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Abstract

Uncertainty rises in recessions. But does uncertainty cause downturns or vice

versa? This paper argues that counter-cyclical uncertainty fluctuations are a by-

product of technology growth. In a firm dynamics model with endogenous technology

adoption, faster technology growth widens the dispersion of firm-level productivity

shocks, a benchmark uncertainty measure. Moreover, faster growth spurs a creative

destruction process, generates a temporary downturn and renders uncertainty counter-

cyclical. Estimates from structural VARs on U.S. data confirm the model’s predic-

tions. On average, shocks to technology growth explain 1/4 of the cyclical variation

in uncertainty, and up to 2/3 around the “dot-com” bubble.
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1 Introduction

Uncertainty rises during recessions. While this stylized fact is robust to many refinements,

the question of whether uncertainty is an exogenous source of businesses cycles or an en-

dogenous response to them is not well understood. This paper argues that counter-cyclical

fluctuations in uncertainty are a by-product of changes in technology growth. Moreover,

such growth-driven uncertainty changes are found to be quantitatively important in U.S.

data.

To study the link between technology growth, business cycles and firm-level uncer-

tainty, I build a tractable general equilibrium model of endogenous firm dynamics and

technology adoption. In this model, firms can improve their productivity by investing into

the adoption of newer vintages of technology which grow stochastically over time. When

the technological frontier expands, firms face relatively larger productivity gains if they

successfully adopt newer vintages and relatively larger productivity losses if they do not.

In other words, faster technology growth widens the dispersion of firm-level productiv-

ity shocks, a benchmark measure of uncertainty.1 Endogenous technology adoption then

serves as a strong source of magnification and propagation of uncertainty responses to

technology shocks.

In addition, expansions of the technological frontier spur a process of creative de-

struction. A technological improvement raises productivity at firms utilizing the latest

technology vintage. This leads to an increase in consumption and wages, but this rise is

only gradual as consumption smoothing motives of the household direct some of the pro-

ductivity gains into investment. Therefore, faster technology growth has opposing effects

on firms, depending on their technology vintage. On the one hand, firms at the frontier

enjoy productivity gains larger than the increase in wage costs prompting them to create

jobs. On the other hand, firms which have not adopted the newer vintage of technology

experience only a rise in labor costs and as a result they shed workers and shut down more

often.

1See Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2014). The Appendix shows that the

results are robust to alternative firm-level uncertainty measures.
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In the calibrated model, which matches salient features of U.S. firm dynamics, the

initial surge in job destruction dominates and the economy undergoes a temporary Schum-

peterian downturn. Over time, however, aggregate productivity increases as more firms

adopt the leading technology and obsolete production units get weeded out. Therefore, in

contrast to popular models of uncertainty-driven business cycles (see e.g. Bloom, 2009), in

this model counter-cyclical increases in uncertainty are associated with positive long-run

effects.

To see whether this channel is also empirically relevant I test the model’s predictions in

the data. First, while uncertainty is counter-cyclical, the model predicts that uncertainty

co-moves positively with changes in technology growth. I use information on patent appli-

cations and R&D expenditures to proxy for technology growth and show that, as the model

predicts, the correlation between these proxies and uncertainty fluctuations is positive and

statistically significant.

Next, I test the causal implications of the model regarding the impact of technology

shocks on uncertainty and the creative destruction process. The empirical strategy is to

estimate a series of bi-variate structural vector autoregressions (VARs) identifying tech-

nology shocks using long-run restrictions as in e.g. Blanchard and Quah (1989) and Gali

(1999).2 The identifying assumption, consistent with the structural model, is that only

technology shocks affect productivity in the long-run.

The estimated structural VARs support the model’s predictions. Specifically, follow-

ing positive technology shocks firm-level uncertainty, job creation and job destruction all

increase, while at the same time aggregate employment falls temporarily. Moreover, the

magnitudes of these empirical impulse responses are in line with the quantitative predic-

tions of the calibrated model.

Finally, I use the estimated structural VARs to quantify to what extent observed firm-

level uncertainty is growth-driven. Forecast error variance decompositions suggest that on

average 27 percent of the business cycle variation in uncertainty is driven by technology

2The Appendix shows that the results are robust to an alternative empirical strategy based on local

projections following Jorda (2005) and using the technology shocks estimated by Basu, Fernald, Fisher,

and Kimball (2013).
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shocks alone. Zooming in on uncertainty spikes around the four recessions in the sample

shows that there are large differences in the degree to which changes in growth drive

uncertainty. While more than two thirds of the uncertainty increase around the “dot-

com” recession in 2001 were growth-driven, the Great Recession spike in uncertainty was

essentially unrelated to technology shocks.

This paper is related to several strands of the literature. First, it is connected to

the large set of studies analyzing uncertainty movements over the business cycle (see

e.g. Bloom, 2009; Bachmann and Bayer, 2014; Jurado, Ludvigson, and Ng, 2015). The

notion that uncertainty fluctuations may be endogenous to the business cycle features in

e.g. Bachmann and Moscarini (2012); Gourio (2014); Orlik and Veldkamp (2015); Boedo,

Decker, and D’Erasmo (2016); Berger and Vavra (2016).3 Ludvigson, Ma, and Ng (2017)

use instrumental variables to estimate that indeed a large part of uncertainty fluctuations

are endogenous responses to other structural shocks. Instead, the model in this paper

shows that aggregate downturns and increases in uncertainty are both partly driven by a

third common factor: changes in technology growth.

Second, the focus on a link between uncertainty and growth is related to Ramey and

Ramey (1991) and Koren and Tenreyro (2007) who document a negative relationship be-

tween growth and the (constant) level of macroeconomic volatility. Baker and Bloom

(2013) use natural disasters to estimate a negative relationship between changes in uncer-

tainty and growth. In contrast to these studies, this paper provides a structural model of

firm dynamics and growth in which it can be shown analytically that uncertainty fluctu-

ations are a by-product of changes in technology growth.

Finally, this paper also relates to models and empirical evidence on Schumpeterian

creative destruction (see e.g. Aghion and Howitt, 1994; Caballero and Hammour, 1996;

Mortensen and Pissarides, 1998, for earlier contributions). Many studies have documented

that such technology shocks are recessionary in the short-run (see e.g. Gali, 1999; Francis

and Ramey, 2005; Basu, Fernald, and Kimball, 2006; Lopez-Salido and Michelacci, 2007;

3Oi (1961); Hartman (1972); Abel (1983); Bar-Ilan and Strange (1996) entertain the possibility that

increases in uncertainty come with positive effects and Ilut, Kehrig, and Schneider (2016) argue that

counter-cyclical cross-sectional volatility is a natural result of concave hiring rules.
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Canova, Lopez-Salido, and Michelacci, 2013).4 To the best of my knowledge, the current

paper is the first to document how firm dynamics and firm-level uncertainty respond to

Schumpeterian technology shocks.

The rest of the paper is structured as follows. The next section describes the struc-

tural model, it explains its calibration and it provides the model-based results. Section

3 then tests the model results in the data and quantifies to what extent are uncertainty

fluctuations growth-driven in the data. Section 4 concludes.

2 Structural model

This section builds a tractable general equilibrium growth model with endogenous firm

dynamics, technology adoption and business cycle fluctuations. In this model firms endoge-

nously enter, exit and conditional on survival they grow over their life-cycle. Throughout

their life-cycles firms invest into adopting better production technologies which improve

stochastically over time.

The main goal of the model is to understand the link between growth, business cycle

fluctuations and firm-level uncertainty. Following Bloom, Floetotto, Jaimovich, Saporta-

Eksten, and Terry (2014), the benchmark measure of uncertainty used throughout the

paper is the dispersion of firm-level total factor productivity (TFP) shocks. The construc-

tion of this measure is described in detail in Section 2.2.

2.1 Model environment

The economy is populated by a representative household with a continuum of members

and by a continuum of heterogeneous firms which are owned by the household. To ease the

exposition, aggregate variables are denoted by upper-case letters, while firm-specific vari-

ables are denoted by lower-case letters. Let us begin by describing household preferences

and choices and then move on to the process of technology adoption and the behavior of

4Fisher (2006) stresses the importance of distinguishing between “neutral” and “investment-specific”

technology shocks which typically have different qualitative effects. The Appendix shows that the results

are robust to accounting for investment-specific technology shocks.
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incumbent and entering firms.

2.1.1 Household preferences and choices

The representative household chooses consumption, Ct, and supplies labor, Nt, on a per-

fectly competitive labor market. Following the indivisible labor models (see e.g. Hansen,

1985; Rogerson, 1988), labor is assumed to enter linearly into the household’s utility func-

tion and is interpreted as the employment rate. Formally, the per-period utility of the

representative household is given by

lnCt − υNt,

where υ > 0 is the disutility of labor and the preference specification allows for balanced

growth. The representative household maximizes the expected present value of life-time

utility, subject to its budget constraint

Ct = NtWt + Πt, (1)

which states that total income stems from employment (with Wt being the competitive

wage rate) and from the ownership of firms, where Πt are aggregate profits. This total

income is entirely spent on consumption. The resulting optimal labor supply condition is

given by

Wt = υCt (2)

2.1.2 Technology adoption, firm-specific productivity and growth

It is assumed that the frontier technology evolves exogenously according to the follow

process

lnZt = Z + lnZt−1 + εZ,t, (3)

where Z > 0 is a positive drift term and εZ,t are iid innovations distributed according to

a Normal distribution with zero mean and standard deviation σZ . Individual firms are

characterized by a particular vintage of technology zj,t = Zt−j with j ≥ 0. For future

reference, it is useful to also define the technology gap, γj,t = ln zj,t − lnZt.
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Because the frontier is growing over time, an individual firm which fails to adopt

newer technology vintages will experience a gradual decline in relative productivity. At

some point the firm will become so unproductive that it will no longer be profitable to

remain in operation. To prevent this, incumbent firms can undertake investment in order

to improve their prevailing productivity levels. These investments are interpreted broadly,

not only as costs of adopting a well-defined technology. For instance, they also represent

the costs of identifying best practices and attempts at personalizing and implementing such

practices at a specific firm. Therefore, the outcome of such an investment is inherently

uncertain.5

Following Klette and Kortum (2004) a firm investing r units of the final good has a

probability p of adopting a newer technology vintage, where

p =

(
r

χ

) 1
η

γ
1− 1

η .

In the above expression, χ is a scaling factor, γ is the above-defined technology gap

(or “stock of knowledge”) and 1/η is a curvature parameter. The associated cost function

can be written as

R(p, γ) = χγ

(
p

γ

)η
. (4)

As explained, if an incumbent firm fails to adopt a newer technology vintage, it retains

its prevailing productivity level. Successful adoption attempts may lead to either radical or

incremental technological improvements (as in e.g. Akcigit and Kerr, 2016). In particular,

a fraction θ of firms adopting newer vintages adopt the frontier technology, while all other

adopting firms obtain the technology of the closest younger technology vintage. Formally,

letting j denote age of a particular vintage of technology, firm-specific productivity evolves

5The assumption of gradual adoption of (frontier) technology is related to Comin and Gertler (2006).

In contrast to the latter study which assumes homogeneous firms (and competitive technology adopters),

the primary focus of this paper is the time-varying distribution of technology vintages across firms.
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according to

ln zj,t →

{ ln zj+1,t+1 with probability 1− pj,t,

ln zj,t+1 with probability pj,t(1− θ),

lnZt+1 with probability pj,tθ.

(5)

Finally, it is assumed that the process of technology adoption is the same for potential

startups as it is for incumbents firms. As a normalization, the stock of knowledge for

potential entrants is assumed to be given by the average stock of knowledge in the economy,

γ. Startups are assumed to enter the economy only if they manage to adopt the latest

technology vintage.6

2.1.3 Firm behavior

Firm dynamics play a key role in this model. They feature endogenous firm entry and exit,

an endogenous firm productivity (and thus size) distribution and firm life-cycle growth. Let

us first describe these individual features and then turn to the formal firm maximization

problem.

Incumbent firms differ in terms of their productivity levels which they can improve as

described in Section 2.1.2. Conditional on their productivity level, firms produce output

using labor, n, as the only production factor in a decreasing-returns-to-scale production

technology. The gradual nature of technology adoption together with the presence of

decreasing returns to scale in production result in a non-degenerate endogenous firm-level

productivity (and thus size) distribution.

In the data, however, productivity gaps alone cannot account for the observed average

size differences between young and more mature firms (see e.g. Foster, Haltiwanger, and

Syverson, 2016). Therefore, to generate a realistic firm size distribution, which will be

quantitatively important for the aggregate dynamics of the economy, firms in this model

also grow over their life-cycles independent of their productivity levels.

6The Appendix shows that a model in which startups are characterized by a distribution of different

technology vintages, rather than all starting at the frontier, yields similar results.

8



In particular, it is assumed that firms accrue efficiency gains, ψ, through learning-

by-doing (as in e.g. Stein, 1997). These gains are proportional to firm size and can be

rationalized by for instance established long-term relationships, well-developed distribu-

tion networks or better management practices. This makes more mature businesses, which

do not necessarily operate cutting-edge technologies, competitive and able to fend off more

innovative newcomers.7

Finally, in addition to variable costs, firms must also pay stochastic fixed costs of

operation, φ. Firms endogenously shut down when the realization of the fixed cost is too

high rendering them unprofitable.8

Formally, after observing aggregate shocks but prior to the realization of idiosyncratic

operational costs, an incumbent firm i of age amaximizes its discounted stream of all future

profits (Va(zi,t,Ft)) by choosing employment (ni,a,t), a technology adoption probability

(pi,a,t) and by deciding whether or not to remain in operation

Va(zi,t,Ft) = max
ni,a,t,pi,a,t

∫
φ

max
[
0, Ṽa(zi,t, φ,Ft)

]
dHt(φ), (6)

where Ṽa(zi,t, φ,Ft) is the value of a firm conditional on a particular draw of operation

costs defined as

Ṽa(zi,t, φ,Ft) = yi,a,t−Wtni,a,t−R(pi,a,t, γi,t)+ψa,tni,a,t−φ+Etβt+1Va+1(zi,t+1,Ft+1), (7)

where Ft is the aggregate state, βt = βCt/Ct+1 is the household’s stochastic discount

factor with β < 1 and yi,a,t is firm-level production given by

yi,a,t = Atzi,tn
α
i,a,t.

In the above, α controls the returns to scale in production, zi,t is firm-specific productivity

evolving according to (5) and At represents an aggregate total factor productivity shock.

7In addition, modeling life-cycle growth using such deterministic efficiency gains greatly simplifies the

computation of the model. The reason is that it does not introduce additional state variables as would be

the case with e.g. labor adjustment costs where the entire firm size distribution becomes a state variable.
8Note that as with expenditures on technology adoption, also ψ and φ are assumed to be paid in units

of the final good and therefore they grow at the same rate as the rest of the economy.
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Unlike individual firm productivity, aggregate TFP affects all firms symmetrically and as

such allows for common movements in firm productivity. It is assumed to follow an AR(1)

process

lnAt = ρA lnAt−1 + εA,t,

where ρA is the autocorrelation coefficient and εA,t ∼ N(0, σ2A).

Given the perfectly competitive nature of the labor market, the optimal firm-specific

employment decision boils down to workers’ wages being equal to the marginal product of

labor and the firm’s efficiency gains from learning-by-doing

Wt = αyi,a,t/ni,a,t + ψa,t. (8)

The point at which firms decide to shut down, φ̃i,a,t, is defined by (7) equaling zero

0 = yi,a,t −Wtni,a,t −R(pi,a,t, γi,t)− ψa,tni,a,t − φ̃i,a,t + EtβtVa+1(zi,t+1,Ft+1).

Finally, optimal technology adoption, both for incumbent firms and potential new

entrants, equates the marginal costs to the marginal benefits of investing into newer tech-

nology vintages

χη

(
pi,a,t
γi,t

)η−1
=
∂EtβtVa+1(zi,t+1,Ft+1)

∂pi,a,t
,

χη

(
pe,t
γt

)η−1
= θV0(Zt,Ft).

In the above, pe,t is the probability a potential entrant successfully adopts a newer

technology and V0 represents the firm value of startups.9

2.1.4 The firm distribution, market clearing and balanced growth

Letting j denote the age of a particular vintage of technology, zj,t = Zt−j , we can then

define ωj,a,t as the beginning-of-period mass of firms of age a and productivity zj,t. In

addition, let there be a fixed mass E of potential startups attempting to enter the economy

in each period. The mass of startups entering the economy in each period is given by

9Note that in the above expressions Va+1(zi,t+1,Ft+1) incorporates the endogenous evolution of firm-

specific productivity as described by (5). To ease the exposition, formulas making this explicit are presented

only in the Appendix.
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ω0,0,t = Epe,tθ.

The mass of firms older than one year, but nevertheless at the frontier, is given by

ω0,a+1,t+1 =

∑
j

∑
a

∫ φ̃j,a,t pj,a,tθωj,a,tdHt(φ)

∫ φ̃0,a,t p0,a,t(1− θ)ω0,a,tdHt(φ)

j = 0, 1, 2, ...,

a = 0, 1, 2, ...,

j ≤ a,

where firms at the technological frontier are either last period’s surviving adopters with

radical improvements from any part of the firm distribution (top line) or last period’s

surviving frontier firms which managed to adopt the next younger vintage enabling them

to keep up with technology growth (bottom line). The distribution of firm masses at

productivity levels below the frontier is given by

ωj+1,a+1,t+1 =
∑
j

∑
a


∫ φ̃j,a,t(1− pj,a,t)ωj,a,tdHt(φ)+

∫ φ̃j+1,a,t pj+1,a,t(1− θ)ωj+1,a,tdHt(φ)


j = 0, 1, 2, ...,

a = 0, 1, 2, ...,

j ≤ a,

where the mass of firms with productivity zj+1 is given by the mass of last period’s

surviving firms with productivity zj which did not adopt newer technologies (top line)

and the mass of last period’s surviving firms with productivity zj which adopted the next

younger technology vintage enabling them to keep up with technology growth (bottom

line).

The labor market clearing condition and the aggregate resource constraint can be

written, respectively, as

Nt =
∑

j

∑
a

∫ φ̃j,a,t ωj,a,tnj,a,tdHt(φ),

Yt = Ct + Ξt,

j = 0, 1, 2, ...

a = 0, 1, 2, ...

j ≤ a

where aggregate production, Yt =
∑

a

∑
j

∫ φ̃j,a,t ωj,a,t(yj,a,t + nj,a,tψa,t)dHt(φ), which in-

cludes efficiency gains from learning-by-doing is spent on consumption and aggregate

costs Ξt =
∑

a

∑
j

∫ φ̃j,a,t ωj,a,t (φ+R(pj,a,t, γj,t)+) dHt(φ). The latter include operational
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costs and technology adoption expenditures. Aggregate profits are then defined as Πt =

Yt −WtNt − Ξt.

Note that the frontier technology is the only source of growth and therefore the econ-

omy fluctuates around the stochastic trend Zt. The following aggregate and firm-specific

variables are stationary

Ct
Zt
,
Wt

Zt
,
R(pe,t, γt)

Zt
,

Πt

Zt
, Nt,

zi,t
Zt
,
φ̃i,a,t
Zt

,
ψa,t
Zt

,
Φi,a,t

Zt
,
R(pi,a,t, γi,t)

Zt
, ni,a,t, ∀i, a.

Finally, the aggregate state Ft consists of not only the two aggregate shocks, but also

of the entire joint distribution of firm-specific productivity and employment levels. The

reason for the latter is the perfectly competitive labor market where the aggregate wage

rate depends on the distribution of workers across the heterogeneous firms.

2.2 Firm-level uncertainty in the model

This subsection builds intuition as to how and why technology growth is linked to firm-

level uncertainty. Before doing so, however, let us describe how the benchmark measure

of firm-level uncertainty is constructed.

2.2.1 Measuring firm-level uncertainty

Throughout this paper the benchmark measure of uncertainty follows Bloom, Floetotto,

Jaimovich, Saporta-Eksten, and Terry (2014). The authors define uncertainty based on the

cross-sectional dispersion of establishment-level total factor productivity shocks estimated

from the following regression

ln zi,t = µi + ρ ln zi,t−1 + λt + ηi,t, (9)

where ln zi,t is the log of estimated establishment-level TFP, ρ is a persistence parameter,

µi is an establishment fixed effect, λt are time fixed effects and ηi,t are establishment-level

TFP shocks.10 To construct this uncertainty measure, the authors use the Census panel

10Despite that this particular measure is constructed with establishment-level data, I will use the term

establishment- and firm-level uncertainty interchangeably because the structural model does not distinguish

between firms and establishments.
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of manufacturing establishments with annual data ranging from 1972 to 2009. In order to

avoid compositional changes, they focus only on a balanced panel of establishments which

are at least 25 years old.

In what follows, all references to uncertainty are understood to be regarding the above-

described concept of the cross-sectional dispersion of establishment-level TFP shocks. In

addition, all empirical exercises concerning uncertainty will be conducted using the data

constructed by Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2014).

2.2.2 The nexus between growth and uncertainty

To understand why growth is linked to firm-level uncertainty, we can consider a simplified

version of the firm-level productivity process described in (5). In particular, consider

that technology adoption is purely exogenous and that all firms face the same constant

probability of adopting a newer technology vintage, i.e. pi,t = p. In addition, let us assume

that all firms adopting newer technologies obtain the latest technology vintage, i.e. θ = 1.

Under these assumptions, in a large enough cross-section of firms, a fraction p of

businesses will have adopted the leading technology Zt, while productivity of all other

firms would have remained fixed. The evolution of firm-level productivity can then be

described, on average, by the following law of motion

ln zi,t = (1− p) ln zi,t−1 + p lnZt + υi,t, (10)

where E[υi,t] = 0 in the cross-section for every t. Notice, however, that by defining

ρ = 1−p and λt = p lnZt we obtain the empirical regression (9) used to estimate firm-level

uncertainty shocks.11 Recall that the latter is defined as the cross-sectional dispersion of

the forecasting errors υi,t. These errors can be be written in terms of structural parameters

as

11To ease the exposition, establishment fixed effects are omitted here. However, all quantitative model

exercises are based on (9) and thus include establishment fixed effects.

13



υi,t =
{ pγi,t−1 − pZ when firm i does not adopt Zt,

(p− 1)γi,t−1 − (p− 1)Z when firm i adopts Zt,

with their cross-sectional variance being

var[υi,t] = p(1 + p)σ2γ + p(1− p)µ2γ + p(1− p)Z2
, (11)

where µγ = E[γi,t−1] and σ2γ = var[γi,t−1] are the cross-sectional mean and variance of

last period’s distribution of productivity gaps, respectively.12 The above expression shows

that firm-level uncertainty is determined by three components: the distribution of (past)

technology gaps, the probability of adopting the technological frontier and the growth rate

of the frontier technology.

From (11) it is clear that time-variation in technology growth, Zt = Z + εt, directly

translates into firm-level uncertainty fluctuations. In particular, periods of high growth

are associated with more uncertainty. The intuition behind this result is simple. When

the frontier technology expands firms face larger productivity gains if they successfully

adopt the leading technology and relatively larger productivity losses if they do not.13.

Moreover, notice that firm-level productivity must be described by gradual technology

adoption in order for growth to be linked to uncertainty. In the extreme cases of no adop-

tion (purely vintage technology) or full adoption (homogeneous technology) growth-driven

uncertainty fluctuations disappear.14 Finally, the dependence of firm-level uncertainty on

the past distribution of productivity gaps allows for persistent uncertainty increases even

following only transitory changes in technology growth. Similarly, endogenous changes

in the probability of technology adoption, p, will also induce richer dynamics in the full

structural model.

12See the Appendix for a detailed derivation.
13This mechanism is similar to the growth option channel described in Bar-Ilan and Strange (1996)

where higher uncertainty also has positive effects
14It is straightforward to extend the model to include iid disturbances to firm-specific productivity such

that var[υi,t] > 0 even in the extreme cases of full or no technology adoption.
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2.3 Calibration and model performance

The following paragraphs first describe the model’s calibration and then evaluate its per-

formance on dimensions not considered in the parametrization. In order to ease the

exposition of the calibration strategy, I discuss the calibrated parameters in relation to

specific targets even though individual parameters typically influence the behavior of the

entire model. All parameter values and the associated targets are presented in Table 1.15

In order to be consistent with the establishment-based uncertainty measure, the tar-

geted moments are computed using U.S. establishment data taken from the Business Dy-

namics Statistics (BDS) for the available period of 1977-2013. Following the frequency of

the BDS, the model period is therefore assumed to be one year.16

Finally, while firms in this model do not conduct research and development (R&D),

but rather spend resources on adopting (exogenous) technology vintages, it is nevertheless

interesting to confront some of the model predictions with data on R&D. I do so by

proxying R&D expenditures in the model with technology adoption costs of firms which

have adopted the leading technology vintage.

2.3.1 Calibration

Let us start by discussing the parameters pertaining directly to the household. The dis-

count factor, β, is set to 0.97 corresponding to an annual interest rate of 3%. The disutility

of labor, ν, is set such that the steady state wage rate is normalized to one.

The parameters governing the process of technology adoption include the normaliza-

tion constant χ, the curvature parameter η and the probability of radical technology

improvements θ. The normalization constant affects the average probability of technology

adoption. This, in turn, influences the persistence of establishment-level productivity as

can be seen from (9). Therefore, χ is set such that the resulting establishment-level produc-

tivity persistence is consistent with that estimated in Foster, Haltiwanger, and Syverson

15The solution method follows Sedláček and Sterk (2016) and its description is deferred to the Appendix

for brevity.
16When computing business cycle statistics, the data is logged and HP filtered with a smoothing coeffi-

cient 6.23.
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(2008).17 The curvature parameter is set to 2 implying a 0.5 elasticity of the probability of

adopting a new technology vintage with respect to the associated expenditures. Proxying

R&D expenditures with the adoption costs of firms adopting the leading technology, this

is consistent with estimates in Acemoglu, Akcigit, Bloom, and Kerr (2013). Finally, θ is

set to 0.1 following Akcigit and Kerr (2016) who estimate that roughly 10 percent of all

innovations open up new technologies.

Next, returns to scale are set to a standard value of α = 0.67.18 The efficiency gains

from learning-by-doing, ψa, directly affect establishments’ life-cycle growth. To ease the

computational burden, I consider four age categories: startups, young (one to five years),

medium-aged (six to ten years) and old establishments (11 years and more).19 Efficiency

gains are then set in order to match average establishment size by age, relative to the

economy’s average (with efficiency gains of old establishments normalized to zero).20 The

distribution of the operational costs, H, controls the extent to which establishments exit

the economy. It is assumed that H is logistic with mean µH and scaling parameter σH .

The former is set such that aggregate paid operational costs are zero and the latter is set

to match an average establishment exit rate of 11 percent observed in the BDS data.

Finally, aggregate TFP shocks, which are common across all establishments, are as-

sumed to follow an AR(1) process. The persistence and the standard deviation of aggregate

TFP shocks are set such that the model replicates the autocorrelation and volatility of

aggregate output. Frontier technology shocks, on the other hand, are the only source of

growth and are assumed to follow a random walk with a positive drift, Z. The latter is

set to 1.8 percent which is the average observed growth rate of labor productivity over

17The Appendix shows that similar results are obtained when targeting a lower persistence of

establishment-level productivity.
18The Appendix provides robustness exercises with respect to this parameter which is quantitatively

important for the resulting business cycle fluctuations of the economy.
19While startups become young establishments in the next period (conditional on survival), young

(medium-aged) establishments become medium-aged (old) establishments with a probability δ = 1/5

ensuring an “expected duration” of five years within these age categories (conditional on survival).
20In the data, on average about 30 percent of new establishments are created by existing firms. Such

establishments may face different efficiency gains inherited from their parent firm. For simplicity, the

calibration abstracts from such issues.
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the sample period. The standard deviation of innovations to frontier technology growth

is set to match the correlation between aggregate output and R&D expenditures. The

motivation for this last target will become clear in the next subsection which shows that

while frontier technology and aggregate TFP shocks have the same qualitative effects on

R&D expenditures, they have opposite effects on aggregate output. The relative size of

the two aggregate shocks, which is important for the quantitative results, then determines

to what extent R&D expenditures co-move with aggregate output over the business cycle.

2.3.2 Model performance

This subsection discusses the model’s performance along several dimensions important for

the quantitative results discussed next. In particular, it shows that the model predicts a

realistic distribution of establishment and associated rates of job reallocation. In addition,

the model also features empirically plausible R&D patterns at the micro-level even though

only aggregate R&D patterns were used in the calibration process.

First, while average establishment sizes by age were a target of the calibration, the

establishment and employment distribution were not. Nevertheless, the model does well

in replicating these distributions (Table 2). The reason behind this fact is that the model

correctly predicts a negative relation between average establishment exit rates and age.

In particular, while the average exit rate of young (old) establishments is 17 (7) percent

in the data, it is 15 (9) percent in the model.

Second, associated with the process of establishment churn is the overall degree of job

reallocation. In the data, each year about 31 percent of all jobs are either created or

destroyed. In the model, the overall reallocation rate is 24 percent. In addition, a large

part of this reallocation process is due to the entry and exit of establishments. In the data,

jobs created by entrants and destroyed by exiting establishments account for 12 percent

of employment. In the model this fraction is equal to 15 percent.

Third, a crucial feature of the model is the technology adoption process. Again, using

firms which adopt the leading technology as a proxy for innovating firms we find that

the model does well in capturing the process of innovation at the micro-level. In partic-
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Table 2: Establishment and employment distributions (in %)

establishment age

0 1-5 6-10 11+

establishment shares

data 10.3 32.1 19.4 38.2

model 10.8 30.8 19.6 38.8

employment shares

data 5.3 23.2 17.4 54.1

model 5.6 21.5 18.0 54.9

Notes: The table reports the shares (in percent) of establishments and employment in the group of startups,

young (1 to 5 years), medium-aged (6 to 10 years) and old (11 years and over) establishments as a share

of all establishments and employment. Data is taken from the BDS.

ular, Akcigit and Kerr (2016) document that small firms innovate relatively more than

larger businesses showing that patents per employee decrease with firm size. Using the

probability of successful R&D (p) to proxy for patents, this negative relationship between

innovation and firm size also holds in the model. In addition, in the data R&D expendi-

tures are positively correlated with firm productivity in the cross-section, but less so with

productivity growth (see e.g. Klette and Kortum, 2004). In the model, lower firm-specific

productivity impedes the innovation process, see (4). At the same time, less productive

firms that successfully innovate experience relatively larger productivity gains, see (5).

Therefore, as in the data, also in the model R&D expenditures are positively correlated

with firm-specific productivity but essentially uncorrelated with productivity growth.21

21The data features a large share of firms reporting zero R&D expenditures (see e.g. Klette and Kortum,

2004). While this is not allowed in the model, which simplifies it’s computation, in the steady state 20

percent of the firms exhibit an R&D intensity of less than 0.5 percent. The average R&D intensity is 3

percent in the model, which is close to the empirical value of 4 percent reported in Akcigit and Kerr (2016).
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2.4 Model results

It was analytically shown that firm-level uncertainty is linked to technology growth in a

simplified version of the structural model. This subsection begins by showing that also

within the full structural model firm-level uncertainty increases in response to technology

shocks. In addition, this subsection describes the economy’s dynamics following the two

structural shocks and explains why uncertainty is counter-cyclical, as in the data. The

next section documents that these model-predicted dynamics are empirically plausible and

it quantifies to what extent observed uncertainty fluctuations are growth-driven in U.S.

data.

2.4.1 Model-predicted uncertainty fluctuations

In order to investigate the response of firm-level uncertainty to technology shocks, I con-

struct exactly the same measure of uncertainty in the model as is estimated in the data

according to (9). This is done by simulating the model 1, 000 times for 1, 040 periods with

a cross-section of 100, 000 firms. All exogenous shocks are set to zero except for a positive

one-standard-deviation innvoation to the frontier technology in period 1, 001. The first

1, 000 periods are discarded. The remaining time-periods are used to estimate equation

(9) and construct the uncertainty measure.22

Figure 1 plots the resulting impulse response function of firm-level uncertainty averaged

over the 1, 000 model simulations together with the associated one-standard-deviation

confidence bands. It documents that firm-level uncertainty increases significantly and

persistently following the positive one-time shock to the frontier technology. On impact,

uncertainty rises above its steady state by about 5 percent and gradually converges back.

The confidence bands suggest that this increase is relatively short-lived and lasts for only

about two years.

In addition to the benchmark response, the dashed blue line depicts a counterfactual

22Following Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2014) who construct their uncer-

tainty measure using data on establishments with at least 25 years of observations, I restrict the sample

in the model-counterpart to only old firms.
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Figure 1: Uncertainty impulse responses to a positive frontier technology shock
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Notes: Impulse response function of the standard deviation of firm-level TFP shocks (computed according

to (9)) to a positive one-standard-deviation shock to the frontier technology. The impulse response is

generated by simulating a cross-section of firms 1, 000 times for 1, 040 periods. All exogenous shocks are

set to zero except for a positive one-standard-deviation innovation to the frontier technology in period

1, 001. The first 1, 000 periods are discarded. The figure shows the average response and the respective

90 percent confidence bands (shaded areas) over the 1, 000 simulations. “ Fixed adoption” referes to a

counterfactual scenario when firms’ probabilities of adopting newer technology vintages are held fixed at

their respective steady state levels.

impulse response of uncertainty which excludes the effect endogenous technology adoption

has on uncertainty, i.e. when the probabilities of updating firm-specific productivity are

fixed to their respective steady state values pi. The difference between the benchmark and

the counterfactual uncertainty response highlights that endogenous technology adoption

serves to exacerbate the rise in uncertainty following a technology shock.

Moreover, the magnitude of this effect is quantitatively important. On impact an

increase in technology adoption expenditures strengthens the uncertainty response by

about 25 percent. In addition, it more than doubles the persistence of the uncertainty

increase. While the average uncertainty response reverts back to its steady state after
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about ten years in the benchmark economy, it dies out after about four years in the

counterfactual scenario.

The above shows that uncertainty increases in response to higher growth and that

endogenous technology adoption is an important magnification and propagation channel

in this regard. To the extent that measured uncertainty is at least partly growth-driven and

R&D expenditures can be proxied by the firms’ costs of adopting the leading technology,

this result is consistent with Stein and Stone (2013). The authors find that uncertainty

increases have a positive effect on R&D expenditures while hampering many other forms

of investment.

What the above does not show is how growth-driven uncertainty moves over the busi-

ness cycle, i.e. unconditional on technology shocks. Towards this end, the next subsections

discuss the economy’s dynamics in response to the two aggregate shocks and evaluate the

cyclical properties of growth-driven uncertainty.

2.4.2 Business cycle dynamics following aggregate TFP shocks

Figure 2 characterizes the response of the economy to a positive one-standard-deviation

shock to aggregate TFP (A). All variables in the figure are expressed in percent deviations

from their respective steady state growth rates.23

By construction, the persistent increase in aggregate TFP affects all firms symmetri-

cally raising average firm productivity. This symmetry is also the reason why firm-level

uncertainty is unaffected by fluctuations in aggregte TFP.24 Consumption smoothing mo-

tives on the side of the household ensure that part of this productivity increase gets

channeled into greater technology adoption (both among incumbent firms and potential

new startups).

The household’s labor supply decision (2) shows that the aggregate wage rises along

with consumption, undershooting the increase in firm productivity. Therefore, despite

the temporary rise in labor costs, all firms are relatively more profitable and they expand

23In this case, average firm productivity and consumption grow together with the frontier technology,

while all other variables in the figure are stationary.
24The impulse response of firm-level uncertainty to an aggregate TFP shock is provided in the Appendix.
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leading to an increase in aggregate employment. For the same reason, job creation of

startups rises and job destruction from firm exit drops. In other words, the positive

aggregate TFP shock generates a standard real business cycle.

2.4.3 Business cycle dynamics following frontier technology shocks

The aggregate dynamics following shocks to the frontier technology are very different from

those induced by an aggregate TFP shock, see Figure 3.25 The main reason lies in the

fact that changes in the frontier technology do not immediately affect the productivity

of all firms, but rather they permeate through the economy only gradually as it takes

time and resources to adopt new technology vintages. This asymmetry, which induces

changes in the firm-level productivity distribution, generates a new force acting against

the consumption smoothing channel.

On impact, only the productivity of firms that have adopted the latest technology vin-

tage rises. The productivity of all other businesses remains fixed until they also manage to

successfully adopt newer vintages. This, however, requires time and resources and average

firm productivity only gradually rises to it’s new long-run level. Consumption smooth-

ing motives ensure that part of the productivity gains are “re-invested” into technology

adoption and therefore consumption (and wages) rises by relatively less than average firm

productivity. This means, however, that the economy experiences a simultaneous increase

in job creation by firms utilizing the latest technology vintage and job destruction of all

other firms for which productivity has remained fixed.

The precise nature of the creative destruction process is crucial for the aggregate em-

ployment response, which is in principle ambiguous. Under the present calibration, job

destruction dominates initially and aggregate employment falls temporarily. The follow-

ing paragraphs describe in detail how exactly creative destruction helps shape aggregate

fluctuations.

25As before, all variables are expressed in percent deviations from their respective steady state trends.
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Figure 2: Impulse responses to an aggregate TFP shock

T T+2 T+4 T+6 T+8

pe
rc

en
t

0

0.2

0.4

0.6

0.8

1

1.2
average firm productivity

T T+2 T+4 T+6 T+8
0

0.5

1

1.5
R&D intensity

T T+2 T+4 T+6 T+8

pe
rc

en
t

0

0.2

0.4

0.6

0.8

1
consumption

T T+2 T+4 T+6 T+8
-0.1

0

0.1

0.2

0.3

0.4

0.5
employment

years
T T+2 T+4 T+6 T+8

pe
rc

en
t

-0.5

0

0.5

1
job creation from entry

years
T T+2 T+4 T+6 T+8

-1.5

-1

-0.5

0
job destruction from exit

Notes: Impulse response functions to a positive one-standard-deviation shock to aggregate TFP (A) occur-

ring in period T . “R&D intensity” is defined as the share of all technology adoption expenditures at firms

adopting the leading technology relative to aggregate output. All other variables are self-explanatory. All

impulse responses are expressed in percentage deviations from the respective steady state trends (average

firm productivity and consumption grow at rate Z in steady state).
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Figure 3: Impulse responses to a frontier technology shock: aggregates
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Notes: Impulse response functions to a positive one-standard-deviation shock to the frontier technology

(Z) occurring in period T . “R&D intensity” is defined as the share of all technology adoption expen-

ditures at firms adopting the leading technology relative to aggregate output. All other variables are

self-explanatory. All impulse responses are expressed in percentage deviations from the respective steady

state trends (average firm productivity and consumption grow at rate Z in steady state).
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2.4.4 The process of creative destruction

Clearly, the aggregate employment response depends on the relative mass of created and

destroyed jobs. This, in turn, depends on the shares of expanding and contracting firms

in the economy and on the magnitude of their respective employment changes.

Let us begin by investigating the firm-level employment changes implied by the optimal

hiring decision (8)

n̂i,t = 1/(1− α)(ẑi,t − Ŵt), (12)

where “hats” indicate percentage deviations from the respective steady state trends.26 The

above equation shows that on the one hand all firms which fail to innovate, i.e. for which

ẑi,t = 0, experience the same percentage drop in employment irrespective of their size. In

particular, the percentage drop in employment among shrinking firms is proportional to the

wage increase. On the other hand, innovating firms experience heterogeneous productivity

gains depending on their prevailing productivity level. Specifically, firms far away from the

frontier, but which nevertheless managed to radically innovate, undergo relatively larger

productivity (and thus size) increases compared to innovating businesses with an initially

higher productivity level. The shape of the firm size distribution is therefore key for the

quantitative results.

In the calibrated model, which matches well the empirical firm size distribution, an

average innovating firm creates more jobs than the average shrinking firm destroys. How-

ever, the overall impact on aggregate employment still depends on the relative shares of

these two groups of firms. Figure 4 shows the impulse responses of the distribution of

firm exit rates and employment levels as a function of firm-specific productivity ordered

according to the age of the specific technology vintage, i.e. zj,t = Zt−j . Specifically, firms

with a zero year old technology vintage posses the leading technology and older vintages

are farther away from the growing frontier. The figure shows responses in the year of

26For clarity, (12) ignores efficiency gains from learning-by-doing. Taking them into account introduces

differences in the percentage responses between firms of different ages. Equation (12) also highlights

the importance of the returns to scale parameter α for the quantitative results. The Appendix provides

sensitivity tests with respect to this parameter.
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Figure 4: Impulse responses to a frontier technology shock: distributions
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The horizontal axis shows the age of the technology vintage of firm-specific productivity, i.e. zj,t = Zt−j .

A zero year old technology refers to the frontier. The left panel depicts firm-specific exit rates in percentage

point deviations from their respective steady state values, as a function of the technology vintage of firm-

specific productivity. The right panel depicts firm employment in percent deviations from their respective

steady state values, as a function of the technology vintage of firm-specific productivity. The different lines

plot the impulse response on impact, 1, 2 and 3 years after the shock hits the economy, respectively.

impact, 1, 2 and 3 years after the shock hit the economy.27

Upon impact, only firms at the technological frontier (i.e. with j = 0) reap the

benefits of improved technology. Such firms shut down relatively less often and they

expand, compared to their steady state. All other firms, which now find themselves facing

higher labor costs, shut down relatively more often and contract. The permanent nature

of technology shocks means that one year after the improvement in frontier technology,

also firms with a one year old technology vintage are relatively more productive and

they expand and shut down less often. Similar logic applies to responses in later years,

highlighting how the benefits of technology shocks only gradually permeate through the

economy.

Therefore, the aggregate employment response crucially depends on the speed of the

27For clarity, the figure restricts the maximum age of a technology vintage to be 9 years. In the full

model, vintages can be up to 30 years old as discussed in the solution method in the Appendix.
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technology adoption. In the calibrated model, which is consistent with several empirical

R&D patterns at the firm-level and the average persistence of firm-level productivity, the

mass of shrinking firms initially dominates that of expanding businesses and the economy

undergoes a temporary Schumpeterian downturn.

2.4.5 Business cycle fluctuations of uncertainty

The above paragraphs make clear that conditional on technology shocks, uncertainty is

counter-cyclical. However, it may still be the case that aggregate TFP shocks dominate

the business cycle and uncertainty is acyclical unconditionally. Therefore, I simulate the

model allowing for both aggregate shocks to vary in line with their calibration.28

Table 3 reports correlations of uncertainty with several business cycle indicators. The

first two columns show that firm-level uncertainty is unconditionally counter-cyclical, al-

beit with correlations that falls somewhat short of that observed in the data. For instance,

Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2014) report a correlation be-

tween GDP and uncertainty of about −0.46 indicating that firm-level uncertainty is likely

fluctuating in a counter-cyclical fashion also for other (potentially exogenous) reasons not

present in the current model. The last column of Table 3 highlights the growth-driven

nature of uncertainty which is positively correlated with technology growth.

3 Creative destruction and uncertainty in the data

The structural model presents a theory in which positive growth options increase uncer-

tainty at the firm-level and, at the same time, spur a process of creative destruction gen-

erating a temporary Schumpeterian downturn. This section presents empirical evidence

in support of these model predictions and quantifies to what extent observed uncertainty

fluctuations in the data are growth-driven.

28Once again, the model is simulated 1, 000 times for 1, 040 period with a cross-section of 100, 000 firms.

The first 1, 000 periods are discarded. The generated data is used to estimate uncertainty according to (9)

which I then correlate with the cyclical components of aggregate output and employment.
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Table 3: Correlation of firm-level uncertainty in model with...

output employment technology

−0.33 −0.23 0.54

[−0.50,−0.16] [−0.42,−0.05] [0.40, 0.68]

Notes: correlation coefficients between firm-level uncertainty and business cycle indicators. Uncertainty is

measured as the standard deviation of firm-level TFP shocks (computed according to (10)). “Technology”

refers to the stochastically growing frontier technology Zt. All the data is logged and HP filtered. The

reported values are averages over 1, 000 model simulations of length 1, 040 periods in which the first 1, 000

periods are discarded. The respective one-standard-deviation intervals (across the 1, 000 model simulations)

are reported in brackets.

3.1 Cyclical pattern of firm-level uncertainty

Let us begin by the cyclical fluctuations of firm-level uncertainty. As is well known, uncer-

tainty is robustly counter-cyclical and this is also true in the structural model. However,

the growth option channel of uncertainty fluctuations of the model predicts that, while

being counter-cyclical, uncertainty is positively correlated with technology growth.

In order to investigate this prediction in the data, I consider two distinct proxies for

frontier technology growth. First, I compute the correlation between uncertainty and R&D

expenditures as the latter are key in adoption process of the growing technology frontier

in the model. The correlation between the cyclical components of R&D expenditures,

taken from the Bureau of Economic Analysis, and uncertainty is 0.30 which is statistically

significant at the 5 percent level. Second, I follow Hall, Jaffe, and Trajtenberg (2001)

and use data on patent applications, taken from the U.S. Patent and Trademark Office

(USPTO), to proxy for technology growth. The resulting correlation of patent applications

with uncertainty is 0.33.29

29In both cases, the cyclical components were extracted using the HP-filter with a smoothing coefficient

of 6.23 for annual data. Redoing the correlations between the level of uncertainty and growth rates in

R&D expenditures (patent applications) gives correlation coefficients of 0.16 (0.15). However, both R&D

expenditures and patent applications are characterized by medium-term swings in their growth rates which

are taken out by the HP-filter.
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Therefore, as in the model, also in the data firm-level uncertainty is robustly counter-

cyclical but at the same time it correlates positively with proxies of frontier technology

growth.

3.2 Technology shocks, uncertainty and creative destruction

Next, let us turn to the causal predictions of the model regarding technology shocks, the

creative destruction process and uncertainty. Towards this end, I estimate a series of

structural vector autoregressions (VARs) with long run restrictions as in e.g. Blanchard

and Quah (1989), Gali (1999).30 Consistent with the structural model, the identification

is based on assuming that only technology shocks determine productivity in the long-run.

The estimation uses bi-variate VARs where the data vector is given by Yt = (∆at, xt)
′,

with ∆at being productivity growth and xt being the variable of interest.31 Productivity

is measured by output per hour in the non-farm business sector and xt includes: firm-level

uncertainty, job creation by new establishments, job destruction by exiting establishments,

aggregate employment and R&D expenditures (recall that in the model the proxy for R&D

expenditures are costs of technology adoption of the leading technology).32 In addition,

following Fernald (2007), who documents that low-frequency movements in productivity

may impair the identification of technology shocks, the estimation allows for break points

in the intercepts. Finally, all VAR specifications are estimated with two lags.33

Figure 5 shows the impulse responses of firm-level uncertainty to a positive one-

standard-deviation technology shock in the data and the model. The magnitude of the

30The Appendix shows that very similar results are obtained with an alternative estimation strategy

based on local projections following Jorda (2005) and using technology shocks estimated by Basu, Fernald,

Fisher, and Kimball (2013).
31The identified technology shocks are nevertheless very similar with correlation coefficients around 0.8

across the different VARs.
32Uncertainty is again measured as the cross-sectional variation in TFP shocks taken from Bloom,

Floetotto, Jaimovich, Saporta-Eksten, and Terry (2014), job creation and destruction data are taken

from the Business Dynamics Statistics (both entering in logs), employment is the growth rate of civilian

employment taken from the Bureau of Labor Statistics and R&D expenditures are measured as real R&D

expenditures as a share in real GDP taken from the Bureau of Economic Analysis.
33The Appendix provides further details on the estimation procedure as well as several robustness checks.
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Figure 5: Uncertainty responses to a positive technology shock: data and model
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Notes: Impulse response functions to a positive one-standard-deviation technology shock in the “model”

and the “data”. Uncertainty is measured as cross-sectional variation in establishment-level TFP shocks

taken from Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2014). Shaded areas depict one-

standard-deviation confidence intervals from the data. Thin dashed lines depict one-standard-deviation

confidence intervals in the model.

uncertainty response in the model is on the high end of that identified in the data. The

average model response is also somewhat more persistent, but the one-standard-deviation

confidence bands suggest that even in the model the uncertainty increase is only short-

lived.

Next, Figures 6 characterizes the technology adoption and creative destruction mech-

anism behind the counter-cyclical nature of growth-driven uncertainty fluctuations. As in

the model, also in the data a positive technology shock raises the incentives to conduct

R&D. In addition, an improvement in technology spurs a process of creative destruc-

tion associated with a simultaneous increase in job creation and job destruction. In the

aggregate, this leads to a temporary Schumpeterian downturn with employment falling

for several periods. Therefore, the model predictions are not only qualitatively, but also
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Figure 6: Aggregate responses to a positive technology shock: data and model

T T+2 T+4 T+6

pe
rc

en
t

-1

0

1

2

3
R&D intensity

data
model

T T+2 T+4 T+6
-2

0

2

4

6

8
job creation from entry

years
T T+2 T+4 T+6

pe
rc

en
t

-5

0

5

10
job destruction from exit

years
T T+2 T+4 T+6

-1

-0.5

0

0.5
employment

Notes: Impulse response functions to a positive one-standard-deviation technology shock in the “model”

and the “data”. Job creation from entry and destruction from exit are taken from the Business Dynamics

Statistics (both entering in logs), employment is the growth rate of civilian employment taken from the

Bureau of Labor Statistics and R&D expenditures are measured as real R&D expenditures as a share

in real GDP taken from the Bureau of Economic Analysis. Shaded areas depict one-standard-deviation

confidence intervals.

quantitatively, consistent with U.S. data.

3.3 To what extent is uncertainty growth-driven in the data?

Finally, let us quantify to what extent observed fluctuations in firm-level uncertainty are

growth-driven in the data. A variance decomposition of the forecast errors suggests that

about 27 percent of the observed fluctuations in uncertainty are driven by technology

shocks alone.

In addition, it is possible to gage which episodes of heightened uncertainty were pre-

dominantly driven by growth options and which were by driven by other factors. In what

follows, I focus on the four NBER recessions in the sample, which were all associated with
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Figure 7: Uncertainty spikes around recessions and their growth-driven components
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Notes: Cyclical uncertainty increases around NBER recessions measured as deviations from the respective

prior troughs. “Growth-driven component” is based on the estimated structural VAR with the identified

technology shocks being the only sources of variation. Both time-series are first detrended using the trend

from the estimated structural VAR.

a cyclical increase in uncertainty. To measure the latter, I de-mean the data using the esti-

mated intercepts from the structural VAR. The uncertainty run-ups are always measured

from the respective trough prior to the recession up until one year after the official end of

the downturn. In order to measure the “growth-driven” component of these uncertainty

spikes, I use the estimated structural VAR to forecast uncertainty while allowing for only

the identified technology shock to vary and fixing the second shock to zero.

Figure 7 plots the above-described uncertainty spikes around the four NBER recessions

in the sample, together with the respective growth-driven components implied by the

identified technology shocks alone. While technology shocks explain, on average, about a

quarter of the uncertainty fluctuations, the patterns differ substantially across recessions.

Specifically, uncertainty increases during the milder downturn in 1991 and the run up

towards the bursting of the “dot-com” bubble in 2001 were predominantly growth-driven.
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In these cases, growth-driven uncertainty accounts for about two thirds of the overall

increase at its peak. On the contrary, the strong uncertainty increases during the double-

dip recession in the early 1980’s and the Great Recession had little to do with growth.34

In fact, during both these downturns the growth-driven component contributed negatively

to the overall increase in uncertainty.35

The above empirical evidence therefore supports the predictions of the structural model

that technology growth, creative destruction and firm-level uncertainty fluctuations go

hand-in-hand. Not only does uncertainty respond to technology shocks in the data, it

does so in a quantitatively important way.

4 Conclusion

This paper provides a theory and empirical evidence on how growth-options impact firm-

level uncertainty and in turn the aggregate economy. The structural model of firm growth

via endogenous technology adoption suggests that increases in technology growth go hand-

in-hand with a process of creative destruction and with increases in firm-level uncertainty.

Such growth-driven uncertainty fluctuations are therefore counter-cyclical, but co-move

positively with technology growth. The model predictions are shown to hold in U.S. data

not only qualitatively, but also quantitatively.

While the results show that technology growth is likely an important driver of un-

certainty fluctuations, especially in certain periods, they also highlight the role of other

factors in shaping uncertainty fluctuations. In particular, the Great Recession seems to

be a period in which uncertainty increased dramatically for reasons unrelated to technol-

ogy growth. In order to understand the aggregate implications of uncertainty fluctuations

and the possible inefficiencies and associated policy implications related to them, it is

important to further strive to understand the different sources of uncertainty variation.

34Note that the level of uncertainty was highest during the Great Recession. However a large part of

this increase is attributed to the estimated trend. Similar results are obtained for alternative detrending

methods.
35This is in line with Ludvigson, Ma, and Ng (2017), who argue that the Great Recession increase in

uncertainty was primarily related to financial uncertainty.
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Appendix to

Creative Destruction and Uncertainty

A Model results

This section of the Appendix provides details of the solution method used in the main

text as well as further model details, robustness checks and additional results.

A.1 Solution method

The structural model is a general equilibrium framework with heterogeneous firms. Indi-

vidual businesses must know the entire distribution of firm productivity and employment

levels in order to be able to forecast the development of the wage rate, a key variable

in their optimization decisions. In addition, the presence of two aggregate shocks makes

these firm distributions time-varying rendering the solution of the model challenging.

The method employed in this paper follows that developed in Sedláček and Sterk

(2016). The procedure is based on first-order perturbation along the stationary steady

state life-cycle dynamics of individual firms, which depend on the evolution of their firm-

specific productivity values. Notice that without persistent idiosyncratic shocks and with-

out adjustment costs, all firms with the same productivity level will make the same deci-

sions. Therefore, it is possible to treat a particular distance from the technological frontier

as a separate “firm type”. To economize on notation, we can express the model compactly

as:

Etf (yt+1, yt, xt+1, xt; Υ, ζ) = 0

where xt is a vector containing the state variables (all variables in St) and yt is a vector

containing the non-preditermined variables, Υ is a vector containing all parameters of

the model and ζ is a scalar parameter pre-multiplying the covariance matrix of the shock

innovations, as in Schmitt-Grohé and Uribe (2004). Importantly, the above is system of a

finite number of expectational difference equations.
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A.1.1 Solving for the steady state without aggregate uncertainty

One first solves for the equilibrium of a version of the model without aggregate uncertainty.

That is, I find vectors y and x that solve f (y, y, x, x; Υ, 0) = 0. As described in the

main text, the calibration targets various parameters to match long-run statistics. The

calibration procedure has the following steps:

1. given values for the technology types (i.e. technology gaps), the aggregate wage rate

(W ), the technology adoption probability (p) and the distribution of firm-specific

operational and adjustment costs (H(µh, σH) and ψ), one can calculate the growth

paths of firm-level employment, firm values and the endogenous exit rates.

2. given firm values and exit rates from (1.) and a normalization of the mass of entrants,

it is possible to back out the entry cost and to compute the distribution of firm masses

across technology types.

3. given the mass of firms in all technology types from (2.) and their optimal choices

from (1.) and (2.), it is possible to compute all aggregate variables.

A.1.2 Solving for the equilibrium with aggregate uncertainty

Next, one can solve for the dynamic equilibrium using first-order perturbation around the

stationary steady state (including the steady state life-cycle patterns of firms) found in the

previous step. The first-order approximated solutions, denoted by hats, have the following

form:

x̂t+1 = x+ Θ (x̂t − x)

ŷt+1 = y + Φ (x̂t − x)

where Θ and Φ are matrices containing the coefficients obtained from the approximation.

The perturbation procedure is standard and carried out in one step.

An advantage of perturbation methods is that the computational speed is relatively

high and many state variables can be handled. An important prerequisite for perturbations

to be accurate, however, is that deviations from the steady-state are not too large. For firm
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dynamics models like the one in this paper it may seem problematic because differences

in employment levels across firms may be very large. The solution method adopted here,

however, overcomes this problem since the steady state we perturb around contains the

entire life-cycle profiles of firms. These growth paths, captured by the constants in the

above equations, are themselves non-linear functions of technology types.

Hence, the fact that most newborn firms starts off much below their eventual sizes

does not involve large accuracy losses since the same is true for the steady-state sizes of

newborn firms. Similarly, the fact that the equilibrium features various firm types with

very different optimal sizes does not reduce accuracy since we perturb around the growth

path for each individual firm type.

A.2 Details of firms’ first order conditions

This subsection provides more detailed expressions for the firms’ first order conditions

presented in the main text. Specifically, it makes explicit the evolution of firm specific

productivity. Let us rewrite the first order conditions in terms of firm-specific productivity

levels defined by the age of the technology vintage operated by the firm, zj,t = Zt−j . The

threshold level of operational costs is then defined by

φ̃j,a,t = yj,a,t−Wtnj,a,t−R(pj,a,t, γj,t)−ψa,tnj,a,t+Etβt


pj,a,tθVa+1(Zt+1,Ft+1)

+pj,a,t(1− θ)Va+1(zj,t+1,Ft+1)

+(1− pj,a,t)Va+1(zj+1,t+1,Ft+1)

 ,

In a similar fashion, the optimal expenditures on R&D for incumbent and potential

new firms, respectively, are given by

χ(1 + η)

(
pi,a,t
γi,t

)η
= Etβt


θVa+1(Zt+1,Ft+1)

+(1− θ)Va+1(zj,t+1,Ft+1)

−Va+1(zj+1,t+1,Ft+1)

 ,

χ(1 + η)

(
pe,t
γt

)η
= θV0(Zt,Ft).
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A.3 Derivation of growth-uncertainty link

The main text showed that the forecasting errors can be written as

υi,t = τi,t(pγi,t−1 − pZ) + (1− τi,t)((p− 1)γi,t−1 − (p− 1)Z),

where τi,t is an indicator function which is equal to one with probability p and zero other-

wise. Moreover, τi,t is independent from any other process, i.e. also from the distribution

of past productivity gaps γi,t−1. I assume that the model parameters are such that these

moments are well-defined. Using this and the fact that the mean and variance of τi,t in

the cross-section is equal to p and p(1− p), respectively, we can write the variance of the

above forecasting errors as

var[υi,t] =var[τi,t(pγi,t−1 − pZ) + (1− τi,t)((p− 1)γi,t−1 − (p− 1)Z)]

=var[pγi,t − pZ + τi,tZ − τi,tγi,t]

=p2σ2γ + 0 + Z
2
p(1− p) + p2σ2γ + µγp(1− p) + p(1− p)σ2γ

=p(1 + p)σ2γ + p(1− p)µ2γ + p(1− p)Z2
,

where µγ and σγ are, respectively, the mean and variance of the cross-sectional distribution

of the relative stocks of knowledge γ and where we have used the fact that the variance of

the product of independent random variables is given by var[XY ] = µ2Xσ
2
Y +µ2Y σ

2
X+σ2Xσ

2
Y ,

where again µ and σ2 indicate the respective means and variances.

A.4 Uncertainty response to aggregate TFP shocks

The main text shows the model impulse response of firm-level uncertainty to a positive

frontier technology shock. This subsection provides the same impulse response, but for a

positive aggregate TFP shock. In contrast to frontier technology shocks, aggregate TFP

shocks affect all firms symmetrically. Therefore, the mechanism through which growth-

driven uncertainty fluctuations arise disappears. In particular, even conditional on a

radical technology improvements, firms do not experience relatively larger productivity
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Figure 8: Uncertainty impulse responses to a positive aggregate TFP shock (εA)
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Notes: Impulse response function of the standard deviation of firm-level TFP shocks (computed according

to (9)) to a positive one-standard-deviation shock to aggregate TFP. The impulse response is generated by

simulating a cross-section of firms 1, 000 times for 1, 040 periods. All exogenous shocks are set to zero except

for a positive one-standard-deviation innovation to the frontier technology in period 1, 001. The first 1, 000

periods are discarded. The figure shows the average response and the respective one-standard-deviation

confidence bands (shaded areas) over the 1, 000 simulations.

gains (relative to steady state growth) because firm-specific productivity increases for all

firms, not just those at the frontier.

Figure 8 shows the impulse response of firm-level uncertainty to a positive one-standard-

deviation shock to aggregate TFP. The model is simulated 1, 000 times for 1, 040 periods

with a cross-section of 100, 000 firms. All exogenous shocks are set to zero except for a

positive one-standard-deviation innvoation to the aggregate TFP in period 1, 001. The

first 1, 000 periods are discarded. The remaining time-periods are used to estimate equa-

tion (9). The figure plots the average response over the 1, 000 simulations together with

one-standard-deviation confidence bands.
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A.5 Returns-to-scale sensitivity

The benchmark calibration assumes a returns-to-scale parameter equal to α = 0.67 de-

livering a realistic labor share in income. This subsection shows that similar results are

obtained with a higher calibration for α. In particular, I consider a calibration in which α

is 20 percent higher than it’s benchmark value. I recalibrate the model to ensure that it

still matches all the calibration targets. Figure 9 shows the impulse responses to a positive

one-standard-deviation shock to the frontier technology under this alternative calibration

together with the benchmark dynamics.

The figure documents that even with α = 0.8, the results are very similar. In particular,

the positive technology shock still generates a short-run Schumpeterian downturn with

job creation due to entry and job destruction due to exit both rising simultaneously and

aggregate employment dropping. In addition, it changes very little on the impulse response

of firm-level uncertainty to technology shocks, which still remains to increase through the

growth option channel.

A.6 A distribution of technology vintages for entrants

The benchmark calibration assumes that potential entrants can only start up if they

manage to adopt the leading technology. This subsection shows that similar results are

obtained when assuming a non-degenrate distribution of technology vintages for startups.

In particular, it is assumed that in addition to startups adopting the leading technology,

potential entrants that fail to adopt the frontier technology are uniformly distributed

between technology vintages of age j = 0 and j = J , where J is chosen such that the

model matches the high exit rate of one year old establishments (21 percent).

Figure 10 shows the impulse responses to a positive one-standard-deviation shock to

the frontier technology under this alternative calibration together with the benchmark dy-

namics. The two models are similar with the largest differences coming from a muted entry

response (now that entrants potentially face less attractive technologies) and a more pro-

nounced response of R&D intensity. However, the aggregate employment and uncertainty

responses change very little.
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Figure 9: Responses to a positive technology shock: benchmark and alternative
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Notes: Impulse response functions to a positive one-standard-deviation technology shock in the “bench-

mark” and an alternative calibration with a “high alpha” value of 0.8.
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Figure 10: Responses to a positive technology shock: benchmark and alternative
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Notes: Impulse response functions to a positive one-standard-deviation technology shock in the “bench-

mark” and an alternative calibration with “entry distribution” referring to the case when startups face a

non-degenrate technology distribution.
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A.7 Cost of technology adoption sensitivity

The benchmark calibration calibrated the cost of technology adoption in order to match

a establishment-level productivity persistence of 0.79. This subsection shows that similar

results are obtained with a lower target of productivity persistence. Specifically, Decker,

Haltiwanger, Jarmin, and Miranda (2017) estimate a persistence parameter in the range

of 0.6 and 0.7.

Figure 11 shows the impulse responses to a positive one-standard-deviation shock to

the frontier technology under this alternative calibration together with the benchmark

dynamics. Overall the patterns are very similar with a somewhat muted R&D intensity

response (as the average probability of technology adoption increases) and a stronger

aggregate employment and uncertainty response.

B Empirical results: details, extensions and robustness

This section of the Appendix explains in more detail the estimation procedure and it

provides further impulse responses not discussed in the main text. In addition, it shows

results also for other uncertainty measures and results from an alternative estimation

procedure.

B.1 Robustness of uncertainty co-movement

This section provides more detailed information on the data used for analyzing the co-

movement of firm-level uncertainty and it conducts several robustness checks.

B.1.1 Data used for baseline results

The benchmark measure of firm-level uncertainty used throughout the paper is the cross-

sectional dispersion in establishment-level TFP shocks constructed by Bloom, Floetotto,

Jaimovich, Saporta-Eksten, and Terry (2014). Specifically, it is the standard deviation of

the cross-sectional dispersion estimated using a panel of establishments with at least 25

years of observations.
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Figure 11: Responses to a positive technology shock: benchmark and alternative
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Notes: Impulse response functions to a positive one-standard-deviation technology shock in the “bench-

mark” and an alternative “low persistence” calibration with an implied persistence of firm-level productivity

of 0.7.
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The data used to proxy frontier technology growth in the main text comes from

two distinct approaches: patent application growth, growth in real R&D expenditures.

Patent applications are taken directly from the United States Patent and Trademark Of-

fice (USPTO).36 The benchmark results correlate HP-filtered patent applications (in logs)

with the above-mentioned uncertainty measure (also HP-filtered for comparability).

The two proxies for frontier technology growth are mildly pro-cyclical. This is reassur-

ing in the sense that the positive co-movement between uncertainty and frontier technology

growth is not merely a correlation between two highly counter-cyclical time series.

B.1.2 Alternative definitions of uncertainty

While the benchmark results are based on standard deviations of TFP shocks of a panel

of establishments with at least 25 years of observations, Bloom, Floetotto, Jaimovich,

Saporta-Eksten, and Terry (2014) also provide alternative definitions. In particular, they

consider a panel of establishments with at least 38 and 2 years of observations and they

compute not only the standard deviations, but also inter-quartile ranges. The top panel

of Table 4 shows that the results are robust to such alternative definitions.

B.1.3 Patterns after 1984

It is well established that several business cycle patterns underwent a change in the mid

80’s (see e.g. Barnichon, 2010; Gali and van Rens, 2014). The second panel of Table 4

shows that the positive co-movement of frontier technology growth and micro-uncertainty

does not vanish when considering a sample from 1984-2009.

B.1.4 Patent grants and growth rates

While Hall, Jaffe, and Trajtenberg (2001) argue for the use of patent applications as a

measure of technology progress, rather than patent grants, the patterns are robust to this

refinement. In addition, considering patent application growth, rather than HP-filtered

log-levels does not change the results qualitatively (see third panel of Table 4).

36http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us stat.htm.
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Table 4: Co-movement of micro-level uncertainty with frontier technology: robustness

patents R&D

alternative uncertainty definitions

s.d. 38Y 0.32∗∗ 0.21∗

s.d. 2Y 0.39∗∗ −0.08

IQR 25Y 0.08 0.31∗∗

IQR 38Y 0.08 0.27∗∗

IQR 2Y 0.31∗∗ −0.10

correlations after 1984

corr(σt,x) 0.29∗∗ 0.54∗∗∗

patent grants and application growth

corr(σt,grants) 0.19

corr(σt,∆ patents) 0.15

Notes: micro-level uncertainty, σt, is the cross-sectional standard deviation of establishment-level TFP

shocks of establishment with at least 25 years of observations taken from Bloom, Floetotto, Jaimovich,

Saporta-Eksten, and Terry (2014). ∆ indicates growth rates, “patents” refers to the total number of

patent applications taken from the USPTO, “R&D” refers to real expenditures on R&D taken from the

BEA. “s.d.” refers to standard deviation, “IQR” is the interquartile range, “38Y”, “25Y” and “2Y”

refer to micro-uncertainty measures based on panels of establishments with at least 38, 25 and 2 years of

observations, respectively. “grants” refers to the total number of patents granted, taken from the USPTO.

One, two and three stars indicate that the correlation is significant at the 10, 5 and 1% level, respectively.

B.2 Baseline estimation procedure

The empirical results presented in the main text are based on a structural VAR with

long-run restrictions.

B.2.1 Identification of technology shocks and specification

Let Yt be a vector of variables with a moving average representation Yt = C(L)εt, where

C(L) is a matrix of lag polynomials and εt is a vector of (reduced-form) innovations with a
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variance-covariance matrix Σ. Furthermore, assume that the vector of variables also has a

moving average representation linked to “structural” innovations υt given by Yt = A(L)υt,

where the variance-covariance matrix of the structural innovations is normalized to the

identity matrix. The structural and reduced form innovations are then related according

to the following relation

υt = A−10 εt, (13)

where A0 is the coefficient matrix on the current values of υt. The variance-covariance

matrix of the reduced-form innovations can then be expressed as

A0A
′
0 = Σ (14)

Finally, let the first element of Yt be the growth rate of productivity and assume, with-

out loss of generality, that the first element of υt is a neutral technology shock. Following

Gali (1999) the neutral technology shock can be identified using a long-run restriction. In

particular, it is assumed that only a neutral technology shock can impact labor productiv-

ity in the long-run. This implies that only the first element in the first row of the matrix

A =
∑∞

i=0Ai is non-zero and the rest are restricted to zero.

Finally, following Fernald (2007) and Canova, Lopez-Salido, and Michelacci (2013), I

allow for intercept breaks to account for the low-frequency movements in the data.37 All

the bi-variate structural VAR specifications are conducted including two lags and for R&D

intensity, which displays an increasing trend over the sample, I allow for a deterministic

cubic time trend in the VAR.

B.3 Mixed-frequency estimation

The main text uses annual data to estimate the structural VARs because the uncertainty

measures and establishment-level data are available only at this frequency. However, it

is possible to utilize some higher frequency data, in particular on employment and labor

productivity and estimate a mixed-frequency structural VAR. This subsection shows that

the results remain the same even under this methodology.

37The break points are in 1973, 1997 and 2005.
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Figure 12: Impulse responses of aggregates: mixed-frequency estimates
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Notes: impulse response functions to a positive one-standard-deviation neutral technology shock estimated

using a mixed-frequency structural VAR.

In particular, the used frequency of the VAR is quarterly. In case of the uncertainty

measures, which are dispersions of annually observed establishment-level variables, it is

assumed that their values in quarters two to four are unobserved. The structure of the

VAR itself then serves as an imputation device for such missing observations.

In order to obtain good starting values for the Maximum Likelihood estimation, I

first estimate the reduced-form VAR with OLS using the Kalman smoothed estimates

of the annual data as one of the variables.38 The resulting estimates are then used as

starting values for the mixed frequency VAR. Once again, following Fernald (2007) and

Canova, Lopez-Salido, and Michelacci (2013), I allow for intercept breaks to account for

the low-frequency movements in the data.39

38The Kalman smoothed data is obtained by assuming an AR(1) process for the underlying, unobserved,

quarterly variables. Note that this procedure does not utilize the additional information coming from the

variation in the variables that are observed at higher frequencies.
39The break points are in 1973Q1, 1997Q1 and 2005Q1.
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Figure 13: Impulse responses of aggregates: benchmark and when allowing for investment-

specific shocks
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Notes: impulse response functions to a positive one-standard-deviation neutral technology shock in the

benchmark and when including investment-specific shocks. The latter are identified by assuming that they

can affect productivity and the relative price of investment in the long-run. Shaded areas represent the

one-standard-deviation confidence bands from the benchmark estimation.

Figure 12 shows the impulse responses to a positive technology shock of annual vari-

ables estimated using the mixed-frequency methodology.40 All the responses are very close

qualitatively and quantitatively to the benchmark estimates in the main text which are

based only on annual data.

B.4 Investment-specific technology shocks

The model presented in the main text does not include capital. Therefore, the empirical

exercise focuses solely on so-called “neutral” technology shocks. However, Fisher (2006)

40Aggregate employment is available at higher frequencies, but is included here to show that the positive

technology shock remains to be recessionary in the short run.
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Figure 14: Impulse responses of uncertainty: benchmark and when allowing for

investment-specific shocks
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Notes: impulse response functions to a positive one-standard-deviation neutral technology shock in the

benchmark and when including investment-specific shocks. The latter are identified by assuming that they

can affect productivity and the relative price of investment in the long-run. Shaded areas represent the

one-standard-deviation confidence bands from the benchmark estimation.

stresses the importance of distinguishing between neutral and “investment-specific” tech-

nology shocks which may have qualitatively different implications for the economy’s dy-

namics. The latter can also affect productivity in the long-run. However, it is assumed

that only investment-specific technology shocks can affect the relative price of investment

goods in the long-run. The relative price of investment is defined as the investment deflator

divided by the consumption deflator.

Figures 13 and 14 show that even when allowing for investment-specific technology

shocks, the effects of neutral technology shock remain to be very similar to the benchmark

specification.
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Figure 15: Impulse responses of uncertainty: alternative uncertainty proxies
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Notes: impulse response functions of firm-level uncertainty measures by Jurado, Ludvigson, and Ng (2015)

to a positive one-standard-deviation neutral technology shock. Shaded areas represent one-standard devi-

ation and 90% confidence bands, respectively.

B.5 Alternative uncertainty measures

The main text provided results for uncertainty measures based on the standard devia-

tion of establishment-level TFP shocks. Not only are such measures commonly used in

the literature, but the structural model in the main text can exactly replicate such an

uncertainty proxy.

However, Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2014) consider also

alternative uncertainty measures including the interquartile range of establishment-level

TFP shocks, sales growth rates and employment growth rates. Figure 15 shows that the

impulse responses of these alternative measures closely resemble that of the benchmark

measure reported in the main text.
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Figure 16: Impulse responses of aggregates: benchmark and local projections
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Notes: impulse response functions estimated using local projections and technology shocks estimated by

Basu, Fernald, Fisher, and Kimball (2013) together with the associated one-standard-deviation confidence

bands. The figure also shows the benchmark responses in the main text estimated using structural VARs.

B.6 Alternative empirical strategy

As an alternative empirical strategy I employ local projects following Jorda (2005) and an

exogenous measure of technology shocks developed by Basu, Fernald, and Kimball (2006)

and Basu, Fernald, Fisher, and Kimball (2013).41

Figure 16 shows the resulting impulse responses of R&D, job creation from entry,

job destruction from exit and aggregate employment together with those reported in the

41The length of the data over the local projections is fixed to its maximum length at the longest horizon.

For trending variables, such as R&D intensity and aggregate employment, the specification also includes

a deterministic cubic time trend.
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Figure 17: Impulse responses of uncertainty: benchmark and local projections
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Notes: impulse response function estimated using local projections and and technology shocks estimated by

Basu, Fernald, Fisher, and Kimball (2013) together with the associated one-standard-deviation confidence

bands. The figure also shows the benchmark responses in the main text estimated using structural VARs.

main text based on the estimated structural VARs. Both the qualitative and quantitative

patterns are very similar. The same is apparent from Figure 17, which depicts the im-

pulse response for uncertainty. While the impact response is somewhat milder using local

projections, uncertainty remains to increase significantly following a positive technology

shock.
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Sedláček, P., and V. Sterk (2016): “The Growth Potential of Startups over the

Business Cycle,” mimeo.

Stein, J. (1997): “Waves of Creative Destruction: Firm-Specific Learning-by-Doing and

the Dynamics of Innovation,” Review of Economic Studies, 64(2), 265–288.

Stein, L., and E. Stone (2013): “The Effect of Uncertainty on Investment, Hiring and

R&D: Causal Evidence from Equity Options,” mimeo.

57


