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Abstract

This paper develops estimation methods for network formation models using ob-

served data from a single large network. We characterize network formation as a

simultaneous-move game with incomplete information, where we allow for utility ex-

ternalities from indirect friends such as friends-of-friends and friends-in-common. As

a consequence the expected utility can be nonlinear in the link choices of an agent. In

a network with n members each individual faces a discrete choice problem with 2n−1

overlapping alternatives, which is diffi cult to solve without simplification. We propose

a novel method that uses the Legendre transform to express the expected utility as a

linear function of the individual link choices. This allows us to derive a closed-form

expression for the conditional choice probability (CCP). The closed-form CCP is that

for an agent who myopically chooses to establish links or not to the other members of

the network. The dependence between the agent’s choices is captured by a ’suffi cient

statistic’for this dependence. Using this CCP we propose a two-step estimation proce-

dure that requires few assumptions on equilibrium selection, is simple to compute, and

provides asymptotically valid estimators for the parameters. The main issue is to show

that the asymptotic distribution of the estimator is not dominated by the dependence
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between the link choices of the agent. Monte Carlo results show that the estimation

procedure performs well, even in moderately large networks.

KEYWORDS: Network formation, Large games, Incomplete information, Two-step

estimation, Legendre Transform

JEL Codes: C13, C31, C57, D85

1 Introduction

This paper contributes to the growing literature on the estimation of game-theoretic models

of network formation.1 The purpose of the empirical analysis is to recover the preferences

of the members of the network, in particular the preferences that determine whether a

member of the network forms links (friendship, business relation or some other type of link)

with other members of the network. The preference for a link depends in general on the

exogenous characteristics of the two members, and on their endogenous positions in the

network, e.g., their number of links and their number of common links. It is the dependence

of the link preference of an agent on the endogenous position of a potential partner in the

network that complicates the analysis. Besides on observable variables, the link preference

of an agent also depends on unobservable features of the link. Assumptions on the nature of

these unobservables play a key role in the empirical analysis.

Link formation models are discrete choice models where the choice is between alternatives

that consist of the links to the other members. In a network with n members an agent

chooses between 2n−1 overlapping sets of links. Because our analysis assumes that n is large

and grows without bounds, this seems an intractable discrete choice problem. In addition

the link choices of the members of the network have to be consistent. This is achieved by

assuming that the realized network is a Bayesian Nash equilibrium in which agents maximize

the expected utility of their link choices. The first simplification of the link choice model is

due to the assumption of incomplete information under which agents base their link choices

on the unobserved characteristics of the their potential links, but agents do not know the

unobserved link characteristics of the potential links of the other agents and these unobserved

link characteristics are independent across agents. The alternative assumption is that of

complete information under which agents know not just the unobserved link characteristics

of their own potential links, but also those of the links by all other agents in the network.

The complete information models are the hardest to estimate and they achieve set and not

point identification of the parameters of the utility function (Miyauchi (2013) and Sheng

(2017)).

1Jackson (2008) surveys game-theoretic models of network formation.
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A further simplification is obtained if the utility function for links depends on the position

of a potential partner in a restrictive way. Leung (2015) shows that if the utility function

depends on the choice of potential partners in a separable way, e.g. through the (weighted)

number of links of the potential partner, then the link choice that maximizes the expected

utility is myopic, because it is equivalent to a sequence of myopic choices in which an agent

chooses to form a link with another member if the utility of that link is greater than the utility

of not forming that link. This equivalence to a sequence of myopic choices does not hold, if

the utility function depends on the choice of potential partners in a non-separable way. An

important example is that the utility function depends on the number of links in common

which means that the agent considers linking to two members simultaneously. Allowing for

the utility to depend on links-in-common is important if networks exhibit clustering.

The main contribution of this paper is that we show that even if the utility function de-

pends on the product of link choice indicators, the expected utility maximizing links choice

is still equivalent to a sequence of myopic link choices. Using the Legendre transform we

linearize the expected utility function. This linearization introduces an auxiliary variable

in the expected utility function that depends on the unobserved link characteristics of the

agent’s links. This auxiliary variable is itself the solution to a (non-differentiable) optimiza-

tion problem. Thanks to the linearization the parameters of the utility function can be

estimated by a two-step procedure where in the first-step reduced-form link probabilities are

estimated, and in the second step we estimate the utility function parameters.

The asymptotic analysis of the two-step estimator has some complications. We assume

that we have data on a single large network. A number of papers as Menzel (2017), Leung

(2015), and De Paula, Richards-Shubik and Tamer (2017) consider estimation using such

data. In our model the link choices are dependent for each agent but not across agents. The

dependence is due to the auxiliary variable introduced by the Legendre transform. If the

number of network members n grows the auxiliary variable converges to a constant that does

not depend on the unobserved link characteristics. It turns out that the dependence vanishes

at the rate 1
n
which means that the dependence cannot be ignored in the calculation of the

asymptotic variance of the two-step estimator that is based on n2 observations on links.

However the dependence can be accounted for in an obvious way.

The plan of the paper is as follows. In Section 2 we introduce the model and the specific

utility function that we will use. We also discuss the Bayesian Nash equilibrium for the

network. In Section 3 we obtain a closed-form expression for the link-formation probability

that is computationally tractable. Section 4 discusses the two-step estimator. Section 5

considers a number of extensions of the model and estimator that will be addressed in future

research. Section 6 reports the results of a simulation study.
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2 Model

Suppose that n individuals can play to form links. The links form a network, which we

denote by G ∈ G. This is an n×n binary matrix. The (i, j) element Gij = 1 if i,j are linked

and 0 otherwise. The diagonal elements Gii are set to be 0. We consider directed links, i.e.,

Gij and Gji may be different. The case of undirected links is discussed later in Section 5.1.

Each individual i has a vector of observed characteristics Xi ∈ X and a vector of unob-

served preference shocks εi = (εi1, . . . , εi,i−1, εi,i+1, . . . , εin) ∈ Rn−1, where εij is i’s preference
for link ij. We assume that the characteristic profile X = (X1, . . . , Xn) ∈ X n is public in-

formation of all the individuals, but the shock vector εi is the private information of i. We

also assume that the private shocks are i.i.d. and are independent of the observables.

Assumption 1 (i) εij,∀i 6= j, are i.i.d. with CDF Fε (θε) supported over R that is absolutely
continuous with respect to the Lebesgue measure. Fε (θε) is known up to parameter θε ∈ Θε ⊂
Rdε. (ii) ε = (ε1, . . . , εn) and X are independent.

Utility Given the network G, characteristic profile X, and private shocks εi, individual i

has the utility

Ui(G,X, εi; θu) =
∑
j 6=i

Gij

(
ui (Gj, X; β) +

1

n− 2

∑
k 6=i,j

Gikvi (Gj, Gk, X; γ)− εij

)
(2.1)

where Gi = (Gij)j 6=i denotes the ith row of G, i.e., the links formed by i. We assume that

the utility function is known up to parameter θu = (β, γ) in a compact set Θu ⊂ Rdu.
In the specification in (2.1), ui(Gj, X; β) represents the incremental utility from a link

that is separable in i’s links Gi. A typical example of ui(Gj, X; β) is

ui (Gj, X; β) = β0 +X ′iβ1 + |Xi −Xj|′ β2 +Gjiβ3 +
1

n− 2

∑
k 6=i,j

Gjkβ4 (Xi, Xj, Xk) (2.2)

The first four terms in (2.2) capture the direct utility from the link with j, which consists

of the homophily effect (β2) and the reciprocal effect (β3). The last term in (2.2) captures

the indirect utility from j’s friends, which may vary in the characteristics of the individuals

involved. This specification is similar to that in Leung (2015).

The main difference between our setting and Leung (2015) is that in addition to the

utility that is separable in one’s own links, we also allow for the utility from indirect friends

that are nonseparable in one’s own links, represented by vi (Gj, Gk, X; γ). For example, if
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we want to capture the utility from friends in common, we may specify

vi (Gj, Gk, X; γ) = GjkGkjγ1 (Xi, Xj, Xk) +
1

n− 3

∑
l 6=i,j,k

GjlGklγ2 (Xi, Xj, Xk) (2.3)

where the first term captures the effect of friends in common that are directly connected

and the second term captures the effect of friends in common that are indirectly connected.

Allowing for such nonseparable externalities is crucial if we want to model networks with

a feature of clustering, that is, two individuals with friends in common are more likely to

become friends (Jackson, 2008).

We normalize the sum terms in (2.1)-(2.3) by n− 2 or n− 3 to ensure that these terms

remain bounded when n increases to infinity, the data scenario we consider in the asymptotic

analysis.

Equilibrium Let Gi (X, εi) denote individual i’s link decisions, which is a mapping from

i’s information (X, εi) to a vector of links Gi ∈ Gi = {0, 1}n−1. Write G = (Gi, G−i), where

G−i = (Gj)j 6=i denotes the submatrix of G with the ith row deleted, i.e., the links formed by

individuals other than i.

Each individual i makes her optimal link decisions by maximizing her expected utility

E [Ui(gi, G−i, X, εi)|X, εi] over gi ∈ Gi, where the expectation is taken with respect to the
link decisions of other individualsG−i. SinceG−i is a function ofX and ε−i = (εj)j 6=i, and the

private shocks εi are assumed to be independent across i (Assumption 1), individual i’s belief

about G−i depends on her information (X, εi) only through the public information X. Let

σi (gi|X) = Pr (Gi (X, εi) = gi|X) be the conditional probability that individual i chooses

gi given X. The independence of the private shocks also implies that the link decisions Gi

are independent across i given X, so individual i’s belief about the link decisions of others

can be represented as σ−i (g−i|X) =
∏

j 6=i σj (gj|X). Let σ (X) = {σi (gi|X) ,∀gi ∈ Gi.∀i}
denote the belief profile. For a given belief profile σ, the expected utility of individual i is

given by

E [Ui(Gi, G−i, X, εi)|X, εi, σ]

=
∑
j 6=i

Gij

(
E [ui (Gj, X)|X, σ] +

1

n− 2

∑
k 6=i,j

GikE [vi (Gj, Gk, X)|X, σ]− εij

)
(2.4)
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For the specification in (2.2) and (2.3), we have

E [ui (Gj, X)|X, σ] = β0 +X ′iβ1 + |Xi −Xj|′ β2 + E [Gji|X, σ] β3

+
1

n− 2

∑
k 6=i,j

E [Gjk|X, σ] β4 (Xi, Xj, Xk)

and

E [vi (Gj, Gk, X)|X, σ] =E [Gjk|X, σ]E [Gkj|X, σ]Gjkγ1 (Xi, Xj, Xk)

+
1

n− 3

∑
l 6=i,j,k

E [Gjl|X, σ]E [Gkl|X, σ] γ2 (Xi, Xj, Xk) (2.5)

Given X and σ, the probability that individual i chooses gi is

Pr (Gi = gi|X, σ)

= Pr

(
E [Ui(gi, G−i, X, εi)|X, εi, σ] ≥ max

g̃i∈Gi
E [Ui(g̃i, G−i, X, εi)|X, εi, σ]

∣∣∣∣X, σ) . (2.6)

A Bayesian Nash equilibrium σ∗ (X) = {σ∗i (gi|X) , ∀gi ∈ Gi.∀i} is a belief profile that satis-
fies

σ∗i (gi|X) = Pr (Gi = gi|X, σ∗ (X)) (2.7)

for all link decisions gi ∈ Gi and all i = 1, . . . , n.

In this paper, we focus on equilibria that are symmetric in individuals’observed charac-

teristics. We say that an equilibrium σ (X) is symmetric if for i and j with Xi = Xj, we

have σi (X) = σj (X), where σi (X) = {σi (gi|X) ,∀gi ∈ Gi} denotes the conditional choice
probability profile of individual i. In social networks, individuals typically have no identities

and are labelled arbitrarily. It is thus reasonable to assume that a realized equilibrium is

symmetric because otherwise the conditional choice probability profile of an individual may

depend on how we label the individuals. It can be shown that there exists a symmetric

equilibrium. We assume that the equilibrium realized in data is symmetric.

Proposition 2.1 For any X ∈ X n, there exists a symmetric equilibrium σ (X).

Proof. See the appendix.
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3 Representation of the Optimal Link Decisions

The diffi culty in estimating the formation model in the previous section results from the

fact that the expected utility in (2.4) is nonlinear in the link decisions of an individual, so

it is not clear how to represent the optimal link decisions and quantify their correlation.

In this section, we propose a novel approach to overcome this diffi culty. The main idea

is to linearize the expected utility through certain auxiliary variables so that the optimal

link decisions can be derived in closed form. In the next section, we show how to use this

closed-form representation to characterize the dependence among the links of an individual

and derive asymptotic properties for estimators as the network size n goes to infinity.

To facilitate the presentation, we assume that Xi has a finite support so that the optimal

link decisions can be derived in matrix notation.

Assumption 2 (Discrete X) The support of Xi has a finite number of distinct values,

X = {x1, . . . , xT}.

To proceed, observe that the expected utility of friends in common E [vi (Gj, Gk, X)|X, σ]

in (2.5) is symmetric in subscripts j and k. Moreover, in a symmetric equilibrium σ (X) if two

individuals j and k have the same characteristics (i.e., Xj = Xk) we have σj (X) = σk (X).

This implies that E [vi (Gj, Gk, X)|X, σ] depends on j and k only through the values of

Xj and Xk. Therefore, given X−jk = (Xl)l 6=j,k, we can view E [vi (Gj, Gk, X)|X, σ] as a

symmetric function of Xj and Xk. For any s, t = 1, . . . , T , let Vi,st (X, σ) denote the value

of E [vi (Gj, Gk, X)|X, σ] when Xj = xs and Xk = xt,

Vi,st (X, σ) = E [vi (Gj, Gk, X)|Xj = xs, Xk = xt, X−jk, σ (xs, xt, X−jk)]

Arrange all such values in a T × T matrix

Vi (X, σ) =


Vi,11 (X, σ) · · · Vi,1T (X, σ)

...
...

Vi,T1 (X, σ) · · · Vi,TT (X, σ)


We take two steps to linearize the expected utility. First, since Vi (X, σ) is a real sym-

metric matrix, it has a real spectral decomposition

Vi (X, σ) = Φi (X, σ) Λi (X, σ) Φi (X, σ)′ (3.1)

where Λi (X, σ) = diag (λi1 (X, σ) , . . . , λiT (X, σ)) is the T ×T diagonal matrix of the eigen-
values λit (X, σ) ∈ R, t = 1, . . . , T , and Φi (X, σ) = (φi1 (X, σ) , . . . , φiT (X, σ)) is the T × T
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orthogonal matrix of the eigenvectors φit (X, σ) ∈ RT , t = 1, . . . , T . Using this spectral

decomposition, we can transform the double summation in the expected utility in (2.4) to a

canonical form that involves only squares of linear functions of Gi.

Second, once we obtain the canonical form of the double summation, we can represent

the squares of linear functions of Gi using a special case of Legendre transform (Rockafellar,

1970), namely,

Y 2 = max
ω∈R

{
2Y ω − ω2

}
(3.2)

Note that the maximand on the right hand side of (3.2) is linear in Y . Replacing each square

function by the right hand side of (3.2) with an auxiliary variable ω, we can represent the

expected utility in a form that is linear in Gi. The details are given in Proposition 3.1.

Proposition 3.1 Under Assumptions 1-2, the expected utility in (2.4) is equal to

E [Ui(Gi, G−i, X, εi)|X, εi, σ]

=
∑
j 6=i

Gij (Uij (X, σ)− εij) +
(n− 1)2

n− 2

∑
t

λit (X, σ)

(
1

n− 1

∑
j 6=i

GijD
′
jφit (X, σ)

)2
=
∑
j 6=i

Gij (Uij (X, σ)− εij)

+
(n− 1)2

n− 2

∑
t

λit (X, σ) max
ω̃t∈R

{
2

(
1

n− 1

∑
j 6=i

GijD
′
jφit (X, σ)

)
ω̃t − ω̃2t

}
(3.3)

where

Uij (X, σ) = E [ui (Gj, X)|X, σ]− 1

n− 2
D′jdiag (Vi (X, σ))Dj (3.4)

and

Dj = (1 {Xj = x1} , . . . , 1 {Xj = xT})′

Proof. See the appendix.
The optimal link decisions are solved by maximizing the expected utility overGi. Observe

that under the transformation in (3.3) the expected utility becomes linear in Gi. If we

can move the maximization over ω̃ = (ω̃1, . . . , ω̃T )′ ∈ RT in (3.3) to the beginning of the
expected utility function and interchange this maximization with the maximization over Gi,

the optimal link decisions can be solved easily. Moving the maximization over ω̃ to the

beginning of the expected function is valid if the eigenvalues λit (X, σ) are assumed to be

nonnegative (Assumption 3). Moreover, it is guaranteed by Lemma 3.2 below that the swap

of the two maximizations does not change the optimal solution. Therefore, we can obtain

the optimal link decisions from the linearized expected utility in closed form.
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To get around the eigenvalues and eigenvectors when representing the optimal link deci-

sions, we further transform the maximization over ω̃ to a maximization over another vector

ω, defined by ω = (ω1, . . . , ωT )′ = ViΦiω̃ ∈ RT . Let V +
i denote the Moore-Penrose general-

ized inverse of Vi. By the spectral decomposition in (3.1) and the orthogonality of Φi, we

have ω = ΦiΛiω̃ and ω′V +
i ω = ω̃′Λiω̃. It can be shown that the maximization over ω̃ can be

represented equivalently as a maximization over ω. Formal results about the optimal link

decisions are established in Theorem 3.3.

Assumption 3 (Positive semi-definite Vi) For any X and σ the eigenvalues of Vi (X, σ)

are nonnegative, i.e., λit (X, σ) ≥ 0 for all i and all t.

Lemma 3.2 For any function f(x, y) : X × Y → R with supx,y f (x, y) <∞, we have

max
y

max
x

f (x, y) = max
x

max
y
f(x, y) (3.5)

Therefore, if there is a unique (x∗, y∗) such that f (x∗, y∗) = maxy maxx f (x, y), then (x∗, y∗)

is also the unique solution to maxx maxy f(x, y).

Theorem 3.3 Under Assumptions 1-3, the optimal link decisions Gi (X, εi, σ) = (Gij (X, εi, σ))j 6=i
are given by

Gij (X, εi, σ) = 1

{
Uij (X, σ) +

n− 1

n− 2
2D′jωi (εi, X, σ)− εij ≥ 0

}
, ∀j 6= i (3.6)

where ωi (εi, X, σ) is a maximizer of the problem

max
ω

Πi (ω, εi, X, σ) =
∑
j 6=i

[
Uij (X, σ) +

n− 1

n− 2
2D′jω − εij

]
+

− (n− 1)2

n− 2
ω′V +

i (X, σ)ω (3.7)

with [x]+ = max {x, 0}. Moreover, the optimal Gij (X, εi, σ) is unique almost surely.

Proof. See the appendix.

4 Estimation

In this section, we discuss how to estimate the model parameter θ. We propose a two-step

estimation procedure, where in the first step we estimate link formation probabilities di-

rectly from data and in the second step we estimate the parameter θ using the first-step

estimates. Unlike most econometric literature on games of incomplete information which
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typically assumes a large number of independent games, we use links from a single network

and consider the asymptotic properties when the network size n increases to infinity.2 The

model in Section 2 implies that conditional on an equilibrium links are independent across

individuals due to the independence of private information, while links within an individual

are correlated, as indicated by (3.6). The main challenge in deriving the asymptotic prop-

erties of our estimator is then to deal with the correlation among the links of an individual

using the representation of the links in (3.6) and show how such correlation affects the rate

of convergence and asymptotic distribution of the proposed estimator.

To facilitate the asymptotic analysis, we add subscript n to G, X, and ε and denote

them as Gn, Xn, and εn, where Gn = (Gn,ij)∀i 6=j and εn = (εn,ij)∀i 6=j. We also use Gni =

(Gn,ij)j 6=i and εni = (εn,ij)j 6=i to denote the ith row of Gn and εn. For convenience, we write

Xn = (Xn,ij)∀i 6=j, where Xn,ij = (Xni, Xnj) represents the characteristics of pair i and j. Let

σn (Xn) denote the equilibrium observed in data.

We start with the first step. Given the utility specification in (2.2) and (2.3), the ex-

pected utility in (2.4) depends on the equilibrium σn (Xn) only through the link formation

probabilities pn,ij (Xn), ∀i 6= j, where

pn,ij (Xn) = Pr (Gn,ij = 1|Xn, σn (Xn))

is the probability that individuals i and j form a link. It thus suffi ces to consider such link

formation probabilities in the first step.

Let pn (Xn) = (pn,ij (Xn))∀i 6=j be the link probability profile observed in data. Define the

conditional link probability as a function of the link probability profile p

Pn,ij (Xn, p) = Pr (Gn,ij (Xn, εni, p) = 1|Xn, p) (4.1)

where Gn,ij (Xn, εni, p) is given by (3.6). The equilibrium condition implies that pn (Xn)

satisfies

pn,ij (Xn) = Pn,ij (Xn, pn (Xn)) (4.2)

for all i 6= j.

Since the observed equilibrium σn (Xn) is assumed to be symmetric, the value of pn,ij (Xn)

depends on i and j only through Xn,ij. For any s, t = 1, . . . , T , with abuse of notation let

2If we observe more than one network, we can implement the first-step estimation network by network,
i.e., we estimate the link formation probabilities in each network separately. In the second step, we pool the
likelihoods or moments from each network to estimate the parameter θ.
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pn,st (Xn) denote the value of pn,ij (Xn) when Xn,ij = xst = (xs, xt) ∈ X 2,

pn,st (Xn) = Pr (Gn,ij = 1|Xn,ij = xst, Xn,−ij, σn)

where Xn,−ij = (Xn,kl)∀(k,l)6=(i,j), and let pn (Xn) = (pn,st (Xn))∀s,t. For simplicity, we abbre-

viate pn (Xn) as pn.

The symmetry assumption reduces the dimensionality of pn from n (n− 1) to T 2. We

estimate each pn,st by the empirical frequency that all the pairs with characteristics xst form

a link

p̂n,st =

∑
i

∑
j 6=iGn,ij1 {Xn,ij = xst}∑

i

∑
j 6=i 1 {Xn,ij = xst}

(4.3)

Let p̂n = (p̂n,st)∀s,t denote the estimator of pn.

With the estimates p̂n, we obtain an estimator θ̂n of the parameter θ in the second step

by solving the system of equations

Ψ̂n

(
θ̂n, p̂n

)
= 0 (4.4)

where Ψ̂n (θ, p) is a sample moment function defined by

Ψ̂n (θ, p) =
1

n (n− 1)

∑
i

∑
j 6=i

Wn,ij (θ, p) (Gn,ij − Pn,ij (θ, p)) (4.5)

with Pn,ij (θ, p) = Pn,ij(Xn, p, θ) being the conditional link probability in (4.1) andWn,ij (θ, p)

a dim (θ) × 1 vector representing certain weights. Depending on whether we estimate θ by

Quasi-MLE (QMLE) or GMM, the weights could be different.

Example 1 (QMLE) We can estimate θ by QMLE. Construct the (quasi) log likelihood
function

Ln (θ, p) =
∑
i

∑
j 6=i

Gn,ij lnPn,ij (θ, p) + (1−Gn,ij) ln (1− Pn,ij (θ, p))

Let θ̂n be the maximizer of the log likelihood with p replaced by p̂n

max
θ
Ln (θ, p̂n)

It satisfies the first-order condition

∑
i

∑
j 6=i

∇θPn,ij (θ, p̂n)

Pn,ij (θ, p̂n) (1− Pn,ij (θ, p̂n))
(Gn,ij − Pn,ij (θ, p̂n)) = 0
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where ∇θPn,ij (θ, p) is the gradient of Pn,ij (θ, p) with respect to θ.3 It is clear that by choosing

the weight

Wn,ij (θ, p) =
∇θPn,ij (θ, p)

Pn,ij (θ, p) (1− Pn,ij (θ, p))
(4.6)

we get the moment function in (4.5).

Example 2 (GMM) An alternative way is to estimate θ by GMM. The equilibrium condi-
tion in (4.2) implies the moment restrictions

E [Gn,ij − Pn,ij (θ, p)|Xn, pn] = 0

Since Xni is discrete, these moment restrictions are equivalent to

E [ (Gn,ij − Pn,ij (θ, p)) 1 {Xn,ij = xst}|Xn, pn] = 0

for s, t = 1, . . . , T . Define mn,st (θ, p) to be the sample analogue of the above moment restric-

tion

mn,st (θ, p) =
1

n (n− 1)

∑
i

∑
j 6=i

(Gn,ij − Pn,ij (θ, p)) 1 {Xn,ij = xst}

and let mn (θ, p) = (mn,st (θ, p))∀s,t be the T
2 × 1 vector of sample moments. A GMM

estimator θ̂n is the optimal solution to the problem

min
θ
mn (θ, p̂n)′Wn (θ, p̂n)′Wn (θ, p̂n)mn (θ, p̂n)

whereWn (θ, p) is a dim (θ)×T 2 weighting matrix. By choosing the weighting matrixWn (θ, p)

to be

Wn (θ, p) = (Wn,ij (θ, p) 1 {Xn,ij = x11} , . . . ,Wn,ij (θ, p) 1 {Xn,ij = xTT})

with Wn,ij (θ, p) being the weight given in (4.5), we obtain the moment function in (4.5). In

particular, if we choose the weight Wn,ij (θ, p) as in (4.6), the GMM estimator is equivalent

to the QMLE estimator.

Now we examine the asymptotic properties of the estimator θ̂n defined by (4.4). Through-

out the section, we treat Xn and pn as fixed and derive the asymptotic theory conditional

on Xn and pn. The main issue in the asymptotic analysis is that links made by the same

individual are correlated. The representation in (3.6) indicates that such correlation results

3We show in Lemma 8.3 that Pn,ij (θ, p) is differentiable in (θ, p).
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from the presence of ωni (εni, Xn, pn). Recall that ωni (εni, Xn, pn) is a solution to the problem

ωni (εni, Xn, pn) = arg max
ω

Πni (ω, εni, Xn, pn) (4.7)

where

Πni (ω, εni, Xn, pn) =
∑
j 6=i

[
Un,ij (Xn, pn) +

n− 1

n− 2
2D′jω − εn,ij

]
+

− (n− 1)2

n− 2
ω′V +

i (Xn, pn)ω

(4.8)

It is clear that ωni (εni, Xn, pn) depends on the entire εni, so is a random vector. Hence

two links Gn,ij and Gn,ik are correlated either through the randomness in ωni (εni, Xn, pn)

or through the correlation between ωni (εni, Xn, pn) and εn,ij or εn,ik. Nevertheless, by law

of large numbers we expect that Πni (ω, εni, Xn, pn) converges to its conditional expectation

E [Πni (ω, εni, Xn, pn)|Xn, pn] (under the normalization of n−1), so ωni (εni, Xn, pn) tends to

converge to the maximizer of the conditional expectation

ω∗i (Xn, pn) = arg max
ω
E [Πni (ω, εni, Xn, pn)|Xn, pn] (4.9)

Since ω∗i (Xn, pn) is a deterministic vector, we expect that the correlation between two links of

an individual vanishes as n approaches infinity and in the limit the links become independent.

Proposition 4.1 provides a formal proof that the link correlation indeed vanishes to 0 as n

increases at the rate of n−1. Obtaining the rate of link correlation is crucial in deriving the

asymptotic distribution of the estimator. We show later that link correlation vanishing at

such a rate will not slow down the rate of convergence of the estimator, but will increase the

asymptotic variance.

Proposition 4.1 (Rate of link correlation) Suppose that Assumptions 1-3 are satisfied.
Given Xn and pn, for any distinct i, j and k, we have

E ((Gn,ij − Pn,ij (θ0, pn)) (Gn,ik − Pn,ik (θ0, pn))|Xn, pn) = O

(
1

n

)
.

Proof. See the appendix.
To establish the consistency and asymptotic distribution of the estimator θ̂n, define

Ψn (θ, p) to be the conditional expectation of Ψ̂n (θ, p) given Xn and pn

Ψn (θ, p) = E
[

Ψ̂n (θ, p)
∣∣∣Xn, pn

]
=

1

n (n− 1)

∑
i

∑
j 6=i

Wn,ij (θ, p) (E [Gn,ij|Xn, pn]− Pn,ij (θ, p)) (4.10)
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Let θ0 denote the true value of θ. It is clear that Ψn (θ0, pn) = 0 because E [Gn,ij|Xn, pn] =

Pn,ij (θ0, pn). Theorem 4.2 establishes that (θ̂n, p̂n) is consistent.

Theorem 4.2 (Consistency) Suppose that Assumptions 1-3 are satisfied. Given Xn and

pn,

(θ̂n, p̂n)− (θ0, pn)
p→ 0

as n→∞.

Proof. See the appendix.
Next we derive the asymptotic distribution of θ̂n. To account for the impact of the

first-stage estimate p̂n, recall that p̂n − pn can be represented as

p̂n − pn =
1

n (n− 1)

∑
i

∑
j 6=i

Qn,ij (Gn,ij − Pn,ij (θ0, pn)) (4.11)

where Qn,ij =
(
Qst
n,ij

)
∀s,t is a T

2 × 1 vector with the components

Qst
n,ij =

1 {Xn,ij = xst}
(n (n− 1))−1

∑
i

∑
j 6=i 1 {Xn,ij = xst}

Define an augmented sample moment at (θ0, pn)

Ψ̃n (θ0, pn) = Ψ̂n (θ0, pn) +∇pΨn (θ0, pn) (p̂n − pn)

=
1

n (n− 1)

∑
i

∑
j 6=i

W̃n,ij (θ0, pn) (Gn,ij − Pn,ij (θ0, pn)) (4.12)

where ∇pΨn (θ0, pn) is the gradient of Ψn (θ, p) with respect to p at (θ0, pn), and W̃n,ij (θ0, pn)

represents the augmented weight

W̃n,ij (θ0, pn) = Wn,ij (θ0, pn) +∇pΨn (θ0, pn)Qn,ij (4.13)

Define Ω̃n (Xn, pn) to be the conditional variance of
√
n (n− 1)Ψ̃n (θ0, pn)

Ω̃n (Xn, pn) = V ar
(√

n (n− 1)Ψ̃n (θ0, pn)
∣∣∣Xn, pn

)
(4.14)

Theorem 4.3 shows that θ̂n − θ0 converges at the rate of n to a normal distribution.

Theorem 4.3 (Asymptotic Distribution) Suppose that Assumptions 1-3 are satisfied√
n (n− 1)Ω̃−1/2n (Xn, pn)∇θΨn (θ0, pn)

(
θ̂n − θ0

)
d→ N (0, I)
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as n→∞. Moreover, Ω̃n (Xn, pn) = O (1), so θ̂n − θ0 = Op (n−1).

Proof. See the appendix.

5 Extensions

5.1 Undirected Networks

In this section we consider the case of undirected networks. We show that the methodology

in the previous sections also works for undirected networks under mild modifications. To

proceed, let Gij denote an undirected link between i and j. Clearly Gij = Gji. It is useful

to denote by Sij a directed link from i to j. Under the link announcement framework, Sij
represents whether i proposes to form a link with j. The link is formed if both i and j

propose to form it, so Gij = SijSji. We may write G (S) to indicate that G is the network

induced by proposals S.

We consider the same utility specification as in (2.1), with Gij representing an undirected

link. With abuse of notation we use G−i to denote the submatrix of G−i with the ith row and

column deleted. We maintain the same information assumption. The strategy of individual i,

denoted by Si (X, εi) = (Sij (X, εi))j 6=i is a mapping from her information (X, εi) to a vector

of link proposals in Si = {0, 1}n−1. The optimal strategy maximizes her expected utility
E [Ui(G (Si, S−i) , X, εi)|X, εi, σ] over si ∈ Si, where the expectation is taken with respect
to others’proposals S−i = (Sj)j 6=i. The choice probability σi (si|X) and belief profile σ (X)

are defined similarly as before, with links Gi replaced by proposals Si.

Given belief profile σ, individual i’s expected utility is now given by

E [Ui(G (Si, S−i) , X, εi)|X, εi, σ]

=
∑
j 6=i

Sij

(
E [Sjiui (Gj, X)|X, σ] +

1

(n− 2)

∑
k 6=i,j

SikE [SjiSkivi (Gj, Gk, X)|X, σ]− E [Sji|X, σ] εij

)

For the specifications in (2.2) and (2.3) we have

E [Sjiui (Gj, X)|X, σ] = E [Sji|X, σ]
(
β0 +X ′iβ1 + |Xi −Xj|′ β2

)
+

1

n− 2

∑
k 6=i,j

E [SjiSjk|X, σ]E [Skj|X, σ] β3 (Xi, Xj, Xk)
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and

E [SjiSkivi (Gj, Gk, X)|X, σ] = E [SjiSjk|X, σ]E [SkiSkj|X, σ] γ1 (Xi, Xj, Xk)

+
1

n− 3

∑
l 6=i,j,k

E [Sjl|X, σ]E [Skl|X, σ]E [SljSlk|X, σ] γ2 (Xi, Xj, Xk)

Let Pr (Si = si|X, σ) be the probability that i proposes si given X and σ. A Bayesian Nash

equilibrium σ∗ (X) is a fixed point that solves σ∗i (si|X) = Pr (Si = si|X, σ∗ (X)).

Remark 1 A potential concern with Nash is that in undirected networks players may co-

ordinate. This is reasonable under complete information, where pairwise stability (Jackson

and Wolinsky (1996)) and Nash equilibrium are nonnested and neither of them implies the

other. However, under incomplete information players won’t be able to coordinate even in

undirected networks; because i does not observe εji, he cannot predict what j proposes and

coordinate on that (unless in a trivial equilibrium where σ (X) ≡ 0). In fact, if we define a

Bayesian version of the pairwise stability, that is, a network G is Bayesian pairwise stable if

Gij = 1 {∆ijE [Ui(G (Si, S−i) , X, εi)|X, εi, σ] ≥ 0 & ∆jiE [Uj(G (Sj, S−j) , X, εj)|X, εj, σ] ≥ 0}

for any i 6= j, where ∆ijE [Ui(G (Si, S−i) , X, εi)|X, εi, σ] is the expected marginal utility if i

proposes the link with j, i.e.,

E [Ui(G (Si : Sij = 1, S−i) , X, εi)|X, εi, σ]− E [Ui(G (Si : Sij = 0, S−i) , X, εi)|X, εi, σ]

and similar for ∆jiE [Uj(G (Sj, S−j) , X, εj)|X, εj, σ], then any undirected network that is

Bayesian Nash must also be Bayesian pairwise stable. This is because for a Bayesian Nash

G, Gij = 1 if and only if Sij = Sji = 1 are optimal, so the expected marginal utility from

the link must be nonnegative for both i and j. It is thus enough to consider Bayesian Nash

equilibrium.

Like in the directed case, define

Vi,st (X, σ) = E [SjiSkivi (Gj, Gk, X)|Xj = xs, Xk = xt, X−jk, σ (xs, xt, X−jk)]

and the matrix

Vi (X, σ) =


Vi,11 (X, σ) · · · Vi,1T (X, σ)

...
...

Vi,T1 (X, σ) · · · Vi,TT (X, σ)
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Following the same idea in the previous sections, we can derive the optimal proposals in

closed form.

Corollary 1 Under Assumptions 1-3, the optimal link proposals Si (X, εi, σ) = (Sij (X, εi, σ))j 6=i
are given by

Sij (X, εi, σ) = 1

{
Uij (X, σ) +

n− 1

n− 2
2D′jωi (εi, X, σ)− σjiεij ≥ 0

}
, ∀j 6= i

where ωi (εi, X, σ) is a maximizer of the problem

max
ω

∑
j 6=i

[
Uij (X, σ) +

n− 1

n− 2
2D′jω − σjiεij

]
+

− (n− 1)2

n− 2
ω′Vi (X, σ)ω

with

Uij (X, σ) = E [Sjiui (Gj, X)|X, σ]− 1

n− 2
D′jdiag (Vi (X, σ))Dj

and σji = E [Sji|X, σ]. Moreover, the optimal Sij (X, εi, σ) is unique almost surely.

In a n-player network, given Xn and σn, the probability that individual i proposes to link

to j and the probability that i proposes to link to both j and k are given by

Pn,ij (Xn, σn) = Pr (Sn,ij (Xn, εni, σn) = 1|Xn, σn)

= Pr

(
Un,ij (Xn, σn) +

n− 1

n− 2
2D′jωni (εni, Xn, σn)− σn,jiεn,ij ≥ 0|Xn, σn

)
and

Qn,ijk (Xn, σn) = Pr (Sn,ij (Xn, εni, σn) = 1, Sn,ik (Xn, εni, σn) = 1|Xn, σn)

= Pr

(
Un,ij (Xn, σn) +

n− 1

n− 2
2D′jωni (εni, Xn, σn)− σn,jiεn,ij ≥ 0,

Un,ik (Xn, σn) +
n− 1

n− 2
2D′kωni (εni, Xn, σn)− σn,kiεn,ik ≥ 0

∣∣∣∣Xn, σn

)
The latter is relevant because the expected utility depends on the beliefs about two proposals

Sn,jiSn,jk.

5.2 Limiting Game Approach

In this section, we explore the asymptotic behavior of the n-player game when n approaches

infinity. Applying the representation in (3.6)-(3.7), we can show that the optimal link deci-

sions of an individual and the probability she forms a link converge to some limiting strategy
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and link formation probability as n goes to infinity. The optimal link decisions in the limit

has a simple form that conditional on some suffi cient statistics that control for the spillover

effects between one’s own links, the links of an individual are formed independently. These

asymptotic features are crucial for deriving simple enough while asymptotically valid esti-

mators of the model parameters.

From (3.6) the probability that individual i forms a link to j conditional on characteristic

profile X and belief profile σ is

Pn,ij (Xn,ij;Xn, σn) = Pr (Gn,ij (Xn, εni, σn) = 1|Xn, σn)

= Pr

(
Un,ij (Xn, σn) +

n− 1

n− 2
2D′jωni (εni, Xn, σn)− εn,ij ≥ 0

∣∣∣∣Xn, σn

)
(5.1)

If the utility specification ensures that Un,ij (Xn, σ) converges to some limit Uij (σ) as n→∞,
as stated in Assumption 4, we expect that the link formation probability Pn,ij (Xij;X, σ)

converges to a limit given by

Pij (Xij;σ) = Pr
(
Uij (σ) + 2D′jωi (σ)− εij ≥ 0

∣∣Xij, σ
)

(5.2)

as n→∞, where ωi (σ) is a maximizer of the problem

max
ω

Π (ω,Xi, σ) = E
([
Uij (σ) + 2D′jω − εij

]
+

∣∣∣Xi

)
− ω′V +

i (σ)ω (5.3)

The expectation in (5.3) is taken with respect to Xj and εij. The equilibrium belief profile

σ∗ is a fixed point solved from

σ∗ij (Xij) = P (Xij;σ
∗)

where σij (Xij) = Pr (Gij = 1|Xij).

Assumption 4 For Un,ij (Xn, σ) defined in (3.4), there is Uij (σ) such that

(a) Given any Xij supσ |Un,ij (Xn, σ)− Uij (σ)| p→ 0, and

(b) Given any Xi, supσ
1

n−1
∑

j 6=i |Un,ij (Xn, σ)− Uij (σ)| p→ 0.

Example 3 Consider the separable utility specification in (2.2). For any Xn and σ, we have

Un,ij (Xn, σ) = β0 +X ′iβ1 + |Xi −Xj|′ β2 + σji (X) β3

+
1

n− 2

∑
k 6=i,j

σjk (X) β4 (Xi, Xj, Xk)−
1

n− 2
D′jdiag (Vi (X, σ))Dj
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We verify in the appendix that Uij (σ) is given by

Uij (σ) = β0 +X ′iβ1 + |Xi −Xj|′ β2 + σji (X) β3

+ E

[∑
k 6=i,j

σjk (X) β4 (Xi, Xj, Xk)

∣∣∣∣∣Xij

]

satisfies Assumption 4.

We refer to P (Xij;σ) defined in (5.2) the limiting choice probability. It can be understood

as the choice probability derived from a "limiting game" with infinite number of players,

where each individual i forms a link with j following a limiting strategy given by

Gij = 1
{
Uij (σ) + 2D′jωi (σ)− εij ≥ 0

}
In this limiting game, conditional on suffi cient statistic ωi (σ) which summarizes the spillover

effects from one’s other links due to nonseparable utility, each individual makes link deci-

sions myopically and considers each link as a binary choice independent of her other links.

Moreover, while statistic ωni (εni, Xn, σ) in the n-player game may be dependent of εn,ij, the

dependence vanishes as n→∞ and in the limit statistic ωi (σ) is independent of εij.

Under Assumption 5 that ensures the maximizer of Π (ω,Xi, σ) is identified, we can show

that the statistic ωn,i and choice probability Pn,ij (Xn,ij;Xn, σn) in the finite game converge

to the proposed limits given in (5.3) and (5.2) as n→∞.

Assumption 5 For any Xi and symmetric σ, Π (ω,Xi, σ) defined in (5.3) has a unique

maximizer ω∗i (σ).

Proposition 5.1 Under Assumptions 1-5, given any Xi,

sup
σ
|ωni (εni, Xn, σ)− ω∗i (σ)| p→ 0, as n→∞. (5.4)

Moreover, given any Xn,ij = Xij, we have

sup
σ
|Pn,ij (Xn,ij;Xn, σn)− P (Xij;σ)| p→ 0, as n→∞. (5.5)

Proof. See the appendix.
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6 Simulation

In this section, we implement the proposed methods in a simulation study. We focus on

directed networks and assume the following utility specification

Ui(G,X, εi; θ)

=
∑

j 6=iGij

(
β0 +Xiβ1 + |Xi −Xj| β2 +

1

n− 2

∑
k 6=i,jGjkβ3 +

1

n− 2

∑
k 6=i,jGikGjkGkjγ − εij

)
where Xi is a binary random variable taking values in {0, 1} with equal probability and
εij is standard normal N (0, 1). The true values of the parameters are (β0, β1, β2, β3, γ) =

(−1, 1,−2, 1, 1). The networks are generated according to the n-player incomplete informa-

tion game described in Section 2, with n taking different values of 10, 25, 50, 100, 250, and

500. For each value of n, we generate a single network and use it to estimate the parameters

by two-step MLE or GMM. Each experiment is repeated 100 times. We report the means

and standard errors of the estimated parameters.

Since the limiting game approximates the finite game asymptotically, we first use the

limiting game to estimate the parameters and check how well such estimates could perform.

In particular, we construct the likelihood as in (??), with Pn (Xij;Xn, pn) replaced by the

limiting choice probability P (Xij; pn) given in (5.2). Such approximation has a substantial

advantage in computation because P (Xij; pn) has a probit-type closed form. The estimates

are reported in Table 1. It is not surprising that the estimates in small networks perform

poorly, as the limiting game is only an asymptotic approximation of the finite game. Nev-

ertheless, when the network size gets large (e.g. n ≥ 100), the estimates become close to

the truth. This indicates that the limiting game is a valid approximation of the finite game

asymptotically and estimation based on this approximation may yield good estimates for the

parameters if networks are suffi ciently large.

Next we estimate the parameters by the finite game, and compare the estimates with

those from the limiting game. Note that the finite-game choice probability Pn (Xij;Xn, pn)

does not have a closed form because ωn,i (X, εi) depends on εi. It needs to be computed

by simulation. In practice, we simulate Pn (Xij;Xn, pn) by a frequency simulator, where in

each simulation we generate a vector εi and for this εi we solve for the optimal Gn,ij (X, εi)

numerically. We obtain Gn,ij (X, εi) by solving the integer programming problem directly

when n ≤ 100 or applying the equivalent binary representation as in (3.6) and solving for

ωn,i (X, εi) when n > 100. Table 2 reports the MLE estimates and Tables 3 and 4 report the

GMM estimates. By correctly specifying the choice probability, we improve the estimates in

small networks. The estimation precision is also improved. For example, the 95% quantiles
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of γ from the finite game are closer to the truth, especially in small networks. These results

indicate that we should use the finite game rather than the limiting game for estimation

for n relatively small. We want to point out that the small network performance of the

finite-game estimates is still unsatisfactory. To deliver satisfactory estimates, we need to

have large networks or conduct some bias correction for the estimates.

Table 1: MLE Estimates Using the Limiting Game

n β0 β1 β2 β3 γ

10 −1.152 2.806 −6.469 −2.626 −0.194

(2.284) (3.004) (3.649) (8.890) (6.438)

25 −0.719 2.639 −3.899 −1.835 −0.887

(0.447) (2.029) (2.152) (3.710) (3.948)

50 −0.986 1.058 −2.064 0.858 0.909

(0.126) (0.499) (0.499) (0.921) (0.551)

100 −0.995 1.008 −2.007 0.985 0.959

(0.034) (0.084) (0.084) (0.165) (0.208)

250 −1.001 1.004 −2.003 1.009 0.969

(0.014) (0.039) (0.037) (0.075) (0.173)

500 −1.001 1.001 −2.000 1.006 0.986

(0.010) (0.022) (0.022) (0.047) (0.103)

DGP −1 1 −2 1 1

Note: Mean estimates and standard errors from 100 re-
peated samples using the limiting game.

7 Conclusion

In this paper, we provide estimation methods for network formation using observed data

from a single large network. We model network formation as a simultaneous-move game with

private information and extend Leung (2015) by allowing for nonseparable utility such as

the effect of friends in common. The main innovation is to provide an approach to explicitly

represent the pure strategy of an individual in the game. This closed form representation

enables us to analyze the asymptotic features of the game as the number of players approaches

infinity and thus construct asymptotically valid estimators for the parameters. We propose

a two-step estimation procedure which makes little assumption about equilibrium selection
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Table 2: MLE Estimates Using the Finite Game

n β0 β1 β2 β3 γ

10 −1.042 1.143 −2.312 0.901 0.891

(0.674) (0.563) (0.920) (0.656) (1.297)

25 −1.005 1.059 −2.123 0.906 0.969

(0.122) (0.269) (0.324) (0.379) (0.290)

50 −1.009 0.995 −1.997 1.024 1.011

(0.063) (0.154) (0.148) (0.186) (0.221)

100 −0.990 0.992 −2.013 1.006 0.990

(0.028) (0.064) (0.060) (0.105) (0.095)

250 −0.995 1.002 −2.004 1.017 0.985

(0.010) (0.024) (0.023) (0.046) (0.035)

500 −0.999 1.014 −2.004 0.994 0.982

(0.006) (0.014) (0.014) (0.027) (0.022)

DGP −1 1 −2 1 1

Note: Mean estimates and standard errors from 100 re-
peated samples using the finite game, where the CCPs are
computed from 500 simulations by either solving integer
programming (for n ≤ 100) or applying Legendre trans-
form (for n > 100).
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Table 3: GMM Estimates Using the Finite Game (Weights from the Finite Game)

n β0 β1 β2 β3 γ

10 −0.995 0.958 −1.937 0.981 0.979

(0.206) (0.191) (0.402) (0.185) (0.182)

25 −1.010 1.060 −2.038 1.003 0.996

(0.066) (0.109) (0.194) (0.092) (0.098)

50 −1.003 0.999 −2.001 1.020 0.988

(0.042) (0.065) (0.097) (0.083) (0.072)

100 −0.996 0.993 −2.010 1.031 0.981

(0.023) (0.036) (0.052) (0.064) (0.055)

250 −0.998 0.999 −2.000 1.027 0.987

(0.008) (0.017) (0.020) (0.035) (0.033)

500 −1.001 1.007 −1.997 0.998 0.995

(0.006) (0.011) (0.011) (0.028) (0.019)

DGP −1 1 −2 1 1

Note: Mean estimates and standard errors from 100 re-
peated samples using the finite game, with the GMM
weights simulated independently from the finite game. The
CCPs are computed from 500 simulations by either solving
integer programming (for n ≤ 100) or applying Legendre
transform (for n > 100).
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Table 4: GMM Estimates Using the Finite Game (Weights from the Limiting Game)

n β0 β1 β2 β3 γ

10 −1.008 1.273 −2.940 0.834 0.943

(0.438) (1.010) (3.338) (1.900) (1.004)

25 −1.017 1.012 −2.065 1.016 0.986

(0.097) (0.185) (0.268) (0.232) (0.146)

50 −1.010 0.995 −1.995 1.050 0.984

(0.052) (0.070) (0.101) (0.110) (0.094)

100 −0.995 0.991 −2.010 1.034 0.979

(0.023) (0.040) (0.050) (0.073) (0.062)

250 −0.998 1.000 −2.001 1.031 0.983

(0.008) (0.018) (0.021) (0.038) (0.036)

500 −1.001 1.010 −2.000 0.999 0.989

(0.005) (0.013) (0.012) (0.034) (0.025)

DGP −1 1 −2 1 1

Note: Mean estimates and standard errors from 100 re-
peated samples using the finite game, with the GMM
weights simulated independently from the limiting game.
The CCPs are computed from 500 simulations by either
solving integer programming (for n ≤ 100) or applying
Legendre transform (for n > 100).
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and is computationally simple. Our approach can apply to both directed and undirected

networks. We focus on discrete observables in this paper, but expect our approach could be

extended to continuous observables.

8 Appendix

8.1 Proofs in Section 2

Proof of Proposition 2.1. Define the set of symmetric σ (X)

Σs (X) =
{
σ (X) ∈ [0, 1]n2

n−1
: σi (X) = σj (X) if Xi = Xj

}
It is clear that Σs (X) is a convex and compact subset of [0, 1]n2

n−1
. Equations in (2.7) forms

a mapping from Σs (X) to Σs (X), because if σ ∈ Σs (X), then Pr (Gi = gi|X, σ (X)) =

Pr (Gj = gj|X, σ (X)) for Xi = Xj and gi = gj with (gii, gij) swapped with (gjj, gji), so

Pr (Gi = gi|X, σ (X)) is also symmetric. The mapping is continuous in σ because the ex-

pected utilities are continuous in σ (X) and εi has a continuous distribution under Assump-

tion 1. By Brouwer’s fixed point theorem there is a fixed point.

8.2 Proofs in Section 3

Proof of Proposition 3.1. It suffi ces to show the first statement. DenoteDit = 1 {Xi = xt}.
Consider the quadratic term in the expected utility∑

j 6=i

∑
k 6=i,j

GijGikE [vi (Gj, Gk, X)|X, σ]

=
∑
j 6=i

∑
k 6=i

GijGik

∑
s

∑
t

DjsDktVi,st (X, σ)−
∑
j 6=i

Gij

∑
t

DjtVi,tt (X, σ)

=
∑
s

∑
t

Vi,st (X, σ)
∑
j 6=i

GijDjs

∑
k 6=i

GikDkt −
∑
j 6=i

Gij

∑
t

DjtVi,tt (X, σ)

=

(∑
j 6=i

GijD
′
j

)
Vi (X, σ)

(∑
j 6=i

GijDj

)
−
∑
j 6=i

GijD
′
jdiag (Vi (X, σ))Dj (8.1)
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By the real spectral decomposition of Vi (X, σ),(∑
j 6=i

GijD
′
j

)
Vi (X, σ)

(∑
j 6=i

GijDj

)

=

(∑
j 6=i

GijD
′
j

)
Φi (X, σ) Λi (X, σ) Φi (X, σ)′

(∑
j 6=i

GijDj

)

=

(∑
j 6=i

GijD
′
jΦi (X, σ)

)
Λi (X, σ)

(∑
j 6=i

GijΦi (X, σ)′Dj

)

=
∑
t

λit (X, σ)

(∑
j 6=i

GijD
′
jφit (X, σ)

)2
(8.2)

The desired statement then follows from (8.1), (8.2), and some simple algebra.

Proof of Lemma 3.2. Note that

max
x

f (x, y) ≥ f (x, y) , ∀ (x, y) ∈ X × Y

⇒ max
y

max
x

f (x, y) ≥ max
y
f (x, y) , ∀x ∈ X

⇒ max
y

max
x

f (x, y) ≥ max
x

max
y
f (x, y)

Similarly,

max
x

max
y
f (x, y) ≥ max

y
max
x

f (x, y)

Hence (3.5) is proved. If (x∗, y∗) is the unique solution to the LHS of (3.5), then by

f (x∗, y∗) = maxy maxx f (x, y) = maxx maxy f (x, y) it is also the unique solution to the

RHS of (3.5).

Proof of Theorem 3.3. From Proposition 3.1 and Lemma 3.2

max
Gi
E [Ui(Gi, G−i, X, εi)|X, εi, σ]

⇔ max
Gi

max
ω̃

∑
j 6=i

Gij

(
Uij (X, σ) +

n− 1

n− 2
2D′j

∑
t

φit (X, σ)λit (X, σ) ω̃t − εij

)
− (n− 1)2

n− 2

∑
t

λit (X, σ) ω̃2t

⇔ max
ω̃

max
Gi

∑
j 6=i

Gij

(
Uij (X, σ) +

n− 1

n− 2
2D′jΦi (X, σ) Λi (X, σ) ω̃ − εij

)
− (n− 1)2

n− 2
ω̃′Λi (X, σ) ω̃

⇔ max
ω

max
Gi

∑
j 6=i

Gij

(
Uij (X, σ) +

n− 1

n− 2
2D′jω − εij

)
− (n− 1)2

n− 2
ω′V +

i (X, σ)ω (8.3)
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The optimal Gi (X, εi, σ) follows immediately from (8.3), so does ωi (εi, X, σ).

As for the the uniqueness, under the assumption that εi has a continuous distribution,

the optimal Gi (X, εi, σ) solved from the original problem in (2.6) is unique almost surely, so

by Lemma 3.2 the optimal Gi (X, εi, σ) given in (3.6) is unique almost surely.

8.3 Proofs in Section 4

Before we prove Proposition 4.1, we first prove two lemmas.

Lemma 8.1 Given Xn and pn, ωni (εni) has an asymptotic linear form

ωni (εni)− ω∗ni = − 1

n− 1

∑
j 6=i

H−1ni (ω∗ni)ψn,ij (ω∗ni, εn,ij) + rn (εni) , (8.4)

where ψn,ij (ω, εn,ij) is given by

ψn,ij (ω, εn,ij) = 1

{
Un,ij +

n− 1

n− 2
2D′jω − εn,ij > 0

}
Dj − V +

i ω, (8.5)

Hni (ω
∗
ni) is the Jacobian matrix of

1
n−1

∑
j 6=i E [ψn,ij (ω, εn,ij)|Xn, pn] at ω∗ni,

Hni (ω
∗
ni) =

1

n− 1

∑
j 6=i

∂E [ψn,ij (ω∗ni, εn,ij)|Xn, pn]

∂ω′
, (8.6)

and the remainder in (8.4) rn (εni) satisfies

rn (εni) = op

(
1√
n

)
.

Lemma 8.2 Given Xn and pn, suppose that ε1ni and ε
2
ni ∈ Rn−1 differ in at most two com-

ponents, i.e., there are j and k such that ε1n,il = ε2n,il for all l 6= i, j, k. Then

ωni
(
ε1ni
)
− ωni

(
ε2ni
)

= − 1

n− 1
H−1ni (ω∗ni)

(
ψn,ij

(
ω∗ni, ε

1
n,ij

)
− ψn,ij

(
ω∗ni, ε

2
n,ij

)
+ ψn,ik

(
ω∗ni, ε

1
n,ik

)
− ψn,ik

(
ω∗ni, ε

2
n,ik

) )
+ rn

(
ε1ni
)
− rn

(
ε2ni
)

where ψn,ij (ω∗ni, εn,ij), Hni (ω
∗
ni), and rn (εni) are defined as in Lemma 8.1, and rn (ε1ni) −

rn (ε2ni) satisfies

rn
(
ε1ni
)
− rn

(
ε2ni
)

= Op

(
1

n

)
, (8.7)
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and

E

[
sup

ε1n,ij ,ε
1
n,ik

∥∥rn (ε1ni)− rn (ε2ni)∥∥
∣∣∣∣∣Xn, pn

]
≤ O

(
1

n

)
. (8.8)

Proof of Lemma 8.1. Since Πni (ω, εni) is sub-differentiable at all ω,4 by optimality of

ωni (εni), Πni (ω, εni) has subgradient 0 at ωni (εni), that is, ωni (εni) satisfies the first-order

condition

1

n− 1

∑
j 6=i

1

{
Un,ij +

n− 1

n− 2
2D′jω − εn,ij > 0

}
Dj − V +

i ω

= − 1

n− 1

∑
j 6=i

1

{
Un,ij +

n− 1

n− 2
2D′jω − εn,ij = 0

}
diag (τ)Dj, (8.9)

for some τ = (τ1, . . . , τT ) ∈ [0, 1]T . Define the right-hand side of (8.9) as ∆n (ω, εni). For any

ω,

Pr (‖∆n (ω, εni)‖ > 0|Xn, pn)

≤ Pr

(
∃j, Un,ij +

n− 1

n− 2
2D′jω = εn,ij

∣∣∣∣Xn, pn

)
≤
∑
j 6=i

Pr

(
Un,ij +

n− 1

n− 2
2D′jω = εn,ij

∣∣∣∣Xn, pn

)
= 0,

because εn,ij has a continuous distribution. Hence the first-order condition (8.9) holds with

∆n (ω, εni) replaced by 0 with probability 1.

Define the left-hand side of (8.9) as Γ̂ni (ω, εni)

Γ̂ni (ω, εni) =
1

n− 1

∑
j 6=i

ψn,ij (ω, εn,ij) , (8.10)

with ψn,ij (ω, εn,ij) defined in (8.5)

ψn,ij (ω, εn,ij) = 1

{
Un,ij +

n− 1

n− 2
2D′jω − εn,ij > 0

}
Dj − V +

i ω.

Let Γni (ω) be the conditional expectation of Γ̂ni (ω, εni) given Xn and pn

Γni (ω) = E
[

Γ̂ni (ω, εni)
∣∣∣Xn, pn

]
=

1

n− 1

∑
j 6=i

E [ψn,ij (ω, εn,ij)|Xn, pn] , (8.11)

4Notice that the function max {x, 0} is differentiable for x 6= 0 and sub-differentiable for x = 0 with
subderivatives in [0, 1].

28



where

E [ψn,ij (ω, εn,ij)|Xn, pn] = Fε

(
Un,ij +

n− 1

n− 2
2D′jω

)
Dj − V +

i ω.

As we have shown Γ̂ni (ωni (εni) , εni) = 0 with probability 1. Moreover, by the definition of

ω∗ni we have Γni (ω
∗
ni) = 0. Therefore,

√
n− 1 (Γni (ωni (εni))− Γni (ω

∗
ni))

=
√
n− 1

(
Γni (ωni (εni))− Γ̂ni (ωni (εni) , εni)

)
= −
√
n− 1Γ̂ni (ω

∗
ni, εni)−

√
n− 1

(
Γ̂ni (ωni (εni) , εni)− Γni (ωni (εni))− (Γ̂ni (ω

∗
ni, εni)− Γni (ω

∗
ni))
)
.

(8.12)

The Jacobian matrix of Γni (ω) is equal to Hni (ω)

Hni (ω) =
∂Γni (ω)

∂ω
=

2

n− 2

∑
j 6=i

fε

(
Un,ij +

n− 1

n− 2
2D′jω

)
DjD

′
j − V +

i .

Clearly Hni (ω) is continuous in ω. By Assumption 5, Hni (ω) is continously invertible at

ω∗ni. Hence there exists a constant c > 0 such that ‖Hni (ω
∗
ni) (ω − ω∗ni)‖ ≥ c ‖ω − ω∗ni‖ for

every ω. Combining this with the differentiability of Γni we obtain

‖Γni (ω)− Γni (ω
∗
ni)‖ ≥ c ‖ω − ω∗ni‖+ o (‖ω − ω∗ni‖) . (8.13)

We show that ωni (εni) is consistent for ω∗ni. Note that inequality (8.13) provides an

identification condition for ω∗ni: for any ξ > 0, if ‖ω − ω∗ni‖ > ξ, then ‖Γni (ω)− Γni (ω
∗
ni)‖ >

(c+ o (1)) ξ. Let η > 0 satisfy η ≤ (c+ o (1)) ξ. Thus

Pr (‖ωni (εni)− ω∗ni‖ > ξ|Xn, pn)

≤ Pr (‖Γni (ωni (εni))− Γni (ω
∗
ni)‖ > η|Xn, pn)

= Pr
(∥∥∥Γni (ωni (εni))− Γ̂ni (ωni (εni) , εni)

∥∥∥ > η
∣∣∣Xn, pn

)
≤ Pr

(
sup
ω

∥∥∥Γ̂ni (ω, εni)− Γni (ω)
∥∥∥ > η

∣∣∣∣Xn, pn

)
, (8.14)

where the equality follows because Γni (ω
∗
ni) = 0 and Γ̂ni (ωni (εni) , εni) = 0 with probability

1. We can show the consistency of ωni (εni) by applying a uniform law of large numbers to

Γ̂ni (ω, εni)− Γni (ω).
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Since

Γ̂ni (ω, εni)− Γni (ω) =
1

n− 1

∑
j 6=i

(ψn,ij (ω, εn,ij)− E [ψn,ij (ω, εn,ij)|Xn, pn]) ,

and ‖ψn,ij (ω, εn,ij)− E [ψn,ij (ω, εn,ij)|Xn, pn]‖ ≤ 2, to apply the uniform law of large num-

bers for triangular arrays in Theorem 8.3 of Pollard (1990), we need to show that the set

of arrays
{

(ψn,ij (ω, εn,ij))j 6=i : ω ∈ RT
}
is manageable, in the sense of Definition 7.9 in Pol-

lard (1990). Note that the set
{
V +
i ω : ω ∈ RT

}
has a pseudodimension of at most T so is

manageable by Theorem 4.8 in Pollard (1990). It suffi ces to show that the set of arrays{(
1

{
Un,ij +

n− 1

n− 2
2D′jω − εn,ij > 0

})
j 6=i

: ω ∈ RT
}

(8.15)

also has a pseudodimension of at most T and thus is manageable as well. To this end, by

the definition of pseudodimension (Definition 4.3 in Pollard (1990)), we need to determine,

for any index set I = {j1, . . . , jK} ∈ {1, . . . , n} \ {i} with K ≥ T + 1, and any point c ∈ RK ,
whether it is possible to find for each subset J ⊆ I a ω ∈ RT for which

1

{
Un,ij +

n− 1

n− 2
2D′jω − εn,ij > 0

}{
> cj for j ∈ J
< cj for j ∈ I\J

Since the indicator function lies between 0 and 1, choosing J to be the empty set requires

that cj > 0 for all j, and choosing J = I requires that cj < 1 for all j. The problem is

equivalent to determining whether for each subset J ⊆ I there is a ω ∈ RT satisfying

Un,ij +
n− 1

n− 2
2D′jω − εn,ij

{
> 0 for j ∈ J
< 0 for j ∈ I\J

Since Dj ∈ RT for all j, there exists a non-zero vector τ = (τ1, . . . , τK) ∈ RK such that∑K
k=1 τkDjk = 0, so

∑K
k=1 τk

n−1
n−22D

′
jk
ω = 0 for all ω ∈ RT . If

∑K
k=1 τk (Un,ijk − εn,ijk) ≤ 0, it

is impossible to find a ω ∈ RT satisfying these inequalities for the choice J = {jk ∈ I : τk > 0}
because this would lead to the contradiction

∑K
k=1 τk (Un,ijk − εn,ijk) =

∑K
k=1 τk (Un,ijk − εn,ijk)+∑K

k=1 τk
n−1
n−22D

′
jk
ω =

∑K
k=1 τk

(
Un,ijk + n−1

n−22D
′
jk
ω − εn,ijk

)
> 0. If

∑K
k=1 τk (Un,ijk − εn,ijk) >

0, we would choose J = {jk ∈ I : τk ≤ 0} to reach a similar contradiction. We conclude that
the set of arrays in (8.15) has a pseudodimension of at most T . Hence, by the uniform law
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of large numbers in Theorem 8.3 of Pollard (1990),

Pr

(
sup
ω

∥∥∥Γ̂ni (ω, εni)− Γni (ω)
∥∥∥ > η

∣∣∣∣Xn, pn

)
→ 0,

as n→∞. Combining this with (8.14) shows that ωni (εni) is consistent for ω∗ni

ωni (εni)− ω∗ni = op (1) .

For consistent ωni (εni), (8.13) implies that

‖Γni (ωni (εni))− Γni (ω
∗
ni)‖ ≥ ‖ωni (εni)− ω∗ni‖ (c+ op (1)) , (8.16)

by the continuous mapping theorem.

Next we derive the asymptotic linear representation of ωni (εni) in (8.4). Consider the

last two terms in (8.12). By the Lindeberg-Feller Central Limit Theorem the second last

term in (8.12) is √
n− 1Γ̂ni (ω

∗
ni, εni) = Op (1) . (8.17)

Define the stochastic process

Gn (ω, εni) =
√
n− 1

(
Γ̂ni (ω, εni)− Γni (ω)

)
(8.18)

indexed by ω, so the the last term in (8.12) is given by

Gn (ωni (εni) , εni)−Gn (ω∗ni, εni)

=
1√
n− 1

∑
j 6=i

φn,ij (ωni (εni) , εn,ij)− φn,ij (ω∗ni, εn,ij)

− (E [φn,ij (ωni (εni) , εn,ij)− φn,ij (ω∗ni, εn,ij)|Xn, pn]) ,

with φn,ij (ω, εn,ij) defined by

φn,ij (ω, εn,ij) = 1

{
Un,ij +

n− 1

n− 2
2D′jω − εn,ij > 0

}
Dj.

Note that Gn (ω, εni)−Gn (ω∗ni, εni) is an empirical process defined over the triangular array

(φn,ij (ω, εn,ij)− φn,ij (ω∗ni, εn,ij)) j 6=i, n = 2, 3, . . .. We want to show that

Gn (ωn (εni) , εni)−Gn (ω∗ni, εni) = Op

(
‖ωn (εni)− ω∗ni‖

1/2
)
, (8.19)
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so the last term in (8.12) is negligible. The asymptotic linear representation in (8.4) can

then be obtained from (8.12) and (8.16).

To show (8.19), for M > 0,

Pr

(∥∥∥∥∥Gn (ωn (εni) , εni)−Gn (ω∗ni, εni)

‖ωn (εni)− ω∗ni‖
1/2

∥∥∥∥∥ > M

∣∣∣∣∣Xn, pn

)

≤ Pr

 sup
‖ω−ω∗ni‖>0

∥∥∥∥∥Gn (ω, εni)−Gn (ω∗ni, εni)

‖ω − ω∗ni‖
1/2

∥∥∥∥∥ > M

∣∣∣∣∣∣Xn, pn


≤ 1

M
E

 sup
‖ω−ω∗ni‖>0

∥∥∥∥∥Gn (ω, εni)−Gn (ω∗ni, εni)

‖ω − ω∗ni‖
1/2

∥∥∥∥∥
∣∣∣∣∣∣Xn, pn

 .
by Markov’s inequality. It suffi ces to show

E

 sup
‖ω−ω∗ni‖>0

∥∥∥∥∥Gn (ω, εni)−Gn (ω∗ni, εni)

‖ω − ω∗ni‖
1/2

∥∥∥∥∥
∣∣∣∣∣∣Xn, pn

 <∞. (8.20)

Consider the process

Gn (ω, εni)−Gn (ω∗ni, εni)

‖ω − ω∗ni‖
1/2

=
1√
n− 1

∑
j 6=i

φn,ij (ω, εn,ij)− φn,ij (ω∗ni, εn,ij)

‖ω − ω∗ni‖
1/2

− E [φn,ij (ω, εn,ij)− φn,ij (ω∗ni, εn,ij)|Xn, pn]

‖ω − ω∗ni‖
1/2

The function
φn,ij(ω,εn,ij)−φn,ij(ω∗ni,εn,ij)

‖ω−ω∗ni‖1/2
can be bounded by

‖φn,ij (ω, εn,ij)− φn,ij (ω∗ni, εn,ij)‖
‖ω − ω∗ni‖

1/2

=

∣∣1{Un,ij + n−1
n−22D

′
jω > εn,ij

}
− 1

{
Un,ij + n−1

n−22D
′
jω
∗
ni > εn,ij

}∣∣
‖ω − ω∗ni‖

1/2

≤ ηn,ij (ω, ω∗ni, εn,ij) ,

where the bound function ηn,ij (ω, ω∗ni, εn,ij) is

ηn,ij (ω, ω∗ni, εn,ij) =


1

‖ω−ω∗ni‖1/2
if εn,ij lies between Un,ij + n−1

n−22D
′
jω and Un,ij + n−1

n−22D
′
jω
∗
ni

0 otherwise,
(8.21)
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Hence, we can combine the proof for Theorem 2.14.1 of Van der Vaart and Wellner (1996)

(setting p = 1 and taking expectation conditional on Xn and pn)5 with the random entropy

in the definition of manageability (Definition 7.9) in Pollard (1990) for triangular arrays,

and derive the maximal inequality

E

 sup
‖ω−ω∗ni‖>0

∥∥∥∥∥Gn (ω, εni)−Gn (ω∗ni, εni)

‖ω − ω∗ni‖
1/2

∥∥∥∥∥
∣∣∣∣∣∣Xn, pn


≤ KE

J (1,Fn (ω∗ni, εni)) sup
‖ω−ω∗ni‖>0

‖ηni (ω, ω∗ni, εni)‖n

∣∣∣∣∣∣Xn, pn

 , (8.22)

where K > 0 is a universal constant, ‖ηni (ω, ω∗ni, εni)‖n is the L2 (Pn) norm of the bound

array ηni (ω, ω∗ni, εni) = (ηn,ij (ω, ω∗ni, εn,ij))j 6=i

‖ηni (ω, ω∗ni, εni)‖n =

(
1

n− 1

∑
j 6=i

η2n,ij (ω, ω∗ni, εn,ij)

)1/2
, (8.23)

Fn (ω∗ni, εni) denotes the set of arrays

Fn (ω∗ni, εni) =


(
φn,ij (ω, εn,ij)− φn,ij (ω∗ni, εn,ij)

‖ω − ω∗ni‖
1/2

)
j 6=i

: ω ∈ RT , ‖ω − ω∗ni‖ > 0

 , (8.24)

and J (1,Fn (ω∗ni, εni)) represents the uniform entropy integral of Fn (ω∗ni, εni)

J (1,Fn (ω∗ni, εni)) =

∫ 1

0

sup
α

√
logD (ξ ‖α� η̄ni (ω∗ni, εni)‖n , α�Fn (ω∗ni, εni) , ‖·‖n)dξ.

(8.25)

In the expression in (8.25), α ∈ Rn−1 is a (n− 1) × 1 vector of nonnegative constants,

η̄ni (ω
∗
ni, εni) = sup‖ω−ω∗ni‖>0 ηni (ω, ω

∗
ni, εni), α � η̄ni (ω∗ni, εni) is the pointwise product of α

and η̄ni (ω∗ni, εni), α � Fn (ω∗ni, εni) is the set {α� f : f ∈ Fn (ω∗ni, εni)}, ‖·‖n is the L2 (Pn)

norm defined in (8.23), and D (ξ ‖α� η̄ni (ω∗ni, εni)‖n , α�Fn (ω∗ni, εni) , ‖·‖n) is the packing

number of the set α � Fn (ω∗ni, εni) at distance ξ ‖α� η̄ni (ω∗ni, εni)‖n under the norm ‖·‖n.
The supremum in (8.25) is taken over all vectors α ∈ Rn−1 with nonnegative constants. Note
that the set

{
‖ω − ω∗ni‖

−1/2 : ω ∈ RT , ‖ω − ω∗ni‖ > 0
}
has a pseudodimension of at most 1

5In the proof for Theorem 2.14.1 of Van der Vaart and Wellner, we need to reprove the symmetrization
lemma in Lemma 2.3.1 and reapply the Hoeffding’s inequality in Lemma 2.2.7 and the maximal inequality
in Corollary 2.2.5 (all in Van der Vaart and Wellner) for the stochastic process in (8.18) and the envelope
functions in (8.21).
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because ‖ω − ω∗ni‖
−1/2 ∈ R. Hence, by the manageability of the set in (8.15), Corollary 4.10,

Definition 7.9, and the stability results of packing numbers under addition and multiplication

in Section 5 of Pollard (1990) we show that the set Fn (ω∗ni, εni) is manageable and thus

J (1,Fn (ω∗ni, εni)) <∞ (8.26)

uniformly in εni and n. Next we consider the conditional expectation of sup‖ω−ω∗ni‖>0 ‖ηni (ω, ω
∗
ni, εni)‖n.

By Jensen’s inequality

E

 sup
‖ω−ω∗ni‖>0

‖ηni (ω, ω∗ni, εni)‖n

∣∣∣∣∣∣Xn, pn


= E


 sup
‖ω−ω∗ni‖>0

1

n− 1

∑
j 6=i

η2n,ij (ω, ω∗ni, εn,ij)

1/2
∣∣∣∣∣∣∣Xn, pn


≤

E
 sup
‖ω−ω∗ni‖>0

1

n− 1

∑
j 6=i

η2n,ij (ω, ω∗ni, εn,ij)

∣∣∣∣∣∣Xn, pn

1/2

Following the argument for (8.15) it is similar to show that the set of arrays{(
1

{
εn,ij lies between Un,ij +

n− 1

n− 2
2D′jω and Un,ij +

n− 1

n− 2
2D′jω

∗
ni

})
j 6=i

: ω ∈ RT
}

is manageable and so is the set of arrays{(
η2n,ij (ω, ω∗ni, εn,ij)

)
j 6=i : ω ∈ RT , ‖ω − ω∗ni‖ > 0

}
.

Thus by the uniform law of large numbers in Theorem 8.3 of Pollard (1990)∣∣∣∣∣∣ sup
‖ω−ω∗ni‖>0

1

n− 1

∑
j 6=i

η2n,ij (ω, ω∗ni, εn,ij)− sup
‖ω−ω∗ni‖>0

1

n− 1

∑
j 6=i

E
[
η2n,ij (ω, ω∗ni, εn,ij)

∣∣Xn, pn
]∣∣∣∣∣∣

≤ sup
‖ω−ω∗ni‖>0

∣∣∣∣∣ 1

n− 1

∑
j 6=i

η2n,ij (ω, ω∗ni, εn,ij)− E
[
η2n,ij (ω, ω∗ni, εn,ij)

∣∣Xn, pn
]∣∣∣∣∣→ 0, a.s.
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as n→∞. Moreover, by the definition of ηn,ij (ω, ω∗ni, εn,ij) and mean-value theorem

E
[
η2n,ij (ω, ω∗ni, εn,ij)

∣∣Xn, pn
]

=

∣∣Fε (Un,ij + n−1
n−22D

′
jω
)
− Fε

(
Un,ij + n−1

n−22D
′
jω
∗
ni

)∣∣
‖ω − ω∗ni‖

=fε

(
Un,ij +

n− 1

n− 2
2D′j (tn,ijω + (1− tn,ij)ω∗ni)

)
2 (n− 1)

n− 2
(8.27)

for some tn,ij ∈ [0, 1]. Hence,

E

 sup
‖ω−ω∗ni‖>0

‖ηni (ω, ω∗ni, εni)‖n

∣∣∣∣∣∣Xn, pn


≤

 sup
‖ω−ω∗ni‖>0

1

n− 1

∑
j 6=i

E
[
η2n,ij (ω, ω∗ni, εn,ij)

∣∣Xn, pn
]1/2

+ o (1)

=

 sup
‖ω−ω∗ni‖>0

1

n− 1

∑
j 6=i

fε

(
Un,ij +

n− 1

n− 2
2D′j (tn,ijω + (1− tn,ij)ω∗ni)

)
2 (n− 1)

n− 2

1/2

+ o (1)

<∞ (8.28)

by the dominated convergence theorem. Combining (8.22), (8.26), (8.28) proves (8.20) and

thus (8.19). Therefore, the last term in (8.12) is

√
n− 1

(
Γ̂ni (ωni (εni) , εni)− Γni (ωni (εni))− (Γ̂ni (ω

∗
ni, εni)− Γni (ω

∗
ni))
)

= Op

(
‖ωni (εni)− ω∗ni‖

1/2
)

(8.29)

Applying (8.16), (8.17) and (8.29) to (8.12) we obtain

√
n− 1 ‖ωni (εni)− ω∗ni‖ (c+ op (1)) ≤ Op (1) +Op

(
‖ωni (εni)− ω∗ni‖

1/2
)

By consistency ωni (εni) − ω∗ni = op (1), the second term on the right-hand side is negligible

compared with the first term, so the right-hand side is Op (1). This implies that

ωni (εni)− ω∗ni = Op

(
1√
n

)
For ωni (εni) converging at this rate, (8.29) becomes

√
n− 1

(
Γ̂ni (ωni (εni) , εni)− Γni (ωni (εni))− (Γ̂ni (ω

∗
ni, εni)− Γni (ω

∗
ni))
)

= Op

(
1

n1/4

)
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Applying this and the differentiability of Γni to (8.12) again yields

Hni (ω
∗
ni) (ωni (εni)− ω∗ni) + op (‖ωni (εni)− ω∗ni‖) = −Γ̂ni (ω

∗
ni, εni) +Op

(
1

n3/4

)
By the invertibility of Hni (ω

∗
ni), we have

ωni (εni)− ω∗ni = −H−1ni (ω∗ni) Γ̂ni (ω
∗
ni, εni) + op

(
1√
n

)
The proof is complete.

Proof of Lemma 8.2. First we prove (8.7). From the definition of ω∗ni, ωni (ε
1
ni), and

ωni (ε
2
ni), we have Γni (ω

∗
ni) = 0 and Γ̂ni (ωni (ε

1
ni) , ε

1
ni) = Γ̂ni (ωni (ε

2
ni) , ε

2
ni) = 0 with proba-

bility 1. Hence, with probability 1 we can decompose Γni (ωni (ε
1
ni))− Γni (ωni (ε

2
ni)) as

Γni
(
ωni
(
ε1ni
))
− Γni

(
ωni
(
ε2ni
))

=Γni
(
ωni
(
ε1ni
))
− Γ̂ni

(
ωni
(
ε1ni
)
, ε1ni

)
−
(

Γni
(
ωni
(
ε2ni
))
− Γ̂ni

(
ωni
(
ε2ni
)
, ε2ni

))
=
(

Γ̂ni
(
ω∗ni, ε

2
ni

)
− Γ̂ni

(
ω∗ni, ε

1
ni

))
− 1√

n− 1

(
Gn

(
ωni
(
ε1ni
)
, ε1ni

)
−Gn

(
ω∗ni, ε

1
ni

))
+

1√
n− 1

(
Gn

(
ωni
(
ε2ni
)
, ε2ni

)
−Gn

(
ω∗ni, ε

2
ni

))
=
(

Γ̂ni
(
ω∗ni, ε

2
ni

)
− Γ̂ni

(
ω∗ni, ε

1
ni

))
− 1√

n− 1

(
Gn

(
ωni
(
ε1ni
)
, ε1ni

)
−Gn

(
ωni
(
ε2ni
)
, ε1ni

))
+

1√
n− 1

(
Gn

(
ωni
(
ε2ni
)
, ε2ni

)
−Gn

(
ω∗ni, ε

2
ni

)
−
(
Gn

(
ωni
(
ε2ni
)
, ε1ni

)
−Gn

(
ω∗ni, ε

1
ni

)))
(8.30)

where Γ̂ni, Γni, and Gn are defined in (8.10), (8.11) and (8.18). By the definition of Γ̂ni and

Gn, the first and last terms on the right-hand side of (8.30) are

Γ̂ni
(
ω∗ni, ε

2
ni

)
− Γ̂ni

(
ω∗ni, ε

1
ni

)
=

1

n− 1

(
ψn,ij

(
ω∗ni, ε

2
n,ij

)
− ψn,ij

(
ω∗ni, ε

1
n,ij

)
+ ψn,ik

(
ω∗ni, ε

2
n,ik

)
− ψn,ik

(
ω∗ni, ε

1
n,ik

))
=Op

(
1

n

)
(8.31)
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and

1√
n− 1

(
Gn

(
ωni
(
ε2ni
)
, ε2ni

)
−Gn

(
ω∗ni, ε

2
ni

)
− (Gn

(
ωni
(
ε2ni
)
, ε1ni

)
−Gn

(
ω∗ni, ε

1
ni

)
)
)

=Γ̂ni
(
ωni
(
ε2ni
)
, ε2ni

)
− Γ̂ni

(
ω∗ni, ε

2
ni

)
−
(

Γ̂ni
(
ωni
(
ε2ni
)
, ε1ni

)
− Γ̂ni

(
ω∗ni, ε

1
ni

))
=

1

n− 1

(
ψn,ij(ωni

(
ε2ni
)
, ε2n,ij)− ψn,ij(ω∗ni, ε2n,ij)−

(
ψn,ij(ωni

(
ε2ni
)
, ε1n,ij)− ψn,ij(ω∗ni, ε1n.ij)

)
+ ψn,ik

(
ωni
(
ε2ni
)
, ε2n,ik

)
− ψn,ik

(
ω∗ni, ε

2
n,ik

)
−
(
ψn,ik

(
ωni
(
ε2ni
)
, ε1n,ik

)
− ψn,ik

(
ω∗ni, ε

1
n,ik

)) )
=Op

(
1

n

)
. (8.32)

Next, we want to show

Gn

(
ωni
(
ε1ni
)
, ε1ni

)
−Gn

(
ωni
(
ε2ni
)
, ε1ni

)
= Op

(∥∥ωni (ε1ni)− ωni (ε2ni)∥∥1/2) (8.33)

so the rate of the second last term on the right-hand side of (8.30) can be controlled by

n−1/2 ‖ωni (ε1ni)− ωni (ε2ni)‖
1/2. Similar to the argument for (8.20) in Lemma 8.1, it suffi ces

to show

E

[
sup

‖ω−ω̃‖>0

∥∥∥∥∥Gn (ω, εni)−Gn (ω̃, εni)

‖ω − ω̃‖1/2

∥∥∥∥∥
∣∣∣∣∣Xn, pn

]
<∞. (8.34)

Note that (8.34) is slightly different from the result in (8.20) in Lemma 8.1 because (8.20)

holds for a fixed ω∗ni, while here we need the supremum to be over both ω and ω̃. Modifying

the proof for Theorem 2.14.1 in Van der Vaart and Wellner (1996) and the argument for

(8.22) in Lemma 8.1, we can derive a version of (8.22) that is uniform over both ω and ω̃,

E

[
sup

‖ω−ω̃‖>0

∥∥∥∥∥Gn (ω, εni)−Gn (ω̃, εni)

‖ω − ω̃‖1/2

∥∥∥∥∥
∣∣∣∣∣Xn, pn

]

≤ KE

[
J (1,Fn (εni)) sup

‖ω−ω̃‖>0
‖ηni (ω, ω̃, εni)‖n

∣∣∣∣∣Xn, pn

]
, (8.35)

where K > 0 is a universal constant, ηni (ω, ω̃, εni) is the bound array defined in (8.21) with

ω∗ni replaced by ω̃, Fn (εni) is the set of arrays

Fn (εni) =


(
φn,ij (ω, εn,ij)− φn,ij (ω̃, εn,ij)

‖ω − ω̃‖1/2

)
j 6=i

: ω, ω̃ ∈ RT , ‖ω − ω̃‖ > 0

 , (8.36)
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and J (1,Fn (εni)) is the uniform entropy integral as defined in (8.25) for the set Fn (εni)

J (1,Fn (εni)) =

∫ 1

0

sup
α

√√√√logD

(
ξ

∥∥∥∥∥α� sup
‖ω−ω̃‖>0

ηni (ω, ω̃, εni)

∥∥∥∥∥
n

, α�Fn (εni) , ‖·‖n

)
dξ.

(8.37)

where all the ingredients are the same as in (8.25) except that η̄ni (ω∗ni, εni) is replaced with

sup‖ω−ω̃‖>0 ηni (ω, ω̃, εni). We have shown in Lemma 8.1 that the set of arrays in (8.15) is

manageable, so by the stability of packing numbers under addition and multiplication in Sec-

tion 5 of Pollard (1990) the set Fn (εni) is also manageable. The definition of manageability

then yields

J (1,Fn (εni)) <∞ (8.38)

uniformly in εni and n. Furthermore, by Jensen’s inequality

E

[
sup

‖ω−ω̃‖>0
‖ηni (ω, ω̃, εni)‖n

∣∣∣∣∣Xn, pn

]

= E

( sup
‖ω−ω̃‖>0

1

n− 1

∑
j 6=i

η2n,ij (ω, ω̃, εn,ij)

)1/2∣∣∣∣∣∣Xn, pn


≤
(
E

[
sup

‖ω−ω̃‖>0

1

n− 1

∑
j 6=i

η2n,ij (ω, ω̃, εn,ij)

∣∣∣∣∣Xn, pn

])1/2

Following the argument in Lemma 8.1, it is similar to show that the set of array{(
η2n,ij (ω, ω̃, εn,ij)

)
j 6=i : ω, ω̃ ∈ RT , ‖ω − ω̃‖ > 0

}
is manageable, so by the uniform law of large numbers in Theorem 8.3 of Pollard (1990)∣∣∣∣∣ sup

‖ω−ω̃‖>0

1

n− 1

∑
j 6=i

η2n,ij (ω, ω̃, εn,ij)− sup
‖ω−ω̃‖>0

1

n− 1

∑
j 6=i

E
[
η2n,ij (ω, ω̃, εn,ij)

∣∣Xn, pn
]∣∣∣∣∣

≤ sup
‖ω−ω̃‖>0

∣∣∣∣∣ 1

n− 1

∑
j 6=i

η2n,ij (ω, ω̃, εn,ij)− E
[
η2n,ij (ω, ω̃, εn,ij)

∣∣Xn, pn
]∣∣∣∣∣→ 0, a.s.
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as n→∞. Hence, we obtain

E

[
sup

‖ω−ω̃‖>0
‖ηni (ω, ω̃, εni)‖n

∣∣∣∣∣Xn, pn

]

≤
(

sup
‖ω−ω̃‖>0

1

n− 1

∑
j 6=i

E
[
η2n,ij (ω, ω̃, εn,ij)

∣∣Xn, pn
])1/2

+ o (1)

=

(
sup

‖ω−ω̃‖>0

1

n− 1

∑
j 6=i

fε

(
Un,ij +

n− 1

n− 2
2D′j (tn,ijω + (1− tn,ij) ω̃)

)
2 (n− 1)

n− 2

)1/2
+ o (1)

<∞ (8.39)

by the dominated convergence theorem and (8.27). Combining (8.35), (8.38), (8.39) proves

(8.34) and (8.33). Thus the second last term on the right-hand side of (8.30) satisfies

1√
n− 1

(
Gn

(
ωni
(
ε1ni
)
, ε1ni

)
−Gn

(
ωni
(
ε2ni
)
, ε1ni

))
= Op

(
1√
n

∥∥ωni (ε1ni)− ωni (ε2ni)∥∥1/2)
(8.40)

Now we go back to the left-hand side of (8.30). By the differentiability of Γni and

ωni (ε
1
ni)− ωni (ε2ni) = op (1) derived from Lemma 8.1, the left-hand side of (8.30) is

Γni
(
ωni
(
ε1ni
))
− Γni

(
ωni
(
ε2ni
))

= Hni

(
ωni
(
ε2ni
)) (

ωni
(
ε1ni
)
− ωni

(
ε2ni
))

+ op
(∥∥ωni (ε1ni)− ωni (ε2ni)∥∥)

= Hni (ω
∗
ni)
(
ωni
(
ε1ni
)
− ωni

(
ε2ni
))

+ op
(∥∥ωni (ε1ni)− ωni (ε2ni)∥∥) (8.41)

where the last equality comes from the fact that Hni (ωni (ε
2
ni)) − Hni (ω

∗
ni) = op (1) as a

result of the continuity of Hni and the consistency of ωni (ε2ni). Since Hni (ω
∗
ni) is invertible,

there is a constant c > 0 such that ‖Hni (ω
∗
ni) (ω1 − ω2)‖ ≥ c ‖ω1 − ω2‖ for every ω1 and ω2.

Applying this to (8.41) yields

∥∥Γni
(
ωni
(
ε1ni
))
− Γni

(
ωni
(
ε2ni
))∥∥ ≥ ∥∥ωni (ε1ni)− ωni (ε2ni)∥∥ (c+ op (1)) (8.42)

Combining (8.30), (8.31), (8.32), (8.40), and (8.42) we obtain

∥∥ωni (ε1ni)− ωni (ε2ni)∥∥ (c+ op (1)) ≤ Op

(
1

n

)
+Op

(
1√
n

∥∥ωni (ε1ni)− ωni (ε2ni)∥∥1/2) .
(8.43)
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From Lemma 8.1, ‖ωni (ε1ni)− ωni (ε2ni)‖ ≤ ‖ωni (ε1ni)− ω∗ni‖ + ‖ωni (ε2ni)− ω∗ni‖ is at most
Op

(
n−1/2

)
. If ωni (ε1ni) − ωni (ε2ni) converges slower than Op (n−1), the second term on the

right-hand side of (8.43) would dominate the first term, implying ‖ωni (ε1ni)− ωni (ε2ni)‖ ≤
Op

(
n−1/2 ‖ωni (ε1ni)− ωni (ε2ni)‖

1/2
)
. This can be true only if ωni (ε1ni) − ωni (ε2ni) converges

faster than Op (n−1), leading to a contradiction. Therefore, we must have

ωni
(
ε1ni
)
− ωni

(
ε2ni
)

= Op

(
1

n

)
.

For ωni (ε1ni)− ωni (ε2ni) converging at this rate, (8.40) becomes

1√
n− 1

(
Gn

(
ωni
(
ε1ni
)
, ε1ni

)
−Gn

(
ωni
(
ε2ni
)
, ε1ni

))
= Op

(
1

n

)
(8.44)

Combining (8.41) with (8.30) yields

Hni (ω
∗
ni)
(
ωni
(
ε1ni
)
− ωni

(
ε2ni
))

=Γ̂ni
(
ω∗ni, ε

2
ni

)
− Γ̂ni

(
ω∗ni, ε

1
ni

)
− 1√

n− 1

(
Gn

(
ωni
(
ε1ni
)
, ε1ni

)
−Gn

(
ωni
(
ε2ni
)
, ε1ni

))
+

1√
n− 1

(
Gn

(
ωni
(
ε2ni
)
, ε2ni

)
−Gn

(
ω∗ni, ε

2
ni

)
− (Gn

(
ωni
(
ε2ni
)
, ε1ni

)
−Gn

(
ω∗ni, ε

1
ni

)
)
)

+ op

(
1

n

)
By the invertiability of Hni (ω

∗
ni) and

Γ̂ni
(
ω∗ni, ε

2
ni

)
− Γ̂ni

(
ω∗ni, ε

1
ni

)
=

1

n− 1

(
ψn,ij

(
ω∗ni, ε

2
n,ij

)
− ψn,ij

(
ω∗ni, ε

1
n,ij

)
+ ψn,ik

(
ω∗ni, ε

2
n,ik

)
− ψn,ik

(
ω∗ni, ε

1
n,ik

))
we can derive ωni (ε1ni)− ωni (ε2ni) as

ωni
(
ε1ni
)
− ωni

(
ε2ni
)

=− 1

n− 1
H−1ni (ω∗ni)

(
ψn,ij

(
ω∗ni, ε

1
n,ij

)
− ψn,ij

(
ω∗ni, ε

2
n,ij

)
+ ψn,ik

(
ω∗ni, ε

1
n,ik

)
− ψn,ik

(
ω∗ni, ε

2
n,ik

))
+ rn

(
ε1ni
)
− rn

(
ε2ni
)
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where rn (ε1ni)− rn (ε2ni) should be equal to

rn
(
ε1ni
)
− rn

(
ε2ni
)

=
1√
n− 1

H−1ni (ω∗ni)
(
Gn

(
ωni
(
ε2ni
)
, ε2ni

)
−Gn

(
ω∗ni, ε

2
ni

)
−
(
Gn

(
ωni
(
ε2ni
)
, ε1ni

)
−Gn

(
ω∗ni, ε

1
ni

)))
− 1√

n− 1
H−1ni (ω∗ni)

(
Gn

(
ωni
(
ε1ni
)
, ε1ni

)
−Gn

(
ωni
(
ε2ni
)
, ε1ni

))
+ op

(
1

n

)
(8.45)

The rates in (8.32) and (8.44) imply that

rn
(
ε1ni
)
− rn

(
ε2ni
)

= Op

(
1

n

)
.

This proves (8.7).

We now turn to the proof for (8.8). Consider rn (ε1ni)−rn (ε2ni) given in (8.45). In the last

expression in (8.32), ψn,ij and ψn,ik are bounded for all ε1n,ij and ε
1
n,ik, so the supremium of the

first term on the right-hand side of (8.45) over ε1n,ij and ε
1
n,ik has a conditional expectation

that is O (n−1). It suffi ces to consider the empirical process in the last line of (8.45). In

particular, it suffi ces to show

E

[
sup

ε1n,ij ,ε
1
n,ik

∥∥Gn

(
ωni
(
ε1ni
)
, ε1ni

)
−Gn

(
ωni
(
ε2ni
)
, ε1ni

)∥∥∣∣∣∣∣Xn, pn

]
≤ O

(
1√
n

)
(8.46)

By the definition of Gn in (8.18), for any ω and ω̃

Gn (ω, εni)−Gn (ω̃, εni) =
1√
n− 1

∑
l 6=i

φ̃n,il (ω, ω̃, εn,il)

where

φ̃n,il (ω, ω̃, εn,il) = φn,il (ω, εn,il)− φn,il (ω̃, εn,il)− (E [φn,il (ω, εn,il)− φn,il (ω̃, εn,il)|Xn, pn])
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We separate the jth and kth components in Gn (ωni (ε
1
ni) , ε

1
ni)−Gn (ωni (ε

2
ni) , ε

1
ni) from the

rest and obtain

sup
ε1n,ij ,ε

1
n,ik

∥∥Gn

(
ωni
(
ε1ni
)
, ε1ni

)
−Gn

(
ωni
(
ε2ni
)
, ε1ni

)∥∥
≤ sup

ε1n,ij ,ε
1
n,ik

∥∥∥∥∥ 1√
n− 1

∑
l 6=i,j,k

φ̃n,il
(
ωni
(
ε1ni
)
, ωni

(
ε2ni
)
, ε1n,il

)∥∥∥∥∥
+ sup

ε1n,ij ,ε
1
n,ik

1√
n− 1

∥∥∥φ̃n,ij (ωni (ε1ni) , ωni (ε2ni) , ε1n,ij)+ φ̃n,ik
(
ωni
(
ε1ni
)
, ωni

(
ε2ni
)
, ε1n,ik

)∥∥∥
(8.47)

Since φ̃n,ij and φ̃n,ik are bounded uniformly in ε1n,ij and ε
1
n,ik, the last term in (8.47) has a

conditional expectation that is at most O
(
n−1/2

)
. As for the first term on the right-hand

side of (8.47), by the property of supremium we have

sup
ε1n,ij ,ε

1
n,ik

∥∥∥∥∥ 1√
n− 1

∑
l 6=i,j,k

φ̃n,il
(
ωni
(
ε1ni
)
, ωni

(
ε2ni
)
, ε1n,il

)∥∥∥∥∥
≤ sup

ε1n,ij ,ε
1
n,ik

∥∥∥∥∥ 1√
n− 1

∑
l 6=i,j,k

φ̃n,il
(
ωni (ε

1
ni) , ωni (ε

2
ni) , ε

1
n,il

)
‖ωni (ε1ni)− ωni (ε2ni)‖

1/2

∥∥∥∥∥ · sup
ε1n,ij ,ε

1
n,ik

∥∥ωni (ε1ni)− ωni (ε2ni)∥∥1/2
≤ sup
‖ω−ω̃‖>0

∥∥∥∥∥ 1√
n− 1

∑
l 6=i,j,k

φ̃n,il
(
ω, ω̃, ε1n,il

)
‖ω − ω̃‖1/2

∥∥∥∥∥ · sup
ε1n,ij ,ε

1
n,ik

∥∥ωni (ε1ni)− ωni (ε2ni)∥∥1/2
=

√
n− 3√
n− 1

sup
‖ω−ω̃‖>0

∥∥∥∥∥Gn,−jk
(
ω, ε1ni,−jk

)
−Gn,−jk

(
ω̃, ε1ni,−jk

)
‖ω − ω̃‖1/2

∥∥∥∥∥ · sup
ε1n,ij ,ε

1
n,ik

∥∥ωni (ε1ni)− ωni (ε2ni)∥∥1/2
where in the second last sup term ε1ni,−kj =

(
ε1n,il

)
l 6=i,j,k and

Gn,−jk
(
ω, ε1ni,−jk

)
−Gn,−jk

(
ω̃, ε1ni,−jk

)
=

1√
n− 3

∑
l 6=i,j,k

φ̃n,il
(
ω, ω̃, ε1n,il

)
represents the empirical process obtained from Gn (ω, ε1ni) − Gn (ω̃, ε1ni) by deleting the jth

and kth components and normalizing by n − 3. Taking the conditional expectation then
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yields

E

[
sup

ε1n,ij ,ε
1
n,ik

∥∥∥∥∥ 1√
n− 1

∑
l 6=i,j,k

φ̃n,il
(
ωni
(
ε1ni
)
, ωni

(
ε2ni
)
, ε1n,il

)∥∥∥∥∥
∣∣∣∣∣Xn, pn

]

≤
√
n− 3√
n− 1

E
 sup
‖ω−ω̃‖>0

∥∥∥∥∥Gn,−jk
(
ω, ε1ni,−jk

)
−Gn,−jk

(
ω̃, ε1ni,−jk

)
‖ω − ω̃‖1/2

∥∥∥∥∥
2
∣∣∣∣∣∣Xn, pn

1/2

·
(
E

[
sup

ε1n,ij ,ε
1
n,ik

∥∥ωni (ε1ni)− ωni (ε2ni)∥∥
∣∣∣∣∣Xn, pn

])1/2
(8.48)

by Cauchy-Schwarz inequality. Consider the second moment in the second line of (8.48).

Similar to the argument for (8.34), we modify the proof for Theorem 2.14.1 in Van der Vaart

and Wellner (1996) in line with (8.35) except that we apply the theorem with the L2 norm

(setting p = 2) instead of the L1 norm (setting p = 1). We then derive a second-moment

version of (8.35) for the empirical process in the second line of (8.48)

E

 sup
‖ω−ω̃‖>0

∥∥∥∥∥Gn,−jk (ω, εni,−jk)−Gn,−jk (ω̃, εni,−jk)

‖ω − ω̃‖1/2

∥∥∥∥∥
2
∣∣∣∣∣∣Xn, pn


≤ KE

[
J (1,Fn,−jk (εni,−jk))

2 sup
‖ω−ω̃‖>0

‖ηni,−jk (ω, ω̃, εni,−jk)‖2n−2

∣∣∣∣∣Xn, pn

]
, (8.49)

where K > 0 is a universal constant, ‖ηni,−jk (ω, ω̃, εni,−jk)‖n−2 is the L2 (Pn−2) norm for the
deleting-two bound array ηni,−jk (ω, ω̃, εni,−jk) = (ηn,il (ω, ω̃, εn,il))l 6=i,j,k

‖ηni,−jk (ω, ω̃, εni,−jk)‖n−2 =

(
1

n− 3

∑
l 6=i,j,k

η2n,il (ω, ω̃, εn,il)

)1/2
,

Fn,−jk (εni,−jk) is the set of deleting-two arrays

Fn,−jk (εni,−jk) =


(
φn,il (ω, εn,il)− φn,il (ω̃, εn,il)

‖ω − ω̃‖1/2

)
l 6=i,j,k

: ω, ω̃ ∈ RT , ‖ω − ω̃‖ > 0

 ,

and J (1,Fn,−jk (εni,−jk)) is the uniform entropy integral as in (8.37) for the setFn,−jk (εni,−jk).

We have shown that the uniform entropy integral J (1,Fn (εni)) is bounded uniformly in εni
and n. This implies trivially

J (1,Fn,−jk (εni,−jk)) <∞ (8.50)
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uniformly in εni,−jk and n. Moreover, following the proof for (8.39) we obtain

E

[
sup

‖ω−ω̃‖>0
‖ηni,−jk (ω, ω̃, εni,−jk)‖2n−2

∣∣∣∣∣Xn, pn

]

= E

[
sup

‖ω−ω̃‖>0

1

n− 3

∑
l 6=i,j,k

η2n,il (ω, ω̃, εn,il)

∣∣∣∣∣Xn, pn

]

≤ sup
‖ω−ω̃‖>0

1

n− 3

∑
l 6=i,j,k

E
[
η2n,il (ω, ω̃, εn,il)

∣∣Xn, pn
]

+ o (1)

= sup
‖ω−ω̃‖>0

1

n− 3

∑
l 6=i,j,k

fε

(
Un,il +

n− 1

n− 2
2D′l (tn,ilω + (1− tn,il) ω̃)

)
2 (n− 1)

n− 2
+ o (1)

<∞ (8.51)

by the uniform law of large numbers, dominated convergence theorem and (8.27). Combining

(8.49), (8.50), and (8.51) yields

E

 sup
‖ω−ω̃‖>0

∥∥∥∥∥Gn,−jk (ω, εni,−jk)−Gn,−jk (ω̃, εni,−jk)

‖ω − ω̃‖1/2

∥∥∥∥∥
2
∣∣∣∣∣∣Xn, pn

 <∞
This together with (8.47) and (8.48) implies

E

[
sup

ε1n,ij ,ε
1
n,ik

∥∥Gn

(
ωni
(
ε1ni
)
, ε1ni

)
−Gn

(
ωni
(
ε2ni
)
, ε1ni

)∥∥∣∣∣∣∣Xn, pn

]

≤ O

(
1√
n

)
+O

E[ sup
ε1n,ij ,ε

1
n,ik

∥∥ωni (ε1ni)− ωni (ε2ni)∥∥
∣∣∣∣∣Xn, pn

]1/2 (8.52)

Combining (8.30), (8.31), (8.32), (8.42), and (8.52), taking supremium over ε1n,ij and ε
1
n,ik,

and taking conditional expectation with respect to the rest of ε1ni and ε
2
ni, we obtain

E

[
sup

ε1n,ij ,ε
1
n,ik

∥∥ωni (ε1ni)− ωni (ε2ni)∥∥
∣∣∣∣∣Xn, pn

]
(c+ o (1))

≤ O

(
1

n

)
+O

 1√
n
E

[
sup

ε1n,ij ,ε
1
n,ik

∥∥ωni (ε1ni)− ωni (ε2ni)∥∥
∣∣∣∣∣Xn, pn

]1/2 (8.53)

TheO (n−1) term in (8.53) reflects the fact that (8.31), (8.32) and the last term in (8.47) (mul-

tiplied by the additional (n− 1)−1/2 scaling in front of Gn (ωni (ε
1
ni) , ε

1
ni)−Gn (ωni (ε

2
ni) , ε

1
ni)

in (8.30)) all have the common feature of being equal to n−1 times some bound functions,
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so the rate n−1 could pass to the outside of their expectations. Complete the square to see

that (8.53) implies

(c+ o (1))

√nE[ sup
ε1n,ij ,ε

1
n,ik

∥∥ωni (ε1ni)− ωni (ε2ni)∥∥
∣∣∣∣∣Xn, pn

]1/2
−O (1)

2

≤ O (1)

This can be true only if

E

[
sup

ε1n,ij ,ε
1
n,ik

∥∥ωni (ε1ni)− ωni (ε2ni)∥∥
∣∣∣∣∣Xn, pn

]
≤ O

(
1

n

)
(8.54)

Applying (8.54) to (8.52) we derive the desired rate in (8.46)

E

[
sup

ε1n,ij ,ε
1
n,ik

∥∥Gn

(
ωni
(
ε1ni
)
, ε1ni

)
−Gn

(
ωni
(
ε2ni
)
, ε1ni

)∥∥∣∣∣∣∣Xn, pn

]
≤ O

(
1√
n

)

and (8.8) follows. The proof is complete.

Now we go back to the proof of Proposition 4.1.

Proof of Proposition 4.1. Write the conditional covariance of Gn,ij and Gn,ik as

E ((Gn,ij − Pn,ij (θ0, pn)) (Gn,ik − Pn,ik (θ0, pn))|Xn, pn)

= E (Gn,ijGn,ik|Xn, pn)− E (Gn,ij|Xn, pn)E (Gn,ik|Xn, pn) (8.55)

Recall that

Gn,ij = 1

{
Un,ij (θ0, pn) +

n− 1

n− 2
2D′jVi (θ0, pn)ωni (εni; θ0, pn)− εn,ij ≥ 0

}
so

E (Gn,ijGn,ik|Xn, pn) = Pr

(
εn,ij ≤ Un,ij (θ0, pn) +

n− 1

n− 2
2D′jωni (εni; θ0, pn) ,

εn,ik ≤ Un,ik (θ0, pn) +
n− 1

n− 2
2D′kωni (εni; θ0, pn)

∣∣∣∣Xn, pn

)
(8.56)

and

E (Gn,ij|Xn, pn) = Pr

(
εn,ij ≤ Un,ij (θ0, pn) +

n− 1

n− 2
2D′jωni (εni; θ0, pn)

∣∣∣∣Xn, pn

)

45



From (8.56) we see that Gn,ij and Gn,ik are correlated for two reasons: (1) both Gn,ij and

Gn,ik contain ωni (εni) which is random, and (2) ωni (εni) depends on εni, so ωni (εni) in Gn,ij

can be correlated with εn,ik in Gn,ik. Such correlation can be complicated because ωni (εni)

and εn,ij enter Gn,ij through an indicator function. We deal with the correlation by dividing

the space of (εn,ij, εn,ik) into subsets within which the indicator functions are fixed. We will

show that both types of correlation vanish at the rate of n−1, so the conditional covariance

in (8.55) has the rate of n−1.

To proceed, suppress (θ0, pn) hereafter for notational simplicity. Define the sets

En,ij =

{
εn,ij ∈ R : εn,ij ≤ Un,ij +

n− 1

n− 2
2D′jω

∗
ni

}
En,ik =

{
εn,ik ∈ R : εn,ik ≤ Un,ik +

n− 1

n− 2
2D′kω

∗
ni

}
We divide the space of (εn,ij, εn,ik) ∈ R2 into four subsets depending on whether εn,ij ∈ En,ij
and whether εn,ik ∈ En,ik. The cross-product expectation and individual expectation product
in (8.55) can thus be expressed as a sum of four parts, corresponding to the four subsets,

E (Gn,ijGn,ik|Xn, pn) = E (Gn,ijGn,ik1 {εn,ij ∈ En,ij, εn,ik ∈ En,ik}|Xn, pn)

+ E (Gn,ijGn,ik1 {εn,ij ∈ En,ij, εn,ik /∈ En,ik}|Xn, pn)

+ E (Gn,ijGn,ik1 {εn,ij /∈ En,ij, εn,ik ∈ En,ik}|Xn, pn)

+ E (Gn,ijGn,ik1 {εn,ij /∈ En,ij, εn,ik /∈ En,ik}|Xn, pn) (8.57)

and

E (Gn,ij|Xn, pn)E (Gn,ik|Xn, pn) = E (Gn,ij1 {εn,ij ∈ En,ij}|Xn, pn)E (Gn,ik1 {εn,ik ∈ En,ik}|Xn, pn)

+ E (Gn,ij1 {εn,ij ∈ En,ij}|Xn, pn)E (Gn,ik1 {εn,ik /∈ En,ik}|Xn, pn)

+ E (Gn,ij1 {εn,ij /∈ En,ij}|Xn, pn)E (Gn,ik1 {εn,ik ∈ En,ik}|Xn, pn)

+ E (Gn,ij1 {εn,ij /∈ En,ij}|Xn, pn)E (Gn,ik1 {εn,ik /∈ En,ik}|Xn, pn)

(8.58)

We will show that each term in (8.57) subtracting its corresponding term in (8.58) will yield

a difference that is O (n−1), so summing up the four differences the conditional covariance

in (8.55) is also O (n−1).
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To this end, we first introduce some notation. Recall that by Lemma 8.1 ωni (εni) has an

asymptotic linear representation

ωni (εni) = ω∗ni +
1

n− 1

∑
l 6=i

H−1ni (ω∗ni)ψn,il (ω
∗
ni, εn,il) + rn (εni)

where

ψn,il (ω
∗
ni, εn,il) = 1

{
Un,il +

n− 1

n− 2
2D′lω

∗
ni − εn,il > 0

}
Dj − V +

i ω
∗
ni.

Since εn,il enters ψn,il (ω∗ni, εn,il) through an indicator function defined by set En,il, once
we restrict (εn,ij, εn,ik) to either one of the four subsets, the functions ψn,ij (ω∗ni, εn,ij) and

ψn,ik (ω∗ni, εn,ik) no longer depend on (εn,ij, εn,ik). Depending on which subset (εn,ij, εn,ik) lies

in, we denote the value of ωni (εni) as

ωni (εni) =

{
ω1·ni (εni,−j) , if εn,ij ∈ En,ij,
ω0·ni (εni,−j) , if εn,ij /∈ En,ij,

+ rn (εni)

=

{
ω·1ni (εni,−k) , if εn,ik ∈ En,ik,
ω·0ni (εni,−k) , if εn,ik /∈ En,ik,

+ rn (εni)

=


ω11ni (εni,−jk) , if εn,ij ∈ En,ij, εn,ik ∈ En,ik,
ω10ni (εni,−jk) , if εn,ij ∈ En,ij, εn,ik /∈ En,ik,
ω01ni (εni,−jk) , if εn,ij /∈ En,ij, εn,ik ∈ En,ik,
ω00ni (εni,−jk) , if εn,ij /∈ En,ij, εn,ik /∈ En,ik,

+ rn (εni)

where

ωs·ni (εni,−j) = ω∗ni +
1

n− 1

∑
l 6=i,j

H−1ni (ω∗ni)ψn,il (ω
∗
ni, εn,il) +

1

n− 1
H−1ni (ω∗ni) ·

{
Dj − V +

i ω
∗
ni, if s = 1

−V +
i ω

∗
ni, if s = 0

ω·tni (εni,−k) = ω∗ni +
1

n− 1

∑
l 6=i,k

H−1ni (ω∗ni)ψn,il (ω
∗
ni, εn,il) +

1

n− 1
H−1ni (ω∗ni) ·

{
Dk − V +

i ω
∗
ni, if t = 1

−V +
i ω

∗
ni, if t = 0

and

ωstni (εni,−jk) = ω∗ni +
1

n− 1

∑
l 6=i,j,k

H−1ni (ω∗ni)ψn,il (ω
∗
ni, εn,il)

+
1

n− 1
H−1ni (ω∗ni) ·


Dj +Dk − 2V +

i ω
∗
ni, if s = 1, t = 1

Dj − 2V +
i ω

∗
ni, if s = 1, t = 0

Dk − 2V +
i ω

∗
ni, if s = 0, t = 1

−2V +
i ω

∗
ni, if s = 0, t = 0

47



Note that ωs·ni, ω
·t
ni, and ω

st
ni depend on εni only through εni,−j = (εn,il)l 6=i,j, εni,−k = (εn,il)l 6=i,k

and εni,−jk = (εn,il)l 6=i,j,k, respectively, for s, t ∈ {0, 1}. For such variants of ωni, we further
define

C∗n,il = Un,il +
n− 1

n− 2
2D′lω

∗
ni

Cn,il (εni) = Un,il +
n− 1

n− 2
2D′lωni (εni)

Cs·
n,il (εni,−j) = Un,il +

n− 1

n− 2
2D′lω

s·
ni (εni,−j) , s ∈ {0, 1}

C ·tn,il (εni,−k) = Un,il +
n− 1

n− 2
2D′lω

·t
ni (εni,−k) , t ∈ {0, 1}

Cst
n,il (εni,−jk) = Un,il +

n− 1

n− 2
2D′lω

st
ni (εni,−jk) , s, t ∈ {0, 1}

The last three terms only cover the leading term in ωni. To deal with the remainder rn (εni)

in ωni, we choose
(
ε̃1n,ij, ε̃

1
n,ik

)
and

(
ε̃2n,ij, ε̃

2
n,ik

)
to be independent copies of (εn,ij, εn,ik), i.e.,

these three pairs are independent of each other and
(
ε̃1n,ij, ε̃

1
n,ik

)
and

(
ε̃2n,ij, ε̃

2
n,ik

)
follow the

same distribution as (εn,ij, εn,ik). Replacing (εn,ij, εn,ik) in εni by
(
ε̃1n,ij, ε̃

1
n,ik

)
and

(
ε̃2n,ij, ε̃

2
n,ik

)
,

we construct two vectors ε̃1ni and ε̃
2
ni

ε̃1ni =
(
ε̃1n,ij, ε̃

1
n,ik, εni,−jk

)
, ε̃2ni =

(
ε̃2n,ij, ε̃

2
n,ik, εni,−jk

)
By construction, εni, ε̃1ni and ε̃

2
ni are independent conditional on εni,−jk. We then define

∆n,il (εni) =
n− 1

n− 2
2D′lrn (εni)

∆̃1
n,il

(
ε̃1ni
)

=
n− 1

n− 2
2D′lrn

(
ε̃1ni
)

∆̃2
n,il

(
ε̃2ni
)

=
n− 1

n− 2
2D′lrn

(
ε̃2ni
)

∆n,il, ∆̃1
n,il, and ∆̃2

n,il are also independent conditional on εni,−jk.

Now we examine the difference between (8.57) and (8.58). We divide the task into four

parts, depending on which of the four subsets (εn,ij, εn,ik) lies in.

Part I: εn,ij ∈ En,ij, εn,ik ∈ En,ik.
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We start with the first terms in (8.57) and (8.58). By definition

E (Gn,ijGn,ik1 {εn,ij ∈ En,ij, εn,ik ∈ En,ik}|Xn, pn)

= Pr
(
εn,ij ≤ min

{
C11n,ij + ∆n,ij, C

∗
n,ij

}
, εn,ik ≤ min

{
C11n,ik + ∆n,ik, C

∗
n,ik

}∣∣Xn, pn
)

= Pr
(
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}
, εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}∣∣∣Xn, pn

)
+ E

(
1
{
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}}
·
(

1
{
εn,ik ≤ min

{
C11n,ik + ∆n,ik, C

∗
n,ik

}}
− 1

{
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}})∣∣∣Xn, pn

)
+ E

(
1
{
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}}
·
(

1
{
εn,ij ≤ min

{
C11n,ij + ∆n,ij, C

∗
n,ij

}}
− 1

{
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}})∣∣∣Xn, pn

)
+ E

((
1
{
εn,ij ≤ min

{
C11n,ij + ∆n,ij, C

∗
n,ij

}}
− 1

{
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}})
·
(

1
{
εn,ik ≤ min

{
C11n,ik + ∆n,ik, C

∗
n,ik

}}
− 1

{
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}})∣∣∣Xn, pn

)
(8.59)

Moreover,

E (Gn,ij1 {εn,ij ∈ En,ij}|Xn, pn)

= Pr
(
εn,ij ≤ min

{
C1·n,ij + ∆n,ij, C

∗
n,ij

}∣∣Xn, pn
)

= Pr
(
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣Xn, pn

)
+ E

(
1
{
εn,ij ≤ min

{
C1·n,ij + ∆n,ij, C

∗
n,ij

}}
− 1

{
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}}∣∣∣Xn, pn

)
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and similar derivation holds for E (Gn,ik1 {εn,ik ∈ En,ik}|Xn, pn), with j replaced by k and

C1·n,ij and ∆̃1
n,ij replaced by C

·1
n,ik and ∆̃2

n,ik, so

E (Gn,ij1 {εn,ij ∈ En,ij}|Xn, pn)E (Gn,ik1 {εn,ik ∈ En,ik}|Xn, pn)

= Pr
(
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣Xn, pn

)
Pr
(
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}∣∣∣Xn, pn

)
+ Pr

(
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣Xn, pn

)
· E
(

1
{
εn,ik ≤ min

{
C ·1n,ik + ∆n,ik, C

∗
n,ik

}}
− 1

{
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}}∣∣∣Xn, pn

)
+ Pr

(
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}∣∣∣Xn, pn

)
· E
(

1
{
εn,ij ≤ min

{
C1·n,ij + ∆n,ij, C

∗
n,ij

}}
− 1

{
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}}∣∣∣Xn, pn

)
+ E

(
1
{
εn,ij ≤ min

{
C1·n,ij + ∆n,ij, C

∗
n,ij

}}
− 1

{
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}}∣∣∣Xn, pn

)
· E
(

1
{
εn,ik ≤ min

{
C ·1n,ik + ∆n,ik, C

∗
n,ik

}}
− 1

{
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}}∣∣∣Xn, pn

)
(8.60)

We then compare the terms in (8.59) with those in (8.60). We do this in four steps.

Step 1.1 : Compare the first terms in (8.59) and (8.60). Because C11n,ij is a function

of εni,−jk, ∆̃1
n,ij and ∆̃2

n,ij are independent conditional on εni,−jk, and εn,ij are i.i.d. by

Assumption 1, the first term in (8.59) is given by

Pr
(
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}
, εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}∣∣∣Xn, pn

)
= E

(
Pr
(
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}
, εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}∣∣∣ εni,−jk, Xn, pn

)∣∣∣Xn, pn

)
= E

(
Fε

(
min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

})
Fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

})∣∣∣Xn, pn

)
where Fε is the CDF of εn,ij. Moreover,

Pr
(
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣Xn, pn

)
= E

(
Pr
(
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣ εni,−jk, Xn, pn

)∣∣∣Xn, pn

)
= Pr

(
Fε

(
min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

})∣∣∣Xn, pn

)
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Therefore, if we subtract the first term in (8.60) from the first term in (8.59), the difference

is given by

Pr
(
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}
, εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}∣∣∣Xn, pn

)
− Pr

(
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣Xn, pn

)
Pr
(
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}∣∣∣Xn, pn

)
=E

(
Fε

(
min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

})
Fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

})∣∣∣Xn, pn

)
− E

(
Fε

(
min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

})∣∣∣Xn, pn

)
E
(
Fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

})∣∣∣Xn, pn

)
=Cov

(
Fε

(
min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

})
, Fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

})∣∣∣Xn, pn

)
=Cov

(
Fε

(
min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

})
− Fε

(
C∗n,ij

)
, Fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

})
− Fε

(
C∗n,ik

)∣∣∣Xn, pn

)
(8.61)

We will show this conditional covariance is O (n−1). By Taylor expansion,

Fε

(
min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

})
− Fε

(
C∗n,ij

)
= fε

(
C∗n,ij

)
min

{
C11n,ij + ∆̃1

n,ij − C∗n,ij, 0
}

+ o
(∣∣∣min

{
C11n,ij + ∆̃1

n,ij − C∗n,ij, 0
}∣∣∣) (8.62)

where fε is the density of Fε. From the definition of C11n,ij, ∆̃1
n,ij and C

∗
n,ij,

C11n,ij + ∆̃1
n,ij − C∗n,ij

=
n− 1

n− 2
2D′j

(
1

n− 1

∑
l 6=i,j,k

H−1ni (ω∗ni)ψn,il (ω
∗
ni, εn,il) +

1

n− 1
H−1ni (ω∗ni)

(
Dj +Dk − 2V +

i ω
∗
ni

)
+ rn

(
ε̃1ni
))

In the parentheses above, the second term is O (n−1) and by Lemma 8.1 the remainder

rn (ε̃1ni) = op
(
n−1/2

)
, so they are dominated by the first term, which is Op

(
n−1/2

)
by CLT.

Thus

C11n,ij + ∆̃1
n,ij − C∗n,ij = 2D′j

1

n− 2

∑
l 6=i,j,k

H−1ni (ω∗ni)ψn,il (ω
∗
ni, εn,il) + op

(
1√
n

)
(8.63)

Similarly, we can derive

C11n,ik + ∆̃2
n,ik − C∗n,ik = 2D′k

1

n− 2

∑
l 6=i,j,k

H−1ni (ω∗ni)ψn,il (ω
∗
ni, εn,il) + op

(
1√
n

)
(8.64)
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Hence,∣∣∣Cov (min
{
C11n,ij + ∆̃1

n,ij − C∗n,ij, 0
}
,min

{
C11n,ik + ∆̃2

n,ik − C∗n,ik, 0
}∣∣∣Xn, pn

)∣∣∣
≤ V ar

(
min

{
C11n,ij + ∆̃1

n,ij − C∗n,ij, 0
}∣∣∣Xn, pn

) 1
2
V ar

(
min

{
C11n,ik + ∆̃2

n,ik − C∗n,ik, 0
}∣∣∣Xn, pn

) 1
2

≤ V ar
(
C11n,ij + ∆̃1

n,ij − C∗n,ij
∣∣∣Xn, pn

) 1
2
V ar

(
C11n,ik + ∆̃2

n,ik − C∗n,ik
∣∣∣Xn, pn

) 1
2

= O

(
1

n

)
(8.65)

where the second inequality holds because for any random variable Z we can write Z =

[Z]− + [Z]+, where [Z]− = min {Z, 0} and [Z]+ = max {Z, 0}, and note that

Cov
(
[Z]− , [Z]+

)
= E

(
[Z]− · [Z]+

)
− E

(
[Z]−

)
E
(
[Z]+

)
= −E

(
[Z]−

)
E
(
[Z]+

)
≥ 0

so

V ar (Z) = V ar
(
[Z]−

)
+ V ar

(
[Z]+

)
+ 2Cov

(
[Z]− , [Z]+

)
≥ V ar

(
[Z]−

)
(8.66)

The third equality in (8.65) follows because from (8.63) we obtain

V ar
(
C11n,ij + ∆̃1

n,ij − C∗n,ij
∣∣∣Xn, pn

)
≤ 4D′jV ar

(
1

n− 1

∑
l 6=i,j,k

H−1ni (ω∗ni)ψn,il (ω
∗
ni, εn,il)

∣∣∣∣∣Xn, pn

)
Dj + o

(
1

n

)
= O

(
1

n

)
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and similarly V ar
(
C11n,ik + ∆̃2

n,ik − C∗n,ik
∣∣∣Xn, pn

)
= O (n−1). Therefore applying the Taylor

expansion in (8.62) we derive the conditional covariance in (8.61) as

Cov
(
Fε

(
min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}
− Fε

(
C∗n,ij

))
, Fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
− Fε

(
C∗n,ik

))∣∣∣Xn, pn

)
=fε

(
C∗n,ij

)
fε
(
C∗n,ik

)
Cov

(
min

{
C11n,ij + ∆̃1

n,ij − C∗n,ij, 0
}
,min

{
C11n,ik + ∆̃2

n,ik − C∗n,ik, 0
}∣∣∣Xn, pn

)
+ fε

(
C∗n,ij

)
Cov

(
min

{
C11n,ij + ∆̃1

n,ij − C∗n,ij, 0
}
, o
(∣∣∣min

{
C11n,ik + ∆̃2

n,ik − C∗n,ik, 0
}∣∣∣)∣∣∣Xn, pn

)
+ fε

(
C∗n,ik

)
Cov

(
min

{
C11n,ik + ∆̃2

n,ik − C∗n,ik, 0
}
, o
(∣∣∣min

{
C11n,ij + ∆̃1

n,ij − C∗n,ij, 0
}∣∣∣)∣∣∣Xn, pn

)
+ Cov

(
o
(∣∣∣min

{
C11n,ij + ∆̃1

n,ij − C∗n,ij, 0
}∣∣∣) , o(∣∣∣min

{
C11n,ik + ∆̃2

n,ik − C∗n,ik, 0
}∣∣∣)∣∣∣Xn, pn

)
≤fε

(
C∗n,ij

)
fε
(
C∗n,ik

)
Cov

(
min

{
C11n,ij + ∆̃1

n,ij − C∗n,ij, 0
}
,min

{
C11n,ik (εni,−jk)− C∗n,ik, 0

}∣∣∣Xn, pn

)
+ o

(
1

n

)
=O

(
1

n

)
(8.67)

Combining (8.61) and (8.67) proves

Pr
(
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}
, εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}∣∣∣Xn, pn

)
− Pr

(
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣Xn, pn

)
Pr
(
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}∣∣∣Xn, pn

)
≤ O

(
1

n

)

While the events εn,ij ≤ min
{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}
and εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
are

correlated due to the correlation of C11n,ij + ∆̃1
n,ij and C

11
n,ik + ∆̃2

n,ik through εni,−jk, because

C11n,ij and C
11
n,ik converge to C

∗
n,ij and C

∗
n,ik respectively at the rate of n

−1/2, such correlation

vanishes to 0 at the rate of n−1.

Step 1.2 : Consider the second terms in (8.59) and (8.60). Since∣∣∣min
{
C ·1n,ik + ∆n,ik, C

∗
n,ik

}
−min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}∣∣∣
=
∣∣∣min

{
C ·1n,ik + ∆n,ik − C∗n,ik, 0

}
−min

{
C11n,ik + ∆̃2

n,ik − C∗n,ik, 0
}∣∣∣

≤
∣∣∣C ·1n,ik + ∆n,ik − C∗n,ik −

(
C11n,ik + ∆̃2

n,ik − C∗n,ik
)∣∣∣

=
∣∣∣C ·1n,ik − C11n,ik + ∆n,ik − ∆̃2

n,ik

∣∣∣
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where the inequality follows because |min {x, 0} −min {y, 0}| ≤ |x− y|, and by definition
and Lemma 8.2,

C ·1n,ik − C11n,ik + ∆n,ik − ∆̃2
n,ik

=
n− 1

n− 2
2D′k

(
1

n− 1
H−1ni (ω∗ni)

(
ψn,ij (ω∗ni, εn,ij)−

(
Dj − V +

i ω
∗
ni

))
+ rn (εni)− rn

(
ε̃2ni
))

we define dn

dn =
2

n− 2

∣∣D′kH−1ni (ω∗ni)
(
ψn,ij (ω∗ni, εn,ij)−

(
Dj − V +

i ω
∗
ni

))∣∣+2 (n− 1)

n− 2
sup
εn,ik

∥∥rn (εni)− rn
(
ε̃2ni
)∥∥

(8.68)

Then dn provides an upper bound∣∣∣min
{
C ·1n,ik + ∆n,ik, C

∗
n,ik

}
−min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}∣∣∣ ≤ dn

that is independent of εn,ik. Hence a rate-determining part in both second terms in (8.59)

and (8.60) can be bounded as∣∣∣E(1
{
εn,ik ≤ min

{
C ·1n,ik + ∆n,ik, C

∗
n,ik

}}
− 1

{
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}}∣∣∣Xn, pn

)∣∣∣
≤ E

(∣∣∣1{εn,ik ≤ min
{
C ·1n,ik + ∆n,ik, C

∗
n,ik

}}
− 1

{
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}}∣∣∣∣∣∣Xn, pn

)
≤ E

(
1
{
εn,ik lies between min

{
C ·1n,ik + ∆n,ik, C

∗
n,ik

}
and min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}}∣∣∣Xn, pn

)
≤ E

(
1
{

min
{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
− dn ≤ εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
+ dn

}∣∣∣Xn, pn

)
= E

(
Fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
+ dn

)
− Fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
− dn

)∣∣∣Xn, pn

)
,

where the second inequality is from the fact that if events εn,ik ≤ min
{
C ·1n,ik + ∆n,ik, C

∗
n,ik

}
and εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
do not occur at the same time, εn,ik must lie between

min
{
C ·1n,ik + ∆n,ik, C

∗
n,ik

}
and min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
. The last equality follows because

εn,ik is independent of C11n,ik + ∆̃2
n,ik and dn. By Taylor expansion

E
(
Fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
+ dn

)
− Fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
− dn

)∣∣∣Xn, pn

)
= E

(
2fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

})
dn + o (dn)

∣∣∣Xn, pn

)
= O

(
1

n

)
.
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where the last equality follows because E (dn|Xn, pn) = O (n−1) by (8.8) in Lemma 8.2.

Therefore, the second terms in (8.59) and (8.60) satisfy∣∣∣E(1
{
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}}
·
(

1
{
εn,ik ≤ min

{
C11n,ik + ∆n,ik, C

∗
n,ik

}}
− 1

{
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}})∣∣∣Xn, pn

)∣∣∣
≤ E

(∣∣∣1{εn,ik ≤ min
{
C11n,ik + ∆n,ik, C

∗
n,ik

}}
− 1

{
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}}∣∣∣∣∣∣Xn, pn

)
≤ O

(
1

n

)
and∣∣∣Pr

(
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣Xn, pn

)
·E
(

1
{
εn,ik ≤ min

{
C ·1n,ik + ∆n,ik, C

∗
n,ik

}}
− 1

{
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}}∣∣∣Xn, pn

)∣∣∣
≤ E

(∣∣∣1{εn,ik ≤ min
{
C ·1n,ik + ∆n,ik, C

∗
n,ik

}}
− 1

{
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}}∣∣∣∣∣∣Xn, pn

)
≤ O

(
1

n

)
.

We conclude that both second terms in (8.59) and (8.60) are O (n−1).

Step 1.3 : Consider the third terms in (8.59) and (8.60). Following the same proof as in

Step 1.2, with j and k swapped and C ·1n,ik, ∆̃2
n,ik and ε̃

2
ni replaced by C

1·
n,ij, ∆̃1

n,ij and ε̃
1
ni, we

can show that both terms are O (n−1).

Step 1.4 : Consider the last terms in (8.59) and (8.60). From Steps 1.2-1.3, the last term

in (8.60) is clearly O (n−2). As for the last term in (8.59), we follow the idea in Steps 1.2-1.3.

Observe that ∣∣∣min
{
C11n,ij + ∆n,ij, C

∗
n,ij

}
−min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣
≤
∣∣∣∆n,ij − ∆̃1

n,ij

∣∣∣
=

∣∣∣∣n− 1

n− 2
2D′j

(
rn (εni)− rn

(
ε̃1ni
))∣∣∣∣
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and ∣∣∣min
{
C11n,ik + ∆n,ik, C

∗
n,ik

}
−min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}∣∣∣
≤
∣∣∣∆n,ik − ∆̃2

n,ik

∣∣∣
=

∣∣∣∣n− 1

n− 2
2D′k

(
rn (εni)− rn

(
ε̃2ni
))∣∣∣∣

Define d1n and d
2
n by

d1n =
2 (n− 1)

n− 2
sup

εn,ij ,εn,ik

∥∥rn (εni)− rn
(
ε̃1ni
)∥∥

d2n =
2 (n− 1)

n− 2
sup

εn,ij ,εn,ik

∥∥rn (εni)− rn
(
ε̃2ni
)∥∥ (8.69)

Then d1n and d
2
n provide upper bounds∣∣∣min

{
C11n,ij + ∆n,ij, C

∗
n,ij

}
−min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣ ≤ d1n∣∣∣min
{
C11n,ik + ∆n,ik, C

∗
n,ik

}
−min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}∣∣∣ ≤ d2n
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that are independent of (εn,ij, εn,ik) and are independent of each other conditional on εni,−jk.

Hence, the last term in (8.59) satisfies∣∣∣E((1
{
εn,ij ≤ min

{
C11n,ij + ∆n,ij, C

∗
n,ij

}}
− 1

{
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}})
·
(

1
{
εn,ik ≤ min

{
C11n,ik + ∆n,ik, C

∗
n,ik

}}
− 1

{
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}})∣∣∣Xn, pn

)∣∣∣
≤E

(∣∣∣1{εn,ij ≤ min
{
C11n,ij + ∆n,ij, C

∗
n,ij

}}
− 1

{
εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}}∣∣∣
·
∣∣∣1{εn,ik ≤ min

{
C11n,ik + ∆n,ik, C

∗
n,ik

}}
− 1

{
εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}}∣∣∣∣∣∣Xn, pn

)
≤E

(
1
{

min
{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}
− d1n ≤ εn,ij ≤ min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}
+ d1n

}
·1
{

min
{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
− d2n ≤ εn,ik ≤ min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
+ d2n

}∣∣∣Xn, pn

)
=E

(
Fε

(
min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}
+ d1n

)
− Fε

(
min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

}
− d1n

)∣∣∣Xn, pn

)
· E
(
Fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
+ d2n

)
− Fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

}
− d2n

)∣∣∣Xn, pn

)
=E

(
2fε

(
min

{
C11n,ij + ∆̃1

n,ij, C
∗
n,ij

})
d1n + o

(
d1n
)∣∣∣Xn, pn

)
· E
(

2fε

(
min

{
C11n,ik + ∆̃2

n,ik, C
∗
n,ik

})
d2n + o

(
d2n
)∣∣∣Xn, pn

)
≤O

(
1

n2

)
where the first equality results from the assumptions that (i) εn,ij and εn,ik are independent,

(ii) (εn,ij, εn,ik) is independent of
(

∆̃1
n,ij, ∆̃

2
n,ik

)
and (d1n, d

2
n), (iii) ∆̃1

n,ij and ∆̃2
n,ik are inde-

pendent conditional on εni,−jk, and (iv) d1n and d
2
n are independent conditional on εni,−jk.

The last equality follows because E (d1n|Xn, pn) ≤ O (n−1) and E (d2n|Xn, pn) ≤ O (n−1) by

(8.8) in Lemma 8.2. We conclude that the last terms in (8.59) and (8.60) are O (n−2) and

thus negligible.

Combining Steps 1.1-1.4, we have proved that

E (Gn,ijGn,ik1 {εn,ij ∈ En,ij, εn,ik ∈ En,ik}|Xn, pn)

− E (Gn,ij1 {εn,ij ∈ En,ij}|Xn, pn)E (Gn,ik1 {εn,ik ∈ En,ik}|Xn, pn)

≤O
(

1

n

)
Part II: εn,ij ∈ En,ij, εn,ik /∈ En,ik.
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We turn to the second terms in (8.57) and (8.58). They can be represented as

E (Gn,ijGn,ik1 {εn,ij ∈ En,ij, εn,ik /∈ En,ik}|Xn, pn)

= Pr
(
εn,ij ≤ min

{
C10n,ij + ∆n,ij, C

∗
n,ij

}
, C∗n,ik < εn,ik ≤ C10n,ik + ∆n,ik

∣∣Xn, pn
)

= Pr
(
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}
, C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

∣∣∣Xn, pn

)
+ E

(
1
{
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}}
·
(

1
{
C∗n,ik < εn,ik ≤ C10n,ik + ∆n,ik

}
− 1

{
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

})∣∣∣Xn, pn

)
+ E

(
1
{
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

}
·
(

1
{
εn,ij ≤ min

{
C10n,ij + ∆n,ij, C

∗
n,ij

}}
− 1

{
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}})∣∣∣Xn, pn

)
+ E

((
1
{
εn,ij ≤ min

{
C10n,ij + ∆n,ij, C

∗
n,ij

}}
− 1

{
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}})
·
(

1
{
C∗n,ik < εn,ik ≤ C10n,ik + ∆n,ik

}
− 1

{
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

})∣∣∣Xn, pn

)
(8.70)

and

E (Gn,ij1 {εn,ij ∈ En,ij}|Xn, pn)E (Gn,ik1 {εn,ik /∈ En,ik}|Xn, pn)

= Pr
(
εn,ij ≤ min

{
C1·n,ij + ∆n,ij, C

∗
n,ij

}∣∣Xn, pn
)

Pr
(
C∗n,ik < εn,ik ≤ C ·0n,ik + ∆n,ik

∣∣Xn, pn
)

= Pr
(
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣Xn, pn

)
Pr
(
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

∣∣∣Xn, pn

)
+ Pr

(
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣Xn, pn

)
· E
(

1
{
C∗n,ik < εn,ik ≤ C ·0n,ik + ∆n,ik

}
− 1

{
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

}∣∣∣Xn, pn

)
+ Pr

(
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

∣∣∣Xn, pn

)
· E
(

1
{
εn,ij ≤ min

{
C1·n,ij + ∆n,ij, C

∗
n,ij

}}
− 1

{
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}}∣∣∣Xn, pn

)
+ E

(
1
{
εn,ij ≤ min

{
C1·n,ij + ∆n,ij, C

∗
n,ij

}}
− 1

{
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}}∣∣∣Xn, pn

)
· E
(

1
{
C∗n,ik < εn,ik ≤ C ·0n,ik + ∆n,ik

}
− 1

{
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

}∣∣∣Xn, pn

)
(8.71)

The representations in (8.70) and (8.71) are similar to those in (8.59) and (8.60). The main

difference is that εn,ik ≤ min
{
C11n,ik + ∆n,ik, C

∗
n,ik

}
is replaced by C∗n,ik < εn,ik ≤ C10n,ik+∆n,ik.

Following the proof in Part I, we show in four steps that the difference between (8.70) and

(8.71) is also O (n−1).

58



Step 2.1 : Compare the first terms in (8.70) and (8.71). Since

Pr
(
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}
, C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

∣∣∣Xn, pn

)
=E

(
Pr
(
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}
, C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

∣∣∣ εni,−jk, Xn, pn

)∣∣∣Xn, pn

)
=E

(
Fε

(
min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

})(
Fε

(
max

{
C10n,ik + ∆̃2

n,ik, C
∗
n,ik

})
− Fε

(
C∗n,ik

))∣∣∣Xn, pn

)
and

Pr
(
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

∣∣∣Xn, pn

)
=E

(
Pr
(
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

∣∣∣ εni,−jk, Xn, pn

)∣∣∣Xn, pn

)
=E

(
Fε

(
max

{
C10n,ik + ∆̃2

n,ik, C
∗
n,ik

})
− Fε

(
C∗n,ik

)∣∣∣Xn, pn

)
subtracting the first term in (8.71) from the first term in (8.70) yields

Pr
(
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}
, C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

∣∣∣Xn, pn

)
− Pr

(
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣Xn, pn

)
Pr
(
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

∣∣∣Xn, pn

)
=E

(
Fε

(
min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

})(
Fε

(
max

{
C10n,ik + ∆̃2

n,ik, C
∗
n,ik

})
− Fε

(
C∗n,ik

))∣∣∣Xn, pn

)
− E

(
Fε

(
min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

})∣∣∣Xn, pn

)
E
(
Fε

(
max

{
C10n,ik + ∆̃2

n,ik, C
∗
n,ik

})
− Fε

(
C∗n,ik

)∣∣∣Xn, pn

)
=Cov

(
Fε

(
min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

})
, Fε

(
max

{
C10n,ik + ∆̃2

n,ik, C
∗
n,ik

})
− Fε

(
C∗n,ik

)∣∣∣Xn, pn

)
=Cov

(
Fε

(
min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

})
− Fε

(
C∗n,ik

)
, Fε

(
max

{
C10n,ik + ∆̃2

n,ik, C
∗
n,ik

})
− Fε

(
C∗n,ik

)∣∣∣Xn, pn

)
(8.72)

Similar to the proof in Step 1.1, we have∣∣∣Cov (min
{
C10n,ij + ∆̃1

n,ij − C∗n,ij, 0
}
,max

{
C10n,ik + ∆̃2

n,ik − C∗n,ik, 0
}∣∣∣Xn, pn

)∣∣∣
≤ V ar

(
min

{
C10n,ij + ∆̃1

n,ij − C∗n,ij, 0
}∣∣∣Xn, pn

) 1
2
V ar

(
max

{
C10n,ik + ∆̃2

n,ik − C∗n,ik, 0
}∣∣∣Xn, pn

) 1
2

≤ V ar
(
C10n,ij + ∆̃1

n,ij − C∗n,ij
∣∣∣Xn, pn

) 1
2
V ar

(
C10n,ik + ∆̃2

n,ik − C∗n,ik
∣∣∣Xn, pn

) 1
2

= O

(
1

n

)
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where the second inequality follows because (8.66) implies that V ar (max {Z, 0}) ≤ V ar (Z).

Therefore, applying the Taylor expansion

Fε

(
max

{
C10n,ik + ∆̃2

n,ik, C
∗
n,ik

})
− Fε

(
C∗n,ik

)
= fε

(
C∗n,ik

)
max

{
C10n,ik + ∆̃2

n,ik − C∗n,ik, 0
}
o
(∣∣∣max

{
C10n,ik + ∆̃2

n,ik − C∗n,ik, 0
}∣∣∣)

we bound the covariance in (8.72) as

Cov
(
Fε

(
min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}
− Fε

(
C∗n,ij

))
, Fε

(
max

{
C10n,ik + ∆̃2

n,ik, C
∗
n,ik

})
− Fε

(
C∗n,ik

)∣∣∣Xn, pn

)
≤fε

(
C∗n,ij

)
fε
(
C∗n,ik

)
Cov

(
min

{
C10n,ij + ∆̃1

n,ij − C∗n,ij, 0
}
,max

{
C10n,ik + ∆̃2

n,ik − C∗n,ik, 0
}∣∣∣Xn, pn

)
+ o

(
1

n

)
=O

(
1

n

)
This proves that the first terms in (8.70) and (8.71) have a difference that is O (n−1).

Pr
(
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}
, C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

∣∣∣Xn, pn

)
− Pr

(
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣Xn, pn

)
Pr
(
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

∣∣∣Xn, pn

)
≤ O

(
1

n

)
Step 2.2 : Consider the second terms in (8.70) and (8.71). Observe that∣∣∣1{C∗n,ik < εn,ik ≤ C ·0n,ik + ∆n,ik

}
− 1

{
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

}∣∣∣
≤ 1

{
εn,ik lies between C ·0n,ik + ∆n,ik and C10n,ik + ∆̃2

n,ik

}
Moreover, by definition and Lemma 8.2,

C ·0n,ik + ∆n,ik −
(
C10n,ik + ∆̃2

n,ik

)
=
n− 1

n− 2
2D′k

(
1

n− 1
H−1ni (ω∗ni)

(
ψn,ij (ω∗ni, εn,ij)−

(
Dj − V +

i ω
∗
ni

))
+ rn (εni)− rn

(
ε̃2ni
))

so the dn defined in (8.68) provides an upper bound∣∣∣C ·0n,ik + ∆n,ik −
(
C10n,ik + ∆̃2

n,ik

)∣∣∣ ≤ dn
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that is independent of εn,ik. Then

E
(∣∣∣1{C∗n,ik < εn,ik ≤ C ·0n,ik + ∆n,ik

}
− 1

{
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

}∣∣∣∣∣∣Xn, pn

)
≤E

(
1
{
εn,ik lies between C ·0n,ik + ∆n,ik and C10n,ik + ∆̃2

n,ik

}∣∣∣Xn, pn

)
≤E

(
1
{
C10n,ik + ∆̃2

n,ik − dn ≤ εn,ik ≤ C10n,ik + ∆̃2
n,ik + dn

}∣∣∣Xn, pn

)
=E

(
Fε

(
C10n,ik + ∆̃2

n,ik + dn

)
− Fε

(
C10n,ik + ∆̃2

n,ik − dn
)∣∣∣Xn, pn

)
=E

(
2fε

(
C10n,ik + ∆̃2

n,ik

)
dn + o (dn)

∣∣∣Xn, pn

)
=O

(
1

n

)
Therefore, both second terms in (8.70) and (8.71) are O (n−1) since∣∣∣E(1

{
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}}
·
(

1
{
C∗n,ik < εn,ik ≤ C10n,ik + ∆n,ik

}
− 1

{
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

})∣∣∣Xn, pn

)∣∣∣
≤E

(∣∣∣1{C∗n,ik < εn,ik ≤ C10n,ik + ∆n,ik

}
− 1

{
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

}∣∣∣∣∣∣Xn, pn

)
≤O

(
1

n

)
and ∣∣∣Pr

(
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣Xn, pn

)
·E
(

1
{
C∗n,ik < εn,ik ≤ C ·0n,ik + ∆n,ik

}
− 1

{
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

}∣∣∣Xn, pn

)∣∣∣
≤E

(∣∣∣1{C∗n,ik < εn,ik ≤ C ·0n,ik + ∆n,ik

}
− 1

{
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

}∣∣∣∣∣∣Xn, pn

)
≤O

(
1

n

)
Step 2.3 : Observe that the third terms in (8.70) and (8.71) are obtained from the second

terms with j and k swapped. Using the same proof in Step 2.2 we can show that the third

terms in (8.70) and (8.71) are also O (n−1).

Step 2.4 : Consider the last terms in (8.70) and (8.71). From Steps 1.2 and 2.2, it is clear

that the last term in (8.71) is O (n−2). Moreover, since∣∣∣min
{
C10n,ij + ∆n,ij, C

∗
n,ij

}
−min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣ ≤ ∣∣∣∆n,ij − ∆̃1
n,ij

∣∣∣
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and ∣∣∣C10n,ik + ∆n,ik −
(
C10n,ik + ∆̃2

n,ik

)∣∣∣ ≤ ∣∣∣∆n,ik − ∆̃2
n,ik

∣∣∣
the d1n and d

2
n defined in (8.69) provide upper bounds∣∣∣min

{
C10n,ij + ∆n,ij, C

∗
n,ij

}
−min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}∣∣∣ ≤ d1n∣∣∣C10n,ik + ∆n,ik −
(
C10n,ik + ∆̃2

n,ik

)∣∣∣ ≤ d2n

that are independent of (εn,ij, εn,ik) and are independent of each other conditional on εni,−jk.

Then the last term in (8.59) satisfies∣∣∣E((1
{
εn,ij ≤ min

{
C10n,ij + ∆n,ij, C

∗
n,ij

}}
− 1

{
εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}})
·
(

1
{
C∗n,ik < εn,ik ≤ C10n,ik + ∆n,ik

}
− 1

{
C∗n,ik < εn,ik ≤ C10n,ik + ∆̃2

n,ik

})∣∣∣Xn, pn

)∣∣∣
≤E

(
1
{

min
{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}
− d1n ≤ εn,ij ≤ min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}
+ d1n

}
·1
{
C10n,ik + ∆̃2

n,ik − d2n ≤ εn,ik ≤ C10n,ik + ∆̃2
n,ik + d2n

}∣∣∣Xn, pn

)
=E

(
Fε

(
min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}
+ d1n

)
− Fε

({
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

}
− d1n

)∣∣∣Xn, pn

)
· E
(
Fε

(
C10n,ik + ∆̃2

n,ik + d2n

)
− Fε

(
C10n,ik + ∆̃2

n,ik − d2n
)∣∣∣Xn, pn

)
=E

(
2fε

(
min

{
C10n,ij + ∆̃1

n,ij, C
∗
n,ij

})
d1n + o

(
d1n
)∣∣∣Xn, pn

)
E
(

2fε

(
C10n,ik + ∆̃2

n,ik

)
d2n + o

(
d2n
)∣∣∣Xn, pn

)
≤O

(
1

n2

)
Like in Part I, the last terms in (8.70) and (8.71) are also O (n−2) and thus negligible.

Combining Steps 2.1-2.4, we have proved that

E (Gn,ijGn,ik1 {εn,ij ∈ En,ij, εn,ik /∈ En,ik}|Xn, pn)

− E (Gn,ij1 {εn,ij ∈ En,ij}|Xn, pn)E (Gn,ik1 {εn,ik /∈ En,ik}|Xn, pn)

≤ O

(
1

n

)
Part III: εn,ij /∈ En,ij, εn,ik ∈ En,ik.
The third terms in (8.57) and (8.58) are given by

E (Gn,ijGn,ik1 {εn,ij /∈ En,ij, εn,ik ∈ En,ik}|Xn, pn)

= Pr
(
C∗n,ij < εn,ij ≤ C01n,ij + ∆n,ij, εn,ik ≤ min

{
C01n,ik + ∆n,ik, C

∗
n,ik

}∣∣Xn, pn
)
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and

E (Gn,ij1 {εn,ij /∈ En,ij}|Xn, pn)E (Gn,ik1 {εn,ik ∈ En,ik}|Xn, pn)

= Pr
(
C∗n,ij < εn,ij ≤ C0·n,ij + ∆n,ij

∣∣Xn, pn
)

Pr
(
εn,ik ≤ min

{
C ·1n,ik + ∆n,ik, C

∗
n,ik

}∣∣Xn, pn
)

They are obtained from the terms for {εn,ij ∈ En,ij, εn,ik /∈ En,ik} in Part II with j and k

swapped, so from the proof in Part II the difference between them is also O (n−1).

E (Gn,ijGn,ik1 {εn,ij /∈ En,ij, εn,ik ∈ En,ik}|Xn, pn)

− E (Gn,ij1 {εn,ij /∈ En,ij}|Xn, pn)E (Gn,ik1 {εn,ik ∈ En,ik}|Xn, pn)

≤ O

(
1

n

)
Part IV: εn,ij /∈ En,ij, εn,ik /∈ En,ik.
By definition,

E (Gn,ijGn,ik1 {εn,ij /∈ En,ij, εn,ik /∈ En,ik}|Xn, pn)

= Pr
(
C∗n,ij < εn,ij ≤ C00n,ij + ∆n,ij, C

∗
n,ik < εn,ik ≤ C00n,ik + ∆n,ik

∣∣Xn, pn
)

and

E (Gn,ij1 {εn,ij /∈ En,ij}|Xn, pn)E (Gn,ik1 {εn,ik /∈ En,ik}|Xn, pn)

= Pr
(
C∗n,ij < εn,ij ≤ C0·n,ij + ∆n,ij

∣∣Xn, pn
)

Pr
(
C∗n,ik < εn,ik ≤ C ·0n,ik + ∆n,ik

∣∣Xn, pn
)

With a slight modification to the proof in Part II, we can show

E (Gn,ijGn,ik1 {εn,ij /∈ En,ij, εn,ik /∈ En,ik}|Xn, pn)

− E (Gn,ij1 {εn,ij /∈ En,ij}|Xn, pn)E (Gn,ik1 {εn,ik /∈ En,ik}|Xn, pn)

≤ O

(
1

n

)
Combining Parts I-IV, we conclude that the conditional covariance of Gn,ij and Gn,ik

given (Xn, pn) is O (n−1)

E (Gn,ijGn,ik|Xn, pn)− E (Gn,ij|Xn, pn)E (Gn,ik|Xn, pn) = O

(
1

n

)
The proof is complete.
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To prove Theorem 4.2 and Theorem 4.3, we first prove in the following lemma that the

population objective function is differentiable.

Lemma 8.3 (Differentiability) Suppose that Assumptions 1-3 are satisfied. Given Xn

and pn, Ψn (θ, p) defined in (4.10) is differentiable at (θ0, pn) with a derivative∇(θ,p)Ψn (θ0, pn) =

[∇θΨn (θ0, pn) ,∇pΨn (θ0, pn)] that satisfies

∥∥Ψn (θ, p)−Ψn (θ0, pn)−∇(θ,p)Ψn (θ0, pn) ((θ, p)− (θ0, pn))
∥∥ = o (‖(θ, p)− (θ0, pn)‖)

Proof. By the definition of Ψn

Ψn (θ, p) =
1

n (n− 1)

∑
i

∑
j 6=i

Wn,ij (θ, p) (E [Gn,ij|Xn, pn]− Pn,ij (θ, p)) .

Since Wn,ij (θ, p) is a function of Pn,ij (θ, p), we start by proving the differentiability of

Pn,ij (θ, p).

By definition

Pn,ij (θ, p) =

∫
1

{
Un,ij (θ, p) +

n− 1

n− 1
2D′jωni (εn,i, θ, p) ≥ εn,ij

}
fεn,i (εn,i) dεn,i

where fεn,i represents the density of εn,i. From the definition of Un,ij in (3.4), Un,ij (θ, p) is

differentiable in (θ, p). To establish the differentiability of Pn,ij (θ, p), we need to investigate

how ωni (εn,i, θ, p) would change in (θ, p).

From the first-order condition for ω in (8.9) in the proof for Lemma 8.1, ωni (εn,i, θ, p)

satisfies

1

n− 1

∑
j 6=i

1

{
Un,ij (θ, p) +

n− 1

n− 2
2D′jωni (εn,i, θ, p)− εn,ij > 0

}
Dj = V +

i (θ, p)ωni (εn,i, θ, p)

(8.73)

almost surely. The left-hand side of (8.73) as a function of (θ, p) has a derivative at (θ0, pn)

that equals 0, except for the set{
εn,i : ∃j, Un,ij (θ0, pn) +

n− 1

n− 2
2D′jωni (εn,i, θ0, pn) = εn,ij

}
,
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which occurs with probability 0 since

Pr

(
∃j, Un,ij (θ0, pn) +

n− 1

n− 2
2D′jωni (εn,i, θ0, pn) = εn,ij

∣∣∣∣Xn, pn

)
≤
∑
j 6=i

Pr

(
Un,ij (θ0, pn) +

n− 1

n− 2
2D′jωni (εn,i, θ0, pn) = εn,ij

∣∣∣∣Xn, pn

)
= 0.

The last equality follows because the right-hand side of (8.73) is a linear function of ω, and

the left-hand side is a step function, so when εn,ij changes the optimal ωni changes at most

finite number of times which occurs with probability 0. Therefore, with probability 1 the

right-hand side of (8.73) as a function of (θ, p) also has a derivative at (θ0, pn) that is equal

to 0, i.e.,

∣∣V +
i (θ, p)ωni (εn,i, θ, p)− V +

i (θ0, pn)ωni (εn,i, θ0, pn)
∣∣ = o (‖(θ, p)− (θ0, pn)‖)

almost surely. Moreover, from the definition of ω in Section 3, we have ω = ViΦiω̃, where Φi

is the matrix of eigenvectors and ω̃ is given in (3.3), so ω = ViV
+
i ViΦiω̃ = ViV

+
i ω. Hence,

ωni (εn,i, θ, p) = Vi (θ, p)V
+
i (θ, p)ωni (εn,i, θ, p)

= Vi (θ, p)V
+
i (θ0, pn)ωni (εn,i, θ0, pn) + o (‖(θ, p)− (θ0, pn)‖)

= ωni (εn,i, θ0, pn) + (Vi (θ, p)− Vi (θ0, pn))V +
i (θ0, pn)ωni (εn,i, θ0, pn)

+ o (‖(θ, p)− (θ0, pn)‖) (8.74)

almost surely.

Now we construct the derivative of Pn,ij (θ, p) at (θ0, pn). Observe that Vi (θ, p) is differ-

entiable in (θ, p). Define the augmented parameter θ̃ = (θ, p) and θ̃0 = (θ0, pn). Note that

the dimension of θ̃ is dim (θ) +T 2. For k = 1, . . . , dim (θ) +T 2, let θ̃k be the kth component

of θ̃ and define

∇θ̃k
Vi (θ0, pn) =


∂Vi,11(θ0,pn)

∂θ̃k
· · · ∂Vi,1T (θ0,pn)

∂θ̃k
...

. . .
...

∂Vi,T1(θ0,pn)

∂θ̃k
· · · ∂Vi,TT (θ0,pn)

∂θ̃k


Furthermore, define

∇(θ,p)Un,ij (θ0, pn) =

(
∂Un,ij (θ0, pn)

∂θ′
,
∂Un,ij (θ0, pn)

∂p′

)
.
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We define the vector ∇(θ,p)Pn,ij (θ0, pn) by

∇(θ,p)Pn,ij (θ0, pn) ((θ, p)− (θ0, pn))

=

∫ (
∇(θ,p)Un,ij (θ0, pn) ((θ, p)− (θ0, pn))

+
n− 1

n− 1
2
∑

kD
′
j∇θ̃k

Vi (θ0, pn)V +
i (θ0, pn)ωni (εn,i, θ0, pn)

(
θ̃k − θ̃0k

))
· fε
(
εn,ij : εn,ij = Un,ij (θ0, pn) +

n− 1

n− 1
2D′jωni (εn,i, θ0, pn)

)
fεn,−ij (εn,−ij) dεn,−ij,

(8.75)

where fεn,−ij represents the density of εn,−ij = (εn,ik)k 6=i,j and the fε term in the last line is the

density of εn,ij evaluated at the value such that εn,ij = Un,ij (θ0, pn) + n−1
n−12D

′
jωni (εn,i, θ0, pn)

for a given εn,−ij. We show that the ∇(θ,p)Pn,ij (θ0, pn) defined in (8.75) gives the derivative

of Pn,ij (θ, p) at (θ0, pn) in the sense that

∣∣Pn,ij (θ, p)− Pn,ij (θ0, pn)−∇(θ,p)Pn,ij (θ0, pn) ((θ, p)− (θ0, pn))
∣∣ = o (‖(θ, p)− (θ0, pn)‖) .

To see this, consider the difference between Pn,ij (θ, p) and Pn,ij (θ0, pn)

Pn,ij (θ, p)− Pn,ij (θ0, pn)

=

∫ (
1

{
Un,ij (θ, p) +

n− 1

n− 1
2D′jωni (εn,i, θ, p) ≥ εn,ij

}
−1

{
Un,ij (θ0, pn) +

n− 1

n− 1
2D′jωni (εn,i, θ0, pn) ≥ εn,ij

})
fεn,i (εn,i) dεn,i

=

∫
∆n,ij (εn,i, θ, p, θ0, pn) ∆Ũn,ij (εn,i, θ, p) fεn,i (εn,i) dεn,i

where we define

Ũn,ij (εn,i, θ, p) = Un,ij (θ, p) +
n− 1

n− 1
2D′jωni (εn,i, θ, p)

∆Ũn,ij (εn,i, θ, p) = Ũn,ij (εn,i, θ, p)− Ũn,ij (εn,i, θ0, pn)
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and

∆n,ij (εn,i, θ, p, θ0, pn)

=
1

∆Ũn,ij (εn,i, θ, p)

(
1

{
Un,ij (θ, p) +

n− 1

n− 1
2D′jωni (εn,i, θ, p) ≥ εn,ij

}
−1

{
Un,ij (θ0, pn) +

n− 1

n− 1
2D′jωni (εn,i, θ0, pn) ≥ εn,ij

})
.

By (8.74) and the differentiability of Un,ij (θ, p) and Vi (θ, p), Ũn,ij (εn,i, θ, p) has a derivative

∇(θ,p)Ũn,ij (εn,i, θ0, pn) at (θ0, pn) given by

∇(θ,p)Ũn,ij (εn,i, θ0, pn) ((θ, p)− (θ0, pn))

=∇(θ,p)Un,ij (θ0, pn) ((θ, p)− (θ0, pn))

+
n− 1

n− 1
2
∑

kD
′
j∇θ̃k

Vi (θ0, pn)V +
i (θ0, pn)ωni (εn,i, θ0, pn)

(
θ̃k − θ̃0k

)
in the sense that∣∣∣∆Ũn,ij (εn,i, θ, p)−∇(θ,p)Ũn,ij (εn,i, θ0, pn) ((θ, p)− (θ0, pn))

∣∣∣ = o (‖(θ, p)− (θ0, pn)‖) (8.76)

almost surely. Hence, for the ∇(θ,p)Pn,ij (θ0, pn) defined in (8.75) we have

Pn,ij (θ, p)− Pn,ij (θ0, pn)−∇(θ,p)Pn,ij (θ0, pn) ((θ, p)− (θ0, pn))

=

∫
∆n,ij (εn,i, θ, p, θ0, pn) ∆Ũn,ij (εn,i, θ, p) fεn,i (εn,i) dεn,i

−
∫
∇(θ,p)Ũn,ij (εn,i, θ0, pn) ((θ, p)− (θ0, pn)) · fε

(
εn,ij : εn,ij = Ũn,ij (εn,i, θ0, pn)

)
fεn,−ij (εn,−ij) dεn,i

=

∫
∆n,ij (εn,i, θ, p, θ0, pn)

(
∆Ũn,ij (εn,i, θ, p)−∇(θ,p)Ũn,ij (εn,i, θ0, pn) ((θ, p)− (θ0, pn))

)
fεn,i (εn,i) dεn,i

+

∫ (
∆n,ij (εn,i, θ, p, θ0, pn) fε (εn,ij)− fε

(
εn,ij : εn,ij = Ũn,ij (εn,i, θ0, pn)

))
· ∇(θ,p)Ũn,ij (εn,i, θ0, pn) ((θ, p)− (θ0, pn)) fεn,−ij (εn,−ij) dεn,i (8.77)

where the last equality follows by adding and subtracting the same term. The first term on

the last right-hand side of (8.77) is o (‖(θ, p)− (θ0, pn)‖) by (8.76) and dominated conver-
gence. It suffi ces to consider the last term in (8.77). For a given εn,−ij,∫

∆n,ij (εn,i, θ, p, θ0, pn) fε (εn,ij) dεn,ij − fε
(
εn,ij : εn,ij = Ũn,ij (εn,i, θ0, pn)

)
→ 0 (8.78)
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as (θ, p)→ (θ0, pn) and thus ∆Ũn,ij (εn,i, θ, p)→ 0 by the Lebesgue Differentiation Theorem

and the fact that ωni (εn,i, θ, p) does not change in εn,ij except for a finite number of points.

Moreover, the derivative ∇(θ,p)Ũn,ij (εn,i, θ0, pn) is Lipschitz continuous in (θ, p), i.e., there is

a constant C > 0,∣∣∣∇(θ,p)Ũn,ij (εn,i, θ0, pn) ((θ, p)− (θ0, pn))
∣∣∣ ≤ C ‖(θ, p)− (θ0, pn)‖ . (8.79)

Hence by (8.78), (8.79) and dominated convergence we derive that the last term in (8.77) is

also o (‖(θ, p)− (θ0, pn)‖).
We have proved that

∣∣Pn,ij (θ, p)− Pn,ij (θ0, pn)−∇(θ,p)Pn,ij (θ0, pn) ((θ, p)− (θ0, pn))
∣∣ = o (‖(θ, p)− (θ0, pn)‖)

so the ∇(θ,p)Pn,ij (θ0, pn) defined in (8.75) is the desired derivative for Pn,ij (θ, p) at (θ0, pn).

Proof of Theorem 4.2. By Lemma 8.3 and Assumption, Ψn has a continuously invertible

derivative at (θ0, pn), so there exists a constant c > 0 such that

‖Ψn (θ, p)−Ψn (θ0, pn)‖ > c ‖(θ, p)− (θ0, pn)‖+ o (‖(θ, p)− (θ0, pn)‖) (8.80)

for every (θ, p). Similar to the consistency proof for ωni in Lemma 8.1, inequality (8.80)

provides an identification condition for (θ0, pn): for any ξ > 0, if ‖(θ, p)− (θ0, pn)‖ > ξ, then

‖Ψn (θ, p)−Ψn (θ0, pn)‖ > (c+ o (1)) ξ. Let η > 0 satisfy η ≤ (c+ o (1)) ξ. Then,

Pr
(∥∥∥(θ̂n, p̂n)− (θ0, pn)

∥∥∥ > ξ
∣∣∣Xn, pn

)
≤ Pr

(∥∥∥Ψn

(
θ̂n, p̂n

)
−Ψn (θ0, pn)

∥∥∥ > η
∣∣∣Xn, pn

)
= Pr

(∥∥∥Ψn

(
θ̂n, p̂n

)
− Ψ̂n

(
θ̂n, p̂n

)∥∥∥ > η
∣∣∣Xn, pn

)
≤ Pr

(
sup
(θ,p)

∥∥∥Ψ̂n (θ, p)−Ψn (θ, p)
∥∥∥ > η

∣∣∣∣∣Xn, pn

)
(8.81)
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where the equality follows because Ψn (θ0, pn) = 0 and Ψ̂n

(
θ̂n, p̂n

)
= 0. By the definition of

Ψ̂n and Ψn

Ψ̂n (θ, p)−Ψn (θ, p) =
1

n (n− 1)

∑
i

∑
j 6=i

Wn,ij (θ, p) (Gn,ij − E (Gn,ij|Xn, pn))

=
1

n

∑
i

Yni (θ, p)− E (Yni (θ, p)|Xn, pn)

where

Yni (θ, p) =
1

n− 1

∑
j 6=i

Wn,ij (θ, p)Gn,ij

By assumption the weightWn,ij (θ, p) is bounded by an envelope ‖Wn,ij (θ, p)‖ ≤Mn <∞ for

all i and j and all (θ, p), so ‖Yni (θ, p)‖ ≤Mn. Moreover, by the contruction ofWn,ij (θ, p) and

Lemma 8.3 Wn,ij (θ, p) is differentiable with an derivative ∇(θ,p)Wn,ij (θ, p) which is bounded

by Cn = maxi,j sup(θ,p)
∥∥∇(θ,p)Wn,ij (θ, p)

∥∥ <∞, so Yni (θ, p) is Lipschitz continuous in (θ, p)

with a Lipschitz constant Cn∥∥∥Yni (θ, p)− Yni (θ̃, p̃)∥∥∥ ≤ Cn

∥∥∥(θ, p)−
(
θ̃, p̃
)∥∥∥ (8.82)

Define the array Yn (θ, p) = (Yni (θ, p))1≤i≤n and the set F =
{
Yn (θ, p) : (θ, p) ∈ Rdθ+T 2

}
.

Let α ∈ Rn be an arbitrary n×1 vector of nonnegative constants. Consider the set of arrays

α�F =
{
α� Yn (θ, p) : (θ, p) ∈ Rdθ+T 2

}
where α� Yni is the pointwise product of α and Yn. The arrays in α�F have the envelope
‖α‖Mn. Further, the Lipschitz condition in (8.82) implies that for any (θ, p) and

(
θ̃, p̃
)

∥∥∥α� Yn (θ, p)− α� Yn
(
θ̃, p̃
)∥∥∥ =

(
n∑
i=1

α2i

∥∥∥Yni (θ, p)− Yni (θ̃, p̃)∥∥∥2)1/2

≤
(

n∑
i=1

α2iC
2
n

∥∥∥(θ, p)−
(
θ̃, p̃
)∥∥∥2)1/2

= Cn ‖α‖
∥∥∥(θ, p)−

(
θ̃, p̃
)∥∥∥

Therefore, the packing numbers of the sets α � F and Θ × P =
{

(θ, p) ∈ Rdθ+T 2
}
satisfy

the relationship

D (ζ ‖α‖Mn, α�F , ‖·‖) ≤ D

(
ζ
Mn

Cn
,Θ× P , ‖·‖

)
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for ζ > 0. It is clear that the set Θ × P has a pseudodimension of at most dθ + T 2, so by

Corollary 4.10 and Definition 7.9 in Pollard (1990) the set F is manageable. Applying the
uniform law of large number in Theorem 8.3 of Pollard (1990) yields

Pr

(
sup
(θ,p)

∥∥∥Ψ̂n (θ, p)−Ψn (θ, p)
∥∥∥ > η

∣∣∣∣∣Xn, pn

)
→ 0

as n→∞. Combining this with (8.81) proves(
θ̂n, p̂n

)
− (θ0, pn) = op (1)

The proof is complete.

To prove Theorem 4.3, we also need the following lemma.

Lemma 8.4 (CLT for Sample Moments) Suppose that Assumptions 1-3 are satisfied.
For the augmented sample moment function Ψ̃n (θ0, pn) defined in (4.12) and the conditional

variance Ω̃n (Xn, pn) defined in (4.14). we have√
n (n− 1)Ω̃−1/2n (Xn, pn) Ψ̃n (θ0, pn)

d→ N (0, I) (8.83)

as n→∞. Moreover, Ω̃n (Xn, pn) = O (1), so Ψ̃n (θ0, pn) converges at the order of n−1.

Proof. Define ∑
i

Yni =
√
n (n− 1)Ω̃−1/2n (Xn, pn) Ψ̃n (θ0, pn)

where Yni is given by

Yni =
1√

n (n− 1)
Ω̃−1/2n (Xn, pn)

∑
j 6=i

W̃n,ij (θ0, pn) (Gn,ij − Pn,ij (θ0, pn))

with the augmented weights W̃n,ij (θ0, pn) defined in (4.13). Note that conditional on (Xn, pn),

Yn1, . . . , Ynn form an independent triangular array because each Yni involves εn,i only (though

Gn,i), and εn,i is i.i.d. by Assumption 1. We derive the asymptotic distribution of
∑

i Yni by

applying the Lindeberg-Feller Central Limit Theorem (CLT). The rest of the the proof is to

check whether the conditions in the Lindeberg-Feller CLT hold.

Since Yni is a dθ × 1 vector, where dθ is the dimension of θ, we use the Cramer-Wold

method. Take any vector a ∈ Rdθ . We verify the conditions in the Lindeberg-Feller CLT for
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a′Yni. First, given Xn and pn the conditional mean of a′Yni is 0

E (a′Yni|Xn, pn) = 0

Second, the conditional variance of
∑

i a
′Yni given Xn and pn is

V ar

(∑
i

a′Yni

∣∣∣∣∣Xn, pn

)
= a′Ω̃−1/2n (Xn, pn)V ar

(√
n (n− 1)Ψ̃n (θ0, pn)

∣∣∣Xn, pn

)
Ω̃−1/2n (Xn, pn) a

= a′Ia = ‖a‖2

Next we verify the Lindeberg condition. It requires that for every ξ > 0

lim
n→∞

1

‖a‖2
∑
i

E
(

(a′Yni)
2

1 {|a′Yni| ≥ ξ ‖a‖}
∣∣∣Xn, pn

)
= 0 (8.84)

Since

1

‖a‖2
∑
i

E
(

(a′Yni)
2

1 {|a′Yni| ≥ ξ ‖a‖}
∣∣∣Xn, pn

)
=

1

‖a‖2
E

(∑
i

a′YniY
′
nia1 {|a′Yni| ≥ ξ ‖a‖}

∣∣∣∣∣Xn, pn

)

≤ 1

‖a‖2
E

(∑
i

a′YniY
′
nia1

{
max1≤i≤n |a′Yni|

‖a‖ ≥ ξ

}∣∣∣∣∣Xn, pn

)

it suffi ces to show
max1≤i≤n |a′Yni|

‖a‖
p→ 0 (8.85)

as n→∞, because

1

‖a‖2
E

(∑
i

a′YniY
′
nia1

{
max1≤i≤n |a′Yni|

‖a‖ ≥ ξ

}∣∣∣∣∣Xn, pn

)
≤ 1

‖a‖2
E

(∑
i

a′YniY
′
nia

∣∣∣∣∣Xn, pn

)
= 1

so the Lindeberg condition in (8.84) follows by the dominated convergence theorem.

To show (8.85), by Chebyshev’s inequality

Pr

(
max1≤i≤n |a′Yni|

‖a‖ ≥ ξ

∣∣∣∣Xn, pn

)
≤ 1

ξ2 ‖a‖2
E
(

max
1≤i≤n

a′YniY
′
nia

∣∣∣∣Xn, pn

)
(8.86)
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Define the function ψ (z) = ez − 1, and ‖Z‖ψ to be the Orlicz norm of random variable

Z conditional on (Xn, pn), i.e., ‖Z‖ψ = inf
{
C > 0 : E

(
ψ
(
|Z|
C

)∣∣∣Xn, pn

)
≤ 1
}
. Since z ≤

ez − 1, it is easy to show E ( |Z||Xn, pn) ≤ ‖Z‖ψ, so

E
(

max
1≤i≤n

a′YniY
′
nia

∣∣∣∣Xn, pn

)
≤
∥∥∥∥max
1≤i≤n

a′YniY
′
nia

∥∥∥∥
ψ

(8.87)

The right-hand side of (8.87) can be further bounded using the maximal inequality in Lemma

2.2.2 of Van der Vaart and Wellner (1996),∥∥∥∥max
1≤i≤n

a′YniY
′
nia

∥∥∥∥
ψ

≤ K log (1 + n) max
1≤i≤n

‖a′YniY ′nia‖ψ (8.88)

where K is a constant depending only on ψ. We will show that max1≤i≤n ‖a′YniY ′nia‖ψ =

O (n−1). By the definition of Yni,

a′YniY
′
nia

=
1

n (n− 1)
a′Ω̃−1/2n (θ0, pn)

(∑
j 6=i

W̃n,ij (θ0, pn) W̃ ′
n,ij (θ0, pn) (Gn,ij − Pn,ij (θ0, pn))2

+
∑
j 6=i

∑
k 6=i,j

W̃n,ij (θ0, pn) W̃ ′
n,ik (θ0, pn) (Gn,ij − Pn,ij (θ0, pn)) (Gn,ik − Pn,ik (θ0, pn))

)
Ω̃−1/2n (Xn, pn) a

We will show later in this proof that
∥∥∥W̃n,ij (θ0, pn)

∥∥∥ < ∞ and Ω̃n (Xn, pn) = O (1), so for

any i, a′YniY ′nia is bounded. For any bounded random variable Z, we can show that ‖Z‖ψ .
E ( |Z||Xn, pn).6 Moreover E (a′YniY

′
nia|Xn, pn) = O (n−1) because

∥∥∥W̃n,ij (θ0, pn)
∥∥∥ < ∞,

Ω̃n (Xn, pn) = O (1) and |E ((Gn,ij − Pn,ij (θ0, pn)) (Gn,ik − Pn,ik (θ0, pn))|Xn, pn)| = O (n−1)

for j 6= k due to Proposition 4.1. Therefore,

‖a′YniY ′nia‖ψ . E (a′YniY
′
nia|Xn, pn) = O

(
1

n

)
6Suppose random variable |Z| ≤M for constant M <∞. Since ψ (z) = ez − 1 is convex in z, by Jensen’s

inequality e|Z| − 1 ≤ |Z|M
(
eM − 1

)
. Therefore

E
(
e|Z|/C − 1

∣∣∣Xn, pn

)
≤
(
eM − 1

)
M

E ( |Z||Xn, pn)

C

Choose C = (eM−1)
M E ( |Z||Xn, pn) so the right-hand side is 1. By the definition of the Orlicz norm, ‖Z‖ψ ≤

C =
(eM−1)
M E ( |Z||Xn, pn).
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for all i. This implies that

max
1≤i≤n

‖a′YniY ′nia‖ψ = O

(
1

n

)
(8.89)

Combining (8.86)-(8.89) we obtain

Pr

(
max1≤i≤n |a′Yni|

‖a‖ ≥ ξ

∣∣∣∣Xn, pn

)
≤ K log (1 + n)

ξ2 ‖a‖2
max
1≤i≤n

‖a′YniY ′nia‖ψ

=
K log (1 + n)

ξ2 ‖a‖2
O

(
1

n

)
→ 0

as n→∞. Condition (8.85) and thus the Lindeberg condition (8.84) are proved.
We have verified that the conditions for the Lindeberg-Feller CLT are satisfied, so apply-

ing the theorem we obtain 1
‖a‖2

∑
i a
′Yni

d→ N (0, 1), or equivalently,

a′
∑
i

Yni
d→ N (0, a′Ia)

as n→∞. This implies that ∑
i

Yni
d→ N (0, I)

as n→∞, thereby proving (8.83).
Finally, we show

∥∥∥W̃n,ij (θ0, pn)
∥∥∥ < ∞ and Ω̃n (Xn, pn) = O (1). Recall that the aug-

mented weights W̃n,ij (θ0, pn) are defined as

W̃n,ij (θ, p) = Wn,ij (θ0, pn) +∇pΨn (θ0, pn)Qn,ij
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We choose weights Wn,ij (θ0, pn) in the second step to be bounded, i.e., ‖Wn,ij (θ0, pn)‖ <∞.
Moreover, the estimation of pn in the first step lead to extra weights given by

∇pΨn (θ0, pn)Qn,ij

=
1

n (n− 1)

∑
k

∑
l 6=k

∂Wn,kl (θ, p) (E [Gn,kl|Xn, pn]− Pn,kl (θ, p))
∂p′

∣∣∣∣
(θ,p)=(θ0,pn)

Qn,ij

=− 1

n (n− 1)

∑
k

∑
l 6=k

Wn,kl (θ0, pn)
∂Pn,kl (θ0, pn)

∂p′
Qn,ij

=− 1

n (n− 1)

∑
k

∑
l 6=k

Wn,kl (θ0, pn)
∑
s,t

∂Pn,kl (θ0, pn)

∂pst
1 {Xn,ij = xst}

(n (n− 1))−1
∑

k′
∑

l′ 6=k′ 1 {Xn,k′l′ = xst}

=−
∑
s,t

∑
k

∑
l 6=kWn,kl (θ0, pn)

∂Pn,kl(θ0,pn)

∂pst∑
k

∑
l 6=k 1 {Xn,kl = xst} 1

{
Xn,ij = xst

}
Under the assumption, for any s, t ≤ T

1

n (n− 1)

∑
k

∑
l 6=k

1
{
Xn,kl = xst

}
→ qst

for qst > 0 as n→∞. Hence∥∥∥∥∥
∑

k

∑
l 6=kWn,kl (θ0, pn)

∂Pn,kl(θ0,pn)

∂pst∑
k

∑
l 6=k 1 {Xn,kl = xst}

∥∥∥∥∥ <∞
and thus

‖∇pΨn (θ0, pn)Qn,ij‖ <∞

This proves ∥∥∥W̃n,ij (θ, p) (θ0, pn)
∥∥∥ <∞ (8.90)

Note that both the first-step and second-step weights have the same order O (1), so both of

them will contribute to the conditional variance Ω̃n (Xn, pn).
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To show the rate of Ω̃n (Xn, pn), recall that

Ω̃n (Xn, pn)

=V ar
(√

n (n− 1)Ψ̃n (θ0, pn)
∣∣∣Xn, pn

)
=

1

n (n− 1)

(∑
i

∑
j 6=i

W̃n,ij (θ0, pn) W̃ ′
n,ij (θ0, pn)E

(
(Gn,ij − Pn,ij (θ0, pn))2 |Xn, pn

)
+
∑
i

∑
j 6=i

∑
k 6=i,j

W̃n,ij (θ0, pn) W̃ ′
n,ik (θ0, pn)E ((Gn,ij − Pn,ij (θ0, pn)) (Gn,ik − Pn,ik (θ0, pn))|Xn, pn)

)
(8.91)

The double summation in (8.91) consists of the conditional variances of each link. It satisfies

1

n (n− 1)

∑
i

∑
j 6=i

W̃n,ij (θ0, pn) W̃ ′
n,ij (θ0, pn)E

(
(Gn,ij − Pn,ij (θ0, pn))2 |Xn, pn

)
=

1

n (n− 1)

∑
i

∑
j 6=i

W̃n,ij (θ0, pn) W̃ ′
n,ij (θ0, pn)Pn,ij (θ0, pn) (1− Pn,ij (θ0, pn))

≤max
i,j

Wn,ij (θ0, pn)W ′
n,ij (θ0, pn) = O (1) (8.92)

where the last inequality follows because
∥∥∥W̃n,ij (θ0, pn)

∥∥∥ < ∞. Next we look at the triple
summation in (8.91). Since |E ((Gn,ij − Pn,ij (θ0, pn)) (Gn,ik − Pn,ik (θ0, pn))|Xn, pn)| ≤ O (n−1)

for j 6= k by Proposition 4.1, the triple summation satisfies

1

n (n− 1)

∑
i

∑
j 6=i

∑
k 6=i,j

W̃n,ij (θ0, pn) W̃ ′
n,ik (θ0, pn)E ((Gn,ij − Pn,ij) (Gn,ik − Pn,ik)|Xn, pn)

≤ n (n− 1) (n− 2)

n (n− 1)
O

(
1

n

)
max
i,j,k

W̃n,ij (θ0, pn) W̃ ′
n,ik (θ0, pn) = O (1) (8.93)

Combining (8.92)-(8.93) yields

Ω̃n (Xn, pn) = O (1) (8.94)

The proof is complete.
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Proof of Theorem 4.3. By the definition of θ̂n and Ψn (θ0, pn) = 0√
n (n− 1)

(
Ψn(θ̂n, p̂n)−Ψn(θ0, pn)

)
=
√
n (n− 1)

(
Ψn(θ̂n, p̂n)− Ψ̂n(θ̂n, p̂n)

)
= −

√
n (n− 1)Ψ̂n(θ0, pn)−

√
n (n− 1)

(
(Ψ̂n −Ψn)(θ̂n, p̂n)− (Ψ̂n −Ψn)(θ0, pn)

)
(8.95)

Since ∇(θ,p)Ψn(θ0, pn) is continuously invertible by Lemma 8.3 and Assumption, there exists

a constant c > 0 such that
∥∥∇(θ,p)Ψn(θ0, pn) ((θ, p)− (θ0, pn))

∥∥ ≥ c ‖(θ, p)− (θ0, pn)‖ for
every (θ, p). Combining this with the differentiability of Ψn yields

‖Ψn(θ, p)−Ψn(θ0, pn)‖ ≥ c ‖(θ, p)− (θ0, pn)‖+ o (‖(θ, p)− (θ0, pn)‖) (8.96)

Next we consider the last two terms in (8.95). Using the same proof in Lemma 8.4, with

W̃n,ij (θ0, pn) replaced by Wn,ij (θ0, pn) and Ω̃n (Xn, pn) replaced by

Ωn (Xn, pn) = V ar
(√

n (n− 1)Ψ̂n (θ0, pn)
∣∣∣Xn, pn

)
we can show that √

n (n− 1)Ω−1/2n (Xn, pn) Ψ̂n(θ0, pn)
d→ N (0, I)

as n→∞ and Ωn (Xn, pn) = O (1), so the second last term in (8.95) satisfies√
n (n− 1)Ψ̂n(θ0, pn) = Op (1) (8.97)

As for the last term in (8.95), let Gn (θ, p) be the empirical process

Gn (θ, p) =
√
n (n− 1)(Ψ̂n −Ψn) (θ, p)

By the definition of Ψ̂n and Ψn

Gn

(
θ̃, p̃
)
−Gn (θ, p) =

1√
n (n− 1)

∑
i

∑
j 6=i

(
Wn,ij

(
θ̃, p̃
)
−Wn,ij (θ, p)

)
(Gn,ij − Pn,ij (θ0, pn))

=
1√

n (n− 1)

∑
i

∑
j 6=i

∂Wn,ij (θ, p)

∂ (θ, p)′
(Gn,ij − Pn,ij (θ0, pn))

((
θ̃, p̃
)
− (θ, p)

)
+

1√
n (n− 1)

∑
i

∑
j 6=i

(Gn,ij − Pn,ij (θ0, pn)) o
(∥∥∥(θ̃, p̃)− (θ, p)

∥∥∥)
(8.98)
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where the second equality follows from the differentiability ofWn,ij (θ, p) due to the definition

of Wn,ij (θ, p) and Lemma 8.3. Using the proof in Lemma 8.4 again twice, once for

1√
n (n− 1)

∑
i

∑
j 6=i

∂Wn,ij (θ, p)

∂ (θ, p)′
(Gn,ij − Pn,ij (θ0, pn)) (8.99)

with W̃n,ij (θ0, pn) replaced by ∂Wn,ij(θ,p)

∂(θ,p)′
and Ω̃n (Xn, pn) replaced by the conditional variance

of (8.99) given Xn and pn

V ar

(
1√

n (n− 1)

∑
i

∑
j 6=i

∂Wn,ij (θ, p)

∂ (θ, p)′
(Gn,ij − Pn,ij (θ0, pn))

∣∣∣∣∣Xn, pn

)

and once for
1√

n (n− 1)

∑
i

∑
j 6=i

(Gn,ij − Pn,ij (θ0, pn)) (8.100)

with W̃n,ij (θ0, pn) replaced by 1 and Ω̃n (Xn, pn) replaced by the conditional variance of

(8.100) given Xn and pn

V ar

(
1√

n (n− 1)

∑
i

∑
j 6=i

(Gn,ij − Pn,ij (θ0, pn))

∣∣∣∣∣Xn, pn

)

we can show that both (8.99) and (8.100) are Op (1). Applying this to (8.98) yields

Gn

(
θ̃, p̃
)
−Gn (θ, p) = Op

(∥∥∥(θ̃, p̃)− (θ, p)
∥∥∥)

for every
(
θ̃, p̃
)
and (θ, p). Therefore, the last term in (8.95) satisfies

√
n (n− 1)

(
(Ψ̂n −Ψn)(θ̂n, p̂n)− (Ψ̂n −Ψn)(θ0, pn)

)
= op

(√
n (n− 1)

∥∥∥(θ̂n, p̂n)− (θ0, pn)
∥∥∥)

Combining (8.96)-(8.98) and the consistency of (θ̂n, p̂n) by Theorem 4.2 to (8.95) we

obtain√
n (n− 1)

∥∥∥(θ̂n, p̂n)− (θ0, pn)
∥∥∥ (c+ op (1)) ≤ Op (1) + op

(√
n (n− 1)

∥∥∥(θ̂n, p̂n)− (θ0, pn)
∥∥∥)

This implies that √
n (n− 1)

∥∥∥(θ̂n, p̂n)− (θ0, pn)
∥∥∥ ≤ Op (1)

i.e., (θ̂n, p̂n) is n-consistent for (θ0, pn).
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To show the asymptotic distribution of (θ̂n, p̂n), by the differentiability of Ψn, the first

line of (8.95) can be replaced by√
n (n− 1)

(
∇θΨn (θ0, pn) (θ̂n − θ0) +∇pΨn (θ0, pn) (p̂n − pn)

)
+op

(√
n (n− 1)

∥∥∥(θ̂n, p̂n)− (θ0, pn)
∥∥∥)

where the last term is op (1) as also is the right-hand side of (8.98). Combining this with

(8.95) yields√
n (n− 1)∇θΨn (θ0, pn) (θ̂n − θ0) = −

√
n (n− 1)

(
Ψ̂n(θ0, pn) +∇pΨn (θ0, pn) (p̂n − pn)

)
+ op (1)

= −
√
n (n− 1)Ψ̃n(θ0, pn) + op (1)

Lemma 8.4 shows that√
n (n− 1)Ω̃−1/2n (Xn, pn) Ψ̃n (θ0, pn)

d→ N (0, I)

as n→∞. This implies that√
n (n− 1)Ω̃−1/2n (Xn, pn)∇θΨn (θ0, pn) (θ̂n − θ0)

d→ N (0, I)

as n→∞. The proof is complete.

8.4 Proofs in Section 5

Proof of Example 3. We verify that Un,ij (X, σ) and Uij (σ) given in Example 3 satisfy

Assumption 4. Note that supσ
∣∣ 1
n−2D

′
jdiag (Vi (σ))Dj

∣∣ = op (1) (because Vi (σ) is uniformly

bounded) and that supσ
1

n−1
∑

j 6=i
∣∣ 1
n−2D

′
jdiag (Vi (σ))Dj

∣∣ = 1
n−2 supσ

1
n−1

∑
j 6=i
∣∣D′jdiag (Vi (σ))Dj

∣∣ =

op (1) by applying uniform law of large numbers to the second sup term, which is appropri-

ate because the space of symmetric σ is compact, Vi (σ) is continuous in σ and is uniformly

bounded. It suffi ces to show that for any θ,

sup
σ

∣∣∣∣∣ 1

n− 2

∑
k 6=i,j

σjk (Xj, Xk)w (Xi, Xk) β4 − E [σjk (Xj, Xk)w (Xi, Xk)|Xi, Xj] β4

∣∣∣∣∣ = op (1)

and

sup
σ

1

(n− 1)

∑
j 6=i

∣∣∣∣∣ 1

n− 2

∑
k 6=i,j

σjk (Xj, Xk)w (Xi, Xk) β4 − E [σjk (Xj, Xk)w (Xi, Xk)|Xi, Xj] β4

∣∣∣∣∣ = op (1)
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The former is satisfied by applying uniform law of large numbers again. As for the lat-

ter, write ∆i (Xj, Xk;σ) = σjk (Xj, Xk)w (Xi, Xk) β4−E [σjk (Xj, Xk)w (Xi, Xk)|Xi, Xj] β4,

which has zero conditional mean E [∆i (Xj, Xk;σ)|Xi] = 0. By Cauchy-Schwarz inequality,

we have
(
1
n

∑
i |yi|

)2 ≤ 1
n

∑
i y
2
i , so(

1

(n− 1) (n− 2)

∑
j 6=i

∣∣∣∣∣∑
k 6=i,j

∆i (Xj, Xk;σ)

∣∣∣∣∣
)2

≤ 1

(n− 1) (n− 2)2

∑
j 6=i

(∑
k 6=i,j

∆i (Xj, Xk;σ)

)2
=

1

(n− 1) (n− 2)2

∑
j 6=i

∑
k 6=i,j

∆i (Xj, Xk;σ)2

+
1

(n− 1) (n− 2)2

∑
j 6=i

∑
k 6=i,j

∑
l 6=i,j,k

∆i (Xj, Xk;σ) ∆i (Xj, Xl;σ)

The last two terms are U-processes. It remains to show that they are op (1) uniformly in σ.

For the first term, applying Corollary 7 in Sherman (1994) yields

sup
σ

∣∣∣∣∣ 1

(n− 1) (n− 2)

∑
j 6=i

∑
k 6=i,j

∆i (Xj, Xk;σ)2 − E
[
∆i (Xj, Xk;σ)2

∣∣Xi

]∣∣∣∣∣ = Op

(
1√
n

)

so the first terms is Op

(
1
n

)
uniformly in σ. As for the second term, note that the product

∆i (Xj, Xk;σ) ∆i (Xj, Xl;σ) has zero mean conditional on Xi, so by Corollary 7 in Sherman

(1994) again we obtain

sup
σ

∣∣∣∣∣ 1

(n− 1) (n− 2) (n− 3)

∑
j 6=i

∑
k 6=i,j

∑
l 6=i,j,k

∆i (Xj, Xk;σ) ∆i (Xj, Xl;σ)

∣∣∣∣∣ = Op

(
1√
n

)

which proves that the second term is op (1) uniformly in σ. The proof is complete.

Proof of Proposition 5.1. Step 1: We first prove (5.4). Because ∂
∂c
E [c− ε]+ = ∂

∂c

∫ c
−∞ (c− ε) fε (ε) dε =

Fε (c), the first order condition of the problem (5.3) is

∇ωΠ (ω,Xi, σ) = 2Vi (σ)E
(
DjFε

(
Uij (σ) + 2D′jVi (σ)ω

)∣∣Xi

)
− 2Vi (σ)ω = 0 (8.101)

It is easy to see that any ωi (σ) that satisfies the first order condition must be bounded.

Hence without loss of generality we can assume that ωi (σ) is in a compact set Ω. Since

Π (ω,Xi, σ) is continuous in σ, the compactness of Ω implies that the unique maximizer
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Vi (σ)ω∗i (σ) (by Assumption 5) is also well separated. If we can further show that

sup
ω,σ
|Πn (ω,X, εi, σ)− Π (ω,Xi, σ)| = op(1) (8.102)

then following a standard proof for uniform consistency we can prove (5.4). Specifically, from

(8.102) we have supσ Πn (ωn,i, X, εi, σ) ≥ supσ Πn (ω∗i , X, εi, σ) ≥ supσ Π (ω∗i , Xi, σ) − op(1),

whence,

sup
σ

Π (ω∗i , Xi, σ)− sup
σ

Π (ωn,i, Xi, σ) ≤ sup
σ

Πn (ωn,i, Xi, εi, σ)− sup
σ

Π (ωn,i, Xi, σ) + op (1)

≤ sup
ω,σ
|Πn (ω,Xi, εi, σ)− Π (ω,Xi, σ)|+ op (1) = op (1) .

Well-separateness of Vi (σ)ω∗i (σ) implies that for any ε > 0, there is η > 0 such that, for any

symmetric σ, Π (ω,Xi, σ) < Π (ω∗i , Xi, σ)− η for every ω with ‖Vi (σ)ω − Vi (σ)ω∗i (σ)‖ ≥ ε.

Therefore,

Pr

(
sup
σ
‖Vi (σ)ωn,i (σ)− Vi (σ)ω∗i (σ)‖ ≥ ε

)
≤ Pr

(
sup
σ

[Π (ωn,i, Xi, σ)− Π (ω∗i , Xi, σ)] < −η
)

≤ Pr

(
sup
σ

Π (ωn,i, Xi, σ)− sup
σ

Π (ω∗, Xi, σ) < −η
)

→ 0

in view of the preceding display (5.4) is proved.

Now we prove (8.102). The left hand side of (8.102) equals

sup
ω,σ

∣∣∣∣∣ 1

n− 1

∑
j 6=i

[
Un,ij (X, σ) +

n− 1

n− 2
2D′jVi (σ)ω − εij

]
+

− E
([
Uij (σ) + 2D′jVi (σ)ω − εij

]
+

∣∣∣Xi

)∣∣∣∣∣
≤ sup

ω,σ

1

n− 1

∑
j 6=i

[
1

n− 2
2D′jVi (σ)ω

]
+

+ sup
ω,σ

∣∣∣∣∣ 1

n− 1

∑
j 6=i

[
Un,ij (X, σ) + 2D′jVi (σ)ω − εij

]
+
−
[
Uij (σ) + 2D′jVi (σ)ω − εij

]
+

∣∣∣∣∣
+ sup

ω,σ

∣∣∣∣∣ 1

n− 1

∑
j 6=i

[
Uij (σ) + 2D′jVi (σ)ω − εij

]
+
− E

([
Uij (σ) + 2D′jVi (σ)ω − εij

]
+

∣∣∣Xi

)∣∣∣∣∣
(8.103)

For the third term in (8.103), because
[
Uij (σ) + 2D′jVi (σ)ω − εij

]
+
are i.i.d. conditional on

Xi with conditional mean E
([
Uij (σ) + 2D′jVi (σ)ω − εij

]
+

∣∣∣Xi

)
, are continuous in ω and σ,
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and are bounded by

[
Uij (σ) + 2D′jVi (σ)ω − εij

]
+
≤
[
sup
ω,σ

(
Uij (σ) + 2D′jVi (σ)ω

)
− εij

]
+

which is absolute integrable because of the continuity of Uij (σ) and Vi (σ) and compactness

of the spaces of ω and σ, uniform law of large numbers holds, so

sup
ω,σ

∣∣∣∣∣ 1

n− 1

∑
j 6=i

[
Uij (σ) + 2D′jVi (σ)ω − εij

]
+
− E

([
Uij (σ) + 2D′jVi (σ)ω − εij

]
+

∣∣∣Xi

)∣∣∣∣∣ = op (1)

As for the second term, because
∣∣[x]+ − [y]+

∣∣ ≤ |x− y|, we have
sup
ω,σ

∣∣∣∣∣ 1

n− 1

∑
j 6=i

[
Un,ij (σ) + 2D′jVi (σ)ω − εij

]
+
−
[
Uij (σ) + 2D′jVi (σ)ω − εij

]
+

∣∣∣∣∣
≤ sup

σ

1

n− 1

∑
j 6=i

|Un,ij (σ)− Uij (σ)| = op (1)

by Assumption 4(ii). Finally, the first term in (8.103) is op (1), again by uniform law of large

numbers. Hence (8.102) is proved.

Step 2: Next we prove (5.5). By the definition of Pn and P ,

|Pn (Xi, Xj ;X,σ)− P (Xi, Xj ;σ)|

≤
∫ ∣∣∣∣1{Un,ij (X,σ) + n− 1

n− 22D
′
jVi (σ)ωn,i (X, εi, σ) ≥ εij

}
− 1

{
Uij (σ) + 2D

′
jVi (σ)ω

∗
i (σ) ≥ εij

}∣∣∣∣ dFεi (εi)
≤ Pr

(
Un,ij (X,σ) +

n− 1
n− 22D

′
jVi (σ)ωn,i (X, εi, σ) ≥ εij > Uij (σ) + 2D

′
jVi (σ)ω

∗
i (σ)

∣∣∣∣X)
Pr
(
Un,ij (X,σ) + 2D

′
jVi (σ)ωn,i (X, εi, σ) < εij ≤ Uij (σ) + 2D′jVi (σ)ω∗i (σ)

∣∣X)
Since the last two terms are similar, without loss of generality it suffi ces to show that the

second last term is op (1) uniformly in σ. Define

Mn (X, εi, σ) = Un,ij (X, σ) +
n− 1

n− 2
2D′jVi (σ)ωn,i (X, εi, σ)

M (σ) = Uij (σ) + 2D′jVi (σ)ω∗i (σ)

Fix η > 0. Because εij ∈ (M (σ) ,Mn (X, σ)] implies that εij ∈ (M (σ) ,M (σ) + η] or
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Mn (X, σ) > M (σ) + η, we can bound the second last term as follows

Pr (Mn (X, εi, σ) ≥ εij > M (σ)|X)

≤ Pr (M (σ) + η ≥ εij > M (σ)|X) + Pr (Mn (X, εi, σ) > M (σ) + η|X)

≤ Pr (M (σ) + η ≥ εij > M (σ)|X) + Pr

(
2D′jVi (σ)

(
n− 1

n− 2
ωn,i (X, εi, σ)− ω∗i (σ)

)
>
η

2

∣∣∣∣X)
+ 1

{
Un,ij (X, σ)− Uij (σ) >

η

2

}
where the last inequality follows becauseMn (X, εi, σ)−M (σ) > η implies that Un,ij (X, σ)−
Uij (σ) > η

2
or 2D′jVi (σ)

(
n−1
n−2ωn,i (X, εi, σ)− ω∗i (σ)

)
> η

2
. It suffi ces to show that the last

three terms in the display are op (1) uniformly in σ. For any δ > 0, the last term satisfies

Pr

(
sup
σ

1
{
Un,ij (X, σ)− Uij (σ) >

η

2

}
> δ

∣∣∣∣Xi, Xj

)
≤ Pr

(
sup
σ

(Un,ij (X, σ)− Uij (σ)) >
η

2

∣∣∣∣Xi, Xj

)
→ 0

as n→∞ by Assumption 4(i), so it is op (1) uniformly in σ. For the second term, we have

Pr

(
sup
σ

Pr

(
2D′jVi (σ)

(
n− 1

n− 2
ωn,i (X, εi, σ)− ω∗i (σ)

)
>
η

2

∣∣∣∣X) > δ

∣∣∣∣Xi, Xj

)
≤ 1

δ
E
(

sup
σ

Pr

(
2D′jVi (σ)

(
n− 1

n− 2
ωn,i (X, εi, σ)− ω∗i (σ)

)
>
η

2

∣∣∣∣X)∣∣∣∣Xi, Xj

)
≤ 1

δ
E
(

Pr

(
sup
σ

2D′jVi (σ)

(
n− 1

n− 2
ωn,i (X, εi, σ)− ω∗i (σ)

)
>
η

2

∣∣∣∣X)∣∣∣∣Xi, Xj

)
=

1

δ
Pr

(
sup
σ

2D′jVi (σ)

(
n− 1

n− 2
ωn,i (X, εi, σ)− ω∗i (σ)

)
>
η

2

∣∣∣∣Xi, Xj

)
→ 0

as n → ∞ by Markov inequality, law of iterated expectation, and uniform consistency of

Vi (σ)ωn,i (X, εi, σ) proved earlier, so the second term is also op (1) uniformly in σ. As for

the first term,

sup
σ

Pr (M (σ) + η ≥ εij > M (σ)|X)

= sup
σ

(
Fεij (M (σ) + η)− Fεij (M (σ))

)
= sup

σ
fεij (M (σ) + η̃) η

for some η̃ ∈ [0, η] where the last equality is from mean value theorem. Since η is arbitrary,

choosing η to be o (1), we can get supσ Pr (M (σ) + η ≥ εij > M (σ)|X, σ) = op (1). The
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proof is complete.
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