµ(ν)v − B · ELossµ(ν), which is the highest

price that allows a seller to serve the whole market. Given that neither type v0 nor type ν wants

to deviate and imitate each other, it must be the case that pν = v0, for any ν < v0. Thus

Eµ(ν)v−B ·ELossµ(ν) = v0 and, therefore, Eµ(ν)v ≥ v0. We can reach the same conclusion for the

case of risk-averse buyers. Any seller with ν < v0 serves the whole market. It will then choose the

highest price that allows doing so: Eµ(ν)uΓ(w + v − pν) = u(w), where uΓ is the Bernoully utility

function of the most risk-averse buyer. Since type ν does not imitate type v0, and vice versa, it has

to be the case that pν = v0. But then by Jensen’s inequality Evµ(ν) > v0. The rest of the proof

goes regardless of whether buyers are risk- or loss-averse.

As established above any ν < v0 will send an on-equilibrium message that will result in buyers

having beliefs Evµ(ν) > v0. We will use it to show that v0 ≤ Ev. LetM be the set of messages sent

by sellers with ν < v0. Let V be the set of all types that send messages in M. As we established,
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Eµ(m)v > v0 for any m ∈M. Let Vc = [vL, vH ]/(V ∪ {v0}) be the set of all types that are not in V
or v0, and Mc be the set of messages they send. Since all types in Vc have quality higher than v0,

we have that Eµ(m)v > v0 for any m ∈Mc. Thus any equilibrium message results in beliefs about

expected quality that are either equal to v0, which is v0’s separation message, or strictly greater

than v0. Given that on-equilibrium beliefs are correct, it has to be the case that v0 < Ev. �

Proof of Proposition 5: Notice that the indifference condition (8) is always satisfied when γ = 0.

This is because u(x) ≡ 1 when γ = 0 and the indifference condition becomes trivial.

Let y denote e−γ
0

so that (8) is

ypH−pL − qLH − (1− qLH)yvH−vL = 0. (21)

As γ varies between 0 and +∞, variable y varies between 1 and 0. There is one solution y = 1,

which corresponds to γ = 0. In order to prove the proposition, we need to show that on interval

0 ≤ y < 1 there is at most one solution. Given the root y = 1, it is equivalent to showing that

there are at most two solutions of (21) on 0 ≤ y ≤ 1.

Assume not. If function (21) has three or more roots on [0, 1], then its derivative should have

two or more roots on [0, 1]. Taking derivative of the LHS of (21) with respect to y and setting it

equal to zero we get:

(pH − pL)ypH−pL−1 − (1− qLH)(vH − vL)yvH−vL−1 = 0,

so that

1− (1− qLH)
vH − vL
pH − pL

y(vH−vL)−(pH−pL) = 0.

Clearly, the equation above has at most one solution on interval [0, 1]. Therefore, equation (21)

has at most two solutions on [0, 1]. As one solution is y = 1, it implies that there is at most one

solution when 0 < y < 1.

To prove the second part of the proposition, we observe that buyers prefer the L-product if

1− e−γ(vL−pL) ≥ qLH(1− e−γ(vL−pH)) + (1− qLH)(1− e−γ(vH−pH)),

which is equivalent to

e−γ(pH−pL) ≤ qLH + (1− qLH)e−γ(vH−vL). (22)

When γ = +∞ then (22) is satisfied as its LHS is zero, and the RHS is positive. In other words,

extremely risk-averse buyers will always purchase the L-product. Thus if γ0 > 0 is the solution to

(8), then all types with γ < γ0 purchase the H-product and all types with γ > γ0 purchase the

L-product. �

Proof of Proposition 6: The proof of the proposition consists of two parts. In the first part we

reduce the equilibrium system (12) to one equation with one unknown, γ0. In the second part, we

analyze that equation and develop sufficient conditions on Φ(γ) stated in Proposition 6. We begin

the first part of the proof proving Lemma 2, which says, for the purpose of proving the existence,

one can ignore the last equation in (12) and an unknown variable λ.
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Lemma 2 If for a given qLH ∈ [0, 1] the solution (γ̄0, p̄L, p̄H) to the reduced system exists, then

there exists q ∈ [0, 1] and λ ∈ [0, 1] such that (γ̄0, p̄L, p̄H , λ) is a solution to the equilibrium system

(12).

Proof. Plug values (γ̄0, p̄L, p̄H) into the last equation of (12) to recover λ(1−q). Notice that for any

(γ̄0, p̄L, p̄H) one can find λ(1− q) such that it is between 0 and 1 and the last equation is satisfied.

One can then uniquely recover q and λ: q = (1− qLH)(1− λ(1− q)) and λ = λ(1− q)/(1− q). The

only thing one has to check is that λ, q ∈ [0, 1] and that qLH ≤ 1 − q. The last inequality states

that the share of low-quality sellers who announce high quality, qLH , cannot be higher than the

total share of low-quality sellers, 1− q. This is straightforward. That qLH ≤ 1− q is trivial:

qLH ≤ 1− q = 1− (1− qLH)(1− λ(1− q)) = qLH + λ(1− q)(1− qLH).

Given that q = (1 − qLH)(1 − λ(1 − q)), it is between 0 and 1. Finally, λ < 1 is equivalent to

λ(1− q) < 1− q, which is also true.

λ(1− q) ≤ 1− q = 1− (1− qLH)(1− λ(1− q)) = λ(1− q) + qLH(1− λ(1− q))

This completes the proof of the lemma.

In what follows, we will call (12) without the last equation the reduced system. The reduced

system has three equations and three unknowns (γ0, pL, pH), and it treats qLH as a given parameter.

The three equations of the reduced system are the indifference condition

e−γ
0(pH−pL) = qLH + (1− qLH)e−γ

0(vH−vL), (23)

and two FOCs that determine prices:
−φ(γ0)

∂γ0(pL, pH)

∂pL
pL + (1− Φ(γ0)) = 0

−φ(γ0)
∂γ0(pL, pH)

∂pL
pH + Φ(γ0) = 0

(24)

Take the second equation of (24) and subtract from it the first equation of (24). We get

Φ(γ0)

φ(γ0)
− 1− Φ(γ0)

φ(γ0)
=
∂γ0(pL, pH)

∂pL
(pH − pL).

It will be convenient to denote
Φ(γ0)

φ(γ0)
− 1− Φ(γ0)

φ(γ0)
as A(γ0). From (23) we get that

∂γ0

∂pL
= − ∂γ

0

∂pH
= − γ0e−γ

0(pH−pL)

−(pH − pL)e−γ0(pH−pL) + (1− qLH)(vH − vL)e−γ0(vH−vL)
=

=
γ0e−γ

0(pH−pL)

(pH − pL)e−γ0(pH−pL) − (1− qLH)(vH − vL)e−γ0(vH−vL)
.

Let ∆p = pH −pL and ∆v = vH −vL. Thus the reduced system becomes a system of two equations

and two unknowns: 
e−γ

0∆p = qLH + (1− qLH)e−γ
0∆v

A(γ0) =
γ0e−γ

0∆p

∆pe−γ0∆p − (1− qLH)∆ve−γ0∆v
∆p

(25)

27



Next we solve for ∆p from the second equation of (25):

A(γ0) =
γ0e−γ

0∆p

∆pe−γ0∆p − (1− qLH)∆ve−γ0∆v
∆p.

We can re-write it as

A(γ0)∆pe−γ
0∆p −A(γ0)(1− qLH)∆ve−γ

0∆v = γ0∆pe−γ
0∆p

A(γ0)∆p−A(γ0)(1− qLH)∆ve−γ
0∆veγ

0∆p = γ0∆p

A(γ0)(1− qLH)∆ve−γ
0∆v e

γ0∆p

∆p
= A(γ0)− γ0

γ0A(γ0)(1− qLH)∆ve−γ
0∆v

A(γ0)− γ0
= γ0∆pe−γ

0∆p. (26)

It is straightforward to show that in equilibrium ∆p > 0. Indeed, consider the indifference

condition

e−γ
0(pH−pL) = qLH + (1− qLH)e−γ

0(vH−vL),

and take natural logarithm of both sides:

−γ0(pH − pL) = ln(qLH + (1− qLH)e−γ
0(vH−vL)).

The expression inside the logarithm is less than one. Then ln(qLH + (1 − qLH)e−γ
0(vH−vL)) < 0,

which implies that ∆p > 0. From the second and third equations of (12), it follows that
Φ(γ0)

φ(γ0)
>

1− Φ(γ0)

φ(γ0)
and, therefore, in equilibrium A(γ0) > 0. Furthermore, since ∆p > 0, the LHS of (26)

must be positive. Since, in equilibrium, A(γ0) > 0, it then implies that A(γ0) > γ0. If such γ0

does not exist, then (26) cannot be satisfied and no equilibrium with the disclosure of negative

information can exist.

We can now eliminate ∆p from (26). From the indifference condition we get that

γ0∆p = − ln(qLH + (1− qLH)e−γ
0∆v),

and then

γ0∆pe−γ
0∆p = − ln(qLH + (1− qLH)e−γ

0∆v)(qLH + (1− qLH)e−γ
0∆v).

Plugging it into (26) we get that the equilibrium value of γ0 is determined by

− γ0A(γ0)(1− qLH)∆ve−γ
0∆v

A(γ0)− γ0
= (qLH + (1− qLH)e−γ

0∆v) ln(qLH + (1− qLH)e−γ
0∆v). (27)

This completes the first part of the proof. In the second part of the proof, we will analyze

equation (27) and derive condition that determines whether the solution exists or not. In what

follows we will refer to the RHS and LHS of (27) as simple RHS and LHS without referring to the

equation’s number.
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Proof of i and ii: As we have established earlier, if A(γ) < γ for every γ, then the solution to

(26) and, therefore, to (27) does not exist. We will show that this is the case for uniform and convex

distributions. Let the support of Φ(γ) be [0,Γ]. For uniform and convex distributions it is finite.

Inequality A(γ) < γ is equivalent to 2Φ(γ)−1 < γφ(γ). We will write it as Φ(γ)−1 < γφ(γ)−Φ(γ).

Function Φ(γ) is a weakly convex function such that Φ(0) = 0. By a standard property of convex

functions γφ(γ) ≥ Φ(γ)− Φ(0) and since Φ(0) = 0 we have γφ(γ) ≥ Φ(γ). Thus in the inequality

Φ(γ) − 1 < γφ(γ) − Φ(γ) the left-hand side is negative and the right-hand side is non-negative,

which means that it is satisfied for any γ ∈ [0,Γ). When γ = Γ and Φ(γ) is linear, then A(Γ) = Γ,

and in all other cases, A(Γ) < Γ. Thus, for the case of convex and uniform distribution functions

there is no equilibrium where both firms split the market.

Proof of iii: The RHS is a continuous function of γ. It is negative for any γ > 0. When γ = 0

it is equal to zero. When γ →∞, its limit is equal to qLH · ln(qLH) < 0.

The LHS is discontinuous when A(γ) = γ. Let γ̂ denote the largest root such that A(γ) = γ.

We can show that it exists. First, A(0) = −1/φ(0) < 0. Second, limγ→∞ γφ(γ) = 0. If the limit is

positive, say z > 0, then it means that for all sufficiently large γ0, say for all γ > Γ0, it has to be

the case that φ(γ) >
1

2

z

γ
. But then∫ ∞

Γ0

φ(s)ds >
1

2

∫ ∞
Γ0

z

γ
dγ =∞,

which is a contradiction since it has to be less than or equal to 1. Third,

lim
γ→∞

(A(γ)− γ) = lim
γ→∞

2Φ(γ)− 1− γφ(γ)

φ(γ)
=

1

0
=∞.

Given that A(γ)− γ is continuous, we can conclude now that it has roots and that there exists

the largest root. In other words, there exists γ̂ such that A(γ̂) = γ̂ and A(γ) > γ for every γ > γ̂ .

Therefore, the LHS is a continuous function for any γ > γ̂.

We can now prove the equilibrium existence. Since γ̂ is the largest root, it means that for any

γ > γ̂ it must be the case that A(γ) > γ, and in a sufficiently small right neighborhood of γ̂ fraction

A(γ)/(A(γ)− γ) is close to plus infinity. Then the LHS is close to −∞ and, therefore, is less than

the RHS. When γ is close to infinity, the LHS gets arbitrarily close to zero. This is because all

terms of the LHS, including A(γ)/(A(γ)− γ), are bounded and the term e−γ∆v converges to zero.

That A(γ)/(A(γ)− γ) is bounded follows from

lim
γ→∞

A(γ)

A(γ)− γ
=

2Φ(γ)− 1

2Φ(γ)− 1− γφ(γ)
= 1.

Therefore, for sufficiently large γ the LHS of (27) is less than the RHS. By continuity, the

solution to (27) exists.

Proof of iv: Let support of Φ(γ) be [0,Γ] where Γ < ∞. Then A(Γ) > Γ. Indeed, A(Γ) > Γ is

equivalent to 1 > Γφ(Γ). Assume that it is not satisfied so that φ(Γ) > 1/Γ. Then, since φ(γ) is

strictly decreasing we have

1 =

∫ Γ

0
φ(s)ds >

∫ Γ

0

1

Γ
ds = 1,
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which is a contradiction. Also, one can show that A(γ) < γ when γ is sufficiently close to zero, or

more precisely for any γ such that Φ(γ) < 1/2. Thus there exists γ such that A(γ) = γ and let γ̂

be the largest such γ. Then the LHS of (27) is continuous when γ ∈ (γ̂,Γ]. As in case iii, one could

try to use continuity to establish that the solution to (27) exists. However, it might not work with

the original distribution because unless Γ is sufficiently large, the LHS will not be close enough to

zero to guarantee that the solution exists.

Consider now a cdf function Φα defined as Φ(αγ). It is a concave function with support [0,Γ/α].

Now the largest value of γ is Γ/α. By taking α sufficiently small we can make the support [0,Γ/α]

large enough so that γe−γ∆v can be made sufficiently close to zero within the support.

Term A(γ)/(A(γ) − γ) on the other hand will not change. Let Aα(γ) be defined similarly to

A(γ) but with a cdf Φα. Then for any γ ∈ [0,Γ],

Aα(γ/α)

Aα(γ/α)− γ/α
=

A(γ)

A(γ)− γ
.

Indeed,

Aα(γ/α)

Aα(γ/α)− γ/α
=

2Φα(γ/α)− 1

2Φα(γ/α)− 1− (γ/α)φα(γ/α)
=

2Φ(γ)− 1

2Φ(γ)− 1− (γ/α)αφ(γ)
=

A(γ)

A(γ)− γ
.

Thus, when α is sufficiently small we can apply the reasoning of case iii) to function Φα(γ) to

show that the solution exists. �

Proof of Proposition 7: We will use two lemmas to prove Propositions 7 and 8.

Lemma 3 Assume that price p results in beliefs µ(p) and sales s, while price p′ results in beliefs

µ′ and sales s′. Assume that type v weakly prefers price p to price p′. Then

i) if s < s′, then all higher-cost types (ν < v) will strictly prefer p to p′;

ii) if s > s′, then all lower-cost types (ν > v) will strictly prefer p to p′.

Proof. Prove part i first. Let ν < v. Since type v weakly prefers p to p′ it follows that

(p− cv)s ≥ (p′ − cv)s′

(p− cν)s+ (cν − cv)s ≥ (p′ − cν)s′ + (cν − cv)s′

(p− cν)s ≥ (p′ − cν)s′ + (cν − cv)(s′ − s) > (p′ − cν)s′,

where the last inequality follows from the fact that cν > cv and s′ > s.

Part ii is similar. Let ν > v and then

(p− cv)s ≥ (p′ − cv)s′

(p− cν)s+ (cν − cv)s ≥ (p′ − cν)s′ + (cν − cv)s′

(p− cν)s ≥ (p′ − cν)s′ + (cν − cv)(s′ − s) > (p′ − cν)s′.

It completes the proof.
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Lemma 4 For any equilibrium:

i) there exist v1, . . . , vN+1 such that vL = v1 ≤ v2 ≤ · · · ≤ vN ≤ vN+1 = vH , where N can be

infinite; all sellers with v ∈ (vi, vi+1) choose the same price, which we denote as pi, with probability

1. If type distribution is continuous and 1 < i < N + 1, then type v = vi is indifferent between pi

and pi−1;

ii) p1 > · · · > pN . Let si be the equilibrium sales of sellers with v ∈ [vi, vi+1]. Then s1 < · · · <
sN .

Proof. First, we show that if there are two types v1 < v2 that on-equilibrium choose the same

price p with a positive probability then all types in (v1, v2) will strictly prefer p over any other price

and, therefore, will choose it with probability 1. Assume not. Assume type v′ ∈ (v1, v2) prefers

price p′ 6= p. If price p′ results in higher sales, then by the first part of Lemma 3 type v2 would

also strictly prefer p′ to p and, therefore, would not choose p with positive probability. Similarly, if

price p′ results in lower sales, then by the second part of Lemma 3 type v1 would strictly prefer p′

to p and, therefore, would not choose p with positive probability. Finally, consider the case when

price p′ results in the same sales as p. Then, if p′ > p, both v1 and v2 would strictly prefer p′

over p and would not choose p with positive probability. Similarly, if p′ < p, then no type would

choose price p′, including type v′. This proves the interval structure of the equilibrium as defined

in i. To show indifference in the case of continuous quality distribution, consider type vi where

1 < i < N + 1. If type vi strictly prefers message pi to pi−1 then all types in a sufficiently small

neighborhood of vi also strictly prefer pi. Similarly, if type vi strictly prefers pi−1 to pi, then all all

types in a sufficiently small neighborhood of vi will strictly prefer pi−1. Contradiction.

Next we show the monotonicity of prices and sales. Consider type vi that is indifferent between

(pi−1, si−1) and (pi, si). If the quality distribution is discrete, then vi does not necessarily belong

to its support. However, it exists, and this will suffice for our purpose. It can’t be the case that

si = si−1 because pi 6= pi−1. It cannot be that si < si−1 either. Were it the case then by Lemma 3

all types with v < vi would strictly prefer pi to pi−1, which contradicts the definition of vi. Thus,

si > si−1. But then pi < pi−1 because, were it not the case, all the types in [vi−1, vi] would strictly

prefer price pi and enjoy both higher price and higher sales.

Now we can prove Proposition 7. Proof by contradiction. Assume there are at least three

different on-equilibrium prices: p1 > p2 > p3 > . . . . Let p1 be the price set by seller vL. Then

p1 ≤ Ep1v, as otherwise seller vL would not make any sales. By Lemma 4, pi < Epiv for any i,

which means that the corresponding sales must be equal to 1 for every i 6= 1. When buyers are

risk-neutral, it is strictly optimal for each buyer to purchase a product when its price is strictly

below its expected quality. But, as we showed in Lemma 4, one cannot have an equilibrium where

two different prices result in the same sales. Thus, there are at most two different equilibrium

prices. One is the price chosen by low-quality types, including vL, and that results in s1 < 1. The

second price is chosen by all other types, which results in s2 = 1.

It is straightforward to construct an equilibrium with two on-equilibrium prices. Assume there

are two types: {L,H} with vL = 1, cL = 1 and vH = 2, cH = 1/2. The probability of type H is 2/3.
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Two equilibrium prices are p1 = 3/2 and p2 = 1. Type L chooses p1 with probability 1 and type H

randomizes between p1 and p2 with equal probabilities. Buyers’ beliefs about expected quality are

µ(p1) = 3/2 and µ(p2) = 2. The corresponding sales are q1 = 1/2 and q2 = 1. One can see that H

sellers are indifferent between p1 and p2 and seller L strictly prefers p1. Off-equilibrium beliefs to

support this equilibrium are: µ(p) = 1 if p 6= 1 and p 6= 3/2.�

Proof of Proposition 8: Fix N . Assume that quality is distributed uniformly on [1, N + 1]. We

will specify sellers’ costs as well as the distribution of buyers’ preferences so that there exists an

equilibrium where for any integer i types in [i, i+ 1] pool. When types [i, i+ 1] pool and set price

pi the expected loss is equal to∫ i+1

i
(v − Ev)dv =

∫ i+1

i

(
v − i+ i+ 1

2

)
dv =

1

8
,

and the corresponding demand is given by the location of the indifferent buyer, Ev − p− b0 1
8 = 0,

so that

q(p) =
1

B
8

(
i+ i+ 1

2
− p
)
.

Take p1 as any number between 1 and 1.5 and pN = 1. Here 1.5 is the expected quality of

sellers who pool using price p1, and 1 is the lowest possible quality. Let ε = (p1 − pN )/(N − 1)

and pi = p1 − (i − 1)ε. Type i + 1 should be indifferent between pi and pi+1. We will use this

indifference to determine ci+1:

8((2i+ 3)/2− pi+1)(pi+1 − ci+1) = 8((2i+ 1)/2− pi)(pi − ci+1).

Taking into account that pi − pi+1 = ε we get

ci+1 =
pi+1 − 2i+1

2 ε+ ε(pi+1 + pi)

1 + ε
.

Note that, since prices decrease with i, cost decreases as well so that ci > ci+1. The expression

above only determines the costs for types with integer quality. For types in between integer points

one can use any strictly decreasing function c(v) as long as c(i) = ci and c(i + 1) = ci+1. Finally,

the corresponding sales are

si+1 =
1

B

(
2i+ 3

2
− (p1 − (i− 1)ε)

)
,

and they are increasing function of i. Set B so that sN = 1.

Finally, off-equilibrium beliefs are such that if p 6= pi for some i, then buyers believe that the

seller has the lowest quality of 1.

We can now verify that it’s an equilibrium. Any deviation to an off-equilibrium price p > 1

will result in zero sales and zero profit. Any deviation to p < 1 will result in sales of 1. However,

price pN = 1 also results in sales of 1 but at a higher price and, therefore, is more profitable.

Deviations to on-equilibrium prices are not profitable by Lemma 4. Consider, for example, sellers
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with v ∈ (i, i+ 1). By construction, type i+ 1 is indifferent between pi+1 and pi. From Lemma 4 it

follows that si+1 > si and that all types with v > i+ 1 strictly prefer pi+1 to pi while all types with

v < i + 1 strictly prefer pi. By applying same logic for all types with integer j one can establish

that all types with v ∈ (i, i+ 1) strictly prefer price pi over any other equilibrium price.�
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8 Tables and Figures

Figure 1: Equilibrium parameters when the high-quality seller separates.

Figure 1: Equilibrium parameters when high-quality seller separates. We assume b ∼ U [0, 3] and vH − vL = 3. We

use qLL, which is probability of buying low-quality product conditional on message L, instead of q for the horizontal

axis because there is not much variation in q as it is very close to 1. b0 is the loss-aversion of the buyer indifferent

between buying the L- and H-products, those with b < b0 will buy the L-product. pH is the price of the H-seller,

and pL is the price of the L-seller in the subgame after (H,L) messages, λ is the probability that high-quality seller

sends message L.
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