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Abstract

We examine the river sharing problem with a novel focus on implementing efficient outcomes.
We introduce a class of two-stage games in which agents first announce desired levels of con-
sumption and then bargain over monetary compensations. An impartial outside observer with
partial information connects the two stages by conditioning agents’ recognition probabilities in
the second stage on the allocation realized in the first stage. We identify ways of setting recog-
nition probabilities that give agents incentives to choose the efficient allocation of water all the
while ensuring that the surplus obtained from efficient water usage ends up being shared in a fair
way. In particular, we take an axiomatic approach to determine three new and implementable
solutions.
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1 Introduction

We revisit the river sharing problem as introduced by Ambec and Sprumont (2002). A river flows
through several countries. The flow of the river causes consumption externalities: the more water
that is diverted by upstream countries, the less is available for downstream countries to consume.
At the same time, a sovereign country may feel entitled to use the resources within its borders as
it sees fit. In this way, the absence of well-defined property rights to the water makes it difficult
for the involved parties to coordinate on a socially desirable water allocation. As a remedy, we
assume that an outside observer (a “planner”) assists in recommending a solution that is agreeable
to all parties. However, whereas the countries (“agents”) have complete information about the
river, the planner cannot discern the level of utility that the agents derive from consuming water.1

This is resolved by letting the agents interact through a game form. When designed and played
optimally, the game reveals the efficient allocation of water and matches it with bilateral monetary
compensations in such a way that all agents improve upon the status quo (when there are no water
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transfers between the agents). We investigate how such a game form can be designed in order to
always implement efficient outcomes. We further pinpoint implementable game forms that divide
the gains obtained from efficient water usage in normatively compelling ways.

More specifically, a problem is defined as follows. Each agent has an inflow to the river and
a benefit function that captures the agent’s utility of water consumption. Benefit functions are
strictly increasing, so for an agent to agree to a downstream transfer of water (that is, to abstain
from consuming some water), the downstream agent has to compensate the upstream agent. A
practical example of such a compensation is hydropower investments, which have the added benefit
of not diverting any water from the river (in contrast to irrigation of fields) and therefore not
harming downstream agents. Throughout, we exclude the more costly option of transferring water
upstream. When done correctly, the downstream transfers increase aggregate benefits compared
to the situation without transfers. The monetary compensations govern how this “surplus” is
shared. Preferences are quasi-linear in money, so an allocation is (Pareto) efficient whenever it
maximizes aggregate benefits. Furthermore, benefit functions are strictly concave, so there is a
unique allocation that maximizes aggregate benefits. This is the socially optimal consumption plan
that the planner intends to implement.

The planner, unable to observe the benefit functions, must consult the agents in order to
determine the efficient allocation. This is modeled as a two-stage game. In the first stage, the
agents sequentially submit their desired consumption level. The most upstream agent (the “source”)
chooses first and we then proceed downstream. Ideally, the agents, who have complete information,
choose to consume according to the efficient allocation in equilibrium. However, depending on how
the game proceeds, they may have incentives to do otherwise. In the second stage, agents bargain
over the monetary compensations. In each round of negotiation, one agent is selected at random
to propose how the agents should compensate one another. If there is unanimous agreement on
the proposal, then it is implemented. On the other hand, if some agent rejects the proposal, we
proceed to a new round with a possibly different proposer. The longer the negotiations take, the
more the agents discount the outcome implemented if, and when, agreement is reached. (However,
we show in Theorem 1 that there is no delay in equilibrium.) The planner ties the two stages
together by making the probability distribution over who gets to propose in Stage 2 a function of
the allocation realized in Stage 1. Formally, an agent is “recognized” as the proposer with a certain
probability. We examine how the recognition probabilities can be set in order to incentivize agents
to choose the efficient allocation (to maximize surplus) in Stage 1 all the while resulting in a “fair”
division of the surplus is Stage 2. To do so, we analyze the subgame-perfect (Nash) equilibrium of
the two-stage game through backward induction.

Our first result, Theorem 1, shows that the bargaining game in Stage 2 generally has a unique
subgame-perfect equilibrium in stationary strategies.In equilibrium, the surplus is shared in propor-
tion to the recognition probabilities. This shows a potential trade-off: an agent prefers to consume
an inefficient amount if this increases the agent’s recognition probability by relatively more than
it decreases the surplus. To ensure that the game results in an efficient outcome, these trade-offs
must be avoided when designing the recognition function. Theorem 2 shows that, for the game
to always implement efficient outcomes, an agent’s recognition probability can only depend on the
consumption choices made by those upstream from the agent. Equivalently, an agent’s consumption
choice can only affect the recognition probabilities of those downstream from the agent. Theorem 2
sets the overall structure of implementable recognition functions, but it still leaves open many ways
to share the surplus. Among these, we wish to identify solutions that, in some regard, award the
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surplus to the agents most responsible for generating it. The most direct way of doing so is to
determine how much benefit each agent derives at the efficient allocation and then share the sur-
plus accordingly, but this is not feasible without knowledge of the benefit functions. An alternative
is to emphasize that the surplus always is created by some agent transferring water for another
agent to use more efficiently. However, Theorem 2 shows that conditioning the recognition proba-
bility on how much the agent consumes or abstains from consuming is incompatible with efficient
implementation. To further emphasize this point, our third result turns the argument around. If
no water is transferred to or from an agent, then the agent certainly does not contribute to the
surplus. Theorem 3 shows that there is no implementable recognition function that always excludes
these “dummy” agents from getting a share of the surplus. To narrow down the number of possible
solutions, we turn to less demanding conditions that still reflect normatively compelling properties
in the present context. Through this axiomatic approach, we give normative foundation to three
new solutions to the river sharing problem.

The first axiom pertains to two-agent problems. When there are only two agents, any surplus
is created by the upstream agent transferring water for the downstream agent to consume more
efficiently. As this is common to all two-agent problems, we may as well recommend the same
solution to all such problems. This is captured by two-agent independence. The second axiom,
consistency, concerns scalability: given that we know how to solve two-agent problems in a desirable
way, consistent extension of such a solution allows scaling to any number of agents. Theorem 4
shows that two-agent independence and consistency together characterize recognition functions for
which the probabilities form geometric series. Next, we note that while we cannot award agents for
consuming or transferring more water, we can award them for having more water available. This is a
reasonable proxy for what we want to capture: if an agent has more water available, then the agent
has to consume and/or transfer more water. There is no conflict with efficient implementation as
the water available only depends on the inflows and the consumption choices of the upstream agents.
We obtain this solution by first settling the recognition probability for the source as captured by the
axiom source-solution. We then, again, want a consistent extension of this principle (now slightly
different) in order to determine the recognition probabilities for the other agents. Theorem 5
shows that source-solution and source-consistency characterize the recognition function that sets
probabilities in proportion to the water available to the agents. For our final result, we turn to
an invariance property. Source merging neutrality implies that a country’s bargaining power is
independent of whether we treat the country as one agent or divide it into separate regions which
we treat as separate agents. Theorem 6 shows that source-solution and source merging neutrality
together characterize the simple recognition function that sets probabilities in proportion to inflows.

The solution introduced by Ambec and Sprumont (2002), Downstream incremental (DI), is
intrinsically different from those that we study. Most importantly, DI generically recommends
different solutions to two problems that differ only in benefit functions. In contrast, each solution
on how to share the welfare surplus that we consider is set without knowledge of the benefit
functions and thus selects the same outcome in such pairs of problems. Moreover, DI never awards
a “dummy” agent a share of the surplus. There are such solutions in our class as well, but Theorem 3
shows that none of them implements efficient outcomes, so they fall outside the set of solutions that
we primarily focus on. Furthermore, whereas DI never awards the source a share of the surplus,
the three solutions that we characterize generally do. Finally, we use simulations to show that
the solutions present very different ways of awarding the surplus. The solutions that we introduce
divide the surplus in a more egalitarian way than DI which (in the simulations) typically awards
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more than half of the surplus to a single agent. For the intuition behind this, consider a problem
in which all but agent i have the same inflow whereas agent i is without inflow. All agents have
identical benefit functions. Then DI awards the entire surplus to agent i, the agent without inflow.
In contrast, the solutions that we introduce share the surplus more or less equally among all agents
but i. We find that Upstream incremental (van den Brink et al., 2007; Herings et al., 2007) behaves
in a way similar to DI in these respects. We remark finally that, whether a more egalitarian solution
is “better” or “more fair” depends entirely on the circumstances surrounding the river. If there
only is transfer of water between two agents, then sharing the surplus between these two agents
(which is not particularly egalitarian for the river system as a whole) may be viewed as fair. On the
other hand, if there is an even flow of water along the entire river, then a more egalitarian solution
may be preferable.

We acknowledge that there are other solutions established in the literature but restrict the
comparisons to the incremental solutions. By now, there is a large literature on the river shar-
ing problem with extensions to satiated preferences (Ambec and Ehlers, 2008b), multiple springs
(Khmelnitskaya, 2010; van den Brink et al., 2012; Béal et al., 2015) and uncertain inflows (Ambec
et al., 2013). In Section 7, we introduce a generalized model which covers many of these exten-
sions. Other solutions have been derived for instance through a market-based approach (Wang,
2011) or through strategic negotiations (Adams et al., 1996). For surveys of the literature, we
refer to Ambec and Ehlers (2008a), Beal et al. (2013), and Ansink and Houba (2015). There are
also closely related problems that take a slightly different approach: sharing the cost of cleaning
a polluted river (Ni and Wang, 2007; Dong et al., 2012; Alcalde-Unzu et al., 2015; van den Brink
et al., 2017), sharing irrigation costs (Aadland and Kolpin, 1998, 2004; Moulin, 2004), and river
claims problems (Ansink and Weikard, 2015; Ansink et al., 2017) to which an axiomatic approach
also is used. In contrast, the topic that we focus mainly on, implementation, has been less studied.
The single exception is the working paper by Ambec and Sprumont (2000) in which DI is shown
to be implemented through a particular extensive-form game.

Since we use noncooperative bargaining as part of our implementation our study is also con-
nected to the literature on cooperative bargaining solution to the water allocation problem (Kilgour
and Dinar, 2001; Dinar, 2001; Houba, 2008; Ansink and Weikard, 2009; Houba et al., 2014; Degefu
et al., 2016). In particular, Houba et al. (2014) suggest to use asymmetric bargaining utilizing,
as we do, that quasi-linear preferences allows the problem to be decomposed into two problems:
finding a welfare maximizing allocation, and subsequently finding monetary compensations.

Our second stage is adapted from the literature on noncooperative bargaining with random
proposer and draws from the work of Binmore et al. (1986), Binmore (1987), and Baron and
Ferejohn (1989) among others. Equilibrium existence and uniqueness in such models is analyzed
in Eraslan (2002) and Eraslan and McLennan (2013). In connection with contests (Tullock, 1980),
several papers analyze ways to determine agents’ bargaining power through contest success functions
(see, for instance, Skaperdas, 1996; Rai and Sarin, 2009; Yildirim, 2010). However, in this literature,
the success an agent has typically depends on the agent’s effort, whereas our recognition functions
that implement efficient outcomes are not permitted to.

The paper is structured as follows. We present the model in Section 2. In Section 3, we
introduce the class of mechanisms. In Section 4, we present our results on implementation. In
Section 5, we take an axiomatic approach to select from the implementable solutions. In Section 6,
we contrast the new solutions with the incremental solutions through simulations. Finally, we
discuss an extension in Section 7.
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2 Model

We follow the model introduced by Ambec and Sprumont (2002). There is a finite set of locations
along a river, or agents, N = {1, . . . , n}. Lower numbers of N represent more upstream locations,
so agent 1 is the most upstream agent (the “source”). For each agent i, there is an inflow to the
river ei ≥ 0 and a benefit function bi : R≥0 → R that captures i’s utility of water consumption.
Let e = (e1, . . . , en) ∈ Rn≥0. Benefit functions are differentiable for positive consumption, strictly
increasing, strictly concave, and slope infinitely at the origin.

Although agents are entitled to consume their own inflow, welfare gains for the river system as
a whole may be obtained by passing water downstream. The more costly option of sending water
upstream is precluded throughout. Thus, a water allocation x = (x1, . . . , xn) ∈ Rn≥0 is such that
x1 ≤ e1, x1 + x2 ≤ e1 + e2, and so on, until x1 + · · ·+ xn = e1 + · · ·+ en. Let B(x) =

∑
i bi(xi) be

the aggregate welfare at allocation x and ∆(x) = B(x)−B(e) be the change in welfare due to the
transfer of water. The set of allocations is X ⊆ Rn≥0.

To reward agents for transferring water and thereby creating a surplus, we use monetary
compensations c = (c1, . . . , cn) ∈ Rn such that

∑
i ci = 0. Preferences are quasi-linear in money:

given allocation x and compensations c, agent i’s utility is ui(x, c) = bi(xi) + ci. The set of utility
vectors (“outcomes”) attainable under x is U(x) ⊆ Rn:

U(x) = {(bi(xi) + ci)i∈N ∈ Rn |
∑

i ci = 0} = {u ∈ Rn |
∑

i ui = B(x)}.

The outcome u Pareto-improves upon another outcome v if, for each agent i and some agent j,
ui ≥ vi and uj > vj . An outcome is efficient if it cannot be Pareto-improved. As preferences are
quasi-linear, the outcome u ∈ U(x) is efficient if and only if its associated allocation x maximizes
the sum of benefits, B(x). Furthermore, as each benefit function bi is strictly concave, there is a
unique allocation x∗ that solves maxx∈X B(x). Notice that x∗ also maximizes the welfare change
∆(x∗) ≥ 0. Hence, the set of efficient outcomes is U(x∗).

3 Class of mechanisms

We imagine that a benevolent social planner assists in recommending a solution that is agreeable
to all agents. The planner has only partial information: the agents’ locations and inflows are
naturally observable, but the individual benefit functions are not. Therefore, the efficient allocation
cannot be determined without consulting the agents. For this purpose, the planner designs a game
(“mechanism”) in such a way that equilibrium play reveals the efficient allocation. Throughout,
agents are assumed to have complete information (in particular about the other agents’ benefit
functions).

We restrict attention to a specific class of mechanisms. These mimic the way conflicts on
international waterways are resolved in practice, that is, through multilateral bargaining. The
mechanisms consist of two stages: the agents first sequentially choose consumption and then bargain
over the associated monetary compensations. Moreover, the consumption choices in Stage 1 affect
the distribution of power in Stage 2. Specifically, to each allocation x ∈ X, the planner associates
a point p(x) ∈ [0, 1]n in the n-simplex, where pi(x) is agent i’s “recognition probability”. Formally,
pi(x) is the probability with which agent i gets to make a proposal in Stage 2 given that allocation x
is realized in Stage 1: a high probability means that agent i is likely to be recognized as the proposer.
In this way, pi(x) is a measure of i’s bargaining power (we use the terms interchangeably).
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By using a well-designed recognition function, the planner can incentivize agents to choose
the efficient allocation. The only restriction that we impose on the recognition probabilities is
that pi(x) = pi(x1, . . . , xn) is continuous in each xj . The ‘class of mechanisms’ covers all possible
recognition functions. Next, we describe the two stages in further detail.

Stage 1: Sequential consumption choice The desired consumption levels are submitted in
sequence, starting from the source and proceeding downstream. The feasibility constraints must be
met: agent 1 chooses x1 ≥ 0 such that x1 ≤ e1, agent 2 chooses x2 ≥ 0 such that x1 +x2 ≤ e1 + e2,
and so on, until agent n is left with xn ≥ 0 such that x1 + · · · + xn = e1 + · · · + en. Thus, at the
end of Stage 1, the allocation x has been determined and thereby also the set of outcomes U(x)
and the recognition probabilities pi(x).

Stage 2: Infinitely repeated, random proposer, unanimity bargaining Agents bargain,
possibly indefinitely, over which outcome in U(x) to implement (implicitly, they determine the
monetary compensations c). Until unanimous agreement has been reached, each round of negoti-
ations starts with a proposer being randomly selected. In particular, agent i is recognized as the
proposer with probability pi(x) as determined in Stage 1. The proposer chooses a utility vector
u ∈ U(x), which the agents in random order either accept or reject. If the proposal is unanimously
accepted, then it is implemented and the game ends. Otherwise, we proceed to the next round
with a possibly different proposer. Agents have common discount factor δ ∈ (0, 1). We restrict
attention to stationary strategies, which can be represented by a pair (ui, ai) ∈ U(x)× R: agent i
always proposes ui and always accepts a proposal if awarded at least ai.

If agreement is reached on utility vector u in the first round of negotiations, so uj ≥ aj for each
agent j, then agent i’s payoff is ui. If agreement is never reached, then agent i’s payoff is bi(ei) as
i consumes ei throughout the endless negotiations. This is consistent with exponential discounting
whenever agent i derives utility (1− δ)bi(ei) from each round of failed negotiations:

bi(ei) = lim
r→∞

(1 + δ + · · ·+ δr)(1− δ)bi(ei).

Thus, if agreement is reached on proposal u after r rounds of failed negotiations, then i’s payoff is

(1 + δ + · · ·+ δr−1)(1− δ)bi(ei) + δrui.

4 Implementation of efficient outcomes

We solve the two-stage game by backward induction and first determine expected payoffs in Stage 2.
This is by itself a “game within the two-stage game” onto which we apply subgame-perfection. As
Stage 2 is an infinite-horizon game with discount factor δ less than one, we can apply the one-
stage-deviation principle: a strategy profile is subgame-perfect if and only if no agent can benefit
by deviating in a single round and reverting to the original strategy thereafter (see Fudenberg and
Tirole, 1991, Theorem 4.2).

Theorem 1 shows that the surplus, in expectation, is shared in proportion to the recognition
probabilities when agents bargain optimally. The result does not rely on particularly patient agents:
it holds regardless of the discount factor δ ∈ (0, 1). We refer to Eraslan and McLennan (2013) and
references therein for a general discussion on the uniqueness of equilibrium payoffs in models of
coalitional bargaining.
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Theorem 1. An agent’s expected payoff is the same in all stationary, subgame-perfect equilibria of
Stage 2. In particular,

A. If ∆(x) > 0, then the expected payoff is bi(ei) + pi(x)∆(x) and the equilibrium is unique;
B. If ∆(x) ≤ 0, then the expected payoff is bi(ei) and there are several payoff-equivalent equilibria.

Proof. As each agent j is guaranteed payoff bj(ej) by rejecting all proposals through a high-enough
acceptance threshold, equilibrium acceptance thresholds satisfy aj ≥ bj(ej). Therefore, if ∆(x) =
B(x) − B(e) < 0, then there is no proposal u ∈ U(x) such that uj ≥ bj(ej) for each agent j, so
agreement is never reached. Agent i’s expected payoff is then Eπi = bi(ei). If ∆(x) = 0, then the
only acceptable proposal is u such that ui = bi(ei), so again Eπi = bi(ei).

To derive a contradiction, suppose that ai > bi(ei) in an equilibrium in which agreement is
never reached. Then there exists a subgame away from the equilibrium path in which a proposal is
accepted by all the other agents and i is offered ui such that Eπi = bi(ei) < ui < ai. Agent i is then
better off accepting the proposal, contradicting that the equilibrium is subgame-perfect. Hence,
ai = bi(ei) in such an equilibrium.

If ∆(x) > 0, then agreement is reached in equilibrium. If not, then each proposer benefits
from proposing, say, u such that ui = bi(ei) + pi(x)∆(x). Moreover, agreement is reached without
delay. If not, say agent i’s first-round proposal is rejected, then i should look at the other agents’
proposals and switch to the one that is accepted and awards i the most. Hence, i’s expected payoff
is Eπi =

∑
j pj(x)uji . Furthermore, each proposal is in U(x) so it adds to B(x). Therefore,∑

i Eπi =
∑

i

∑
j pj(x)uji =

∑
j pj(x)

∑
i u

j
i =

∑
j pj(x)B(x) = B(x).

By the stationarity of the game and the strategies, i’s expected payoff from rejecting a proposal is

δEπi + (1− δ)bi(ei).

In equilibrium, i accepts all proposals that exceed this. Hence, this is the acceptance threshold ai:

ai = δEπi + (1− δ)bi(ei) =⇒
∑

i ai = δ
∑

i Eπi + (1− δ)
∑

i bi(ei) = δB(x) + (1− δ)B(e).

Each agent j optimally keeps as much as possible of the surplus by awarding i precisely uji = ai.
Thus:

Eπi =
∑

j pj(x)uji

= ai + pi(x)(B(x)−
∑

j aj)

= δEπi + (1− δ)bi(ei) + pi(x)(B(x)− δB(x)− (1− δ)B(e))

= δEπi + (1− δ)(bi(ei) + pi(x)∆(x)).

It follows that Eπi = bi(ei) + pi(x)∆(x).

Whereas the surplus ∆ is maximized at the efficient allocation x∗, an agent’s recognition prob-
ability pi generally is not. Therefore, if agent i can enforce an inefficient allocation that increases
pi by relatively more than it decreases ∆, then i’s expected payoff increases and the implemented
outcome is inefficient (note here that it is never beneficial for an agent to make ∆ negative). In this
way, only some of the mechanisms implement efficient outcomes. This is made precise in Theorem 2
below: in terms of recognition probabilities, only those of agents downstream of i can be affected
by i’s choice xi.

7



Theorem 2. The following statements are equivalent:

A. There exists an efficient subgame-perfect equilibrium outcome of the two-stage game;
B. For each agent i and allocations x and y, x1, . . . , xi−1 = y1, . . . , yi−1 =⇒ pi(x) = pi(y).

In addition, if pi(x) > 0 for each agent i and allocation x, then the subgame-perfect equilibrium
outcome is unique.

Proof. By Theorem 1, expected payoffs are Eπi = bi(ei) + pi(x)∆(x) in Stage 2. We solve Stage 1
through backward induction.

Part A ⇐= Part B : By assumption, pi(x) is independent of agent i’s choice xi and the choices
of those downstream of i. Hence, i can only affect ∆(x). If pi(x) > 0, then i chooses to maximize ∆,
knowing that the agents downstream will do the same. If pi(x) = 0, then i is indifferent between
all alternatives, so maximizing ∆ is one out of several optimal choices. As agents have complete
information, they can determine the efficient x = x∗ and choose accordingly. This is an equilibrium,
and it is unique if pi(x) > 0 for all agents.

Part A =⇒ Part B : By contradiction, suppose that Part A is true but Part B is not.
Step 1. Agent n chooses last and has to select xn such that

∑
i xi =

∑
i ei. Hence, there cannot

be xn and yn 6= xn for n to choose between, so Part B is always true for agent n.
Step 2. Consider agent n−1. Conditional on the choices by agent 1 through n−2, n−1 chooses

xn−1 and indirectly xn. Label two such choices yn−1 and zn−1. Let y ≡ (x1, . . . , xn−2, yn−1, yn) ∈ X
and z ≡ (x1, . . . , xn−2, zn−1, zn) ∈ X. Suppose that pn−1(y) 6= pn−1(z), in particular, pn−1(y) <
pn−1(z). By continuity, we may assume that yn−1, zn−1 > 0 and that y and z are such that there is
some (arbitrarily small) transfer of water between all agents. We will identify benefit functions for
which y is efficient but agent n− 1 nevertheless prefers z. That is, pn−1(y)∆(y) < pn−1(z)∆(z).

Define `i(wi) = min{wi, yi, zi}. Let ε > 0 and assume that each benefit function bi is such that
`i(wi) ≤ bi(wi) ≤ `i(wi)+ε everywhere; see Figure 1. As ε > 0, there is sufficient room between the
two piece-wise linear functions to “twist” the continuous benefit functions as we like. In particular,
we can equate marginal benefits at y: for each {i, j} ⊆ N , b′i(yi) = b′j(yj). This is necessary and
sufficient to ensure that y is efficient when there is water transferred between all agents.

wi

`i(wi)

`i(wi) + ε

min{yi, zi}

bi(wi)

Figure 1: The benefit function bi is within the bounds set by the piece-wise linear functions.

By construction, bi(yi) ≤ `i(yi) + ε = `i(zi) + ε ≤ bi(zi) + ε. Thus, B(y) ≤ B(z) + nε, so
∆(y) ≤ ∆(z) + nε. As y 6= e and y is efficient, ∆(y) > 0, so, for a small-enough ε, ∆(z) > 0.
Therefore, as pn−1(z) > pn−1(y), there is a small-enough ε > 0 such that

∆(y)

∆(z)
≤ ∆(z) + nε

∆(z)
<
pn−1(z)

pn−1(y)
.

8



Then n− 1 prefers the inefficient z over y and we obtain the desired contradiction. Hence, for all
choices yn−1 and zn−1 that n − 1 can make, pn−1(y) = pn−1(z). But then, as in Part A ⇐=
Part B, agent n− 1 always maximizes ∆.

Step 3. Next, consider agent i = n− 2, n− 3, . . . , 1 who chooses xi foreseeing that agents i+ 1
through n will consume to maximize ∆. We proceed as in Step 2 and identify benefit functions
such that y is efficient and agent i prefers z over y. However, we also ensure that the choices by
agents i + 1 through n at z maximize ∆ given that i chooses zi. (In Step 2, only agent n follows
n − 1, and n must maximize ∆.) By continuity, we may assume that yi, zi > 0 and that y and
z are such that there is water transferred between all agents. Then z is efficient for the agents
downstream of i whenever their marginal benefits are equal. Thus, for each {j, k} ⊆ {i+ 1, . . . , n},
we set b′j(zj) = b′k(zk). Hence, if yi > zi, so there is more to divide for i + 1, . . . , n at z, then all
consume more at z than at y. Figure 2 sketches such a profile of benefit functions.

xj
yj = zj

bj(xj)

xizi yi

bi(xi)

xkyk zk

bk(xk)

Figure 2: (Illustration for yi > zi.) Left is for j < i and right for k > i. The benefit functions
should equate marginal benefits at the filled dots and likewise at the non-filled dots.

The proof now proceeds as in Step 2 and we derive the same contradiction that implies pi(y) =
pi(z). Once we have shown this for agent i = 1, the proof is complete.

A stronger solution concept that allows collusion between agents would further limit the set of
viable mechanisms. We conjecture that, if coordination is possible in Stage 1 and the planner wants
to implement an efficient outcome, then recognition probabilities cannot depend on the allocation
at all. That is, for each agent i and allocations x and y, pi(x) = pi(y).

A plausible objective for the planner is to award the surplus to those “most deserving” of it.
However, this is somewhat ambiguous: the planner must set the recognition probabilities without
knowing the benefit functions, and, furthermore, agents can contribute in different ways. For
instance, with inflows e = (2, 1, 0) and identical benefit functions, all agents contribute to the
efficient allocation x∗ = (1, 1, 1): agent 1 has excess inflow, agent 2 passes it on, and agent 3 extracts
more benefit from it. Hence, there is generally not a unique “right” way to divide the surplus.
However, the planner may justify excluding an agent from sharing the surplus. In particular, say
agent i is a dummy agent at allocation x if no water is passed on to or from i:

∑
j<i xj =

∑
j<i ej

and xi = ei. With inflows e = (2, 0, 1) and identical benefit functions, agent 3 is a dummy: water
is only transferred from 1 to 2 at the efficient x∗ = (1, 1, 1). As it suffices to know the inflows and
the allocation to determine whether an agent is a dummy, the planner can easily exclude dummy
agents from sharing the surplus. However, this comes at a cost: Theorem 3 shows that no such
mechanism always implements an efficient outcome.

Theorem 3. Let n ≥ 4. The following statements are mutually exclusive:
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A. There exists an efficient subgame-perfect equilibrium outcome of the three-stage mechanism;
B. If agent i is a dummy agent at the efficient allocation x∗, then i’s equilibrium payoff is bi(ei).

Proof. By Theorem 2, Part A is equivalent to that only the probabilities of agents downstream of
i can depend on i’s choice. In particular:

Step 1. Only pn(x) can depend on xn−1. However, as probabilities add to one, if pn(x) changes
with xn−1, then so must also someone else’s probability. This is a contradiction, so even pn is
independent of xn−1. Hence, the planner cannot condition pn on whether n− 1 passes on water or
not. Thus, to guarantee that agent n gets no share of the surplus when a dummy, the planner sets
pn(x) = 0 for each allocation x, including the efficient x∗.

Step 2. Only pn(x) and pn−1(x) can depend on xn−2. However, Step 1 implies that pn(x) = 0.
The argument proceeds as in Step 1 with the conclusion that the planner sets pn−1(x) = 0 for each
allocation x.

Step 3. We repeat the argument to find that p(x) = (0, . . . , 0), contradicting
∑

i pi(x) = 1.

Theorem 3 does not extend to n ≤ 3. For instance, for n = 3, if ∆(x) 6= 0, then agent 2 cannot
be a dummy agent. Therefore, p(x) = (0, 1, 0) satisfies both statements of Theorem 3.

To conclude, Theorem 2 guides the planner on how to set the recognition probabilities such that
the resulting water allocation is efficient, and Theorem 3 shows that implementation is incompatible
with excluding dummy agents from sharing the surplus. An agent’s bargaining power cannot
depend on the agent’s consumption or transfer of water, and consumption is only allowed to affect
the bargaining power of upstream agents. However, on the positive side, Theorem 2 still offers a
wide range of mechanisms that implement efficient outcomes and condition bargaining power on
consumption choice.

5 Choosing recognition probabilities

In order to narrow down the set of desirable recognition functions, we take an axiomatic approach.
Each proposed axiom reflects a normatively appealing property in the present context. Taken in
conjunction, the axioms lead uniquely to new solutions which all satisfy Part B of Theorem 2. That
is, if the planner uses the probabilities specified in equations (1), (2), or (3), then the associated
two-stage mechanism implements an efficient outcome.

As a first step, we extend the model in order to relate problems that differ in population size.
We assume now an infinite set of potential agents N = {1, 2, . . . }. A population is a finite subset of
N and represents a set of agents as in Section 2; with some abuse, let n denote the number of agents.
Given inflows e ∈ Rn≥0, the set of allocations is X(e) ⊆ Rn≥0. A recognition function p selects, for
each population N ⊂ N, inflows e ∈ Rn≥0, and allocation x ∈ X(e), a point p(N, e, x) ∈ [0, 1]n in the
n-simplex. We assume that p is anonymous in the sense that only agents’ relative locations matter,
not their identities. Hence, it is without loss to consider the generic population N = {1, . . . , n}.

In a two-agent problem, any surplus is created by agent 1 passing on water downstream for
agent 2 to use more efficiently – this is true no matter the benefit functions, inflows, or allocation.
Two-agent independence asserts that we should share the surplus in the same way in all two-agent
problems. That is, if we value excess inflow as twice as important as being able to use the water
more efficiently in one problem, then we should keep this trade-off for all two-agent problems.
Moreover, both agents play a part in creating the gain, so both should get a share of it.
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Axiom 1 (Two-agent independence). For each {e, e′} ⊆ R2
≥0, x ∈ X(e), and x′ ∈ X(e′),

p({1, 2}, e, x) = p({1, 2}, e′, x′) ∈ (0, 1)2.

Next, we turn to the consistency principle (for normative underpinnings, see Thomson, 2011).
Loosely speaking, consistency concerns scalability: given that we know how to solve simple two-
agent situations in a desirable way, consistent extension of such a solution allows scaling to any
number of agents. Here, we focus on a minimal version that refers only to the case when either the
most upstream or most downstream agent is removed. Consistency requires that the recognition
probabilities of the agents in the reduced problem are unchanged when adjusting the scale of the
probabilities accordingly.

Axiom 2 (Consistency). For each N ⊂ N, e ∈ Rn≥0, x ∈ X(e), j ∈ {1, n}, and i 6= j,

pi(N, e, x) = pi(N \ {j}, e−j , x−j) · (1− pj(N, e, x)).

Theorem 4 shows that a mechanism satisfies two-agent independence and consistency whenever
its recognition probabilities form a geometric series, where the parameter λ is the ratio between
the probabilities of two consecutive agents. A special case is Equal division which always shares
the surplus equally through pi(N, e, x) = 1/n. Note that equation (1) tends to 1/n as λ→ 1.

Theorem 4. The recognition function p satisfies two-agent independence and consistency if and
only if it is Equal division or there is λ > 0 such that, for each N ⊂ N, e ∈ Rn≥0, x ∈ X(e), and
i ∈ N ,

pi(N, e, x) = pλi (N, e, x) =
1− λ
1− λn

λi−1. (1)

Proof. ⇐= Fix λ > 0, λ 6= 1. As pλ is independent of e and x, pλ satisfies two-agent independence.
Let (N, e, x) be an arbitrary problem and create the reduced problem by removing agent 1. First,

pλ1(N, e, x) =
1− λ
1− λn

=⇒ 1− pλ1(N, e, x) =
1− λn − 1 + λ

1− λn
=
λ− λn

1− λn
=

1− λn−1

1− λn
λ.

Therefore,

pλi (N \ {1}, e−1, x−1) · (1− p
λ
1(N, e, x)) =

(
1− λ
1− λn−1

λi−2
)(

1− λn−1

1− λn
λ

)

=
1− λ
1− λn

λi−1 = pλi (N, e, x).

The approach is analogous for the reduced problem that is obtained by removing agent n. Hence,
pλ satisfies consistency. Furthermore, it is easy to verify that Equal division satisfies two-agent
independence and consistency.

=⇒ By two-agent independence, there is λ > 0 such that, for all two-agent problems,

p({1, 2}, e, x) =

(
1

1 + λ
,

λ

1 + λ

)
= pλ({1, 2}, e, x).
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That is, λ denotes the ratio of the two agents’ probabilities.
Generally, consider any consecutive agents i and i+ 1. By repeated application of consistency,

we can remove all agents upstream from i and downstream from i + 1. This leaves a two-agent
problem in which the probabilities of agents i and i+ 1 have been rescaled compare to the original
problem. However, the scale does not affect the probability ratio. Hence,

pi+1(N, e, x)

pi(N, e, x)
=
pi+1({i, i+ 1}, e, x)

pi({i, i+ 1}, e, x)
= λ.

This pins down the functional form: there is C > 0 such that pi(N, e, x) = Cλi−1. We determine
C through

∑
i pi(N, e, x) = C

∑
i λ

i−1 = 1. If λ = 1, then C = 1/n, and we obtain Equal division.
If λ 6= 1, then we derive the desired expression:

C(1 + λ+ · · ·+ λn−1) = 1

C(λ+ · · ·+ λn−1 + λn) = λ
=⇒ C(1− λn) = 1− λ ⇐⇒ C =

1− λ
1− λn

.

By Theorem 2, implementability implies that the source’s recognition probability is constant.
An alternative way to characterize a desirable recognition function is to settle the source’s bargain-
ing power for any problem. In particular, source-solution asserts that proportionality of inflows
constitutes a desirable recognition probability for the source.

Axiom 3 (Source-solution). For each N ⊂ N, e ∈ Rn≥0, and x ∈ X(e),

p1(N, e, x) =
e1∑
i ei

.

Source-solution may appear unfair when the source is a dummy agent with positive inflow, but
recall that implementability is incompatible with excluding dummy agents from getting positive
shares of the surplus (Theorem 3). Introducing source-solution allows us weaken consistency:

Axiom 4 (Source-consistency). For each N ⊂ N, e ∈ Rn≥0, x ∈ X(e), and i ≥ 2,

pi(N, e, x) = pi(N \ {1}, e
′, x−1) · (1− p1(N, e, x)),

where e′ = (e1 + e2 − x1, e3, . . . , en).

Source-solution requires that the source’s bargaining power should reflect the water available
to the source (e1) in proportion to the total amount of water available in the river (e1 + · · ·+ en).
Source-consistency then ensures that we apply the same reasoning as we proceed downstream. For
the second agent, the water available is both the local inflow and the water passed on from the
source (e1 + e2−x1). This is set in proportion to the water available from agent 2 and downstream
(e1 + · · · + en − x1). Thus, source-solution and source-consistency characterize a solution that
equates an agent’s recognition probability with the power as implied by the water made available
to the agent.

Theorem 5. The recognition function p satisfies source-solution and source-consistency if and only
if, for each N ⊂ N, e ∈ Rn≥0, x ∈ X(e), and i ∈ N ,

pi(N, e, x) = p∗i (N, e, x), (2)
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where

p∗1(N, e, x) = 1− f(1),

p∗2(N, e, x) = f(1)(1− f(2)),

...

p∗n(N, e, x) = f(1) · · · f(n− 1)(1− f(n))

with f(k) =
∑

j>k ej∑
j ej−

∑
j<k xj

and f(n) = 0.

Proof. ⇐= We first show that p∗ satisfies source-solution:

p∗1(N, e, x) = 1− f(1) = 1−
∑

j>1 ej∑
j ej

=
e1∑
j ej

.

We turn to source-consistency. As in its definition, remove agent 1 to obtain the reduced
problem (N \ {1}, e′, x−1). The total inflow is reduced by 1’s consumption:∑

j>1 e
′
j = e1 + e2 − x1 + e3 + · · ·+ en =

∑
j ej − x1.

Moreover,
∑

1<j<k xj =
∑

j<k xj −x1. Therefore, we obtain the same value for f(k) if we compute

it on the original problem (N, e, x) as if we do so on the reduced problem (N \ {1}, e′, x−1):∑
j>k e

′
j∑

j>1 e
′
j −

∑
1<j<k xj

=

∑
j>k ej∑

j ej − x1 −
∑

j<k xj + x1
=

∑
j>k ej∑

j ej −
∑

j<k xj
= f(k).

It follows that p∗i (N \ {1}, e
′, x−1) = f(2) · · · f(i− 1)(1− f(i)). Note also that the above step can

be repeated: if we remove the new source in the reduced problem, then we again derive the same
value f(k) for the remaining agents k. As f(1) = 1− p∗1(N, e, x), we derive the desired conclusion:

p∗i (N, e, x) = f(1) · · · f(i− 1)(1− f(i)) = p∗i (N \ {1}, e
′, x−1) · (1− p

∗
1(N, e, x)).

=⇒ Consider an arbitrary problem (N, e, x). For j ∈ N , define the reduced problem
({j, . . . , n}, ej , xj) with ej = (

∑
i≤j ei −

∑
i<j xi, ej+1, . . . , en) and xj = (xj , . . . xn). By source-

solution, agent j is awarded 1− f(j) in her associated reduced problem:

pj({j, . . . , n}, e
j , xj) =

ejj∑
i e
j
i

=

∑
i≤j ei −

∑
i<j xj∑

i ei −
∑

i<j xj
= 1− f(j).

Therefore, 1 − pj({j, . . . , n}, e
j , xj) = f(j). Applying repeatedly to source-consistency, we derive

desired conclusion:

pj(N, e, x) = pj({2, . . . , n}, e
2, x2) · (1− p1(N, e, x))

= pj({3, . . . , n}, e
3, x3) · (1− p2({2, . . . , n}, e

2, x2)) · (1− p1(N, e, x))

= . . .

= pj({j, . . . , n}, e
j , xj) · (1− pj−1({j − 1, . . . , n}, ej−1, xj−1)) · · · (1− p1(N, e, x))

= f(1) · · · f(j − 1)(1− f(j)) = p∗j (N, e, x).
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Lastly, we note that the term ‘location’ can be ambiguous. For instance, we may consider
regional inflows and let agents be represented by regions, or we add up to country inflows and let
agents represent countries. Ideally, an agent’s bargaining power should be independent of the way
in which the agent is represented. Source merging neutrality captures this but only in a minimal
way: it applies only when the two most upstream agents merge into a new source. Moreover, the
axiom is silent on how the other agents may be affected from this change.

Axiom 5 (Source merging neutrality). For each N ⊂ N, e ∈ Rn≥0, and x ∈ X(e),

p1(N, e, x) + p2(N, e, x) = p2(N \ {1}, e
′, x′),

where e′ = (e1 + e2, e3, . . . , en) and x′ = (x1 + x2, x3, . . . , xn).

Together with source-solution, source merging neutrality characterizes the simple recognition
function that sets recognition probabilities in proportion to inflows.

Theorem 6. The recognition function p satisfies source-solution and source merging neutrality if
and only if, for each N ⊂ N, e ∈ Rn≥0, x ∈ X(e), and j ∈ N ,

pj(N, e, x) = p◦j (N, e, x) =
ej∑
i ei

. (3)

Proof. ⇐= It is immediate that p◦ satisfies source-solution. For source merging neutrality,

p◦1(N, e, x) + p◦2(N, e, x) =
e1∑
i ei

+
e2∑
i ei

=
e1 + e2∑

i ei
=

e′2∑
i e
′
i

= p◦2(N \ {1}, e
′, x′).

=⇒ Consider an arbitrary problem (N, e, x). By source-solution,

p1(N, e, x) =
e1∑
i ei

= p◦1(N, e, x).

Let j ∈ N and assume, for each i = 1, . . . , j − 1, pi(N, e, x) = p◦i (N, e, x). Define the reduced
problem ({j, . . . , n}, ej , xj) with ej = (e1 + · · ·+ ej , ej+1, . . . , en) and xj = (xj , . . . xn). By source-
solution,

pj({j, . . . , n}, e
j , xj) =

ejj∑
i e
j
i

= p◦j ({j, . . . , n}, e
j , xj).

Applying to source merging neutrality repeatedly, we get that

p◦j ({j, . . . , n}, e
j , xj) = pj({j, . . . , n}, e

j , xj)

= p1(N, e, x) + · · ·+ pj−1(N, e, x) + pj(N, e, x)

= p◦1(N, e, x) + · · ·+ p◦j−1(N, e, x) + pj(N, e, x).

Therefore,

pj(N, e, x) = p◦j ({j, . . . , n}, e
j , xj)−

(
p◦1(N, e, x) + · · ·+ p◦j−1(N, e, x)

)
=
e1 + · · ·+ ej∑

i ei
−
(

e1∑
i ei

+ · · ·+
ej−1∑
i ei

)
=

ej∑
i ei

= p◦j (N, e, x).

14



Example 1. To briefly illustrate how the three solutions, pλ, p∗, p◦, defined above, share the surplus
∆(x∗), consider the generic three agent case. Let E = e1 + e2 + e3 be the total inflow.

First, consider pλ, that is independent of inflows and consumption. Say, for λ = 0.5 (that is,
for two consecutive agents i and i+ 1: pi+1/pi = λ = 0.5) we get:

p0.51 = 0.57, p0.52 = 0.29, p0.53 = 0.14.

Next, consider p∗, that depends on both the inflows and the consumption of upstream agents. Here
we get f(1) = e2+e3

E and f(2) = e3
E−x1

. Thus,

p∗1 =
e1
E
, p∗2 =

e2 + e3
E

(1− e3
E − x1

), p∗3 =
e2 + e3
E

e3
E − x1

.

Finally, for p◦ we get:

p◦1 =
e1
E
, p◦2 =

e2
E
, p◦3 =

e3
E
.

Resulting payoffs can be computed as ui = bi(ei) + pi∆(x∗) for every agent i and solution p.

6 Simulations

We conduct simulations to contrast the solutions introduced in Section 5 with the well-known
Downstream incremental (Ambec and Sprumont, 2002) and Upstream incremental (van den Brink
et al., 2007; Herings et al., 2007). We simulate 100 random 10-agent instances. Benefit functions
are of the form bi(xi) = x

αi
i with exponents αi drawn uniformly from [0, 1]. Likewise, inflows

are drawn uniformly from [0, 1]. For each instance, we determine the efficient allocation x∗ and
calculate the surplus ∆(x∗). The incremental solutions implicitly define recognition probabilities
as follows. Assuming that the incremental solution selects outcome u, we solve for the recognition
probability pi:

ui = bi(ei) + pi∆(x∗) ⇐⇒ pi =
ui − bi(ei)

∆(x∗)
.

We order the recognition probabilities from smallest to largest. Then, we average the ordered
probabilities across the 100 instances. This lets us see how much, on average, the k agents who get
the smallest shares of the surplus get in total. The simulation results are plotted in Figure 3.

Figure 3 shows that there is one agent who receives half of the surplus (on average) under the
incremental solutions. (This is typically a different agent for Downstream incremental than for
Upstream incremental.) Moreover, the incremental solutions essentially exclude half of the agents
from the surplus. In contrast, our proposed solutions award 70 − 75% of the surplus to the five
agents who receive most and 25− 30% to the other agents. As such, our solutions represent a more
egalitarian way of sharing the surplus compared to the conventional solutions. Finally, we note
that all solutions are fitted surprisingly well by different geometric series.

7 Extension: Implementation in a general setting

Many intricacies of the model are not “needed” to prove that some mechanisms implement efficient
outcomes. Therefore, we can generalize the model considerably and extend Theorem 1 and 2 in a
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Figure 3: Cumulative distributions averaged across 100 random 10-agent instances. The three
shaded curves represent Equal division and pλ (Theorem 4) for λ = 6/5 (mid) and λ = 9/4 (low
curve).

straightforward way. We do so next by introducing a more flexible model, repeating the relevant
parts of Section 2 whenever necessary.

A problem still has a finite set of agents N = {1, . . . , n}, but they need not be “on a line”. Agent
i is immediately upstream of agent j whenever i ≺ j. The partial order ≤ on N is the reflexive,
transitive closure of ≺. Intuitively, this specification allows parallel rivers with multiple sources.
Identify a minimal element of ≤ and label this agent 1. Agent 1 chooses x1 from a closed and
bounded set E1 that represents the consumption possibilities for agent 1. In Section 2, E1 = [0, e1],
but E1 may now be in several dimensions, exclude the origin, be non-convex, and so on. In the
absence of cooperation along the river, agent 1 has an outside option and derives some benefit
therefrom; we label these e1 and b1(e1) ∈ R, respectively.

The resources not used by agent 1 are passed on to the immediate subordinates. Let agent
2 � 1 be such a subordinate. The consumption space of agent 2 depends on the choice of agent 1.
Specifically, agent 2 chooses x2 from E2(x1). An allocation x = (x1, . . . , xn) is such that, for each
agent j, xj ∈ Ej(xi<j), where xi<j = (xi)i<j . Collect in e = (e1, . . . , en) the agents’ outside options
and denote each agent i’s corresponding benefit bi(ei). The allocation x creates aggregate benefit
B(x) ∈ R. We require only that B is continuous in x and that B(e) =

∑
i bi(ei). That is, only

in the specific point that reflects the agents’ outside options does B have to be linear. At other
points, B may feature complementarities between agents such as B(x) = x1x2. In contrast to the
simpler model in Section 2, there may now exist several allocations that maximize B. However,
we conjecture that the results still generalize in a simple way: if agent j’s choice cannot affect the
recognition probability of agent i ≤ j, then the mechanism implements efficient outcomes.
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