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Abstract

We provide a framework for analyzing a range of well-documented non-Bayesian

behaviors including base rate neglect, conjunction fallacy and disjunction fallacy. The

model that we propose formally links the concept of similarity in theoretical psychology

with belief updating. We follow Kahneman and Tversky (1974) and assume that when

attempting to respond to the question “how likely is A given B”, people mistakenly

respond to the question “how similar are A to B”. With a similarity-based updating

rule the posterior of A∪C given B may be less than the posterior of A given B, simply

because A ∪ C differs more from B than A does when B ∩ C = Ø. Our axioms yield

a Cobb-Douglas weighted geometric mean of µ(A|B) and µ(B|A) as the behavioral

conditional probability of A given B, where µ is the correct subjective probability and

µ(·|·) is the Bayesian conditional of µ. That is, our decision makers confuse these two

conditional probabilities but have correct unconditional beliefs. This combination of

correct priors and incorrect updating occurs often since in many experiments subjects

are explicitly given the relevant prior probabilities.

∗I am grateful to Roland Benabou, Faruk Gul, Wolfgang Pesendorfer and participants in the Princeton
Microeconomic Theory Student Seminar for their insightful comments. All errors are mine.



1 Introduction

It is well-documented in the experimental literature that people’s inferences sometimes de-

viate significantly from what Bayesian theory predicts. Among these deviations, the salient

ones include base rate neglect, conjunction fallacy and disjunction fallacy.

Agents subject to Base rate neglect undervalue the base rate and update too much on the

signal. In Kahneman and Tversky (1982), subjects are presented with the following problem:

A cab was involved in a hit-and-run accident at night. Two cab companies, the

Green and the Blue, operate in the city. You are given the following data: (i) 85%

of the cabs in the city are Green and 15% are Blue, (ii) A witness identified the cab

as a Blue cab. The court tested his ability to identify cabs under the appropriate

visibility conditions. When presented with a sample of cabs (half of which were

Blue and half of which were Green) the witness made correct identifications in

80% of the cases and erred in 20% of the cases. Question: What is the probability

that the cab involved in the accident was Blue rather than Green?

While the Bayesian conditional probability is 0.41, the median and mode answer given by

the subjects is 0.8, the credibility of the witness. The vast majority state that the cab was

more likely to be blue. These responses show that subjects tend to place too small a weight

on the base rate 15/85 and thereby rely too much on the signal.1

Agents who commit the conjunction fallacy assign a higher probability to event A ∩ B

than to A. In Kahneman and Tversky (1983), subjects are given a description (D) of a

stereotypical leftist, named Linda. They are asked to choose the more probable option over:

(T) Linda is a bank teller;

(T∧F) Linda is a bank teller and is active in feminist movements.

1There are, also, many extreme examples of base rate neglect in the legal process. In these examples,
the very low probability of a particular set of evidence (B) given innocence (A) is cited as proof that given
the evidence, the individual is very unlikely be innocent (A given B). For a detailed discussion see Fienberg
(1989); DeGroot, Fienberg, and Kadane (1994) and Tribe (1971).
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T∧F, albeit a sub-event of T, is selected by 85% of the subjects as the more probable one.

Moreover, the authors report that the incidence of such a fallacy is fairly high (36%) even

among statistically sophisticated subjects.

In a similar vein, Bar-Hillel and Neter (1993) define the disjunction fallacy as assigning

higher probability to A than to A∪B.2 In the experiments, subjects are given a description

of Danielle, who is sensitive and writes poetry secretly. 50% of the subjects are willing to

bet on her being a literature major rather than a humanities major even though almost all

subjects seem to know that the department of literature is a part of the faculty of humanities.

These systematic violations of Bayesianism are not mutually exclusive. A common theme

of these experiments is that subjects is generally not sensitive enough to prior frequencies

and tend to over-update on signals. Despite such a clear connection, a unified theory that

reconciles the results seems elusive, if not nonexistent. Existing models of updating heuristics

typically assume that the decision maker fails to access the full and correct prior when

applying Bayes’ formula, due to imperfect memory or recall (Mullainathan (2002b); Wilson

(2014); Gennaioli and Shleifer (2010); Bordalo, Coffman, Gennaioli, and Shleifer (2016)),

or categorical thinking (Mullainathan (2002a); Mullainathan, Schwartzstein, and Shleifer

(2008)), or having an incorrect model in mind (Barberis, Shleifer, and Vishny (1998); Rabin

and Schrag (1999); Rabin (2002); and Schwartzstein (2014)). None of these contributions

offer a satisfactory explanation to experiments in which the relevant prior probabilities are

fully specified and available to subjects. The fact that subjects have correct unconditional

beliefs simply leaves little freedom to updating heuristics that maintain Bayes’ formula.

In this paper, we provide a unified micro-foundation for behavioral subjects who tend

to commit the fallacies above but have correct unconditional beliefs. Our decision maker

assigns subjective probabilities rationally to all events but she adopts a behavioral updating

rule. In particular, the decision maker mistakes the question“How likely is A given B?” for

the question “How representative is A of B (i.e., how similar is A to B)?”. We base this

2See, also Fischhoff, Slovic, and Lichtenstein (1978).
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behavioral twist on Kahneman and Tversky (1974), who propose that,

“in answering such [conditional probability] questions, people typically rely on the

representativeness heuristic, in which probabilities are evaluated by the degree to

which A is representative of B, that is, by the degree to which A resembles B.”

Hence, we assume that our decision maker assesses the degree to which A is similar to B

when asked to evaluate the conditional probability of A given B. In the Linda problem, T∧F

resembles a leftist more than T does; in the Danielle problem, a literature student is more

representative of sensitive poets than a humanities student is. Although it seems that no

judgements of representativeness is involved in the taxicab problem, under our characteri-

zation of similarity, the event “the involved cab was blue” shares higher similarity with the

event “witness identifed the cab as blue” than “the involved cab was green” does.

Our primitive is a binary relation between two pairs of events of the state space Ω:

(A,B) � (C,D) means that A is more similar to B than C is to D; that is, the decision

maker assigns higher probability to A given B than to C given D. We impose axioms on �

to identify a similarity index (or equivalently, a similarity-based updating formula), S(A,B),

such that (A,B) � (C,D) if and only if S(A,B) ≥ S(C,D).3

Our characterization of S(A,B) are twofold. First, our axioms yield a unique subjective

probability measure µ and a nondecreasing aggregator f such that

S (A,B) = f (µ (A|B) , µ (B|A)) .

where µ(·|·) is given by Bayes’ rule. That is, the decision maker confuses the correct con-

ditional µ(A|B) with the reversed conditional µ(B|A). Second, we introduce a robustness

condition which ensures that independent events are not informative when conditioned on.

3We follow the psychology literature and allow S(A,B) to be asymmetric; that is, S(A,B) need not equal
S(B,A). For example, we say that “an ellipse is similar to a circle” but not “a circle is similar to an ellipse.”
See Tversky (1977) for a detailed analysis.
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With this additional condition we obtain the following representation:

S (A,B) = µ (A|B)α µ (B|A)1−α

where α ∈ (0, 1] measures the decision maker’s deviation from Bayesianism. In particular,

when α = 1, the decision maker is Bayesian. When α→ 0, the decision maker fully confuses

the two conditional probabilities.

The subjective probability measure µ in our representation is ordinally equivalent to

S(·,Ω); that is, µ describes the decision maker’s probabilistic rankings over unconditional

events. Hence, if the decision maker does not err in comparing unconditional events, or is

given directly the prior probabilities, µ is indeed the correct objective prior.

The Cobb-Dougas updating rule S(A,B), in its likelihood ratio form, naturally explains

base rate neglect. Consider evaluating whether A or B is more likely given C, we have

S(A,C)

S(B,C)
=
µ(A|C)αµ(C|A)1−α

µ(B|C)αµ(C|B)1−α
=
µ(C|A)

µ(C|B)
·
(
µ(A)

µ(B)

)α
.

Since α ≤ 1, (µ(A)/µ(B))α is closer to 1 than the correct prior odds ratio µ(A)/µ(B) is.

Hence, α specifies exactly the extent to which the decision maker neglects the prior odds ratio.

In the taxicab problem, the likelihood ratio of the witness’ signal (correct over incorrect) is

80/20 = 4 where as the base rate (blue over green) is 15/85 = 0.176. A decision maker with

an α < 0.8 would conclude, like the experimental subjects, that the hit and run cab was

more likely to be blue than green.

Moreover, our similarity representation, S(·, ·), is also consistent with experimental ev-

idence on conjunction fallacy and disjunction fallacy. In the Linda problem, although

µ(T∧F|D) < µ(T|D), arguably µ(D|T∧F) > µ(D|T); that is, Linda is more likely to match

the stereotypical description D if she is a feminist bank teller than if she is just a bank teller.

Then, if α is small, an α-mixture of µ(T∧F|D) and µ(D|T∧F) may well be higher than an

α-mixture of µ(T|D) and µ(D|T). In that case a decision maker would choose the conjunc-

tive description T∧F as the more “probable” option. A similar logic applies to the results in
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Bar-Hillel and Neter (1993).

As our representation generalizes Baye’s rule, each axiom that we propose is consistent

with Bayesian thinking. The key postulate which generates deviation from Bayes’ rule is

monotonicity : it allows the decision maker to specify µ(A ∪ C|B) < µ(A|B) if B ∩ C = Ø,

simply because A∪C differs more from B than A does. This axiom reflects exactly Tversky

(1977)’s insight that similarity depends on both common and distinctive features, and that

it should be diminished by the addition of distinctive features. We describe our axiomatic

system in details in section 3.

Our approach in the paper incorporates results from Savage (1954) and Villegas (1964)

to obtain a nonatomic subjective probability. Then, we exploit the nonatomicity and apply

a Debreu-type ordinal representation argument to prove the existence of a similarity index.

Finally, we embed the similarity relation into a two-state Anscombe-Aumann framework

with a novel mixture operation and prove that such an index must be a weighted geometric

average of the conditional probabilities.4

In section 2, we discuss the related literatue. In section 3, we present our systems of

axioms and show that they are equivalent to our (f, µ) representation. We also show that

with an additional robustness condition, f must be of the Cobb-Douglas form. In section 4,

we summarize our method of axiomatizing a general class of means by applying results in

Anscombe and Aumann (1963). Section 5 concludes.

2 Related Literature

Psychologists have proposed many similarity indices in the context of pattern recognition.

Within the literature, this paper is related to Tversky (1977) and Krantz, Luce, Suppes,

and Tversky (1999). Tversky (1977) models the similarity relation as an additive conjoint

4We feel that this paper is itself a semester long course on introductory decision theory.
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structure and proves that there exists a representation

S (A,B) = θf (A ∩B)− αf (A\B)− βf (B\A)

for some θ, α, β ≥ 0 and an interval scale f .5 In a similar vein, Krantz, Luce, Suppes, and

Tversky (1999) axiomatize the following similarity index:

S (A,B) = φ1 (A ∩B)− φ2 (A\B)− φ3 (B\A)

where φ1, φ2, φ3 are interval scales. They also provide conditions under which φi’s are additive.

In our context, similarity is a substitute for conditional probability. Therefore, it is

natural to assume that the decision maker assigns maximum similarity to any event with

itself. Such a property precludes the linear representations in both Tversky (1977) and

Krantz, Luce, Suppes, and Tversky (1999): both representations imply that S (A,A) is

larger than S (B,B) if A is more likely than B. In fact, the main difficulty of the proofs in

this paper arises from abandoning the linear structure. Without linearity, we are forced to

use a Debreu-type ordinal representation argument for identification of a similarity index.

3 Model

In this section we first describe the primitives of our model. Then we introduce our axioms

and show that they are equivalent to the (f, µ) representation. After that, we identify the

robustness condition which ensures that f is of the Cobb-Douglas form.

Let E be a σ-algebra defined on state space Ω and N ⊂ E be a σ-ideal. E is the set of all

events and N is the collection of all null events. Let � be a binary relation defined on E2\N 2

that summarizes the decision maker’s similarity assessments. Read (A,B) � (C,D) as “A

5In the paper Tversky also proposes, albeit without axiomatization, the well-known Tversky index:

ST (A,B) =
f (A ∩B)

f (A ∩B) + αf (A\B) + βf (B\A)

which encompasses a large class of similarity indices in the literature. Using our framework, we provide an
axiomatic foundation for ST when α+ β = 1 in the appendix.
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is more similar to B than C is to D”. We do not consider similarity rankings between null

events since they are irrelevant in our updating context. We follow the psychology literature

and allow � to be asymmetric; that is, (A,B) ∼ (B,A) is not true in general.6 For each

ordered pair (A,B), we will call A the stimulus and B the standard.

We assume that the decision maker mistakenly ranks the conditional likelihood of events

according to �; that is, if (A,B) � (C,D), she concludes that A given B is more likely than

C given D. We base this behavioral twist on Kahneman and Tversky (1974), who propose

that,

“in answering such [conditional probability] questions, people typically rely on the

representativeness heuristic, in which probabilities are evaluated by the degree to

which A is representative of B, that is, by the degree to which A resembles B.”

Hence, we assume that our decision maker assesses the degree to which A is similar to B

when asked to evaluate Pr(A|B). In the Linda problem, T∧F resembles a leftist more than

T does; in the Danielle problem, a literature student is more representative of sensitive poets

than a humanities student is. Although it seems that no judgments of representativeness

is involved in the taxicab problem, under our characterization of similarity, the event “the

involved cab was blue” shares higher similarity with the event “witness identifed the cab as

blue” than “the involved cab was green” does.

As similarity is a substitute for conditional probability in our context, we assume that

any nonnull event and itself are maximally similar. In addition, a pair of events has the

minimum possible degree of similarity if and only if they have a null intersection.

Definition. (Ω, E ,N ,�) is a similarity structure if

(i) � is complete and transitive;

(ii) (A,A) � (B,C) for all A,B,C;

(iii) C ∩D ∈ N ⇐⇒ (A,B) � (C,D) for all A,B.

6For example, we say that “an ellipse is similar to a circle” but not “a circle is similar to an ellipse.” See
Tversky (1977) for a detailed analysis.
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An ordered pair of events (A,B) partitions A ∪ B into three subsets: the stimulus dis-

tinction A\B, the standard distinction B\A and the intersection A ∩ B. We will call the

collection of these events the contrast partition generated by (A,B). For expositional pur-

pose, we will explicitly list each element of the contrast partition subsequently and substitute

(A,B) with A\BA∩BB\A. In other words, ACB denotes the pair of events (A∪C,B ∪C)

where A,B,C are pairwise disjoint.

We consider only nondegenerate similarity structures; that is, Ω cannot be null and there

exists at least one pair of events that has an intermediate degree of similarity between the

maximum and minimum possible value.

Definition. A similarity structure (Ω, E ,N ,�) is nondegenerate if there exist Ã, B̃, C̃

such that ØΩØ � ÃC̃B̃ � ÃØB̃.

In our original notation, a similarity structure (Ω, E ,N ,�) is nondegenerate if there exists

a pairwise disjoint collection {Ã, B̃, C̃} such that (Ω,Ω) � (Ã ∪ C̃, B̃ ∪ C̃) � (Ã, B̃).

3.1 Similarity Representation

In this subsection we present our axioms and show that the axioms are equivalent to the

(f, µ) representation. Our axioms are centered at Tversky (1977)’s insight that similarity

depends on both common and distinctive features, and that it should be enhanced by the

addition of common features as well as by the reduction of distinctive features.

First note that since Bayes’ formula is a special case of our representation, all of our

axioms are consistent with the Bayesian model. Among them, Axiom 1-3 are natural adap-

tations of standard axioms by Savage (1954) and Villegas (1964)7 on subjective probability.

In the statement of our axioms, we will explicitly specify each element of the contrast par-

tition for simplicity of exposition; that is, ACB denotes the pair of events (A ∪ C, B ∪ C)

where A,B,C are pairwise disjoint.

7See Axioms S1-S5 in Appendix A for their list of axioms.
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Axiom 1. (Additivity) If (A ∪B ∪ C ∪D) ∩ E = Ø, then

ACB � ADB ⇐⇒ A(C ∪ E)B � A(D ∪ E)B.

Axiom 1 is a direct adaptation of the standard additivity axiom in Savage (1954) and

Villegas (1964).8 In particular, our additivity axiom states that controlling for both distinc-

tions (A and B), adding the same common states (E) to both pairs of events does not change

their relative similarity ranking. This form of additivity ensures that similarity is enhanced

by the addition of common features. To see that, set D = Ø. By definition of our similarity

structure, ACB � AØB. Then it follows from Axiom 1 that A(C ∪ E)B � AEB; that is,

(A ∪ E) ∪ C is more similar to (B ∪ E) ∪ C than A ∪ E is to B ∪ E.

The following two axioms are mainly for technical purpose and are adapted from Villegas

(1964)’s nonatomicity and monotone continuity.9

Axiom 2. (Nonatomicity) Let A′CB′ � ADB. Then respectively,

A1DB � ADB for some A1 ∃Â ⊂ A s.t. A′CB′ � ÂDB � ADB;

ADB1 � ADB for some B1 implies ∃B̂ ⊂ B s.t. A′CB′ � ADB̂ � ADB;

A′C1B
′ � A′CB′ for some C1 ∃Ĉ ⊂ C s.t. A′CB′ � A′ĈB′ � ADB.

Our version of nonatomicity states that generically, given two pairs of events with dif-

ferent degrees of similarity, one can shrink the intersection of the more-similar pair, or the

distinctions of the less-similar pair, to achieve an intermediate degree of similarity. As long

as the decision maker is sensitive to stimulus distinctions in the scenario, i.e., A1DB � ADB

for some A1, then it is always possible to shrink the stimulus distinction A to achieve an in-

termediate pair. In a similar vein, the remaining two cases concern respectively the standard

distinction and the intersection.

The following axiom ensures that � is Archimedean and the subjective probability that we

will identify is countably additive. It is a direct strengthening of Villegas (1964)’s monotone

continuity.

8See Axiom S3 in Appendix A.
9See Axioms S4-S5 in Appendix A.
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Axiom 3. (Monotone Continuity) ACnB � A′C ′B′ � AnCBn and An+1⊂ An, Bn+1⊂ Bn,

Cn+1⊂ Cn implies A (
⋂
nCn)B � A′C ′B′ � (

⋂
nAn)C(

⋂
nBn).

Axioms 4-6 have no counterpart in Savage’s subjective probability theorem but are con-

sistent with rational Bayesian updating.

Axiom 4. (Separability) ACB � ADB implies A′CB′ � A′DB′ or ØΩØ ∼ A′CB′ ∼ A′DB′.

The separability axiom states that when comparing the similarity of ACB versus ADB,

the decision maker cancels A and B from both pairs and is essentially ranking C versus D.

Compared to standard Debreu-type separability axioms, this axiom is weaker in two aspects.

First, we impose cancellation only when the two pairs share both distinctions. Second, on

the implication side we allow for a second scenario ØΩØ ∼ A′CB′ ∼ A′D′B. This scenario

arises naturally when, for example, A′ = B′ = Ø. In this case the decision maker assigns

maximum similarity to A′CB′ if C is any nonnull event.

We now introduce our main axiom, monotonicity. The key notion behind monotonicity

is that states in the intersection affect the similarity of the pair in the opposite way as do the

states in the distinctions. We know from Axiom 4 that when comparing ACB with ADB,

the decision maker is essentially ranking intersections C and D. Monotoncity then requires

that if C contributes more similarity than D as an intersection, then C must also cost more

similarity as a distinction. Furthermore, if C contributes strictly more similarity than D as

an intersection, then C should impose a strictly larger cost on similarity than D as a standard

distinction. We do not impose strict monotonicity on stimulus distinctions since we inherit

the assymmetry between standard distinction and stimulus distinction from Bayes’ rule.

Axiom 5. (Monotonicity) ACB � ADB implies ABD � ABC and DAB � CAB. If

B 6∈ N , then ACB � ADB implies ABD � ABC.

Monotonicity is the main axiom that generates deviations from Bayes’ rule. To see that,

consider evaluating the probability of C∪A conditioning on A∪B where A,B,C are pairwise

disjoint; that is, C is the stimulus distinction, A is the intersection and B is the standard
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distinction. According to Bayes’ rule, Pr(C ∪A|A ∪B) = Pr(A)/Pr(A ∪B). It follows that

for a Bayesian decision maker the probability of the stimulus distinction C is irrelevant to the

posterior assessment, i.e. a Bayesian decision maker always has CAB ∼ ØAB. In contrast,

our monotonicity axiom allows that ØAB � CAB, reflecting Tversky (1977)’s insight that

similarity should be enhanced by the reduction of distinctive features. In fact, if we requires

ØAB ∼ CAB for any A,B,C in addition to Axiom 1-6, the Bayesian model emerges as the

unique representation of the decsion maker’s updating behavior. We will call this condition

Axiom B.

Axiom B. ØAB ∼ CAB.

Next we introduce our final axiom, scale invariance.

Axiom 6. (Scale Invariance) Let A,A′, B,B′, C, C ′ be pairwise disjoint. If ACB ∼ A′C ′B′

and ØCB ∼ ØC ′B′, then (A ∪ A′) (C ∪ C ′) (B ∪B′) ∼ ACB.

In standard Bayesian updating, if Pr(A1|A2) = Pr(B1|B2) and A1 ∩ (B1 ∪ B2) = B1 ∩

(A1 ∪ A2) = Ø, then Pr(A1 ∪ B1|A2 ∪ B2) = Pr(A1|A2). Axiom 6 exactly reduces to this

condition if the decision maker is a Bayesian, i.e. if Axiom B holds. In case that the decision

maker is not a Bayesian, we weaken the condition by requiring ØCB ∼ ØC ′B′ in addition to

ACB ∼ A′C ′B′; that is, the two pairs need to be truly in proportion according to a rational

Bayesian.

For any probability measure µ, define the Bayesian conditional µ(·|·) as follows:

µ(A|B) =


µ(A∩B)
µ(B)

if µ(B) > 0,

0 if µ(B) = 0.

When µ(B) = 0, we set µ(A|B) = 0 for the ease of exposition. Given a similarity structure

(Ω, E ,N ,�), we say that a function S : E2\N 2 → R is a similarity index of the structure if

(A,B) � (C,D) ⇐⇒ S(A,B) ≥ S(C,D).
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Our first theorem shows that if a similarity structure is nondegenerate and obeys Axiom

1-6, then it has a similarity index that is a function of the Bayesian conditionals µ(A|B)

and µ(B|A) for some probability measure µ. In other words, if the decision maker adopts a

similarity-based updating procedure that satisfies our axioms, then there exists a subjective

probability µ such that her posterior assessments can be expressed as a function of the

relevant two Bayesian conditionals.

Theorem 1. A nondegenerate similarity structure (Ω, E ,N ,�) satisfies Axiom 1-6 if and

only if there exist a nonatomic probability µ and a non-decreasing function f : [0, 1]2 −→ [0, 1]

which is continuous on (0, 1]2 such that

(A,B) � (C,D) ⇐⇒ f (µ (A|B) , µ (B|A)) ≥ f (µ (C|D) , µ (C|D))

where (i) µ(A) = 0 if and only if A ∈ N and (ii) f(·, y) is strictly increasing if y > 0.

We call the pair (f, µ) a similarity representation of (Ω, E ,N ,�). The next corollary

shows that µ is indeed the decision maker’s subjective beliefs on unconditional events.

Corollary 1. Suppose (f, µ) is a similarity representation of a nondegenerate similarity

structure (Ω, E ,N ,�), then

µ(A) ≥ µ(B) ⇐⇒ (A,Ω) � (B,Ω).

Hence, the representation in Theorem 1 describes a decision maker, when asked to evaluate

µ(A|B), confuses µ(A|B) with µ(B|A). In legal processes, the very low probability of a

particular set of evidence (B) given innocence (A) is often cited as proof that given the

evidence, the individual is very unlikely be innocent (A given B).10 Another example is that

people often mistakenly treat the accuracy of a medical test as the probability of sickness

given a positive result. In fact, these mistakes are made exactly because people are not

sensitive enough to prior frequencies. To see that, consider evaluating the likelihood ratio of

10For a detailed discussion see Fienberg (1989); DeGroot, Fienberg, and Kadane (1994) and Tribe (1971).
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“sick” over “not sick” given that the medical test emerges positive. For a Bayesian decision

maker,

µ(sick|+)

µ(not sick|+)
=

µ(+|sick)

µ(+|not sick)
· µ(sick)

µ(not sick)
.

If the decision maker is not sensitive enough to the prior frequencies, she concludes that it

is more likely for her to be sick since the test is more likely to emerge positive if she is sick.

Hence, she behaves as if she mistakes µ(sick|+) with µ(+|sick).

Hence, Theorem 1 provides the micro-foundation for the connection between representa-

tiveness heuristics and the observed irresponsiveness to prior frequencies. The next corol-

lary further strengthens this connection by asserting that the only difference between a be-

havioural decision maker as in Theorem 1 and a rational Bayesian is whether she cares

about the stimulus distinction; that is, whether she updates based on representativeness and

similarity.

Corollary 2. A nondegenerate similarity structure (Ω, E ,N ,�) satisfies Axiom 1-6 and Ax-

iom B if and only if there exist a nonatomic probability µ such that

(A,B) � (C,D) ⇐⇒ µ (A|B) ≥ µ (C|D) .

where µ(A) = 0 if and only if A ∈ N .

In the proof of Theorem 1, we first incorporate results from Savage (1954) and Ville-

gas (1964) to extract a nonatomic subjective probability from �. Then, we exploit the

nonatomicity of µ and apply a Debreu-type ordinal representation argument to prove the

existence of an aggregator f and therefore a similarity index. See the appendix for detailed

arguments.

Our next theorem show that although the aggregator f is only identified ordinally, the

subjective prior µ is unique.

Theorem 2. Let (f, µ) be a similarity representation of a nondegenerate similarity structure

(Ω, E ,N ,�). Then (f ′, µ′) is a similarity representation of (Ω, E ,N ,�) if and only if µ = µ′
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and there is a strictly increasing function g, continuous on f((0, 1]2), such that f ′ = g ◦ f.

Proof. Suppose (f ′, µ′) is a similarity representation. By the corollary we know that µ′(A) ≥

µ′(B) if and only if (A,Ω) � (B,Ω). Hence µ(A) ≥ µ(B) if and only if µ′(A) ≥ µ′(B). By

the nonatomicity of µ, it is clear that µ = µ′. The second part is standard and therefore its

proof is omitted.

Hence, Theorem 1 provides a micro-foundation for behavioral subjects who know the

correct prior but confuse µ(A|B) with µ(B|A). In the next subsection, we characterize a

special class of aggregators and then discuss the experimental evidence in detail.

3.2 The Cobb-Douglas Index

In this subsection we take the similarity representation (f, µ) as given and provide a robust-

ness condition which ensures that f has the Cobb-Douglas form. In particular, we assume

that the relative similarity ranking between two pairs of events does not change when we

intersect both standards or both stimuli with an independent set. Formally, we define inde-

pendence and then robustness as follows.

Definition. A,B ∈ E are independent, denoted A ⊥ B, if µ (A ∩B) = µ (A)µ (B).

For any collection of subsets A ⊂ E , we say that A ⊥ A if A ⊥ B for any B ∈ A. Also,

let σ (A) be the smallest σ-algebra that contains all of the elements in A.

Definition. � is said to be robust if (A,B) � (A′, B) implies (A ∩ C,B) � (A′ ∩ C,B) and

(A,B ∩ C) � (A′, B ∩ C) for any C ⊥ σ (A,A′, B).

With robustness, we can embed our similarity representation in a two-state Anscombe-

Aumann framework with a nonstandard mixture operation. The two states of the world

can be interpreted as the state in which B caused A and the state in which A caused B.

Conditional probabilities µ(A|B) and µ (B|A) are viewed as lotteries in the correspond-

ing state. Then, for each pair of events A,B, (µ(A|B), µ(B|A)) is an Anscombe-Aumann
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act. Our aggregator f , in turn, implies a complete and transitive ranking over all these

Anscombe-Aumann acts. Applying the results in Anscombe and Aumann (1963), yields the

representation below.

Theorem 3. Suppose (f, µ) is a similarity representation of nondegenerate similarity struc-

ture (Ω, E ,N ,�). Then � is robust if and only if there is a unique α ∈ (0, 1] such that

(A,B) � (C,D) ⇐⇒ µ (A|B)α µ (B|A)1−α ≥ µ (C|D)α µ (D|C)1−α .

Consider evaluating whether A or B is more likely conditioning on C. Given the Cobb-

Douglas index, we have

S(A,C)

S(B,C)
=
µ(A|C)αµ(C|A)1−α

µ(B|C)αµ(C|B)1−α
=
µ(C|A)

µ(C|B)
·
(
µ(A)

µ(B)

)α
.

Since α ∈ (0, 1], (µ(A)/µ(B))α is closer to 1 than the correct prior odds ratio µ(A)/µ(B).

That is, α specifies the extent to which the decision maker neglects the prior odds ratio.11

In the taxicab problem, the likelihood ratio of the witness’ signal (correct over incorrect)

is 80/20 = 4 where as the base rate (blue over green) is 15/85 = 0.176. A decision maker

with an α < 0.8 would conclude, like the experimental subjects, that the hit and run cab

was more likely to be blue than green.

In the Linda problem, although Pr(T∧F|D) < Pr(T|D), arguably we have Pr(D|T∧F) >

Pr(D|T); that is, Linda is more likely to match the stereotypical description D if she is a

feminist bank teller than if she is just a bank teller. Then, if α is low, an α-mixture of

Pr(T∧F|D) and Pr(D|T∧F) may well be higher than an α-mixture of Pr(T|D) and Pr(D|T).

In that case a decision maker would choose the conjunctive description T∧F as the more

“probable” option. A similar logic applies to the results in Bar-Hillel and Neter (1993).

11Note that our similarity index is ordinal in nature; that is, the decision maker compares the similarity
ratio S(A,C)/S(B,C) with 1. If S(A,C)/S(B,C) is larger than 1, she concludes that A is more likely; if
the similarity ratio is less than 1, then she concludes that B is more likely.

15



4 Method for Axiomatizing Quasi-linear Means

In this section we summarize the method used in this paper for axiomatizing means. Let

X be a convex non-singleton subset of R. For any function g : Xn −→ X we say that g is

diagonally-increasing if x > y implies g(x, x, . . . , x) > g(y, y, . . . , y).

Let f : Xn −→ X be a nondecreasing, diagonally-increasing and continuous function.

Let x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) be generic elements of Xn. We would like to find

conditions which ensures that f is ordinally equivalent to a φ-mean, i.e., ∀ x,y ∈ Xn,

f (x) ≥ f(y)⇐⇒ φ−1

(
n∑
i=1

αiφ (xi)

)
≥ φ−1

(
n∑
i=1

αiφ (yi)

)

where αi ∈ [0, 1] and
∑n

i=1 αi = 1, for some φ : X → R that is strictly increasing and

continuous.

This class of means is called quasi-linear means. Hong (1983) traces this notion to Kol-

mogorov (1930) and de Finetti (1931), and provides an axiomatic foundation for a more

general, infinite-state version of our definition of φ-mean. In contrast, we focus on quasi-

linear means of a finite vector of numbers; we appeal to Anscombe and Aumann (1963)

and the mixture space theorem in order to provide a much simpler condition that generates

quasi-linear means.

Definition. Let φ : X → R be strictly increasing and continuous. We say that I : [0, 1] ×

X2 → X is a φ-mixture operation if

Ia (x, y) = φ−1 (aφ (x) + (1− a)φ (y)) .

Abusing the notation a little bit, let

Ia (x,y) = (Ia (x1, y1) , Ia (x2, y2) , . . . , Ia (xn, yn)) .

That is, when applied to vectors, I is a dimention-by-dimension φ-mixture operation.

Theorem 4. Let X be a convex non-singleton subsect of R. Further let f : Xn → X be
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nondecreasing, diagonally-increasing and continuous, φ : X → R be strictly increasing and

continuous, and I : [0, 1]×X2 → X be a φ-mixture operation. Then f is ordinally equivalent

to a φ-mean if and only if

f (x) > f (y) =⇒ f (Ia (x, z)) > f (Ia (y, z))

∀ x,y, z ∈ Xn and a ∈ (0, 1).

The theorem states that all φ-means boil down to a condition which resembles the in-

dependence in von Neumann and Morgenstern (1944) and Herstein and Milnor (1953). We

provide the following examples to illustrate this condition.

Arithmetic mean. Let φ(x) = x. Then the condition reduces to

f(x) > f(y)

=⇒ f(ax1 + (1− a)z1, . . . , axn + (1− a)zn) > f(ay1 + (1− a)z1, . . . , ayn + (1− a)zn)

for any a ∈ (0, 1) and z.

Geometric mean. Let φ(x) = ln x. The condition reduces to

f(x) > f(y) =⇒ f(xa1z
1−a
1 , . . . , xanz

1−a
n ) > f(ya1z

1−a
1 , . . . , yanz

1−a
n )

for any a ∈ (0, 1) and z. In Appendix B, this condition is applied to prove Theorem 3.

Harmonic mean. Let φ(x) = −1/x. The condition reduces to

f(x) > f(y) =⇒ f

(
1

a
x1

+ 1−a
z1

, . . . ,
1

a
xn

+ 1−a
zn

)
> f

(
1

a
y1

+ 1−a
z1

, . . . ,
1

a
yn

+ 1−a
zn

)

for any a ∈ (0, 1) and z. In Appendix C, we apply this condition to provide a micro-

foundation for the well-known Tversky index of similarity.

In fact, Theorem 4 is the parameterized version of a slight generalization of Anscombe

and Aumann (1963). See Appendix D for our version of the Anscombe-Aumann theorem. In

their original paper, an act specifies a simple lottery in each state and the mixture operation

is the usual weighted arithmetic average. By contrast, our acts are Savage acts: each vector
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(x1, . . . , xn) specifies directly a prize in each state. Moreover, our mixture operation I is a

general state-by-state mixture operation.

We interpret Ia(x, y) as the certainty equivalent to objectively randomizing between con-

stant acts (x, x, . . . , x) and (y, y, . . . , y) with probability a and 1− a respectively. Then the

condition in Theorem 4 corresponds to independence with respect to such objective random-

ization. Gul (1992) also extracts subjective probability from Savage acts in a finite state

space but his independence axiom requires no objective randomization.

4.1 Proof of Theorem 4

We prove it using the Anscombe-Aumann Theorem. First of all we need the following claim

which says that I is indeed a mixture operation.

Claim 1. If I is a φ-mixture operation, it is a mixture operation. In particular, (i) I1 (x, y) =

x; (ii) Ia (x, y) = I1−a (y, x); (iii) Ia (Ib (x, y) , y) = Iab (x, y) .

Proof. (i) and (ii) are trivial. for (iii)

Ia (Ib (x, y) , y) = Ia
(
φ−1 (bf (x) + (1− b)φ (y)) , y

)
= φ(aφ

(
φ−1 (bφ (x) + (1− b)φ (y))

)
+ (1− a)φ (y))

= φ−1 (a (bφ (x) + (1− b)φ (y)) + (1− a)φ (y))

= φ−1 (abφ (x) + (1− ab)φ (y)) = Iab (x, y) .

Therefore I is a mixture operation.

On the state space Xn, define x �f y ⇐⇒ f (x) ≥ f (y). The next lemma shows that

�f satisfies the axioms in Anscombe and Aumann (1963).

Claim 2. Let x,y, z ∈ Xn. If f (x) > f (y) implies f (Ia (x, z)) > f (Ia (y, z)) for a ∈ (0, 1),

then

(i) �f is a preference relation;
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(ii) x �f y and a ∈ (0, 1) implies Ia (x, z) �f Ia (y, z);

(iii) x �f y �f z implies there exists a, b ∈ (0, 1) such that Ia (x, z) �f y �f Ib (x, z);

(iv) there exist x,y ∈ Xn such that x �f y;

(v) (xi, xi, . . . , xi) �f (yi, yi, . . . , yi) for i = 1, 2, . . . , n implies x �f y.

Proof. (i),(ii),(iv),(v) are trivial. (iii) is implied by the continuity of φ and f .

Therefore, by the Anscombe-Aumann Theorem12, there exists a nonconstant function U

and unique αi ∈ [0, 1] with
∑n

i=1 αi = 1 such that the function defined by

W (x) =
n∑
i=1

αiU (xi)

represents �f . The utility index U is linear; that is, U (Ia (x, y)) = aU (x) + (1− a)U (y) ,

and unique up to a positive affine tranformation.

Claim 3. U (x) = cφ (x) + d for c > 0.

Proof. First we prove that such U is linear.

U (Ia (x, y)) = U
(
φ−1 (aφ (x) + (1− a)φ (y))

)
= cf

(
φ−1 (aφ (x) + (1− a)φ (y))

)
+ d

= aU (x) + (1− a)U (y) .

Since φ is strictly increasing, it represents �f within {x ∈ Xn|xi = xj for all i, j}. Clearly φ

is also linear with respect to I. Therefore by the uniqueness of U we have U (x) = cφ (x) + d

for c > 0.

The last step is to recover φ-mean by performing a monotone transformation on W (x).

We have W (x) = c
∑n

i=1 αiφ (xi) + d. Because φ−1 is strictly increasing

φ−1
(
W (x)− d

c

)
= φ−1

(
n∑
i=1

αiφ (xi)

)
12The original paper applies to the case where X = [0, 1]n, but with the mixture space theorem it holds

true as long as X is a mixture space. Also, we adopt a different monotonicity condition. See Appendix D for
a proof.
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also represents �f and we proved our theorem.

5 Conclusion

In this paper, we provided a framework for analyzing a range of well-documented non-

Bayesian behaviors including base rate neglect, conjunction fallacy and disjunction fallacy.

We assumed that our decision maker mistakenly assesses the similarity of A to B when

evaluating the probability of A given B.

Our similarity-based updating procedure allows A ∪ C given B to be less likely than A

given B if B ∩C = Ø, simply because the pair of events A∪C and B differ more from each

other. By allowing for this type of similarity-based departure from Bayesian updating, the

axioms that we proposed yield an updating formula that is a Cobb-Douglas weighted geo-

metric mean of Pr(A|B) and Pr(B|A), where Pr is the correct rational subjective probability

and Pr(·|·) is given by Bayes’ rule. That is, we have provided a micro-foundation for behav-

ioral subjects who confuse these two conditional probabilities but have correct unconditional

beliefs.

In the proof, we applied the Anscombe and Aumann Theorem to show that the aggregator

of the conditional probabilities must be of the Cobb-Douglas form. We showed that this

method could be applied to micro-found a large class of means.
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A Proof of Theorem 1

In this section, we present our proof of Theorem 1. We first incorporates results from Savage

(1954) and Villegas (1964) to obtain a nonatomic subjective probability. Then, we exploit

the nonatomicity and apply a Debreu-type ordinal representation argument to prove the

existence of an aggregator and therefore a similarity index.

First of all, we introduce Savage (1954) and Villegas (1964)’s result on subjective proba-

bility representation, which we will cite from time to time in the proof. Let �∗ be a binary

relation defined on a σ-algebra A of subsets of Ω.

Definition. �∗ is a Savagian qualitative probability on A if it is a preference relation

satisfying the following axioms,

Axiom S1. Ω �∗ Ø.

Axiom S2. A �∗ Ø.

Axiom S3. If C ∩ (A ∪B) = Ø, then A �∗ B ⇐⇒ A ∪ C �∗ B ∪ C.

Axiom S4. A �∗ B implies there is A′ ⊂ A such that A �∗ A′ �∗ B.

Axiom S5. An �∗ B and An+1 ⊂ An implies that
⋂
nAn �∗ B.

Savage (1954) shows that if a qualitative probability (i.e. a preference relation defined on a

σ-algebra that satisifes Axioms S1-S3) is fine13 and tight14, then there exists a unique finitely

additive probability representation. Villegas (1964) then identifies S4 as a necessary and

sufficient condition for such probability representation to be countably additive. Moreover,

he notes that S5 is enough to ensure fineness and tightness under S4.15

Lemma A. (Savage (1954);Villegas (1964)) �∗ is a Savagian qualitative probability if and

13� is fine if given any A � Ø there is a finite partition of Ω, {Ωn}, such that A � Ωn for all n.
14� is tight if A ∼ B for all A,B such that A ∪ A′ � B and B ∪ B′ � A for all nonnull A′, B′ with

A ∩A′ = B ∩B′ = Ø.
15In particular, with S1-S5 we have enough structure to partition any event into two equally probable ones

so that we are able to assign dyadic probabilities to such partitions. Then a continuity argument derived
from S4 completes the subjective probability assignment.
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only if there is a unique nonatomic probability µ such that

A �∗ B ⇐⇒ µ (A) ≥ µ (B) .

Since µ is nonatomic and countably additive, it is also convex-ranged; that is, for any

a ∈ (0, 1) and A such that µ (A) > 0, there is B ⊂ A such that µ (B) = aµ (A). We will

exploit this property throughout the paper to identify suitable events.

Throughout this subsection, it is assumed that (Ω, E ,N ,�) is a nondegenerate similarity

structure that satisfies Axiom 1-6. Since N is a σ-ideal, ACB ∈ E2\N 2 if not all of A,B,C

are null. Write C ≡ Ω\C. Since Ω 6∈ N , if C ∈ N , then C 6∈ N . Also note that by

(iii) in the definition of a similarity structure, if C ∈ N then ACB ∼ AØB. Conversely, if

ACB ∼ AØB for some A,B, by nondegeneracy and separability, C ∈ N .

We first consider the case when maximum similarity is assigned.

Lemma 1. A,B ∈ N implies ACB ∼ ØCØ.

Proof. If A,B ∈ N , then CAB ∼ CØB and ØBC ∼ ØØC. Therefore by monotonicity we

have ACB ∼ ØCB and ØCB ∼ ØCØ and we are done.

Lemma 2. If C ′ ⊂ C, then ACB � AC ′B,C ′AB � CAB and ABC ′ � ABC.

Proof. By Lemma 1 the case when A,B ∈ N is trivial. Now suppose AØB is in our domain.

By definition A (C\C ′)B � AØB. Then Axiom 1 implies that ACB � AC ′B. Then

monotonicty proves the result.

Lemma 3. ACB ∼ ØCØ implies B ∈ N .

Proof. Suppose A∪B are nonnull but ØCØ ∼ ACB. Lemma 2 implies that ØCØ � ACØ �

ACB ∼ ØCØ. Clearly C 6∈ N . Then by monotonocity, AØC ∼ ABC. Suppose there is

A′, C ′ such that A′BC ′ � A′ØC ′, then since ØΩØ � ABC, by separability, ABC � AØC

delivering the desired contradiction. Hence B is null.
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For A such that both A and A are nonnull, define C �A D if ØCA � ØDA. Note

that �A is not complete in the space E . However, it is complete and transitive in E ∩ 2A;

that is, measurable subsets of A. Then by Axiom 1,2 and 3, �A is a Savagian qualitative

probability. Then by Lemma A there exists a unique nonatomic probability µA such that

µA (C) ≥ µA (D) if and only if C �A D. Note that µA(B) = 0 if only if B ∈ N and B ⊂ A.

Now, define �∗ as follows. On R ≡ {A ∈ E|A 6∈ N}, define C �∗ D if there exist nonnull

events A,A′, B with A ∼B A′ such that ØCA � ØDA′. Then, add E\R as the single highest

equivalence class.

Next, we prove that �∗ is a Savagian qualitative probability. We proceed by first intro-

ducing the following two lemmas.

Lemma 4. If ACB ∼ ADB and B is nonnull, then A′CB′ ∼ A′DB′, CA′B′ ∼ DA′B′ and

A′B′C ∼ A′B′D.

Proof. We prove that A′CB′ ∼ A′DB′ and the rest is given by monotonicity. Since B is

nonnull we know that ØΩØ � ACB. Therefore if A′CB′ � A′DB′, then by separability we

have ACB � ADB, a contradiction. Hence A′DB′ � A′CB′. Similarly, A′CB′ � A′DB′.

Lemma 5. For pairwise disjoint A,B,C ∈ R\N , let An ⊂ A,Bn ⊂ B,Cn ⊂ C and

µA(An) = µB(Bn) = µC(Cn) = 2−n, then ACB ∼ AnCnBn, ØCB ∼ ØCnBn and ACØ ∼

AnCnØ.

Proof. Consider any partitions {Amn } , {Bm
n } , {Cm

n } of respectively A,B,C such that for all

m, µA(Amn ) = µB(Bm
n ) = µC(Cm

n ) = 2−n. By nonatomicity such partitions always exist. By

the previous lemma, ØCm
n B

m
n ∼ ØCm′

n Bm
n ∼ ØCm′

n Bm′
n . Similarly Amn C

m
n B

m
n ∼ Amn C

m′
n Bm

n ∼

Am
′

n C
m′
n Bm

n ∼ Am
′

n C
m′
n Bm′

n . Inductively applying scale invariance gives the result.

Lemma 5 states that we could always shrink the events proportionately without changing

the similarity assessment. This is essential since if C and D are so large that C ∪D is null,

it is not possible to find A,B such that ACB 6∼ ADB. In that case we cannot extract the
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qualitative probability preference between C and D. Lemma 5, however, gives us the luxury

to shrink C and D so that C ∪D is no longer null.

The next lemma shows that �∗ is well-defined.

Lemma 6. Let C,D ∈ R. If C �∗ D, then for any nonnull events A ⊂ C,A′ ⊂ D,B with

A ∼B A′, ØCA � ØDA′.

Proof. By definition there are nonnull events Â, Â′, B̂ with Â ∼B̂ Â′ such that ØCÂ � ØDÂ′.

If D is null the result is trivial. If D is nonnull so is C. Let {Cn} and {Dn} be sequences of

sets such that C0 = C,D0 = D, Cn+1 ⊂ Cn, Dn+1 ⊂ Dn and

µC (Cn)

µC (Cn+1)
=

µD (Dn)

µC (Dn+1)
= 2.

If Â ∩D is null, in other words µB̂(Â) = µB̂(Â\D), then

ØCÂ ∼ ØC(Â\D) � ØDÂ′ ∼ ØD(Â\D).

Let n = 0 and Â∗ = Â\D. If Â ∩ D is nonnull, pick n large enough such that there is

Â∗ ⊂ (Â ∩D)\Dn, Â
′∗ ⊂ Â′ such that

µ
Â

(Â∗) = µÂ′(Â
′∗) =

1

2n
.

This is possible by the convexed-rangeness of the probabilities extracted above. Hence we

have ØCnÂ
∗ � ØDnÂ

′∗ ∼ ØDnÂ
∗. Using the same procedure we obtain ØCmA

∗ ∼ ØCA and

ØDmA
∗ ∼ ØDA′. Assume that m = n. This is wlog since we could always shrink the larger

further with the preference unchanged. It is clear by separability that ØCmA
∗ � ØDmA

∗

and we complete the proof.

With the above lemma, C �∗ D if there exist A,A′, B nonnull with A ∼B A′ such that

ØCA � ØDA′. Moreover, given the procedure in the proof, if C �∗ D we could wlog assume

that there is nonnull A such that ØCA � ØDA. Then, we show that �∗ is complete and

transitive.
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Lemma 7. �∗ is complete and transitive.

Proof. It suffices to show that �∗ is complete and transitive in R.

(i) Completeness. It suffices to show that for any C,D in R there exists A ⊂ C,A′ ⊂ D

and B ⊂ A ∪ A′ such that A ∼B A′.

Case 1 : C ∪D is null. It is clear that C,D are both null. Then ØCA ∼ ØDA′ for any

A,A′. Consdier Ã, B̃, C̃ such that ØΩØ � ÃC̃B̃ � ÃØB̃. Let E = C̃ ∩ C ∪D. It is easy to

see that E and E are both nonnull. Therefore E ∼E E and we are done.

Case 2 : C ∪D and C ∪D are both nonnull. Then C ∪D ∼C∪D C ∪D and we are done.

Case 3 : C ∪ D is nonnull but C ∪D is null. Clearly C\D and D\C are both nonnull

since C,D ∈ R. Pick E ⊂ C\D,E ′ ⊂ D\C such that µC\D(E) = µD\C (E ′) = 1
2
. Clearly

C\(D ∪ E) is nonnull since µC\D (C\(D ∪ E)) = 1
2
. If E ∼C\(D∪E) E

′ we are done. If

E �C\(D∪E) E
′ by the convex-rangedness of µC\(D∪E) there is E ′′ ⊂ E such that E ′′ ∼C\(D∪E)

E ′.

(ii) Transitivity. Let C �∗ D and D �∗ E. The case when at least one of them is null is

trivial. So assume that C,D,E are all nonnull. By definition there are A ∼B A′, Â ∼B̂ Â′

such that ØCA � ØDA′ and ØDÂ � ØEÂ′. By the procedure in the previous lemma we

could wlog assume that A = A′ and Â = Â′. Also assume that µD (A) > µD(Â). Pick

A∗ ⊂ A such that µD (A∗) = µD(Â). Then by Lemma 4 and 6,

ØCA∗ � ØDA∗ ∼ ØDÂ � ØEÂ

and we are done.

The next lemma proves that �∗ is a qualitative probability defined on E .

Lemma 8. (i) Ω �∗ Ø; (ii) C �∗ Ø; (iii) (C ∪D)∩E = Ø implies [C �∗ D ⇐⇒ C ∪E �∗

D ∪ E].

Proof. (i) and (ii) are by construction. (iii) If C ∪E,D∪E ∈ R, we appeal to the procedure

in the proof of Lemma 6 and the additivity axiom. If C /∈ R or D /∈ R both directions are
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trivial. Now assume that C ∈ R and D ∈ R. Suppose C ∪ E ∼∗ Ω. The “=⇒” direction

is trivial. For the other direction, since D\C is null, we have C �∗ C ∩ D ∼∗ D. Suppose

C ∪ E ∈ R. The “⇐=” direction is clear since D ∪ E ∈ R and it reduces to the first case

that we have considered. For the other direction, we show that if C �∗ D and C ∪ E ∈ R

it must also be that D ∪ E ∈ R. Suppose D ∪ E ∼∗ Ω. We know that C\(D ∪ E) = C\D

is null. Also, since C ∪ E ∈ R, D\(C ∪ E) = D\C is nonnull. Then we must have D �∗ C

delivering the desired contradiction.

Then, we proceed by showing that �∗ is indeed a Savagian qualitative probability.

Lemma 9. (i) C �∗ D implies there exist C ′ ⊂ C such that C �∗ C ′ �∗ D.

(ii) Cn �∗ D and Cn+1 ⊂ Cn for all n implies that
⋂
nCn �∗ D.

Proof. (i) If C ∈ R, it is implied by the nonatomicity axiom. If C /∈ R, then by construction

D ∈ R. If D is null, set C ′ = C ∩ C̃. Since C̃ is nonnull and C is null, C ′ must be nonnull.

Moreover since C̃ ∈ R, C ′ cannot be null. Hence C �∗ C ′ �∗ D. Now suppose D is nonnull,

then C ∩D is nonnull. Since D\C and D\C are null we have

ØDD ∼ Ø(C ∩D)D ∼ Ø(C ∩D)
(
C ∩D

)
.

Pick E ⊂ C ∩D such that E and C ∩D\E are both nonnull. Let C ′ = (C ∩D)∪E and we

are done.

(ii) It suffices to prove that if Cn ∈ E\R and Cn+1 ⊂ Cn, then
⋂
nCn ∈ E\R. It suffices

to prove that if Dn are null and Dn ⊂ Dn+1,
⋃
nDn is null. This is directly given by the fact

that N is a σ-ideal.

Hence, by Lemma A, there exists a unique nonatomic probability µ defined on E such

that µ(C) ≥ µ(D) if and only if C �∗ D. Clearly, µ(A) = 0 if and only if A ∈ N .

Lemma 10. ACB ∼ A′C ′B′ if µ (A) = µ (A′) , µ (B) = µ (B′) and µ (C) = µ (C ′).

Proof. Assume that A,B,C are all nonnull. The cases when any of them is null is similar.

By Lemma 5, wlog we could assume that A,B,C,A′, B′, C ′ are mutually exclusive. Then we
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know that

ACB ∼ A′CB ∼ A′C ′B ∼ A′C ′B′

by monotonicity and Lemma 4.

Lemma 10 implies that if� has a representation, then the representation can only depends

on µ(A), µ(B) and µ(C). Since we have abandoned linearity, we are not able to apply the

techniques from linear conjoint measurement. Instead, a Debreuian argument is needed

for identification of the representation. In particular, we need to show that there exists a

countable order dense set. We define order denseness as follows.

Definition. For any binary relation � on X, we say that the subset Y is �-order dense if

for any x, y ∈ X such that x � y, there exists z ∈ Y such that x � z � y.

Then we introduce Debreu (1954)’s result as a lemma. Then we show that a representation

for our similarity rankings exists.

Lemma B. (Debreu (1954)) For any set X and binary relation � on X, there exists a

function U that represents � if and only if � is a preference relation and X has a countable

�-order dense subset.

Lemma 11. E2\N 2 has a countable �-order dense subset.

Proof. By the convex-rangedness of µ, we construct the order dense subset as follows. Pick

A0, B0, C0 mutually exclusive such that A0 ∪B0 ∪C0 = Ω and µ (A) = µ (B) = µ (C) = 1/3.

Let {Amn} , {Bmn} , {Cmn} be subsets of respectively A,B,C, such that

µ (Amn) = µ (Bmn) = µ (Cmn) =
m

n

for m = 0, 1, 2, . . . , bn/3c and n = 1, 2, 3, . . .

Next, we show that {ACB|A ∈ {Amn}, B ∈ {Bmn}, A ∈ {Cmn}} is a �-order dense

subset.
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Let A′C ′B′ � ACB. Wlog assume that µ(A), µ(B), µ(C), µ(A′), µ(B′), µ(C ′) ≤ 1/3. If

ØΩØ ∼ A′C ′B′ we have A′C ′B′ ∼ A01C13B01 � ACB and we are done.

Suppose ØΩØ � A′C ′B′, then by the nonatomicity axiom, there is Ĉ ⊂ C ′ such that

A′C ′B′ � A′ĈB′ � ACB. Pick m1, n1 such that

µ (C ′) >
m1

n1

> µ(Ĉ).

Pick C∗ ⊂ C ′ such that µ (C∗) = m1/n1. It follows that

A′C ′B′ � A′C∗B′ � A′ĈB′.

If ØC∗B′ ∼ A′C∗B′ then set A∗ = Ø and m2 = 0, n2 = 1. Suppose ØC∗B′ � A′C∗B′,

then by nonatomicity, there is Â ⊂ A′ such that

A′C ′B′ � ÂC∗B′ � A′C∗B′.

Pick m2, n2 such that

µ (A′) >
m2

n2

> µ(Â)

and A∗ ⊂ A′ such that µ (A∗) = m2/n2. Then by monotonicity

A′C ′B′ � ÂC∗B′ � A∗C∗B′ � A′C∗B′ � ACB.

If A∗C∗Ø ∼ A∗C∗B′ then set B∗ = Ø and m3 = 0, n3 = 1. Suppose A∗C∗Ø � A∗C∗B′,

again by the nonatomicity axiom there is B̂ ⊂ B′ such that

A′C ′B′ � A∗C∗B̂ � A∗C∗B′ � ACB.

Then similarly pick µ (B∗) = m3/n3 such that

A′C ′B′ � A∗C∗B̂ � A∗C∗B∗ � A∗C∗B′ � ACB.

Therefore

A′C ′B′ � A∗C∗B∗ � ACB
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and

A∗C∗B∗ ∼ Am2n2Cm1n1Bm3n3 .

Thus, we have proved the result.

Hence � has a numerical representation S(A,B). By Lemma 10 we know that S(A,B) =

h(µ(A\B), µ(A ∩B), µ(B\A)). Then we characterize how h should behave.

Definition. A function f : D ⊂ Rn → R is separately continuous if for any fixed n-tuple

(x1, x2, . . . , xn) ∈ D and for every i ∈ {1, 2, . . . , n}, the mapping t 7→ f (x1, . . . , xi−1, t, xi+1, . . . , xn)

is continuous for all t such that (x1, . . . , xi−1, t, xi+1, . . . , xn) ∈ D.

Lemma C. (Kruse and Deely (1969)) Let f (x1, x2, ..., xn−1, y) be a real-valued function

defined on an open set G in Rn, n ≥ 2. Suppose f is separately continuous and is monotone

in each xi separately, 1 ≤ i ≤ n− 1. Then f is continuous on G.

By Lemma C the following characterizations of h is true. Let ∆n be the n-simplex in Rn.

Lemma 12. There exists a function h : ∆3\{(0, 0, 0)} −→ [0, 1] such that

ACB � A′C ′B′ ⇐⇒ h (µ (A) , µ (C) , µ (B)) ≥ h (µ (A′) , µ (C ′) , µ (B′)) .

where

(i) h (a, 0, b) = 0, h (0, c, 0) = 1;

(ii) h (a, ·, b) is nondecreasing;

(iii) h (·, c, b) and h (a, c, ·) are nondecreasing;

(iv) h is continuous at (a, c, b) if 0 < c < 1;

(v) h (a, c, b) = h (ka, kc, kb) for k ∈ (0, 1) if 0 < c < 1.

Proof. (i) is simple rescaling. (ii) is given by additivity. (iii) is given by monotonicity.

Next we prove (iv) by construction. By (ii), fixed any a, b, h (a, ·, b) is monotone and

hence continuous almost everywhere. Let {xn} be the discontinuity points of h (a, ·, b). we
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prove that there cannot exist (a′, b′, c′) ∈ ∆3 such that h (a, x+n , b) ≥ h (a′, c′, b′) ≥ h (a, x−n , b)

with h (a′, b′, c′) 6= h (a, xn, b). Consider first if

h
(
a, x+n , b

)
≥ h (a′, c′, b′) > h (a, xn, b) ≥ h

(
a, x−n , b

)
.

Pick any decreasing sequence {xn,m} ∈ [0, 1− a− b] such that xn,m → xn as m→∞. There

are A,B,A′, B′, C ′ such that µ (A) = a, µ (B) = b, , µ (A′) = a′, µ (B′) = b′ and µ (C ′) = c′.

Also pick {Cm} such that Cm+1 ⊂ Cm and µ (Cm) = xn,m. Hence

lim
m→∞

µ (Cm) = µ

(⋂
m

Cm

)
= xn.

Therefore ACmB � A′C ′B′ however A′C ′B′ � A(
⋂
mCm)B, a contradiction to Axiom 6. For

the other case, that is when

h
(
a, x+n , b

)
≥ h (a, xn, b) > h (a′, c′, b′) ≥ h

(
a, x−n , b

)
,

it suffices to prove A′C ′B′ � ACmB and Cm ⊂ Cm+1 implies A′C ′B′ � A(
⋃
mCm)B. Suppose

A(
⋃
mCm)B � A′C ′B′. There exists C ⊂

⋃
mCm such that A(

⋃
mCm)B � ACB � A′C ′B′.

Therefore there is m∗ such that

µ

(⋃
m

Cm

)
> µ (Cm∗) > µ (C) .

By (ii)

A(
⋃
m

Cm)B � ACm∗B � ACB � A′C ′B′

which is a contradiction.

By (iii), h (·, c, b) is monotone therefore is continuous almost everywhere. Let {yn} be the

discontinuity points of h (·, c, b). The next step is prove that there cannot exist (a′, b′, c′) ∈

∆3 such that h (y−n , c, b) ≥ h (a′, c′, b′) ≥ h (y+n , c, b) with h (a′, c′, b′) 6= h (yn, c, b). Suppose

h
(
y−n , c, b

)
≥ h (a′, c′, b′) > h (yn, c, b) ≥ h

(
y+n , c, b

)
.
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By the nonatomicty axiom there is ŷn < yn such that

h (a′, c′, b′) > h (ŷn, c, b) > h (yn, c, b)

which is a contradiction. Suppose

h
(
y−n , c, b

)
≥ h (yn, c, b) > h (a′, c′, b′) ≥ h

(
y+n , c, b

)
.

Pick any increasing sequence {yn,m} ∈ [0, 1− c− b] such that yn,m → yn as m → ∞. There

are B,C,A′, B′, C ′ such that µ (B) = b, µ (C) = c, , µ (A′) = a′, µ (B′) = b′ and µ (C ′) = c′.

Also pick {Am} such that Am+1 ⊂ Am and µ (Am) = yn,m. It follows that

(
⋂
m

Am)CB � A′C ′B′ � AmCB.

which is a contradiction to countable-addivity. Similar results obtain for h (a, c, ·).

Consider h
(
0, 1

2
, ·
)

and h
(
0, ·, 1

2

)
. By the arguments above, these two functions capture

all the discontinuity of range in any h(·, c, b), h(a, ·, b) or h(a, c, ·). Let {an} be the set of

discontinuity points of h
(
0, 1

2
, ·
)

and {bn} be that of h
(
0, ·, 1

2

)
. Then construct h∗ as follows.

Let

h1 (a, c, b) =


h
(
0, 1

2
, a+n
)

if h (a, c, b) = h
(
0, 1

2
, an
)

for some n,

h
(
0, b−n ,

1
2

)
if h (a, c, b) = h

(
0, bn,

1
2

)
for some n,

h (a, c, b) otherwise.

Then let

v1(a, c, b) =
∑

k: h1(a,c,b)>h1(0, 12 ,a
−
k )

[
h1
(

0,
1

2
, a−k

)
− h1

(
0,

1

2
, a+k

)]
.

That is, the cumulative discontinuity of h(0, 1
2
, ·) within the range h(0, 1

2
, 1
2
) to h(a, c, b). Also

let,

v2(a, c, b) =
∑

k:h1(a,c,b)>h1(0,b+k ,
1
2)

[
h1
(

0, b+k ,
1

2

)
− h1

(
0, b−k ,

1

2

)]
.
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That is, the cumulative discontinuity of h(0, ·, 1
2
) within the range from h(0, 0, 1

2
) to h(a, c, b).

h2 (a, c, b) =

 h1 (a, c, b)− v2(a, c, b) if h1 (a, c, b) ≤ h1
(
0, 1

2
, 1
2

)
,

h1 (a, c, b)− v1(a, c, b)− v2(a, c, b) if h1 (a, c, b) > h1
(
0, 1

2
, 1
2

)
.

Then rescale by

h∗ (a, b, c) =
h2 (a, b, c)− h2 (1, 0, 0)

h2 (0, 1, 0)− h2 (1, 0, 0)
.

Basically h∗ is produced from h by squeezing out the discontinuity points and then rescaling.

By the argument above the resulting h∗ is separately continuous on ∆3\{(0, 0, 0)}. Extend

h∗ by setting

h∗(a, c, b) = h∗(max{a, 0}, c,max{b, 0})

to G ≡ {(a, c, b) ∈ R3|0 < c < 1, a+ b+ c < 1, b+ c < 1, and a+ c < 1}. It is clear that h∗

is monotone and separately continuous on G. Therefore, by Lemma C, h∗ is continuous on

G. It then suffices to prove that h∗ is also continuous on {(a, c, b) ∈ ∆3|a+ b+ c = 1}. This

is true since h∗(a, c, b) = h∗(a
2
, b
2
, c
2
) by Lemma 5.

By Lemma 5 and scale invariance we have that for all n and m = 1, 2, . . . , 2n.

h (a, c, b) = h
(m

2n
a,
m

2n
c,
m

2n
b
)
.

By continuity (v) follows.

Let f : [0, 1]2 −→ [0, 1] be defined as follows. For (x, y) ∈ (0, 1]2 let

f(x, y) = h

(
1
y
− 1

2( 1
x

+ 1
y
− 1)

,
1

2( 1
x

+ 1
y
− 1)

,
1
x
− 1

2( 1
x

+ 1
y
− 1)

)
.

Let f(0, 0) = 0, f(x, 0) = limy→0+ f(x, y) and f(0, y) = limx→0+ f(x, y). Clearly f is contin-

uous on (0, 1]2 since h is continuous at (a, c, b) such that 0 < c < 1.

Lemma 13. For a+ c > 0 and b+ c > 0, h(a, c, b) = f( c
b+c
, c
a+c

).
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Proof. If c = 0, then a, b > 0. It follows that

f

(
c

b+ c
,

c

a+ c

)
= 0 = h (a, c, b) .

If 0 < c < 1 then

f

(
c

b+ c
,

c

a+ c

)
= h

(
a

2(a+ c+ b)
,

c

2(a+ c+ b)
,

b

2(a+ c+ b)

)
= h(a, c, b)

by Lemma 12. If c = 1 and therefore a = b = 0, then f(1, 1) = h(0, 1, 0) = h(0, c, 0).

Let µ(A|B) be given by Bayes’ rule if µ(B) > 0. For expositional purpose, let µ(A|B) = 0

if µ(B) = 0. Therefore, it is easy to see that S(A,B) = f(µ(A|B), µ(B|A)) represents �.

The fact that f is nondecreasing is given by the properties of h. It suffices to prove that f is

strictly increasing in the first argument, or equivalently, that h(a, c, ·) is strictly decreasing

for c > 0. Due to additivity h(a, ·, c) is strictly increasing for c > 0. Then monotonicity

finishes the argument.

The “if” part of Theorem 1 is standard and therefore omitted.
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B Proof of Theorem 3

We only have to prove that f has the Cobb-Douglas form on (0, 1]2 since f(0, 0) = 0 and it

is simply impossible to have µ(A|B) > 0 and µ(B|A) = 0 for any A,B. Therefore, in the

proof we will assume that the arguments of f are all within (0, 1]. Lemma 14 is a direct

implication of the robustness condition.

Lemma 14. f (p1, p2) ≥ f (q1, q2) implies f (rp1, p2) ≥ f (rq1, q2) and f (p1, rp2) ≥ f (q1, rq2).

Proof. First we prove that for any (p1, p2) , (q1, q2) there are A,A′, B such that

µ (A|B) = p1, µ (B|A) = p2, µ (A′|B) = q1 and µ (B|A′) = q2.

It is equivalent to picking

c

b+ c
= p1,

c

a+ c
= p2,

c′

b′ + c′
= q1,

c′

a′ + c′
= q2 and b′ + c′ = b+ c.

Let

a =

(
1

p2
− 1

)
p1x, b = (1− p1)x, c = p1x,

a′ =

(
1

q2
− 1

)
q1x, b′ = (1− q1)x, c′ = q1x,

and pick a positive x small enough such that both a+ b+ c and a′+ b′+ c′ are not larger than

1. Now we prove for any such A,A′, B there is C ⊥ σ (A,A′, B) such that µ (C) = r. Let

{A1, ..., An} be the finest partition of Ω which is contained in σ (A,A′, B). Pick Ck ⊂ Ak such

that µ (Ck) = rµ (Ak). Let C =
⋃n
k=1Ck and we are done. Then it is clear that robustness

implies the lemma.

With the above lemma, the following claim is true.

Lemma 15. For a ∈ (0, 1), f (p1, p2) > f (q1, q2) implies f (pa1, p
a
2) > f (qa1 , q

a
2).

Proof. By Lemma 14, f (p1, p2) > f (q1, q2) implies that

f
(
p21, p

2
2

)
≥ f (p1q1, p2q2) ≥ f

(
q21, q

2
2

)
.
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In fact for any n,

f (pn1 , p
n
2 ) ≥ f

(
pn−11 q1, p

n−1
2 q2

)
≥ f

(
pn−21 q21, p

n−2
2 q22

)
≥ · · · ≥ f

(
p1q

n−1
1 , p2q

n−1
2

)
≥ f (qn1 , q

n
2 ) .

For any m, it must be the case that

f
(
p

1
m
1 , p

1
m
2

)
> f

(
q

1
m
1 , q

1
m
2

)
since if otherwise inductively we would have that f (p1, p2) ≤ f (q1, q2), which is a contradic-

tion. Since f is monotone and continuous on (0, 1]2, there are r > s such that

f
(
p

1
m
1 , p

1
m
2

)
> f(r, r) > f(s, s) > f

(
q

1
m
1 , q

1
m
2

)
Combining the two claims, for any m,n with n > 0

f (p1, p2) > f (q1, q2) =⇒ f
(
p

n
m
1 , p

n
m
2

)
≥ f(rn, rn) > f(sn, sn) ≥ f

(
q

n
m
1 , q

n
m
2

)
.

Pick t > u such that

f (p1, p2) > f (t, t) > f (u, u) > f (q1, q2) .

It follows that

f
(
p

n
m
1 , p

n
m
2

)
> f

(
t

n
m , t

n
m

)
> f

(
u

n
m , u

n
m

)
> f

(
q

n
m
1 , q

n
m
2

)
.

Let n
m
→ α ∈ (0, 1) we have that

f (pα1 , p
α
2 ) ≥ f (tα, tα) > f (uα, uα) ≥ f (qα1 , q

α
2 )

where the central inequality is strict due to the fact that f is strictly increasing in its first

argument.

With Theorem 4, it suffices to prove the following lemma.

Lemma 16. f(p1, p2) > f(q1, q2) and a ∈ (0, 1) implies f
(
pa1r

1−a
1 , pa2r

1−a
2

)
> f

(
qa1r

1−a
1 , qa2r

1−a
2

)
.
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Proof. By the previous lemma

f (p1, p2) > f (q1, q2) =⇒ f (pa1, p
a
2) > f (qa1 , q

a
2)

Pick r > s such that

f (pa1, p
a
2) > f(r, r) > f(s, s) > f (qa1 , q

a
2) .

Then by Lemma 14

f
(
pa1r

1−a
1 , pa2

)
≥ f(rr1−a1 , r) > f(sr1−a1 , s) ≥ f

(
qa1r

1−a
1 , qa2

)
=⇒ f

(
pa1r

1−a
1 , pa2r

1−a
2

)
≥ f(rr1−a1 , rr1−a2 ) > f(sr1−a1 , sr1−a2 ) ≥ f

(
qa1r

1−a
1 , qa2r

1−a
2

)
where the central inequality is strict due to the fact that f is strictly increasing in its first

argument.

The rest is established by Theorem 4. Clearly α > 0 since f is strictly increasing in its

first argument.
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C Recovering the Tversky Index

Although the Tversky Index is popular in the psychology literature, even Tversky himself

has not provided an axiomatic foundation. In this section, we utilize again the Anscombe-

Aumann framework to achieve this goal. Consider an alternative definition of robustness.

Definition. � is said to be robust∗ if for any nonnull C and mutually exclusive Â, B̂, Ĉ

such that (A ∪B ∪ C) ∩ (Â ∪ B̂ ∪ Ĉ) = Ø,

ACB � A′CB′ =⇒ (A ∪ Â)(C ∪ Ĉ)(B ∪ B̂) � (A′ ∪ Â)(C ∪ Ĉ)(B′ ∪ B̂).

Theorem 5. Suppose (f, µ) is a similarity representation of nondegenerate similarity struc-

ture (Ω, E ,N ,�). Then � is robust∗ if and only if there is a unique α ∈ (0, 1] such that

(A,B) � (C,D) ⇐⇒ µ(A ∩B)

αµ(B) + (1− α)µ(A)
≥ µ(C ∩D)

αµ(D) + (1− α)µ(C)
.

Similarly to the last section, consider only (0, 1]2. By Theorem 4, if suffices to prove the

following lemma.

Lemma 17. f(p1, p2) > f(q1, q2) implies

f

(
1

β
p1

+ 1−β
r1

,
1

β
p2

+ 1−β
r2

)
> f

(
1

β
q1

+ 1−β
r1

,
1

β
q2

+ 1−β
r2

)

for all β ∈ (0, 1).

Proof. Pick any β ∈ (0, 1) and a, b, c, a′, b′, â, b̂, ĉ such that

p1 =
c

a+ c
, p2 =

c

b+ c
, q1 =

c

a′ + c
, q2 =

c

b′ + c
, r1 =

ĉ

â+ ĉ
, r2 =

ĉ

b̂+ ĉ
, β =

c

c+ ĉ
.

and a+ b+ c+ a′ + b′ + â+ b̂+ ĉ ≤ 1. Then(
1

β
p1

+ 1−β
r1

,
1

β
p2

+ 1−β
r2

)
=

(
c+ ĉ

a+ â+ c+ ĉ
,

c+ ĉ

b+ b̂+ c+ ĉ

)
,(

1
β
q1

+ 1−β
r1

,
1

β
q2

+ 1−β
r2

)
=

(
c+ ĉ

a′ + â+ c+ ĉ
,

c+ ĉ

b′ + b̂+ c+ ĉ

)
.
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Then pick A,B,C,A′, B′, Â, B̂, Ĉ such that

µ (A) = a, µ(B) = b, µ (C) = c, µ (A′) = a′, µ (B′) = b′, µ(Â) = â, µ(B̂) = b̂, µ(Ĉ) = ĉ.

Then robustness implies the result.

Clearly in the representation α > 0 since f is strictly increasing in its first argument.
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D A Generalization of Anscombe and Aumann (1963)

In this section we provide a slight generalization of Anscombe and Aumann (1963). Let

X be a mixture space with mixture operation I. In the original paper, X is the space of

simple lotteries and I is the normal weighted arithmetic average. Let S = {1, 2, . . . , n} be

a finite set of states. An act is a function h : S −→ X. Let H denote the set of all acts.

Abusing the notation a little, write Ia (f, g) = (Ia (f1, g1) , . . . , Ia (fn, gn)); that is, we are

mixing acts in a state-by-state manner. Let � be a binary relate defined on H. Axioms 1-4

are direct translations of the classic Anscombe-Aumann axioms. Axiom 5 is from Gilboa and

Schmeidler (1989). We identify constant acts by elements in X.

Axiom A1. � is a preference relation.

Axiom A2. f � g and a ∈ (0, 1) implies Ia (f, h) � Ia (g, h) .

Axiom A3. f � g � h implies that there exist a, b ∈ (0, 1) such that Ia (f, h) � g � Ib (f, h) .

Axiom A4. There exist f, g such that f � g.

Axiom A5. fj � gj for all j ∈ S implies f � g.

We say that a function U on H is linear if U(Ia(f, g)) = aU(f) + (1− a)U(g).

Theorem 6. � satisfies Axiom A1-A5 if and only if there exist a non-constant linear function

U on X and a probability measure µ on S such that W (f) =
∑

i U(fi)µ(i) represents �. This

U is unique up to a positive affine transformation and µ is unique.

First of all, consider only constant acts. By the mixture space theorem there is U such

that U(ha (x, y)) = aU(x) + (1 − a)U(y). Let U (f) = (U (f1) , . . . , U (fn)). Then, consider

all acts in H, also by the mixture space theorem, there is W such that W (ha (f, g)) =

aW (f) + (1− a)W (g) .

We only have to proof the next lemma. The rest is standard, implied by mixture space

uniqueness.
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Lemma. W is linear if and only if there exists a collection of linear functions Uj, for j ∈ S,

such that W (f) =
∑

j Uj(fj).

Proof. Step 1: Let aj ∈ [0, 1] and
∑

j aj = 1. If U(f) =
∑

j ajU (f j) then W (f) =∑
j ajW (f j).

First of all, suppose #{aj > 0} = 2. We know that U(Ia(f
1, f 2)) = aU(f 1)+(1−a)U(f 2).

Since U(f) = U(Ia(f
1, f 2)), by Axiom 5, it must be the case that W (f) = W (Ia(f

1, f 2)).

By linearity of W we prove the claim for #{aj > 0} = 2. An inductive argument finishes

this step.

Let x0 ∈ X and let hjx be the act that yields x in state j and x0 in every other state. Let

x0 be the constant act.

Step 2: U(I 1
n
(f, x0)) = 1

n
U (f) + n−1

n
U (x0) =

∑
j

1
n
U(hjfj).

Define Uj (x) = W (hjx)− n−1
n
W (x0) for all x ∈ X, we have

∑
j

Uj (fj) =
∑
j

W (hjfj)− (n− 1)W (x0)

= n
∑
j

1

n
W (hjfj)− (n− 1)W (x0)

= nW (I 1
n
(f, x0))− (n− 1)W (x0)

= n

(
1

n
W (f) +

n− 1

n
W (x0)

)
− (n− 1)W (x0)

= W (f) .

Then we show that Uj is linear.

Uj(Ia(x, y)) = W (hjIa(x,y))−
n− 1

n
W (x0)

= W (Ia(h
j
x, h

j
y))−

n− 1

n
W (x0)

= aW (hjx) + (1− a)W (hjy)−
n− 1

n
W (x0)

= aUj(x) + (1− a)Uj(y)

for all j ∈ S.
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