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I. Introduction 

With a vast territory and the world’s largest population, China depends heavily on its inter-

city expressways (controlled-access highways) to facilitate mass within-country trade. 

From its inception in the 1980s, China’s national expressway network, officially known as 

the National Trunk Highway System, had expanded to more than 111,000 kilometers by 

2015, making it the world’s largest expressway system by length.  

 Using comprehensive data for more than 1,600 counties over the 13 years from 

2000 to 2012, we estimate the impact of this large-scale transport network expansion on 

local economy and explore the channels. To achieve better identification, we leave out the 

provincial capitals and metropolitan city centers, which the expressways were designed to 

connect, and focus on peripheral counties who gained access to expressways because they 

happened to be located on routes between metropolitan cities. We then compare the 

economic performances between connected and unconnected counties, and estimate the 

impacts of expressway connection in a matched difference-in-differences (DiD) setting. 

We find that expressway connection has a slightly negative, statistically insignificant 

impact on connected counties’ GDP or per capita GDP.  

 As this negligible average impact contrasts the long-held belief of the Chinese 

government that transport infrastructure can effectively promote economic growth of 

peripheral and poor regions (e.g., State Council of China, 2013, p. 3), we then explore 

potential heterogeneity within the impact of expressway connection across initial levels of 

per capita GDP. We do find that expressway connection caused initially poor counties to 

grow faster than the unconnected counties. For the initially rich counties, however, the 

effect is the opposite: they tend to grow slower after being connected than the unconnected 

counties. This heterogeneity is robust to a variety of alternative specifications, such as 

controlling for different fixed effects, allowing the GDP trends of the counties to vary 
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across different levels of initial income, using an instrumental variable approach, and a test 

addressing the issue of treatment spill-overs. 

 The heterogeneity finding challenges existing major explanations on the impacts of 

expressway connection or trade integration on the local economy, such as those based on 

the comparative advantage and those based on potential increasing return to scale, because 

the former would predict a universally positive income effect (e.g. the pollution haven 

hypothesis as in Copeland and Taylor, 1994; survey by Copeland and Taylor, 2004), while 

the latter would predict a more negative income effect on the poor counties than on the rich 

counties (e.g., the home market effect as in Krugman, 1980, 1991; Helpman and Krugman, 

1985; Faber, 2014). A closer examination reveals that the heterogeneous impacts of 

expressway connection with respect to initial income cannot be explained by supply-side 

factors, such as the initial sectoral pattern in the local economy and endowments of land, 

population, and capital, or by factors related to the initial access the nearby market, 

measured by the distance between a focal county and its closest metropolitan city. We thus 

infer that the impact heterogeneity across initial incomes is driven by demand-side factors: 

poor people (or governments in poor regions) and rich people (or governments in rich 

regions) may have different preferences. 

Given these analyses, we propose a trade model that spotlights how the preference 

of local government or consumers over the trade-off between environmental preservation 

and consumption of produced goods will shape the local economy’s response to an 

economic opportunity that reduces trade cost. We show that our empirical result can be 

explained when the preference exhibits a hierarchy of needs in the flavor of Maslow (1943): 

consumption of produced goods is relevant primarily at a lower level of the hierarchy, 

while a taste for environmental quality dominates at a higher level of the hierarchy. With 

this preference specification, lower trade cost increases the ability of the local economy to 

transform polluting emissions into consumption, so it will help a poor economy enjoy 

higher total consumption (local GDP in empirics); for a rich economy, however, lower 
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trade cost can present an opportunity to sacrifice more consumption for better environment, 

and the potential decrease in consumption must be accompanied by lower level of local 

polluting emissions. 

We further test the additional prediction from the model on emissions using county-

level panel data of local polluting emissions in China for the same period, 2000–2012. Our 

analysis confirms that, after expressway connection, rich counties become less polluted, 

while poor counties increase emissions. Expressway connection also makes poor counties 

host more polluting firms and adopt more pollution-intensive technology, while the 

opposite happens to rich counties. These results are consistent with our model. 

This paper unfolds as follows. The rest of this section discusses how this study is 

linked and contribute to previous literature. Section II describes the empirical setting and 

discusses our empirical strategy. Section III introduces the data and provides descriptive 

statistics. Section IV estimates the impacts of expressway connection on GDP and per 

capita GDP. Section V discusses potential explanations of the expressway impacts and 

explores the nature of the heterogeneity.  In Section VI, we propose our model, and we 

provide additional evidence for our model in Section VII. Section VIII discusses policy 

implications and concludes with directions for future research.  

Literature Connections 

This paper builds on and contributes to several strands of literature, including, but not 

limited to, those on the economic consequences of transport infrastructure improvement, 

pollution haven hypothesis, and the environmental Kuznets curve.  

In the past two decades, a large number of studies have examined the economic 

consequences of transport infrastructure improvement and provided important insights for 

development policies (e.g. Fernald, 1999; Chandra and Thompson, 2000; Holl, 2004; 

Baum-Snow, 2007; Michaels, 2008; Datta, 2012; Duranton and Turner, 2012; Duranton et 

al., 2014; Rothenberg 2013; Baum-Snow, 2014; Baum-Snow et al., 2016a; Donaldson and 
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Hornbeck, 2016; Frye, 2016; Ghani et al., 2016; Jaworski and Kitchens, 2016; Alder 2017; 

Donaldson, forthcoming; also the survey by Redding and Turner, 2015). Notable examples 

that focus on China include Banerjee et al. (2012), Zheng and Kahn (2013), Faber (2014), 

Baum-Snow et al. (2016b), and Qin (2016).1  

We improve on this line of research from several aspects. First, most studies 

investigating China’s national expressways use aggregated prefecture- or city-level data. 

The use of data of this level, either in a reduced-form approach, or in a structural approach 

based on a trade or economic geography model, may suffer from endogeneity problem, 

because expressways are designed to connect these locations (as pointed out by, for 

example, Baum-Snow et al. 2016b). An instrumental variable approach may address the 

concern to some extent, but a good instrument is often difficult to come by. In particular, 

the exclusion restriction is difficult to satisfy, and those often-proposed instrumental 

variables, which are based on geographical characteristics, generally lack variation over 

time. To achieve better identification, Faber (2014) is the first to focus on peripheral 

counties and leave out the city centers (targeted cities of the expressway system). In this 

study, we follow Faber (2014) and compare the economic performances between 

connected and unconnected counties. Second, compared with Faber (2014), which uses 

county-level data of two years (1997 and 2006), we assemble a county-level panel data set 

for over 1,600 counties covering each year in the entire period of 2000–2012. To our 

                                                
1 Banerjee et al. (2012) investigated the economic impacts of railway construction in China during the late 

19th and early 20th centuries and found that proximity to transportation networks had a moderately positive 
causal effect on per capita GDP levels across sectors but no effect on per capita GDP growth. Zheng and 
Kahn (2013) study the economic impacts of high-speed rail and find that the expansion of the high-speed 
railway network increased housing prices in affected cities. Faber (2014) explores a similar empirical setting 
to ours and finds that expressway connections significantly reduced economic growth in connected counties. 
We will discuss our difference and improvement upon Faber (2014) in more detail below.  Qin (2016) 
examines the impacts of China’s high-speed railway and finds that affected counties served by upgraded 
railway lines experienced reductions in GDP and GDP per capita. Baum-Snow et al. (2016b) estimate the 
economic impacts of expressway expansion in Chinese cities using both structural and reduced-form 
approaches and find inconsistent results. 
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knowledge, our data set is the largest, longest, and most disaggregated one in this line of 

literature. Since China’s national expressways have expanded by nearly 10 times during 

our sample period (from 11,650 kilometers in 2000 to 9,560,000 kilometers in 2012), our 

data and findings are also more relevant to today’s policy.  Third, having multiple periods 

of data allows us to use different empirical strategies. In particular, we can examine the 

outcome dynamics before and after expressway connection, and credibly test whether a 

DiD approach can be applied.2 Finally, previous studies (especially the ones adopting a 

reduced-form approach) usually focus on the average treatment effect of expressway 

connection.  In contrast, we emphasize the importance of heterogeneity and try to explain 

why it matters for the understanding of the impact of transport infrastructure improvement. 

Our empirical results also speak to the literature on how trade affects pollution in 

China (e.g., Bombardini et al. 2016) and provide a mixed piece of evidence on the pollution 

haven hypothesis (PHH). The PHH conjectures that increased integration of markets can 

shift polluting capitals from richer to poorer regions, where the laxer environmental 

regulations can create a comparative advantage in polluting industries. Empirical evidence 

on the hypothesis is often obtained from aggregate country-level data (e.g., Eskeland and 

Harrison, 2003; Ederington et al., 2005; Frankel and Rose, 2005; Levinson and Taylor, 

2008; Levinson, 2009; Managi et al., 2009). It is often difficult to draw credible causal 

inferences from such data, because institutional, cultural, and demographical settings are 

different across countries and openness to trade is seldom exogenous (Copeland and Taylor, 

2004; Karp, 2011). The rapid expressway expansion in China provides us with a more 

                                                

    2 Faber (2014) develops a creative instrumental variable, which is based on a hypothetical network that 
would link all targeted cities with the least cost, to further address the endogeneity concern. Faber (2014) 
finds a negative effect on average of expressway connection on local GDP growth. However, as 
acknowledged by the author (Faber, 2014, p. 1062), the exclusion restriction could be violated, and, limited 
by data availability, the test of parallel pre-trends has to rely on data of local government revenues, not the 
outcome variable GDP, of a single year (1990). Besides adopting the event-study approach to test whether 
our DiD setting is proper, we also confirm in Appendix Table S3 that our results are robust when an 
instrumental variable approach is used.  
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credible setting to assess the impact of trade integration on the environment, because the 

access of peripheral counties to expressways is arguably exogenous in our context and their 

institutional, cultural, and demographical difference are small and can be controlled by 

fixed effects. Our heterogeneity result about the impact of expressway connections on local 

emissions is indeed consistent with the PHH; as mentioned above, however, the 

heterogeneity result about the impact on local GDP is inconsistent with the PHH. More 

generally, this mixed piece of evidence highlights that, when testing a hypothesis that 

involves primarily one outcome variable (emissions in this case), it is helpful to examine 

additional outcome variables (GDP in this case) that can indicate the theoretical mechanism 

underlying the hypothesis.  

This study also contributes to the environmental Kuznets curve (EKC) literature. 

Following Grossman and Krueger (1995), many studies have tested the EKC, a popular 

hypothesis proposing an inverted U-shaped relationship between environmental 

degradation and income. However, no consensus has been reached on this pattern because 

empirical findings are mixed and those supporting the EKC are often applicable only to 

specific contexts, time periods, and functional forms.3 Arrow et al. (1995) and Stern (2004) 

remark that the relationship between development and the environment cannot be 

characterized as one-way causality. Copeland and Taylor (2004) further argue that 

economic growth from different sources can have different implications for pollution, 

making the EKC unstable in theory. Even though our focus is not to test the EKC, our 

empirical result implies that, first, the changes caused by expressway connection in income 

and emissions are always positively correlated for both the initially rich and poor counties, 

which is inconsistent with the EKC; second, the same kind of shock, (expressway 

connection in this case) can cause the income and emissions to change together, but the 

direction of the change can differ across different levels of initial income. Our theory 

                                                
3 See, for example, Stern, 2010; Copeland and Taylor, 2004; Stern, 2004; Dinda, 2004; Yandle et al., 2004; 

Millimet et al., 2003; Dasgupta et al., 2002; Harbaugh et al., 2002. 
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further implies that, to better understand the relationship between income and emissions, 

because each economy is deciding its resource allocation between income generation and 

environmental preservation in one grand trade-off, we had better consider a third dimension 

about the factor that affects the trade-off, instead of a two-dimensional framework consider 

only income and emissions.  

II. Empirical Setting 

Expansion of China’s Expressway Network 

The expansion of China’s national expressway network took place in several stages. The 

first expressway in China, constructed in 1984, connected two northern Chinese cities, 

Shenyang and Dalian. In 1992, the State Council of China approved the “5–7” expressway 

construction plan, which included five north–south and seven east–west expressways with 

a total length of over 35,000 kilometers. The objective of the “5–7” network was to connect 

all provincial capitals and cities with an urban population of over 500,000 by 2020, and the 

network was completed in 2007, 13 years ahead of schedule. 

In 2004, the State Council approved the construction of a larger expressway network 

known as the “7–9–18” network, which comprises seven radial expressways connecting 

Beijing with other major cities, nine north–south expressways, and 18 east–west 

expressways. The “7–9–18” expressway network links all cities with an urban population 

of more than 200,000, major tourist cities, port cities, and expressway and railway hubs. 

The new target was achieved in 2011, nine years ahead of schedule.  

Many peripheral counties lying between major cities were also connected during this 

expansion. Our empirical strategy exploits this feature and compares the economic 

outcomes between connected and unconnected counties before and after expressway 

construction. More specifically, the treatment group consists of counties that were not 

targeted by the State Council of China (2004)’s National Expressway Network Plan but 
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were connected between 2000 and 2012 simply because they were located on expressway 

routes between metropolitan cities.4  Unconnected counties serve as the control group. The 

targeted cities are excluded from subsequent analysis because their expressway 

connections are endogenous.5 In Figure 1, we present two maps of China, for 2000 and 

2010, respectively, where the targeted cities (including all city districts in a prefecture), 

connected counties, and unconnected counties are denoted by different colors.  

Econometric Model  

We estimate the average treatment effect of expressway connection using a generalized 

DiD approach: 

!",$ = & + ( ∗ *+,,-./",$ + 0$ + 1" + 2",$,                          (1) 

where !",$  is GDP or per capita GDP for county 3  in year / ; *+,,-./",$  is a dummy 

indicator that equals 1 if county 3 is connected in year /, and 0 if otherwise; 0$ is a time 

effect common to all counties in period t; 1" is a time-invariant effect unique to county i; 

and 2",$ is an error term independent of 1" and 0$. We take the logarithms of the dependent 

variables so that the estimated coefficient represents the percentage change. An unbiased 

estimate of ( requires that the pre-treatment trends for both control and treatment groups 

be parallel.  

                                                
4 Our county-level panel data start from 2000, and about 15% of the counties were connected before 2000. 

These counties are not included in our empirical analysis for two reasons. First, they provide no variation in 
treatment status so they do not help to identify the treatment effects. Second, since we do not know exactly 
when they were connected before 2000, we are unable to properly include the lead- and lag- indicators of 
their connection in the parallel-trend tests. 

5  The targeted cities include cities with a population of over 200,000, tourist cities, port cities, and 
expressway and railway hubs. The National Expressway Network Plan (2004) referred to targeted cities as 
the “main controlling nodes.” The list of targeted cities is reported in Appendix Table S1. Appendix Figure 
1 further shows the target cities on the map and draws the expansion of China’s national expressways from 
1992 to 2010. A (prefectural) city typically includes a few urban districts and a dozen rural counties. If a 
(prefectural) city is targeted by the plan, we treat all of its urban districts as being targeted and exclude them 
from subsequent analysis.  
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To estimate the heterogeneous impacts of expressway connection, we introduce the 

interaction between the treatment dummy and initial income in the regression and estimate 

the following equation:  

!",$ = & + ( ∗ *+,,-./",$ + 4 ∗ 56",7888 ∗ *+,,-./",$9 + 0$ + 1" + 2",$,        (2) 

where 6",7888 is the logarithm of per capita GDP of county i in year 2000, and 4 is the 

coefficient of the interaction.  

 

Identifying Assumptions 

The routing of expressways is determined by the central and provincial governments. 

Although counties between major cities were not explicitly targeted by the National 

Expressway Network Plan (State Council of China, 2004), we cannot assume that routings 

were created randomly. Because the decision-making process is not entirely transparent, a 

reasonable concern is that the routing choices may not be orthogonal to unobservable 

factors that may affect the outcomes.  

There are two hypotheses regarding the central government’s routing decisions. The 

first is that the central government connects counties based on time-invariant 

characteristics such as the geographic features of a region, the cost of building 

expressways, and the regional economic and political importance of a county.6 However, 

this type of endogeneity does not threaten our identification. In the DiD setting, county 

fixed effects control for all time-invariant factors that may affect the likelihood of a county 

being connected. Year fixed effects further control for common shocks that affect all 

                                                
6 In our unmatched sample, before the connected counties were connected, they were in general richer than 

unconnected counties (see Table 1). This pattern is also documented by Faber (2014), who investigates the 
early stages of China’s expressway construction. 
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counties (such as national policies) in each year. Thus ( can still be identified as long as 

the treatment group and the control group follow parallel pre-treatment trends. 

The second hypothesis is that the central government connects counties in response 

to local economic or political shocks. For example, would the government intentionally 

reroute an expressway to connect a county because it experienced a negative income shock 

in the previous year? If so, this would threaten our identifying assumption and make pre-

treatment trends not parallel, but we believe that this hypothesis is highly unlikely to be 

true because the National Expressway Network was planned years before any county was 

connected. Moreover, as the central government did not change the routings prior to 

construction, there is no evidence that counties could manipulate expressway connections 

in their favor to cope with temporary economic shocks. Finally, both the “5–7” network 

and the “7–9–18” network were completed years ahead of schedule. A reasonable 

assumption would be that a peripheral county did not have ex ante information on the exact 

time when it would be connected. Appendix Table S2 also shows that the impact of 

expressway connection was negligible on the year of connection, which suggests little 

evidence that the connected counties gamed around the timing of their connections. 

Allowing for all these considerations, the expressway connection to a specific county in a 

specific year is likely to be exogenous, conditional on county and year fixed effects. 

The endogeneity concern can be further addressed by combining the DiD estimator 

with matching. Our matching process is as follows: for each eventually-connected county 

in our data, we choose a non-connected county from the same province that has the most 

similar level of per capita GDP in 2000; then we apply the DiD estimators to the matched 

sample. While our main results are similar using both matched and unmatched sample, 

conducting a matching before applying the DiD estimators brings about two merits. First, 

the test results for the parallel trends assumption, which we will introduce below, are 

improved using the matched sample as the standard errors are reduced. Second, it is more 

proper for us to interpret the income heterogeneity, because connected and unconnected 
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counties in the matched sample are more comparable, sharing a common support in terms 

of initial income. As a result, in subsequent analysis, we mainly focus on the results using 

the matched sample and leave the results from the unmatched sample in appendices.   

More formally, we can test the parallel-trend assumption using an event study 

approach, following Jacobson et al. (1993). The idea is that we generate a set of lead- and 

lag- indicators of the actual expressway access as independent variables in the regression 

and test whether the coefficients of the leads are statistically significantly different from 

zero. Details of the tests are discussed in Appendix I. As will be discussed in Section IV, 

we fail to reject the hypothesis that connected and unconnected counties follow similar 

trends before the connected counties become connected.  

 

III. Data and Summary Statistics 

GDP and Socioeconomic Data 

We collect county-level GDP and other socioeconomic data of 2000–2012 from the CEIC 

database and various statistical yearbooks in China, including provincial yearbooks, China 

City Statistical Yearbooks, and China County Statistical Yearbooks.  

Expressway Expansion Data 

Historical GIS (geographic information systems) data on China’s National Expressway 

Network were collected from the PR China Administrative Spatio-Temporal Expressway 

Database (STED) from the ACASIAN Data Center at Griffith University. The database 

contains data on China’s expressway routes for 1992, 1993, 1998, 2000, 2002, 2003, 2005, 
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2007 and 2010. By combining the STED database with county-level GIS data, we can 

identify which counties were connected in which year.7  

Pollution Data 

Finally, we collect county-level emissions data from China’s Environmental Survey and 

Reporting (ESR) database. Emissions data are used for the understanding of the channels 

of the GDP results.  

The ESR database is maintained by the Ministry of Environmental Protection of 

China. It is used to monitor the polluting activities of all important polluting sources, 

including heavily polluting industrial firms, hospitals, residential pollutant discharging 

units, hazardous waste treatment plants, and urban sewage treatment plants. When we refer 

to the “polluting sector,” we include all the sources, regardless of the type of the industry.   

We use the ESR data from 2000 to 2012 in this study. During this period, the 

monitored polluting sources in total contributed 85% of total emissions of major pollutants 

in each county. Monitored polluting sources are required to report their environmental 

performance to county-level Environmental Protection Bureaus (EPBs) in each year. Local 

EPBs then verify the data and estimate emissions of major pollutants from unmonitored 

plants based on their total industrial output. The overall emission measures for major 

pollutants in each county are constructed by summing emission levels reported by 

monitored plants and estimated emission levels from unmonitored plants. The micro-level 

emissions data used in this study had been kept confidential for many years but recently 

became conditionally open to some researchers.8 

                                                
7 Because the STED data have gaps over years, we do not know exactly when a county was connected for 

12% of the connected counties in the sample. For these connected counties that were connected in the gap 
years, we have to interpolate the treatment status with various assumptions. Our empirical findings are not 
sensitive to the way we interpolate. Details on identifying the treatment status of each county-year are given 
in Appendix II.  

8 More details on the data are given in Lin (2013), Cai et al. (2016), and Wu et al. (2017). 
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Emissions degrade environmental quality. Major pollutants in the ESR database 

include chemical oxygen demand (COD), ammonia nitrogen (NH3-N), sulfur dioxide 

(SO2), and nitrogen oxides (NOx). In our analysis, we focus on COD emissions. COD is a 

widely-used water quality indicator that assesses the effect of discharged wastewater on 

the water environment by measuring the oxygen required to oxidize soluble and particulate 

organic matter in water.9 Higher COD levels mean a greater amount of oxidizable organic 

material in the sample, which reduces dissolved oxygen levels. A reduction in dissolved 

oxygen can lead to anaerobic conditions, which are deleterious to higher aquatic life forms. 

COD is the primary measure of water pollution adopted in China. 

Another reason why we focus on COD emissions is that almost all key pollution 

sources and industries produce and report COD emissions (Lin, 2013; Sinkule and 

Ortolano, 1995), whereas other pollutants, such as SO2, tend to be concentrated in a few 

industries that are tightly controlled by large state-owned enterprises in certain areas of 

China, rather than by local governments at the county level.  

We focus on total COD emissions and per capita COD emissions. Total COD 

emissions are the sum of COD emitted by the key polluting plants and the estimated COD 

emitted by other polluting plants. Per capita COD emissions are calculated by dividing the 

total COD emissions by the population. We also check the robustness of our results using 

COD emissions only from key polluting plants and supplement our analysis by further 

discussing the results of other emissions measures, such as ammonia-nitrogen and SO2.10 

                                                
9 For example, COD abatement is used by the Chinese central government as a key performance indicator 

for assessing local government efforts at environmental protection. In China’s 11th Five-Year Plan (2006-
2010), COD was used as a primary criterion (the other being ammonia-nitrogen) for setting national 
abatement targets and performance appraisals. 

10 It is known that environmental data can be manipulated in China (e.g., Ghanem and Zhang 2014). It is 
however unclear how potential manipulation incentives are distributed at the plant level. That said, as long 
as expressway access does not affect the incentives for data manipulation differentially across counties with 
different initial income levels, our empirical findings in Section VII will still hold. 
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Descriptive Statistics  

We match all the datasets at the county level from 2000 to 2012, during which the national 

expressway network expanded significantly. By 2012, more than 50% counties were 

connected. 

In Table 1, we summarize the descriptive statistics of GDP and per capita GDP in 

2000 and 2012 separately for the matched and un-matched samples. From 2000 to 2012, 

per capita GDP of our sampled counties increased more than fivefold. We observe that, 

before matching, the eventually connected counties were generally richer from the 

unconnected counties in 2000. After matching, however, the connected and unconnected 

counties have very similar levels of initial GDP and per capita GDP.  

Figure 2 further plots the distribution of per capita GDP separately before and after 

matching. It shows that connected counties share a common support with the unconnected 

matched counties. 

IV. Impacts of Expressway Connection on GDP 

Average Treatment Effect of Expressway Connection 

In Table 2, we report the average treatment effect of expressway connection on GDP and 

per capita GDP. Our baseline results are presented in Columns 1 and 4, in which only 

county fixed effects and year fixed effects are included in the regressions. Then we test the 

robustness of these results by adding different controls. In Columns 2 and 5, we add 

provincial trends; and in Columns 3 and 6, instead of controlling for year fixed effects, we 

include province-year fixed effects.  

We find that the estimated coefficients are negative and stable in all regressions. This 

negative effect is similar to the findings in Faber (2014); but in our empirical setting, none 

of them is statistically significant. We further check the robustness of the estimates’ 
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accuracy by clustering the standard errors at different levels and arrive at the same 

conclusion.  

We then test the parallel-trends assumption following Jacobson et al. (1993). 11 The 

estimated coefficients of the leads and lags of the treatment dummies are plotted on Figure 

3. It shows that, before the connected counties were connected to the expressway system, 

they had GDP trends similar to the unconnected counties’. The difference between the GDP 

levels of the connected and the unconnected counties remains unchanged in the first couple 

of years after the connection, and it becomes slightly negative in the long run. We thus 

conclude that the parallel trend assumption holds and expressway connection on average 

has a negligible negative impact on GDP and per capita GDP. 

Heterogeneous Effects of Expressway Connection  

In this section, we explore the heterogeneous effects of expressway expansion on GDP 

with respect to initial income. The baseline results are reported in Columns 1 and 4 of Table 

3. The estimated coefficients of the expressway connection dummy are positive and 

statistically significant, while the coefficients of the interaction between the connection 

dummy and the initial income are negative and statistically significant at the 1% level. In 

other words, the impact of expressway access on GDP is more negative in initially richer 

counties than in initially poor counties. 

Using information from the distribution of per capita GDP in 2000, we can further 

predict the impacts of expressway connection at different initial income levels. In Figure 

4, we plot the estimated heterogeneity based on estimates in Columns 1 and 4 of Table 3 

and calculate the predicted impacts with their 95% confidence intervals at different initial 

income levels. A predicted impact of zero (highlighted by a red square) implies that 

expressway connection does not affect GDP or per capita GDP at a given initial income 

                                                
11 In Appendix Table S2 we summarize the regression results. 
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level. A positive value means that GDP increases, while a negative value means it 

decreases. In Figure 4, we observe that expressway connection positively affected GDP in 

the poor counties (statistically significant for the poorest 25%) and negatively affected 

GDP in the rich counties (statistically significant for the richest 60%).  

We check the robustness of the findings in several different ways. First, we control 

for provincial time trends in the regressions (Columns 2 and 5 of Table 3) and find that the 

conclusions remain the same. Second, instead of including year fixed effects dummies, we 

include province-year fixed effects in the regressions in Columns 3 and 6. The province-

year fixed effects account for annual shocks that are common to all counties in a province, 

for example, business cycles and differential trends and policies across provinces. The 

treatment effect is thus identified by comparing the outcomes of two counties in the same 

province in the same year. We find that even in this strictest case, expressway connection 

has strong heterogeneous impacts on GDP. 

We probe the robustness of estimate accuracy by clustering the standard errors at 

three different levels: the county level, the province level, and the county and province-

year level (multi-way clustering suggested by Cameron et al., 2011). The three clustering 

methods deal with three different potential correlations in the error term. Clustering the 

standard errors at the county level controls for arbitrary correlations across different years 

for the same county; clustering at the province level controls for arbitrary correlations 

within a province; clustering at both the county and province-year levels accounts for 

correlations across different years within the same county and correlations across all 

counties in the same province-year. We find that the significance levels are unaffected by 

different approaches to clustering standard errors, as reported in Table 3. 

Besides, instead of interacting the expressway dummy with the continuous measure 

of per capita GDP, we construct an income group indicator that is equal to one if a county 
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is in the high-income group in 2000.12 This allows us to further include income group-

specific year fixed effects so that poor counties and rich counties can have different 

intrinsic dynamics of GDP growth, independent of expressway connection. The regression 

results are summarized in Table 4. In Columns 1 and 5, we include county fixed effects, 

year fixed effects and provincial trends. Columns 2 and 6 control for province-year fixed 

effects. Columns 3 and 7 allow poor counties and rich counties to grow with different 

trends; and finally in Columns 4 and 8, we include year fixed effects separately for two 

income groups.13 These regressions again confirm that expressway connection has highly 

heterogeneous impacts on local economy.  

Additionally, in the same spirit as Banerjee et al. (2012) and Faber (2014), we 

estimate the impacts of expressway connection on GDP using an instrumental variable 

approach. We first construct straight lines that connect each pair of targeted cities, and then 

construct a variable for each county as follows: if the county is connected by one of the 

hypothetical straight lines, the variable is equal to one; otherwise, it is zero. We then use 

this variable as the instrumental variable of the actual expressway connection. The outcome 

variable in this instrumental variable regression is the change in GDP or per capita GDP 

between 2000 and 2012. The IV approach may help to address concerns on potential 

compound treatments and selection issues based on expectation, in which the parallel trend 

test would help little in addressing. As reported in Appendix Table S3, we find the same 

pattern of a highly heterogeneous expressway impact as our matched DiD result.   

Moreover, we estimate the expressway effect using the unmatched sample and find 

similar results. These findings are reported in Appendix Table S4. The parallel trends tests 

using the un-matched sample are also summarized in Appendix Table S5.  

                                                
12 The results from the linear specification suggest that the positive effects are statistically significant for 

the poorest 0–20%, so we divide the counties into two groups by the 20th percentile of their GDP per capita 
in 2000. Slightly perturbing the cut-off does not affect the conclusion.  

13 In Appendix Table S2, we also test the parallel trends assumption within each income group, and still 
find that the parallel trends assumption within each group holds. 
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Finally, we consider the concerns about two types of spillovers of the treatments that 

could confound our results. First, one might suspect that the expressway connection of one 

county could affect the average economic performance of other counties, either connected 

or unconnected, since all counties are economically connected to the national market after 

all. We believe this type of spillover is less of a concern, because each county in our sample 

is small compared with the national market. Therefore, the impact of one county’s 

expressway connection on all other counties would not be strong on average. Second, 

although the expressway connection of one county would not affect other counties much 

on average, it might still significantly affect their unconnected neighbors. To address this 

type of potential spillovers, we focus on counties that were never connected in the sample 

and estimate the impacts of having at least one of the neighboring counties connected to 

the expressway system on GDP in these never-connected counties. In practice, we apply 

Equation (2) to the subsample of unconnected counties, substituting *+,,-./",$  with a 

“neighbor connected” indicator that equals 1 if at least one of county 3’s neighboring 

counties are connected at year t, and 0 otherwise. The coefficients of this indicator and its 

interaction with the initial income reveal the potential spill-over effect and its 

heterogeneity. As reported in Appendix Table S6, the “neighboring connection” effect is 

positive for low-income unconnected counties, while it is negative for high-income 

unconnected counties. This finding shows that there exist some spill-overs, but the 

spillover effect works against the heterogeneity pattern in our main results, rather than 

contributing to it. 14 Were no such spillover, the heterogeneity we find in our main results 

should be even stronger.  

To summarize, these robustness checks lend additional credibility of our main 

finding: counties with low initial income significantly increased their GDP after 

                                                
14 Compared with the results in Table 3, we see that the coefficients of both the treatment indicator and the 

interaction term are substantially smaller. This is reasonable because the effect of having a neighboring 
county connected should be weaker than being directly connected. 
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expressway connection, while counties with high initial income witnessed reductions in 

GDP.  

V. Understanding the Heterogeneity  

Our empirical setting and findings are closely related to two families of theories in 

economics research: first, the theories based on comparative advantage, for example, the 

pollution haven hypothesis; and second, the theories based on increasing return to scale, 

for example, the theory of the home market effect. 

In a comparative advantage framework, reduction in trade costs will facilitate regions 

to specialize in producing products in which they have a comparative advantage. Low-

income regions and high-income regions may have different comparative advantages. For 

example, low-income regions can have a comparative advantage in polluting industries 

because they value environmental quality less highly than high-income regions, which can 

have a comparative advantage in non-polluting industries. This hypothesis would however 

predict a positive income effect of trade cost reduction for both poor and rich regions (e.g., 

Copeland and Taylor, 1994), and thus cannot adequately explain the estimated negative 

income impact on rich counties. 

The home market effect conjectures that because of economies of scale, market 

integration can cause mobile factors (e.g., capital or even labor) that were formerly located 

in peripheral counties to move to core metropolitan areas to enjoy a larger home market. If 

core-periphery relations are sufficiently asymmetric, this trade integration can reduce 

economic output in peripheral counties. This is the argument provided in Faber (2014), 

which explains why the overall impacts of expressway connection can be negative. As in 

Faber (2014), however, the home market effect also implies that the negative impact of 

expressway connection on the peripheral area’s GDP is stronger if the core-periphery 

relationship is more asymmetric, i.e., if the focal county is poorer. This prediction 
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contradicts our empirical observation that expressway access reduces income in richer 

counties while increasing income in poorer counties.  

As each of the comparative advantage story and home market effect can only 

partially explain our empirical findings, a combination of the two may be proposed: in 

poorer counties the comparative advantage mechanism dominates the home market effect, 

while in richer counties the home market effect dominates the comparative advantage 

mechanism.15 Were this combined mechanism driving our empirical results, we should 

expect the heterogeneous impacts captured by initial per capita GDP to be diluted by 

heterogeneities across measures of comparative advantage and of factors related to the 

home market effect. 

Given this consideration, we conduct diagnostic analyses, as reported in Table 5, 

where, conditional on income heterogeneity, we additionally interact the expressway 

connection dummy with a rich set of variables measured in 2000. In Column 1, we interact 

the treatment variable with the distance between a focal county and its nearest targeted city, 

which proxies the initial trade cost and carries geographical information about the nearby 

market. This is used to test whether home market effect is important, since the home market 

effect is supposed to be stronger when the initial trade cost is lower (e.g., Krugman, 1991; 

Faber, 2014), and can also shed some light on whether the initial access to nearby market 

is driving our income heterogeneity result. In Columns 2–8, we include a set of endowment 

and sectoral pattern measures, including population, land area, per capita land area, number 

of industrial firms, industrial output value, share of agriculture and share of manufacturing 

in GDP. The endowment variables are instrumental in determining the home market effect 

                                                
15 For details on the argument, our analysis of a model of new economic geography with the location-

specific marginal cost of polluting industrial production, which derives a closed-form solution, is available 
upon request. Forslid et al. (forthcoming) incorporate both the pollution haven hypothesis and the home 
market effect in a different model, which focuses on a strategic tax setting and does not yield a closed-form 
solution for the general case. 
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in theory, and both the endowment and sectoral pattern variables proxy the local economy’s 

comparative advantage. 

Table 5 shows that, while there may exist some effect heterogeneity for some 

variables (such as population and land), none of them has a significant impact on our 

income heterogeneity results. More importantly, as shown in Column 9, if we include all 

these interactions in the regression, the coefficient of the income–treatment interaction 

becomes greater, which means the income heterogeneity becomes even more prominent. 

These findings remain the same if we use the income group dummy, instead initial GDP 

per capita, in the regressions, as reported in Appendix Table S7.  

The results in Table 5 imply that factors related to the supply side and initial access 

to nearby markets do not drive our observed income heterogeneity result. Therefore, 

although we acknowledge the relevance of comparative advantage and home market effect 

in our context, we are prone to believe that demand-side factors, i.e. people (or local 

government) with different income levels having different preferences, are driving our 

main empirical findings. 

VI. An Explanatory Model 

The following questions naturally arise: first, is it true that poor people and rich people 

may have different preference? Second, what are the major differences in preferences 

between the poor and rich?  

In the literature, many empirical studies have shown that the relationship between 

pecuniary income and happiness is curvilinear, and after a certain level of income the 

relationship becomes weak or creases to exist (e.g., Frey and Stutzer, 2002; Easterlin, 2003; 

Kahneman and Deaton 2010; and Layard, 2005 for a review). Many cross-sectional 

empirical studies also indicate that more developed countries do not report higher 

happiness levels once GDP per capita exceeds certain level (e.g., Helliwell, 2003). Instead, 

people start to care about other nonpecuniary things such as health, political rights, 
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institutions, and notably environmental quality. The development and popularity of using 

the United Nations’ Human Development Index and the Gross National Happiness Index 

(GNHI) Index as welfare measures, and the increasing awareness of climate change and 

pollution are illustrations of such changes in preferences.  

In this study, we emphasize the importance of environmental considerations. The 

idea is motivated by the observation that developed countries tend to spend large amounts 

of money and resources to restore environmental quality, while fast-growing developing 

countries, such as China and India, often face severe pollution problems. We conceptualize 

this idea by modelling that poor and rich regions have different preferences on the GDP–

environment trade-offs. Relatively speaking, poor regions may care more about their GDP, 

while rich regions may care primarily the environmental quality. Expressway connection 

brings about an opportunity for both regions to re-optimize in the bundle of the 

environment and GDP, helping rich counties clean up and poor counties earn higher 

income.  

         To illustrate this idea, below we build a trade model with a specific preference 

characterization and discuss the relevance of this preference characterization in the Chinese 

context. In the next section, we provide additional empirical evidence for the model’s 

predictions.  

Our model has the following basic features: to make the part of trade as simple as 

possible, we adopt the classic comparative advantage setting, while assuming that 

increasing return to scale does not exist, so that the home market effect is ruled out; 

emissions are modeled as a byproduct of consumption good production, as in Pethig 

(1976); consumers have two potential sources of utility, i.e., the environmental quality and 

consumption of goods. When mapping from the model to the empirics, we interpret the 

expressway connection as a decrease in the trade cost between the focal economy and the 

rest of world, and GDP an index of the consumption composite. 



 

 
24 

The setting of the model is as follows. There are two sectors of consumption goods, 

3	 = 	1, 2. Labor is the single input in their production, representing all input other than the 

environment. We denote the input, output, emissions in each sector as =" , >" , and -" , 

respectively. 

Production. The production functions are assumed linear: 

>" = 	=", -" 	=
="

?"
, 3	 = 	1, 2, 

where ?" ≡ =" -"⁄  is the exogenous sector-specific labor intensity that also determines the 

productivity of emissions in production of each good. The specification simplifies Pethig 

(1976) and keeps the idea that the relative labor intensity between the two sectors will 

determine the economy’s comparative advantage with respect to the rest of the world. We 

assume ?B < ?7, which means that sector 1 is environment intensive and 2 labor intensive. 

Endowments. The economy’s labor endowment is assumed as =D > 0, and labor is 

assumed not be able to move across borders. A labor budget constraint must then hold: 

=B 	+	=7 ≡ 	=	 ≤ =D. 

The total emission is the sum of emissions from the two sectors, - ≡ 	 -B 	+	-7, and 

we assume the local environmental quality is I ≡ 	I(-) ≡ 	 -̅ 	− 	-, where the ecological 

system would collapse if -	 > 	 -̅ . In reality, the environmental quality has a dynamic 

aspect. As shown in Appendix Table S2, for counties in each income group, however, the 

estimated impacts of expressway connection always have the same sign across all post-

connection years. Consistent with the short-time horizon of many consumers and local 

officials in China, this empirical pattern suggests little evidence that an intertemporal 

development–environment trade-off was heavily involved in the counties’ responses to 

expressway connection. Therefore, in this model, we will assume away the dynamic aspect 

of the environmental quality, and will focus on the tradeoff between consumption and 

environmental preservation at a given time. Similar approaches have also been adopted in, 

for example, Pethig (1976) and Greenstone and Jack (2015). An environmental budget 

constraint must then hold: 
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-B 	+	-7 ≡ 	-	 ≤ -̅	. 

Consumption. The representative consumer in the economy could derive utility 

from the environmental equality and consumption of the two goods. The utility function is 

assumed as N ≡ 	O(I,P3,	{RB, .R7}), where consumptions of the two goods are RB and 

R7  and . > 0  is an exogenous parameter. To focus on the trade-off between the 

environmental quality and general consumption, for simplicity, we use the Leontief 

specification P3,	{RB, .R7} to assume away substitution between the consumption goods, 

as in Pethig (1976). Therefore, a fixed consumption composite, 

RB 	= 	.R7, 

must hold in equilibrium, and we can then denote *	 ≡ 	P3,	{RB, .R7} as an index of the 

scale of the consumption composite in equilibrium. For the time being, we allow for a 

general relationship between environmental quality and consumption in utility generation, 

O(I, *), and will specify it below. 

Trade. We assume that the economy is linked to the rest of world where the two 

goods can be traded at some given prices, TB  and T7 , respectively, while the local 

environmental quality is not tradable. We adopt this assumption of a small, open economy 

because each of the Chinese counties in our dataset that could be connected to the national 

expressway network is small with respect to the national market.  

We assume trade across borders incurs an iceberg trade cost, U > 1, which means 

that only 	1 U⁄  of purchases of the foreign good are available for consumption. Better 

transport infrastructure across borders, for example, connection to the expressway system 

in empirics, would be represented by a decrease in U.  

Consumption–environment trade-off. Instead of assuming decentralized 

production and consumption decisions, we assume that a social planner maximizes the 

consumer’s utility while acknowledging that consumption can affect the environmental 

quality through local production. Gaining simplicity, this approach allows us to model the 

consumption–environmental trade-off without specifying the decision of an environmental 
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regulatory agency.16 This approach is also empirically relevant in the context of China, 

because local governments, which act as the planner in our model, are given strong control 

over the allocation of natural resources (notably land), capital flows, and even labor in their 

jurisdiction. For instance, since China’s market reforms in the 1980s, local governments 

have been strategically choosing investors, industries, and talents to implement their 

development strategies by offering tax rebates, infrastructure improvements, price 

discounts for land use, exemptions from regulations, and other generous industrial policies 

(e.g., Qian and Roland, 1998; Bai et al., 2014). For labor, the Chinese government has 

historically used the Hukou (household registration) to control labor migration within rural 

and urban areas, respectively, and between them. Although migration restrictions have 

been relaxed in recent years, the costs of migration remain substantial because many social 

benefits, for example, housing subsidies and medical insurance, are available only in the 

area where a citizen is registered. For these reasons, we will interpret our empirical 

evidence as resulting from the policy responses of local governments, rather than the 

spontaneous reactions of capitalists or laborers, to expressway access. 

The planner’s program is then 

P=R
VW,XW,YW,ZW

O(I(-B 	+	-7), P3,{RB, .R7})	, 

subject to the production functions,  

>" 	= 	 =", -" 	=
="

?"
, 3	 = 	1, 2, 

endowment budget constraints, 

-B 	+	-7 ≡ 	-	 ≤ 	 -̅, =B 	+ 	=7 ≡ 	=	 ≤ 	=D, 

and the balance of trade constraint, 

                                                
16 Alternatively, in a decentralized setting, even if the consumers are assumed to own the production 

sectors (e.g., Pethig, 1976), for various reasons, for example, the agency problem in corporate management, 
it would still be difficult to justify that the consumer would be able to fully control production and not to take 
emissions as given. Therefore, to model the consumption–environment trade-off, modelling the decision 
making of an environmental regulatory agency would become necessary.  
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U	TB	(RB 	−	>B) = 	T7(>7 	−	R7), 3[	RB ≥ 	>B		=,]		R7 ≤ 	>7;	

U	T7	(R7 	−	>7) = 	TB(>B 	−	RB), 3[	RB 	< 	 >B	=,]	R7 	> 	 >7.
17	

We can frame the program into two steps, which we now introduce backwardly. In 

the second step, given certain amount of total emissions, the planner tries to maximize the 

consumption composite by finding the most efficient allocation of labor input and 

emissions into the two sectors, with the help of trade. In the first step, given the most 

emission-efficient way to generate the consumption composite, and facing the endowment 

budget constraints, the planner decides the level of total emission that finds a balance 

between the environmental quality and consumption composite. 

To avoid the consumption–environment trade-off from becoming trivial, we assume 

that the endowment budget constraints are not binding in equilibrium. In other words, the 

economy generates moderate emissions and the ecological system has not collapsed, and 

some unemployment always exists. Both descriptions are consistent with reality. 

Along this logic, we can degenerate the program into a general form, 

P=R
V∈(8,V̅)

		O(-̅ 	− 	-, (-), 

with three cases of (, which is the endogenous productivity of the economy in its emission–

consumption transformation, depending on the trade cost and the economy’s comparative 

advantage: (1) if abc
bd
≤

ed

ec
, then the most emission-efficient way of consumption composite 

generation is to specialize in good 1 and import 2, and ( = fed

f	g
hic

id

; (2) if bc
abd

≥
ed

ec
, then 

specializing in good 2 while importing 1 is the most efficient, and ( =
ic

hid
fec

f	g
ic

hid

; (3) if bc
abd

<

ed

ec
<

abc

bd
, then trade is so costly that autarky becomes the most efficient, and ( =	 fedec

fec	ged
.  

                                                
17 The trade cost assumption implies that, if R" 	> 	 >" , the home economy is paying U	T"	(R" 	−	>") for 

U	(R" 	−	>") units of good 3, but only R" − >" units of good 3 is arriving as import; if R" < >", >" 	−	R" units 
is exported, and the revenue from the transaction is T"(>" 	−	R"). 
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Lower trade cost (U) in the model, which maps to connection to the expressway 

system in empirics, will then increase (, because it allows the economy to take better 

advantage of their comparative advantage, either by adjusting their sectoral structure in 

production (transiting from the autarky case to either of the two specialization case), or by 

reducing the paid trade cost given their sectoral structure (within each of the two 

specialization cases). Therefore, analyzing how better transport infrastructure would 

change the consumption–environment trade-off is equivalent to analyzing how a higher ( 

would change the equilibrium in the model. We have now isolated the impact to depend 

only on the preference specification. 

Preference. We propose that the planner’s preference follows a hierarchy of needs, 

in the spirit of Maslow (1943): there exist a group of consumption–environment bundles, 

over which the planner’s preference is well-behaved, while there also exist another group 

of bundles, over which the planner cares primarily about the environmental quality, but 

little about the consumption composite; any bundle in the second group is preferred by the 

planner over any bundle in the first group. In other words, the consumption composite is 

relevant primarily at a lower level of the hierarchy of needs, while the environmental 

quality dominates at the higher level.18 

The defining features of our proposed preference specification suggest a utility 

function as follows: 

O(I, *) = j
k(I, *)														3[	k(I, *) < Ol;

Ol 	+ 	m(I)							3[	k(I, *) ≥ Ol,
 

where m(I)	  is nonnegative and increasing; k(I, *)  is well-behaved, which means it 

exhibits positive and diminishing marginal utilities, diminishing marginal rates of 

substitution, and no Giffen property in the “demand” of consumption composite given 

k(I, *) < Ol; the boundary of the hierarchy of needs satisfies Ol > k(0,0), so that both 

                                                
18 One might expect a third, lowest level of the hierarchy at which the planner cares about the consumption 

composite but little about the environmental quality. Our later results will still hold with this extension. 
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levels of the hierarchy are relevant. The implied indifference curves are illustrated in Figure 

5.  

Not only can this characterization helps us illustrate the general preference difference 

between rich and poor regions, it also captures some salient features of the political 

incentives of local governments in China. Since China’s economic reforms in the 1980s 

until early 2000s, the Chinese government had considered economic growth as its priority 

and paid little attention to environmental problems. Economic performances were used to 

evaluate and promote local officials during this period; and as a result, along with China’s 

rapid economic growth, the country witnessed severe degradation of its ecological systems. 

As the country’s environmental challenges mounted, however, the President then Hu Jintao 

proposed the “Scientific Outlook of Development” in 2003 and sought integrated sets of 

solutions to economic, environmental and social problems. 19  In 2005, the central 

government required considering environmental performance in evaluating local officials, 

and directed that “relatively developed regions should ... prioritize the environment,” while 

“the regions of great potential to develop should … scientifically and reasonably utilize the 

carrying capacity of the environment to promote industrialization and urbanization” (State 

Council of China, 2005). In 2013, the current President Xi Jinping further institutionalized 

environmental performance in cadre evaluations and emphasized that the weight of 

environmental performance in the evaluations should depend on regional characteristics 

(Organization Department of the Communist Party of China, 2013). On the practical 

significance of the reform, for example, consistent with the change, Sun et al. (2014) and 

Zheng et al. (2014) provide evidence that, in 2004–2009, better environmental performance 

did contribute to promotion of city mayors, and Sun et al. (2014) further show that the 

impact was more prominent for mayors of larger cities.  

                                                
19 “Scientific Outlook of Development” sometimes is translated as the “Scientific Development Concept” 

or the “Scientific Development Perspective.” 
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With this preference specification, we can derive the following proposition, which 

reconciles our empirical findings: 

Proposition. Given -̅  and O(I, *) , there exists a critical level of the consumption 

composite, *̅ , such that, if * < *̅  in equilibrium, then no
np
> 0; if	* > *̅  in equilibrium, 

then  no
np
< 0	 is possible, where *̅  is defined by k(-̅, *̅) = Ol . Moreover, if * > *̅  in 

equilibrium and no
np
< 0, then nV

np
< 0. In empirics, if the initial GDP is sufficiently low, 

then expressway connection will increase the GDP; if the initial GDP is sufficiently high, 

then expressway connection can decrease the GDP. Moreover, if the initial GDP is 

sufficiently high and expressway connection does decrease the GDP, then it must have also 

decreased emissions.  

Appendix III proves the proposition. The intuition is as follows: when the initial level 

of the consumption composite is sufficiently low, the initial equilibrium must have fallen 

in the lower level of the hierarchy of needs. In this scenario, as illustrated by Panel A of 

Figure 6, the planner cares about both the consumption composite and environmental 

quality, and an increase in the economy’s ability to generate consumption will increase the 

consumption composite, given the preference system is well-behaved. 

When the initial consumption is sufficiently high, the initial equilibrium can fall in 

the higher level of the hierarchy of needs. In this scenario, as illustrated by Panel B of 

Figure 6, the planner cares primarily about the environmental quality, so she would like to 

sacrifice consumption as much as possible, as long as the economy still stays at the higher 

level of hierarchy of needs. An increase in the economy’s ability to generate consumption 

presents an opportunity to the planner to sacrifice more of the consumption composite for 

better environmental quality without slipping into the lower level of hierarchy of needs, 

resulting in a lower level of the consumption composite, a better environment, and lower 

emissions. 
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Note that in a more general model, the consumption composite can be included in 

the utility function at the higher level of the hierarchy of needs, which means to consider  

m(I, *) instead of m(I). As long as the consumers and the planner value the environmental 

quality on the margin sufficiently more highly than the consumption composite (mo/mr <

1/(), the proposition will still hold. Excluding the consumption composite from the utility 

function at the higher level of the hierarchy, our preference specification simplifies the 

exposition without losing much generality.  

VII. Expressway and Pollution  

Effects on COD Emissions 

Our model also predicts that, in our dataset, for rich counties that saw negative income 

effect of expressway connection, the emission effect should be negative. In Table 6, we 

examine the impact of expressway on COD emissions and per capita COD emissions. We 

find that expressway on average slightly decreases emissions in the connected counties but 

this effect is statistically insignificant. When we interact the expressway connection 

dummy with 2000 per capita GDP, a strong heterogeneity emerges: the expressway effect 

becomes more negative in richer counties. This finding is robust to including different 

controls and using different ways to cluster the standard errors. We also predict the 

heterogeneous COD impacts at different initial income levels, and find that poor regions 

emit more COD and rich regions emit less COD after expressway connection, consistent 

with the theoretical prediction.20   

In Table 7, we examine several other emission measures. In Columns 1 to 4, we use 

COD emissions from the key polluting plants as the outcomes and find similar results. In 

                                                
20 In Appendix Table S8, we conduct parallel trends tests and find that pre-connection trends for COD and 

per capita COD are parallel. In Appendix Figure 3, we predict the expressway impact at different initial 
income level and show that the effect is positive in poorer counties and negative in richer counties.  
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Columns 5–8, we investigate ammonia-nitrogen (NH3-N) emissions.21 Consistent with the 

result for COD, poor counties emit more ammonia-nitrogen and rich counties emit less 

after expressway connection. 

In Columns 9–12, we examine sulfur dioxide (SO2). We expect the results for SO2 to 

be different because local county governments have little power to regulate them. In China, 

roughly 70% of SO2 emissions were produced by the electricity and heating industries 

(mostly power plants), and the remaining 25–30% were emitted by the mineral products 

and metal industries. Most plants in these industries belong to large state-owned 

enterprises, largely not controlled by county governments. As expected, we see that the 

heterogeneity results disappear for SO2.22   

Channels  

To shed light on the channels through which expressway affects both GDP and pollution, 

we examine several other outcome variables, following the regression specified in 

Equation (2).  

We report the results for COD emission intensity in Columns 1 and 2. The total 

emission measure tells us whether the overall environmental quality in a county has 

improved or deteriorated, while the intensity measure tells us whether the key polluting 

plants use cleaner technology to reduce emissions per dollar-value of output. The strong 

heterogeneity suggests that the emission intensity increased in poor connected counties and 

decreased in rich connected counties. This pattern indicates that firms in poor counties 

adopted more pollution-intensive technology, while firms in rich counties adopted cleaner 

technology.  

                                                
21 Ammonia-nitrogen is also an important measure of water pollution. It serves as a nutrient in water bodies 

and consumes large amounts of oxygen. As a result, rich ammonia-nitrogen is toxic to fish and other aquatic 
organisms and leads to eutrophication in the water. 

22 The data for nitrous oxides (NOx) are not available before 2006 so we cannot perform similar exercises.  
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We then turn to the number of key polluting firms. The regression result in Column 

3 shows that connected counties have a similar number of key polluting firms to non-

connected counties on average; however, the strongly heterogeneous result in Column 4 

suggests that the number of key polluting firms increases in poor connected counties but 

decreases in rich connected counties. This pattern is consistent with our model: some of 

the rich regions try to sacrifice more GDP for better environmental quality. Consistent 

results can also be found in total industrial output value. In Columns 5 and 6, the value of 

industrial output from heavily polluting firms increased in poor counties but decreased in 

rich counties.  

Finally, in Columns 7 and 8, we show that the share of manufacturing increased in 

poor regions but decreased in rich counties. These results suggest that access to a larger 

market can help poor counties industrialize while helping rich counties de-industrialize. 

VIII. Conclusion 

This paper investigates how expressway connection affects local GDP using county 

level data from China. We highlight the expressway impacts can be highly heterogeneous 

and the heterogeneity hinges on a county’s initial income. After expressway connection, 

counties with lower initial GDP per capita will grow faster, while counties with initially 

higher GDP per capita will grow slower. The empirical findings challenge some popular 

explanations in the trade literature as both the comparative advantage and the home market 

effect cannot independently fully reconcile our findings. We further show that this 

heterogeneity cannot be explained by supply-side factors, or by initial access to nearby 

markets. Consequently, we infer that demand-side factors are behind this heterogeneity, 

and we build a trade model with hierarchical preference between consumption and 

environmental quality to explain our empirical results.  We further test the model’s 

prediction and show that, responding to expressway connection, initially poor counties 
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grow in a more polluting way and host more polluting firms, while initially rich counties 

do the opposite, sacrificing some GDP for better environment.  

Our findings have several implications. First, we confirm that transport infrastructure 

is important for early-stage development and can effectively promote economic growth of 

poor regions. In other words, China’s efforts in improving infrastructure and expanding the 

expressway network can help to explain its great success in alleviating poverty in the past 

thirty years. This finding differs from Faber (2014), which emphasizes the negative impact 

of expressway connection on growth for Chinese counties.  

Second, in Faber (2014)’s core-peripheral setting, expressway connection worsens 

the income inequality between the peripheral and core areas, while our findings imply that, 

although the negligible average impact of expressway connection will not change the 

inequality between the peripheral and core areas much, the connection will reduce income 

inequality within the peripheral areas.  

Third, economists have been well appreciating the importance of production-side 

factors, such as the capital, land, and labor endowments and production technology, in 

explaining the variations in economic and environmental performance. Our research 

suggests that demand-side factors can be equally important. Regions with different income 

levels may hold different preferences, and these differences should be considered in 

welfare evaluation and policy design.23  

We conclude with some directions for further investigation. First, in our model, we 

assume that the environmental impacts of emissions are local, while pollution in one region 

in reality can affect neighboring regions. In such cases, a welfare-maximizing development 

path at the aggregate level would depend on the specific patterns of the externality. Second, 

as noted by Baum-Snow et al. (2016b), a fundamental problem of the reduced-form-based 

results is that “they do not provide a way to capture general equilibrium effects.” For 

                                                
23 Along this line of thought, a recent study by Caron and Fally (2017) emphasizes the role of income-

driven difference in consumption patterns in determining the cross-country difference in CO2 emissions. 
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example, the aggregate impact of many counties’ connections on the national market could 

be non-negligible. Future research on these issues is warranted.  
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FIGURE 1. EXPANSION OF THE NATIONAL EXPRESSWAY SYSTEM IN CHINA 

 

Panel A. China’s National Expressways in 2000 

 
Panel B. China’s National Expressways in 2012 
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FIGURE 2. DISTRIBUTION OF PER CAPITA GDP OF THE CONNECTED AND UNCONNECTED COUNTIES IN 2000 

 
Pane A. Unmatched Sample 

 
Panel B. Matched Sample 
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               FIGURE 3. TESTS FOR PARALLEL TRENDS 

 
 

Notes:  The figure plots the estimates and the 95% confidence intervals of the coefficients in the event study regressions following 

Jacobson et al. (1993). The horizontal axes denote years before or after the expressway connection, where the year just before the 

connection year is the benchmark. See Appendix I for more details. 
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FIGURE 4. PREDICTED HETEROGENEOUS IMPACTS OF EXPRESSWAY CONNECTION 

 
Notes: The figure shows the predicted effects of expressway connection at different initial income levels, and their 95% confidence 

intervals. The impacts are positive for poorer regions and are negative for richer regions. The prediction is based on Table 3, Columns 

1 and 4. 
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FIGURE 5. INDIFFERENCE CURVES IMPLIED BY THE PREFERENCE EXHIBITING A HIERARCHY OF NEEDS 

 
Notes: The solid, red curves are examples of the indifference curves at the lower level of the 

hierarchy. The dashed, blue lines are examples of the indifference curves at the higher level of the 

hierarchy. The dotted, black curve is defined by !(#, %) = (), which is the asymptotic curve of 

the indifference curves at the lower level of the hierarchy when the utility level approaches () from 

below.
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FIGURE 6. IMPACT OF LOWER TRADE COST  

Panel A. Initial equilibrium at the lower level of the hierarchy of needs 

 

Panel B. Initial equilibrium at the higher level of the hierarchy of needs 

 
 

Notes: The solid, black lines represent the endogenous frontier of the economy to transform 
emissions into the consumption composite with the help of trade. The solid, red curves and the 
dashed, blue lines are indifference curves at the lower and the higher level of the hierarchy, 
respectively. A lower trade cost expands the frontier, so the equilibrium moves from the black dot 
to the white dot. As the result, in Panel A,  the consumption composite increases; in Panel B, the 
consumption composite decreases, while the environmental quality increases and emissions 
decrease.
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Table 1. Summary Statistics of Sampled Counties 

Variable Un-Matched Sample Matched Sample 

  Overall Connected Un-Connected Overall Connected Un-Connected 

GDP (2000) 2,582  2,990  2,094  2,666  2,848  2,484  

 
(5,722) (2,938) (7,825) (3,894) (2,668) (4,816) 

GDP (2012) 15,108  17,452  12,286  15,430  16,426  14,433  

 
(31,953) (18,322) (42,815) (22,530) (16,364) (27,336) 

GDP per capita (yuan, 2000) 4,912  5,396  4,327  5,253  5,258  5,249  

 
(4,356) (4,002) (4,686) (3,698) (3,457) (3,930) 

GDP per capita (yuan, 2012) 30,819  32,481  28,806  32,808  31,685  33,932  

  (32,808) (30,819) (34,982) (34,000) (31,428) (36,402) 

# of Counties 1,646  897  749  1,614  807  807  

Notes: Standard deviations are reported in the parentheses below the means. County-level GDP and population data are collected 

from provincial statistical yearbooks, China City Statistical Yearbooks, China County Statistical Yearbooks, and China Economic 

Database from CEIC (www.ceicdata.com). 
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Table 2. The Average Treatment Effects of Expressway Connection on GDP 

  GDP (million yuan, log) Per capita GDP (yuan, log) 

  (1) (2) (3) (4) (5) (6) 

Expressway -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

 (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

County FE Y Y Y Y Y Y 

Year FE Y Y N Y Y N 

Provincial Trends N Y N N Y N 

Province-Year FE N N Y N N Y 

Obs. 13,440 13,440 13,440 13,347 13,347 13,347 

R2 0.91 0.93 0.93 0.90 0.92 0.93 

Notes: This table estimates the impacts of expressway connection on GDP measures using a variety of 

specifications. We probe the robustness of estimates accuracy by clustering the standard errors at three 

different levels: county level, province level and county and province-year level (multi-way clustering 

suggested by Cameron, Gelbach, and Miller, 2011). These standard errors are respectively reported in 

the parentheses below the estimated coefficients. Our preferred specification clusters standard errors at 

the county level. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 3. Heterogeneous Treatment Effect with respect to Initial Income 

  GDP (million yuan, log) Per capita GDP (yuan, log) 

  (1) (2) (3) (4) (5) (6) 

Expressway 0.98*** 0.67*** 0.70*** 1.17*** 0.83*** 0.88*** 

 (0.19) (0.17) (0.17) (0.21) (0.18) (0.18) 

 (0.36) (0.29) (0.29) (0.40) (0.29) (0.29) 

 (0.25) (0.22) (0.23) (0.27) (0.22) (0.24) 

Expressway*GDP pc -0.12*** -0.08*** -0.09*** -0.14*** -0.10*** -0.11*** 

(yuan, log, Year 2000) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

 (0.04) (0.03) (0.03) (0.05) (0.03) (0.03) 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

County FE Y Y Y Y Y Y 

Year FE Y Y N Y Y N 

Provincial Trends N Y N N Y N 

Province-Year FE N N Y N N Y 

Obs. 13,440 13,440 13,440 13,347 13,347 13,347 

R2 0.91 0.93 0.93 0.90 0.92 0.93 

Notes: This table estimates the heterogeneous impacts of expressway connection on GDP measures 

using a variety of specifications. We probe the robustness of estimates accuracy by clustering the 

standard errors at three different levels: county level, province level and county and province-year level 

(multi-way clustering suggested by Cameron, Gelbach, and Miller (2011)). These standard errors are 

respectively reported in the parentheses below the estimated coefficients. Our preferred specification 

clusters standard errors at the county level. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 4. Heterogeneous Treatment Effect with respect to Different Initial Income Groups 

  GDP (million yuan, log) Per capita GDP (yuan, log) 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Expressway 0.09*** 0.10*** 0.06** 0.06** 0.10*** 0.11*** 0.07** 0.06** 
 (0.02) (0.02) (0.03) (0.03) (0.02) (0.02) (0.03) (0.03) 

High Income*Expressway -0.15*** -0.15*** -0.11*** -0.10*** -0.16*** -0.16*** -0.12*** -0.11*** 

  (0.02) (0.02) (0.04) (0.03) (0.02) (0.03) (0.04) (0.04) 

County FE Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y 

Provincial Trends Y N N N Y N N N 

Province-Year FE N Y N N N Y N N 

Income Group  Trends N N Y N N N Y N 

Income Group * Year FE N N N Y N N N Y 

Obs. 13,440 13,440 13,440 13,440 13,347 13,347 13,347 13,347 

R2 0.93 0.93 0.91 0.91 0.92 0.93 0.90 0.90 

Notes: This table estimates the heterogeneous impacts of expressway connection on GDP. Standard errors are clustered at county 

level and reported in the parentheses below the estimated coefficients. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 5. Explore Heterogeneity Patterns 

Panel A. GDP (million yuan, log) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Expressway 0.98*** 1.71*** 0.59** 0.82*** 1.00*** 1.00*** 1.01*** 1.03*** 2.21*** 
 (0.19) (0.23) (0.30) (0.21) (0.23) (0.19) (0.27) (0.19) (0.33) 

Expressway*GDP pc -0.12*** -0.13*** -0.11*** -0.11*** -0.12*** -0.15*** -0.12*** -0.13*** -0.26*** 

(Year 2000) (0.02) (0.02) (0.03) (0.02) (0.03) (0.03) (0.03) (0.02) (0.03) 

Expressway*X 0.00 -0.11*** 0.04** 0.07*** 0.00 0.02** -0.00 0.00** / 

(Year 2000) (0.00) (0.02) (0.02) (0.01) (0.02) (0.01) (0.00) (0.00) / 

Panel B. GDP per capita (yuan, log) 

Expressway 1.17*** 1.85*** 0.71** 0.95*** 1.17*** 1.18*** 1.20*** 1.21*** 2.37*** 

 (0.21) (0.24) (0.31) (0.22) (0.25) (0.21) (0.29) (0.21) (0.34) 

Expressway*GDP pc -0.14*** -0.14*** -0.13*** -0.13*** -0.15*** -0.16*** -0.15*** -0.15*** -0.28*** 

(Year 2000) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.03) 

Expressway*X -0.00 -0.11*** 0.05** 0.07*** 0.01 0.02* -0.00 0.00** / 

(Year 2000) (0.00) (0.02) (0.02) (0.01) (0.02) (0.01) (0.00) (0.00) / 

X Indicator 
Distance 

(km) 

Population 

(log) 

Land 

Area 

(log) 

Land per 

capita 

(log) 

# 

Industrial 

firms (log) 

 Output 

Value 

(log) 

Agriculture 

(%) 

Manufacturing 

(%) 
All 

County FE Y Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y Y 

Obs. 13,347 12,245 12,236 12,236 12,210 13,264 13,347 13,347 12,144 

Notes: This table estimates the heterogeneous impacts of expressway connection on GDP measures. Standard errors are clustered at county level 

and reported in the parentheses below the estimated coefficients. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 6. Effects of Expressway Connection on Emissions 

  COD Emissions (ton, log) Per capita COD Emissions (kg, log) 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Expressway -0.09 2.74*** 1.67** 2.25*** -0.12 3.13*** 1.89** 2.53*** 

 (0.09) (0.73) (0.82) (0.83) (0.09) (0.79) (0.90) (0.91) 
 (0.05) (0.77) (0.70) (0.62) (0.06) (0.84) (0.81) (0.72) 
 (0.10) (0.84) (0.88) (0.93) (0.09) (0.88) (0.94) (1.03) 

Expressway*GDP pc  -0.34*** -0.21** -0.28*** 
 

-0.39*** -0.24** -0.32*** 

(yuan, log, Year 2000) (0.09) (0.10) (0.10) 
 

(0.09) (0.11) (0.11) 
  (0.09) (0.09) (0.08)  (0.10) (0.10) (0.09) 
  (0.10) (0.10) (0.11)  (0.10) (0.11) (0.12) 

County FE Y Y Y Y Y Y Y Y 

Year FE Y Y Y N Y Y Y N 

Provincial Trends N N Y N N N Y N 

Province-Year FE N N N Y N N N Y 

Obs. 13,338 13,338 13,338 13,338 13,205 13,205 13,205 13,205 

R2 0.69 0.69 0.70 0.72 0.64 0.64 0.66 0.67 

Notes: This table estimates the heterogeneous impacts of expressway connection on emission measures using a variety of 

specifications. We probe the robustness of estimates accuracy by clustering the standard errors at three different levels: county level, 

province level and county and province-year level (multi-way clustering suggested by Cameron, Gelbach, and Miller, 2011). These 

standard errors are respectively reported in the parentheses below the estimated coefficients. Our preferred specification clusters 

standard errors at the county level. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 7. The Effects of Expressway Connection on Other Emission Measures 

  

COD Emissions 

from Key 

Polluting Sites 

(ton, log) 

 Per capita COD 

Emissions from 

Key Polluting 

Sites (kg, log) 

NH3-N 

Emissions (ton, 

log) 

Per capita NH3-N 

Emissions (kg, 

log) 

SO2 Emissions 

(ton, log) 

Per capita SO2 

Emissions (kg, 

log) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Expressway -0.05 3.45*** -0.09 3.95*** -0.08 3.84*** -0.13 4.53*** -0.07 -0.33 -0.08 -0.17 
 (0.09) (0.75) (0.10) (0.82) (0.11) (1.12) (0.13) (1.27) (0.06) (0.54) (0.06) (0.55) 

Expressway*GDP pc  -0.42***  -0.49***  -0.47***   -0.56***   0.03  0.01 

(yuan, log, Year 2000)  (0.09)   (0.10)  (0.13)   (0.15)   (0.06)  (0.07) 

County FE Y Y Y Y Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y Y Y Y Y 

Obs. 14,551 14,551 14,408 14,408 11,380 11,380 11,249 11,249 13,548 13,548 13,413 13,413 

R2 0.07 0.08 0.07 0.07 0.14 0.14 0.16 0.16 0.13 0.13 0.12 0.12 

Notes: This table estimates the heterogeneous impacts of expressway connection on other emission measures. Standard errors are clustered at 

county level and reported in the parentheses below the estimated coefficients. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 8. Expressway Connection: Channels 

  

COD Emission 

Intensity (ton, log) 

Output Value of Key 

Polluting Firms 

Number of Key 

Polluting Firms (log) 

Share of the 

Secondary Industry 

(%, log) 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Expressway -0.04 2.85*** -0.07 0.88** 0.04 0.90*** -0.00 0.61*** 
 (0.08) (0.78) (0.05) (0.40) (0.03) (0.27) (0.01) (0.14) 

Expressway*GDP pc  -0.35***   -0.11**   -0.10***  -0.07*** 

(yuan, log, Year 2000)  (0.09)   (0.05)   (0.03)  (0.02) 

County FE Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y 

Obs. 14,531 14,531 14,711 14,711 14,713 14,713 8,051 8,051 

R2 0.11 0.11 0.54 0.54 0.39 0.39 0.21 0.21 

Notes: This table estimates the heterogeneous impacts of expressway connection environmental and economic outcomes. Standard 

errors are clustered at county level and reported in the parentheses below the estimated coefficients. *** p<0.01, ** p<0.05, * p<0.1. 
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Online Appendices to “Expressways, GDP, and Pollution: Evidence from China 

and an Explanatory Model” 

Appendix I. Tests for Parallel Trends 

Since different counties were connected to the expressways in different years, we can test 

the parallel-trend assumption using an event study approach, following Jacobson et al. 

(1993). Specifically, we estimate the following equation: 

௜௧ݕ ൌ ∑ ௜௧௞ܦ ∙ ௞௞ୀହߜ
௞ஹିହ,௞ஷିଵ ൅ ௧ߩ ൅ ௜ߤ ൅      ,௜௧ߝ

where ݕ௜௧ represents the outcomes of interests in county ݅ in year ݐ. The dummy variable 

௜௧௞ܦ  is defined thus: for county i, which was never or always connected by an expressway 

within the sample period, ܦ௜௧௞ ൌ 0 for any k and t. For county i, which was connected by 

an expressway within  the sample period, we first define ݏ௜  as the year in which this 

county was first connected to the expressway network, and we then define ܦ௜௧ିହ ൌ 1 if 

ݐ െ ௜ݏ ൑ െ5 , and 0 otherwise; ܦ௜௧௞ ൌ 1  if ݐ െ ௜ݏ ൌ ݇ , and 0 otherwise, where ݇ ൌ

െ4,െ3,െ2, 0, 1, 2, 3, 4; and ܦ௜௧ଷ ൌ 1 if ݐ െ ௜ݏ ൒ 5, and 0 otherwise. The county fixed 

effect is ߤ௜; the year fixed effect is ߩ௧. 

Note that the dummy for ݇ ൌ െ1 is omitted in the equation, and the post-treatment 

effects are therefore relative to the year immediately prior to expressway connection. The 

parameter of interest ߜ௞  dynamically estimates the effect of expressway connection 

k years after it first gains an expressway connection. We include leads of first expressway 

connection in the equation, testing whether this treatment has an impact on outcomes up 

to five years prior to actual connection. A test of the parallel-trend assumption is that the 

“placebo” leads of the treatments have no impact on the outcomes, i.e. ߜ௞ ൌ 0 for all ݇ ൑

െ2.  

The regression results are reported in Appendix Table S2. We find that the 

estimated coefficients of the placebo leads (we include five leads in the regressions) are 

not statistically different from zero, suggesting that there are no systematic differences in 
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pre-treatment trends between the control and connected groups for both emissions and 

GDP measures.1 After three to four years of connection, expressway connection dummies 

become statistically significant. This is reasonable because it reflects the time taken for 

connected regions to adjust their production plans.  

Using similar methodology, we can conduct the parallel trends test for the high and 

low income groups. In Columns 3 and 4, we find expressway connection increases GDP 

or per capita GDP for the poor income group. In Columns 5 and 6, we find the effect is 

negative for the rich group. For both groups, the placebo leads are statistically indifferent 

from zero.  

 

 

  

  

                                                 
1 The coefficient of the placebo lead (>=5 years) is statistically significant at the 10% level for per capita 

COD emissions. This suggests that the connected counties and unconnected counties had slightly different 
per capita COD emissions five or more years previously. We believe this is consistent with our 
identification strategy because the rest of the coefficients of the placebo leads, which are closer to the 
actual connection time, are all statistically insignificant.  
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Appendix II. Identifying Treatment Status for Each County 

One caveat of this dataset is that expressway connection information is not available for 

all years. While the study period ranges from 2000 to 2012, we lack expressway data for 

2001, 2004, 2006, 2008 and 2009.We interpolated data for these years by considering 

three different scenarios to create a balanced panel dataset.   

We will use 2001 as an example. First, if a county was connected before 2001 

(1992–2000), then it must be connected in 2001 as well. Second, if a county was not 

connected in 2000 or 2002, we can infer that it was not connected in 2001. Third, for a 

small set of counties, the data show that they had expressway connections in 2002 but not 

in 2000, and so there are two possibilities: (a) these counties were connected in 2002 or 

(b) in 2001.  

Theoretically, this uncertainty creates a measurement error in the treatment status 

on the first year when a county was connected. However, only a small portion of the 

connected counties (12%) in the data fall into the third category. In our main analysis, we 

assume that a county was connected in the latter year for which the data are available, 

using possibility (a) to determine the treatment status. We then check the robustness of 

our findings using the alternative possibility (b) and find that it has a negligible impact on 

our estimations. The results using (b) are reported in Appendix Table S9. 

We do not have expressway data for two consecutive years in 2008 and 2009, 

requiring slight changes to the method of interpolation. Firstly, we interpolated counties 

in both 2008 and 2009 as having an expressway connection if the counties had 

expressway connections in 2007. Secondly, counties without an expressway connection 

in both 2007 and 2010 were interpolated as also not having an expressway connection in 

2008 and 2009. Finally, a few counties that had expressway connections in 2007 but not 

in 2010 were again further categorized into three scenarios: (a) the expressway 

connection was created in 2008; (b) in 2009; or (c) in 2010. However, we also find that 
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these slight alterations to the treatment status of this small set of counties does not affect 

our main regression results. 
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Appendix III: Proof of the Proposition 

Proposition. Given ݁̅  and ܷሺܳ, ሻܥ , there exists a critical level of the consumption 

composite, ̅ܥ, such that, if ܥ ൏ in equilibrium, then ௗ஼ ܥ̅
ௗఉ
൐ 0; if	ܥ ൐  ,in equilibrium ܥ̅

then  ௗ஼
ௗఉ
൏ 0	 is possible, where ̅ܥ  is defined by ݑሺ݁̅, ሻܥ̅ ൌ ഥܷ . Moreover, if ܥ ൐ ܥ̅  in 

equilibrium and ௗ஼
ௗఉ
൏ 0, then ௗ௘

ௗఉ
൏ 0. In empirics, if the initial GDP is sufficiently low, 

then expressway connection will increase the GDP; if the initial GDP is sufficiently high, 

then expressway connection can decrease the GDP. Moreover, if the initial GDP is 

sufficiently high and expressway connection does decrease the GDP, then it must have 

also decreased emissions.  

Proof. Given ݁̅  and ܷሺܳ, ሻܥ , the initial ߚ  determines the initial ሺܥ, ܳሻ  bundle in 

equilibrium. When the initial ߚ is small, the initial ሺܥ, ܳሻ bundle falls in the lower level 

of the hierarchy of needs, and it is the interior solution of ݉ܽݔ
௘
ሺ݁̅ݑ		 െ ݁,  ሻ, which݁ߚ

solves the first-order condition, where the second-order condition is guaranteed by the 

diminishing marginal rates of substitution. Note that a change in ߚ mimics a change in 

the price of the consumption composite in a standard two-good consumption choice 

problem. Because ݑሺܳ, ሻ exhibits no Giffen property, ௗ஼ܥ
ௗఉ
൐ 0. 

When the initial ߚ is sufficiently large, the initial ሺܥ, ܳሻ bundle falls in the higher 

level of hierarchy, and they come from the corner solution of ݉ܽݔ
௘
	 ഥܷ 	൅   subject to	ሺܳሻݒ	

ሺ݁̅ݑ െ ݁, ሻ݁ߚ ൒ ഥܷ. The solution then satisfies ݑሺܳ, ሻܥ ൌ ഥܷ, ܥ ൌ ܳ and ,݁ߚ ൌ ݁̅ െ ஼
ఉ

. Note 

that ݑሺܳ, ሻܥ ൌ ഥܷ is the path generated by an increasing ߚ within the higher level of the 

hierarchy of needs. Since ݑሺܳ, ሻܥ  exhibits positive marginal utilities, ܥ  and ܳ  are 

negatively correlated along this path. Therefore, ௗ஼
ௗఉ
൏ 0, ௗொ

ௗఉ
൐ 0, and ௗ௘

ௗఉ
൏ 0. 

Note that ݑሺ݁̅, ሻܥ̅ ൌ ഥܷ defines the lower limit of the consumption composite that 

can be achieved in the higher hierarchy of needs, as ߚ approaches infinity. Therefore, 
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when ܥ ൏ ,ܥin the initial equilibrium, the initial  ሺ ܥ̅ ܳሻ bundle must fall in the lower 

level of the hierarchy of needs; when ܥ ൐  in the initial equilibrium, the initial bundle ܥ̅

can fall in the lower or higher level of the hierarchy. The results then follow.∎ 
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APPENDIX FIGURE 1. EXPANSION OF THE NATIONAL EXPRESSWAY SYSTEM IN CHINA 



8 

 

APPENDIX FIGURE 2. PREDICTED IMPACTS OF EXPRESSWAY CONNECTION ON EMISSIONS AT DIFFERENT INCOME LEVEL 

 

Notes: The figure shows the predicted effects of expressway connection at different initial income levels, and their 95% confidence 

intervals. The impacts are positive for poorer regions and are negative for richer regions. The prediction is based on Table 6, Columns 

1 and 4. 
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Table S1. China’s Expressways and Main Controlling Nodes (Cities) 

# Main Controlling Nodes Length 
(KM) 

M1 Beijing, Tianjin, Cangzhou, Dezhou, Ji’nan, Tai’an, Linyi, Huai’an, Jiangdu, Jiangyin, Wuxi, Suzhou, Shanghai 1245 

M2 Beijing, Tianjin, Cangzhou, Dezhou, Ji’nan, Tai’an, Qufu, Xuzhou, Bengbu, Hefei, Tongling, Huangshan, Quzhou, 
Nanping, Fuzhou 2030 

M3 Beijing, Baoding, Shijiazhuang, Handan, Xinxiang, Zhengzhou, Luohe, Xinyang, Wuhan, Xianning, Yueyang, Changsha, 
Zhuzhou, Hengyang, Chenzhou, Shaoguan, Guangzhou, Shenzhen, Hong Kong (Port), Macao (Port) 2285 

M4 Beijing, Baoding, Shijiazhuang, Taiyuan, Linfen, Xi’an, Hanzhong, Guangyuan, Mianyang, Chengdu, Ya’an, Xichang, 
Panzhihua, Kunming 2865 

M5 Beijing, Zhangjiakou, Ji’ning, Hohhot, Baotou, Linhe, Wuhai, Yinchuan, Zhongning, Baiyin, Lanzhou, Xi’ning, Geermu, 
Lhasa 3710 

M6 Beijing, Zhangjiakou, Ji’ning, Hohhot, Baotou, Linhe, Ejina Qi, Hami, Turpan, Urumqi 2540 
M7 Beijing, Tangshan, Qinhuangdao, Jinzhou, Shenyang, Siping, Changchun, Harbin 1280 
M11 Hegang, Jiamusi, Jixi, Mudanjiang, Dunhua, Tonghua, Dandong, Dalian 1390 

M15 
Shenyang, Liaoyang, Anshan, Haicheng, Dalian, Yantai, Qingdao, Rizhao, Lianyungang, Yancheng, Nantong, Changshu, 

Taicang, Shanghai, Ningbo, Taizhou, Wenzhou, Fuzhou, Xiamen, Shantou, Shanwei, Shenzhen, Guangzhou, Foshan, 
Kaiping, Yangjiang, Maoming, Zhanjiang, Haikou 

3710 

M21 
Changchun, Shuangliao, Fuxin, Chaoyang, Chengde, Tangshan, Tianjin, Huanghua, Binzhou, Qingzhou, Laiwu, Linyi, 

Lianyungang, Huai’an, Nanjing, Yixing, Huzhou, Hangzhou, Jinhua, Lishui, Nanping, Sanming, Longyan, Meizhou, 
Heyuan, Huizhou, Shenzhen 

3580 

M25 Ji’nan, Heze, Shangqiu, Fuyang, Lu’an, Anqing, Jingdezhen, Yingtan, Nancheng, Ruijin, Heyuan, Guangzhou 2110 

M31 Daqing, Songyuan, Shuangliao, Tongliao, Chifeng, Chengde, Beijing, Bazhou, Hengshui, Puyang, Kaifeng, Zhoukou, 
Macheng, Huangshi, Ji’an, Ganzhou, Lianping, Guangzhou 3550 

M35 Erenhot, Ji’ning, Datong, Taiyuan, Changzhi, Jincheng, Luoyang, Pingdingshan, Nanyang, Xiangfan, Jingzhou, Changde, 
Loudi, Shaoyang, Yongzhou, Lianzhou, Guangzhou 2685 

M41 Baotou, Ordos, Yulin, Yan’an, Tongchuan, Xi’an, Ankang, Dazhou, Chongqin, Qianjiang, Jishou, Huaihua, Guilin, 
Wuzhou, Maoming 3130 

M45 Lanzhou, Guangyuan, Nanchong, Chongqing, Zunyi, Guiyang, Majiang, Duyun, Hechi, Nanning, Beihai, Zhanjiang, 
Haikou 2570 

M51 Chongqing, Neijiang, Yibin, Zhaotong, Kunming 838 
Source: The National Expressway Network Plan, Ministry of Transport Planning Academe of China, 2004. 
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Table S1 (cont’d). China’s Expressways and Main Controlling Nodes (Cities) 

# Main Controlling Nodes Length 
(KM) 

M10 Suifenhe (Port), Mudanjiang, Harbin, Daqing, Qiqihar, Manzhouli (Port) 1520 
M16 Hunchun (Port), Dunhua, Jilin, Changchun, Songyuan, Baicheng, Ulanhot 885 
M20 Dandong, Haicheng, Panjin, Jinzhou, Chaoyang, Chifeng, Xilinhot 960 
M26 Rongcheng, Wendeng, Weihai, Yantai, Dongying, Huanghua, Tianjin, Bazhou, Laiyuan, Shuozhou, Ordos, Wuhai 1820 
M30 Qingdao, Weifang, Zibo, Ji’nan, Shijiazhuang, Taiyuan, Lishi, Jingbian, Dingbian, Yinchuan 1600 
M36 Qingdao, Laiwu, Tai’an, Liaocheng, Handan, Changzhi, Linfen, Fuxian, Qingyang, Pingliang, Dingxi, Lanzhou 1795 

M40 Lianyungang, Xuzhou, Shangqiu, Kaifeng, Zhengzhou, Luoyang, Xi’an, Baoji, Tianshui, Lanzhou, Wuwei, Jiayuguan, 
Hami, Turpan, Urumqi, Kuytun, Khorgas (Port) 4280 

M46 Nanjing, Bengbu, Fuyang, Zhoukou, Luohe, Pingdingshan, Luoyang 712 
M48 Shanghai, Chongming, Nantong, Yangzhou, Nanjing, Hefei, Lu’an, Xinyang, Nanyang, Shangzhou, Xi’an 1490 

M50 Shanghai, Suzhou, Wuxi, Changzhou, Nanjing, Hefei, Lu’an, Macheng, Wuhan, Xiaogan, Jingmen, Yichang, 
Wanzhou, Dianjiang, Guang’an, Nanchong, Suining, Chengdu 1960 

M52 Shanghai, Huzhou, Xuancheng, Wuhu, Tongling, Anqing, Huangmei, Huangshi, Wuhan, Jingzhou, Yichang, Enshi, 
Zhongxian, Dianjiang, Chongqing 1900 

M56 Hangzhou, Huangshan, Jingdezhen, Jiujiang, Xianning, Yueyang, Changde, Jishou, Zunyi, Bijie, Liupanshui, Qujing, 
Kunming, Chuxiong, Dali, Ruili (Port) 3405 

M60 Shanghai, Hangzhou, Jinhua, Quzhou, Yingtan, Nanchang, Yichun, Changsha, Shaoyang, Huaihua, Guiyang, Anshun, 
Qujing, Kunming 2370 

M66 Fuzhou, Nanping, Nancheng, Nanchang, Jiujiang, Huangmei, Huangshi, Wuhan, Xiaogan, Xiangfan, Shiyan, 
Shangzhou, Xi’an, Pingliang, Zhongning, Yinchuan 2485 

M68 Quanzhou, Yong’an, Ji’an, Hengyang, Yongzhou, Guilin, Liuzhou, Nanning 1635 

M70 Xiamen, Zhangzhou, Longyan, Ruijin, Ganzhou, Chenzhou, Guilin, Majiang, Guiyang, Bijie, Luzhou, Longchang, 
Neijiang, Chengdu 2295 

M72 Shantou, Meizhou, Shaoguan, Hezhou, Liuzhou, Hechi, Xingyi, Shilin, Kunming 1710 
M76 Guangzhou, Zhaoqin, Wuzhou, Yulin, Nanning, Baise, Funing, Kaiyuan, Shilin, Kunming 1610 
Source: The National Expressway Network Plan, Ministry of Transport Planning Academe of China, 2004. 
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Table S2. Parallel Trends Tests Separately for Different Income Groups 

  Overall Low Income Group High Income Group 

  GDP 
(log) 

Per capita 
GDP  (log) 

GDP 
(log) 

Per 
capita GDP  

(log) 

GDP 
(log) 

Per capita 
GDP  (log) 

  (1) (2) (3) (4) (5) (6) 
>= 5 Years Before -0.01 0.00 -0.09 -0.08 0.02 0.03 

(0.03) (0.03) (0.07) (0.07) (0.03) (0.03) 
4 Years Before 0.00 -0.00 -0.05 -0.05 0.02 0.02 

(0.02) (0.02) (0.04) (0.03) (0.02) (0.02) 
3 Years Before -0.00 -0.00 -0.02 -0.01 0.00 0.00 

(0.01) (0.01) (0.03) (0.02) (0.02) (0.02) 
2 Years Before -0.01 -0.01 -0.02 -0.00 -0.00 -0.00 

(0.01) (0.01) (0.02) (0.03) (0.01) (0.01) 
Year of Connection -0.00 -0.00 0.02 0.02 -0.01 -0.01 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
1 Year Later -0.01 -0.01 0.03* 0.04** -0.02 -0.02 

(0.01) (0.01) (0.02) (0.02) (0.02) (0.02) 
2 Years Later -0.02 -0.02 0.03 0.04* -0.03*** -0.03*** 

(0.01) (0.01) (0.02) (0.02) (0.01) (0.01) 
3 Years Later -0.02* -0.02 0.04* 0.05** -0.04*** -0.04** 

(0.01) (0.01) (0.02) (0.02) (0.01) (0.01) 
>=4 Years Later -0.05** -0.04** 0.01 0.02 -0.06*** -0.06*** 

(0.02) (0.02) (0.03) (0.03) (0.02) (0.02) 
County FE Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y 
Obs. 13,440 13,347 3,012 2,982 10,428 10,365 
R2 0.91 0.90 0.94 0.93 0.91 0.90 
Notes: We conduct an event study by including leads and lags of the first expressway connection dummy 

in the regressions. The dummy indicating one-year prior treatment status is omitted from the regression. 
Standard errors are clustered at the county level and reported in the parentheses. ** p<0.01, ** p<0.05, * 
p<0.1. 
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Table S3. Estimates Using Straight-Line IV 

Expresswa
y 

Δ log (GDP) 
between 2000 and 

2012 

Δ log (per capita 
GDP) between 2000 

and 2012 
  (1) (2) (3) (4) (5) 

Straight-Line IV 0.34*** 
(0.03) 

Expressway -0.05 1.69*** 0.03 2.07*** 
(0.06) (0.55) (0.08) (0.51) 

Expressway*GDP pc -0.21*** -0.25***
(yuan, log, Year 2000) (0.06) (0.06) 

Specification 1st Stage 2SLS 2SLS 2SLS 2SLS 
Province FE Y Y Y Y Y 
Observations 1,684 1,586 1,564 1,547 1,547 
R2 0.23 0.26 0.29 0.30 0.34 

Notes: Each column in the table represents a separate regression. The instrumental variable 
(IV) is constructed using straight lines that connect pairs of target cities. If a county is located on 
the straight line between two target cities, the IV equals to 1, and otherwise 0. For columns 3 and 
5, the straight-line IV interacted with per capita GDP in 2000 is used to instrument the 
expressway connection interacted with per capita GDP in 2000.  Standard errors are clustered at 
the province level.  * significant at 10%, ** significant at 5%, *** significant at 1%. 
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Table S4. The Effects of Expressway Connection on GDP: Results from Unmatched Sample  
  GDP (million yuan, log) Per capita GDP (yuan, log) 
  (1) (2) (3) (4) (5) (6) (7) (8) 
Expressway -0.01 2.77*** 1.58** 1.88** -0.01 3.27*** 1.73** 2.06** 

(0.01) (0.72) (0.74) (0.74) (0.01) (0.78) (0.81) (0.82) 
(0.02) (0.87) (0.70) (0.69) (0.01) (0.96) (0.79) (0.77) 
(0.01) (0.79) (0.76) (0.83) (0.01) (0.86) (0.84) (0.91) 

Expressway*GDP pc -0.35*** -0.21** -0.25*** -0.42*** -0.23** -0.27***
(yuan, log, Year 2000) (0.08) (0.09) (0.09) (0.09) (0.10) (0.10) 

(0.10) (0.08) (0.08) (0.11) (0.10) (0.09) 
(0.09) (0.09) (0.10)   (0.10) (0.10) (0.11) 

County FE Y Y Y Y Y Y Y Y 
Year FE Y Y Y N Y Y Y N 
Provincial Trends N N Y N N N Y N 
Province-Year FE N N N Y N N N Y 
Obs. 19,835 18,179 18,179 18,179 19,472 18,007 18,007 18,007 
R2 0.91 0.08 0.12 0.16 0.90 0.08 0.13 0.17 
Notes: This table estimates the impacts of expressway connection on GDP measures using the sample before matching. We probe 

the robustness of estimates accuracy by clustering the standard errors at three different levels: county level, province level and county 
and province-year level (multi-way clustering suggested by Cameron, Gelbach, and Miller (2011)). These standard errors are 
respectively reported in the parentheses below the estimated coefficients. Our preferred specification clusters standard errors at the 
county level. *** p<0.01, ** p<0.05, * p<0.1. 
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Table S5. Parallel Trends Tests Using the Unmatched Sample 

  GDP (million yuan, log) Per capita GDP  (yuan, 
log) 

  (1) (2) 
>= 5Years Before -0.01 -0.02 

(0.04) (0.04) 
4 Years Before 0.01 -0.00 

(0.02) (0.02) 
3 Years Before -0.00 -0.00 

(0.01) (0.01) 
2 Years Before -0.00 -0.01 

(0.01) (0.01) 
Year of Connection 0.00 -0.00 

(0.01) (0.01) 
1 Year Later -0.01 -0.01 

(0.01) (0.01) 
2 Years Later -0.01 -0.01 

(0.01) (0.01) 
3 Years Later -0.02** -0.02 

(0.01) (0.01) 
>=4 Years Later -0.05*** -0.04** 

(0.02) (0.02) 
County FE Y Y 
Year FE Y Y 
Obs. 19,835 19,472 
R2 0.91 0.90 
Notes: We conduct an event study by including leads and lags of the first expressway 

connection dummy in the regressions. The dummy indicating one-year prior treatment 
status is omitted from the regression. Standard errors are clustered at the county level and 
reported in the parentheses. ** p<0.01, ** p<0.05, * p<0.1. 
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Table S6. Heterogeneous Effect of Neighboring County Expressway Connection 

  
GDP (million yuan, log) Per capita GDP (yuan, log) 

  (1) (2) (3) (4) (5) (6) 
Neighbor Expressway 0.68** 0.53** 0.48** 0.93*** 0.63*** 0.61*** 

(0.28) (0.21) (0.23) (0.28) (0.21) (0.23) 
N-Expressway*GDP pc -0.08** -0.06** -0.05* -0.11*** -0.07*** -0.07** 

(yuan, log, Year 2000) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) 
County FE Y Y Y Y Y Y 
Year FE Y Y N Y Y N 
Provincial Trends N Y N N Y N 
Province-Year FE N N Y N N Y 

Obs. 8,732 8,732 8,732 8,688 8,688 8,688 
R2 0.90 0.92 0.92 0.90 0.92 0.92 
Notes: This table estimates the heterogeneous impacts of expressway connection on GDP measures using a variety of specifications. 
Standard errors clustered at the county level are reported in the parentheses below the estimated coefficients. *** p<0.01, ** p<0.05, * 
p<0.1. 
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Table S7. Alternative Specifications for Heterogeneity Patterns 
Panel A. GDP (million yuan, log) 

  (1) (2) (3) (4) (5) (6) (7) (8) 
Expressway 0.06** 0.05* 0.69*** -0.31** -0.05 0.05 0.03 0.23 

(0.03) (0.03) (0.12) (0.14) (0.04) (0.04) (0.04) (0.17) 
Expressway*High 

Income -0.11*** -0.11*** -0.10*** -0.09** -0.09** -0.10*** -0.12*** -0.11***

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 
Expressway*X 0.00 -0.10*** 0.05*** 0.07*** 0.00 0.00* / 
(Year 2000)   (0.00) (0.02) (0.02) (0.01) (0.00) (0.00) / 

Panel B. GDP per capita (yuan, log) 
Expressway 0.07** 0.07** 0.71*** -0.32** -0.05 0.05 0.04 0.22 

(0.03) (0.03) (0.12) (0.15) (0.04) (0.05) (0.04) (0.18) 
Expressway*High 

Income -0.12*** -0.12*** -0.12*** -0.11*** -0.11*** -0.11*** -0.13*** -0.12***

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 
Expressway*X -0.00 -0.11*** 0.05*** 0.07*** 0.00 0.00** / 
(Year 2000)   (0.00) (0.02) (0.02) (0.01) (0.00) (0.00) / 

X Indicator None Distance 
(km) 

Population 
(log) 

Land 
Area (log) 

Land per 
capita (log) 

Share of 
Agriculture (%)

Share of 
Manufacturing (%) All 

County FE Y Y Y Y Y Y Y Y 
Income Group * Year FE Y Y Y Y Y Y Y Y 
Obs. 13,440 13,440 12,338 12,329 12,329 13,440 13,440 12,329 
Notes: This table estimates the heterogeneous impacts of expressway connection on GDP measures. Standard errors are clustered at county level and reported in 

the parentheses below the estimated coefficients. *** p<0.01, ** p<0.05, * p<0.1. 
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Table S8. Parallel Trends Tests for Emissions 

  GDP (million yuan, log) Per capita GDP  (yuan, 
log) 

  (1) (2) 
>= 5Years Before -0.01 -0.02 

(0.04) (0.04) 
4 Years Before 0.01 -0.00 

(0.02) (0.02) 
3 Years Before -0.00 -0.00 

(0.01) (0.01) 
2 Years Before -0.00 -0.01 

(0.01) (0.01) 
Year of Connection 0.00 -0.00 

(0.01) (0.01) 
1 Year Later -0.01 -0.01 

(0.01) (0.01) 
2 Years Later -0.01 -0.01 

(0.01) (0.01) 
3 Years Later -0.02** -0.02 

(0.01) (0.01) 
>=4 Years Later -0.05*** -0.04** 

(0.02) (0.02) 
County FE Y Y 
Year FE Y Y 
Obs. 19,835 19,472 
R2 0.91 0.90 
Notes: We conduct an event study by including leads and lags of the first expressway 

connection dummy in the regressions. The dummy indicating one-year prior treatment 
status is omitted from the regression. Standard errors are clustered at the county level and 
reported in the parentheses. ** p<0.01, ** p<0.05, * p<0.1. 
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Table S9. The Effects of Expressway Using Alternative Treatment Indicator 

  
GDP (million yuan, 

log) 
GDP per capita  
(yuan, log) 

COD Emissions (ton, 
log) 

Per capita COD 
Emissions (kg, log) 

  (1) (2) (3) (4) (5) (6) (7) (8) 
Expressway -0.02 1.00*** -0.02 1.22*** -0.10 2.75*** -0.13 3.18*** 

(0.02) (0.18) (0.02) (0.20) (0.09) (0.76) (0.09) (0.81) 
Expressway*GDP pc -0.12***   -0.15***   -0.34*** -0.40*** 
(yuan, log, Year 2000) (0.02)   (0.02)   (0.09) (0.10) 
County FE Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y 
Obs. 13,440 13,440 13,347 13,347 13,338 13,338 13,205 13,205 
R2 0.91 0.91 0.90 0.90 0.06 0.06 0.06 0.06 
Notes: This table estimates the heterogeneous impacts of expressway connection environmental and economic outcomes. Standard 

errors are clustered at county level and reported in the parentheses below the estimated coefficients. *** p<0.01, ** p<0.05, * p<0.1. 
 


