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Abstract

We study from a preferential viewpoint absolute and relative attitudes toward am-

biguity determined by wealth effects. We provide different characterizations of these

attitudes for a large class of preferences: monotone and continuous preferences which

satisfy risk independence. We specify our results for different subclasses of preferences.

Our results and characterizations provide alternative ways to experimentally test the

validity of some of the models of choice under uncertainty.

1 Introduction

Beginning with the seminal work of David Schmeidler, several choice models have been

proposed in the past thirty years in the large literature on choice under uncertainty that

deals with ambiguity, that is, with Ellsberg-type phenomena.1 At the same time, many

papers have investigated the economic consequences of ambiguity. Our purpose in this paper

is to study a basic economic problem: How the ambiguity attitudes of a decision maker

change as his wealth changes. In other words, our purpose is to study absolute and relative

ambiguity attitudes.

To fix ideas and understand our main motivation, one should think of how central is

in many fields of Economics the relationship between wealth and agents’attitudes toward

risk (for example, portfolio allocation problems and insurance demand). In his seminal work

[3, p. 96], Arrow, in discussing measures of absolute and relative risk attitudes, mentions

∗We thank Aurélien Baillon, Pierpaolo Battigalli, Loic Berger, Peter Klibanoff, Nenad Kos, Mark Machina,

Peter Wakker, and Jingyi Xue as well as seminar audiences at Carlos III of Madrid, Cergy-Pontoise, Maas-

tricht, Paris-Dauphine, Radboud University, RUD 2016, and SAET 2016 for their useful comments. Simone

Cerreia-Vioglio gratefully acknowledges the financial support of ERC (grant SDDM-TEA) and Massimo Mari-

nacci of ERC (grant INDIMACRO).
1See Gilboa and Marinacci [21] for a survey.
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that “The behaviour of these measures as wealth changes is of the greatest importance for

prediction of economic reactions in the presence of uncertainty”.

To the best of our knowledge, no systematic study has been done in exploring a similar

relation between wealth and ambiguity attitudes, despite the large and growing use in appli-

cations of models that are nonneutral toward ambiguity. In this context, Arrow’s comment

would seem to apply all the more. The challenge of our work, compared to the analysis done

under risk by Arrow and Pratt, is that in the latter case their study has been restricted to

the expected utility model. Conversely, under ambiguity there are by now several alternative

models, thus moving the analysis well beyond expected utility. In characterizing how ambi-

guity attitudes change with wealth, our results provide some guidance in choosing between

these models, as the standard theory of absolute risk aversion of Arrow and Pratt provides

guidance in the choice of the von Neumann-Morgenstern utility function. For example, our

results will show that a researcher who believes that agents are not constant absolute am-

biguity averse —be that due to experimental evidence and/or personal introspection as for

Arrow’s assumption of decreasing absolute risk aversion —can rule out the use of some mod-

els: for example, α-maxmin, Choquet expected utility, and variational preferences under risk

neutrality. Similarly, for a researcher relying on the smooth ambiguity model, behavioral as-

sumptions on absolute and relative ambiguity attitudes translate into corresponding choices

of the model’s parameters. For instance, if risk attitudes are assumed to be CRRA and risk

averse, as common in Macroeconomics,2 and relative ambiguity attitudes are assumed to be

constant as well (irrespective of the prior µ), then our results yield that φ must be either

CARA or CRRA, depending on the von Neumann-Morgenstern function being either the

logarithm or the power function.

Finally, our work provides alternative and useful methods to falsify models of choice

under ambiguity as well as testable implications. For example, on the one hand, under the

assumption agents are CARA,3 falsifying our preferential notion of constant absolute am-

biguity attitudes yields that preferences cannot be invariant biseparable preferences (e.g.,

α-maxmin and Choquet expected utility). On the other hand, in looking at portfolio com-

position data,4 observing that the share invested in the uncertain asset is not constant with

wealth yields again that preferences cannot be invariant biseparable.

A preferential viewpoint We study absolute and relative attitudes toward ambiguity

from a purely preferential viewpoint, starting from a preferential first principle: a prefer-

2More formally, consequences are elements of (0,∞) and the von Neumann-Morgenstern utility function

over consumption/money is often set to be v̄γ (c) = cγ if γ ∈ (0, 1) and v̄γ (c) = log c if γ = 0.
3For a portfolio-choice experiment estimating ambiguity aversion in a CARA setup, see e.g., Ahn et al.

[1].
4For an empirical study of constant relative risk attitudes using portfolio composition data, see Chiappori

and Paiella [14].
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ence is, say, decreasing absolute ambiguity averse if, at a higher wealth level, it becomes

comparatively less averse to ambiguity. This first principle implies that a proper analysis of

absolute attitudes toward ambiguity requires that the underlying risk preference on lotteries

be constant absolute risk averse, so that absolute risk attitudes do not intrude in wealth

effects. In turn, this implies that different classes of preferences characterize absolute atti-

tudes toward ambiguity, depending on the risk attitude (in terms of aversion or love) that

the underlying risk preference exhibits. For instance, among uncertainty averse preferences,

variational preferences characterize constant absolute ambiguity aversion under risk neutral-

ity, but homothetic preferences characterize it under risk nonneutrality. Therefore, the two

quite different properties, both conceptually and mathematically, of constant additivity (e.g.,

variational preferences) and positive homogeneity (e.g., homothetic preferences) may happen

to characterize the preference functionals that are constant absolute ambiguity averse.

Our results thus underscore the importance of keeping track of risk attitudes that may,

otherwise, confound the analysis of ambiguity attitudes. They also underscore the impor-

tance of keeping track of the unit of account: Absolute and relative attitudes are, indeed,

properly modelled via properties of the monetary certainty equivalents (which are in the

same unit of account of wealth).

Wealth effects We consider a standard Anscombe-Aumann set up.5 This choice is moti-

vated by our aim to study how wealth effects change ambiguity attitudes, thus we want to

control for the effects due to risk attitudes. We denote by F the set of all Anscombe-Aumann
acts f : S → ∆0 (R), where S is a state space and ∆0 (R) is the set of simple monetary lot-

teries. As usual, preferences over final wealth levels are modelled by a binary relation %.
Given a wealth level w and an act f , we define by fw the act whose final monetary outcomes

are the outcomes of f shifted by w (see Section 2.1, for a formal definition). Given this, we

define preferences at wealth level w by

f %w g def⇐⇒ fw % gw.

We say that % is decreasing absolute ambiguity averse if at lower wealth levels ambiguity
aversion is higher, that is w′ > w yields that %w is more ambiguity averse than %w′ —in the
sense of Ghirardato and Marinacci [19].6 This definition is an adaptation to the ambiguity

setting of the classic definition of decreasing absolute risk aversion. In a similar fashion, we

also define the notions of increasing and constant absolute ambiguity aversion (see Definition

3).

In the paper, we characterize absolute ambiguity attitudes for the class of rational pref-

erences. This class of preferences is large and contains several models of choice which are

5The relevant decision theoretic and mathematical notions are introduced in Section 2 and Appendix A.
6See Epstein [15] for a different comparative notion of ambiguity attitudes.
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common in the literature (e.g., maxmin, α-maxmin, smooth ambiguity, and variational pref-

erences). Rational preferences are known to admit a representation of the form V : F → R
such that

V (f) = I (u (f)) ∀f ∈ F , (1)

where u is a von Neumann-Morgenstern expected utility functional over ∆0 (R) and I is a

normalized and monotone functional that maps utility profiles s 7→ u (f (s)) into the real

line. This decomposition of the utility function V dates back to Schmeidler [31].7 From

a behavioral point of view, this decomposition is particularly useful since the pair (u, I),

other than representing % as in (1), characterizes the attitudes of the decision maker toward
risk and ambiguity: Namely, u characterizes the risk attitudes of the decision maker, while

I describes the ambiguity attitudes. This specific feature of this decomposition has been

emphasized by Ghirardato and Marinacci [18] and exploited several times in the literature.8

Also in this work the two functions u and I will play a key role.

Classifiable preferences As in the risk case, it is not hard to show that absolute atti-

tudes do not provide an exhaustive class of categories with which we can classify rational

preferences. In other words, there exist rational preferences that are neither decreasing, nor

increasing, nor constant absolute ambiguity averse. When a rational preference relation %
exhibits one of these three absolute ambiguity attitudes, we will say that % is classifiable.
Our first result (Proposition 3) states that if % is a classifiable rational preference, then %
must be constant absolute risk averse (henceforth, CARA). Conceptually, this is important

because, in this way, absolute risk attitudes do not intrude in wealth effects and all the differ-

ences in terms of attitudes toward uncertainty can be then rightfully attributed to attitudes

toward ambiguity. Below in the Introduction and in Section 4, we further elaborate on the

CARA restriction and relax this assumption.

With this in mind, we proceed by characterizing absolute ambiguity attitudes using the

decomposition (u, I) (Theorem 2 and Corollary 1). The following table provides an informal

summary of our characterization for a classifiable %:

Risk averse Risk loving Risk neutral

DAAA I superhomogeneous I subhomogeneous I constant superadditive

IAAA I subhomogeneous I superhomogeneous I constant subadditive

CAAA I homogeneous I homogeneous I constant additive

7 In [31] it plays a key role in characterizing Choquet expected utility preferences (the functional I is indeed

a Choquet integral).
8For example, it has been useful in characterizing comparative ambiguity attitudes, as in Ghirardato and

Marinacci [19], as well as in exploring the relation between ambiguity attitudes and preference for the timing

of resolution of uncertainty, as in Strzalecki [34].
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The table should be read as follows: Under the assumption of classifiability, the rows

specify the absolute ambiguity attitudes while the columns specify the risk attitudes, be

they averse, loving, or neutral;9 each cell then provides a full characterization in terms of

the functional I. For example, consider a preference relation which is decreasing absolute

ambiguity averse (DAAA) and risk averse. By Theorem 2, I is superhomogeneous. On the

other hand, if I is assumed to be superhomogeneous, the table shows that there are only

two possibilities for a classifiable preference: either % is risk averse and DAAA or % is risk
loving and IAAA.

The table also shows that (Corollary 3) invariant biseparable preferences —so in particular

α-maxmin and Choquet expected utility preferences — are classifiable if and only if they

are constant absolute ambiguity averse (CAAA). The reason is simple: For this class of

preferences, the functional I is both positively homogeneous and constant additive.

The dichotomic properties of the functional I, which characterize absolute attitudes

toward ambiguity in the risk neutral and nonneutral cases and are most evident for CAAA

preferences, are the outcome of a unit of account problem. In fact, though wealth effects are

in monetary units (as traditional in Economics), for each act f the number I (u (f)) is in

von Neumann-Morgenstern utils.10 In contrast, if v denotes the von Neumann-Morgenstern

utility function on monetary outcomes of u, then the map c : F → R defined by

c (f) = v−1 (I (u (f))) ∀f

is a monetary certainty equivalent. Clearly, c is expressed in the same unit of account of the

wealth w. We show that monetary certainty equivalents emerge as the proper representation

for absolute attitudes (Proposition 4); for example, % is DAAA if and only if % is CARA
and c is wealth superadditive, that is,

c (fw) ≥ c (f) + w ∀w ≥ 0

for every act f . To sum up, a consistent use of the unit of account allows for a clear-cut

characterization of absolute ambiguity attitudes.

We then proceed to characterize absolute attitudes toward ambiguity by focusing on

the subclass of uncertainty averse preferences. For this class, we provide a characterization

of absolute attitudes in terms of their dual representation, that is, in terms of properties

of their ambiguity aversion index (Theorem 3). For this particular class, we are able to

show how constant absolute ambiguity attitudes are characterized by two radically different

models: variational preferences, under risk neutrality, and homothetic preferences under risk

nonneutrality (Corollaries 4 and 7).

9Being classifiable, % must be CARA (Proposition 3). Thus, the von Neumann-Morgenstern utility func-

tion over monetary outcomes can be normalized to be either v (c) = − 1
α
e−αc with α 6= 0 or v (c) = c.

10Since I is normalized, if an act f is such that, for some scalar k, u (f (s)) = k for all s ∈ S, then

I (u (f)) = k.
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In Section 3.5, we also study some portfolio implications of absolute attitudes toward

ambiguity. Our portfolio application is the adaptation of Arrow’s portfolio exercise to our

setting.

General risk attitudes and absolute uncertainty attitudes We conclude the part on

absolute attitudes toward ambiguity by allowing for more general attitudes over risk. The

initial part of our paper focuses on ambiguity attitudes in a CARA setup. At the same

time, two questions come up naturally: 1) Are the mathematical properties found in the

previous results useful only in a CARA world or are they portable to more general settings?

2) Do absolute risk and ambiguity attitudes compound? In particular, addressing the first

question allows us to discuss the conceptual role played by CARA preferences. We will do

so by reminding the reader about the specificities of the Anscombe and Aumann framework

and by drawing a parallel with a standard comparative static exercise done in consumer

theory.

In an Anscombe and Aumann setting, there are two sources of uncertainty: risk (i.e.,

the lotteries in ∆0 (R)) and ambiguity (i.e., the events in S). In studying how changes in

wealth affect ambiguity attitudes, our analysis rested on the comparative notion of being

more ambiguity averse of Ghirardato and Marinacci [19]. This notion has the desirable

feature of equalizing risk attitudes (cf. Proposition 3). Thus, all the differences between %w

and %w′ can be rightfully attributed to attitudes toward ambiguity, since the decision maker
over risk is necessarily CARA (cf. Proposition 11).11

This is in line with the standard ceteris paribus approach adopted in comparative statics

exercises in Economics. Indeed, when the change of the variable of interest (wealth, in our

case) generates changes through different channels, say two (risk and ambiguity, in our case),

typically one of the two channels has to be “shut down”to fully grasp the effects of a change

of the variable of interest only due to the active channel. In consumer theory, for example,

comparative statics is often done in terms of change of the price of one good keeping all the

other variables equal, that is, other prices and income. It is well known that a change in price

affects demand via two channels that need to be separated: substitution effect and wealth

effect. Hicksian demand is the tool that allows for an analysis that “shuts down”the wealth

channel and allows for comparative statics to be carried out only in terms of substitution

effects. It is only at a second stage that price changes are studied without separating the two

channels. Nevertheless, one should keep recall that this is done only when the two effects

move in the same direction. For example, the celebrated Law of Demand holds for normal

goods which are exactly the ones for which substitution effects and wealth effects move in

the same direction.
11At the same time, any analysis of absolute ambiguity attitudes necessarily must have, as important

subcase, the one where the decision maker is CARA.
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With this in mind, in Section 4 we allow for more general absolute risk attitudes. In fact,

a researcher could be interested in considering more general absolute attitudes toward risk,

for example decreasing absolute risk aversion (henceforth, also DARA). We identify absolute

attitudes toward ambiguity with the functional characterizations found in the previous part

of the paper and show that, for a large class of preferences, absolute attitudes toward risk

and ambiguity indeed compound (cf. Proposition 12), answering positively to the above

question 2). For example, decreasing absolute risk aversion plus decreasing absolute ambi-

guity aversion yields decreasing absolute uncertainty aversion. This confirms the portability

of the characterizations found in the previous part of the paper (answering question 1) and

conceptually follows the scheme described above for a comparative statics exercise. Finally,

the results of this part of the paper provide an alternative way to test models of choice under

ambiguity as we argue right after Corollary 8.

Relative attitudes Finally, in Section 5, we conduct a similar analysis for relative am-

biguity aversion. Our analysis rests on the same arguments and intuitions used for the

absolute case. At the same time, due to the relevance of relative attitudes in applied work

where uncertain returns are studied, we report the main definitions and characterizations

(see, e.g., Example 2). For example, a preference is decreasing relative ambiguity averse

if, at a higher proportional wealth level, it becomes comparatively less averse to ambiguity.

Similarly to the absolute case, we obtain that a proper analysis of relative attitudes toward

ambiguity requires that the underlying risk preference on lotteries be constant relative risk

averse (CRRA, a popular assumption in Macroeconomics and Finance), so that relative risk

attitudes do not intrude in proportional wealth effects. Our analysis of relative attitudes

reinforces our main message: It is fundamental to keep track of risk attitudes (i.e., risk aver-

sion/love) in studying ambiguity attitudes, be they absolute or relative. Also for relative

attitudes, we perform a portfolio exercise. In a two asset allocation problem, we obtain that

constant relative ambiguity attitudes yield that the share of wealth invested in the non risk

free asset does not vary with wealth. Thus, the empirical evidence on individuals’portfolio

allocations in favor of CRRA preferences might be consistent with both CRRA and constant

relative ambiguity attitudes (see Section 5.3).

Empirical evidence on risk attitudes Our first set of results regarding absolute and

relative ambiguity attitudes deals with a class of preferences that under risk satisfy, respec-

tively, CARA and CRRA.12 Apart from the conceptual appeal of this class, one is left to

wonder how limited these classes are. They should be of suffi cient interest for applications.

From a theoretical point of view, CARA preferences as well as CRRA preferences are very

12We are thankful to Aurélien Baillon and Peter Wakker for some very helpful discussion on the topic of

this section.
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standard assumptions in many areas of Economics such as Macroeconomics, Finance, Auc-

tion Theory, and Experimental Economics (see, e.g., Blanchard and Fischer [5, pp. 43-44],

Chiappori and Paiella [14], Holt and Laury [25],13 and Wakker [36]). From an experimental

point of view, consistent with Arrow’s suggestion [3, p. 96], the common thinking and also

finding is that preferences under risk are both decreasing absolute risk averse and increasing

relative risk averse. At the same time, there have been several studies and exceptions to this

claim,14 some providing evidence that CARA and CRRA preferences might not be too nar-

row classes (see, e.g., for some evidence in favor of CARA preferences, Holt and Laury [25],

Post et. al. [30], and Baillon and Placido [4];15 for evidence in favor of CRRA preferences,

Friend and Blume [16], Szpiro [35], Brunnermeier and Nagel [7], and Chiappori and Paiella

[14]).16 Finally, our results dealing with general absolute risk attitudes dispense with the

CARA assumption and can accommodate both increasing as well as decreasing absolute risk

attitudes.

Related literature Absolute attitudes toward uncertainty have been previously studied

in a few insightful papers. On the one hand, Cherbonnier and Gollier [13] propose and

characterize a preferential definition of absolute attitudes toward uncertainty (being the sum

of risk and ambiguity) within the α-maxmin and the smooth ambiguity models (see Section

4 for more details as well as Remarks 1 and 2) while Wakker and Tversky [37, Propositions

9.5 and 9.6] characterize constant attitudes over gains within the prospect theory model.

The latter paper shows that constant attitudes, be those either absolute or relative, within

the prospect theory model, translate into the same properties (i.e., either CARA or CRRA)

of the corresponding von Neumann-Morgenstern utility v. This is perfectly in line with

our Corollary 3, despite having been derived in a different setting and for a specific model.

Instead, for the former paper, the key differences with our work are that Cherbonnier and

Gollier focus on the portfolio implications of their characterizations and, since they do not

operate in an Anscombe and Aumann setup, they are not able to disentangle risk and

ambiguity attitudes, which is essential to our preferential analysis. Moreover, their analysis

13 In Auction Theory, a standard assumption is risk neutrality, that is, constant absolute and relative risk

aversion.
14For a comprehensive review of more than 45 papers studying absolute and relative risk attitudes, we

refer the reader to the annotated bibliography of Peter Wakker. The reader will find that there are several

experimental violations of Arrow’s conjecture — for example, either finding increasing absolute risk aversion

or decreasing relative risk aversion. Our goal is simply to mention that also from an empirical point of view

CARA and CRRA preferences are relevant classes.
15 In [25], the authors find that CARA is approximately correct for low payoffs. In [30], the authors estimate

risk aversion using an expo-power specification for the contestants of the famous “Deal No Deal”game. They

find that Dutch participants exhibit a DARA and IRRA behavior, German participants are approximately

CARA, while US participants are approximately CRRA. In [4], roughly 60% of the agents is CARA.
16These studies use data regarding individual portfolio composition. The only exception is [35] which uses

data on property/liability insurance.
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is limited to two particular classes of preferences. On the other hand, Grant and Polak [23]

start from the following observation: “Constant absolute risk aversion says that if we add

or subtract the same constant both to a random variable and to a sure outcome to which it

is preferred, then the preference is maintained”. They consider an Anscombe and Aumann

setting where lotteries are not necessarily monetary. They identify random variables with

acts and constants with constant acts (i.e. lotteries). Then, they observe that in such a

setting formal standard additions are not allowed,17 but convex combinations are. Hence,

they replace the former with the latter. In this way, constant absolute ambiguity aversion

becomes the following property: for any act f in F and any three lotteries x, y, and z, and
any α in (0, 1),

αf + (1− α)x % αz + (1− α)x =⇒ αf + (1− α) y % αz + (1− α) y. (2)

For rational preferences, (2) turns out to be equivalent to the Weak C-Independence Axiom

(e.g., variational preferences as in [27] and vector expected utility preferences as in [32]),

which in turn is equivalent to the constant additivity of I, irrespective of any property of u

and its risk attitudes. From a comparative point of view, their analysis would be equivalent

to the following approach. Consider a rational preference with representation as in (1). As

in [23], assume that Imu = R. Define a preference relation < over utility profiles by

u (f) < u (g)
def⇐⇒ f % g.

It turns out that the binary relation < is a well defined monotone preference over simple real-
valued random variables. For, since Imu = R, for each simple real-valued random variable

ϕ there exists an act f ∈ F such that u (f) = ϕ. This fact and the definition of < allow for
defining a derived preference <k over utility profiles by imposing that

u (f) <k u (g)
def⇐⇒ u (f) + k < u (g) + k.

The binary relation <k is interpreted as the preference of the decision maker at a utility level
k ∈ R. In other words, in this analysis, adding or subtracting the same constant is done at a
utility level. With this in mind, constant absolute ambiguity aversion of Grant and Polak [23]

would be equivalent to say that <k is as ambiguity averse as <k′ for any two utility levels k
and k′. Xue [38] and [39] considers more general attitudes, namely decreasing and increasing

absolute attitudes, by suitably weakening (2) and by axiomatizing a constant superadditive

version of variational preferences as well as two equivalent representations of uncertainty

averse preferences. Independently of Xue, Ghirardato and Siniscalchi [20] studied a similar

notion of absolute ambiguity attitudes in a general class of symmetric preferences. Relative

to these papers, the key difference with our work is that we directly address the effect of
17 In other words, in order to define the sum of an act f and a lottery x, we would need to define the sum,

state by state, of two lotteries, namely f (s) and x, which is clearly something nonstandard.
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baseline monetary shifts. As mentioned, in the latter four papers instead absolute ambiguity

attitudes are defined in terms of utility shifts rather than wealth shifts.

A similar approach is also present in Klibanoff, Marinacci, and Mukerji [26] as well as

in Strzalecki [34]. As a consequence, our analysis is consistent with their results under risk

neutrality: this is the only case when additive wealth shifts coincide with additive utility

shifts. In general, standard shifts in wealth considered in Economics do not generate well

behaved shifts in utility and, apart from the risk neutral case, our analysis leads to strikingly

different results and a richer picture (given the characterizations being dependent on risk

aversion/love). For example, homothetic preferences in this literature would be classified as

constant relative ambiguity averse while in our case they turn out to be constant absolute

ambiguity averse under risk nonneutrality. Finally, to the best of our knowledge, the only

experimental paper testing absolute/relative ambiguity attitudes is the one of Baillon and

Placido [4]. They discuss their findings using both definitions: the one based on utility shifts

as well as the one based on wealth shifts. They observe that roughly 60% of their subjects

are CARA. Within this group, the majority of risk neutral subjects was constant absolute

ambiguity averse, followed by decreasing absolute ambiguity averse. Risk averse agents were,

instead, mostly increasing absolute ambiguity averse.18

2 Preliminaries

2.1 Setup

We consider a generalized version of the Anscombe and Aumann [2] setup with a nonempty

set S of states of the world, an algebra Σ of subsets of S called events, and a nonempty convex

set X of consequences. We denote by F the set of all (simple) acts: functions f : S → X

that are Σ-measurable and take on finitely many values.

Given any x ∈ X, define x ∈ F to be the constant act that takes value x. Thus, with

the usual slight abuse of notation, we identify X with the subset of constant acts in F .
Using the linear structure of X, we define a mixture operation over F . For each f, g ∈ F
and α ∈ [0, 1], the act αf + (1 − α)g ∈ F is defined to be such that (αf + (1− α)g) (s) =

αf(s)+(1−α)g(s) ∈ X for all s ∈ S. Given a binary relation % on F (a preference), for each
f ∈ F we denote by xf ∈ X a certainty equivalent of f , that is, xf ∼ f .19 Given a function
u : X → R, we denote by Imu the set u (X); in particular, observe that u ◦ f ∈ B0 (Σ) when

18Given our results, for a risk neutral agent, for example, this would be consistent with either having

invariant biseparable or variational preferences. For a risk averse agent, instead, this would rule out risk

averse variational preferences.
19 In a monetary framework when X is either ∆0 (R) or ∆0 (R++), note that given f , xf is a lottery that,

received with certainty in each state s, is indifferent to f . Thus, xf is a risky prospect which is independent

of the realization on S.
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f ∈ F . The mathematical notions used in the main text, but not defined there, are collected
in Appendix A.

In what follows, we will consider affi ne maps ◦ : X → X, that is, (αx+ (1− α) y)◦ =

αx◦ + (1− α) y◦ for all x, y ∈ X and α ∈ [0, 1]. These maps can be naturally extended to

F by defining f 7→ f◦ where f◦ (s) = f (s)◦ for all s ∈ S. We will confine our attention to
sets X of monetary simple lotteries and affi ne maps induced by wealth shifts that are either

additive (absolute ambiguity attitudes case and X = ∆0 (R)) or multiplicative (relative

ambiguity attitudes case and X = ∆0 (R++)). Since part of the analysis of these two cases is

in common, some of the results only use the abstract notion of affi ne map (e.g., Propositions

1 and 2).

The paper relies on the following comparative notion of Ghirardato and Marinacci [19].

Definition 1 Given two preferences %1 and %2 on F , we say that %1 is more ambiguity

averse than %2 if, for each f ∈ F and x ∈ X, f %1 x implies f %2 x.

An important example of a convex consequence set X is that of all simple monetary

lotteries:

∆0 (R) =

{
x ∈ [0, 1]R : x (c) 6= 0 for finitely many c ∈ R and

∑
c∈R

x (c) = 1

}
.

For our purposes, the most important bijective affi ne transformation on ∆0 (R) is the one

induced by a scalar w, interpreted as a wealth level: for each x in ∆0 (R), xw is the lottery

such that xw (c) = x (c− w) for all c ∈ R. We thus interpret the outcome of a lottery,
c ∈ R, as a final wealth level. Thus, given x in ∆0 (R), if the decision maker has wealth w,

we interpret xw as being the distribution on final wealth levels. In fact, lottery x yields a

consequence d ∈ R (on top of w) with probability x (d) and the probability of having as final

wealth w + d, that is xw (w + d), is equal to x (d). This implies that xw (w + d) = x (d) for

all d ∈ R which is equivalent to our definition of xw.

2.2 Axioms and representations

We will consider the following classes of preferences % on F : rational preferences (Cerreia-
Vioglio et al. [8]), uncertainty averse preferences (Cerreia-Vioglio et al. [9]), invariant

biseparable preferences (Ghirardato, Maccheroni, and Marinacci [17]), variational prefer-

ences (Maccheroni, Marinacci, and Rustichini [27]), and maxmin preferences (Gilboa and

Schmeidler [22]). They rely on the following axioms, discussed in the original papers as well

as in Gilboa and Marinacci [21].

Axiom A. 1 (Weak Order) % is nontrivial, complete, and transitive.
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Axiom A. 2 (Monotonicity) If f, g ∈ F and f(s) % g(s) for all s ∈ S, then f % g.

Axiom A. 3 (Continuity) If f, g, h ∈ F , the sets {α ∈ [0, 1] : αf + (1 − α)g % h} and
{α ∈ [0, 1] : h % αf + (1− α)g} are closed.

Axiom A. 4 (Risk Independence) If x, y, z ∈ X and α ∈ (0, 1),

x ∼ y =⇒ αx+ (1− α) z ∼ αy + (1− α) z.

Axiom A. 5 (Convexity) If f, g ∈ F and α ∈ (0, 1),

f ∼ g =⇒ αf + (1− α) g % f.

Axiom A. 6 (Weak C-Independence) If f, g ∈ F , x, y ∈ X, and α ∈ (0, 1),

αf + (1− α)x % αg + (1− α)x =⇒ αf + (1− α)y % αg + (1− α)y.

Axiom A. 7 (C-Independence) If f, g ∈ F , x ∈ X, and α ∈ (0, 1),

f % g ⇐⇒ αf + (1− α)x % αg + (1− α)x.

Axiom A. 8 (Unboundedness) There exist x and y in X such that x � y and for each

α ∈ (0, 1) there exists z ∈ X that satisfies

either y � αz + (1− α)x or αz + (1− α)y � x.

The following omnibus result collects some of the results that the above papers proved

for the classes of preferences that they studied.

Theorem 1 (Omnibus) A preference % on F satisfies Weak Order, Monotonicity, Con-

tinuity, and Risk Independence if and only if there exist a nonconstant and affi ne function

u : X → R and a normalized, monotone, and continuous functional I : B0 (Σ, Imu) → R
such that the criterion V : F → R, given by

V (f) = I (u (f)) ∀f ∈ F (3)

represents %. The function u is cardinally unique and, given u, I is the unique normalized,
monotone, and continuous functional satisfying (3). In this case, we say that % is a rational
preference. A rational preference satisfies:

(i) C-Independence if and only if I is constant linear; in this case, we say that % is an

invariant biseparable preference.20

20 Invariant biseparable preferences correspond to the general class of α (f)-maxmin preferences of Ghi-

rardato, Maccheroni, and Marinacci [17], which, inter alia, includes the Choquet expected utility preferences

of Schmeidler [31].
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(ii) Convexity if and only if I is quasiconcave; in this case, we say that % is an uncertainty
averse preference.21

(iii) Convexity and Weak C-Independence if and only if I is quasiconcave and constant

additive; in this case, we say that % is a variational preference.

(iv) Convexity and C-Independence if and only if I is quasiconcave and constant linear; in

this case, we say that % is a maxmin preference.

(v) Unboundedness if and only if Imu is unbounded.

Given u and I as in Theorem 1, we call (u, I) a (canonical) representation of the rational

preference %.22

We say that % on F is a homothetic (uncertainty averse) preference if there exists a

canonical representation (u, I), with Imu equal to either (−∞, 0) or (0,∞), such that

I (ϕ) = min
p∈∆

∫
ϕc (p)− sgnϕ dp =


minp∈∆

∫
ϕdp
c(p) if Imu = (0,∞)

minp∈∆ c (p)
∫
ϕdp if Imu = (−∞, 0)

where c : ∆ → [0, 1] is normalized, upper semicontinuous, and quasiconcave.23 Note that

I is positively homogeneous. These preferences, proposed by Chateauneuf and Faro [12],

are a natural counterpart to variational preferences with positive homogeneity in place of

constant additivity. As [12] showed, positive homogeneity is implied by a form of homo-

theticity/independence with respect to a worst consequence, when such a consequence exists

(something that in this paper we do not allow for; this is why these preferences are not

included in the omnibus theorem).

3 Results

3.1 Induced preferences

A preference % on F induces, through an affi ne and bijective transformation ◦ on X, a

preference %◦ on F given by
f %◦ g ⇐⇒ f◦ % g◦.

The induced preference inherits some of the properties of the original preference.
21Uncertainty averse preferences, within the rational preferences class, are distinguished by further satisfying

the Convexity axiom. A slightly stronger version of this axiom was termed Uncertainty Aversion by Schmeidler

[31, p. 582], since it captures a preference for diversification/hedging. According to our terminology, these

preferences should be called ambiguity averse preferences, yet we opted to use their original name as in [9].
22 In Appendix B, we discuss more in detail the uniqueness features of canonical representations.
23The function c is normalized if and only if maxp∈∆ c (p) = 1. Observe also that since Imu is equal to

either (−∞, 0) or (0,∞), then − sgnϕ = 1 or − sgnϕ = −1, yielding that c (p) can be brought outside the

integral.
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Proposition 1 Let % be a preference on F and ◦ : X → X an affi ne bijection. Then:

(i) If % is a rational preference, so is %◦.

(ii) If % is an uncertainty averse preference, so is %◦.

Next, we compare the ambiguity aversion of different induced preferences.

Proposition 2 Let % be a rational preference on F and ◦ and # two affi ne and bijective

transformations on X. If %◦ is more ambiguity averse than %#, then u◦ is a positive affi ne

transformation of u#.24

In the rest of the paper (with the exception of Sections 4 and 5) we specialize the set of

consequences X to be made of monetary lotteries, that is X = ∆0 (R), and the maps ◦ and
# to be w and w′ . Moreover, note that an affi ne utility function u : ∆0 (R) → R takes the
form u (x) =

∑
c∈R v (c)x (c), where v : R→ R.

Throughout the paper we make the following assumption.

Assumption The function v is strictly increasing and continuous.

In this monetary setup, we have the following classic notion.

Definition 2 A preference % on F is constant absolute risk averse (CARA) if, for any two
levels w and w′ of wealth, the induced preferences %w and %w′ agree on ∆0 (R).

This behavioral definition amounts to say that preferences over lotteries are unaffected

by the level of wealth w. A routine argument shows that, if % (on lotteries) is represented by
an affi ne utility function u : ∆0 (R) → R, then % is CARA if and only if there exist α ∈ R,
a > 0, and b ∈ R such that

v (c) = vα (c) =

{
−a 1

αe
−αc + b if α 6= 0

ac+ b if α = 0
, (4)

that is, if vα is either exponential or affi ne. In the former case, % is a CARA preference

which is not risk neutral; in particular, it is (strictly) risk averse if α > 0 and (strictly) risk

loving if α < 0.25 Note that

Imu =


(−∞, b) if α > 0

(b,+∞) if α < 0

(−∞,+∞) if α = 0

and so b = sup Imu when % is risk averse and b = inf Imu when % is risk loving. Momen-
tarily, this extremum role of b will play a key role in Theorem 2.
24Here, u◦ and u# are part of a canonical representation for, respectively, %◦ and %#.
25 In what follows, we omit “strictly”since a CARA preference is either risk neutral (α = 0) or strictly risk

averse (α > 0) or strictly risk loving (α < 0).
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3.2 Rational preferences

Absolute ambiguity attitudes describe how the decision maker’s preferences over uncertain

monetary alternatives vary as his wealth changes. This motivates the following behavioral

definition, which adapts to our setting a standard notion for risk domains. We then proceed

to characterize it for rational and for uncertainty averse preferences.

Definition 3 A preference % on F is decreasing (increasing, constant) absolute ambiguity

averse if, for any two levels w and w′ of wealth, w′ > w implies that %w is more (less,

equally) ambiguity averse than %w′.26

As this classification is not exhaustive, we say that a preference is (absolutely) classifiable

in terms of absolute ambiguity aversion if it can be classified according to this definition,

that is, if it is either decreasing or increasing or constant absolute ambiguity averse. The

next result shows that being CARA is a necessary condition for a preference in order to be

classifiable: in fact, in this way absolute risk attitudes do not intrude in wealth effects.

Proposition 3 A rational preference % is classifiable only if it is CARA.

We first characterize absolute ambiguity attitudes for rational preferences.

Theorem 2 Let % be a rational preference on F with representation (u, I). The following

statements are equivalent:

(i) % is decreasing absolute ambiguity averse;

(ii) % is CARA and I is:

(a) concave (convex) at b provided % is risk averse (loving);

(b) constant superadditive provided % is risk neutral.

(iii) % is classifiable and I satisfies (a) or (b).

When vα (c) = − 1
αe
−αc, and so a = 1 and b = 0, in point (a) concavity (convexity) at b

reduces to positive superhomogeneity (subhomogeneity).27

Dual versions of this theorem are easily seen to hold for increasing and constant absolute

ambiguity aversion (for this latter case see Corollary 1). In particular, by keeping the same

premises, Theorem 2 takes a similar form with (i), (ii), and (iii) replaced by:

26Clearly, %w is less ambiguity averse than %w′ if and only if %w′ is more ambiguity averse than %w.
Similarly, equally ambiguity averse means that %w is, at the same time, more and less ambiguity averse than
%w′ .
27See also Appendix A for the notions of concavity/convexity at b.
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(i)’% is increasing absolute ambiguity averse;

(ii)’% is CARA and I is:

(a) convex (concave) at b provided % is risk averse (loving);

(b) constant subadditive provided % is risk neutral.

(iii)’% is classifiable and I satisfies (a) or (b).

The next result characterizes constant absolute ambiguity aversion for classifiable rational

preferences. At the same time, the result still holds if instead of requiring % being classifiable
we only require % to be CARA.28

Corollary 1 Let % be a classifiable rational preference on F with representation (u, I).

Then:

(i) If % is risk neutral, it is constant absolute ambiguity averse if and only if I is constant
additive.29

(ii) If % is not risk neutral, it is constant absolute ambiguity averse if and only if I is affi ne
at b.30

When vα (c) = − 1
αe
−αc, and so a = 1 and b = 0, in point (ii) the affi nity at b reduces

to positive homogeneity, that is, I (λϕ) = λI (ϕ) for all λ > 0. Risk neutrality and risk

aversion of % may thus translate constant absolute ambiguity aversion in, respectively, con-
stant additivity and positive homogeneity of I which are two mathematically and decision

theoretically distinct properties.

Indeed, constant additivity and positive homogeneity can be obtained jointly by assuming

C-Independence. The assumption of C-Independence could be equivalently rewritten as for

each f, g ∈ F , x, y ∈ ∆0 (R), and α, β ∈ (0, 1]

αf + (1− α)x % αg + (1− α)x =⇒ βf + (1− β) y % βg + (1− β) y.

Thus, as argued in [27, p. 1454], C-Independence actually involves two types of independence:

independence relative to mixing with constants and independence relative to the weights

used in such mixing. The first type (Weak C-Independence) corresponds to I being constant

additive while the second type, in the presence of a worst consequence, corresponds to I

being positively homogeneous (see Chateauneuf and Faro [12]). Another class of preferences

28Recall that, by Proposition 3, classifiable preferences are CARA.
29Recall that Imu = R in the risk neutral case.
30Recall that b = sup Imu when % is risk averse and b = inf Imu when % is risk loving.
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that satisfy Weak C-Independence, but do not necessarily satisfy Convexity, is the class of

vector expected utility preferences (see Siniscalchi [32]).31

Corollary 2 A risk neutral rational preference is constant absolute ambiguity averse if and
only if it satisfies Weak C-Independence.

Along with Corollary 1, the next result shows that invariant biseparable preferences are

a class of rational preferences that, when classifiable, are constant absolute ambiguity averse

regardless of their risk attitudes.

Corollary 3 Let % be an invariant biseparable preference % on F . The following conditions
are equivalent:

(i) % is classifiable;

(ii) % is constant absolute ambiguity averse;

(iii) % is CARA.

As mentioned in the introduction, Corollary 2 (and Corollary 4 below) show that our

analysis is consistent, under risk neutrality, with the approach of Grant and Polak [23].

Since we are dealing with acts yielding monetary lotteries, it is also possible to discuss

monetary certainty equivalents. Given a canonical representation (u, I), we can define the

functional c : F → R by the rule c (f) = v−1 (I (u (f))). Note that, given f ∈ F , the scalar
c (f) is the monetary amount that, received with certainty in each state of the world, makes

the decision maker indifferent between f and the constant (risk free) act paying c (f). We

will say that c is wealth superadditive (resp., subadditive, additive) if and only if for each

f ∈ F and for each w ≥ 0

c (fw) ≥ c (f) + w (resp., ≤,= ).

Proposition 4 Let % be a rational preference on F with representation (u, I). Then:

(i) % is decreasing absolute ambiguity averse if and only if c is wealth superadditive and
% is CARA.

(ii) % is increasing absolute ambiguity averse if and only if c is wealth subadditive and %
is CARA.

(iii) % is constant absolute ambiguity averse if and only if c is wealth additive and % is

CARA.
31Vector expected utility preferences, on top of being rational and satisfying Weak C-Independence, satisfy

two other axioms of independence/invariance and an extra continuity axiom. In terms of framework, Σ is

required to be countably generated.
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3.3 Uncertainty averse preferences

Assume that % is an uncertainty averse preference. By definition, % is also rational. If (u, I)

is a (rational) representation of %, then there exists a unique minimal linearly continuous
G ∈ G (Imu×∆) such that I (ψ) = infp∈∆G

(∫
ψdp, p

)
for all ψ ∈ B0 (Σ, Imu). Uncertainty

averse preferences are thus characterized by the pair (u,G). In particular, the function G is

an index of ambiguity aversion.32

Now we characterize absolute ambiguity attitudes for uncertainty averse preferences in

terms of the pair (u,G).

Theorem 3 Let % be an uncertainty averse preference on F with representation (u,G). The

following statements are equivalent:

(i) % is decreasing absolute ambiguity averse;

(ii) % is CARA and G is such that:

(a) G (λt+ (1− λ) b, p) ≥ λG (t, p) + (1− λ) b (≤) for all (t, p) ∈ Imu × ∆ and for

all λ ∈ (0, 1) provided % is risk averse (loving);

(b) G (t+ k, p) ≥ G (t, p) + k for all (t, p) ∈ Imu × ∆ and for all k ≥ 0 provided

% is risk neutral.

(iii) % is classifiable and G satisfies (a) or (b).

As mentioned in the Introduction and above, our analysis is consistent, under risk neutral-

ity, with the approach of Grant and Polak [23]. Indeed, the role of constant superadditivity

in Theorem 3 shows that a similar consistency holds with the results of Xue [38] and [39]

where decreasing absolute ambiguity aversion is modelled in terms of utility shifts.

In Theorem 3 as well, dual versions of this result hold in the increasing and constant

absolute ambiguity averse case (with, respectively, opposite inequalities and equalities).

The next corollary shows that the behavioral characterization established in Corollary 2

leads to variational preferences when preferences are uncertainty averse.

Corollary 4 A risk neutral uncertainty averse preference is constant absolute ambiguity

averse if and only if it is a variational preference.

The next result reports a noteworthy consequence of the previous theorem for uncertainty

averse preferences which feature a concave G (or, equivalently, a concave I).

32These facts can be found in [9] (see also Appendix A). Because of the minimality of G, we have G (t, p) =

supf∈F
{
u (xf ) :

∫
u (f) dp ≤ t

}
for all (t, p) ∈ Imu×∆. The function G is unique given u.
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Corollary 5 Let % be an uncertainty averse preference which is CARA and risk averse. If
G is concave, then % is decreasing absolute ambiguity averse.

This corollary can be sharpened for the class of variational preferences that are not

maxmin, and so in particular are not invariant biseparable. This class features a concave G.

Corollary 6 A variational preference, which is not maxmin and not risk neutral, satisfies:

(i) decreasing absolute ambiguity aversion if and only if it is CARA and risk averse;

(ii) increasing absolute ambiguity aversion if and only if it is CARA and risk loving.

In order to characterize constant absolute ambiguity attitudes when the preference is not

risk neutral, we need to consider homothetic preferences.

Corollary 7 A risk nonneutral uncertainty averse preference is constant absolute ambiguity
averse if and only if it is CARA and homothetic.

To sum up, depending on risk attitudes, either homothetic or variational preferences

characterize constant absolute ambiguity attitudes for uncertainty averse preferences.

3.4 Smooth ambiguity preferences

Let φ : Imu→ R be a strictly increasing and continuous function, and µ a Borel probability
measure over ∆. The preferences represented by a pair (u, I), where

I (ϕ) = φ−1

(∫
φ

(∫
ϕdp

)
dµ

)
(5)

are called smooth ambiguity preferences (Klibanoff, Marinacci and, Mukerji [26]). They are

uncertainty averse when φ is concave.

Proposition 5 Let % be a CARA smooth ambiguity preference and φ (t) = −e−γt with
γ > 0. Then,

(i) If % is risk neutral, then it is constant absolute ambiguity averse.

(ii) If % is risk averse, then it is decreasing absolute ambiguity averse.

In our setup an exponential φ thus yields constant absolute ambiguity aversion, as argued

in [26], as long as % is risk neutral. In the next result, using Theorem 2, we provide a full

characterization of decreasing absolute ambiguity aversion within the smooth ambiguity

model. Before doing so, we need to introduce some additional notions and terminology.

Given φ : R → R and w ∈ R, we define φw : R → R to be such that φw (t) = φ (t+ w)

for all t ∈ R. Similarly, given φ : (−∞, 0)→ R (resp., φ : (0,∞)→ R) and ν > 0, we define

φν (t) = φ (νt) for all t < 0 (resp., t > 0).
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Definition 4 Let φ : Imu→ R be strictly increasing and continuous.

(i) If Imu = R, we say that φ is DARA if for each w′, w ∈ R, with w′ > w, there exists a

strictly increasing and concave f : Imφ→ Imφ such that φw = f ◦ φw′.

(ii) If Imu = (−∞, 0), we say that φ is IRRA if for each ν, η > 0, with ν > η, there exists

a strictly increasing and concave f : Imφ→ Imφ such that φν = f ◦ φη.

(iii) If Imu = (0,∞), we say that φ is DRRA if for each ν, η > 0, with ν > η, there exists

a strictly increasing and concave f : Imφ→ Imφ such that φη = f ◦ φν .

Consider a function φ : Imu → R which is twice continuously differentiable and such

that φ′ > 0. Clearly, φ is DARA if and only if −φ′′ (t) /φ′ (t) is decreasing and similarly, φ
is DRRA (resp., IRRA) if and only if −tφ′′ (t) /φ′ (t) is decreasing (resp., increasing).

Proposition 6 Let % be a CARA smooth ambiguity preference with b = 0 in (4) and assume

that Σ is nontrivial. Then,

(i) If % is risk neutral, % is decreasing absolute ambiguity averse for all µ if and only if
φ is DARA.

(ii) If % is risk averse, % is decreasing absolute ambiguity averse for all µ if and only if φ
is IRRA.

(iii) If % is risk loving, % is decreasing absolute ambiguity averse for all µ if and only if φ
is DRRA.

This result provides some behavioral guidance in the specification of the function φ, as

the standard theory of absolute risk aversion of Arrow and Pratt provides guidance in the

choice of the von Neumann-Morgenstern utility function.

Remark 1 Cherbonnier and Gollier [13, Proposition 2 and Corollary 1], in a different frame-
work, characterize decreasing absolute uncertainty aversion (being the sum of risk and am-

biguity) for the smooth ambiguity model (see also Section 4). Under the assumption that φ

is concave, they show that a smooth ambiguity preference is decreasing absolute uncertainty

averse if and only if v and φ ◦ v are both DARA. The characterization in Proposition 6,
where v is CARA, is consistent with their findings. At the same time, in our case, φ does

not have to be concave.

Let cf (p) ∈ R be the monetary certainty equivalent of act f under p, that is, cf (p) =

v−1
(∫
u (f) dp

)
. By setting w = φ ◦ v : R→ R, the smooth ambiguity representation can be
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written as

V (f) =
(
v ◦ w−1

)(∫
w (cf (p)) dµ

)
=
(
v ◦ w−1

)(∫ (
w ◦ v−1

)(∫
u (f) dp

)
dµ

)
.

The function w can be interpreted as aversion to epistemic uncertainty.33 When v is the

identity, we have φ = w and so point (i) of the Proposition 5 can be interpreted in terms of

constant attitudes toward such uncertainty. When both v (c) = −e−αc and w (c) = −e−βc

are risk averse exponentials, with β > α > 0, then φ (t) = − (−t)
β
α . The condition β > α can

be interpreted as higher aversion to epistemic uncertainty than to risk (both being constant

absolute averse). The next result shows that in this double exponential case the resulting

absolute ambiguity aversion is decreasing.

Proposition 7 Let % be a CARA smooth ambiguity preference, with b ≤ 0 in (4), and

suppose φ (t) = − (−t)γ for all t < 0 with γ > 1. If % is risk averse, then it is decreasing
absolute ambiguity averse.

3.5 Portfolio problem

In this section we study how absolute ambiguity attitudes affect portfolio choices. To do so,

we adapt to our setting the standard portfolio exercise of Arrow which originally was carried

in a risk domain, as an illustration of the implications of absolute and relative risk attitudes

(see Section 5.3 for the study of relative attitudes). Assume that f : S → ∆0 (R) is a purely

ambiguous asset, that is, for each state of the world f yields a deterministic consequence,

interpreted as a return. Formally, as an Anscombe and Aumann act, we have that f (s) = δrs
for all s ∈ S where rs > 0 is the return in state s.34 The risk free asset is instead modelled

by the act g such that g (s) = δrf for all s ∈ S where rf > 0 is the return on the risk free

asset. The agent faces the following portfolio problem: he has wealth w > 0 which he has to

allocate between the ambiguous asset and the risk free asset. We denote by β the amount of

wealth invested in the ambiguous asset and by w−β the amount invested in the risk free one.
We assume that the agent cannot short any of the two securities and therefore β ∈ [0, w].

Note that the allocation (β,w − β) generates an Anscombe and Aumann act that in each

state of the world yields δβrs+(w−β)rf where βrs + (w − β) rf = wrf + β (rs − rf ) is the final

wealth level in state s. We denote the real-valued measurable random variable s 7→ rs by

r. Similarly, with a small abuse of notation, we denote by rf the constant random variable

that in each state s assumes value rf .

33See Marinacci [28] for a discussion of this version of the smooth ambiguity model. The context should

clarify that here w is a function and not a wealth level.
34As usual, x = δc is the degenerate lottery at c, that is, x (d) = 1 if d = c, and x (d) = 0 otherwise.

21



In terms of preferences, we assume that the agent has rational preferences % on F with
canonical representation (u, I) and von Neumann-Morgenstern function v : R → R. The
portfolio problem amounts to

max I (v (βr + (w − β) rf )) subject to β ∈ [0, w] . (6)

In what follows, we assume that this problem always admits a unique solution for all w > 0,

denoted by β∗ (w).

Proposition 8 Let % be a rational preference on F with representation (u, I). If % is

constant absolute ambiguity averse, then

w′ > w > 0 =⇒ β∗
(
w′
)
≥ β∗ (w) .

If, in addition, β∗ (w) ∈ (0, w) with w > 0 and % is risk averse and uncertainty averse, then

w′ > w =⇒ β∗
(
w′
)

= β∗ (w) .

Before discussing the result, we comment on its generality. From a theoretical point of

view, note that, differently from what happens under risk, the subclass of preferences which

exhibit constant absolute attitudes is quite large. Under risk and the expected utility model,

constant absolute attitudes coincide to a very specific form of v. In contrast, under ambi-

guity constant absolute attitudes encompass a family of preferences: α-maxmin, Choquet

expected utility, variational under risk neutrality, vector expected utility under risk neutral-

ity, homothetic under risk nonneutrality as well as the risk averse CARA smooth ambiguity

preferences % of Proposition 7 when b = 0. That said, the relevance of this family to describe

the behavior of decision makers is, in a final analysis, an empirical question.

We next discuss the second part of the statement. The result is indeed in line with

intuition. If the decision maker is risk and uncertainty averse, then his preferences are convex

in β, so the agent values diversification. It follows that if β∗ (w) is an interior solution, then

an intermediate subjective optimal balance has been found between the certainty provided

by the risk free asset and the potentially higher, yet uncertain, returns of the ambiguous

asset. At the same time, if w′ > w and % is constant absolute ambiguity averse, then wealth
does not impact the ambiguity attitudes of the decision maker. In other words, the increment

in wealth (w′ − w) rf is factored out and, as a consequence, the previously optimal balance

between the risk free asset and the ambiguous one is unaffected, that is, β∗ (w′) = β∗ (w).

In the first part of the statement, we only obtain a weak inequality since we impose no

restriction on β∗ (w). This is easy to understand if, for example, we think of the case where

rs > rf for all s ∈ S. In such a case, the decision maker would always choose β∗ (w) = w,

no matter what and the inequality would trivially follow.

Note that the second part of the statement provides a testable implication for constant

absolute ambiguity aversion which could be brought to portfolio composition data. Indeed,
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under the assumption the agent is risk averse and uncertainty averse as well as β∗ (w) > 0,

constant absolute ambiguity aversion yields that the share of wealth invested in the non risk

free asset decreases with the person’s wealth, that is,

w′ > w > 0 =⇒ β∗ (w)

w
≥ β∗ (w′)

w′
.

It eluded us to which extent a general portfolio result holds for decreasing absolute ambi-

guity aversion. We were able to prove such a result for two important classes of preferences:

1) risk neutral smooth ambiguity preferences and 2) CARA multiplier preferences. This is

still somehow surprising in light of the negative result of Yaari [40, p. 322 and Figure 2]. In

a nutshell, Yaari, in a mildly different framework, provides an example of convex preferences

which are decreasing absolute uncertainty averse (see Section 4 and Proposition 11) for which

the investment in the uncertain security, at least locally, decreases as wealth increases.

In the first case, by Proposition 6 and since % is risk neutral, by choosing v to be the
identity, we know that decreasing absolute ambiguity aversion amounts to impose φ being

DARA, provided Σ is nontrivial.

Proposition 9 Let % be a CARA smooth ambiguity preference with φ twice continuously

differentiable and such that φ′ > 0. If % is risk neutral, φ is concave and DARA, and

β∗ (w) ∈ (0, w) with w > 0, then

w′ > w =⇒ β∗
(
w′
)
≥ β∗ (w) . (7)

The second result instead deals with Hansen and Sargent [24] multiplier preferences.

Recall that % is a multiplier preference if it admits a rational representation (u, I) where

I (ϕ) = −1

θ
log

(∫
e−θϕdq

)
= min

p∈∆

{∫
ϕdp+

1

θ
R (p||q)

}
where θ > 0, q is a countably additive element of ∆, and R (p||q) is the relative entropy of p
with respect to q.35 Multiplier preferences are variational. By Corollary 6, if % is risk averse
then % is decreasing absolute ambiguity averse.

Proposition 10 Let % be a CARA multiplier preference. If % is risk averse and β∗ (w) ∈
(0, w) with w > 0, then (7) holds.

Remark 2 Cherbonnier and Gollier [13] carried out a portfolio analysis for decreasing ab-
solute uncertainty averse smooth and α-maxmin preferences. It is, however, a different

exercise than ours, based also on assumptions on returns. Combined with the differences in

the frameworks, this makes their results not directly comparable with ours. In particular,

in our setting also for the smooth ambiguity model we have a monotonicity result in wealth

(cf. [13, Proposition 5]).

35See also Maccheroni, Marinacci, and Rustichini [27, Section 4.2.1] as well as Strzalecki [33].
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4 General absolute risk attitudes

In an Anscombe and Aumann setting, under the usual interpretation there are two sources

of uncertainty: one which is objective — risk, the lotteries in ∆0 (R) — and one which is

subjective —ambiguity, the events in S. In studying how changes in wealth affect ambiguity

attitudes, our analysis rested on the comparative notion of being more ambiguity averse

contained in Definition 1. This notion has the desirable feature of equalizing risk attitudes

(cf. Propositions 2 and 3). Thus, all the differences between %w and %w′ can be rightfully
attributed to attitudes toward ambiguity. Moreover, as we argued in the Introduction, this

is in line with how comparative statics exercises are carried in Economics when a change in

one variable generates effects through different channels.

At the same time, one could be interested in allowing for more general absolute risk

attitudes. Clearly, if possible, any such analysis will encompass the CARA case (hence, this

paper) as a particular, yet important, case. In general, allowing for more general absolute

risk attitudes presents a diffi culty. Namely, we are not able anymore to disentangle the

effects of wealth on uncertainty attitudes coming from ambiguity and risk. We thus tackle

the problem in a different way. We explore how much our characterization is portable to

a non-CARA setting. In particular, outside the CARA framework, we identify absolute

ambiguity attitudes with the functional properties found in the previous part of the paper

and see how much this allows us to talk about absolute uncertainty attitudes.

Indeed, assume that one is interested in the overall uncertainty attitudes of the decision

maker, that is, loosely speaking in the sum of risk and ambiguity attitudes. Formally, let T

be equal to either R or R++ and X = ∆0 (T ).36

Definition 5 Given two preferences %1 and %2 on F , we say that %1 is more uncertainty

averse than %2 if, for each f ∈ F and c ∈ T , f %1 δc implies f %2 δc.37

Consider two rational preferences %1 and %2 with canonical representations (u1, I1)

and (u2, I2). Let v1, v2 : T → R be the respective von Neumann-Morgenstern utilities

on monetary outcomes.38 It follows that %1 is more uncertainty averse than %2 if and

only if c1 (f) ≤ c2 (f) for all f ∈ F where, for i ∈ {1, 2}, ci : F → T is such that

ci (f) = v−1
i (Ii (ui (f))) for all f ∈ F . In other words, %1 is more uncertainty averse

than %2 if and only if for each act f the monetary certainty equivalent of decision maker 1

is smaller than or equal to the monetary certainty equivalent of decision maker 2.

36For the case R++, we have to slightly modify the definition of xw and %w. See Appendix B.3.1 for details.
37Recall that x = δc is the degenerate lottery at c, that is, x (d) = 1 if d = c, and x (d) = 0 otherwise.

Recall also that lotteries are identified with constant acts.
38Recall that we always assume that v1 and v2 are strictly increasing and continuous.
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Remark 3 Since lotteries are identified with constant acts, %1 is more uncertainty averse

than %2 only if %1 is more risk averse than %2. In particular, v2 is a strictly increasing and

convex transformation of v1.

By definition, if %1 is more ambiguity averse than %2, then %1 is more uncertainty averse

than %2.39 At the same time, there is something more to this mathematically trivial implica-

tion. Indeed, the economic reason why comparative ambiguity aversion implies comparative

uncertainty aversion is that %1 coincides with %2 on ∆0 (T ) so that all the differences come

from ambiguity attitudes and those add up to the common behavior of %1 and %2 over risk.

Thus, in our attempt to combine our analysis on ambiguity attitudes with different ab-

solute risk attitudes, we use Definition 5 to study how variations in wealth impact uncertainty

attitudes:

Definition 6 A preference % on F is decreasing (increasing, constant) absolute uncertainty
averse if, for any two levels w and w′ of wealth, w′ > w implies that %w is more (less,

equally) uncertainty averse than %w′.

Remark 4 The standard notions of decreasing (increasing, constant) absolute risk aversion
are defined using this definition, only restricted to lotteries. In what follows, we will refer to

decreasing and increasing absolute risk aversion also as DARA and IARA.

As mentioned, intuitively, Definition 6 captures the combined effects of changes in wealth

that come from two channels: risk and ambiguity. Hence, if we were to shut down one of the

two, namely risk, all the effects should come from the other. The next simple result confirms

this intuition.

Proposition 11 Let % be a CARA rational preference on F . The following statements are
equivalent:

(i) % is decreasing (increasing, constant) absolute uncertainty averse;

(ii) % is decreasing (increasing, constant) absolute ambiguity averse.

In words, once wealth’s effects on risk are neutralized, the effects on uncertainty attitudes

equate the effects on ambiguity attitudes.

The goal of this section is to allow for more general absolute attitudes toward risk and

study how changes in wealth affect uncertainty attitudes where the latter are seen as the

combination of ambiguity and risk attitudes.

39Degenerate lotteries are a subset of ∆0 (T ).
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On the one hand, since there are two channels where uncertainty kicks in, characteriza-

tions are very diffi cult and might be model dependent (see, for example, Cherbonnier and

Gollier [13, Propositions 1 and 2]). Indeed, loosely speaking, one could think of the following

scenario. Consider a decision maker who is:

1. decreasing absolute risk averse;

2. increasing absolute ambiguity averse (still to be defined outside a CARA setting).

A priori, we could still observe a decreasing absolute uncertainty averse behavior, pro-

vided absolute risk aversion quantitatively cancels the positive effects on uncertainty coming

from the increasing ambiguity attitudes.

On the other hand, since our analysis is qualitative, we are only going to focus on the

combined effects of risk and ambiguity when they both share the same nature. For example,

we are going to study if decreasing absolute risk aversion and decreasing absolute ambiguity

aversion yield indeed decreasing absolute uncertainty aversion.

By Remark 3, a decision maker who is decreasing absolute uncertainty averse must be

DARA. Similar observations hold for increasing and constant absolute uncertainty attitudes.

Therefore, in studying either of these three notions the attitudes on risk must necessarily

match the ones on the overall uncertainty.

The conceptual issue in such an exercise is the exact meaning of decreasing absolute

ambiguity aversion when behavior under risk is not confined to be CARA. Outside the

CARA realm, we are going to identify decreasing absolute ambiguity aversion, DAAA, with

the functional properties of I that characterize such a behavioral property in the CARA

setting. By Theorem 2, recall that40

Under risk aversion: DAAA = Concavity at b of I

and

Under risk love: DAAA = Convexity at b of I.

So, in the next results we interpret concavity/convexity of I at b in terms of DAAA.

Proposition 12 Let % be a rational preference with representation (u, I) that satisfies Weak

C-Independence and Unboundedness. Then, % is decreasing absolute uncertainty averse if

either of the following two conditions holds:

(i) % is risk averse, DARA, and I is concave at b;
40As in the CARA case, we continue to set b = sup Imu if Imu = (−∞, b) and b = inf Imu if Imu = (b,+∞).

At the same time, we set b = 0 if Imu = R. Note that if % is not CARA, then Imu can be the entire real

line even if not risk neutral.
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(ii) % is risk loving, DARA, and I is convex at b.

The previous proposition confirms that41

DARA+DAAA =⇒ DAUA.

This result is proved for a large class of preferences, namely the class of rational preferences

that satisfy Weak C-Independence and therefore contains, inter alia, the class of invariant

biseparable preferences [17], variational preferences [27], and vector expected utility prefer-

ences [32].

Under the same premises of Proposition 12, a dual version holds for increasing absolute

uncertainty aversion: % is increasing absolute uncertainty averse if either of the following
two conditions holds:

(i)’% is risk averse, IARA, and I is convex at b;

(ii)’% is risk loving, IARA, and I is concave at b.

The results that follow are aimed to further confirm the above intuitions. For example,

the class of invariant biseparable preferences was identified in Corollary 3 as a large class of

constant absolute ambiguity averse preferences (CAAA). Thus, one should expect that for

this class, if attitudes over risk are assumed to be DARA, then the overall attitudes should

be indeed DAUA, that is,

DARA+ CAAA =⇒ DAUA.

This is the content of the next result.

Proposition 13 Let % be an invariant biseparable preference on F . The following conditions
are equivalent:

(i) % is decreasing absolute uncertainty averse;

(ii) % is DARA.

Remark 5 Cherbonnier and Gollier [13, Proposition 1] proved that an α-maxmin preference
is decreasing absolute uncertainty averse if and only if it is DARA. The above result general-

izes their result to the class of invariant biseparable preferences.42 Compared to Proposition

12, we can dispense with the assumption of Unboundedness and % can be neither risk averse
nor risk loving.

41Decreasing absolute uncertainty averse is abbreviated to DAUA.
42This class is much larger since it contains, inter alia, Choquet expected utility preferences which are not

α-maxmin. At the same time, Cherbonnier and Gollier obtain their result in a different framework.
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Proposition 14 Let % be a rational preference with representation (u, I). If % is risk averse,
DARA, and such that Imu = (b,∞) and I is concave at b and constant superadditive, then

% is decreasing absolute uncertainty averse.

The previous result continues to hold if I is assumed to be concave, a much easier property

to check.

Corollary 8 Let % be a rational preference with representation (u, I). If % is risk averse,
DARA, and such that Imu = (b,∞) and I is concave, then % is decreasing absolute uncer-
tainty averse.

One more time, we obtain that decreasing absolute attitudes on risk and ambiguity

compound and yield decreasing absolute attitudes on uncertainty (cf. Corollary 5).

Note that this corollary also provides an alternative way to experimentally test the valid-

ity of some models of choice under ambiguity, for example, variational preferences or some

specification of the smooth ambiguity model. Indeed, variational preferences feature a con-

cave functional I. For example, if an experimenter notices that the agent, whose choices

she is observing, is risk averse and DARA, but not decreasing absolute uncertainty averse,

then she can rule out that the agent can be represented by a concave functional I. Thus,

in particular, the agent’s preferences are neither variational nor smooth where I is as in the

example below.43 Note that a similar observation can be made using other results present

in this section. For example, Proposition 13 could be used to test invariant biseparable

preferences.44

Example 1 Let v : R++ → R be such that v (c) = cγ for all c ∈ R++ with γ ∈ (0, 1).

Clearly, we have that Imu = (b,∞) with b = 0. Let φ : Imu → R be the power function

φ (t) = tρ with ρ ∈ (0, 1). Let µ be a Borel probability measure over ∆. The rational

preference represented by the pair (u, I), where

I (ϕ) = φ−1

(∫
φ

(∫
ϕdp

)
dµ

)
,

is a smooth ambiguity preference which satisfies all the hypotheses of Corollary 8. It follows

that % is decreasing absolute uncertainty averse. N
43The experimenter should assume that choices under risk are explained by a von Neumann-Morgenstern

whose image is such that Imu = (b,∞). Clearly, there are several functional specifications with this property.
44 In this case, the experimenter does not need to make any assumption or test about the risk attitudes

(i.e., aversion/love) of the agent and the shape of Imu.
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5 Relative ambiguity aversion

5.1 Relative analysis

In this section we briefly explore relative ambiguity aversion. Due to the relevance of relative

attitudes in applied work, we report the main definitions and characterizations.45 For this

reason, we focus on lotteries which yield only strictly positive numbers, interpreted as returns:

X = ∆0 (R++). As before, we consider a group of transformations on X, but this time, it

is indexed by R++. In particular, given ν > 0, we denote by ν : ∆0 (R++) → ∆0 (R++) the

affi ne and onto map such that xν (νc) = x (c) for all c ∈ R++ and for all x ∈ ∆0 (R++).

Given wealth ν > 0, the lottery xν is interpreted as the distribution of final wealth if ν is

invested in x. In this monetary setup, we have the following classic notion.

Definition 7 A preference % on F is constant relative risk averse (CRRA) if, for any

two strictly positive levels ν and η of wealth, the induced preferences %ν and %η agree on
∆0 (R++).

This behavioral definition amounts to say that preferences over lotteries yielding returns

are unaffected by changes in invested wealth. A routine argument shows that, if % is rep-
resented by an affi ne utility function u : ∆0 (R++) → R,46 then % is CRRA if and only if

there exist γ ∈ R, a > 0, and b ∈ R such that

vγ (c) =

{
aγcγ + b if γ 6= 0

a log c+ b if γ = 0
, (8)

that is, if vγ is either a power or the logarithm. Note that

Imu =


(−∞, b) if γ < 0

(b,+∞) if γ > 0

(−∞,+∞) if γ = 0

and so b = sup Imu when γ < 0 and b = inf Imu when γ > 0. Again, this extremum role of

b will play a key role momentarily (Theorem 4).

5.2 Relative ambiguity attitudes

Relative ambiguity attitudes describe how the decision maker’s preferences over uncertain

monetary returns vary as the wealth invested changes. This motivates the following behav-

ioral definition, which adapts to our setting a standard notion for risk domains. We then

proceed to characterize it for rational preferences.

45Proofs follow closely the ones carried out for the absolute case and are therefore omitted for brevity.
46Even in this section, we maintain the assumption that if % on ∆0 (R++) is represented by an affi ne utility

function, then its von Neumann-Morgenstern utility function is strictly increasing and continuous.
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Definition 8 A preference % on F is decreasing (increasing, constant) relative ambiguity

averse if, for any two strictly positive levels ν and η of wealth, ν > η implies that %η is more
(less, equally) ambiguity averse than %ν .

Since also this classification of preferences is not exhaustive, we say that a preference is

relatively classifiable (in terms of relative ambiguity aversion) if it can be classified according

to this definition, that is, if it is either decreasing or increasing or constant relative ambiguity

averse. The next result shows that being CRRA is a necessary condition for a preference to

be relatively classifiable: indeed, in this way relative risk attitudes do not intrude in wealth’s

proportionality effects.

Proposition 15 A rational preference % is relatively classifiable only if it is CRRA.

We next characterize decreasing relative ambiguity attitudes for rational preferences.

Theorem 4 Let % be a rational preference on F with representation (u, I). The following

statements are equivalent:

(i) % is decreasing relative ambiguity averse;

(ii) % is CRRA and I is:

(a) concave (convex) at b provided γ < 0 (γ > 0);

(b) constant superadditive provided γ = 0.

(iii) % is relatively classifiable and I satisfies (a) or (b).

Similar characterizations hold for increasing and constant relative ambiguity aversion.47

We next provide a formal statement of a result mentioned in the Introduction which shows

that our results provide behavioral guidance in the choice of the parameters of functional

representations.

Proposition 16 Let % be a CRRA smooth ambiguity preference with b = 0 in (8), γ ∈ [0, 1),

and assume that Σ is nontrivial. Then,

(i) If γ = 0, % is constant relative ambiguity averse for all µ if and only if φ is CARA.48

47 If we replace decreasing relative ambiguity aversion with increasing relative ambiguity aversion, then we

must invert the role of concavity and convexity at b as well as change constant superadditivity in constant

subadditivity. Similarly, if we replace decreasing relative ambiguity aversion with constant relative ambiguity

aversion, then concavity and convexity at b (resp., constant superadditivity) will become affi nity at b (resp.,

constant additivity).
48That is, φ : R→ R is a positive affi ne transformation of either − 1

β
e−βt where β 6= 0 or the identity.
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(ii) If γ ∈ (0, 1), % is constant relative ambiguity averse for all µ if and only if φ is

CRRA.49

Example 2 As common in Macroeconomics, let v : R++ → R be either v (c) = cγ with

γ ∈ (0, 1) or v (c) = log c. Clearly, we have that Imu = (b,∞) with b = 0 in the former case

and Imu = R in the latter. Assume also that the agent has smooth ambiguity preferences,
as common in applications, with φ : Imu → R and µ a Borel probability measure over ∆.

On the one hand, if v is a power function, then choosing φ to be φ (t) = tρ with ρ ∈ (0, 1)

would yield constant relative ambiguity aversion no matter what is µ. On the other hand,

things would be extremely different if v were to be chosen to be the logarithm. In this case,

to obtain constant relative ambiguity aversion one should assume that φ is CARA. In the

former case, Example 1 yields that the preference is also decreasing absolute uncertainty

averse. In the latter case, by assuming that φ is concave too, Proposition 12 brings to the

same conclusion. N

Also in this case, it is possible to introduce monetary certainty equivalents. Given a

canonical representation (u, I), we can again define the functional c : F → R++ by the rule

c (f) = v−1 (I (u (f))). We will say that c is wealth superproportional (resp., subproportional,

proportional) if and only if for each f ∈ F and for each ν ≥ 1

c (fν) ≥ νc (f) (resp., ≤,= ).

Proposition 17 Let % be a rational preference on F with representation (u, I). Then:

(i) % is decreasing relative ambiguity averse if and only if c is wealth superproportional

and % is CRRA.

(ii) % is increasing relative ambiguity averse if and only if c is wealth subproportional and
% is CRRA.

(iii) % is constant relative ambiguity averse if and only if c is wealth proportional and % is
CRRA.

5.3 Portfolio problem and relative attitudes

We again consider the portfolio problem of Section 3.5. In a nutshell, we consider an agent

with rational preferences (u, I) and von Neumann-Morgenstern function v : R++ → R.50

The decision maker is choosing an optimal portfolio which can consist of a mixture between

a purely ambiguous asset, yielding returns rs > 0 for all s ∈ S, and a risk free asset, yielding
49That is, φ : (0,∞)→ R is a positive affi ne transformation of either ρtρ where ρ 6= 0 or log t.
50 In Section 3.5, since we were studying absolute attitudes, v was defined over the entire real line. Never-

theless, given our assumptions on returns the set (0,∞) suffi ces.

31



a constant return rf > 0. The agent has wealth w > 0 which has to be allocated between

these two assets. The number β denotes the absolute amount of wealth invested in the

ambiguous asset. The agent cannot short any of the two securities and therefore β ∈ [0, w].

Formally, the portfolio problem takes the form:

max I (v (βr + (w − β) rf )) subject to β ∈ [0, w] . (9)

Also here, we assume that this problem always admits a unique solution for all w > 0,

denoted by β∗ (w).

Proposition 18 Let % be a rational preference on F with representation (u, I). If % is

constant relative ambiguity averse, then

w′ > w > 0 =⇒ β∗ (w′)

w′
=
β∗ (w)

w
.

In order to understand the previous result, we recall the standard result for constant

relative risk attitudes under risk. In that case, if the decision maker is CRRA and expected

utility, then the share of his wealth invested in the risky asset does not depend on the wealth

level w. Our result is saying that if the risky asset is indeed perceived as ambiguous by the

agent, then constant relative ambiguity attitudes would yield the same prediction. In other

words, the share of wealth invested in the non risk free asset does not vary with the person’s

wealth. It is interesting to note that some papers in the literature exactly look at the share

invested in the risky asset to test if CRRA preferences are consistent with the empirical

evidence (see, e.g., Brunnermeier and Nagel [7] as well as Chiappori and Paiella [14]). Thus,

the empirical evidence in favor of CRRA preferences might be indeed consistent with both

CRRA and constant relative ambiguity attitudes. Recall that rational preferences, which

are also constant relative ambiguity averse, are necessarily CRRA. So, examples of rational

preferences that are constant relative ambiguity averse are: α-maxmin, Choquet expected

utility, variational if v is the logarithm, vector expected utility if v is the logarithm, and the

smooth ambiguity preferences of Example 2.

A Appendix: Mathematics

We denote by B0 (Σ) the set of all real-valued Σ-measurable simple functions. If T is an

interval of the real line, set B0 (Σ, T ) = {ψ ∈ B0 (Σ) : ψ (s) ∈ T for all s ∈ S}. We endow
both B0 (Σ) and B0 (Σ, T ) with the topology induced by the supnorm.

With a small abuse of notation, we denote by k both the real number and the constant

function on S that takes value k. Let ϕ,ψ ∈ B0 (Σ, T ). A functional I : B0 (Σ, T )→ R is:

(i) normalized if I (k) = k for all k ∈ T ;
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(ii) monotone if ϕ ≥ ψ implies I (ϕ) ≥ I (ψ);

(iii) quasiconcave if I (λϕ+ (1− λ)ψ) ≥ min {I (ϕ) , I (ψ)} for all λ ∈ (0, 1);

(iv) positively superhomogeneous (subhomogeneous) if I (λϕ) ≥ (≤)λI (ϕ) for all λ ∈ (0, 1)

such that λϕ ∈ B0 (Σ, T );

(v) positively homogeneous if it is both: positively superhomogeneous and subhomoge-

neous;51

(vi) concave (convex ) at k ∈ cl (T ) if I (λϕ+ (1− λ) k) ≥ (≤)λI (ϕ) + (1− λ) k for all

λ ∈ (0, 1);

(vii) affi ne at k ∈ cl (T ) if it is both concave and convex at k;

(viii) constant superadditive (subadditive) if I (ϕ+ k) ≥ (≤) I (ϕ) + k for all k ≥ 0 such that

ϕ+ k ∈ B0 (Σ, T ).

(ix) constant additive if I is both constant superadditive and subadditive;52

(x) constant linear if I (λϕ+ k) = λI (ϕ) + k for all λ ∈ (0, 1] and k ∈ R such that

λϕ+ k ∈ B0 (Σ, T ). If T is either (−∞, 0) or (0,∞) or R, this amounts to impose that
I is constant additive and positively homogeneous.

When k = 0, concavity (convexity) at k reduces to positive superhomogeneity (subho-

mogeneity).

As well known, the norm dual space of B0 (Σ) can be identified with the set ba (Σ) of all

bounded finitely additive measures on (S,Σ). The set of probabilities in ba (Σ) is denoted

by ∆ and is a (weak*) compact and convex subset of ba (Σ). Elements of ∆ are denoted by

p or q. We endow ∆ and any of its subsets with the weak* topology.

Functions of the form G : T×∆→ (−∞,∞], where T is an interval of the real line, play

an important role in Section 3.3. We denote by G (T×∆) the class of these functions such

that:

(i) G is quasiconvex on T×∆,

(ii) G (·, p) is increasing for all p ∈ ∆,

51When either T = (−∞, 0) or T = (0,∞) or T = R, then I is positively homogeneous if and only if
I (λϕ) = λI (ϕ) for all ϕ ∈ B0 (Σ, T ) and for all λ > 0. Often, in this paper, in talking about positive

homogeneity properties of I, we will either say I is (sup/sub)homogeneous, dropping the qualifier positive,

or equivalently say it is positive (sup/sub)homogeneous as well as positively (sup/sub)homogeneous.
52Note that I is constant additive if and only if I (ϕ+ k) = I (ϕ) + k for all ϕ ∈ B0 (Σ, T ) and for all k ∈ R

such that ϕ+ k ∈ B0 (Σ, T ). In other words, if I (ϕ+ k) = I (ϕ) + k holds for positive constants, then it also

holds for k < 0, provided ϕ,ϕ+ k ∈ B0 (Σ, T ).
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(iii) infp∈∆G (t, p) = t for all t ∈ T .

A function G : T×∆→ (−∞,∞] is linearly continuous if the map

ψ 7→ inf
p∈∆

G

(∫
ψdp, p

)
from B0 (Σ, T ) to [−∞,∞] is extended-valued continuous. Finally, given a function, say

u : X → R, we will denote its image, that is u (X), by Imu.

B Appendix: Proofs and related material

We begin with a preliminary result that will be used in the appendix.

Lemma 1 Let %1 and %2 be two rational preferences on F with representations (u1, I1) and

(u2, I2). The following statements are equivalent:

(i) %1 is more ambiguity averse than %2;

(ii) There exist a > 0 and b ∈ R such that u1 = au2 + b and I1 ≤ I2 (provided u1 = u2).

B.1 Generic set of consequences

Proof of Proposition 1. Clearly, %◦ is well defined. Moreover, we have

f �◦ g ⇐⇒ f %◦ g and g 6%◦ f ⇐⇒ f◦ % g◦ and g◦ 6% f◦ ⇐⇒ f◦ � g◦.

(i). Weak Order. Since % satisfies Weak Order and Monotonicity, it follows that there exist
x̄ and ȳ in X such that x̄ � ȳ. Since ◦ is bijective, it follows that there exist x, y ∈ X such

that x̄ = x◦ and ȳ = y◦. By definition of %◦, we have that

x̄ � ȳ =⇒ x◦ � y◦ =⇒ x �◦ y,

proving that %◦ is nontrivial. Consider f, g ∈ F . Since f◦, g◦ ∈ F and % satisfies Weak

Order, we have that either f◦ % g◦ or g◦ % f◦. By definition of %◦, this implies that either
f %◦ g or g %◦ f or both, thus proving that %◦ is complete. Next, consider f, g, h ∈ F and
assume that f %◦ g and g %◦ h. By definition of %◦, we have that f◦ % g◦ and g◦ % h◦.

Since % satisfies Weak Order, we can conclude that f◦ % h◦, that is, f %◦ h, proving that
%◦ is transitive. We can conclude that %◦ satisfies Weak Order.
Monotonicity. Consider f, g ∈ F and assume that f (s) %◦ g (s) for all s ∈ S. By definition
of %◦ and ◦, it follows that f◦ (s) = f (s)◦ % g (s)◦ = g◦ (s) for all s ∈ S. Since % satisfies
Monotonicity, we have that f◦ % g◦, that is, f %◦ g.
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Continuity. Consider f, g, h ∈ F and a sequence {αn}n∈N ⊆ [0, 1] such that αn → α and

αnf + (1− αn) g %◦ h for all n ∈ N. By definition of %◦ and since ◦ is affi ne, we have
αnf

◦ + (1− αn) g◦ = (αnf + (1− αn) g)◦ % h◦ for all n ∈ N. Since % satisfies Mixture

Continuity, we have that (αf + (1− α) g)◦ = αf◦ + (1− α) g◦ % h◦. We can conclude that

αf + (1− α) g %◦ h. Thus, the set {α ∈ [0, 1] : αf + (1− α)g %◦ h} is closed. A symmetric
argument yields the closure of {α ∈ [0, 1] : h %◦ αf + (1− α)g}.
Risk Independence. Consider x, y, z ∈ X, α ∈ (0, 1), and assume that x ∼◦ y. It follows that
x◦ ∼ y◦. Since % satisfies Risk Independence and ◦ is affi ne, we have that

(αx+ (1− α) z)◦ = αx◦ + (1− α) z◦ ∼ αy◦ + (1− α) z◦ = (αy + (1− α) z)◦ ,

proving that αx+ (1− α) z ∼◦ αy + (1− α) z.

(ii). We only need to show that %◦ also satisfies Convexity.
Convexity. Consider f, g ∈ F and α ∈ (0, 1) and assume that f ∼◦ g. It follows that
f◦ ∼ g◦. Since % satisfies Convexity and ◦ is affi ne, we have that (αf + (1− α) g)◦ =

αf◦ + (1− α) g◦ % f◦, that is, αf + (1− α) g %◦ f . �

Proof of Proposition 2. By Proposition 1, both preferences %◦ and %# are rational

preferences. By Theorem 1, both preferences have a canonical representation: (u◦, I◦) and(
u#, I#

)
. In particular, u◦ and u# are nonconstant and affi ne. Since %◦ is more ambiguity

averse than %#, we have that y %◦ x implies y %# x. Thus, we conclude that u◦ (y) ≥ u◦ (x)

implies u# (y) ≥ u# (x). By [17, Corollary B.3], the statement follows. �

The next result will be instrumental in proving Theorem 2, Propositions 12 and 14 as

well as Corollary 8.

Proposition 19 Let (u, I) and
(
ū, Ī
)
be two canonical rational representations. The two

representations (u, I) and
(
ū, Ī
)
represent the same rational preference % if and only if there

exist a > 0 and b ∈ R such that

ū = au+ b and Ī (·) = aI

(
· − b
a

)
+ b.

Moreover,

(i) I is concave if and only if Ī is concave.

(ii) I is concave (convex, affi ne) at c if and only if Ī is concave (convex, affi ne) at ac+ b.

(iii) I is constant superadditive (subadditive, additive) if and only if Ī is constant superad-

ditive (subadditive, additive), provided Imu is unbounded from above.
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Proof. The first part of the statement follows from [8, Proposition 1]. Define f : R → R
as f (t) = at + b for all t ∈ R. Define T : B0 (Σ, Im ū) → B0 (Σ, Imu) as T (ϕ) = ϕ−b

a for

all ϕ ∈ B0 (Σ, Im ū). Note that both functions are bijective and Ī = f ◦ I ◦ T as well as

I = f−1 ◦ Ī ◦ T−1.

(i). “Only if”. Assume that I is concave. Since f and T are monotone and affi ne and

Ī = f ◦ I ◦ T , it follows that Ī is concave. “If”. Note that I = f−1 ◦ Ī ◦ T−1. Assume that Ī

is concave. Since f−1 and T−1 are monotone and affi ne, it follows that I is concave.

(ii). “Only if”. Assume that I is concave (convex, affi ne) at c ∈ cl (Imu). Note that

c̄ = ac+ b ∈ cl (Im ū). It follows that for each ϕ ∈ B0 (Σ, Im ū) and for each λ ∈ (0, 1)

Ī (λϕ+ (1− λ) c̄) = aI

(
λϕ+ (1− λ) c̄− b

a

)
+ b = aI

(
λ
ϕ− b
a

+ (1− λ)
c̄− b
a

)
+ b

= aI

(
λ
ϕ− b
a

+ (1− λ)
ac+ b− b

a

)
+ b

= aI

(
λ
ϕ− b
a

+ (1− λ) c

)
+ b

≥ (≤,=) a

(
λI

(
ϕ− b
a

)
+ (1− λ) c

)
+ b

= λ

(
aI

(
ϕ− b
a

)
+ b

)
+ (1− λ) (ac+ b) = λĪ (ϕ) + (1− λ) c̄,

proving that Ī is concave (convex, affi ne) at c̄. “If”. Assume that Ī is concave (convex,

affi ne) at c̄ = ac+ b. It follows that for each ϕ ∈ B0 (Σ, Imu) and for each λ ∈ (0, 1)

I (λϕ+ (1− λ) c) =
1

a
Ī (a (λϕ+ (1− λ) c) + b)− b

a

=
1

a
Ī (λ (aϕ+ b) + (1− λ) (ac+ b))− b

a

=
1

a
Ī (λ (aϕ+ b) + (1− λ) c̄)− b

a

≥ (≤,=)
1

a

(
λĪ (aϕ+ b) + (1− λ) c̄

)
− b

a

= λ

(
1

a
Ī (aϕ+ b)− b

a

)
+ (1− λ)

(
c̄

a
− b

a

)
= λI (ϕ) + (1− λ) c,

proving that I is concave (convex, affi ne) at c.

(iii). “Only if”. Assume that I is constant superadditive (subadditive, additive). It

follows that for each ϕ ∈ B0 (Σ, Im ū) and for each k ≥ 0

Ī (ϕ+ k) = aI

(
ϕ+ k − b

a

)
+ b = aI

(
ϕ− b
a

+
k

a

)
+ b

≥ (≤,=) a

(
I

(
ϕ− b
a

)
+
k

a

)
+ b = aI

(
ϕ− b
a

)
+ b+ k = Ī (ϕ) + k,
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proving that Ī is constant superadditive (subadditive, additive). “If”. Assume that Ī is

constant superadditive (subadditive, additive). It follows that for each ϕ ∈ B0 (Σ, Imu) and

for each k ≥ 0

I (ϕ+ k) =
1

a
Ī (a (ϕ+ k) + b)− b

a
=

1

a
Ī ((aϕ+ b) + ak)− b

a

≥ (≤,=)
1

a

(
Ī (aϕ+ b) + ak

)
− b

a
=

(
1

a
Ī (aϕ+ b)− b

a

)
+ k = I (ϕ) + k,

proving that I is constant superadditive (subadditive, additive). �

B.2 Monetary consequences

We next prove a couple of ancillary facts. Moreover, when % (on ∆0 (R)) is represented by

an affi ne u and is CARA, we first assume that v of u corresponds to (4) with a = 1 and

b = 0, that is, we normalize the von Neumann-Morgenstern utility function v to be such that

v̄α (c) =

{
− 1
αe
−αc if α 6= 0

c if α = 0
. (10)

In this case, for each w ∈ R and for each lottery x ∈ ∆0 (R), either u (xw) = e−αwu (x) or

u (xw) = u (x) + w.

Lemma 2 If % is a CARA rational preference with representation (u, I), then %w is a

rational preference with representation (u, Iw). Moreover, if we choose v = v̄α as in (10),

then Iw is such that

Iw (ϕ) =

{
I (ϕ+ w)− w if % is risk neutral

eαwI (e−αwϕ) otherwise
∀ϕ ∈ B0 (Σ, Imu) .

Proof. By Proposition 1, both preferences %w and % are rational for all w ∈ R. By

assumption, % is CARA. Thus, %w coincides with % on ∆0 (R) and it has a canonical

representation (uw, Iw) where vw of uw is either exponential or affi ne as in (4). Wlog, we

can thus set u = uw and choose v as in (10). By [8, Proposition 1], we have that

I (ϕ) = u (xg) where xg ∼ g and u (g) = ϕ

and

Iw (ϕ) = u (xf,w) where xf,w ∼w f and u (f) = ϕ.

a) Assume that v = v̄α is exponential (risk nonneutral case), that is, v̄α (c) = − 1
αe
−αc for

all c ∈ R. This implies that either Imu = (0,∞) or Imu = (−∞, 0), in particular, for each

w ∈ R and ϕ ∈ B0 (Σ, Imu), we have that e−αwϕ ∈ B0 (Σ, Imu). Consider ϕ ∈ B0 (Σ, Imu).

Then, there exists f ∈ F such that u (f) = ϕ. Call xf,w a certainty equivalent of f for
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the induced preference %w, that is, xf,w ∼w f . It follows that Iw (ϕ) = u (xf,w). By

definition of %w, we have that fw ∼ xwf,w. It follows that u (fw) = e−αwu (f) = e−αwϕ and

u
(
xwf,w

)
= e−αwu (xf,w). If we define g = fw, then we also have that xg can be chosen to

be xwf,w, that is,

I
(
e−αwϕ

)
= I (u (g)) = u (xg) = e−αwu (xf,w) = e−αwIw (ϕ) ,

and so Iw (ϕ) = eαwI (e−αwϕ).

b) Assume that v = v̄α is the identity (risk neutral case). This implies that Imu = R.
Consider ϕ ∈ B0 (Σ, Imu). Then, there exists f ∈ F such that u (f) = ϕ. Call xf,w a

certainty equivalent of f for the induced preference %w, that is, xf,w ∼w f . It follows

that Iw (ϕ) = u (xf,w). By definition of %w, we have that fw ∼ xwf,w. It follows that

u (fw) = u (f) + w = ϕ+ w and u
(
xwf,w

)
= u (xf,w) + w. If we define g = fw, then we also

have that xg can be chosen to be xwf,w, that is,

I (ϕ+ w) = I (u (g)) = u (xg) = u (xf,w) + w = Iw (ϕ) + w,

and so Iw (ϕ) = I (ϕ+ w)− w. �

Proof of Proposition 3. Let w,w′ ∈ R be such that w 6= w′ and ◦ = w and # = w′. If %
is decreasing or constant absolute ambiguity averse, wlog, we can assume that w′ > w. If %
is increasing absolute ambiguity averse, wlog, we can assume that w > w′. By Proposition

2 and since % is classifiable, we have that uw is a positive affi ne transformation of uw′ and
this holds for all w,w′ ∈ R, proving that % is CARA. �

Proof of Theorem 2. Let % be a rational preference with canonical representation (u, I)

where u is such that u (x) =
∑

c∈R v (c)x (c) for every x ∈ ∆0 (R), with v strictly increasing

and continuous. Before starting the proof, we add few extra points.

(iv) % is CARA and Iw ≤ Iw′ , provided w′ > w and uw = uw′ = u and v = v̄α is as in (10);

(v) % is CARA and, provided v = v̄α as in (10), for each ϕ ∈ B0 (Σ, Imu) and for each

w,w′ ∈ R such that w′ > w, either

eαwI
(
e−αwϕ

)
≤ eαw′I

(
e−αw

′
ϕ
)
if v̄α is exponential (11)

or

I (ϕ+ w)− w ≤ I
(
ϕ+ w′

)
− w′ if v̄α is the identity. (12)

(vi) % is CARA and, provided v = v̄α as in (10), I is:

(a) superhomogeneous (subhomogeneous) provided % is risk averse (loving);
(b) constant superadditive provided % is risk neutral.
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(iii) implies (ii). By Proposition 3, we have that % is CARA. The implication trivially
follows.

(ii) implies (vi). By assumption, % is CARA. We can thus choose a canonical represen-
tation

(
ū, Ī
)
where v = v̄α. In case % is risk averse (resp., loving) Im ū = (−∞, 0) (resp.,

Im ū = (0,∞)). In both cases, we have that b̄ = 0. By Proposition 19, the implication

follows.

(vi) implies (v). % is CARA and, provided v = v̄α is as in (10), we have three cases:

a. % is risk averse, that is, α > 0. Consider w′ > w. It follows that λ = eα(w−w′) ∈ (0, 1).

Next, consider ϕ ∈ B0 (Σ, Imu). Observe that e−αwϕ, e−αw
′
ϕ ∈ B0 (Σ, Imu). We thus have

that

I
(
eα(w−w′) (e−αwϕ)) ≥ eα(w−w′)I

(
e−αwϕ

)
=⇒ eαw

′
I
(
e−αw

′
ϕ
)
≥ eαwI

(
e−αwϕ

)
,

since ϕ was arbitrarily chosen the statement follows.

b. % is risk loving, that is, α < 0. Consider w′ > w. It follows that λ = eα(w′−w) ∈ (0, 1).

Next, consider ϕ ∈ B0 (Σ, Imu). Observe that e−αwϕ, e−αw
′
ϕ ∈ B0 (Σ, Imu). We thus have

that

I
(
eα(w′−w)

(
e−αw

′
ϕ
))
≤ eα(w′−w)I

(
e−αw

′
ϕ
)

=⇒ eαwI
(
e−αwϕ

)
≤ eαw′I

(
e−αw

′
ϕ
)
,

since ϕ was arbitrarily chosen the statement follows.

c. % is risk neutral, that is, α = 0 and v̄α is the identity. Consider w′ > w. It follows that

k = (w′ − w) > 0. Next, consider ϕ ∈ B0 (Σ, Imu). Observe that ϕ+w,ϕ+w′ ∈ B0 (Σ, Imu).

We thus have that

I
(
ϕ+ w +

(
w′ − w

))
≥ I (ϕ+ w) +

(
w′ − w

)
=⇒ I

(
ϕ+ w′

)
− w′ ≥ I (ϕ+ w)− w,

since ϕ was arbitrarily chosen the statement follows.

(v) is equivalent to (iv). By assumption, % is CARA. We consider two cases. For each
w,w′ ∈ R:
a. v = v̄α is exponential. By Lemma 2, we have that

Iw ≤ Iw′ ⇐⇒ eαwI
(
e−αwϕ

)
≤ eαw′I

(
e−αw

′
ϕ
)

∀ϕ ∈ B0 (Σ, Imu) .

b. v = v̄α is the identity. By Lemma 2, we have that

Iw ≤ Iw′ ⇐⇒ I (ϕ+ w)− w ≤ I
(
ϕ+ w′

)
− w′ ∀ϕ ∈ B0 (Σ, Imu) .

Subpoints a. and b. prove the equivalence between (iv) and (v).

(iv) implies (i). Let w′ > w. By Lemma 2 and since % is CARA, we have that both
preferences, %w and %w′ , admit a representation (uw, Iw) and (uw′ , Iw′). Since % is CARA,
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we can choose uw = uw′ = u with v = v̄α for all w,w′ ∈ R. By Lemma 1 and since Iw ≤ Iw′ ,
we can conclude that %w is more ambiguity averse than %w′ .

(i) implies (iv). By Proposition 3, since % is decreasing absolute ambiguity averse, % is
CARA. By Lemma 2, we have that for each w ∈ R the preference %w admits a canonical
representation (uw, Iw). Thus, we can choose uw = u for all w ∈ R with v = v̄α. By Lemma

1 and since uw = uw′ for all w,w′ ∈ R, note that %w is more ambiguity averse than %w
′
only

if Iw ≤ Iw′ .
(iv) implies (vi). By the previous part of the proof, we know that (iv) is equivalent to

(v). We thus assume (v) and prove (vi). We have three cases.

a. % is risk averse, that is, α > 0. In (11) set w = 0, so that

I (ϕ) ≤ eαw′I
(
e−αw

′
ϕ
)

∀ϕ ∈ B0 (Σ, Imu) ,∀w′ > 0.

Since α is positive, it follows that eαw
′
> 1 and

{
eαw

′
: w′ > 0

}
= (1,∞). This implies that

I (ϕ) ≤ γI (ϕ/γ) for all ϕ ∈ B0 (Σ, Imu) and for all γ > 1. In other words, λI (ϕ) ≤ I (λϕ) for

all ϕ ∈ B0 (Σ, Imu) and for all λ ∈ (0, 1), proving superhomogeneity.

b. % is risk loving, that is, α < 0. In (11) set w = 0, so that

I (ϕ) ≤ eαw′I
(
e−αw

′
ϕ
)

∀ϕ ∈ B0 (Σ, Imu) ,∀w′ > 0.

Since α is negative, it follows that
{
eαw

′
: w′ > 0

}
= (0, 1). This implies that I (ϕ) ≤

γI (ϕ/γ) for all ϕ ∈ B0 (Σ, Imu) and for all γ ∈ (0, 1). If ϕ ∈ B0 (Σ, Imu), then λϕ ∈
B0 (Σ, Imu) for all λ ∈ (0, 1). We have that

I (λϕ) ≤ λI
(

1

λ
(λϕ)

)
= λI (ϕ) ∀ϕ ∈ B0 (Σ, Imu) , ∀λ ∈ (0, 1) ,

proving subhomogeneity.

c. % is risk neutral, that is, v̄α is the identity. In (12) set w = 0 and k = w′, so that

I (ϕ) ≤ I (ϕ+ k)− k ∀ϕ ∈ B0 (Σ, Imu) , ∀k > 0.

In other words, I (ϕ) + k ≤ I (ϕ+ k) for all ϕ ∈ B0 (Σ, Imu) and for all k > 0, proving

superadditivity.

(vi) implies (ii). By assumption, % is CARA and represented by (u, I). We can thus

choose a canonical representation
(
ū, Ī
)
where v = v̄α. In case % is risk averse (resp., loving)

Im ū = (−∞, 0) (resp., Im ū = (0,∞)). In both cases, we have that b̄ = 0. By Proposition

19, the implication follows.

We thus proved that (iii) implies (ii) and (ii) is equivalent to (i), (iv), (v), and (vi). In

particular, it follows that (ii) implies (i), thus % is classifiable, and I satisfies condition (a)
or (b), that is, (ii) implies (iii). �

40



B.3 Other proofs

Proof of Corollary 2. Call (u, I) the rational representation of % on F . Since % is risk
neutral, it follows that Imu = R and I : B0 (Σ)→ R.

“Only if.”By point 1 of Corollary 1, it follows that I (ϕ+ k) = I (ϕ)+k for all ϕ ∈ B0 (Σ)

and for all k ≥ 0. It is immediate to show that the equality holds for all k ∈ R. By [27,
Lemma 25], it follows that I is a normalized niveloid. By [27, Lemma 28], we can conclude

that % satisfies Weak C-Independence.
“If.”By [27, Lemma 28], it follows that I is a normalized niveloid. By [27, Lemma 25]

and since Imu = R, it follows that I (ϕ+ k) = I (ϕ) + k for all ϕ ∈ B0 (Σ) and for all

k ∈ R. By point 1 of Corollary 1 (recall that it holds by only assuming CARA in place of
classifiable), the statement follows. �

Proof of Corollary 3. Call (u, I) the rational representation of %. Note that in all three
points (i)—(iii), % is necessarily CARA. Thus, wlog, choose v to be such that a = 1 and b = 0.

By [17], there also exists a normalized, monotone, and continuous functional Î : B0 (Σ)→ R
such that for each ϕ ∈ B0 (Σ)

Î (λϕ+ k) = λÎ (ϕ) + k ∀λ > 0,∀k ∈ R

and f % g if and only if Î (u (f)) ≥ Î (u (g)). It follows that Î and I coincide on B0 (Σ, Imu).

(i) implies (iii). By Proposition 3, the implication follows.

(iii) implies (ii). By Corollary 1 (recall that it holds by only assuming CARA in place of

classifiable) and since Î and I coincide on B0 (Σ, Imu), the implication follows.

(ii) implies (i). Trivially, % is classifiable. �

Proof of Proposition 4. Let (u, I) be the canonical representation of %. Wlog, if % is
CARA, we choose v to be such that a = 1 and b = 0 (see equation (4)). In this case, by the

definition of c : F → R, we have that

c (f) =

{
− 1
α log (−αI (u (f))) α 6= 0

I (u (f)) α = 0
∀f ∈ F .

Recall that for each f ∈ F and for each w ∈ R

u (fw) =

{
e−αwu (f) α 6= 0

u (f) + w α = 0
.

(i). “Only if”. By Proposition 3, % is CARA, we have three cases.
1. % is risk neutral, that is, α = 0. It follows that c (fw) = I (u (fw)) = I (u (f) + w) for

all f ∈ F and for all w ≥ 0. By Theorem 2, we have that for each f ∈ F and for each w ≥ 0

c (fw) = I (u (f) + w) ≥ I (u (f)) + w = c (f) + w,
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proving that c is wealth superadditive.

2. % is risk averse, that is, α > 0. It follows that c (fw) = v−1 (I (u (fw))) = v−1 (I (e−αwu (f)))

for all f ∈ F and for all w ≥ 0. Note that if w ≥ 0, then e−αw ∈ (0, 1]. By Theorem 2 and

since b = 0, we have that for each f ∈ F and for each w ≥ 0

c (fw) = − 1

α
log
(
−αI

(
e−αwu (f)

))
≥ − 1

α
log
(
−αe−αwI (u (f))

)
= − 1

α
log
(
e−αw (−αI (u (f)))

)
= − 1

α
log
(
e−αw

)
+− 1

α
log (−αI (u (f)))

= c (f) + w,

proving that c is wealth superadditive.

3. % is risk loving, that is, α < 0. It follows that c (fw) = v−1 (I (u (fw))) = v−1 (I (e−αwu (f)))

for all f ∈ F and for all w ≥ 0. Note that if w ≥ 0, then eαw ∈ (0, 1]. By Theorem 2 and

since b = 0, we have that for each f ∈ F and for each w ≥ 0

c (f) = − 1

α
log (−αI (u (f))) = − 1

α
log
(
−αI

(
eαw

(
e−αwu (f)

)))
≤ − 1

α
log
(
−αeαwI

(
e−αwu (f)

))
= − 1

α
log (eαw) +− 1

α
log
(
−αI

(
e−αwu (f)

))
= −w + c (fw) ,

proving that c is wealth superadditive.

“If”. First, observe that

f % g ⇐⇒ I (u (f)) ≥ I (u (g)) ⇐⇒ v−1 (I (u (f))) ≥ v−1 (I (u (g))) ⇐⇒ c (f) ≥ c (g) .

Let w′ > w and f ∈ F . Since w′ − w > 0 and c is wealth superadditive, it follows that

c
(
fw
′
)

= c
(

(fw)w
′−w
)
≥ c (fw) + w′ − w,

that is, c
(
fw
′
)
−w′ ≥ c (fw)−w. Next, let x ∈ ∆0 (R). Since % is CARA, we can conclude

that

f %w x =⇒ fw % xw =⇒ c (fw) ≥ c (xw) =⇒ c (fw) ≥ c (x) + w

=⇒ c (fw)− w ≥ c (x) =⇒ c
(
fw
′
)
− w′ ≥ c (x) =⇒ c

(
fw
′
)
≥ c (x) + w′

=⇒ c
(
fw
′
)
≥ c

(
xw
′
)

=⇒ fw
′ % xw′ =⇒ f %w′ x.

Since f , x, w, and w′ were arbitrarily chosen, we have that %w is more ambiguity averse
than %w′ , proving the statement.

(ii). “Only if”. By Proposition 3, % is CARA, we have three cases.
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1. % is risk neutral, that is, α = 0. It follows that c (fw) = I (u (fw)) = I (u (f) + w) for

all f ∈ F and for all w ≥ 0. By what follows right after Theorem 2, we have that for each

f ∈ F and for each w ≥ 0

c (fw) = I (u (f) + w) ≤ I (u (f)) + w = c (f) + w,

proving that c is wealth subadditive.

2. % is risk averse, that is, α > 0. It follows that c (fw) = v−1 (I (u (fw))) = v−1 (I (e−αwu (f)))

for all f ∈ F and for all w ≥ 0. Note that if w ≥ 0, then e−αw ∈ (0, 1]. By what follows

right after Theorem 2 and since b = 0, we have that for each f ∈ F and for each w ≥ 0

c (fw) = − 1

α
log
(
−αI

(
e−αwu (f)

))
≤ − 1

α
log
(
−αe−αwI (u (f))

)
= − 1

α
log
(
e−αw (−αI (u (f)))

)
= − 1

α
log
(
e−αw

)
+− 1

α
log (−αI (u (f)))

= c (f) + w,

proving that c is wealth subadditive.

3. % is risk loving, that is, α < 0. It follows that c (fw) = v−1 (I (u (fw))) = v−1 (I (e−αwu (f)))

for all f ∈ F and for all w ≥ 0. Note that if w ≥ 0, then eαw ∈ (0, 1]. By what follows right

after Theorem 2 and since b = 0, we have that for each f ∈ F and for each w ≥ 0

c (f) = − 1

α
log (−αI (u (f))) = − 1

α
log
(
−αI

(
eαw

(
e−αwu (f)

)))
≥ − 1

α
log
(
−αeαwI

(
e−αwu (f)

))
= − 1

α
log (eαw) +− 1

α
log
(
−αI

(
e−αwu (f)

))
= −w + c (fw) ,

proving that c is wealth subadditive.

“If”. First, recall that f % g if and only if c (f) ≥ c (g). Let w′ > w and f ∈ F . Since
w′ − w > 0 and c is wealth subadditive, it follows that

c
(
fw
′
)

= c
(

(fw)w
′−w
)
≤ c (fw) + w′ − w,

that is, c
(
fw
′
)
−w′ ≤ c (fw)−w. Next, let x ∈ ∆0 (R). Since % is CARA, we can conclude

that

f %w′ x =⇒ fw
′ % xw′ =⇒ c

(
fw
′
)
≥ c

(
xw
′
)

=⇒ c
(
fw
′
)
≥ c (x) + w′

=⇒ c
(
fw
′
)
− w′ ≥ c (x) =⇒ c (fw)− w ≥ c (x) =⇒ c (fw) ≥ c (x) + w

=⇒ c (fw) ≥ c (xw) =⇒ fw % xw =⇒ f %w x.

Since f , x, w, and w′ were arbitrarily chosen, we have that %w′ is more ambiguity averse
than %w, proving the statement.
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(iii). It is an easy consequence of points (i) and (ii). �

Proof of Theorem 3. Recall that an uncertainty averse preference is a rational preference.
In particular, given a canonical representation (u, I), we have that

G (t, p) = sup
ϕ∈B0(Σ,Imu)

{
I (ϕ) :

∫
ϕdp ≤ t

}
∀ (t, p) ∈ Imu×∆.

(i) implies (ii). By Theorem 2, it follows that % is CARA and I is either concave at b,
or convex at b, or constant superadditive, depending on % being, respectively, either risk

averse, or risk loving, or risk neutral. We consider the three different cases separately:

- % is risk averse. Thus, Imu = (−∞, b). Let (t, p) ∈ Imu × ∆ and λ ∈ (0, 1). There

exists a sequence {ϕn}n∈N ⊆ B0 (Σ, Imu) such that I (ϕn) ↑ G (t, p) and
∫
ϕndp ≤ t for all

n ∈ N. It follows that
∫

(λϕn + (1− λ) b) dp ≤ λt+ (1− λ) b ∈ Imu for all n ∈ N. Since I is
concave at b, we have that for each n ∈ N

G (λt+ (1− λ) b, p) ≥ I (λϕn + (1− λ) b) ≥ λI (ϕn) + (1− λ) b.

By passing to the limit, it follows that G (λt+ (1− λ) b, p) ≥ λG (t, p) + (1− λ) b.

- % is risk loving. Thus, Imu = (b,∞). Let (t, p) ∈ Imu×∆ and λ ∈ (0, 1). There exists

a sequence {ϕn}n∈N ⊆ B0 (Σ, Imu) such that I (ϕn) ↑ G (λt+ (1− λ) b, p) and
∫
ϕndp ≤

λt+ (1− λ) b for all n ∈ N. Define {ψn}n∈N to be such that

ψn =
ϕn − (1− λ) b

λ
∀n ∈ N.

Note also that

ψn (s) > b ∀s ∈ S,
∫
ψndp ≤ t, and ϕn = λψn + (1− λ) b ∀n ∈ N.

Since I is convex at b, this implies that for each n ∈ N

I (ϕn) = I (λψn + (1− λ) b) ≤ λI (ψn) + (1− λ) b ≤ λG (t, p) + (1− λ) b.

By passing to the limit, it follows that G (λt+ (1− λ) b, p) ≤ λG (t, p) + (1− λ) b.

- % is risk neutral. Thus, Imu = R. Let (t, p) ∈ Imu × ∆ and k ≥ 0. There exists a

sequence {ϕn}n∈N ⊆ B0 (Σ, Imu) such that I (ϕn) ↑ G (t, p) and
∫
ϕndp ≤ t for all n ∈ N.

It follows that
∫

(ϕn + k) dp ≤ t+ k ∈ Imu for all n ∈ N. Since I is constant superadditive,
we have that for each n ∈ N

G (t+ k, p) ≥ I (ϕn + k) ≥ I (ϕn) + k.

By passing to the limit, it follows that G (t+ k, p) ≥ G (t, p) + k.
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(ii) implies (iii) and (i). Recall that

I (ψ) = inf
p∈∆

G

(∫
ψdp, p

)
∀ψ ∈ B0 (Σ, Imu) .

Observe also that % is CARA by assumption and G satisfies (a) or (b). As before, we

consider three cases:

- % is risk averse. Let ϕ ∈ B0 (Σ, Imu) and λ ∈ (0, 1). We have that

I (λϕ+ (1− λ) b) = inf
p∈∆

G

(∫
(λϕ+ (1− λ) b) dp, p

)
= inf

p∈∆
G

(
λ

∫
ϕdp+ (1− λ) b, p

)
≥ inf

p∈∆

(
λG

(∫
ϕdp, p

)
+ (1− λ) b

)
≥ λ inf

p∈∆
G

(∫
ϕdp, p

)
+ (1− λ) b = λI (ϕ) + (1− λ) b,

that is, I is concave at b.

- % is risk loving. Let ϕ ∈ B0 (Σ, Imu) and λ ∈ (0, 1). We have that

I (λϕ+ (1− λ) b) = inf
p∈∆

G

(∫
(λϕ+ (1− λ) b) dp, p

)
= inf

p∈∆
G

(
λ

∫
ϕdp+ (1− λ) b, p

)
≤ inf

p∈∆

(
λG

(∫
ϕdp, p

)
+ (1− λ) b

)
= λ inf

p∈∆
G

(∫
ϕdp, p

)
+ (1− λ) b = λI (ϕ) + (1− λ) b,

that is, I is convex at b.

- % is risk neutral. Let ϕ ∈ B0 (Σ, Imu) and k ≥ 0. We have that

I (ϕ+ k) = inf
p∈∆

G

(∫
(ϕ+ k) dp, p

)
= inf

p∈∆
G

(∫
ϕdp+ k, p

)
≥ inf

p∈∆

(
G

(∫
ϕdp, p

)
+ k

)
≥ inf

p∈∆
G

(∫
ϕdp, p

)
+ k = I (ϕ) + k,

that is, I is constant superadditive.

It follows that % is CARA and I either satisfies (a) or (b) of point (ii) of Theorem

2. By Theorem 2, we can conclude that % is decreasing absolute ambiguity averse and is
classifiable.

(iii) implies (ii). By Proposition 3 and since % is classifiable, we have that % is also

CARA.

We thus have proved that (i) =⇒ (ii) =⇒ (iii) =⇒ (ii) =⇒ (i), proving the statement. �

Proof of Corollary 4. Recall that an uncertainty averse preference is a rational preference.
By Corollary 2, we can conclude that a risk neutral uncertainty averse preference is constant
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absolute ambiguity averse if and only if it satisfies Weak C-Independence. At the same time,

by definition, uncertainty averse preferences that satisfy Weak C-Independence are exactly

variational preferences.

Proof of Corollary 5. Since % is CARA and risk averse, we have that Imu = (−∞, b).
Recall that G (t, p) ≥ t for all (t, p) ∈ Imu × ∆. At the same time, note that for each

(t, p) ∈ Imu×∆ and for each λ ∈ (0, 1)

G (λt+ (1− λ) b, p) ≥ G (λt+ (1− λ) bn, p) ≥ λG (t, p) + (1− λ)G (bn, p)

≥ λG (t, p) + (1− λ) bn

where bn = b − 1
n for all n ∈ N. By passing to the limit and since (t, p) and λ were

arbitrarily chosen, we have that G (λt+ (1− λ) b, p) ≥ λG (t, p) + (1− λ) b. By Theorem 3,

the statement follows. �

Proof of Corollary 6. Observe that a variational preference is a rational preference where
the canonical representation (u, I) has the extra property of I being quasiconcave and con-

stant additive. In particular, I is normalized and concave.

(i). By Theorem 2 and since % is not risk neutral, if % is either decreasing absolute

ambiguity averse or CARA and risk averse, then v is a positive affi ne transformation of

− 1
αe
−αc where α 6= 0. Without loss of generality, we assume that either Imu = (−∞, 0) or

Imu = (0,∞). The first case holds under risk aversion, the second one under risk love. In

the first case, since I is normalized and concave, observe that for each λ ∈ (0, 1) and for each

ϕ ∈ B0 (Σ, Imu), we have that λϕ+ (1− λ)
(
− 1
n

)
∈ B0 (Σ, Imu) and

I

(
λϕ+ (1− λ)

(
− 1

n

))
≥ λI (ϕ) + (1− λ) I

(
− 1

n

)
≥ λI (ϕ)− (1− λ)

1

n
∀n ∈ N.

By passing to the limit, it follows that I is concave at 0, that is, I is superhomogeneous. In

the second case, since I is normalized and concave, observe that for each λ ∈ (0, 1) and for

each ϕ ∈ B0 (Σ, Imu), we have that λϕ+ (1− λ) 1
n ∈ B0 (Σ, Imu) and

I

(
λϕ+ (1− λ)

1

n

)
≥ λI (ϕ) + (1− λ) I

(
1

n

)
≥ λI (ϕ) + (1− λ)

1

n
∀n ∈ N.

By passing to the limit, it follows that I is concave at 0, that is, I is again superhomogeneous.

“If”. By Theorem 2 and since I is concave at 0, if % is CARA and risk averse, it follows
that % is decreasing absolute ambiguity averse. “Only if”. By Theorem 2, if % is decreasing
absolute ambiguity averse, then % is CARA. Since % cannot be risk neutral, it can either be
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risk averse or risk loving. By contradiction, assume it is risk loving. By Theorem 2, it follows

that I is convex at 0, that is, I is subhomogeneous. From the previous part of the proof,

we can conclude that I is homogeneous. To sum up, we would have that I is normalized,

monotone, continuous, concave, constant additive, and homogeneous, that is, % is maxmin,
a contradiction.

(ii). It follows from analogous arguments. �

Proof of Corollary 7. “If”. Since % is risk nonneutral, if % is CARA, then either % is
risk averse or it is risk loving. If % is homothetic uncertainty averse, then, in both cases, I
is positively homogeneous, proving the statement.

“Only if”. By Proposition 3 and since % is constant absolute ambiguity averse and

uncertainty averse, we have that % is CARA. Since % is uncertainty averse and risk non-
neutral, we can consider a canonical representation (u, I) such that either Imu = (−∞, 0)

or Imu = (0,∞). Since % is constant absolute ambiguity averse, we also have that I is

positively homogeneous. Define Ī : B0 (Σ)→ [−∞,∞) by

Ī (ϕ) = sup {I (ψ) : B0 (Σ, Imu) 3 ψ ≤ ϕ} ∀ϕ ∈ B0 (Σ) .

By [9, Theorem 36], it follows that Ī is monotone, lower semicontinuous, quasiconcave, and

such that Ī|B0(Σ,Imu) = I. We next show that also Ī is positively homogeneous. Consider

ϕ ∈ B0 (Σ) and λ > 0. We have two cases:

1. {I (ψ) : B0 (Σ, Imu) 3 ψ ≤ ϕ} = ∅. Since B0 (Σ, Imu) is a cone, {I (ψ) : B0(Σ, Imu) 3
ψ ≤ λϕ} = ∅, which yields that Ī (λϕ) = −∞ = Ī (ϕ) = λĪ (ϕ).

2. {I (ψ) : B0 (Σ, Imu) 3 ψ ≤ ϕ} 6= ∅. Let {ψn}n∈N ⊆ B0 (Σ, Imu) be such that ψn ≤ ϕ

for all n ∈ N and I (ψn) ↑ Ī (ϕ). Let now λ > 0. Since B0 (Σ, Imu) is a cone, it

follows that {λψn}n∈N ⊆ B0 (Σ, Imu) and it is such that λψn ≤ λϕ for all n ∈ N. In
particular, by the definition of Ī, we have that Ī (λϕ) ≥ I (λψn) = λI (ψn) → λĪ (ϕ).

We just proved that Ī (λϕ) ≥ λĪ (ϕ) for all ϕ ∈ B0 (Σ) and for all λ > 0. By choosing

1/λ with λ > 0, it follows that

Ī (ϕ) = Ī

(
1

λ
(λϕ)

)
≥ 1

λ
Ī (λϕ) ,

that is, λĪ (ϕ) ≥ Ī (λϕ), proving positive homogeneity.

Consider G : R×∆→ [−∞,∞] defined by

G (t, p) = sup

{
Ī (ϕ) :

∫
ϕdp ≤ t

}
∀ (t, p) ∈ R×∆.
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By [10], we have that G is lower semicontinuous, quasiconvex, and such that

Ī (ϕ) = min
p∈∆

G

(∫
ϕdp, p

)
∀ϕ ∈ B0 (Σ) (13)

and G (λt, p) = λG (t, p) for all λ > 0, for all t ∈ R, and for all p ∈ ∆. Define c1, c2 : ∆ →
[0,∞] to be such that

c1 (p) =
1

G (1, p)
and c2 (p) = −G (−1, p) ∀p ∈ ∆.

We now consider two cases:

Risk averse case. Imu = (−∞, 0). Since Ī ≤ 0 and Ī (−1) = I (−1) = −1, observe that

G (−1, p) ≤ 0 and G (−1, p) ≥ −1, that is, c2 (p) ≥ 0 and c2 (p) ≤ 1 for all p ∈ ∆. Next, we

have that for each α ∈ R

{p ∈ ∆ : c2 (p) ≥ α} = {p ∈ ∆ : −G (−1, p) ≥ α} = {p ∈ ∆ : G (−1, p) ≤ −α} .

Since G is quasiconvex and lower semicontinuous, the set is convex and closed, proving

that c2 is quasiconcave and upper semicontinuous. By (13), we can conclude that for each

ϕ ∈ B0 (Σ, Imu)

I (ϕ) = Ī (ϕ) = min
p∈∆

G

(∫
ϕdp, p

)
= min

p∈∆

(
−
∫
ϕdp

)
G (−1, p) = min

p∈∆
c2 (p)

∫
ϕdp.

Since −1 = Ī (−1) = minp∈∆−c2 (p), we have that c2 is normalized. The statement follows

by setting c = c2.

Risk loving case. Imu = (0,∞). Since Ī (1) = I (1) = 1, observe that G (1, p) ≥ 1, that is,

0 ≤ c1 (p) ≤ 1. Next, we have that for each α ∈ (0,∞)

{p ∈ ∆ : c1 (p) ≥ α} =

{
p ∈ ∆ :

1

G (1, p)
≥ α

}
=

{
p ∈ ∆ : G (1, p) ≤ 1

α

}
.

Since G is quasiconvex and lower semicontinuous, for each α ∈ (0,∞) the set is convex and

closed. Since {p ∈ ∆ : c1 (p) ≥ α} = ∆ for all α ≤ 0, it follows that c1 is quasiconcave and

upper semicontinuous. By (13), we can conclude for each ϕ ∈ B0 (Σ, Imu)

I (ϕ) = Ī (ϕ) = min
p∈∆

(∫
ϕdp

)
G (1, p) = min

p∈∆

∫
ϕdp

c1 (p)
.

Since 1 = Ī (1) = minp∈∆
1

c1(p) , we have that c1 is normalized. The statement follows by

setting c = c1. �

Proof of Proposition 5. Since there exists γ > 0 such that φ (t) = −e−γt for all t ∈ R, we
have that I, defined as in (5), can be defined over the entire space B0 (Σ). Moreover, by [9,
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Proposition 54], I is normalized, concave and constant additive. In particular, it is concave

at b, in case % is either risk averse or risk loving.
(i). By Corollary 1 (recall that it holds by only assuming CARA in place of classifiable)

and since I is constant additive, if % is risk neutral, then % is constant absolute ambiguity
averse.

(ii). By Corollary 5 and since % is CARA, if % is risk averse, then % is decreasing

absolute ambiguity averse. �

Proof of Proposition 6. We only prove point (ii). Point (iii) follows from a completely

specular argument. Point (i) instead follows from similar techniques (see also Marinacci and

Montrucchio [29, Theorem 12]).

(ii). Fix µ. By Theorem 2 and since % is risk averse and b = 0, we have that % is

decreasing absolute ambiguity averse if and only if I is positive superhomogeneous. Thus,

to prove point (ii), we only need to show that I is positive superhomogeneous for all µ if and

only if φ is IRRA. Since % is risk averse and b = 0, we also have that Imu = (−∞, 0) and

φ : (−∞, 0) → R. For each ν > 0, define φν : (−∞, 0) → R to be such that φν (t) = φ (νt)

for all t ∈ (−∞, 0). Note that φ1 = φ. Finally, we have that Imφ = Imφν for all ν > 0. “If”

Let µ be generic. Consider ν > η > 0. It follows that, φν = f ◦ φη where f : Imφ→ Imφ is

strictly increasing and concave. By the Jensen’s inequality, it follows that if ν > η > 0, then

φ−1
ν

(∫
φν

(∫
ϕdp

)
dµ

)
≤ φ−1

η

(∫
φη

(∫
ϕdp

)
dµ

)
∀ϕ ∈ B0 (Σ, Imu) .

If we let η ∈ (0, 1) and ν = 1, we have that for each ϕ ∈ B0 (Σ, Imu)

φ

(
ηφ−1

(∫
φ

(∫
ϕdp

)
dµ

))
= φη

(
φ−1

(∫
φ

(∫
ϕdp

)
dµ

))
≤
∫
φ

(
η

∫
ϕdp

)
dµ.

We can conclude that for each ϕ ∈ B0 (Σ, Imu)

I (ηϕ) = φ−1

(∫
φ

(
η

∫
ϕdp

)
dµ

)
≥ ηφ−1

(∫
φ

(∫
ϕdp

)
dµ

)
= ηI (ϕ) ,

proving that I is positive superhomogeneous. “Only if”Let ν > η > 0. Consider η
ν ∈ (0, 1).

Fix µ. Since I is positive superhomogeneous, it follows that for each ϕ ∈ B0 (Σ, Imu)

φ−1

(∫
φη

(∫
ϕdp

)
dµ

)
= φ−1

(∫
φ

(
η

∫
ϕdp

)
dµ

)
= φ−1

(∫
φ

(∫
η

ν
νϕdp

)
dµ

)
≥ η

ν
φ−1

(∫
φ

(∫
νϕdp

)
dµ

)
=
η

ν
φ−1

(∫
φν

(∫
ϕdp

)
dµ

)
,
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yielding that

φ−1
η

(∫
φη

(∫
ϕdp

)
dµ

)
=

1

η
φ−1

(∫
φη

(∫
ϕdp

)
dµ

)
≥ 1

ν
φ−1

(∫
φν

(∫
ϕdp

)
dµ

)
= φ−1

ν

(∫
φν

(∫
ϕdp

)
dµ

)
∀ϕ ∈ B0 (Σ, Imu) .

Since both φν and φη are both strictly increasing and continuous, there exists a strictly

increasing function h : Imφ→ Imφ such that φν = h ◦ φη. It follows that

h

(∫
φη

(∫
ϕdp

)
dµ

)
≥
∫
h

(
φη

(∫
ϕdp

))
dµ ∀ϕ ∈ B0 (Σ, Imu) . (14)

Since µ was arbitrarily chosen, (14) holds for all µ. Since Σ is nontrivial, there exists E ∈ Σ

such that E 6= ∅, S. Consider s1, s2 ∈ S such that s1 ∈ E and s2 ∈ Ec. Note that δsi ∈ ∆

and {δsi} ∈ B for i ∈ {1, 2}.53 Let µ = λδδs1 + (1− λ) δδs2 with λ ∈ (0, 1). Consider also

k1, k2 ∈ Imφ. It follows that there exist t1, t2 ∈ (−∞, 0) such that φη (ti) = ki for i ∈ {1, 2}.
Define ϕ = t11E + t21Ec ∈ B0 (Σ, Imu). By (14), we have that

h (λk1 + (1− λ) k2) = h (λφη (t1) + (1− λ)φη (t2))

= h

(
λφη

(∫
ϕdδs1

)
+ (1− λ)φη

(∫
ϕdδs2

))
= h

(∫
φη

(∫
ϕdp

)
dµ

)
≥
∫
h

(
φη

(∫
ϕdp

))
dµ

= λh

(
φη

(∫
ϕdδs1

))
+ (1− λ)h

(
φη

(∫
ϕdδs2

))
= λh (φη (t1)) + (1− λ)h (φη (t2)) = λh (k1) + (1− λ)h (k2) ,

proving that h is concave and φ is IRRA. �

Proof of Proposition 7. Since % is a smooth ambiguity preference, it admits a canonical
representation (u, I) where I is as in (5). Since % is CARA and risk averse and b ≤ 0,

we also have that I is defined over B0 (Σ, (−∞, 0)) ⊇ B0 (Σ, Imu). The functional Î :

B0 (Σ, (0,∞))→ (0,∞) defined by

Î (ϕ) =

(∫ (∫
ϕdp

)γ
dµ

) 1
γ

∀ϕ ∈ B0 (Σ, (0,∞)) .

is normalized, monotone, continuous, positively homogeneous, and quasiconvex. It follows

that I : B0 (Σ, (−∞, 0))→ R, which is such that I (ϕ) = −Î (−ϕ), is normalized, monotone,

53 If s ∈ S, then we denote by δs the Dirac at s. We denote by B the Borel σ-algebra over ∆.
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continuous, positively homogeneous, and quasiconcave. In particular, by [10, Proposition 7

and its proof, WP version, Carlo Alberto Notebook 80], it is concave. By Corollary 5 and

since % is CARA and risk averse, the statement easily follows. �

Proof of Proposition 8. Since % is constant absolute ambiguity averse, then % is CARA
and I is either constant additive or affi ne at b, depending on % being risk neutral or not.
As usual, without loss of generality we can normalize a = 1 and b = 0 (see equation (4)). In

both cases, it follows that

β 7→ v−1 (I (v (βr + (w − β) rf ))) = v−1 (I (v (wrf + β (r − rf ))))

= v−1 (I (v (β (r − rf )))) + wrf .

Thus, for each w ∈ (0,∞), maximizing β 7→ I (v (βr + (w − β) rf )) subject to β ∈ [0, w] is

equivalent to maximize β 7→ v−1 (I (v (β (r − rf )))) subject to β ∈ [0, w]. Define f : [0,∞)→
R by f (β) = v−1 (I (v (β (r − rf )))) for all β ≥ 0. Let w′ > w. We have two cases:

1. β∗ (w′) ≥ w. This implies that β∗ (w′) ≥ w ≥ β∗ (w).

2. β∗ (w′) < w. Since β∗ (w′) maximizes f on [0, w′] and 0 ≤ β∗ (w) ≤ w ≤ w′, we have

that f (β∗ (w′)) ≥ f (β∗ (w)). Since β∗ (w) maximizes f on [0, w] and 0 ≤ β∗ (w′) < w,

we have that f (β∗ (w)) ≥ f (β∗ (w′)). This implies that β∗ (w′) is a maximizer of

f on [0, w]. Since the solution of (6) is unique for all w > 0, we can conclude that

β∗ (w′) = β∗ (w).

Points 1 and 2 yield the main statement.

Note that if% is risk averse and uncertainty averse, it follows that f (β) = v−1 (I (v (β (r − rf ))))

is quasiconcave on [0,∞). Let w′ > w. By contradiction, assume that β∗ (w′) 6= β∗ (w).

From the previous part of the proof, it follows that β∗ (w′) > β∗ (w). Consider β̂ ∈
(β∗ (w) ,min {w, β∗ (w′)}) ⊆ (0, w) ⊆ (0, w′). Since β∗ (w) , β̂ ∈ (0, w) and the former is

the unique maximizer of f on [0, w], it follows that f (β∗ (w)) > f
(
β̂
)
. Similarly, since

β∗ (w′) , β̂ ∈ [0, w′] and the former is the unique maximizer of f on [0, w′], it follows that

f (β∗ (w′)) > f
(
β̂
)
. On the one hand, we can conclude that min {f (β∗ (w)) , f (β∗ (w′))} >

f
(
β̂
)
. On the other hand, by construction of β̂, we also have that there exists λ ∈ (0, 1)

such that

β̂ = λβ∗ (w) + (1− λ)β∗
(
w′
)
.

Since f is quasiconcave, this implies that f
(
β̂
)
≥ min {f (β∗ (w)) , f (β∗ (w′))}, a contradic-

tion. �

Proof of Proposition 9. Since % is risk neutral, without loss of generality, let v be the
identity. Note that

β 7→ I (v (βr + (w − β) rf )) = φ−1

(∫
φ

(
β

∫
rdp+ (w − β) rf

)
dµ

)
.
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Define r̂ : ∆ → R by r̂ (p) =
∫
rdp for all p ∈ ∆. We have that r̂ ≥ 0 is a bounded,

real-valued, Borel measurable function. It follows that the problem in (6) is equivalent to

solve

max

(∫
φ (βr̂ + (w − β) rf ) dµ

)
subject to β ∈ [0, w] ,

which is mathematically equivalent to the usual expected utility portfolio choice problem.

Since φ is concave and DARA, it is twice continuously differentiable and such that φ′ > 0,

and β∗ (w) ∈ (0, w) with w > 0, we have that (7) holds. �

Proof of Proposition 10. Since % is a risk averse multiplier preference, note that

β 7→ I (v (βr + (w − β) rf )) = φ−1

(∫
φ (v (βr + (w − β) rf )) dq

)
where v (c) = −a 1

αe
−αc + b for all c ∈ R, with α, a > 0 and b ∈ R, and φ (t) = −e−θt for all

t ∈ R, with θ > 0. Define v̂ = φ ◦ v : R→ R. It follows that the problem in (6) is equivalent

to solve

max

(∫
v̂ (βr + (w − β) rf ) dq

)
subject to β ∈ [0, w] ,

which is mathematically equivalent to the usual expected utility portfolio choice problem.

Since v̂ is concave and DARA, it is twice continuously differentiable and such that v̂′ > 0,

and β∗ (w) ∈ (0, w) with w > 0, we have that (7) holds. �

B.3.1 Non-CARA preferences

Let T be either R or R++. Consider a rational preference % with canonical representation
(u, I), where u has von Neumann-Morgenstern utility v : T → R with v strictly increasing
and continuous. Fix w ∈ T . For this section, define vw : T → R to be such that vw (c) =

v (c+ w) for all c ∈ T and uw : ∆0 (T )→ R to be the associated expected utility. Note that
Imuw = Im vw ⊆ Im v = Imu for all w ∈ T . Note that if T = R++, then we have to slightly

modify the definition of xw. Indeed, using the current definition, xw is defined to be such

that

xw (c) = x (c− w) ∀c ∈ R++.

If T = R++, in this way, we can only define xw (c) for all values c > w. To overcome such

an issue, we set xw (c) = 0 for all the values c ∈ (0, w]. Clearly, this convention is in line

with our interpretation of xw. Since if the decision maker has wealth w > 0 and outcomes

are strictly positive, he cannot get a final wealth level which is smaller than or equal to w.

In light of this, note that we always have

u (xw) =
∑
c∈T

v (c)xw (c) =
∑
c∈T

v (c+ w)x (c) =
∑
c∈T

vw (c)x (c) = uw (x) ∀x ∈ ∆0 (T ) .
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It follows that

I (u (fw)) = I (uw (f)) ∀f ∈ F .

Moreover, as in the previous part of the paper, for any w ∈ T , we define %w on F by

f %w g def⇐⇒ fw % gw.

Define cw : F → T to be such that cw (f) = v−1
w (I (uw (f))) for all f ∈ F . We can conclude

that

f %w g ⇐⇒ fw % gw ⇐⇒ I (u (fw)) ≥ I (u (gw))

⇐⇒ I (uw (f)) ≥ I (uw (g)) ⇐⇒ cw (f) ≥ cw (g) .

Proof of Proposition 11. Let w′, w ∈ T be such that w′ > w. Recall that % is CARA.
Hence, %w and %w′ agree on ∆0 (T ).

(i) implies (ii). Since % is decreasing (resp., increasing) absolute uncertainty averse, we
have that cw (f) ≤ cw′ (f) (resp., cw (f) ≥ cw′ (f)) for all f ∈ F . Consider f ∈ F and

x ∈ ∆0 (T ). We need to show that

f %w x =⇒ f %w′ x (resp., f %w′ x =⇒ f %w x).

Assume that f %w x (resp., f %w′ x). It follows that cw′ (f) ≥ cw (f) ≥ cw (x) (cw (f) ≥
cw′ (f) ≥ cw′ (x)), that is, δcw′ (f) %w x (resp., δcw(f) %w

′
x). Since %w coincides with %w′

on ∆0 (T ), this implies that δcw′ (f) %w
′
x (resp., δcw(f) %w x), that is, cw′ (f) ≥ cw′ (x)

(resp., cw (f) ≥ cw (x)) and f %w′ x (resp., f %w x). This proves the implication for the two
distinct cases of decreasing and increasing attitudes. Since having constant attitudes means

having both of the above features, the full implication follows.

(ii) implies (i). It is trivial since the notion of more ambiguity averse implies the notion

of more uncertainty averse. �

Lemma 3 Let v : T → R be strictly increasing, continuous, and concave (resp., convex) and
w′, w ∈ T be such that w′ > w. If v is DARA, then there exists a strictly increasing and

convex function φ : Im vw → Im vw′ such that

v
(
c+ w′

)
= φ (v (c+ w)) ∀c ∈ T

where 0 ≤ φ′+ (t) ≤ 1 (resp., φ′+ (t) ≥ 1) for all t ∈ Im vw. Moreover, φ = vw′ ◦ v−1
w .

Proof. Consider w,w′ ∈ T such that w′ > w. Since v is DARA, it follows that c 7→ vw (c) =

v (c+ w) is more risk averse than c 7→ vw′ (c) = v (c+ w′). Thus, there exists a strictly

increasing and convex function φ : Im vw → Im vw′ such that

v
(
c+ w′

)
= φ (v (c+ w)) ∀c ∈ T.
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Let c′ > c > 0. Since v is strictly increasing, define h = v (c′ + w)− v (c+ w) > 0. It follows

that

v
(
c′ + w′

)
− v

(
c+ w′

)
= φ

(
v
(
c′ + w

))
− φ (v (c+ w)) = φ (v (c+ w) + h)− φ (v (c+ w)) ,

that is,

v (c′ + w′)− v (c+ w′)

v (c′ + w)− v (c+ w)
=
v (c′ + w′)− v (c+ w′)

h
=
φ (v (c+ w) + h)− φ (v (c+ w))

h
.

Since v is concave (resp., convex) and v and φ are strictly increasing, it follows that

(resp., 1 ≤ ) 1 ≥ v (c′ + w′)− v (c+ w′)

v (c′ + w)− v (c+ w)
=
φ (v (c+ w) + h)− φ (v (c+ w))

h
≥ 0. (15)

If we define c′n = c + 1
n for all n ∈ N, we have that 0 < hn = v (c′n + w) − v (c+ w) →

0. By (15) and since φ is convex and c and c′ were arbitrarily chosen, this implies that

0 ≤ φ′+ (v (c+ w)) ≤ 1 (resp., φ′+ (v (c+ w)) ≥ 1) for all c ∈ T . Consider t ∈ Im vw. It

follows that there exists ĉ ∈ T such that v (ĉ+ w) = vw (ĉ) = t. It follows that φ′+ (t) =

φ′+ (vw (ĉ)) = φ′+ (v (ĉ+ w)) ∈ [0, 1] (resp., ≥ 1), proving the statement. �

Lemma 4 Let v : T → R be strictly increasing, continuous, and concave (resp., convex)

and w′, w ∈ T be such that w′ > w. If v is DARA and φ = vw′ ◦ v−1
w , then there exist

{aα}α∈A ⊆ (0, 1] (resp., {aα}α∈A ⊆ [1,+∞)) and {bα}α∈A ⊆ R such that

φ (t) = sup
α∈A
{aαt+ bα} ∀t ∈ Im vw

Moreover, if Im v = (0,∞) and v is concave, then bα > 0 for all α ∈ A.

Proof. Recall that φ : Im vw → Im vw′ is strictly increasing and convex. By [6, Corollary

2.1.3] and since φ is convex, we have that for each t∗ ∈ Im vw

φ (t) ≥ φ (t∗) + φ
′
+ (t∗) (t− t∗) ∀t ∈ Im vw.

This implies that

φ (t) = sup
t∗∈Im vw

{
φ
′
+ (t∗) t+

(
φ (t∗)− φ′+ (t∗) t∗

)}
∀t ∈ Im vw.

By Lemma 3, if we define A = Im vw and at∗ = φ
′
+ (t∗) as well as bt∗ = φ (t∗) − φ′+ (t∗) t∗,

the main statement follows.54 Next, assume that Im v = (0,∞) and v is concave. Note that

54For the case in which v is concave, Lemma 3 only says that φ′+ (t∗) ≥ 0 for all t∗ ∈ Im vw. At the same

time, since Im vw is an open interval and φ is convex and strictly increasing, we cannot have φ′+ (t∗) = 0 for

any t∗ ∈ Im vw. Otherwise, 0 ≤ φ′+
(
t̂
)
≤ φ′+ (t∗) = 0 for all t̂ ∈ Im vw such that t̂ < t∗, yielding that φ is

constant on Im vw ∩ (−∞, t∗) 6= ∅, which is a contradiction with φ being strictly increasing.
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for each t∗ ∈ Im vw we have that v (c+ w) = t∗ for some c ∈ T . Since v is strictly increasing,
this implies that

φ (t∗) = φ (v (c+ w)) = v
(
c+ w′

)
> v (c+ w) = t∗ ∀t∗ ∈ Im vw ⊆ (0,∞) . (16)

By (16) and since v is concave, we have that bt∗ = φ (t∗)− φ′+ (t∗) t∗ > t∗
(

1− φ′+ (t∗)
)
≥ 0

for all t∗ ∈ Im vw. �

Lemma 5 Let % be a rational preference with representation (u, I). If % is DARA and I is
such that for each w,w′ ∈ T with w′ > w

I (ϕ) ≤ φ−1 (I (φ (ϕ))) ∀ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu) , (17)

where φ = vw′ ◦ v−1
w : Im vw → Im vw′, then % is decreasing absolute uncertainty averse.

Proof. Let w′, w ∈ T be such that w′ > w. Consider f ∈ F . Since % is DARA, note that
cw (f (s)) ≤ cw′ (f (s)) for all s ∈ S. Define ψ ∈ B0 (Σ, T ) to be such that ψ = v−1

w (uw (f)).

Define also ψ′ ∈ B0 (Σ, T ) to be such that ψ′ = v−1
w′ (uw′ (f)). It follows that ψ ≤ ψ′. Define

ϕ = uw (f) and ϕ′ = uw′ (f). We have that

uw′ (f) = vw′
(
ψ′
)
and ψ = v−1

w (ϕ)

as well as

φ (ϕ) = vw′
(
v−1
w (ϕ)

)
= vw′ (ψ) ∈ B0 (Σ, Imuw′) ⊆ B0 (Σ, Imu)

By (17), it follows that

I (uw (f)) = I (ϕ) ≤ φ−1 (I (φ (ϕ))) = φ−1 (I (vw′ (ψ))) ≤ φ−1
(
I
(
vw′
(
ψ′
)))

= φ−1 (I (uw′ (f))) ,

that is, I (uw (f)) ≤ φ−1 (I (uw′ (f))) = vw
(
v−1
w′ (I (uw′ (f)))

)
which yields

cw (f) = v−1
w (I (uw (f))) ≤ v−1

w′ (I (uw′ (f))) = cw′ (f) .

Since f was arbitrarily chosen, the statement follows. �

Proof of Proposition 12. Since% is a rational preference that satisfies Weak C-Independence,
it follows that % admits a canonical representation (u, I) where I : B0 (Σ, Imu)→ R is also
normalized, monotone, and constant additive. Since % satisfies Unboundedness, Imu is un-

bounded. Since T is open and v is strictly increasing and continuous, Imu = Im v is an open

set. We thus have three cases: either Imu = (−∞, b) or Imu = (b,+∞) or Imu = (−∞,∞).

In the first two cases, without loss of generality, we can assume that b = 0. In this way,

by Proposition 19, concavity at b (resp., convexity at b) becomes superhomogeneity (resp.,
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subhomogeneity) of I. In the third case, by assumption, concavity at b (resp., convexity at

b) is superhomogeneity (resp., subhomogeneity) of I. By [11] and since Imu is unbounded, I

admits a (unique) extension to B0 (Σ) which is normalized, monotone, and constant additive.

We will denote the extension by Ī.

(i). Given Lemma 5, we only need to prove that I satisfies

φ (I (ϕ)) ≤ I (φ (ϕ)) ∀ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu)

where φ = vw′ ◦ v−1
w when w,w′ ∈ T with w′ > w. By Lemma 4 and since % is risk averse,

it follows that φ (t) = supα∈A {aαt+ bα} where {aα}α∈A ⊆ (0, 1] and {bα}α∈A ⊆ R for all
t ∈ Imuw. Let ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu). We have that φ (ϕ) ∈ B0 (Σ, Imuw′) ⊆
B0 (Σ, Imu) and aαϕ ∈ B0 (Σ, Imu) as well as φ (ϕ) ≥ aαϕ+ bα ∈ B0 (Σ) for all α ∈ A. We
can conclude that for each α ∈ A

I (φ (ϕ)) = Ī (φ (ϕ)) ≥ Ī (aαϕ+ bα) = Ī (aαϕ) + bα = I (aαϕ) + bα ≥ aαI (ϕ) + bα.

We can conclude that

I (φ (ϕ)) ≥ sup
α∈A
{aαI (ϕ) + bα} = φ (I (ϕ)) ,

proving the statement.

(ii). Given Lemma 5, we only need to prove that I satisfies

φ (I (ϕ)) ≤ I (φ (ϕ)) ∀ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu)

where φ = vw′ ◦ v−1
w when w,w′ ∈ T with w′ > w. By Lemma 4 and since % is risk loving,

it follows that φ (t) = supα∈A {aαt+ bα} where {aα}α∈A ⊆ [1,∞) and {bα}α∈A ⊆ R for all
t ∈ Imuw. Let ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu). We have that φ (ϕ) ∈ B0 (Σ, Imuw′) ⊆
B0 (Σ, Imu) and aαϕ ∈ B0 (Σ, Imu) as well as φ (ϕ) ≥ aαϕ+ bα ∈ B0 (Σ) for all α ∈ A. We
can conclude that for each α ∈ A

I (φ (ϕ)) = Ī (φ (ϕ)) ≥ Ī (aαϕ+ bα) = Ī (aαϕ) + bα = I (aαϕ) + bα ≥ aαI (ϕ) + bα

where the last inequality follows from the fact that subhomogeneity implies that I (λϕ) ≥
λI (ϕ) for all λ ∈ [1,∞).55 We can conclude that

I (φ (ϕ)) ≥ sup
α∈A
{aαI (ϕ) + bα} = φ (I (ϕ)) ,

55For λ = 1, the inequality is obvious. Let λ > 1 and ϕ ∈ B0 (Σ, Imu). It follows that 1
λ
∈ (0, 1). We have

that

I (ϕ) = I

(
1

λ
(λϕ)

)
≤ 1

λ
I (λϕ) =⇒ λI (ϕ) ≤ I (λϕ) .
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proving the statement. �

Proof of Proposition 13. (i) implies (ii). Let w,w′ ∈ T such that w′ > w. By assumption,

%w is more uncertainty averse than %w′ . By Remark 3, %w is more risk averse than %w′ ,
proving that % is DARA.

(ii) implies (i). Call (u, I) the representation of %. By [17], there also exists a normalized,
monotone, and continuous functional Î : B0 (Σ) → R such that Î (λϕ+ k) = λÎ (ϕ) + k

for all λ > 0, for all k ∈ R, and for all ϕ ∈ B0 (Σ) and such that f % g if and only if

Î (u (f)) ≥ Î (u (g)). It follows that Î and I coincide on B0 (Σ, Imu). Given Lemma 5, we

only need to prove that I satisfies

φ (I (ϕ)) ≤ I (φ (ϕ)) ∀ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu)

where φ = vw′ ◦ v−1
w when w,w′ ∈ T with w′ > w. Since % is DARA, φ is strictly increasing

and convex. It follows that φ (t) = supα∈A{aαt+bα} where {aα}α∈A ⊆ R+ and {bα}α∈A ⊆ R.
Let ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu). We have that φ (ϕ) ∈ B0 (Σ, Imuw′) ⊆ B0 (Σ, Imu)

and φ (ϕ) ≥ aαϕ+ bα ∈ B0 (Σ) for all α ∈ A. We can conclude that for each α ∈ A

I (φ (ϕ)) = Î (φ (ϕ)) ≥ Î (aαϕ+ bα) = aαÎ (ϕ) + bα = aαI (ϕ) + bα.

We can conclude that

I (φ (ϕ)) ≥ sup
α∈A
{aαI (ϕ) + bα} = φ (I (ϕ)) ,

proving the statement. �

Proof of Proposition 14. Call (u, I) the representation of %. Without loss of generality,
by Proposition 19, we can assume that b = 0. Given Lemma 5, we only need to prove that

I satisfies

φ (I (ϕ)) ≤ I (φ (ϕ)) ∀ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu)

where φ = vw′ ◦v−1
w when w,w′ ∈ T with w′ > w. Since I is superhomogeneous and constant

superadditive, we have that

I
(
aϕ+ b̂

)
≥ I (aϕ) + b̂ ≥ aI (ϕ) + b̂ ∀a ∈ (0, 1] , ∀b̂ ≥ 0, ∀ϕ ∈ B0 (Σ, Imu) . (18)

By Lemma 4 and since % is DARA and risk averse, it follows that φ (t) = supα∈A{aαt+ bα}
where {aα}α∈A ⊆ (0, 1] and {bα}α∈A ⊆ R++. Let ϕ ∈ B0 (Σ, Imuw) ⊆ B0 (Σ, Imu). By (18),

we have that

I (φ (ϕ)) ≥ I (aαϕ+ bα) ≥ aαI (ϕ) + bα ∀α ∈ A.

We can conclude that

I (φ (ϕ)) ≥ sup
α∈A
{aαI (ϕ) + bα} = φ (I (ϕ)) ,
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proving the statement. �

Proof of Corollary 8. Call (u, I) the representation of %. Without loss of generality, by
Proposition 19, we can assume that b = 0. In light of Proposition 14, we only need to show

concavity at b (that is, superhomogeneity) and constant superadditivity. Consider λ ∈ (0, 1)

and k ≥ 0 as well as ϕ ∈ B0 (Σ, Imu). Note that there exists a sequence {kn}n∈N ⊆ (0,∞)

such that kn → k. Moreover, we have that λϕ, λϕ+k ∈ B0 (Σ, Imu) as well as λϕ+kn,
kn

1−λ ∈
B0 (Σ, Imu) for all n ∈ N. Since I is normalized, continuous, and concave, this implies that

I (λϕ+ k) = lim
n
I (λϕ+ kn) = lim

n
I

(
λϕ+ (1− λ)

kn
1− λ

)
≥ lim

n

[
λI (ϕ) + (1− λ) I

(
kn

1− λ

)]
= lim

n

[
λI (ϕ) + (1− λ)

kn
1− λ

]
= λI (ϕ) + lim

n
kn = λI (ϕ) + k.

Since λ, k, and ϕ were arbitrarily chosen and I is continuous, I is superhomogeneous and

constant superadditive and the statement follows. �
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