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Abstract

This paper proposes a new model selection test for the statistical comparison of semi/non-
parametric models based on a general quasi-likelihood ratio criterion. An important feature
of the new test is its uniformly exact asymptotic size in the overlapping nonnested case,
as well as in the easier nested and strictly nonnested cases. The uniform size control is
achieved without using pre-testing, sample-splitting, or simulated critical values. We also
show that the test has nontrivial power against all y/n-local alternatives and against some
local alternatives that converge to the null faster than y/n. Finally, we provide a framework
for conducting uniformly valid post model selection inference for model parameters. The
finite sample performance of the uniform test and that of the post model selection inference

procedure are illustrated in a mean-regression example by Monte Carlo.
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1 Introduction

Model selection is an important issue in many empirical work. For example, in economic studies,

there are often competing theories for one phenomenon. Even when there is only one theory, it
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can rarely pin down an empirical model to take to the data. Model selection tests are tools to
determine the best model out of multiple competing models with a pre-specified statistical confi-
dence level. One such test was proposed in Vuong (1989) to select from two parametric likelihood
models according to their Kullback-Leibler information criterion (KLIC). The test determines the
statistical significance of KLIC difference and, when the difference is significant, draws the direc-
tional conclusion that one model is closer to the truth than the other. This test has been widely
used in empirical work due to its straightforward interpretation and implementation!, and it has
been extended to many settings besides the likelihood one.

Depending on the structure of the two candidate models, the quasi-likelihood ratio (QLR)
statistic used in Vuong (1989) may have different asymptotic (normal or weighted chi-square)
distributions under the null hypothesis that the KLIC difference of two likelihood models is zero.
The model structure is unknown when the models compared are overlapping nonnested. In such
case, a pretest for the latent model structure could be performed to determine which asymptotic
distribution to use for the model selection test. But the two-step procedure may (a) not be
uniformly valid if the pretest does not use a conservative critical value, or (2) not be powerful
because the pretest makes rejection difficult, especially when the pretest employs a conservative
critical value to guarantee uniform size control. What is especially troubling is that the QLR
based test has a bias term that favors complex models. As a result, a user could manipulate the
model selection result by unnecessarily increasing or decreasing the complexity of certain model,
or adding arbitrary bias correction term to the QLR statistic.

The first contribution of this paper is a revised QLR statistic that has the same asymptotic
(standard normal) distribution regardless the latent model structure. The revised QLR statistic
has the model complexity-related bias term mentioned above removed. Thus, the resulting model
selection test has uniform asymptotic size control and is less susceptible to manipulation. The
asymptotic distribution of the revised QLR statistic is established assuming that the number
of unknown parameters of either candidate model or both increase with sample size. This is a
natural condition when one or both of the models involve infinite dimensional parameters, and is
a good approximation to the situation of parametric models with a moderately large number of
parameters (e.g. cube root of the sample size number of parameters). The latter case is analogous
to the many IV asymptotic theory of Bekker (1994) and subsequent works, and is a particularly
important case because large parameter models are frequently used in empirical work.

The properties of the standardized QLR statistic (as used in Vuong (1989)) and our revised

1See, e.g., Fafchamps (1993), Moon and Stotsky (1993), Palfrey and Prisbrey (1997), Bonnal et al. (1997),
Cameron and Heckman (1998), Caballero and Engel (1999), Heath et al. (1999), Nyamko and Schotter (2002),
Coate and Conlin (2004), Bisin et al. (2004), Paulson et al. (2006), Gowrisankaran and Rysman (2012), Moines
and Pouget (2013), Barseghyan et al. (2013), Karaivanov and Townsend (2014), Kendall et al. (2015), Gandhi and
Serrano-Padial (2015), to name only a few.



Figure 1: Finite Sample Densities of 7)) and T}, under the Null Hypothesis

1. (a, b) = (0.5, 0.125) and n = 1000

2. (a, b) = (0.1, 0.025) and n = 1000
R

0.5

4. (a, b) = (0, 0) and n = 1000

0.8

~ Vv
- =]
0.8} I\ —_——
N(0,1)
0.6 I\
I \
04
0.2t
0
4 4 4

Notes: (i). The simulated data is generated from the equation Y; = 0.5X; + aXa,; + bZl?:l Xotki + u;, where
(a,b) is set to different values in the four subgraphs and the values guarantee equal fitting of the candidate models,
and (X1, ..., X184, u;)" is a standard normal random vector; (i) model 1: Y; = Xj 6011 4+ aXa6h12 + u1,; is
compared with model 2: Y; = X5 ;62040 Ziﬁd Xotk,ib2,24% + u2,; in their expected squared errors; (iii) the finite
sample densities of the existing QLR statistic 7Y and our statistic T}, are approximated using 1000000 simulated

samples.



QLR test are illustrated in Figure 1. The simulation study in Figure 1 compares two parametric
linear regression models based on their mean-squared error. Here, model 1 has two regressors
and model 2 has 17 regressors. The red dashed line represents the finite sample density of the
QLR statistic 7V defined in (3.5) below. Under the null hypothesis, 7\ has asymptotic standard
normal distribution when the latent parameters (a, b) are not zero, and it has asymptotic weighted
chi-square distribution when (a, b) are zero. Suppose that one conducts model selection test using
the critical value from the standard normal distribution. Although such test is justified by the
asymptotic distribution of TV when (a, b) are not zero, we see that it is over-rejecting under the
null in the first three scenarios considered in Figure 1. When the latent parameters (a,b) are
close to zero, this test is severely over-sized and strongly in favor of the large model, i.e., model 2.
Because the standard normal distribution is a poor approximation to the finite sample density of
TV when (a,b) are close to zero, Figure 1 also shows why pre-testing the latent model structure
may be harmful for valid model selection test. The finite sample properties of the test proposed
in this paper are also investigated in the simulation study in Figure 1. The green dash-dotted line
represents the finite sample density of the revised QLR statistic 7, defined in (3.14) below. It
is clear that 7T), is robust against small values of (a, b), and its finite sample density is very close
to the standard normal. Thus, the test using 7,, and critical value from the standard normal has
better size control than the test based on TV and it is also robust to the complexities of the two
compared models.

The second contribution of this paper is a valid inference for the model parameters after the
model selection test. Post model selection inference on one hand is unavoid in most applications,
and on the other hand is difficult to do correctly. For example, if post-model selection confidence
intervals are constructed as if no model selection had been conducted, Leeb and P&tscher (2005)
show that such the confidence intervals may have coverage probabilities very different from the
nominal level. In this paper, we provide uniformly asymptotically valid confidence intervals for the
parameters in the selected model. The uniform confidence intervals use critical values calculated
from a hybrid conditional cumulative distribution function (CDF) of normal random variables
that is easy to compute in practice.

The rest of the introduction is devoted to the discussion of related literature.

The literature on the QLR model selection test. Although the QLR test proposed in
Vuong (1989) has been widely used in the empirical studies and extended to many non-likelihood
settings,? its property on the size control draws researchers’ attention only recently. The model
selection part of this paper is the most closely related to Shi (2015b) in its basic idea. Shi (2015b)

proposes a simulation based procedure that achieves uniform size control. The asymptotic size

2Extensions include Lavergne and Vuong (1996), Rivers and Vuong (2002), Kitamura (2000), Chen and Fan
(2005),Chen et al. (2007), among others.



control of her procedure, when the procedure is applied to the semi/non-parametric setting with
sieve approximation, is trivially justified by our asymptotic results because her test statistic is
smaller and her critical value bigger than those proposed in this paper by construction. We rec-
ommend our test in the semi/non-parametric setting because (1) it requires no simulation, and
thus are computationally easier, and (2) it is more powerful. Our asymptotic analysis is consider-
ably more complex than hers due to the presence of infinite dimensional parameters. A few other
papers in the literature also achieve uniform asymptotic size control. These include Li (2009),
Schennach and Wilhelm (2016), Hsu and Shi (2014) and Shi (2015a). These papers do not deal
with semi/non-parametric models and each achieves uniform size control by a different technique.
Li (2009) achieves uniformity thanks to the simulation noise brought about by numerical integra-
tion. Schennach and Wilhelm (2011) employ a sophisticated split-sample technique. Hsu and Shi
(2014) introduce artificial noise to their test statistic. Shi (2015a) uses a pretest with a diverging
threshold.

The consistent model specification testing literature. Although the main advantage
of our revised QLR test is on nonnested cases, it can be applied to and has uniform asymptotic
similarity in nested cases as well. In these cases, our test is related to Hong and White (1995),
Fan and Li (1996), Lavergne and Vuong (2000), and Ait-Sahalia et al. (2001) among others (see
e.g. Ailt-Sahalia et al. (2001) for a comprehensive literature review). Our test reduces to the
heteroskedasticity-robust version of Hong and White (1995) based on series regression when a
parametric conditional mean model is compared to a nonparametric one, and reduces to a series
regression-based version of Ait-Sahalia et al.’s (2001) test when two nested nonparametric regres-
sions are compared based on a weighted mean-squared error criterion. Our test applies to the
testing problems in Fan and Li (1996) and Lavergne and Vuong (2000) but differs from the tests
therein.

Post model selection inference. Our post model selection (PMS) inference has two parts.
The first part regards conditional inference on model-specific parameters. This part is inspired
by Tibshirani et al. (2016), who provide valid p-values and confidence intervals for post Lasso
inference in a linear regression context with Gaussian noise. Their result is extended in Tibshirani
et al. (2015) and Tian and Taylor (2015) to other linear regressions settings. We generalize
Tibshirani, et. al. (2016) to post model test inference for general semi-nonparametric models,
and provide asymptotically exact confidence intervals without imposing special structures on the
models or requiring knowledge of a variance-covariance matrix. The second part of our PMS
inference analysis regards inference on common parameters of the two models. This part shares
the objective of the methods surveyed in Belloni et al. (2014). However, this type of post selection
inference is highly context specific, and the surveyed methods do not apply to post selection

inference in general models.



The nonnested hypotheses literature. Since Vuong’s (1989) test is most commonly used
to select between nonnested models, it is often linked to the literature of nonnested hypotheses
featuring Cox (1961, 1962), Atkinson (1970), Pesaran (1974), Pesaran and Deaton (1978), Mizon
and Richard (1986), Gourieroux and Monfort (1995), Ramalho and Smith (2002), and Bontemps
et al. (2008) among others. This literature does not share the objective of the Vuong’s (1989)
test. Rather than focusing on the relative fit of the models, earlier part of this literature focuses
on testing the correct specification of one model with power directed toward the other model.
Later part of this literature focuses on the ability of one model to encompass empirical features
of the other model. To our knowledge, the uniform validity of these tests when the models under
consideration are overlapping nonnested has not been studied, and may be an interesting topic for
future research.?

The rest of the paper is organized as follows. Section 2 sets up our testing framework and
gives three examples. Section 3 describes our test in detail. Section 4 establishes the asymptotic
size and the local power of our test. Section 5 illustrates the construction of our test in the mean-
regression context. Section 6 provides the uniformly valid post model selection test inference
procedures. Section 7 shows Monte Carlo results of a mean-regression example. Section 8 applies
the proposed uniform test and conditional confidence interval to a schooling choice example, and
Section 9 concludes. Proofs of our main theorems and other supplemental materials are included
in the Supplemental Appendix.

Notation. Let C, ('} and C5 be generic positive constants whose values do not change with
the sample size. For any column vector a, let a’ denote its transpose and ||a|| its ¢3-norm. For
any square matrix A, ||A|| denotes the operator norm, and A" denotes its Moore-Penrose inverse.
Let pmin(A) and ppax(A) be the smallest and largest eigenvalues of A in terms of absolute value,
respectively. Let ¢r(A) denote the trace of matrix A. Let N(u, X) stand for a normal random vector
with mean p and variance-covariance matrix . For any (possibly random) positive sequences
{an}>, and {b,}>2,, a, = Op(b,) means that lim. . limsup, Pr(a,/b, >¢) = 0; and a, =
op(b,) means that for all ¢ > 0, lim,,_,o, Pr (a,/b, > ¢) = 0. For any p € (0, 1), let 2, denote the

1 — p quantile of the standard normal distribution.

3The lack of uniform size control of the Cox test when the DGP space is not restricted is illustrated in Loh
(1985). However, uniform size control under reasonable restrictions on the DGP space for the Cox test and other
nonnested hypotheses tests is still an interesting problem yet to be explored.



2 General Setup

2.1 Setup

Let Z € Z C R% be an observable random vector with distribution Fy. Let M; and My be two
models about Fy; that is, M; and M, are two sets of probability distributions on R% defined by

modeling assumptions. We are interested in testing the null hypothesis of equal fit:
Hy: f(My, Fy) = (M, Fy), (2.1)
where f(-,-) is a generic measure of fit. The alternative hypothesis can be either
HP0ed s f(My, Fy) # f(Ma, Fy) or H{SC s f(My, Fy) > f(Ma, Fy). (2.2)

The two-sided test indicates that the two models have (statistically) significantly different fit for
the observed data when it rejects Hy, and the one-sided test indicates that model M, fits the
observed data significantly better when it rejects Hy. It is the goal of this paper to develop a
simple model comparison test with uniform asymptotic validity and good power properties.

The fit measure f(-,-) is context-specific and should be chosen to best suit the empirical model

comparison need. We focus on a given fit measure of the following form:
f(My, Fy) = max By, [mj(Z,04)] = Eg, [mj(Z, o, ;)] , for j = 1,2, (2.3)

where Ep, [] denotes the expectation taken under Fp, m;(-,-) is a user-chosen link function that
is the central component of the fit measure, o is the parameter in model M, A; is the possibly
infinite-dimensional parameter space, and aF, ; is the pseudo-true parameter value of model j
defined as o, ; = argmaxy,ea, Er, [m;(Z, o))

To fix ideas, consider the most common examples of M; and f(M;, Fp), j = 1,2:

Example 1 (Likelihood Ratio) Consider Z = (W', X'). Many structural models used in em-
pirical economics can be written as a conditional likelihood model of Z given X, i.e. (ignoring the

model index j)
M = {F : dFyx(z|z)/dp. = ¢(z|z; @), Vz, for some o € A}, (2.4)

where Fyx is the conditional distribution of Z given X implied by F, dFyx(z|x)/dpu, is the

4A related but different fit measure is f(M;, Fy) = Epg[m;(Z, a})] for a} that is not a maximizer of

Er,[m;j(Z,a;)]. Our analysis does not apply to this fit measure. A similar analysis may be done, but is left
for future research.



Radon-Nykodym density of Fzx with respect to a basic measure (u.) on the space of Z, ¢ is a
known function, a is a possibly infinite-dimensional unknown parameter, and A is its parameter

space. For such a model, a natural fit measure is the population conditional log-likelihood, which

is the f(M, Fy) defined in equation (2.3) with
m(Z,a) =log p(Z]X; a). (2.5)

Note that with f(M, Fy) defined this way, {f(M, Fo)—f({Fo}, Fo)} is the Kullback-Leibler pseudo-
distance from model M to the true distribution Fy.

Vuong’s (1989) original test is designed for this likelihood context if o for both models are
finite-dimensional, although Shi (2015) shows that it may have size distortion. Shi proposes a

uniformly valid procedure for the parametric likelihood case.

Example 2 (Squared Error) Consider Z = (Y, X'), where Y is a dependent variable, X is a

vector of regressors. A mean-regression model may be written as
M =A{F: Ep[Y|X =z] = g(z;a), Yz, for some a € A}, (2.6)

where g(+,-) is a known regression function, « is a possibly infinite-dimensional unknown parameter
and A is its parameter space.® For such a model, a commonly used fit measure is the population

regression mean-squared error, which is f(M, Fy) defined in equation (2.3) with
m(Z,a) = =Y — g(X; )" /2. (2.7)

Example 3 (Absolute Deviation) Consider Z = (Y, X')', where Y is a dependent variable, X

s a vector of regressors. A median-regression model may be written as
M={P:Qusr(Y|X =2x) = g(x;a), V&, for some o € A}, (2.8)

where Qo5 r(Y|X) is the conditional median of Y given X under F, g(-,-) is a known regression
function, « is a possibly infinite-dimensional unknown parameter, and A is its parameter space.
Similar to the example above, a reasonable fit measure is the expected absolute deviation of Y from
the best conditional median function in the model, which is f(M, Fy) defined in equation (2.3)
with

m(Z, o) = =Y — g(X; )] /2. (2.9)

®Sometimes, regression models are used without explicitly or implicitly assuming the best fitting regression
function to be F(Y|X = x). Nonetheless, the regression mean-squared error criterion often still is used to compare
the models. In those cases, the test developed in this paper still applies.




2.2 Model Relationships

The following terms for model relationships are mentioned in the introduction, and will be used

in later sections when we discuss the uniform validity of our test in detail.

Definition 1 (Strictly Nonnested) Models My and My are strictly nonnested if there does

not exist a pair (o, az) € Ay X Ag such that my(z;0q) = ma(z;0) V 2 € Z.
Definition 2 (Overlapping) Models My and My are overlapping if they are not strictly nonnested.

Definition 3 (Nested) Model M, nests model My if, for each ay € Aj, there exists an a; € Ay

such that mq(z; 1) = ma(z;00) V 2 € 2.

Clearly, the overlapping case include the nested case. If the models are overlapping but not
nested, we say that the models are overlapping nonnested. If the models are mutually nested
(i.e. M nests My, and My nests M), then the models are observationally equivalent.5

The model relationship determines whether the random variable mq(Z;af) — mo(Z;ad) is
always, never, or sometimes almost surely zero under Hy.” ® For strictly nonnested cases, this
variable is never almost surely zero. For nested models, this variable is almost surely zero under H,
as long as af and o} are the unique maximizers of Em(Z;; ay) and Em(Z;; as).? For overlapping
nonnested models, this variable may or may not be almost surely zero under Hj, depending on the
unknown data distribution Fy. Note that to test Hy in (2.1), we need to estimate E[m4(Z;a3) —
mo(Z; ad)], for which purpose, we need to estimate both the expectation E[-], and the pseudo-true
values (a7, ai). The estimation errors of both parts should be taken into account when constructing
a valid test. However, the relative asymptotic order (or finite sample magnitude) of the two
estimation errors depends on the variance of my(Z; aj)—ms(Z; o). This is because the asymptotic
order of the estimation error of E[-| depends on this variance, while that of the error caused by
estimating (af, a3) does not. Thus, the relative asymptotic order is unknown in the overlapping
nonnested case, which is the main challenge for constructing a uniformly asymptotically valid test,

not to mention a uniformly asymptotically exact and similar one.

6This definition of model equivalence is consistent with that in Pesaran and Ulloa (2008).

"This variable is clearly not almost surely zero under H;, because its mean is different from zero.

8Some readers may confuse the degeneracy of m;(Z; o) —mso(Z; ) under Hy with the observational equivalence
of the models M; and Ms. The former does not imply the latter, as one can easily see in the following simplistic
example. Let M; be a mean-regression model E[Y|X] = ay(X) with the space A; of a; including the zero
function, and let My be another mean-regression model E[Y|X] = 0. Then our Hy is the same as the hypothesis
that E[Y|X] = 0 a.s.. Under Hy, the difference in squared residuals is degenerate to zero. But the models M; and
M are clearly not observationally equivalent.

9Suppose not. That is, suppose Emi(Z;;af) = Ema(Z;i;a3), but my(Zi;a%) # ma(Zi;a3) a.s.. By the
definition of nestedness above, there exists aj* € A; different from of such that mq(Z;;a1*) = ma(Zi;al) a.s..
Then Emy(Z;;ai*) = Ema(Z;;04) = Emq(Z;;a5). This contradicts the uniqueness of af as the maximizer of
Em1 (Zu Oél).



As we will see, the test that we construct is valid uniformly over the data distribution in the
overlapping nonnested case. It is also valid uniformly over all types of model relationship. Both
types of uniformity are of practice importance for a number of reasons. First, in many nonnested
model selection scenarios, the competing models are not completely incompatible to each other, in
which case they are overlapping. Second, establishing strict nonnestedness is difficult for structural
models used in empirical analysis. Using our test obviates the need for doing this. Third, even
when the models are strictly nonnested, nonuniform tests may still have severe size distortion
(over-rejection) in finite samples when both models can closely describe the data distribution,

while our test does not suffer from this kind of distortion.

3 Description of Our Model Selection Test

Suppose that there is an i.i.d. sample {Z;}I' , of Z. In this section we describe our test for (2.1)
based on this sample. The construction of the test is grounded on the asymptotic expansion
established in the next section. We focus on the steps of the construction in this section for easy
reference for potential users of the test.

We use linear sieve approximation for the parameters, and use sieve M-estimator for estima-
tion.' The specific procedure is explained now. For j = 1,2, let A;;, denote a finite dimensional

approximation of the parameter space A;, which satisfies
A.j>kj = {akj () ey () = aj</3kj) = ‘Pj>kj ()lﬂkj : ﬂk]‘ € Bkj,j C Rkj}? (31)

where Pjy. (-) = pia ()., Dik; ()}/ is a k;-dimensional vector of user-chosen basis functions,
k; is a positive integer which may diverge with the sample size n. We give examples of the basis
functions in the illustration section below. We assume that the sieve coefficients f; are in the
interior of their spaces By, ; for any k;. In the rest of the paper, we write oy, = ayg, for j =1,2
for ease of notation.

To construct the test, we first estimate the fit of each model with the sample analogue estimator.
For j = 1,2, define

n n

J‘A'(/\/lj, Fy)=n"" Z m;(Zi; Q) =07 ") my [ZZ-; Ufj(Bkj,n)} (3.2)

=1 =1

10Many properties of the sieve M-estimator, including consistency (see, e.g., White and Wooldridge (1991)), rate
of convergence (see, e.g., Shen and Wong (1994) and Chen and Shen (1998)), and asymptotic normality (see, e.g.,
Shen (1997) and Chen and Shen (1998)) are established in the literature. In addition to these properties, we also
use a second-order expansion of the empirical criterion function in the sieve M-estimation. We derive this expansion
for a mean-regression and a median-regression example in Supplemental Appendices C and D. Sufficient conditions
for the second-order expansion in general semi/nonparametric model are also available upon request.

10



~

where Qy; , = a;(B,,) is an approximate M-estimator defined with

-~

Br,, =arg max n ' ij [Zi;aj(ﬁkj)] . (3.3)
i=1

Br;€Bk;.j

For notation simplicity, we define the pseudo-density ratio:
UZ; ) =my (Z500) — ma (Z; ag) (3.4)

where a = (a1, a2) € A1 x Ay, We also define o, = (a}oyl,a}oz), A=A x Az, k = (ky, ko),

B = (ﬁl/cl?ﬁllcg)/’ Ak = Al,k1 X AQ,kza ax = O‘(ﬁk) = (al(ﬁlﬂ)’ a2(6k2))> and ak,n = (ak’l,makz,n)'
Because Hy is equivalent to Ep[((Z;a},)] = 0, one may be tempted to suggest treating

Er,[0(Z;a%,)] as a parameter and constructing a Student t-like test for this hypothesis. In other

words, the suggestion would be to construct the test statistic

nl/QZn (@km)

&-)\n (ak,n>

TV

n

(3.5)

1/2

where /,,(Q) ) is the sample analogue estimator of Ey,[¢(Z;a*)] and n=Y/2%,(Qy.,) is the sample

analogue of its standard deviation:

Co(@n) =1 U Zi; Qxn) and B (@) =0 [0(Zi; Bien) — Ln(@rcn)]*. (3.6)

i=1 1=1

Then one would construct tests of the form: ¢)2s9°d(p) = 1{|TV| > 2,2} or gy sded(p) =

{TY > 2,}. In fact, such tests are analogous extensions of Vuong’s (1989) (one-step) test to the
semi/non-parametric context. Thus, we refer to them as the “naive extension” tests hereafter.
The rationale behind the naive extension test is that n'/2(,(dk,) = n'/20, (o) + 0y(1) =4
N(0,w?,,) and @7 = wi, , + 0p(1), where w3, , = Varg,(((Z;a},)). However, this asymptotic
approximation can be very poor when w%o,* is close to or equal to zero. When the models are
overlapping nonnested, both small positive values and the zero value are possible for w%oy* under
Hy, depending on the unknown data distribution Fy. Thus, the naive extension test often fails to
have the correct level in a finite sample. !
The intuition of the failure of the naive extension test can be seen from the following heuristic

second order expansion of the QLR statistic. Let ¢, x(Z; ) be the “score” function of ¢(Z; ax)

1A pretest for whether {(;af,) = 0 could be performed before the naive extension test. But the two-step
procedure may (a) not be uniformly asymptotically valid if the pretest does not use a conservative critical value,
or (2) not be powerful because the pretest makes rejection difficult.

11



evaluated at o € A. Suppose for now that /(Z; ) is differentiable in a, we have? {,,(Z;a) =

% 13 Let Loxn(ag,) = nY23"" Ly (Zi; ). Then a second order Taylor expansion of
Q=

ln(a,) around ay, gives:

n{l(Gicn) — Erll(Z;a3,)] }
~n{l(af,) — Erll(Z; o)} — (0/2)laxn(0f) Hitlogn (), (3.7)

% . Appropriate conditons and the central limit theorem imply
k :a}(‘_,

that n'/? {0, (ay,) — Er[l(Z; )]} —a N(0,w, ), and nlgxn(ef,) —a N(0, Dp, k), where

where Hpy(ak) =

DF7k = Ep[gavk(Z; a})ﬂmk(Z; Ol})/]. (38)

The latter implies that nly (o, )’ HFO1 lon(cf,) is approximately Z‘ | /\]Xg, where k| = &y + ko,
{3 yM =, are independent chi-squares with one degree of freedom and {); yM
of DFO,kHka. Thus,

;=1 are the eigenvalues

k|
n{0n(Gin) — Enll(Z; )|} = n{l(al) — Enll(Z;a,)]} — ZA]XJ (3.9)

In particular, the mean of Z‘ | VNG s tr(DgyacHpy ), which is typically nonzero, and can be of
comparable scale as wg, «, the standard deviation of nf,(aj, ). This means that, even when H,
hold (Eg,[¢((Z;ay,)] = 0), the numerator of the statistic 7" may not be centered around zero,
causing the naive extension test to be biased.

A similar expansion of the denominator unveils that n&, (G ) is a biased estimator of w3, ,
as well, and the dominating term of the bias is coincidentally Z“]kz‘l A?. Thus, the naive extension
test not only has a numerator bias that leads it to favor one model over the other when both have
equal fit, but also has a denominator bias that tends to make it conservative. The two biases could
cancel each other in certain context, but in general do not, and can exacerbate each other when
the power against one-sided alternatives is considered.

Our uniform model selection test corrects the two biases by estimating and removing them.

From the heuristic discussion above, we see that it is sufficient to estimate Hp, x and Dp, k. We

12This definition does not require that the evaluation point o be in the sieve space. Because we use linear sieve,
0 Z; ax(Bx))/ 0Bk depends on By only through i (Bx). Thus, it makes sense to consider 94(Z; ax(Bk))/0Px as a
function of ax(Bx) on Ak. As such, the function can be extended to the whole space A and can be evaluated at
any point on A. See equation (5.5) below for an example. This comment applies to Hp, x defined below as well.
13The form of £, x(Z; ) in the median-regression example is available in Supplemental Appendix D.
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let

n

Dy =11 los(Zi; Oen)losc(Zi Gren) (3.10)

=1

The second derivative matrix Hp, x can be estimated by

8 £ Zlaakn
3.11
Z IpxIb; (3.1)

when £(Z;-) is differentiable. When ¢(Z;-) is not differentiable, it is useful to note that Hg, x is a

block diagonal matrix:

82E 14 Z; Qv HF k 0
Hpylon) = ZERIAZ ] (o . (3.12)
ﬁk Bk ak:a% 0 _HFo,kg
o2 i(Z;ag . )
where H Fok; 18 the Hessian matrix of model j: H Fok; = %ﬂ . Hessian matrices
f) k] o =a*, .
i Fo.d

for non-smooth M-estimation problems are available case by case in the literature. For example a
suitable choice of H, in the median-regression example is available in Belloni et al. (2011)

With the estimators PAIn and ﬁn, we can construct a test statistic:

~

nly (Quen) + 27 tr (D, HY)

V12 @) — 27140 (DoY)

T = (3.13)

We formally show in the next section that 7" —,; N(0,1) under Hy and regularity conditions.
Intuitively, the standard normality comes from the asymptotic normality of the demeaned mixed
chi-squared sequence Z‘;{:'l AJX? and the asymptotic independence between this sequence and
WTa(Gen) — Br[l(7; o).

Result (3.13) holds regardless of the relationship between m; (-, aj, ;) and ms(-, o, ,), and thus
holds uniformly over the unknown data distribution when the models are overlapping nonnested,
and uniformly over all types of model relationships when the relationship is unknown. As a
consequence, a test based on T? is uniformly asymptotically exact and similar. However, there is
one minor issue left. Note that the denominator involves the difference of two estimated quantities.
In a finite sample, the difference can turn out to be zero or negative, even though the probability
of that goes to zero asymptotically. To avoid division by zero or by the square root of a negative

number or zero, we recommend a slight regularization:

nly (Qxn) + 27 r (D HY)

T, =
nl/2g, ’

(3.14)
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where
62 = max{@2(Axn) — (2n) M tr((DoH,M?), (20) Yr((DpH; 1))}, (3.15)

2

Hence &

2 is a regularized version of the difference in the denominator 7. The regulariza-

tion term (2n)~'tr((D,H;1)?) is also a consistent estimator of the variance of n'/2Z,(di,) +
2=t Qtr(ﬁnf[g 1) in the extreme case that M; and M, are nested, and is asymptotically less
than this variance in nonnested cases. Therefore, the modification does not affect the asymptotic
limit of the denominator.

The two-sided test of Hy in (2.1) of nominal size p (€ (0, 1)) is, therefore,

P2 p) = HIT0| > 2} (3.16)
Analogously, the one-sided test of Hy against H{=i9d in (2.2) is
a4l (p) = H{T, > z,}. (3.17)

The test does not favor one model or the other when it does not reject the null hypothesis. The
indeterminacy reflects the data fact that the fit of the two models are not statistically significantly
different. In practice, if a model must be selected, one needs to analyze other, perhaps nonstatis-
tical, features of the models. Often times the researcher has a preferred model based on features
such as dimensionality and interpretability, and can set that one as the benchmark model. The
benchmark model is selected when the null of equal fit is not rejected.

We show the uniform asymptotic validity of the above tests in the next section. Specifically,

we show that:
lim inf Eglen(p)] =p, (3.18)

n—oo FoeFo

where @, = pZsided or ¢, = plsided and Fj is the set of data generating processes (DGPs) that

the null hypothesis and the assumptions (given below) allow. In fact, it also is shown that

lim sup Ep|en(p)] = p, (3.19)

n—00 FyeFo

which combined with (3.18) shows that the tests proposed are asymptotically exact and similar.

4 Uniform Asymptotic Validity

In this section, we establish the uniform asymptotic validity and the local power of our test under

high-level assumptions. These assumptions are verified in a mean-regression example and in a
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median-regression example in Supplemental Appendices C and D.
We begin by stating the regularity conditions on the DGP space F and null DGP space
Fo. In the assumptions below, {&}x is a sequence of positive numbers which may diverge with

|k| = k1 + ko, and may not depend on Fj.

Assumption 4.1 The set F is the set of Fy’s such that,
(a) {Z;}i>1 are i.i.d. draws from Fy;
(b) for every k, Ep[0(Z;a(Bk))] is twice-differentiable in P on By;
(c) for every k, there exists ay, such that Ep, [(ax(Z, )] = Op;
(d) Er, [€(Z,a,)?] < C, and for every k, Ef, [Hﬁa,k(Z;a}O)HLL] < Cé |k|;
(
(
(

e) Eg, [|( (Z;a3,) — Ep(U(Z;03,))) | wrg 4] < C whenever w%,ﬂo’* =Varg[l(Z;aj,)] > 0;
f) C ' < Pmin(H 7y %) < pmax(Hryx) < C and pmax(Dryx) < C for all k;

g) Hpyr, and Hp, i, are negative definite.

Assumption 4.2 F, = {FO e F: Ep, [E(Z;a}o)} = 0}.

Assumption 4.1(b) ensures that the matrix Hp, i in (3.12) is well defined. Assumption 4.1(c)
generally follows from the first order optimality condition of a*. Let Ag 1,..., Ag, |k denote the

|k| eigenvalues of D%) ?kHEO{kD%) ?k, and let

O-%b,n = w%() * (271 ) 1( 1>wF() Uk (41>

where W}, 1) = Z|k| Mg = tr(DpyacHyl)?). Assumption 4.1(d) and (f) together ensure that
Wiy DRk Wiy and o, are well defined. The sequence & depends on the models as well
as the basis function used. For example, in the mean-regression example studied in later sections,
it is the order of |k|? if power series is used, and it is the order of |k| if Fourier or spline series is
used. Assumption 4.1(e) implies the Linderberg condition on the pseudo-density ratio.

The definition of the supremum (infimum) operator implies that, to show the uniformity results
(3.18) and (3.19), it is sufficient to consider all sequences of DGPs {F},},>1 in F. For any F,, € F,
we let of,, abbreviate o . , and let o, abbreviate (o, a3,,). Let fon(c) =n=t 30 low(Zi; )

for any a € A.

Assumption 4.3 Under any sequence of DGP’s {F},}n,>1 such that F,, € F for all n, we have
() Cu(Guen) = 07" 300, UZis o) = 27 am(0f) Hylaw(0) + op(n™2op, 0);
(b) —+— = 0(1) and 8 = o(1).

naFn;n Fp,n

Assumption 4.3(a) is a second order expansion of £,(dy.,) around «. We illustrate this ex-

pansion in the mean-squared error example (Section 5) and the mean absolute deviation example
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(Supplemental Appendix D).!* With the formula of this expansion, we can add more details to

the heuristic discussion in Section 2.2. The variance of the leading term, n‘lw%m*, in the expan-

sion comes from estimating the expectation, and the variance of the second term, approximately

27'n 7w} 17, comes from estimating o, The quantity w3, , can be either zero or positive in the

overlapping nonnested case. Indeed, it can converge to zero at any rate in that case. On the other

hand, the quantity w%mU,k typically is nonzero.!> The relative magnitude of the two terms is pro-
MWk, e

portional to — , which can be zero or positive. It is such ambiguity of the relative asymptotic
Fn,Uk

order of the two expansion terms that makes a uniformly valid test difficult to construct.!®

Assumption 4.3(b) is an important condition for the uniform asymptotic validity of our test.
The first part of it ensures that the approximation residual in Assumption 4.3 (a) diminishes at a
fast enough rate as the sample size grows. The second part of the assumption allows us to apply a
U-statistic central limit theorem to the quadratic term 27/, ,(a)’ Hgnlykza,n(a;). To understand
this assumption, note that o3, , = wj. . + (2n%)"'(n — 1)w}, ;). If wi , is bounded below by
a positive constant (as is typical for strictly nonnested models), Assumption 4.3(b) is satisfied
as long as |k|&/n? = o(1). Otherwise, Assumption 4.3(b) imposes restriction on the U-statistic

variance. Specifically, it requires, as n — oo, that

k[&x

Wi 1 — oo and
nyY, nan7U7k

=o(1). (4.2)
Recall that wf, 1 = tr ((H;n{kDka)Q). Thus, what Assumption 4.3(b) requires are that |k|
grows with n, and that there are not too many zero eigenvalues for the matrix H;nlykDka. Both
can be assessed in practice because k is user-chosen and HE:,kDFn,k can be consistently estimated.
Moreover, the requirement that |k| grows with n is natural and necessary in the literature of series
estimation of semi/nonparametric models.”

Under the above assumptions, the following intermediate result holds.

HSufficient conditions for Assumption 4.3(a) in general semi/nonparametric model are also available upon re-
quest.

5For example, consider M;: Y = X3 + X,82 +u and My: Y = X{B; + u. Suppose that X = (X7, X3)" is
uncorrelated with u and Ep,[X X'] = I}y for simplicity. The null hypothesis Hy is equivalent to 82 = 0 and there
is £(Z; ) = 0 under Hy as a result. Yet, 27 o n(0}) Hp '\ lan(g) =27 072300 30 wiu; X5, Xo j which is
clearly not degenerate. See Hong and White (1995) for more sophisticated examples.

16 Ambiguity of this type also arises in the analysis of weak instruments and weak identification, where the
common techniques include pretesting with conservative critical value, Anderson-Rubin type robust procedures,
and conditional likelihood inference. The first two in general do not yield asymptotically similar tests, indicating
power loss under some data generating processes, while the last one is not a general technique that can be applied
here.

1"The asymptotic theory established in this paper also provides a good approximation for the comparison of
parametric models with fixed but large |k|. Simulation results (which are not included in the paper but available
upon request) show that our test works well even when |k| is only 10.
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Theorem 4.1 Suppose that Assumptions 4.1 and 4.3 hold. Then under any sequence {F,},>1
such that F,, € F for all n, we have

n(l(@in) = B ((Z;03)) + (1/2)tr (D) Hil )

n'2cp 5

—a N(0,1), (4.3)

where ﬁn(a;) =0~ Y00 Lax(Zs; Mo x (Zis o)

Remark 1 Note that Theorem 4.1 applies whether or not F,, € Fy. In the case that F,, € Fy for
all n, it again covers two special sub-cases: (i) The statistic /nl,(Qyn) is non-degenerate (F, = F
for some F and for all n, and w}, > 0); (i) the statistic \/nly(0ky) is degenerate (F, = F for
some F' and for all n, and w%* = 0). More importantly, it allows w%m* to converge to zero at all

rates, and thus covers all types of DGP sequences in the overlapping nonnested case.

Remark 2 The asymptotic normal distribution in Theorem 4.1 makes both the inference of model
comparison and the post model selection inference easy in practice. An alternative method is
to generalize the fized |k| asymptotic theory in Shi (2015) and then conduct inference using the
approach provided in that paper. This may have the advantage of possibly not requiring Assumption
4.3(b). However, when |Kk| is large, there are a large number of nuisance parameters for Shi’s
approach to consider, which makes it difficult to use. It is also less powerful than the test proposed

i this paper because her test statistic is smaller and critical value bigger by construction.

In order to use the intermediate result in Theorem 4.1, we need to construct consistent estima-
tors of lA)"(oz,’g), Hp, x, and afpmn. The estimators that we consider are respectively the ﬁ", the ﬁn,
and the o2 defined in the previous section. Assumption 4.4 below ensures their consistency. In
this assumption, &, = min {n'/2cy, ,|k|~*, 1}, and {x(a) = Ex[{(Z; )] for all F € F and a € A.

Assumption 4.4 Under any sequence of DGP’s {F},}n,>1 with F,, € F for all n, we have:
(a) [|Hn — Hp, xll = 0p(50), 1Dn = Du(@})|l = 0,(85) and || Dn(0g;) = D, ell = 0p(60);
(b) n~! ZL U Zs an) — U Zs, an>| = ga.n(O‘:z>,<H1~:n7kDFn,kHFn,k)£a,n(05;2) + Op(al%n,n)f
(c) nt 300, (U Ziy o) — U, (o) [U(Zi, ) — U(Zi, )] = 0p(0Fs, 1)
(d) k[n~t = 0(1)-

Conditions in Assumption 4.4 are verified in the nonparametric mean-regression example in

Supplemental Appendix C. Under this assumption, we can easily show that the large sample bias

of n@n(@km) can be estimated up to the appropriate rate:

Lemma 4.1 Suppose that Assumptions 4.1(c) and (e)-(g), and 4.4(a) hold. Then under any
sequence {F, }n>1 such that F,, € F for all n, we have

~

tr(DoH,") = tr(Da(ay) Hyyo) = 0p(n' 0w, ).
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Next, we derive the convergence of o2. First, we show the convergence of @2(Qx,) in the

following lemma.

Lemma 4.2 Suppose that Assumptions 4.1, 4.3 and 4.4 hold. Then under any sequence { Fy,},>1
such that F,, € F for all n, we have

12 _ 2
| (k) WF « PN WE pk ‘ = 0p(0F, 1)

Remark 3 Note that O}(0k,n) may be viewed as a sample-analogue estimator of wi, . Lemma
4.2 shows that, in general, ©2(Qi.,,) over-estimates w%m*. In fact, it even over-estimates the over-
all asymptotic variance of the size-corrected quasi-likelthood ratio statistic: a%mn, by 27'n"2(n +

2 - - - - - ~
Dw#, yx- The upward bias is due to the estimation error in Qi p.

Lemma 4.2 suggests that ‘712?,1,11 can be consistently estimated by estimating and then removing
the large-sample bias 27'n"?(n+1)w}, 1 from & (Qk ). This motivates the estimator &, defined
in the previous section. In the definition of 32, tr((D,H;)?) is used to estimate Wi, vk The
lemma below shows that this estimator of meU’k is consistent in an appropriate sense, and so is

the resulting bias-removed estimator of o7, .

Lemma 4.3 Suppose that Assumptions 4.1, 4.3 and 4.4 hold. Then under any sequence { F,,},>1
such that F,, € F for all n, we have

(2) ! [t (DI )2) = w2, yae] = 0p(03,.,), and

(b) @2 (@) = 270 r (D HY)?) = 0%, = 0p(0%, )

In the test statistic defined in (3.14), we use 62, instead of B2 (Gi,) — 2 ntr((D,H;Y)2),
to estimate o7, ,. This is because the difference &7 (Gin) — 2=~ ((Dp H:1)?) may be equal
to or less than zero in finite samples, which is not a desirable property for a variance estimator.
To avoid estimating variance by a nonpositive number, we let g2 be simply max{®2(Qxn) —
(2n)~Mtr((D,H;1)2), (2n) " tr((D,H;)?)}. This modification does not affect consistency because

using Lemma 4.3, we deduce that, for any € > 0,

~

Pr g, ((20) ' tr((DoH, ")) = 0%, > €) = Pro, (—wf, . +0pl(0F, ) > €) =0, (44)

where the equality holds by the definition of a%mn, and the convergence holds by Assumption
4.3(b).

Theorem 4.1 and Lemmas 4.1-4.3 immediately lead to the uniform asymptotic size control
and asymptotic similarity result for the tests proposed in the previous section. These results also
immediately lead to a local power formula because the assumptions used for them do not require

F, € Fy. These are summarized in the theorem below.
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Theorem 4.2 Suppose that Assumptions 4.1-4.4 hold. Then:
(a) Both (3.18) and (3.19) hold for p, = @259 and ¢, = @l-sided,

(b) Under any sequence F,, € F such that F,, — Fy for some Fy € Fy in the Kolmogorov-Smirnov
distance, and that \/nEp ((Z;a}) /0w, n — ¢ for some constant ¢ € R, we have

lim B, 05" (p) = 2 — (22 — ¢) = Bzy02 + ¢), and

n—oo

lim Ep, ¢, (p) =1 - ®(z — ),

n—oo

where ®(-) is the CDF of the standard normal distribution.

Remark 4 Note that op,, = O(1), and it can be o(1) when w}, , — 0. Thus, part (b) of the
theorem implies that the test has nontrivial power against all local alternatives with Er, ((Z; o)
converging to 0 at the rate \/n, and against alternatives with Er ((Z; ) converging to 0 at a
rate faster than /n if w%m* — 0. Such power property is not shared by a pre-test based model
selection test like that in Shi (2015a), or a model selection test that uses added noise to argument

the variance either through sample splitting or other means.

5 Illustration: Nonparametric Mean-Regression

In this section we illustrate the construction of our test using the mean-regression example. The
verifications of the high-level assumptions in this example are in Supplemental Appendix C. An-
other illustrating example—median-regression—is given in Supplemental Appendix D.

For j = 1,2, let model j be

{F : EF[Y — Oéj(Xj)'X]‘] = 0, Q; € ./4]'}, (51)

where oj(x) is a possibly infinite dimensional parameter, A; is its parameter space, and F{ denotes
the joint distribution of Z = (Y, X;, X3). The regressors X; and X, of the two models may be
nested, overlapping, or strictly non-nested sets of variables. Even when the regressors are strictly
nonnested sets of variables (i.e., there are no common regressors across the two regressions), the
two regression models are still overlapping according to the definitions in Section 2.2 because it is
possible that oy (X;) = ax(X,) = Constant.™®

18 A restriction on the parameter space that rules out constant regression functions would make models with
strictly nonnested sets of regressors strictly nonnested, which might give false hope for the validity of the naive
extension test. The hope is false because, although any artificial bound from constancy makes the models strictly
nonnested, they may not change the performance of the tests in finite samples when the bounds are not far enough
from constancy. In any given finite sample, it is difficult to know what bounds are far enough.
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The model (5.1) covers a richer class of models than it looks. Depending on what one sets
A; to be, it can represent a fully nonparametric mean-regression model, a partial linear model,
a separable model, or a parametric linear model. See below for an example. We do not require
the correct specification of the models, or in other words, we do not require that there exists an
a; € A; such that o (X;) = Eg [Y]X]] a.s.

The sieve basis function rfor this case has to do with the structure of A;. For example,
suppose that we have a partial linear model o;(X;) = o + $1.X;1 + g(Xj2). Then, we should let
P, (Xj) = (0jn(X;),pi2(X), - - - ik, (X)) such that p; i (X;) =1, pja(X;) = X}, and the rest
of the sequence of p;,(X;)’s be an appropriate sieve approximation of g(Xj,), such as a spline
series on the space of X .

The sieve M-estimator is simply the sieve least squares estimator:
akj,n (') = Pj,kj(')lﬂkj.n Wlth ﬂkj,n - (P;Jgj’nPj,k],n)_lP;,kj’nYn) (52)

where Pjg o = [P, (Xj1),-- .. Pig (Xm)}/ for j = 1,2, and Y, = (¥1,...,Y,). The link
function is

UZ:a) = —|Y —a(X)P/2+ |V — aa(X5)[?/2. (5.3)

Using the above two displays, the pseudo-likelihood ratio and the standard error statistics can be
constructed easily following (3.6).

The pseudo-true value of the parameter can be written as the limit of a sequence of sieve
. . . . . 2
approsiamtion: 1 (1;) = 3315, pys(ry) . where (5,)7, = avgminZ, [[¥ — 532, pya(a;) Byl
j,le )

Let u; =Y — aj(X;). The definition of aj(-) implies the following first order condition
Er, [ujpji(X;)] = 0, (5.4)

With the sieve approximation in (3.1), ¢(Z, a(fx)) is differentiable in fx. Thus, the score

function can be obtained by the chain rule:

Y — a1(X1)) P, (X
tar(Zia) = | ¥ XD PnXy) (5.5)
—(Y = (X)) P, (X2)
Then, the expectation of the outer product of the score function evaluated at o* is
Dot — Er Ui Py (X1) P (X0)] = Eg[uauaPr g, (X1) Po, (X2)'] (5.6)
Fok = , , .
’ — B [unta Po gy (Xo) Prpy (X01)'] B [u3 Pagey (X2) Py (X2)']
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and the population Hessian matrix is:

T R W

0k2><k1 EFO [P27k2(X2)P2J€2 (XQ),]

It is natural to use the plug-in estimators of Dp, x and Hp k:

B YT T Py (X)) P (X)L il i Py (X)) Pogs (X2)
nk — _ nooo~ o~ / _ noo~ / )
—n~! Zizl Ul,z’“?,iPQ,kg (XZ,i) Pl,k1 (Xl,z') n! Zi:l u%,z‘PZ,k’z (XZJ) Pz,k2 (Xz,z')
(5.8)
where the residual u;; = Y; — ag, »(X;,); and
Hyx = =730 Pk (X) P (X1) . Oy s . (5.9)
Opy Nty i Pogy (Xoi) Pk, (Xoj)

Finally, the test statistic may be constructed easily using the above quantities following (3.14)
and (3.15).

6 Uniformly Valid Post Selection Test Inference

Up to this point, we have focused on how to properly conduct model selection that takes into
account sample noise. Sometimes, model selection is the sole purpose of a research project (e.g.,
Coate and Conlin (2004) and Gandhi and Serrano-Padial (2015)). But, sometimes, one is also
interested in the model parameters that are estimated using the same data set on which the model
selection test is conducted. Leeb and Potscher (2005) show the size-distortion of naive post-model-
selection (PMS) inference that does not account for the randomness of model selection. Uniformly
valid post model selection test inference procedures for possibly misspecified semi/nonparametric
models have not been developed in the literature.

The QLR model selection test framework treats the parameters in the two models as separate
parameters in the sense that there is no across-model restrictions. In practice, while some pa-
rameters of a model may only have meaningful interpretation in its own model environment, it is
also possible that a parameter from one model and a parameter from the other model represent
the same economic parameter of interest. Thus, we treat these two different scenarios separately
when considering post model selection test inference.

In the first scenario, the parameter of interest is only well-defined in model M; (j =1 or 2),
and the researcher is interested in it only when M; is selected by the model selection test. In this

scenario, we would like to make the inference conditional on the event that M is selected. Leeb
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and Pétscher (2006) pointed out that in general it is impossible to approximate the conditional
distribution of the parameter estimator given that the model is selected. Instead of studying
the conditional distribution, we take a different route, and construct confidence interval for the
parameter using a conditionally asymptotically pivotal statistic. We devote subsection 6.2 to this
approach.

In the second scenario, the parameter of interest, 6, is well-defined in both models: it equals
Y1 (1) in model M; and equals ¢5(az) in model My for two known functionals ¢; : A; — R and
1y Ay — R. Tts (pseudo)-true value is determined by the better fitting model:

0" = 1 (a])1(f (M, Fo) > [(Ma, Fo)) + tha(as)1(f (M, Fo) < [(Ma, Fo)). (6.1)

For example, if the competing models are two regression models, #* could be the expected point
prediction from the better fitting model. We devote subsection 6.3 below to this problem.

To prepare for subsections 6.2 and 6.3, we let ¢4 (o) and 19(a) be estimated by the plug-in
estimators v (Qg, ), and ¥s(a, ). Both subsections 6.2 and 6.3 rely on the joint normal limiting

distribution of (1 (Qk, ), V2(Qkyn), ln(Qkn))’ (after proper re-centering and rescaling), which we

derive in the next subsection.

6.1 Preliminaries

We first introduce some notation. Let {44, (Z; ;) denote the sub-vector of the first k; coordi-
nates of £, x(Z;a), and let £, 4,(Z; o) denote minus the sub-vector of the last ko coordinates of
lox(Z;a). Let Dpyg; = Ellar,(Z; a5 ) o, (Z;a;)] for j =1,2. Also define

;)

Ya; (o) = “oh.

and 'U;ZJCJ. == \/’Zp(x,kj (a;yHEOl,kj DFO,kj Hggl,kj wa,k]‘ (Oé;>7 (62>

AL . =0,
kg J

where v;k’_ is the well-established formula for the asymptotic standard deviation of functionals of
sieve-M estimators.

We will first derive the asymptotic distribution of

1l (@1c,n) — Ery [0(Z;00)] | +(1/2)tr (D (@*) Hp) )
711/20}7'0,”
/2[4y (@)~ (})] (6.3)
e . .
ﬂ1/2[w2(a2,n)1—¢2(a§)]

*
vz/),kg

Gn,Fo =
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Finally, define the correlation coefficients

wa,k-(a*‘ny;lk- )
pojpy = — L By [lop,(Z;05)0(Z;07)] for j =1,2,
,U'(p,ij-FOJL
*\/ r7—1 —1 *
1o = ¢a,k1(a1) HFO,kl DFo,krl,kzltlzrn,/rc2¢a,l<tz(042)7 (6.4)

* *
Ui ey Vi ko

where DFo,k1,k2 = EFO [ﬁmkl (Z, a{)éah(Z; Oé;y].
We make the following assumptions regarding the plug-in estimator v;(dQy;,) for j = 1,2.
Sufficient Conditions can be found in Chen et al. (2014) and Chen and Liao (2015).

Assumption 6.1 Under any sequence {Fy,}n>1 such that F,, € F for all n, we have for j = 1,2,

n% [Q/}J' (aj,n> - 1/}j(a;'<,n>] _ n_% Zn: wavkj (a;-,n)/HEnl,

) Y by (Zial,) F o) (65)
Yy k; i=1 Y ks

and Ey, “ Vaoy (3 H sy (Zi5 %) / Ui

4] = o(n).

For any sequence {F,},>1, we write pgj, = pojr, and pia, = p12.p, for ease of notation. The
following lemma gives the limiting distribution of G, ;, under an arbitrary sequence F,, € Fy. The
proof of the lemma extends that for the results in Section 4 to joint convergence and is relegated

to Supplemental Appendix E.

Lemma 6.1 Suppose that Assumptions 4.1, 4.3 and 6.1 hold. For any sequence {F,}n>1 with
F, € F for all n and any subsequence {u,} of {n} such that py;., — po; and pion, — pr2 for

some po; and pia € [—1,1], we have

I por poz
Gu,r, —a N (03,5q), where g = | por 1 pio

poz piz 1

Lemma 6.1 cannot be used directly in practice not only because because the limit depends on
the unknown nuisance parameter ¥ but also because G, g, itself involves the unknown quantites
0% ﬁn(O‘Z>HEn1,ka and vj%, . The consistent estimators of o7, ,, and ﬁn(a*)H;nl,k have already
been given in the previous section. Consistent estimators of v;fkj, Pojn, and pr12, can be constructed

using their sample analogs:
0 = Yok (O )'f]‘l Dy o Hi Yok (Qjn)
’ll),kj O‘vkj J,n k:j,n k:jvn kj,n O‘vkj 7]/
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N Qp k(@ ',n)/ﬁ_‘l n ~ -
_ T it ngx,kj (ZM O‘]}n)g(z’i,; Oén), for 7 - 1’ 2 ;
=1

Pojn = =
7,1 n@’;’kj Gy
-~ . wa,lﬂ (&Ln),Hk_jnDkl ,k27nHk_2%n1/)Ouk2 (a27n>
P12, = ~ = ) (66)
U ey Vb ey

Where ﬁkl,kg,n = n_l Z?:l ga,kl(Zi; al,n)£a,k2(z’i; a2,n>/-

% Olo, . (Z505)
Let Loak; (Z;05,) = W . Define

*

ijzajyn

7")’} and Hyp, n = Ep, [E(Z; ay)laak, (Z; 04;;”)] )

Dﬂ,kj,n = EFn [EQ(Zv a;)éa,kj (Za a;n)éa,k]‘ (Z, CV;
(6.7)

The following conditions are needed for showing the consistency of %ij, Pojm, and P1ay,.

Assumption 6.2 For any {F,},>1 such that F,, € F for all n, we have for j =1,2:
<a> 1 ||%,k,- (&j,n) — wa,kj (Cv;n)” — 0p(|k|_1/2>;

*
’Uw;k‘

(b) pmax(Dé,kj,n) S C and pmax(HE,kj,n) S C’;'

(c) the following expansion holds

n! Z (o, (Zi; Qg n ) Zi5 Oin) — Lok, (Zi5 05, )0 Zs; )]

i=1

=Yl (Zi 05, lan(Zis o) Hy !\ lo ()
=1

+ n_l Z é(Zlv a;)eaa,k’j (Zi; a;,n)H};ﬂl,kaOéjm(a;,n) + Op(aFn,n);
=1
(d) Hn_l Z?:l é(ZZ’ O‘;ﬁz)éaa,kj (Z“ a;,vz) - HevkjvnH = OP(|k|_l/2);

(e) ‘ ipa,kj(a;n)/vz,,ij < C;
(6) 1 — Hrsll = 0p([KI772) and 1B, — Dyl = o,k ™).

The following lemma shows the consistency of the estimated variances and correlations. Like

Lemma 6.1, the proof of this lemma is also relegated to Supplemental Appendix E.

Lemma 6.2 Suppose that Assumptions 4.1(b)-(g), 4.3(b), and 6.2 hold. Then under all sequences
{F.}n>1 such that F,, € F for all n, we have

(a) max;—i 2 %?kj/v;fkj — ]_] = Op(]-);'

(b) ﬁlz,n — Pi2n = Op(l);

(c) max;—12|Pojn — Pojn| = 0p(1).
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Lemmas 4.2, 4.3, 6.1, and 6.2 together immediately imply the following result, the proof of

which is omitted.

Lemma 6.3 Suppose that Assumptions 4.1, 4.3, and 6.1-6.2 hold. Then under any sequence
{Fo}n>1 and any subsequence {u,} of {n} such that with F,, € F for all n, poj., — poj and

P12u, — P12 for some po; and piy € [—1,1], we have

n[ln (Bie.n)—Er, 0 Z305)]+(1/2)tr(Dy Hyy Y
n1/26n
nV/2 [ @1,0)—¥1(01,0)]
’/v\’:;’kl
n1/2 [’1/12(&2,71)_1!)2(&3,71)]

=
vd),kg

an,Fn = —d N(Og, Eg)

6.2 Conditional Inference for Model-Specific Parameters

In this subsection, we consider the conditional inference of a functional — denoted ;(a7) — of
the parameter in model M, given that M, is selected.!® Specifically, we construct a level 1 — p

conditional confidence interval, C'Iy, (1 — p) such that

li;rgg}f F;:g;n Pr g, (¢r(af) € Cly, (1 —p)|T, > ¢) =1 —p, (6.8)
where F,, is a sequence of subsets of F defined below. Note that we allow ¢ to be an arbitrary
number, which the user can choose according to her interpretation of the event that M, is selected.

To describe our conditional confidence interval, first define a function ¥ : R x (—o0, 00| X
—1,1] — R:

o(0)-P(0-L) .
W lf P >0 and ¢ c R
V(0. t.p) =4 @(h) ifp=0ort=o00 (6.9)
®(6) .
50-0) ifp<Oandte R.

For any ¢ € R and p € (0,1), let 6, be the solution to the equation:
111(917;07 Tn —C, b\Ol,n) =1- p. (610)

As W(0,t, p) is a strictly increasing function with range (0,1) in 6 for any ¢t > 0 and any p € [—1, 1],

the solution 0, ,, of the above equation is unique whenever 7;, > ¢ and easy to numerically obtain.

9Conditional inference for a functional of the parameter in model Ms given that M, is selected is analogous
and thus omitted.
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Our conditional confidence interval is of the form:

ok

Ol (1= p) = [2(@0) — 22 (@) — s prl (6.11)
1 p 1\ Q1n l,p/Q\/ﬁv 1\ Q1 n 1,1—p/2\/ﬁ . .

These critical values depend on 7, and hence are not approximations of the conditional quan-

tiles of \/n(1(Q1,n) —¥1(a}))/V;, 4, given T;, > c. Therefore, the validity of our construction is not
contradictory to the impossibility results in Leeb and Pétscher (2006). The construction of the
critical values is inspired by the construction in Tibshirani et al. (2016) of valid p-values and confi-
dence intervals for post Lasso inference in a linear regression context with known Gaussian noise.?’
We generalize Tibshirani, et. al. (2016) to post model selection test inference for general semi-
nonparametric models, and provide asymptotically exact confidence intervals without imposing
special structure on the models compared or requiring knowledge about the variance-covariance
Y of the statistics CA}’nFn

The formal justification of the above construction requires us to rule out the case where
VnER ((Z;ak) /0, — —oo because in that case the conditioning event occurs with diminishing
probability, and the conditional distribution of our test statistic becomes difficult to characterize.

We rule out this troublesome case by considering
Fo=AFy € F:\nEpl(Z;a})/o, —c>—C}, (6.12)

for some large C' > 0. The formal validity result is stated as Theorem 6.1 below. The proof of

this theorem is given in Appendix B.

Theorem 6.1 Suppose that Assumptions 4.1, 4.3 and 6.1-6.2 hold. Then equation (6.8) holds
with F,, defined in (6.12).

6.3 Inference for Common Parameters

In this subsection, we consider the inference for the parameter 6 that equals ¢ (o) in model M;
and ¥y () in model M. Let £y = f(My, Fy) — f(Ma, Fy). Then the pseudo-true value of 4 is

Note that 0* is a function of (¢1(af),v2(3),4y). Because this function is discontinuous, we

cannot obtain uniformly asymptotically valid inference via the Delta method even though the

20 Asymptotically conservative one-sided inference is also available in Tibshirani et al. (2016) when the variance
of the noise is unknown.
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vector (11(a}), (), £) has an asymptotically jointly normal estimator by Lemma 6.3. Instead,
we construct a confidence interval for 8* by projecting a joint confidence set for (11 (o), 2 (as), £5)-

We let the joint confidence set of (¢4 (af), ¥2(ad), £p) of confidence level 1—p to be all (z1, x2, z¢)
such that

~

Gp(w1, 22, $0)/§&1@n(9317 s, o) < x5(1 = p), (6.14)

where x2(1—p) is the 1 — p quantile of the chi-squared distribution with three degrees of freedom,

I Poin Pozn T, — /nzo /0,
Yo=|poun 1 praa|. and Gu(z1,22,20) = | Vo(P1(Qrn) — 1) /75,
Pozn Pizm 1 V(e Qo) — LUQ)/{}\QZJQ

Then the projected confidence set of confidence level 1 — p for 6* is

Cly(1 —p) ={0 = z11(xg > 0) + 221(zo < 0) : @n(xl,asg,aro)'flélan(xl,xg,xo) <xi(l1-p)}.
(6.15)
Theorem 6.2 below shows the uniform asymptotic validity of this confidence interval. The proof

of this theorem is given in Appendix B.

Theorem 6.2 Suppose that Assumptions 4.1, 4.3, and 6.1-6.2 hold. In addition, suppose that
there is a constant C > 0 such that under all Fy € F, we have puin(3Xg) > C~. Then

lim inf inf]__PrFO(Q* e Cly(l—p)) >1—p.
€

n—oo Fy

7 Simulation Studies

In this section, we report Monte Carlo simulation results on the finite sample performance of the
uniform model selection test and the conditional confidence interval CI;(1 — p).

Consider the following two models,

My ElY|Xq] = Bio + fuiXa
Myt BlY | X5, X3] = Bag + f21.X2 + 9(X3), (7.1)

where 81 = (10, 811) € R?, f2 = (B2, 021) € R? and g(-) € C*([0,1]). This example readily
fits into the framework of (5.1) with ay(z1) = B0 + fuzi, Ar = {bo + bix1 : (bo, 1) € R},
ao(T9, 13) = Pao + Banxe + g(x3), and Ay = {bo + b1ra + g(x3) : (bo,b1) € R?, g € C([0,1])}.

To generate the data, let X7, X5 be independent standard normal random variables, and let X3

be a uniform random variable independent of X7, X5. Let € be standard normal and independent
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of Xl, XQ, X3. Let
Y =14 aX; +bXy + cvV2sin(10mX3) + <. (7.2)

Independence between the regressors and the additive structure in the generation process of Y are
not important for the performance of our test, but they allow us to derive an analytical form of
the fit measures and hence to conveniently characterize the null hypothesis. By exploiting them,
we see that u; = bXs + c\/§sin(107rX3) + ¢, and uy, = aX; + &. Thus,

—2f(My, Fy) = Ep[ul] =b* + 1+ ¢*;
—2f(/\/l2, F()) = EFO [LL;] = (L2 + 1. (73)

Therefore, the null hypothesis holds if and only if a? = 0*+¢?, and when a® > b*+c2, f(My, Fy) >
f(Ma, Fy). When a® = b* + ¢* = 0, uy = uy, in which case, wf, , = 0. Otherwise, wf, , > 0.

7.1 Uniform Post Selection Test

To evaluate the performance of the uniform model selection test, we consider two collections of
DGPs. One collection sets a? = b*> + ¢*, b = ¢, and b (and ¢) to grid points in [0, 0.4] with the
spacing of 0.02 between adjacent grids. This is the null collection in which, as b runs from 0 to
0.4, wf, , grows from zero up. The other collection sets b = ¢ = 0.2, a*> = b* +¢* + 1, and 7 to grid
points in [0, 0.2] with the spacing of 0.01 between adjacent grids. This is the alternative collection
in which, as 7 runs from 0 to 0.2, model 2 gets worse and worse relative to model M.

We implement the uniform model selection test as well as the naive extension test as they are
defined in Section 3. We use cubic spline to approximate g(-) in model 2.2 The number of series
terms is chosen by cross-validation with the search range being set between [21In(In(n))] and 15.%?

For comparison, we also investigate the performance of two bootstrap tests based on the naive
extension statistic. Let aj,,, £;(-), and @ (-) be the bootstrap analogue of Gy, r(+), and @y (-).
The first bootstrap test (¢P°°*) uses TV as the test statistic, and uses the conditional quantile

of n1/2(l7;(&;n) - Zn(@km))/@,’;(&l’;n) as the critical value. The second bootstrap test (Po0tLR)

uses £, (Qky) as the test statistic and the conditional quantile of 7 (@ ,,) — £n(Qkn) as the critical
value. Neither bootstrap test enjoys uniform asymptotic similarity or even validity when the
models compared are overlapping nonnested. We compute their rejection rates for comparison

because they have been suggested to us as alternatives.

21Fourier series yields similar results.

22Gtrictly speaking, the theory presented in earlier sections applies only to non-data-dependent choices of series
terms. However, in practice, cross-validation is often employed, which is why we use it in this simulation example.
The performance of our test with the cross-validated series terms is encouraging. The expanding lower bound of
the search range ensures that the selected number grows with n, avoiding a violation of Assumption C.4(i).
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Figure 2: Rejection Rates of Two-sided Tests (p = 0.05, n = 500)

Figure 2 shows the rejection rates of the symmetric two-sided version of the tests at n = 500.
The graph on the left shows the rejection rates under the first collection of DGPs—the collection
of null DGPs. As the graph shows, the naive extension test (dotted line) over-rejects noticeably
when w%m* is zero or close to zero. On the other hand, the rejection rate of the uniform model
selection test (solid line) never exceeds the nominal level by much, although there is some under-
rejection at very small b’s and slight over-rejection at bigger b’s. The two bootstrap tests (dashed
and dash-dotted lines) behave similarly to each other and both show severe under-rejection. The
graph on the right shows the power properties. As we can see, the uniform model selection test
has the best power across most of the range of 7.2

The theory in previous sections suggests that the naive extension test biases toward the less
parsimonious model (model My in this example). To see if this is true in finite samples, we plot
the rejection rate under the null DGPs for the one-sided version of the tests in Figure 3. The
left graph shows the tests for Hy against Hy : f(My, Fy) > f(Ms, Fy), while the right graph
shows the tests for Hy against Hy : f(My, Fy) < f(Mas, Fp). Recall that model 1 is the more
parsimonious one. As we can see, our robust test has a rejection rate of approximately 5% against
both one-sided alternative hypotheses. The naive extension test has severe over-rejection when
the alternative is in favor of model 2 and severe under-rejection when the alternative is in favor
of model 1. This behavior is in line with our theoretical derivation. Interestingly, the bootstrap

tests have the opposite (albeit less severe) problem of the naive extension test.

23The power shown is not size-corrected. Size correction would bring the power of the naive extension test down
more than it does the power of our test because there is more over-rejection in the former.
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(a) H() vs. H1 : f(Ml,Fo) > f(MQ,F()) (b) H() vs. H1 : f(Ml,Fo) < f(MQ,F())
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Figure 3: Null Rejection Rates of One-sided Tests (p = 0.05, n = 500)

7.2 Conditional Confidence Interval

In this subsection, we evaluate the performance of the conditional confidence interval C'Ly, (1 —p).
Consider the parameters of interest 511 and (1. Let model M; be selected if T}, > 205 and model
M be selected otherwise. Consider the DGPs with b = 0, ¢ = 0 and a running from 0 to 0.32. We
report the probability of the model being selected, as well as the coverage probability, the median
length, and other quantiles of the length of the conditional confidence interval. For comparison,

we also report the performance of the naive confidence interval that ignores the model selection

step, that is, for j =1, 2,
CIY (1 —p) = [0(@1n) = 2p/205 1o,/ V1 05 (@j.0) = 212051, /- (7.4)

Note that the conditional CI is only different from the naive CI in the critical values.

Figure 4 shows the results for 511, and Figure 5 shows those for f#5;. As we can see, the naive
CI may severely under-cover when the probability that the model is selected is small. On the other
hand, the coverage probability of our conditional CI is always very close to the nominal level. In
terms of length, our conditional CI is longer than the naive CI when the naive CI under-covers,
and is about the same as the naive CI when the latter has good coverage properties.

By definition, the critical values of the conditional CI depends on 7,,, and thus is random. As
a result, the length of the conditional CI is also random. Part (d) of Figures 4 and 5 show the

variability of the length of the conditional CI.2* As we can see, the variability is small when the

24The variability of the length of the naive CI is negligible.
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Figure 4: Performance of 90% Conditional Confidence Interval for 31;. (In graphs (b) and (c), the
cyan dotted lines are for the naive Cls and the red solid lines are for our conditional Cls; in graph
(d), the five lines are respectively the 25%, 40%, 50%, 60%, and 75% quantile of the length of the
conditional CI.)

probability that the model under consideration is selected is large, and can be big otherwise. In
light of the difficulties of post model selection inference pointed out by Leeb and Potscher (2005),
we view the variability and the extra length of the conditional CI as an inevitable price to pay for
its good coverage property. It is encouraging to see that the conditional CI has similar length as

the naive CI when the latter does not under-cover.

8 An Empirical Example

In this section we illustrate the use of our robust model selection test and the conditional confidence

interval in the study of life-cycle schooling choices. We compare two models considered in Cameron
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Figure 5: Performance of 90% Conditional Confidence Interval for fy;. (In graphs (b) and (c), the
cyan dotted lines are for the naive Cls and the red solid lines are for our conditional Cls; in graph
(d), the five lines are respectively the 25%, 40%, 50%, 60%, and 75% quantile of the length of the
conditional CI.)
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and Heckman (1998) using our model selection test, and also report the conditional confidence
intervals of some of the model specific parameters. The two models considered are parametric
likelihood models. Our theory presented for the semi/non-parametric environment provides good

approximation to this context due to the large number of parameters in each model.

8.1 Life-time Schooling Choice Example

We now apply our test on the comparison of two life cycle schooling models taken from Cameron
and Heckman (1998). The paper is a classic piece of structural modeling, which is why we use it
to illustrate our model selection and post model selection inference tools.

Consider an individual deciding how much schooling (S, number of years of schooling) to
complete, and consider a vector of individual characteristics X that may be relevant for this
decision. The first model (Model M) is the logit transition model that Cameron and Heckman
(1998) set up to formalize the statistical model prevalent in the political science literature at the
time. To describe this model, define the binary variable Dy = 1{S > s}. This variable indicates
whether or not the individual completed grade s or not. The model imposes a logit form on the
transition probability from completing grade s to completing grade s + 1:

exp(X'Ss)

PT(D5+1 = 1|Da = 17X) = 1 +exp(X’6 )7 (81)

where [, is the grade-specific effect of X on the transition probability. This implies that the
probability of s being the highest grade completed is given by

1 « exp(X'B1) ‘o x exp(X'f)
1+ exp(X'Bs) 1+ exp(X'Bs_1) 1 +exp(X'B1)

P(s|X) = (8.2)
Note that this model contains many parameters since 3 is allowed to be different across s. How-
ever, it allows no individual heterogeneity other than the logit error, and thus effectively assumes
that the population making the transition decision at different grade levels are the same. In tech-
nical terms, it rules out dynamic selection as the population move up grades. This is an important
drawback of the model as discussed in Cameron and Heckman (1998).

The second model (Model Ms) is an ordered logit model. Cameron and Heckman (1998) set
up this model as an economically well-grounded yet parsimonious contestant to the first model.

In this model, the probability of s being the highest grade completed is given by

P(s|X) = /Q Flas1+y+ X'B) — Flas+y+ X'B)dF,(y),
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where F(t) = 1i)éig()t)’ as = —oo for the highest possible grade 5, and w is an unobservable
individual type that has support Q and distribution F,(-). From the statistical point of view,
the ordered logit aspect is not fundamentally different from the logit transition model since an
ordered logit model can be written as a transition model with some (albeit non-logit) shocks in
the transition decisions. However, this model adds the unobservable type w, which makes sure
that the dynamic selection effect is accounted for. The model further specifies that Q = {0, ws},
and F,(y) =p11(y > 0) 4+ (1 — p1)1(y > wo) for unknown parameters wy > 0 and p; € (0,1). The
model uses a parsimonious specification for the effect of X on the ordered logit cutoffs — the 3 is
not indexed by s.

We first compare these models using data from the 1997 wave of the National Longitudinal
Survey (NLSY 97). This is a newer wave of the NLSY 79 used in Cameron and Heckman (1998)
that covers a sample of young men and women born between 1980 and 1984. Following Cameron
and Heckman (1998), we use the male sample only and drop observations with missing values on
the relevant variables. Our final sample contains 1938 individuals.?

The X variables for models M contain a constant and 15 nonconstant variables including the
number of siblings, highest grade completed by father, that by mother, broken family dummy,
log family income, urban/rural residence dummy, etc. and interaction terms. The X variable
for model My contains all those 15 nonconstant variables, but does not contain a constant term.
We aggregate the grades (S) into four, following Cameron and Heckman (1998): completed high
school (s = 1), attended college (s = 2), graduated college (s = 3) and attended 17 or more years
of school (s = 4). As a result, Model M, contains 4 x 16 = 64 parameters and Model My contains
4 415+ 2 = 21 parameters. Clearly, Model M, is much more parsimonious than Model M, .26

Table 1: Model Selection Tests Based on NLSY 97

Test Statistic | p-value

Robust Test 1.856 .063
Vuong (1989) Test 3.924 | .000

We then compare the models in terms of the Kullback-Leibler distance (that is, f(M;, Fy) =
maxy, Fr, log P(S|X,0;)). We implement the two-sided version of both our new robust test and
the Vuong (1989) test.?” Table 1 shows the value of the test statistics as well as p-values of both
tests. The first-order asymptotic test strongly rejects the null in favor of the less parsimonious

models M;. However, we believe that the strong rejection is partly due to the bias in favor of

25Results using reconstructed sample from the NLSY 79 are reported below.
26Parameter estimates are irrelevant for our analysis and thus are omitted. They are available upon request.
2TThe Vuong (1989) test is the the strict nonnested test proposed in Vuong (1989).
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large models. Indeed, the robust test that corrects the bias presents much weaker evidence against
the parsimonious Model M,. In particular, according to the robust test, we cannot reject the null
that My is as good as M at significance level 5%. Cameron and Heckman (1998) advocate for
M, for its simplicity and interpretability. Our robust test shows that it achieves the simplicity
without sacrificing too much of its fit to the data. The biased Vuong (1989) test tells a different
story and can be misleading.

To illustrate our conditional confidence interval, we computed these intervals for the parameters
in Model M5 conditional on the event that T, < zp025 ~ 1.96. It turns out that the conditional
confidence intervals are the same as the naive CI’s computed using the sandwich standard error
formula. Upon further inspection, we find that the correlation coefficients of 7}, and the parameter
estimates of Model My are nearly zero, which causes 6, , to be the same as 2, up to at least the
sixth digit.

9 Conclusion

This paper studies the statistical comparison of semi/nonparametric models when the compet-
ing models are overlapping nonnested, strictly nonnested, or nested. We provide a new model
selection test that achieves uniform asymptotic size control. The new test uses a critical value
from standard normal distribution and employs a bias-corrected quasi-likelihood ratio statistic
that is easy to compute in practice. This makes our test convenient for empirical implementation.
Moreover, uniformly valid post model selection test inference procedures of model parameters are
also provided. Simulation results show that our test and our post model selection test confidence
interval perform well in finite samples.

At least two future research directions arise from the findings of this paper. First, the theory
of this paper is established under the i.i.d. assumption of the data. It is important to extend
it for the comparison of time series models with dependent data. Second, when there are many
competing models to be compared, it shall be interesting to construct a model confidence set that
covers the best model with valid asymptotic size. These directions of research form part of our
ongoing work, during the course of which some preliminary results have been obtained and will

be reported in later papers.
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