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1 Introduction

Econometric methods for nonstationary panel model have been extensively used in applied economics.
The asymptotic properties for it are well explored in classical settings, such as the assumptions of common
long-run relations and cross-sectional independence among individuals. Even though those assumptions
offer estimation efficiency and help us simplify the asymptotic theory, they are often hard to meet in real-
world problems. In one case, researchers often face the issue of unobserved parameter heterogeneity that
figures within the model, including the “convergence club” (Durlauf and Johnson (1995), Quah (1997)),
“Lucas paradox” (Lucas (1990)), the relation between income and democracy (Acemoglu et al. (2008)),
and “resources curse” (Van der Ploeg (2011)). In another case, globalization and international spillovers
raise to a new challenge—cross-sectional dependence among individuals. In general, both the presence of
unobserved heterogeneity and cross-sectional dependence can substantially complicate statistical inference
for nonstationary panels. The classical settings, which ignore these two issues, lead to inconsistent esti-
mation and imprecise inference. Essentially, the main contributions of our paper are not only to offer a
flexible and comprehensive econometric model, which is closer to the real economic questions, but also
seek to maintain certain degree of parsimony by imposing the latent group structures.

In this paper, we propose a novel econometric method that allow us to study the unobserved parameter
heterogeneity and cross-sectional dependence simultaneously in nonstationary panel model, especially ac-
count for the problems facing in economic growth literature. Recently there is a growing list of theoretical
papers accounting for the unobserved heterogeneity in large dimensional panel models by imposing latent
group patterns, see Bonhomme and Manresa (2015), Su, Shi and Phillips (2016, SSP hereafter), Su et
al. (2017). Our baseline model is obtained from SSP, where they employ the Classifier-Lasso (C-Lasso,
hereafter) technique to study the unobserved grouped patterns in stationary panel data. The results of
C-Lasso estimators identify group membership and estimate the group-specific slope coefficients simul-
taneously via shrinkage procedure. Huang et al. (2017) establish the asymptotic theory for the latent
group patterns in cointegrated panel models. They do not allow for cross-sectional dependence. Under our
grouped nonstationary panel model, cross-sectional dependence is characterized by unobserved common
factors, which can be either stationary or nonstationary. Then we provide a purely data-driven method,
based on penalized principal component (PPC, hereafter) method, to account for the unobserved parame-
ter heterogeneity and cross-sectional dependence simultaneously in nonstationary panels. Our framework
allows us to jointly estimate the group-specific long-run relations, unobserved common factors and identify
individuals’ membership. Thus, our results generalize the SSP model by allowing nonstationary variables
and cross-sectional dependence.

By using PPC-based methods, the grouped nonstationary panel model provides a practical approach
to maintaining the estimation efficiency gains from employing the panel data while allowing some degree of
freedom on parameter heterogeneity. We show that PPC-based methods provide consistent estimators to
the group-specific long-run relations and unobserved common factors even when individuals’ membership
were unknown. Moreover, the PPC-based methods simultaneously account for the issue of cross-sectional
dependence in panels. It is commonly acknowledged that many economic variables exhibit common pat-

terns across individuals due to global shocks, spatial effects or as a result of social interactions. When



existing unobserved common patterns, the classical least square methods lead to several problems, such
as biased inference, inconsistent estimators and spurious regression, see Baltagi and Pesaran (2007) and
Bai et al.(2009). There are two main approaches to study cross-sectional dependence—the factor structure
approach and the spatial approach, see Bai and Ng (2002, 2004) and Lee (2004). In this sense, our PPC-
based method is also related to the factor structure model, see Bai and Ng (2002), Bai and Ng (2004),
Pesaran (2006), and Moon and Weidner (2015). The multi-factor structure model assumes that cross-
sectional dependence is characterized by the common factors, which can be estimated by either principal
component method or cross-sectional mean method. In this paper, we employ the principal component
method, proposed by Bai and Ng (2004), to estimate the unobserved common patterns.

The international R&D spillovers model of Coe and Helpman(1995) (CH, hereafter) motivates our
empirical application. They estimate total factor productivity (TFP, hereafter) on domestic R&D capital
stock and foreign R&D capital stock to study the two sources of technology changes—domestic innovations
and catch-up effects. The innovation part is explained by the increasing function of TFP on domestic
R&D capital stock. And the catch-up effects through the channel of international R&D spillovers favor
the hypothesis of convergence across economies. Our main empirical interest is to explain the “growth
convergence puzzle” through the technology spillovers model. There are two main problems in the econo-
metric methodology of CH model. First, the important assumption underlying the CH model is that all
countries obey a common linear specification. However, cross-countries productivity behavior typically
reaches multiple steady states. And most theoretical growth models suggest the multiple regimes of con-
vergence across economies, see Solow (1956) and Eaton and Kortum (2002), which imply the unobserved
parameter heterogeneity within the economic growth model. It is a natural relaxation to allow the pa-
rameters vary across countries. Second, those economic variables, like TFP and R&D stocks, apparently
share some common patterns, such as global technology trends, international financial crisis shocks, and
oil price shocks. Obviously, the CH model fails to account for the unobserved parameter heterogeneity
and common patterns due to the limitations in econometric methodologies. As a result, the international
R&D spillovers model may be misspecified, which leads to biased estimates and incorrect inference. In
general, our econometric model yields a direct solution for the unobserved heterogeneity and cross-sectional
dependence, first, to allow the latent group structures in parameters of interests and, second, to estimate
the unobserved common patterns directly from data. From those two features we simultaneously identify
the multiple regimes of convergence across economies from the international R&D spillovers model and
account for unobserved technology trends across countries.

In this paper, we first introduce a nonstationary panel model with latent group structures and cross-
sectional dependence, where the slope coefficients are heterogeneous across groups and homogeneous within
a group. Then we propose a penalized principal component-based (PPC-based, hereafter) method that
jointly estimates the group-specific long-run relations, unobserved common factors and infers group mem-
bership. Further, we iteratively perform the PPC-based method and obtain three types of estimators—C-
Lasso, post-Lasso and continuous-updated-Lasso (Cup-Lasso, hereafter) estimators. In asymptotic theory,
we establish the preliminary rates of convergence for the group-specific long-run relations and unobserved

common factors. Based on the preliminary rates of convergence, we establish the classification consistency,



which indicates that all individuals are classified into correct group with a probability approaching one
(w.p.a.1). Third, our long-run estimators have asymptotic biases since we allow for weakly dependent error
processes and unobserved stationary common factors. The first source of biases is common acknowledged
in nonstationary time series due to serial correlation and endogeneity issues. An additional bias comes
from the unobserved stationary common factors. Therefore we employ the fully modified procedures, pro-
posed by Phillips and Hansen (1990) for bias-correction. After bias-correction, our estimators achieve the
V/NT consistency in homogeneous nonstationary panel model. Fourth, we establish the oracle properties
of the C-Lasso estimators, post-Lasso and Cup-Lasso versions, which are asymptotically equivalent to the
corresponding infeasible estimators, obtained by knowing the exact individuals’ group membership. At
last, we develop the limiting distributions of group-specific estimators, which help to make inference about
our group-specific long-run relations. Three information criteria are introduced to estimate the number of
unobserved common factors and the number of groups. We demonstrate that those information criteria
can select the correct number of unobserved common factors and group w.p.a.1l. Our simulation results
show good finite sample performance for both estimation and classification.

Because our PPC-based estimation method allows us to account for the unobserved heterogeneity and
cross-sectional dependence simultaneously, it is the best fitted method to study the heterogeneous behavior
in growth convergence model. In empirical application, we report both pooled FMOLS estimates and
group-specific Cup-Lasso estimates with cross-sectional dependence, comparing with Coe et al. (2009)’s
(CH2009, hereafter) estimates. The pooled FMOLS estimates are quantitatively similar to CH2009 ones.
It confirms the international R&D spillovers after controlling unobserved global trends. Then we notice
that the group-specific Cup-Lasso estimates show heterogeneous behavior. It indicates multiple regimes of
growth convergence. In addition, we document the group classification results. The countries are classified
into three groups—“Convergence”, “Divergence”, and “Balance”. The major sources of technology changes
in “Convergence” group come from global technology diffusions. As a result, the catch-up effects through
the channel of technology diffusion are the main forces towards convergence in income. On the contrary,
countries in “Divergence” group show an opposite story. The technology changes rely mainly on their
domestic R&D stock. They fail to benefit from international R&D spillovers. For the “Balance” group,
they have balanced sources in technology growth both innovations and international spillovers. In general,
we identify multiple regimes of growth convergence across economies through the channel of technology
changes.

Our econometric theory also speak to recent literature trying to detect the unobserved heterogeneity
by grouping or clustering. For example, Yuan and Lin (2006) consider the problem of selecting grouped
variables for accurate prediction in regression. Qian and Su (2016) study the unobserved group structure
on time dimension to detect the structure breaks. Bonhomme and Manresa (2015) allow time-varying
grouped patterns of heterogeneity in stationary linear panel models. Their focus is to detect the latent
group patterns in fixed effects. Sarafidis and Weber (2015) propose a partially heterogeneous model for the
panel data with fixed T', where the cross-sectional individuals are grouped into clusters. One advantage
of our approach is that we allow nonstationary variables and estimate the long-run cointegrating relations

with latent group structures. Our approach also simultaneously handle the unobserved common patterns



across individuals and the unobserved heterogeneity. Lastly, our paper is closely related to the long
literature on economic growth, in particular the analysis of global technology diffusion. In this context,
our results using grouped nonstationary panel models with cross-sectional dependence provide a purely
data-driven method for the “convergence puzzle”. It empirically identifies the multiple steady states in
growth convergence.

This paper is structured as follows. Section 2 introduces nonstationary panel model with latent group
structures and cross-sectional dependence and proposes a penalized principal component estimation. Sec-
tion 3 explains the main assumptions and establishes the asymptotic properties of three types of Lasso
estimators. Section 4 reports simulation results. Section 5 studies the heterogeneous behavior of growth
convergence. Section 6 concludes. All proofs are relegated to the appendix.

NOTATION. Hereafter, we write the integral fol W (s)ds as [ W and define Q'/2 to be any matrix such
that Q = (Q/2)(Q'/2)", and BM(Q) to denote Brownian motion with the covariance matrix 2. For any
m x n real matrix A, we write the Frobenius norm || A]|, the spectral norm ||A||,p,, the transpose A’. The
operator < denotes convergence in distribution, %> convergence in probability, = weak convergence, a.s.
almost surely, and [z] the largest integer less than or equal to . When A is symmetric, we use fimax(A)
and fimin(A4) to denote its largest and smallest eigenvalues, respectively. Let M < oo be a generic positive
number, not depending on 7" or N. We also define the matrix that projects onto orthogonal space of A
as My = Ir — A(AA")71A’. Let 0,x1 denote a p x 1 vector of zeros and 1{-} the indicator function. We
use “p.d.” and “p.s.d.” to abbreviate “positive definite” and “positive semidefinite”, respectively. Unless

indicated explicitly, we use (N,T) — oo to stand for that N and T pass jointly to infinity.

2 Model and Estimation

In this section, we first introduce the nonstationary panel model with latent group structures and cross-

sectional dependence. Then we propose a penalized principal component method to estimate the model.

2.1 Nonstationary panel model with latent group structures and cross-sectional

dependence

The generating process of (y;,x;t) is as follows

Yir = 07 Tt + eu
¢ t t 2.1)

Tit = Tig—1 + Eit,

where y;; is a scalar, x;; is a p X 1 vector of nonstationary regressors of order one (I(1) process) for all i,
et is the error term and assumed to be cross-sectionally dependent due to unobserved common factors, &;;
is assumed to have zero mean and finite long-run variance, and ) is a p x 1 vector of unknown long-run
cointegrating relations. We assume that the long-run cointegrating relations f3; are heterogeneous across

groups and homogeneous within a group. And we denote the true values of 3; as 89, to follow the latent
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group structures, such that
af ifi e GY
By : S (2.2)

%%  ifieGY

where 042 # Y for any j # k, Uszl G ={1,2,...N}, and GgﬂG? = @ for any j # k. Let Ny = #Gy,
denote the cardinality of the set G%. For the moment, we assume that the number of group K is known
and fixed but each individual’s group membership is unknown. A information criterion is proposed to
determine the number of groups in Section 3.6.

Since e;; is assumed to be cross-sectionally dependent, it allows for unobserved common patterns across
individual 4. By Bai and Ng (2004), we impose a multi-factor structure on e;; to model cross-sectional
dependence. That is,

01 £0 0/ 40 )
eit = N [y +wie = A f1y + Agifor + i,

where f{ is an r x 1 vector of unobserved common factors that contains an 71 x 1 vector of nonstationary
factors f{, of order one (I(1) process) and an 7, x 1 vector of stationary factors f3, (I(0) process), \;
is an r x 1 vector of factor loadings and wu;; is the idiosyncratic component of e;; with zero mean and
finite long-run variance and assumed to cross-sectionally independent. We emphasize that cross-sectional
dependence only comes from common factors f; such that e;; and e;; are correlated due to common factors
f¢ in the form of E(e;tej) = N,E(fif{)\; # 0.

If f; only contains stationary factors, in some cases we still can obtain consistent estimators of 3; by
the penalized-least-squares based (hereafter, PLS-based) method, proposed by Huang et al. (2017) when
ignoring cross-sectional dependence. However, if there are serial correlations between dependent variable
x;; and unobserved common factors f;, ignoring those factors f; yields biased inference for 8;. Furthermore,
the unobserved nonstationary factors will lead to inconsistency due to spurious regression. In general, we
fail to obtain consistent and unbiased group-specific estimators by the PLS-based method when existing
cross-sectional dependence in nonstationary panel models.

Now we impose the multi-factor error structure to the first equation of (2.1) as follows
Yir = B i + N f7 + wa. (2.3)

Our estimation procedures are performed on model (2.3) by penalized principal component method, pro-

posed in Section 2.2. Let

a=(a,.aK,), B=P1,-Bn), A=01,.., ), and f=(f1,...,fr)"

The true values of a, 3, A and f are denoted as a®, 8%, A%, and fO respectively. We also use a2, 82, \? and
f? denote the true value of ay, 8;, A; and f;. Our interest is to infer each individual’s group identity and

obtain consistent estimators of both group-specific long-run relations oy and unobserved common factors

[t



2.2 Penalized principal component estimation

In this section, we propose an iterative PPC-based procedure to simultaneously estimate the long-run rela-
tions B;, unobserved common factors f; and identify group membership. Here, we rewrite the nonstationary

panel model with latent group structures and multi-factor error structure (2.3) in vector form,
vi = 2B + O+ ui = @B+ FIA + FING + wi, (24)

where fO = (0, f9), A\ = (MY, vi = Wity s yir)', i, £, f9, and u; are analogously defined. As
we discussed in Section 2.1, we can still obtain consistent estimates of §; when ignoring the unobserved
stationary common factors. The principal component estimators of 3; and f are obtained from the

following least objective function

N
SSR(Bi, fr, M) =D (yi —wiBi — fidas) (i — 2iBi — frdwi), (2.5)
i=1
subject to the constraint f%‘él = I,, and A{A; being diagonal. Define the projection matrix My, =

I — Py, = I — f}—éi We can obtain the least squares estimator of [3; for each given f; is
Bi = (x;Mflxi)_lx;Mflyi~

Given f;, the variable e; = y; — x;8; = f\; + u; has a pure factor structure. Let e = (e1,€ea,...,en), &
T x N matrix and Ay = (A11,..., \in)" a N X7 matrix. We can obtain the following least squares objective

function for f;

tr((e — fid})(e — f1A})'].

By Bai (2009), we can concentrating out A; by its least square estimator, such that Ay = e/ fi(f{f1)™! =
e/ f1/T?. The objective function (2.5) becomes

tr(e'Mye) = tr(e'e) — tr (fiee' f1/T?) .

The final least squares estimator (B, fl) is the solution of the set of nonlinear equations,

-1
Bi = (ngfAlam) (ngfl yl) , (2.6)

f1V1,NT = N}f? EN: (yz - CCsz) (yz - %Bz)/} fl» (2.7)
i=1

where Mf1 = Ip — %flf{, %f{fl = I,,, and Vj n7 is a diagonal matrix consisting of the r; largest

eigenvalues of the matrix inside the brackets, arranged in decreasing order. Based on (2.6) and (2.7), we



can further show that A’J\l is a diagonal matrix with descending diagonal elements as follows,

%Alpfh T2 f] <NT2 Z ( 391»31) ( - xiBi)/f1> = (;ﬂﬁ) Vi,nt = VinT.

Given the initial estimates of 5; and f; obtained from (2.6) and (2.7), we propose the penalized principal
component method to estimate 3 and « , where 3 exhibits the latent group structures. The PPC criterion
function is given by

N K
S T8 = axl (2.8)

i=1 k=1

where Qn7(8, f1) = w52 Zf\;l (yi — 2iB:) My, (yi — x:Bi), A = M(N,T) is the tuning parameter. Mini-

mizing the PPC criterion function in (2.8) produces the Classifier-Lasso (C-Lasso, hereafter) estimators of

Z\V

A?(ﬂﬁhfl) Qnt (B, f1) +

B; and «y, respectively. Then we update the estimates of the nonstationary common factors f; as follows

fiVint = NT2 Z Z — b)) (yi — xidy)" | fr (2.9)

k=1icG,

with the identification restrictions: % f{ fl =1I,, and /A\/lAl is a diagonal matrix with descending diagonal
elements. Since we allow for both stationary and nonstationary common factors, we minimize the following

equation to obtain consistent estimates of the stationary common factors fa,

K
foaVonr = % Z Z (yi — zibie — fids) (ys — 2 — fidas)' | fo (2.10)

k=1 ieG‘k

with the identification restrictions: % jz fg = I,, and V5 n7 is a diagonal matrix with descending diagonal
elements. After obtaining the estimates of fo, we apply bias-correction in post-Lasso estimators of 3 and
a. The biases emerge from the unobserved stationary common factors, endogeneity, and serial correlation
issues from the weakly dependent error terms.

Now we summarize the estimation procedures in PPC-based estimation method. We first obtain the
prior estimates of 3; and f; by solving equations (2.6) and (2.7). Second, we minimize the above PPC
criterion function (2.8), which produces the C-Lasso estimates B and &. Third, with C-Lasso estimates
of a, we update the estimates of nonstationary common factor f; by (2.9) and estimate the stationary
common factors fo by (2.10). Forth, we apply bias-correction by the fully modified method in the post-
Lasso estimator of a, which is explained in Section 3.4. We iterate steps 2—4 until achieving convergence
to obtain the Cup-Lasso estimators. Our estimators, which we will refer to as “C-Lasso”, “post-Lasso”,
and “Cup-Lasso”, are based on the optimal group on the cross-sectional individuals, according to the PPC
criterion function. The triplet (3, @, fi) jointly minimizes the objective function (2.8). Let f3; and dy,
denote the it and k' columns of B and é, respectively, i.e., 8 = (317 cey BN) and & = (41, ...,4x). We

will study the asymptotic properties of the C-Lasso, post-Lasso and Cup-Lasso estimators below.



3 Asymptotic Theory

3.1 Main assumptions

In this subsection, we introduce the main assumptions that are needed to study the asymptotic properties

of our estimators B, & and fl.
Let Qiza(f1) = 722 My xi, Q1(f1) =diag(Q1,00 s QN,za), and

1 / 1 ! 1 !
leMflxlall W.Tlell'Qalg s leMflxNalN
1 / 1 / 1 /
W$2Mf1$1a21 WZ'QMJC1$2(122 e W$2Mfl$]\/(12]\/
QQ(fl) = . . . . )
ety M ety M ety M
Nz LnyMfpT1aN1T ezt yMpT2aN2 o ey M ENANN

where f1 satisfies 7z f{ fi = I,. Note that Q2(f1) is an Np x Np matrix. Let wy = (uit, e}y, AfY, f5%,)

Let M be a generic constant that can vary across lines.
We make the following assumptions on {w;;} and {\;} .
Assumption 3.1 (i) For each i, {wi,t > 1} is a linear process: wiz = ¢;(L)vye = Z;io $ijVit—j, where
v = (V& v, Ulftl/, viff')’ is a (1+p—+r1+re) x1 vector sequence of i.i.d. random variables over t with zero
mean and variance matriz I 4pyr; MaXi<i<N E(||lvit||?77€) < M, where q > 4 and € is an arbitrarily small
positive constant; vi, v5, v,{cl, and v{* are mutually independent, and (vi, v5) are independent across i.
(i) maxi<i<n Do 5o 5" || ¢isll < oo and |¢i(1)] # 0 for some k > 2.
(11i) uir and €;; are cross-sectionally independent conditional on C.

w) N; is independent of v for all i, j,and t.
J

Following Phillips and Solo (1992), we assume that {w;;} = {ws,t > 1} is a linear process in Assump-

tion 3.1(i). For latter reference, we partition ¢;(L) conformably with w;; as follows:

¢v(L)  o¥e(L)  ¢r(L) oM (L) v(L) ¢ve(L)  ¢p(L) 0

op) = | B T e (D) AZ(L) |y e ¢t qs;l;(m .
¢fu(L) ¢e(L) ¢fi(L) o™ (L) 0 0 ML) ¢ (L)
(bf?“(L) ¢f2€(L) ¢fzf1<L) ¢f2fz(L) 0 0 ¢fzf1<L) ¢f2fz(L)

Since both nonstationary and stationary common factors do not depend on i, we have ¢p/1*(L) = ¢f15(L) =
¢72"(L) = ¢/2¢(L) = 0. Moreover, we assume that ¢;-“£2 (L) = 0. This indicates that there exists no serial
correlation or contemporaneous correlation between the regression error u;; and the unobserved stationary
common factors f5,, and it ensures the consistency for our initial estimators. The finite 2¢ + ¢ moments
for ¢ > 4 ensure the validity of the law of large numbers (LLN) and functional central limit theory (FCLT)
for the weakly dependent linear process {w;:}. We will frequently apply the Beveridge and Nelson (BN)
decomposition
wig = ¢i(1)Vig + Wip—1 — Wi,

where w;; = Z?io i)ijvi’t,j and ¢~5ij = Z:in ¢s. Assumption 3.1(ii) gives the summability conditions on



the coefficients matrix ¢;;. By Lemma (BN) in Phillips and Solo (1992), we have 372, j*[|¢i;[|* < 0o —
Z;io |éj]|¥ < oo, which implies that ;; has Wold decomposition and behaves like a stationary process.
~o2
bij

that finite kth moment of w;. In our case, we need strong conditions to ensure the uniform behavior

Specifically, we have Z;io ’ < oo under Z;il j1/2||¢s;]| < oo. The suitable choice of k ensures

across i. The second part of Assumption 3.1(ii) rules out potential cointegration relation among x;; and
fP,. Assumption 3.1(iii) emphasizes that the cross-sectional dependence only comes from the unobserved
common factors. Assumption 3.1(iv) ensures that the factor loadings are independent of the generalization
of the error processes both over ¢ and across i.

Assumption 3.1 ensures the multivariate invariance principle for the partial sum process of w;;. That
is,

— Zw“ = B;(r) = BM;(Q;) as T — oo for all 4,

where B; = (By;, Bb,;, By, By) is a (1+p+r1+72) x 1 vector of Brownian motions with long-run covariance
matrix ;. We can also define the temporal variance ¥; = E(w;pw},) and the one-sided long-run covariance

matrix A; = Z;C:o E(wiong) =T, 4+ %; of {w;:}, where ; has the following partition

- Qo1 Qo Doz Qoa
O = Z BE(wijwl) =T, +T; +%; = 21, 22, 23 24

JR—— 31, i

Let S, 52, 53, and Sy denote respectively the 1 X (1+p+7), px (1+p+7),r1 X (1+p+7) and ro x (1+p+7),

selection matrices such that Syw;; = g, Sawi = €41, Szwir = AfY, and Sqw; = f5.

Assumption 3.2 (i) As N — oo, 2AYA? 5 ¥, > 0. maxi<;<y E|AY[2 < M for some ¢ > 4 and
AYAS = Op (NV/2).

(i) E||AfY]29e < M and E||fS,||?97¢ < M for some € > 0, ¢ > 4 and for all t. As T — oo,
& 23:1 I LY [ B3Bs and * ZtT:l I 0% 2 5244 > 0, where Bs is a ri-vector of Brownian motions
with long-run covariance matriz Q33 > 0.

(111) Let yn(s,t) = E(% Zfil Uipllis) and Egp = % Efil uituis—E(% vazl witis). Then maxi<s <7 N?
XElé| < M and T~V 3 3Ly llyw(s, )2 < M.

(iv) There exists a constant pmin > 0 such that P (mini<;<n infy fimin (Q1(f1) —2Q2(f1)) > ¢pmin) =
1 —o(N~1), where the inf is taken respect to fi such that 25 f{f1 = I,.

Assumption 3.1(i)-(iii) imposes standard moment conditions in the factor literature; see, e.g., Bai
and Ng (2002, 2004). The last condition in 3.1(i) indicates that the stationary factor loadings and the
nonstationary factor loadings can be only weakly correlated, which will greatly facilitate the derivation.
Assumption 3.1(iii) imposes conditions on the error processes {u;:}, which are adapted from Bai (2003)
and allow for weak forms of cross-sectional and serial dependence in the error processes. Assumption
3.1(iv) assumes @Q1(f1) — 2Q2(f1) is positive definite in the limit across ¢ when f; satisfies the restriction

% fif1 = I,. This assumption is the identification condition for §;, which is related to ASSUMPTION

10



A in Bai (2009, p.1241). Since f; is to be estimated, the identification condition for §; is imposed on the

set of fi satisfying the restriction %f{ fi=1,.

Assumption 3.3 (i) For each k =1, ..., Ko, Ny/N — 7, € (0,1) as N — 0.
(1) mini<pi<i ||a2 — a?” > ¢, for some fized c, > 0.
(iii) As (N, T) — oo, N/T? — ¢1 € [0,00), T/N? — ¢5 € [0,00).
(iv) As (N,T) = oo, Ay — 0, \TN~Y/1d22/ (log T)" ™ — o0, and d2.NY1T~1 (log )" — 0.

Assumption 3.3(i)-(ii) are borrowed from SSP. Assumption 3.3(i) implies that each group has an asymp-
totically non-negligible number of individuals as N — oo and Assumption 3.3(ii) requires the separability
of the group-specific parameters. Similar conditions are assumed in the panel literature with latent group
patterns, see, e.g., Bonhomme and Manresa (2015), Ando and Bai (2016), and Su et al. (2017). Assump-
tion 3.3(iii)-(iv) imposes conditions to control the relative rates at which N and T pass to infinity. Note
that N can pass to infinity at a faster or slower rate than 7. The involving of dr is due to the law of
iterated logarithm, such that dr = O(loglogT). One can verify that the range of values for A to satisfy
Assumption 3.3(iv) is A o T~ for a € (0, %).

3.2 Preliminary rates of convergence

~ N ~ 12 ~
Let b; = 3;—fY, oyt = min(vV'N,T), Cnr = min(VN,VT), 31 = & Zf\il bil| ,and Hy = (5 AVAY) (&Y f1)

lej]\l,T. The consistency of Bz and f1 is ensured by the following theorem.

Theorem 3.1 Suppose that Assumptions 3.1-3.2 hold. Then
(i) &5 (= 80) deiby i (B~ 87) = op (1),
(it) pr1 — Ppo|| = op(1),
(iii) 5% S 16: = B> = op(1),
(iv) 7|/ = fPHAll = Op(unr) + =0p(Cr)-

Theorem 3.1(i) establishes the weighted mean square consistency of {3;}. 3.1(ii) shows that the space
spanned by the columns of f1 and f are asymptotically the same. Given the weighted mean square
consistency and Assumption 3.2(iv), we can further establish the non-weighted mean square consistency
of 3; in 3.1(iii). As expected, Theorem 3.1(iv) indicates that the true factor f{ can only be identified up
to a nonsingular rotation matrix. Compared to Bai and Ng (2004) and Bai et al. (2009), our results allow
for both heterogeneous slope coefficients and unobserved stationary and nonstationary common factors.

The following theorem establishes the rate of convergence for the individual and group-specific estima-

tors and the estimated factors as well.

Theorem 3.2 Suppose that Assumptions 3.1-3.2 hold. Then
(i) % it |1Bi = B2 = Op(drT2),
(ii) Bi — B° = Op(di/*T=1 + ) fori=1,2,..,N,
(iii) (G, s &(K))f(oz(f, ey &%) = Op(drT™1) for some suitable permutation (G(1y, s Qi) Of (G .oy GKc),
(iv) T fi = [P HL|? = Op(N~! + d3T 7).
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Theorem 3.2(i)-(ii) establishes the mean-square and point-wise convergence of the slope coefficients 5;,
respectively. The usual super consistency of nonstationary estimators Bz is preserved if A = O(T~1) despite
the fact that we ignore the unobserved stationary common factors and allow for correlation between u;; and
(acit, fft). Theorem 3.2(iii) indicates that the group-specific parameters, o, ...,a?([), can be consistently
estimated. Theorem 3.2(iv) updates the convergence rate of the unobserved nonstationary factors in
Theorem 3.1(iv).

For notational simplicity, hereafter we simply write &y, for G as the consistent estimator of a%’s. Let
Gr=1{ie{1,2,..,N}: B3 =a} for k=1,...,K. Let Gy denote the group of individuals in {1,2, ..., N}

that are not classified into any of the K groups.

3.3 Classification consistency

In this subsection, we study the classification consistency. Define
EA’M\/TJ; = {Z € Gk|2 S G(]i} and FkNT,i = {Z € G2|’L S Gk},

wherei=1,....N and k = 1,...K°. Let Exny = UieG‘kEkNTi and Fynr = UieGkaNTi' The events Exnr
and Fyy7 mimic Type I and Type II errors in statistical tests. Following SSP, we say that a classification
method is individual consistent if P(Exn7:) — 0 as (N,T) — oo for each i € GY and k = 1,.... K,
and P(Funri) — 0 as (N,T) — oo for each i € G and k = 1,...,K. It is uniformly consistent if
P(UleEkNT) — 0 and P(U?ZlﬁkNT) —0as (N,T) — oo.

The following theorem establishes the uniform classification consistency.

Theorem 3.3 Suppose that Assumptions 3.1-3.3 hold. Then
(i) P(Uf2, Exnr) < 3202 P(Exnr) — 0 as (N, T) — oo,
(ii) P(UK Fynr) <SSR0 P(Finr) = 0 as (N, T) — oo.

Theorem 3.3 implies the uniform classification consistency— all individuals within a certain group, say
G%, can be simultaneously correctly classified into the same group (denoted G'k) w.p.a.l. Conversely, all
individuals that are classified into the same group, say Gk, simultaneously belong to the same group (GY)

w.p.a.l.
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3.4 The oracle properties, post-Lasso and Cup-Lasso estimators

In this subsection, we study the oracle properties of PPC-based estimators. To proceed, we add some

notations. For k =1, ..., K, we define

N
1 1
UkNT = Zl'iM 0 u; + f AOZ -— 'LL + f )\ Q5 y
/N, T ezc;ﬂ f1 ( 2 2 N = J 2 23 J
T T
BNt = [1{t =5} —ss1{s < t}] | Aoy,
A (X ‘f

_ 0
Bgnr2 = FT ZEC (1) Myo | Ay — Z)‘2gaw )

1€GY
1 T T
Vivr = i 3 %0100 DD (e (Vo) — (14t = ) = sk s < )] ) o (115"
ieq? t=1 s=1
1 & 1
+ Z Ec(z))1{ie Gy} — — Z aijEc(x}) p Mpou;
VNT N jean 1
1
+— Z [z; — Ec (mi)]/Mfffg/\gi,
NT ieGY

where Hts = ?{(f?,f?)_lflo‘sa Hps = 1 {t = S} — s, C=o (A07f0) 5 EC () = EC (|C) 5

ut uu ue
¢I (L) = ( (bl (L) ) = ( ¢l (L) (bl (L) )7 S = (laolxp)7 and S° = (0p><17lp>'

o3 (L) o5 (L) @5 (L)
Let
Qanra1 0 QonTik
QlNT:diag T2 Zfooxi7~-~7N T2 Z ‘TMfO:CZ and QQNT— R
i€eGY i€eGY
QanT, k1 - Q2NT.KK
where QanT ki = W Ziecg ZjeG? x;Mf?:vjaij for k,1=1,..., K. Let
Q11— Q211 —Q2,12 e —Q21K
—Qant21 Q12— Q222 ... Q22K
Qnt = QinT — Qant and Qo = . . ) i ,
—Q2,K1 —Q2,Kx2 oo Qintxk — Q2.KK

where Q11 = imy 00 §; Yeqo Fe (f BzzBéi) Q2 = iMoo iy Lieay Ljeay @i Fe (f Bz’le’j) ’
and Bzi =By, — fBZiB:/’) (f BSBé)_l Bs.

Let & = (G, ..., k). Let Unr = (Ulngy s Ukenr) s Byt = (Bings - Bienr) s Vr = Vi - Vienr)
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and Bynt = Bint,1+BinT,2. The following theorem reports the Bahadur-type representation and asymp-

totic distribution of vec(& — av).

Theorem 3.4 Suppose that assumptions 3.1-3.3 hold and VN = o(T). Let éy, be obtained by solving
(2.8). Then

(i) VNTvec(& — a®) = VDnQnwrUnt + 0p(1) = VDNQyr (Ve + Byr) + 0p(1),

(ii) VNTvec(& — a°) — VDNQNYByr -5 MN(0,limy 00 DyQg Q5" as (N, T) — oo,
where Dy :diag(Nﬁl, e N—]\;), Qo = lim(n 7y~ 00 OnT, and Qnr =Var(Vyr|C).

Theorem 3.4 indicates that Vyr and By7 are associated with the asymptotic variance and bias of
ay’s, respectively. Note that Bynt = Bint,1 + BinT,2, which indicates the two sources of biases. The
appearance of Byyr,1 results from the correlation between (z;, f1;) and u; and the serial correlation
among the innovation process {w;;}. Apparently, the presence of the unobserved nonstationary factors
11, complicates the formula for Byy7,1 through the term sqs(= f(fY )71 f2). The second source of
asymptotic bias is due to the unobserved stationary factors fgt so that Bynr,2 = 0 if fgt is absent from the
model. In the special case where neither f{, nor fJ, is present in the model, we have Byt = By, NT,1 =
ﬁ Zi€G2 Ay ;. This is the usual bias term for panel cointegrating regression that is associated with
the one-sided long-run covariance; see Phillips (1995) and Phillips and Moon (1999). Note that the ith
element of Viyr is independent across 4 conditional on C and E¢ (Vi7) = 0. This makes it possible for us
to derive a version of conditional CLT for Vi and establish the limiting distribution of our estimators &
in 3.4(ii).

As we show in the proof of Theorem 3.4, the asymptotic bias term Byz is of O(y/Ny), which implies
the T-consistency of the C-Lasso estimators d. In order to obtain they/NT-convergence rate, we call

upon various procedures to remove the asymptotic bias by constructing consistent estimates of Byr.

3.4.1 The fully modified procedure

In this subsection, we first obtain the estimates of unobserved stationary factors f9, from (2.10). Then
we employ the fully modified procedure of Phillips and Hansen (1990) and Phillips (1995) to make bias-
corrections for endogeneity and serial correlation. Below we consider the three types of bias-corrected
estimators: the bias-corrected post-Lasso estimator d}gk, the fully-modified post-Lasso estimator dg:,
and the fully-modified Cup-Lasso estimator dg‘kp .

Following Phillips and Hansen (1990), we first construct consistent time series estimators of the long-run

covariance matrix €; and the one-sided long-run covariance matrix A; by

T-1 . T-1 .
~ i A N ] &
j=—T+1 7=0

where w(-) is a kernel function, H is the bandwidth parameter, and I';(j) = T Zz:lj Wity W, with w; =
(Tie, Ay, Af{t, fét)’. We partition Q; and A; conformably with €.

We make the following assumption on the kernel function and bandwidth.

14



Assumption 3.4 (i) The kernel function w(-): R — [—1,1] is a twice continuously differentiable symmet-
ric function such that [*_ w(z)?*dz < oo, w(0) =1, w(z) = 0 for |z > 1, and lim|,_; w(z)/(1 — |z[)? =
¢ >0 for some q € (0,00).

(ii) As (N,T) — oo, N/H?*? — 0 and H/T — 0.

The endogeneity correction is achieved by modifying the variable y;; with the follow transformation
At A -1
Uiy = Yit — 12, 095 ; At (3.2)
This would lead to the modified equation
G = B wa + MNifY + NS + 45

where ﬂj; = Ut — Ql2,i92_21iA$it- Define

Al =Arai — Q2 Q05 Ans . (3.3)

K ,
By Phillips (1995), (3.2) and (3.3) give correction for the endogeneity and serial correlation, respectively.
Therefore, we can obtain the bias-correction post-Lasso estimator 6%?, fully modified post-Lasso esti-

mator dfém, and the updated estimators of f; and f, by iteratively solving (3.4)-(3.7), such that
k

< be N 1 1 (5 A
vec (a%) = vec (&) — WN/DNQNIT (BNT,1 + BNT,Q) , (3.4)
-1
dg’: = Z J,‘;Mf-l.’l,'l Z x;Mflgﬁj_ -T Nk: (BI—C’_NT,I + BkNTQ) ) (35)
ieGy i€Gr
i K
o 1 . R R . N
fVint = | v SN i — widg, )@ — widg,)' | fi, (3.6)
L k=1ic@Gy
i K
o 1 R . PPN R R PR N
f2Vanr = | o5 SN i — widg, — Hd) (@ — widg, — fid)| fa, (3.7)
L k=1;cG.
where
1 T T
BinTtn = JNT Z (Z Z [1{t =5} —2:1{s < t}]> ACIR
nen t=1 s=1
. 1

T T
Bivia = 737 (ZZu{t=s}—m{s<t}1> A
1

T T
Bynto2 = JN.T Z (111 Z Z [1{t =5} —24,1{s < t}]) A24,¢5\2717

s = f{t( A{fl)_lfls = f{tfls/TQ and j\gi = doi — % Z;\le S\deij. We obtain the fully modified Cup-Lasso



estimators dg”p by iteratively solving (2.8), and (3.5)-(3.7), where we update the group classification results
k
in each iteration.
~fm _ ~fm ~fm ~ACUpP __ [ ACUD ~cup . s g . . .
Let ap" = (aél s e aéK) and & " = (cué1 s eees aGK). We establish the limiting distribution of the
bias-correction post-Lasso estimators dg, the fully modified post-Lasso estimators dfém and the Cup-Lasso

estimators dgfp by the following theorem.

Theorem 3.5 Suppose that assumptions 3.1-3.4 hold. Let dlg be obtained by iteratively solving (3.4),
(3.6)-(3.7), c”xgm be obtained by iteratively solving (3.5)-(3.7) and o‘zg‘p be obtained by iteratively solving
(2.8) and (3.5)-(3.7). As (N, T) — oo with VN = o(T), we have

(i) VNTvec(&% — a) % MN(0,limy— o0 D@y Q0Q5 ),

(ii) VNTvec(&" — a®) 5 MN(0,limy o Dy Q5 Q5 Q5h),

(iii)VNTvec(657 — o) 5 MN(0,limy 0c DnQg ' 25 Qp),

where Qf = limyx 700 Q]J(,T and Q]J(,T = Var(V§T|C).

All three types of estimators achieve v NT consistency and have a mixture normal limit distribution.
One can construct the asymptotic t-tests and Wald-tests as usual provided one can obtain consistent

estimates of Qg and Qg . The procedure is standard given the estimated group structure.

3.5 Estimating the number of unobserved factors

In the previous subsections, we assume that the numbers of nonstationary and stationary factors, 1 and ro,
are known. In this subsection, we propose two information criteria to determine the number of unobserved
factors before the PPC estimation procedure. Let r; denote a generic number of nonstationary factors.
Let r denote a generic total number of nonstationary and stationary factors. We now use ¥ and r° to
denote their true values, which are assumed to be bounded above by a finite integer ryax.

Bai et al. (2009) find that it is not necessary to distinguish I(0) and I(1) factors when one tries to
determine the total number of factors based on the first differenced model. After the first differencing,
(2.3) takes the form

Ay = BY Ay + XA + Aug, t=2,..,T, (3.8)

0 is unknown, we start with a model with r

where e.g., Ayt = Yit — Yit—1. Since the true dimension r
unobservable common factors. We now write the factors and factor loadings respectively as f; and A7,
where the superscipt r highs the dimension of the underlying factors or factor loadings. Let G" = Af"
be a matrix of (T'— 1) x r unobserved differenced factors with a typical row given by (G7)" = (Af7)". We

consider the minimization problem

N T
Ar o Ar | . 1 Al !\ 2
{G A }—argArgglrmj;;(Ayn—@A%t - NG,

st. G"G"/T = I, and A" A" is diagonal,

where G" = (GY,...,Gr)', A" = (5\{’,...,5\%)’, and 3;’s are obtained from the model with 71 = ruyax

nonstationary factors. It is easy to show that Bi’s are T-consistent, which suffices for our purpose. It is
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well known that given G", we can solve A" from the least squares regression as a function of G". But we
will suppress the dependence of A” on G” and define V; (r, G") = o7 vazl Zthz (Ayss — Bl Az — NG

Following Bai and Ng (2002), we consider the following information criterion
10 (r) = log Vi (r,G") +7g1(N,T), (3.9)

where g1 (N, T) is a penalty function. Let # = argming<,<,,,,. [C1(r). We add the following assumption.
Assumption 3.5 As (N,T) — oo, g1(N,T) — 0 and C%191(N,T) — oo, where Cnr = min(v'N, VT).

Assumption 3.5 is common in the literature. It requires that g; (N, T) pass to zero at certain rate so
that both over- and under-fitted models can be eliminated asymptotically.

The following theorem demonstrates that we can apply IC;(r) to consistently estimate Y.

Theorem 3.6 Suppose that Assumptions 3.1-3.8 and 3.5 hold. Then P(# =1°) — 1 as (N,T) — o0

Theorem 3.6 indicates that we can determine the total number of factors r°

ICl(T).

As we have discussed in Section 3.4, ignoring the unobserved stationary factors will not affect the

consistently by minimizing

consistency of slope coefficient estimator, but generate a bias term that is asymptotically non-negligible.
For this reason, it is important to distinguish between nonstationary and stationary factors. Fortunately,
it is possible to estimate the number of unobserved nonstationary factors, 7, consistently based on the
level data. Once we obtain the consistent estimate of r¥, we can also obtain the consistent estimate of the
number of unobserved stationary factors, r9, based on Theorem ??.

Let f{* be a matrix of T x 71 nonstationary factors and A]} be an r1 x 1 vector of nonstationary factor

loadings. Given the preliminary T-consistent estimators Bi’s, we consider the following minimization

problem
;N
{Fr A} = ang min oSS e Bl = A A
AL i=1 t=1
s.t. f{Vf/T? = I, and A™A™is diagonal.
Given fI* = (fI',..., fra)', we can solve A = (\7Y',.., A7) as a function of f* through the least

squares regression. But we suppress the dependence of A™ on ff * and define

N T
e 1 3 NEig
Va(re, fi') = ﬁ;; Yir — Biwa — ANV f1H)2
We consider the information criterion:
IC5(r1) = log Va(r1, f{*) + r1g2(N, T), (3.10)

where g2(N,T) is a penalty function. Let #; = argming<,, <r,.,.. /C2(r1). We add the following condition.
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Assumption 3.6 As (N,T) — oo, ga(N, T)% — 0 and g2(N,T) = 00

Apparently, the conditions on go(N,T) are quite different from the conventional conditions for the
penalty function used in information criteria in the stationary framework (e.g., g1(N,T) in Assumption
3.5). In particular, we now require that go(N,T) diverge to infinity rather than converge to zero as
in Assumption 3.5. The intuition is that the mean squared residual, V5(rq, ff 1), does not have a finite
probability limit when the number of nonstationary common factors is under-specified. In fact, we can
show that logl%TVg(rl, f{l) converges in probability to a positive constant when 0 < r; < r{. On the
other hand, we have Va(ry, fI*) — Vg(r?,flr?) = Op(1) when ry > r9.

0

The following theorem suggests that the use of ICs(r1) helps to determine r{ consistently.
Theorem 3.7 Suppose that Assumptions 3.1-3.3 and 3.6 hold. Then P(f1 =7r{) — 1 as (N,T) — oo

In the simulations and applications below, we simply follow Bai and Ng (2002) and Bai (2004) and set

N+T
gl(NvT) =

In (C’?VT) and g2(N,T) = arg1 (N, T),

where ar We first estimate the total number of unobserved factors by 7 based on the first-

_ T
~ 4loglog(T) "
differenced model, and then estimate the number of unobserved nonstationary factors by 7; based on the

level model. The estimator of 7’8 is then given by 79 = 7 — 71.

3.6 Determination of the number of groups

In this subsection, we propose a BIC-type information criterion to determine the number of groups, K.
We assume that the true number of group, Ky, is bounded from above by a finite integer K.x. We now

consider the PPC criterion function

2\>

QNrAB, o, f1) = Qnr(B. fr) +

N K
> IT 15 axll
1=1 k=1

where 1 < K < K. By minimizing the above criterion function, we obtain the estimates BZ(K yA)s
ar (K, N), 5\1¢(K, A) and flt(K, A) of BY,a, A2 and f7,, where we make by the By, éus, A1 and fi; on (K, )
explicit. Let Gi(K,\) = {i € {1,2,..,N} : Bi(K,\) = ax(K,\)} for k = 1,.., K, and G(K,\) =

{GL(K,N),...,Gr (K, \)}. Let & AC"”(K N denote the Cup-Lasso estimate of o). Define

K
1 R . R 2
- NT ) ) [y” - O‘CWK it = Ak, N fre(K, )\)] :

k=1ieGy,(K,\) t=1

Following SSP and Lu and Su (2016), we consider the following information criterion
IC3(K,\) =1log V3(K) + pKgs(N,T), (3.11)

where g3(N,T) is a penalty function. Let K (\) = argmin<g<x,.. GIC(K,\).
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Let ) = (Gk,....,GKk i) be any K-partition of the set of individual index {1,2,...,N}. Define
620 = T S DicCrn Sy — dgkait — MK, N fo(K, N2, where dg}i)k is analogously defined
as &g‘kp(K)\) with G(K,\) being replaced by Gk . Let o =plimn 1)—00 77 PR Ziecg Sy —
Yy — N f212. Define

(NT)~'/? when there is no unobserved common factor,
UNT = 5;,} when there are only unobserved nonstationary common factors,

C](,% when there are both unobserved nonstationary and stationary common factors.

vyt indicates the effect of estimating the nonstationary panel on the use of IC3(K, \) under different
scenarios.

We add the following assumption.

Assumption 3.7 (i) As (N,T) — oo, miny<k < x, inf g g, 63(10 B2 o3.
(ii) As (N,T) — o0, g3(N,T) — 0 and g3(N,T)/vZ — oo.

Assumption 3.6(i) requires that all under-fitted models yield asymptotic mean square errors larger than
o2, which is delivered by the true model. Assumption 3.6(ii) imposes the typical conditions on the penalty
function g3(N,T) : it cannot shrink to zero either too fast or too slowly.

The following theorem justifies the validity of using IC3 to determine the number of groups.

Theorem 3.8 Suppose that Assumption 3.1-3.4 and 3.7 hold. Then P(K(\) = Ko) = 1 as (N,T) — oo.

Theorem 3.8 indicates that as long as A satisfies Assumption 3.3(iv) and g3(V,T) satisfies Assumption

3.6(ii), we have inf1<x<r,.. k2K, IC3(K,\) > IC5(Ko, A) as (N,T) — oco. Consequently, the minimizer

max

of IC5(K, \) with respect to K is equal to Ky w.p.a.l for a variety choices of .

4 Monte Carlo Simulations

In this section, we evaluate the finite sample performance of the C-Lasso, bias-corrected post-Lasso, fully-
modified post-Lasso and Cup-Lasso estimators and that of the information criteria for determining the

number of groups and the number of common factors.

4.1 Data generating processes

We consider four data generating processes (DGPs) that cover the cases of both stationary and nonsta-
tionary unobserved common factors. Throughout these DGPs, the observations in each DGP are drawn
from three groups with Ny : Ny : N3 = 0.3 : 0.4 : 0.3. There are four combinations of the sample sizes with
N = 50,100 and T = 40, 80.

DGP1 (Strictly exogenous nonstationary regressors and unobserved stationary common factors) The
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observations (y;t, z},) are generated from the following model,

Yit = Bl + c(Ny; for) + wit (4.1)

Tit = Tig—1 + Eqt

where x;; = (214, 2:¢)" s a 2 x 1 vector of nonstationary regressors, fo; is a 2 X 1 vector of stationary
common factors. Let w;z = (ug, e}y, f4,) ~ ii.d. N(0,I5). The factor loadings Ag; are i.i.d. N((1,1),I3)
for i =1,..., N. We use c to control the importance of unobserved common factors and let ¢ = 0.5. The

long-run slope coefficients 3; exhibits the group-structure in (2.2) for K = 3 and the true values are

o o o [({04) (1) (16
(o1, 02,05) = ((1.6) ’ (1) ’ <0.4)> '

DGP2 (Weakly dependent nonstationary regressors and unobserved nonstationary common factors) The

observations (y;t, 5, f1;) are generated from the following model,

Yir = BY i + (N f1e) + wi
Tit = Tig—1 + €4t (4.2)

fie = fie—1 + 1

where x;; = (2141, 24¢)" is a 2 X 1 vector of nonstationary regressors, f1; is a 2 x 1 vector of nonstationary
common factors. The idiosyncratic errors w;; = (ug,eh,, Af1;) are generated from a linear process:
Wi = E;io Vijvi—j, where vy are iid. N(0,I5), vy = j3° % QY2 QY2 is the symmetric square root
of , where ;,,, = 0.2 for I #m, Q=1 for ]l =2,3,4,5 and 77 = 0.25. Let ¢ = 1. The factor loadings
of nonstationary common factors are i.i.d. Ay; ~ N((1,1)’,I5). The true coefficients of 8; are the same in
DGP1.

DGP3 (Weakly dependent nonstationary regressors and mixed unobserved stationary and nonstationary

common factors) The observations (yi, z;, f1;) are generated from the following model,

Yit = Bizie + c1(N f1e) + ca(Ny; far) + wit
Tit = Tip—1 + Eit (4.3)

fie = fu—1+ 1

where z;; = (214, %2:¢) is a 2 X 1 vector of nonstationary regressors, fi; is a 2 x 1 vector of non-
stationary common factors, and f; contains one stationary common factors. The idiosyncratic errors
wit = (Wig, €y, Af1y, f4,) are generated from a linear process: w;; = Z;’io ;;; t—; where vy are i.i.d.
N(0,Ig), 45 = 5735 « Q12 O1/2 is the symmetric square root of Q where Q,, = 0.2 for [ # m, Q1; = 0.25,
and Q = 1for I = 2,...,6. Let ¢; = 1 and ¢ = 0.5. The factor loadings A\; = (A\};, A};)" are i.i.d.
A1i ~ N((1,1,1), I3). The true coefficients of 3; are the same in DGP1.

DGP4 (Weakly dependent nonstationary regressors and mixed unobserved stationary and nonstationary
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Table 1: Frequency for selecting r = 1,2, ..., 5 total factors and r; = 0,1, ...,4 nonstationary factors

Differenced Data Level Data
N T =1 r=2 r=3 r=4 r=5 rn=0 rmn=1 rn=2 rn=3 rn=4
DGP1 50 40 0 1.000 0 0 0 1.000 0 0 0 0
50 80 0 1.000 0 0 0 1.000 0 0 0 0
100 40 0 1.000 0 0 0 0.998  0.002 0 0 0
100 80 0 1.000 0 0 0 1.000 0 0 0 0
DGP2 50 40 0 1.000 0 0 0 0 0.004 0.964 0.032 0
50 80 0 1.000 0 0 0 0.004 0.016 0.976  0.004 0
100 40 0 1.000 0 0 0 0 0.002  0.958  0.040 0
100 80 0 1.000 0 0 0 0 0.002 0976  0.022 0
DGP3 50 40 0 0 1.000 0 0 0.018 0.088  0.894 0 0
50 80 0 0 1.000 0 0 0.006 0.026  0.968 0 0
100 40 0 0 1.000 0 0 0 0.008 0.972  0.020 0
100 80 0 0 1.000 0 0 0 0.012  0.988 0 0
DGP4 50 40 0 0 0.998 0.002 0 0.002  0.060  0.938 0 0
50 80 0 0 1.000 0 0 0.004 0.016  0.980 0 0
100 40 0 0 1.000 0 0 0 0.012  0.988 0 0
100 80 0 0 1.000 0 0 0 0.008  0.992 0 0

common factors) The settings of DGP4 is the same with those of DGP3, except for allowing weakly
correlation among factor loadings \; ~ i.i.d. N((1,1,1), I3 * Qs), where Qa2 ,, = 2/V/N for | # m.

In all cases, the number of replications is 500.

4.2 Estimate number of unobserved factors

In this subsection, we assess the performance of two information criteria proposed in Section 3.5 before
determining the number of group and PPC-based estimation procedure. We choice the BIC-type penal-
ty function ¢\ (N,T) = 5L
92(N,T) =

ﬁ x g1(N,T) to determine the number of unobserved nonstationary factors. Based
g(log(T))
on 500 replications for each DGP, Table 1 displays the probability that a particular factor size from 0 to

log(min(N,T)) to determine the total number of unobserved factors and

5 is selected according to the information criteria proposed for both differenced data and level data. In
differenced data, when T" = 40, the probabilities are more than 99% in all cases and tend to unit when
T = 80 for selecting the total number of unobserved factors. The information criterion for level data
performs as good as that in difference data when T'= 80. When T=40, the probabilities are at least 90%
in all cases. The simulation results show that our two information criteria in both differenced data and

level one works fairly well.

4.3 Determine the number of groups

The results from previous subsection show that the information criteria are useful even though we have
no information of latent group structures. This section focuses on the performance of the information

criterion for determining the number of groups, where we assume that the number of unobserved factors
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Table 2: Frequency for selecting K=1,2,...,6 groups

N T 1 2 3 4 5 6
DGP1 50 40 0 O 0.9860 0.0140 0 0
50 80 0 0 0.9940 0.0060 0 0
100 40 0 O 0.9700 0.0280 0 0.0020
100 80 0 0O 1.0000 0 0 0
DGP2 50 40 0 0 1.0000 0 0 0
50 80 0 0 1.0000 0 0 0
100 40 0 0 1.0000 0 0 0
100 80 0 0 1.0000 0 0 0
DGP3 50 40 0 O 0.9760 0.0180 0.0060 0
50 80 0 0 0.9980 0.0020 0 0
100 40 0 0 0.9740 0.0240 0.0020 0
100 80 0 0 1.0000 0 0 0
DGP4 50 40 0 O 0.9920 0.0060 0.0020 0
50 80 0 0 1.0000 0 0 0
100 40 0 0 0.9900 0.0100 0 0
100 80 0 0 1.0000 0 0 0

are known. Here the penalty function p(N,T) = 1 x log(min(N,T))/min(N,T), which satisfies the two
restrictions proposed in Theorem 3.9. Due to space limitations, we report outcomes under the tuning
parameter A = ¢y x T—3/% where ¢y = 0.1. Based on 500 replications for each DGP, Table 2 displays the
probability that a particular group size from 1 to 6 is selected according to the information criterion. The
true number of group is 3. When N = 50 the probabilities are more than 99% in all cases and tend to

unit when T=80.

4.4 Classification and point estimation

In this subsection, we test the performance of classification and estimation when we have prior knowledge
of the number of groups and that of unobserved factors. Table 3 and Table 4 report classification and
point estimation results from 500 replications for each DGP. As shown in Table 3 and Table 4, we set
the tuning parameter in the objective function (2.8) A = ¢y X T—3/* and choose a sequence of increasing
constants of ¢y = (0.025,0.05,0.1,0.2)! to test the sensitivity of classification and estimation performance.
Here we only report the performance results for the first coefficient oy = {Oq,k}kK:Ol in each model. In
general, the outcomes are found robust over specified range of constants. Column 4 and 7 report the
percentage of correct classification of the N units, calculated as + 22{:"1 el 1{B) = al}, averaged
over the 500 replications. Column 5-6 and 8-9 summarize the estimation performance, such as root-mean-
squared error (hereafter, RMSE), and bias. For simplicity we define weighted average RMSE and bias,
as % ZkK:‘Jl N RMSE(& 1) with & the same as bias. The estimate of the long-run covariance matrix is
based on Fejer kernel with bandwidth set at 10. Results of other kernels (quadratic spectral kernel and

Parzen kernel) are not reported, there are no essential differences for most cases. For comparison purpose,

1Due to space limitation, we only report the results when cy = (0.1,0.2). The rest results are available upon request.
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we report the results of corresponding statistics of the C-Lasso, bias-corrected post-Lasso, fully-modified
post-Lasso, Cup-Lasso, and oracle estimators. The oracle estimator utilizes the exact group identity G?,
which is infeasible in practice.

For classification results, the correct classification percentage approaches 100% when T' increases. The
results with different c)’s are quite similar, indicating the robustness of our algorithm to the choice of
tuning parameter. In particular, we iteratively minimize the PPC objective function to obtain the Cup-
Lasso estimators. The correct classification percentage is higher than that of C-Lasso and post-Lasso
estimators in all cases. For estimation performance, the RMSE, bias, and coverage of post-Lasso and Cup-
Lasso estimators approach that of oracle ones in DGP1. Since we only introduce stationary factors and
strictly exogenous nonstationary regressors, there is no asymptotic bias coming from the endogeneity and
serial correlation. The RMSE and coverage of C-Lasso estimators are poor due to ignoring the unobserved
stationary factors in PPC-based estimation procedure. In DGP2 and DGP3, the performance of C-Lasso
estimator is poorer due to the additional sources of non-negligible bias from the endogeneity and serial
correlation. And we show that the fully modified procedure work better compared to direct bias-correction
procedure. The performance of Cup-Lasso estimators is better than that of post-Lasso ones due to updated
group classification results. In general, the finite sample performance of the Cup-Lasso estimators is close
to that of the oracle ones, which empirically confirms oracle efficiency of the Cup-Lasso estimators. In

practice, we recommend Cup-Lasso estimators for estimation and inference.

5 Empirical Application: Growth Convergence Puzzle

Many researchers have explored the behavior of economic growth across multiple countries. The main
question in this literature is whether economies exhibit convergence. Here we study the heterogeneous
behavior of convergence through the channel of technology changes. The benchmark model is the interna-
tional R&D spillovers model, proposed by Coe and Helpman (1995), where they regress the total factor
productivity (TFP) on domestic R&D stock and foreign R&D stock. Their work suggests that the inter-
national R&D spillovers are some forces toward convergence through the channel of technology changes.
There are two potential problems in their work. First, even though it is commonly accepted that there are
multiple steady states for convergence across economies in theoretical growth model, we cannot empirically
identify the heterogeneous behavior of convergence. In addition, they haven’t account for the unobserved
common patterns across countries. Since our PPC-based estimation method simultaneously accounts for
the unobserved heterogeneity and cross-sectional dependence, it gives us a purely data-driven approach to
study the heterogeneous behavior in economies’ convergence. Furthermore, technology change is the main
source of economies’ growth. We specify the channel of convergence through technology changes by rees-
timating CH2009 dataset. Comparing to CH model, we allow for heterogeneous parameters and consider
the unobserved common patterns across countries. Specifically, we impose the latent group structures on
the long-run relations between technology changes, domestic R&D stock, and foreign R&D stock. These
heterogeneous long-run relations explain the puzzle of economies convergence—some countries may fail to

convergence in a long run.
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Table 3: Classification and point estimation of o for DGP1 and DGP2

Cca 0.1 0.2
N T % Correct  RMSE Bias % Correct  RMSE Bias
specification specification

DGP1

50 40 C-Lasso 99.68 0.0137  0.0049 99.70 0.0130  0.0047
50 40 postbc—LaSSO 99.68 0.0130  0.0003 99.70 0.0129  0.0002
50 40 postfm—LaSSO 99.68 0.0129  0.0004 99.70 0.0128  0.0003
50 40 Cup-Lasso 99.68 0.0126  -0.0002 99.70 0.0126  -0.0002
50 40 Oracle - 0.0126  -0.0002 - 0.0126  -0.0002
50 80 C-Lasso 100 0.0081 0.0031 100 0.0077  0.0028
50 80 postbC-LaSSO 100 0.0070  0.0003 100 0.0070  0.0003
50 80 postfm-Lasso 100 0.0069 0.0004 100 0.0069 0.0004
50 80 Cup-Lasso 100 0.0069  0.0004 100 0.0069  0.0004
50 80 Oracle - 0.0069  0.0001 - 0.0069  0.0001
100 40 C-Lasso 99.69 0.0109 0.0054 99.73 0.0101 0.0046
100 40 postbC-Lasso 99.69 0.0091 0.0007 99.73 0.0087 0.0004
100 40 postfm—LaSSO 99.69 0.0090  0.0007 99.73 0.0086  0.0004
100 40 Cup-Lasso 99.69 0.0090  0.0007 99.73 0.0086  0.0004
100 40 Oracle - 0.0087 -0.0001 - 0.0087 -0.0001
100 80 C-Lasso 100 0.0062  0.0032 99.99 0.0058  0.0029
100 80 postbc—Lasso 100 0.0046  0.0005 99.99 0.0046  0.0005
100 80 postfm—Lasso 100 0.0046  0.0005 99.99 0.0046  0.0005
100 80 Cup-Lasso 100 0.0046  0.0005 99.99 0.0046  0.0005
100 80 Oracle - 0.0046  0.0004 - 0.0046  0.0004

DGP2

50 40 C-Lasso 97.68 0.0654  0.0146 97.53 0.0743  0.0146
50 40 postbC—Lasso 97.68 0.0405  0.0048 97.53 0.0430  0.0048
50 40 postfm—Lasso 97.68 0.0405  0.0042 97.53 0.0430  0.0041
50 40 Cup-Lasso 100 0.0094  0.0004 100 0.0094  0.0004
50 40 Oracle - 0.0094  0.0004 - 0.0094  0.0004
50 80 C-Lasso 99.21 0.0233  0.0047 99.19 0.0254  0.0047
50 80 postbc—LaSSO 99.21 0.0195 -0.0004 99.19 0.0195 -0.0007
50 80 postfm—LaSSO 99.21 0.0194  -0.0005 99.19 0.0194  -0.0009
50 80 Cup-Lasso 100 0.0047 -0.0001 100 0.0047 -0.0001
50 80 Oracle - 0.0047  -0.0001 - 0.0047 -0.0001
100 40 C-Lasso 97.45 0.0500  0.0135 97.37 0.0543  0.0119
100 40 postbC-Lasso 97.45 0.0601  -0.0011 97.37 0.0584 -0.0010
100 40 postfm-Lasso 97.45 0.0601 -0.0016 97.37 0.0585  -0.0015
100 40 Cup-Lasso 100 0.0069 -0.0016 100 0.0069 -0.0016
100 40 Oracle - 0.0069 -0.0016 - 0.0069 -0.0016
100 80 C-Lasso 99.25 0.0181 0.0061 99.23 0.0194 0.0057
100 80 postbc-LaSSO 99.25 0.0172  0.0012 99.23 0.0170  0.0010
100 80 postfm—Lasso 99.25 0.0171 0.0010 99.23 0.0170  0.0010
100 80 Cup-Lasso 100 0.0032 -0.0001 100 0.0032 -0.0001
100 80 Oracle - 0.0032  -0.0001 - 0.0032  -0.0001
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Table 4: Classification and point estimation of o for DGP3 and DGP4

Cca 0.1 0.2
N T % Correct  RMSE Bias % Correct ~ RMSE Bias
specification specification

DGP3

50 40 C-Lasso 96.97 0.0563  0.0118 96.87 0.0632  0.0101
50 40 post®-Lasso 96.97 0.0522  0.0029 96.87 0.0516  0.0022
50 40 post’™-Lasso 96.97 0.0524  0.0023 96.87 0.0519  0.0016
50 40 Cup-Lasso 99.85 0.0145 0.0015 99.81 0.0146  0.0015
50 40 Oracle - 0.0150  0.0014 - 0.0150  0.0014
50 80 C-Lasso 99.15 0.0297  0.0056 99.11 0.0327  0.0047
50 80 post®-Lasso 99.15 0.0275  0.0015 99.11 0.0265  0.0013
50 80 postfm-LaSSO 99.15 0.0274  0.0015 99.11 0.0265  0.0013
50 80 Cup-Lasso 100 0.0073  0.0010 100 0.0073  0.0010
50 80 Oracle - 0.0073  0.0006 - 0.0073  0.0006
100 40 C-Lasso 98.65 0.0299  0.0119 98.43 0.0300  0.0110
100 40 postbC-Lasso 98.65 0.0214  0.0028 98.43 0.0222  0.0035
100 40 postf™-Lasso 98.65 0.0213  0.0023 98.43 0.0222  0.0031
100 40 Cup-Lasso 99.93 0.0108  0.0020 99.83 0.0110  0.0021
100 40 Oracle - 0.0109  0.0018 - 0.0109 0.0018
100 80 C-Lasso 99.05 0.0194  0.0060 99.01 0.0208  0.0053
100 80 post®-Lasso 99.05 0.0181  0.0007 99.01 0.0183  0.0007
100 80 post!™-Lasso 99.05 0.0180  0.0006 99.01 0.0182  0.0005
100 80 Cup-Lasso 100 0.0054  -0.0002 100 0.0054  -0.0002
100 80 Oracle - 0.0054 -0.0003 - 0.0054 -0.0003

DGP4

50 40 C-Lasso 96.92 0.0566  0.0110 96.77 0.0634  0.0099
50 40 post®*-Lasso 96.92 0.0508  0.0018 96.77 0.0498  0.0008
50 40 post!™-Lasso 96.92 0.0511  0.0013 96.77 0.0501  0.0008
50 40 Cup-Lasso 99.91 0.0130  0.0014 99.87 0.0130  0.0015
50 40 Oracle - 0.0134 0.0014 - 0.0134 0.0014
50 80 C-Lasso 98.99 0.0299  0.0055 98.93 0.0331  0.0045
50 80 post®-Lasso 98.99 0.0277  0.0009 98.93 0.0263  0.0013
50 80 postf™-Lasso 98.99 0.0277  0.0008 98.93 0.0263  0.0013
50 80 Cup-Lasso 100 0.0066  0.0010 100 0.0066  0.0010
50 80 Oracle - 0.0065  0.0007 - 0.0065  0.0007
100 40 C-Lasso 98.77 0.0291  0.0123 98.53 0.0295 0.0113
100 40 post®-Lasso 98.77 0.0205  0.0032 98.53 0.0217  0.0037
100 40 postfm-Lasso 98.77 0.0204  0.0027 98.53 0.0216  0.0032
100 40 Cup-Lasso 99.94 0.0102  0.0020 99.87 0.0103  0.0021
100 40 Oracle - 0.0103  0.0017 - 0.0103  0.0017
100 80 C-Lasso 99.04 0.0197  0.0059 99.02 0.0211 0.0053
100 80 post®-Lasso 99.04 0.0181  0.0009 99.02 0.0183  0.0008
100 80 post!™-Lasso 99.04 0.0180  0.0007 99.02 0.0183  0.0007
100 80 Cup-Lasso 100 0.0050 -0.0002 100 0.0050  -0.0002
100 80 Oracle - 0.0050  -0.0002 - 0.0050  -0.0002
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The innovation of Coe and Helpman’s model is to explain TFP not only by domestic R&D stock but
also foreign R&D stock from trading partners. In growth literature, TFP is the Solow residual, and often

regarded as a measure of technology changes, defined by
log(TFP) =1log(Y) — flog(K) — (1 —0)log(L), (5.1)

where Y is the final output, L is the labor force, K is the capital stock, and 6 is the share of capital in GDP.
It is well accepted that domestic R&D investment is one of the main sources of the TFP by innovation and
improving the qualities of goods. Coe and Helpman (1995) argue that international trade in intermediate
goods enables a country to gain access to all inputs available in the rest of the world. In this aspect,
the foreign R&D stocks from a country’s trading partners also affect this country’s TFP. They establish

estimation equation of the TFP as follow,
log(Fi) = pd 4 Bl log(sd) + 5{ log(s{t) + Uy,

where i is the country index, F is the total factor productivity, s is the real domestic R&D capital stock,
s/ is the real foreign R&D capital stock. We follow their specification on the international R&D spillovers

model and introduce the unobserved common patterns, such that
log(Fir) = B{ log(sfy) + 5] log(s],) + Xi e + uar, (Eql)

where e;; is cross-sectionally dependent with unobserved common patterns. Here we consider (3¢, Bif ) as
the long-run cointegrating relations with latent group structures. The unobserved common patterns are
modeled by the multi-factor structure as e;; = N, f; +u;; and the fixed effects ,u? are captured by the factor
structure.
In addition, we consider logarithm of human capital (H) as an additional explanatory variable, see
(Eq2)
log(Fiy) = 87 log(sf) + 8] log(s},) + Bl log(h) + A, fi + war- (Eq2)

The human capital accounts for innovation outside the R&D sector and other aspects of human capital not
captured by formal R&D. Engelbrecht (1997) suggests that human capital is found to affect TFP directly
as a factor of production, and as a channel for international technology diffusion associated with catch-up
effects across countries.

We obtain CH2009 datasets from 1971-2004 for 24 OECD countries. The bilateral import weighted
R&D S/~ from trading partners is a measure of foreign R&D stock. Human capital is measured by year

of schooling. See Coe and Helpman’s appendix for detailed definition and construction of these variables.

5.1 Estimation Results

Before the PPC-based estimation procedure, we first employ information criteria in Section 3.5 to es-

timate the number of unobserved factors. We set penalty function as g;(N,T) = 5+ log(min(N,T))

and gg(N, T) =

W x g1(N,T). The results for both differenced and level data indicates one unob-
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Table 5: The information criterion for Ky (Eql & Eq2)

Eql
K/cx 0.05 0.1 0.2 0.4 0.6
K=1 -4.6315 -4.6584 -4.6812 -4.6834 -4.6794
K =2 -4.8073 -4.8760 -4.7356 -4.8319 -4.8332
K =3 -5.0084 -5.0942 -5.2130 -5.2221 -5.0992
K =4 -4.8985 -4.9708 -5.0092 -4.6353 -4.9279
K =5 -4.8598 -4.8240 -4.4272 -4.9821 -4.8042
K=6 -4.4159 -4.2700 -3.6774 -4.8858 -4.6118

Eq2
K/cx 0.05 0.1 0.2 0.4 0.6
K=1 -4.6011 -4.6311 -4.6845 -4.6876 -4.6889
K =2 -4.5674 -4.8101 -4.8693 -4.8138 -4.8127
K =3 -379180 -4.2002 -4.7259 -4.7467 -4.7045
K=4 -2.8630 -3.5698 -4.0314 -4.2412 -4.2497
K=5 -2.2351 -4.0434 -1.9373 -3.5935 -4.0737
K=6 -2.7073 -3.6627 -3.1292 -3.7489 -2.6413

served nonstationary common factors. We fix r = r; = 1 in the determination of number groups and the
PPC-based estimation procedure.

We set p(N,T) = % x log(min(N,T))/min(N,T) and tuning variable A = ¢ x T-3/* where ¢y =
(0.05,0.1,0.2,0.4,0.6). Table 5 reports the information criterion as a function of the number of groups
under these tuning parameters. The information criterion suggests three groups for (Eql) and two groups
for (Eq2). In our estimation, we first set the number of groups and then specify ¢y = 0.2, where the
information criterion achieves the minimal values.

Table 6 reports the main results of pooled FMOLS and Cup-Lasso estimates with one unobserved non-
stationary common factors, where we compare our results to CH2009. In (Eql), we have two explanatory
variables (log(S%),log(Sf~%")). First, we compare the result of CH2009 with the pooled FMOLS after
controlling cross-sectional dependence. The coefficients of log(S¢) in CH2009 is qualitatively similar to our
pooled FMOLS. The only difference is the slope coefficient of foreign R&D stock, which decrease more than
half after considering one unobserved nonstationary common factors. The nonstationary common factor
stands for the unobserved global trends in technology changes. It is reasonable that the direct spillovers
effects of foreign R&D stock decrease when the unobserved global technology patterns are taken into con-
sideration. Second, we identify quite difference behavior in the group-specific Cup-Lasso estimates. The
estimates of group 1 have the largest estimates on the domestic R&D stock and negative one on foreign
R&D. For group 2 and group 3, they both have positive estimates on domestic R&D stock and foreign one.
In particular, both estimates in group 2 are larger than that of group 3. We summarize the estimation
results into three aspects. On the one hand, those results indicate that technology changes of countries in
group 1 rely mainly on domestic R&D stock, which stands for the innovation. In addition, the long-run
relation between TFP and foreign R&D stock are negative, which suggests that they cannot benefit from
international R&D spillovers. Furthermore, it implies that countries in group 1 don’t favor convergence

through the channel of technology changes. We call it as “Divergence” group. On the other hand, tech-
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Table 6: PPC estimation results for (Eql) and (Eq2)

Eql
Slope coefficients  Pooled Pooled Group 1 Group 2 Group 3
CH2009 FM-OLS Cup-Lasso Cup-Lasso Cup-Lasso

log(S9) 0.095%%F 0.090%*F 0.302%%F  0.102%FF  (.049%F*
(0.0053)  (0.0134)  (0.0300) (0.0251) (0.0147)
log(S/—biw) 0.213%%%  0,092%%*F  _0.143%F*  0.161%*** 0.125%
(0.0136)  (0.0222)  (0.0336) (0.0501) (0.0281)

Eq2

Slope coefficients Pooled Pooled Group 1 Group 2
CH2009 FM-OLS Post-Lasso Post-Lasso

log(S7) 0.098%FF  (.049%F%  0.071FFF  -0.008%**
(0.0160)  (0.0163)  (0.0174)  (0.0270)

log(SF—biw) 0.035%F%  (.132%%*  0.063* 0.323%*
(0.0111)  (0.0316)  (0.0332)  (0.0398)

log(h) 0.725%%%  0.644%%*  0.638%F  0.680%**

(0.0870)  (0.1204)  (0.1302)  (0.1791)
Note: *** 1% significant; ** 5% significant; * 10% significant.

nology changes of countries in group 2 have balanced sources—innovation effects from domestic R&D stock
and catch-up effects from the international R&D spillovers. And the magnitudes of those estimates are
similar. In this respect, it favors convergence hypothesis for countries in group 2. Here we refer it as
“Balance” group. Then the technology changes in group 3 are mainly determined by foreign R&D stock.
They are classified as “Convergence” group.

In (Eq2), we introduce an additional regressor—human capital, which is regarded as a direct sources of
technology changes. Our results confirm that human capital is the one of the main sources of productivity
growth. In general, similar heterogeneous behavior preserves in (Eq2). First, we can still classify those
countries into two groups and define them as “Balance "and “Convergence ”. For group 1, the innovation
effects and catch-up effects have similar magnitude. For group 2, referred as “Convergence ”, where they
have significant positive estimates on foreign R&D stocks.

The PPC-based estimation procedure simultaneously determine the group identities and estimate pa-
rameters. Table 7 reports the group classification results. We have discussed that the estimation results of
countries in group 1 indicate a potential divergence behavior of economies. There are basically two types
of countries in “Divergence” group—“Bellwether” and “Loser”. The productivity growth much relies on
their own innovation, countries like France, Germany, United States are bellwether in global, which own
61.1% proportion of global R&D stock. On the contrary, the rest countries in group 1 only accounts for
1.5% proportion of global R&D stock. Since most OECD countries are classified into group 2 and group
3. it confirms the recent work of Keller (2004) that the major sources of technical changes leading to
productivity growth in OECD countries are not domestic, instead, they lie aboard through the channel of
international technology diffusion. Furthermore, countries like Israel, South Korea and United Kingdom
are classified in “Balance” group. Productivity growth of countries in group 2 relies on both innovation

and catch-up effects through the channel of international technology diffusion.
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Table 7: Group classification results of Eql and Eq2

Eql
Group 1 “Divergence” (N =7)
Austria Denmark France Germany New Zealand
Norway United States
Group 2 “Balance” (Na =7)
Canada Ireland Israel South Korea Netherlands
Portugal United Kingdom
Group 3 “Convergence” (N3 = 10)

Australia Belgium Finland Greece Iceland
Italy Japan Spain Sweden Switzerland
Eq2
Group 1 “Balance 7 (N7 = 18)

Austria Belgium Finland France Germany
Iceland Ireland Israel Italy Japan
South Korea Netherlands New Zealand  Portugal Spain
Sweden Switzerland United States

Group 2 “Convergence” (Ny = 6)
Australia Canada Denmark Greece Norway

United Kingdom

Overall, we re-estimate Coe and Helpman’s model by both pooled FMOLS and group-specific PPC
method with unobserved global trends. Our pooled FMOLS confirms the international R&D spillovers in
global after considering unobserved global trend. In addition, our Cup-Lasso estimates show heterogeneous
behavior of the long-run relations between domestic R&D and foreign R&D on TFP. It indicates multiple
regimes of economies’ convergence behaviors. This is also empirically confirms the “Club convergence”
theory proposed by Quah (1996, 1997). Countries in the convergence club tend to grow faster and further
behind they fall. In our model, we specify the channel of convergence through the technology diffusion.
Based on estimation results, we classified those countries into three clubs—*“Divergence”, “Convergence”,
and “Balance”. We can conclude that international technology diffusion is the major sources of productivity
growth of countries in “Convergence” group. The catch-up effect through the channel of technology
diffusion is a force towards convergence in income for those countries. On the contrary, countries in
“Divergence” group show a opposite story. The productivity growth relies highly on their own R&D stock

and they cannot benefit from international R&D spillovers.

6 Conclusion

The main contribution of this paper is to propose a novel approach that handle the unobserved hetero-
geneity and cross-sectional dependence in nonstationary panel model. We assume that cross-sectional
dependence is generated by the unobserved common factors, which can be either stationary or nonsta-
tionary. In general, the penalized least square estimators are inconsistent due to the spurious regression
induced by unobserved nonstationary factors. We propose the penalized principal component method that

jointly estimates the group-specific long-run relations, identifies individuals’ membership and unobserved
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common factors through iterative procedure. The C-Lasso estimators have asymptotic non-negligible bi-
ases due to weakly dependent error processes and unobserved stationary factors. We employ the fully
modified procedure for bias-correction. Since our PPC-based method allows us to account for the unob-
served heterogeneity and cross-sectional dependence simultaneously, it is best fitted method to explain
growth convergence puzzle. Our empirical results identify multiple steady states of convergence across

economies.
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Appendix

In this appendix, we prove the main results, namely, Theorems 3.1-3.9 in the paper. The proofs of these

results need some technical lemmas whose proofs are relegated to the online supplementary Appendix B.

A Proof of the Main Results in Section 3

To proceed, we define some notations.
~ A~ 07 A0
(i) Let Hy = (FAYAY) (72 /0F0) Vivrs Ha = (FAYAY) (558 f2) Viky and ay; = AG(MH) 7100,
(ii) Let b = (b1, ...,bx) and b =vec(b), where b; = 3; — Y for i = 1,..., N. Let b= (81,...,13N) and
b =vec(b), where b; = 3; — 8.
N 3 K
(iii) Let n3;p = % dim1 16il]%, 0% = % pIy
and ¢y = NY4T~(log T) ¢ for some € > 0.
(iv) Let QZM = %xéMﬁxi, Qipe = %x’iMflxi, and Q; .(f)) = %xéMﬁaxi.

(v) Without loss of generality, we set ;0 = 0 throughout the proof of the main results and supplemen-

!dk - a%”z 5 CNT = min(\/]v, \/T), 5NT = min(\/ﬁ, T),

tary Appendix.

To prove Theorem 3.1, we need four lemmas.

Lemma A.1 Suppose that Assumptions 3.1 hold. Then for each i =1,..., N,
(i) FzaiMox; = [ By By,
(ii) FxiMpou; = [ (Bai — i Bs) dBui + (Aa1i — 7 As14),
where By; = Bo; — [ ByiBy ([ BsBS) ™' Bs and m = ([ BsBj) ™" [ BsBj,.

Lemma A.2 Suppose that Assumptions 3.1-3.2 hold. Then for any fized small constant ¢ € (0,1/2),
(1) im supp_, oo fmax (%) < (14 ¢)pmax a-s.,
(#) Uminfr_ o thmin (dTV}/;,Wi> > CPmin G-,

Loy g w;Mfowi
(141) lim supp_, oo fimax 7 | < (14 ¢)pmax a5,
) . . dT;C;Mfoxi 1
(iv) iminfr_ o fimin | —p22— | > [(1 + ¢)pmax] ™" a.s.,

where Wiy = (2}, f1})" and W; = (W1, Wi o, ..., W) .
Lemma A.3 Suppose that Assumptions 3.1-3.2 hold. Then
() LyN, H%x;Mﬁ]ui C  Op(T2),
(i) % i |t | = Op(azT2),
(i) || e 201 M pujas | = Op(arT 1),

(iv) % iy || ZzaiMpp: || = Op(dr),
where fi satisfies 75 fif1 = I, and uf = u; + fIN;.

Lemma A.4 Suppose that Assumptions 3.1-3.2 hold. Then
) N #
(i) supy, SUP N -1 |jbjl2<m ‘ﬁ Y oinq Vi My ul

N « _
ﬁ Zi:l )‘%f{nylui = OP(dTS)a

= OP(d;3)>

(i) supy,
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(iii) supy, || 7= Zf\il uf Prout|| = op(d?),
where the sup is taken with respect to f1 such that f1]2”1 = I, and u] are defined in Lemma A.3.
Proof of Theorem 3.1. (i) Let Q; n7(Bs, f1) = 7= (yi — :B:) My, (y; — x;8;) and Qfl’\?‘T(ﬂi,a, fi) =

Qi NT(/BZ7f1)+>‘Hk 1 118 — || Then QNT(,& a, fi1) = NZZ 1Q1NT(B1704 f1). Noting that y; —z;3; =

—x;b; + AV fY 4+ uf, we have

Qint(Bis [1) — Qint (B, 1) = (b/ﬂﬁlelxzb + A0 Y My, fONY; — 205 My, fPAY))

1
+ ﬁ(Q/\?Qf?IMfluf = 20 My uf) = i’ (Pry = Pro)ui, (A1)

where u} = u; + fSAS,. Let S;nr(Bi, f1) = 7= (bl Mg aib + N0 fY My, fOXY; — 2050, My, fOAY;). Then

we have

Qnr(B, f1) — Qnr (8%, 1Y) = ZSZ ~t(Bi, f1)

N
1
75 2 (2N Mpup — My, i — i (Pp, = Pry)us)
i=1
N
= > Sune(Bi 1) + op(dr), (A2)
i=1
where the last three terms on the right hand side of (A.2) are op(d;”) uniformly in {b;} and f; such that

fé’; = I,, and + Zf\;l ||b;]|> < M by Lemma A.4(i)-(iii) and the fact that = Zf\;l ui' Prouj = op(d?).

Then we have

2\>’

N N K°
ﬁg\(ﬁ,&,fl) - ﬁ’qﬁ\(ﬁo,ao,f{)) :% Z[QNT,i(ﬂiafl) Qnri (67, )] Z H 18 — all
k=1

i=1 =1

>Snt(B, f1) + op(dr?). (A.3)

where Snr(8, f1) = % vazl Si.NT(Bis f1). Then by (A.2) and (A.3) and the fact that Qﬁ;‘(é,@a fl) -
(8% a0, f2) <0, we have

Snr(B, fr) = NT2 Z [bél"iMflxiBi + AV FY M fONY — 2B M, f{)%(ﬁ} = op(dz’). (A.4)

Similarly, by (A.2), (A.3) and Lemma A.4(i)-(iii), we have

N N Ky
K208, 1)~ QB 0, 1) =5 S[@nra(Bir i) — Qura (B o) %Z T 16 - axl
i=1 k=1

i=1

N

1 _

= [b;x;Mflx,»bi — WM, f{)A‘fi} +op(d3). (A.5)
i=1
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~

This, in conjunction with the fact that QNT (8, ,fl) Qﬁ;‘(,@o, al, fl) < 0, implies that

NT2 Z [b'x’M wibs — 2| M fON) } < op(d7?). (A.6)

Combining (A.4) and (A.6) yields that

B 0’]\/[ fl AO7AO O’M fl AV A
op(dr®) = NT2 VSt M f1 A =tr [( T2 ) ( 1N 1) > tr T Hmin ( IN 1) .
flmel P 0740

It follows that tr TQ) = OP(d;S) as fbmin (AlNAl) is bounded away from zero in probability by
Assumption 3.2(i). As in Bai (2009, p.1265), this implies that

A Al
VMg Y e R B
T2 T2 T2 T2

— op(d7?), (A7)

and Iy ; L is asymptotically invertible by the fact that £ f L1 is asymptotically invertible from Assump-

f1 f 3 2
tion 3.2(ii). (A.7) implies that szi) - I., = op(d;*), which further implies that prl = Ppll =

B f 1/Pf§) f _ _3 . .
T 2 - . N )
2tr( I, 7 op(dy;”). By Cauchy-Schwarz inequality and (A.6)

N 1/2 1/2
_ 1 - . 1
op(d;?) > NTZ g bixi My xib; — 2 {N 5 E b'x’M X7 1} {NTZ)\% ?’Mflff)\(l)i} . (A8)
i=1

This result, in conjunction with (A.7), implies that sz SN b’x'M .Z‘zb = op(d;?). So we have shown

i=1 "

parts (i) and (ii) in the theorem.
(iii) By the results in parts (i) and (ii) and Lemma A.2(i) and (iv), we have

I A .
Op(dT3) — sz; (T2le x; > b;
1y b, (i My, ) by b (2 M —M bi
_NZ i T2 L M po Ty +*Z T2 2( fo) 4
> L i 9T o Moz iz||z3-||2_ max ”””” 1Py — P; ||i§:||13-||2
~drp 1<1<NMmlrl 2R N T 1<i<N AN e

1 1
—1 712
> . (cpmin — op(d7")) N ; l16:],

where the second inequality follows from the fact that min;<;<n ftmin (%x;MﬁnxO > Cpmin > 0 a.s. by

Lemma A.2(iv),
have & SV b2 = oP(dT2) =op(1).

(iv) We want to establish the consistency of the estimated factor space fl, which extends the results

HT“ < maxi<;<N A7 max (%) = Op(dr) by Lemma A.2(i). Then we

of Bai and Ng (2004) and Bai (2009). Our model allows for the heterogeneous slope coefficients and
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unobserved stationary common factors. We estimate f; from equation (2.9) in Section 2.2 as follows

2B (yi — z:B) | fr = AiVinr. (A.9)

NT2

Combining (A.9) and the fact that y; — 2 B3; = —wib; + FON 4wy = —a;b; + FONY + NS, + wi, we have

N N N
¢ 1 NN 1 7 307 pOr £ 1 7 £
hVinr =5 ;wibibixifl ~ NTZ ;zibi)\i Fh = 5 inbi%fl

N N
1 04077,/ 1 - 040 /
—NTQZ;f Azbzxzfl—w;umfl NTQZfAu

N N
1 A 1 A 1 A
t+ gz D WA P it s D wifi + WZJ“SA%ASQ 2 h
i=1 i=1 i=1
1 - 040 0/ 0/ ¢ 1 . 040 07 £07 ¢ 1 - 040 0/ 0/ ¢
+W2f1)‘1i>\2i 2 f1+WZf2>‘2i/\1i 1 f1+WZf1)‘1i)\u v
=1 =1 i=1
N

1 .
EI]_ + ...+ Il]_ + W ;f?A(l)l)\(l); {)/f17 say.

It follows that fiVi,vr — /9 (M5 ) (B) = 1+ o+ I Let By = (8) (B:8) vk Then it is

easy to see that H; = Op(1), it is asymptotically nonsingular, and
gt g0 AN
fHT = fi =L+ ...+ 1] T2 < N )

1
fl’fl ‘ H A?’A?)‘

Note that

I EE LR T}

It remains to analyze ||I;]| for I = 1,2,...,11. For I, we have that by the result in (iii),

N
1 1 il 5 12 IISE f1H
Il = b,
—Inl = }Zj Ib:]

NT2 leb bl f

< max HxllQ ”fl” ! ZHb I? = Op(drnir) = op(nnT),
1<i<N T2 NT

where we use the fact that max;<;<n Nl Z” = Op(dr) by Lemma A.2(i) and Ile” < /r1. For I, we have

1

i
il 1
T A 1 ZHMO,”

07 p0O7
NT2Z$Z)\ff T2 25N T N

/oA 1/2 1/2
||f0 Al [l 2 1 012 —
S T A T Z 16 N Zl Al = Op(VdrnnT),

*H Ll =
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where we use the fact that Hf(;iéfl‘l =0p(1) and £ N IN0|12 = Op (1) by Assumption 3.2(i). For I3,

1

*H I =

N
[lol| 1 -y
NT2 szb U; fl 1< <N T NT2 ZHblu;le

LI 1 : ful? ", (fir
SUT T A Z” "l Z =0\ |-

1

1 N ug
where % > 7.0, 5

= Op(1) by Assumption 3.1(i). For Iy,
N
1 Z [Fal ’
. T
2:1
N 1/2

LA el A&
= T T 195 T NZ”b I ﬁ;”)\in = Op(V/drnnT).

35ch1

1 — 0407/ /
T ||I4H - HNT2 Zf )‘zbixz

where L2 < 121y L AL _ 0, (1), For i,
_ / / ‘.Z‘ flll /
7”[5“ NT2 Zulb :L' <Z<N T2 NT Z || Zb ||
. N 1/2 1/2
L[l il ] 1 G flual® 1 2 dr
< - - , - o ,
SUT T ST N; T N;”blu Or |\ Nt
For Ig,
1 .
|1 [ 04,0 / [ OAO/
76l =7 | <7 Zf Nuih| =7 HNTQf ufy
< < Hf1H> < HfOH) 1 A || = Op(T~V/2N-1/2),
\/ T vVNT
where u = (u1,...,un)" and we have used the fact that |A0’uH = Op(1) by Assumption 3.2(iii).

Analogously, we can show that £ ||| = Op(T~1/2N~1/2). For Is,

2 2

1

2 1
sl = =

T2

- 2
T3> v (s, ) fi,
s=1

u'ufy

| X

.
2Zuiuif1
NT ~

3Z£stf15 = 2(Izs(a) | + [ @)1]) ,

where yn(s,t) and &, are defined in Assumption 3.2(iii). For Ig(a),

2
1Zs(a)]* <

Z S t)fls

s=1

= OP(Ti ),

» B T , » T T ,
ST T2y N fsllP) (T ZZMHH
s=1 t=1 s=1
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where T2 ST ST |lyn (s, £)]|2 < M by Assumption 3.2(iii) (see also Lemma 1(i) in Bai and Ng (2002)).
For I5(b),

2

T T .
|18 Z ngtf{s
t=1 s=1

= OP(T_QN_l)?

T . 9 T T
<T°N' <T22Hfls ) (TQN ZZlﬁstHZ)
s=1

t=1 s=1

where we use the fact that E(||€]|?) < N~2M under Assumption 3.2(iii). Then we have I s| =
Op(N~Y2T=1 4 T=3/2). For || L],

1 f 2 f AOIAO _
Tllsll =7 HNTQfSAg/Ag ' H ” 2” I:] H =O0p(T™).
FOI‘ ||Il()||7
lHI || — i fOAOIAO 0/]{- 1 ||f1 || ||f2|| ||f1H ||AO/AOH (NT) 1/2)
pihol =7 | gm AT Al h| S em = T T T ’
where % = Op(1) by Assumption 3.2(i). Analogously, we have % ||I11]| = Op((NT)~'/2). In sum, we
have shown that
Tys 1 _
T | FH = 7] = O (Vidrnwr) + —0p(CxE).

Then (iv) follows. W
To prove Theorem 3.2, we need the following two lemmas.

Lemma A.5 Suppose that Assumptions 3.1-3.2 hold. Then
(i) 2 1Y (fr = Y H) = Op(TVdrnnr + 057,
(ii) +fi(fr = fYH1) = Op(TVdrnnr + 57,
(iii) || P;, = Ppo > = Op(Vdrnnr + T~ 657),
(iv) (lel flo) = Op(VTdrnnT + d5y) for each k= 1,..., N.

Lemma A.6 Suppose that Assumptions 3.1-3.2 hold. Let Rli = A {(Pro— Py Jui, Roy = %x'-Mﬂl N, —
NT2 Z X M x]a”b +NT2 Z aijx;Mfluj, R3; = NT2 ZJ 1 Qi (Pfo P )uj, and Ry; = Zx;Mf{)uf
— e ijl aijriMgpouj. Then

(i) Rii = Op(sint) for each i=1,...,N, and N=' SN | Ry||*> = Op(Zyp);

(ii) Ry; = Op(sant) for each i =1,..,N, and N~ SN | Rai||* = Op(sZyp),

(iii) Rs; = Op(ssnr) for each i =1,...N, and N=' "N |Raill* = Op(s2y1),

(iv) Ry; = Op(T~Y) for each i =1,..,N, and N"'* 3N | |Ry|* = Op(T~2),

where ¢in7 = T~ Y2\ /drnnt + drndip + T Cyhy cont = T drnnt + drndip + T 0y, and Gy =
P < 1y

Proof of Theorem 3.2. (i) Based on the sub-differential calculus, a necessary condition for Bi, g, and fl

to minimize the objective function (2.8) is the for each i =1, ..., N, 0,1 belongs to the sub-differential of
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QIA?T’/\(&, a, f1) with respect to 3; (resp. ay) evaluated at {/3’1}, {ar} and f1. That is, for each i = 1, ..., N
and k=1, ..., K, we have

2 5 N
Opxlz_ﬁ 7 fl( - zﬁz +)\Zez] H ”61'_041”7 (AlO)

j=1  I=1,l#j

where é;; = Hgi*ij o if 18: — @&, # 0 and ||&;;|| < 1if || — @] = 0. Noting that y; = 2,80 + fiH; A\, +

uf 4 (f) — fLH THAY (A.10) implies that

1 A o K
Qiaabi = 52 iMpu} + = T2 wiMp [N — 5> 6 [ 18— all, (A.11)
J=1 I=1,1#j
which can be rewritten as N
N ~ 1 R
Qi,zzbi = W Z I;Mflxjaijbj + Ri, (A12)
j=1

where R; = R1; + Ro; — R3; + R4; — Rsi, Ri1;, Ro;, R3; and Ry; are defined in the statement of Lemma
A.6, and R5i =350 € TS 1y 1|Bi — éull. By Lemma A.6(i)-(iv), we have that Y, % S0 || Ri|? =
Op(T2d}*nnr + d2nkp + T72CN2 + T 263k + T72) = Op(T2dy *nnr + d2nk 4 + T~2). In addition,
we can show that & SN | [ Rsi||2 = Op (A?) . It follows that + S | ||Ri||? = Op(T 1d1/ nnt +dinyr +
T2+ \2).

Let Q1 = diag(QALm, ~-~,QN,m) and Qs as an Np x Np matrix with typical blocks ﬁxé]\/[flxjaij,
such that

1 /
NTQl‘lM 1011 NTQ.IflM 2012 NTQZ‘lelJ)NCLlN
1 /
Q W{EQMfll‘lagl Wl'QMflLL'QaQQ ce szMflxNagN
2= . . .
LralyM; Ly M; LralyM;
N2 INMp X1aN1  Npzly Mg T2aN2 o Nzl M INANN

Let R = (R}, ..., Ry)". Then (A.12) implies that (Q1 — Q2)b = R. It follows that
Al A ~ A Ao ~ A A 2
IRIP = tr(6'(Q1 — Q2)'(Q1 = Q2)B) = [1B]1* [amin (@1 — Q2]

By Assumption 3.2(v), we have that fimin (Ql — Qg) > pmin/2 > 0 w.p.a.l. Then we have %HBHQ <

pj’]‘\‘;‘ 7];\;1 | R = Op(T_ldl/ Nt + 30y + T2 4+ A2) = Op (drT~2 + A?). Consequently, we prove
the means square convergence rate of C-Lasso estimators that 4 vazl 1b:]|2 = Op (drT=2 + 2?).

Next, we want to strengthen the last result to a stronger one: + SN 6|2 = Op(drT~?). Let
B = B°+drT v, where v = (vy,...,vn) is a p x N matrix. Let v =vec(v). We wan to show that for any
given €* > 0, there exists a large constant L = L(e*) such that for sufficiently large N and T we have

p{lszlf . QN (B+d*T 060 ) > Qi (8°, ,f)}z1—e*.
N 2ui=1 IVill"=

Regardless the property of f; and &, this implies that w.p.a.1 there is a local minimum 8 = (Bl, ceny BN)
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such that & S°N ||b;]|> = Op(drT—2). Note that
TQ[ V(B + 47T 0,6, ) — QL (.o )|

1/2 N 1/2 9 . 9
Z(v/x/M wi0; — ol My, (O — fLH)A, — Tv;xiMf1u1>

&

‘i{ &MZ
M

T
_W Ti Mf T;U;

N N

1
; TRy + g; (M ul + NTZQ” 7,2ib; ﬁ;azjm;Mﬁw
= DinT — 2DanT, say.

where Rg; = %méMfl IO — Z —1 oMy xjawb + 552 E 1 @ijziM; uj as defined in Lemma A.6.
By Assumption 3.2(v) and Lemma A.5(iii), DlNT dT ' Qv > dr fhmin (Q1§ -1 ||v||2 > drpmin N1 ||'u||2 /2
w.p.a.l. By Lemmas A.6(i)-(ii) and A.5(iii),

T2 _
EOP(TﬂdTU}Q\IT + dinne + T2657) = op(1),

7 X )
N E (| R |
=1

_— "M *2<72TQN1 M — Mo 2—21\[1’M 2
dTNT2 ;”wl fluz” — dTN T2 l( fl) + dTN; Txl f?uz
T2 9 1
= EOP(T Ydonr + dinyr + T2CR5) + dr —Op (1) = 0p(1)
Next, we have
< —

dr N3T2 ZZ”GUQCM ij ”2 d N3T2 ZZHGUH ‘

1=15=1 =1 5=1

T—z i AVATN T max LHxH2 max H)\ ||
N |[frin\ TN 1<G<N dpT?2 " 1<<n 17
1 N 2 2 N
{WZH/\?'L'H [ }
i1

T 1/q -2 2
= ~-0r (1) Op (1) or (N )op (1) Op (drT™2 +72) = 0p (1).

xM mJ

IN

X

where we use the fact that maxi<;<n ﬁ ||;1:]||2 = Op (1) by Lemma A.2(i), maxi<j<n ||)\?j||2 =

op (N'/7) by Assumption 3.2(i) and Markov inequality, and = Ef\il H)‘(l)iH2 |z]|> = Op (1) by Markov
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.2
inequality and + N oAbs|| = 0p (drT=2 + 22). Similarly, we have by Lemma A.5(iii),
N =1 J

d N3T2 ZZ”CLU(E M ’U,]”

= 1] 1
< i NgTQZZnawn [t
i=1 j=1
1 AV AO )
SdT[/ijm< 1Nl>] N3TQZZH/\ H |’\J|| {’ M Mf“)“] foou] }
=1 j=1

1
= 3-0r (N_leT(\/dTnNT 4ok + 1) = op (1).

It follows that

L 1/2 N 1/2 . N 1/2
2 D12 *1(2
|Danr| < dT{N;MH } (M;|R2i” ) + (W;”z M gl )

1/2 1/2
\a NBTQZZH% T N3TZZZ||%$M |
=1 j=1 i=1 j=1
= drN"?|v|op (1),
Then Dy dominates Doy for sufficiently large L. That is T2[Q NT KB+ d1/2 v, &, f1)— ?\;71“((507a0,f1)] >

0 for sufficiently large L. Consequently, the result in (i) follows.

(ii) We study the probability bound for each term on the right hand side of (?7?). For the first term,
we have by Lemma A.6(i)

1 1 1
HTQz M uf Hsz Myou HT2 (M — Myo)u;
= Op(T™Y) + Op(T~ Y2 \/dpnnr + drnr + T~ Onb) = Op(drT ). (A.13)

For the second term, we can readily apply Lemmas A.6(ii), A.5(iii) and A.3(iii), and Theorem 3.2(i) to
obtain

1
ﬁx;Mf'lf{)A(l)i

N N
1 A 1
Jj=1 j=1

=0p(T~ " drnnr + drnir + T 0yp) + Op(nnr) + Op(deT ™) = Op(drT ™).
(A.14)

The third term is Op (\). By Lemma A.5(iii), tmin (%x;Mﬁxz) = Lmin (%x;Mﬁ)m) +op (1). Noting

1 B
that (%z;Mﬁmz) is the principal px p submatrix of (%W{Wz) ' y Mmin (%I;Mf?xJ > Umin (%W{Wi) ,
and the last object is bounded away from zero w.p.a.1. It follows that b; = Op(dTT_l—i—/\) fori =1,2,...,N.
(iii) Let Py (8, ) = 5 37 [Ty [16i el and éinr(e) = TIy 11 —omll+ Tz 118 — | < 60
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ag|+ .. +Hk 5 |I18Y — au||. By SSP, we have that as (N,T) — oo, ’Hk 1 akH — Hk 1 Hﬁo — akH’ <
éinr (@) B; — B2, where éinr(a) < Crnr(a)(1+2[|8; — £7]|) and Crnr (o ) Max1 <;< N MaX|<s<k<K—1
[Ty crsllBY — o] ~17% = maxi<j<x maxi<s<k<ro—1 [[1—; Crslla) — ap[K717° = O(1) with ¢ being

finite integers. It follows that as (IV,T) — oo

|Pnr(B, ) = Pyr(B8°, )| < Crnr(a Z l1bil| + 2Ck N7 (0t Z 16:1>

i=1
N

1/2
1 ~
SCKNT(a){NZwin?} +O0p(drT™2) = Op(d)/*T ). (A.15)

i=1

vy (A.15) and the fact that Py (8% a®) = 0 and that Py7(8, &) — Pyr(8,a) < 0. we have

N1 (B, &) — Pyr(B,0°) = Pyr(8°, &) — Pyr(8°,a°) + Op(dy*T ™)
1 N K
= NZ [T 18 = anll + Op(az*T7)
i=1 k=1
N & Ng /27
:WHIIak—oqu Hllak—a2||+ + = HHak—aK\HOP(d ) (A.16)
k=1 k=1

By Assumption 3.3(i), Ni,/N — 7, € (0,1) for each k = 1,...K. So (A.16) implies that Hi(:l llan — || =
Op(dy*T=1) for | = 1,...K. Tt follows that (4(1), ..., d(x)) — (0, ..., %) = Op(d3/*T).

(iv) By Theorem 3.1(iv) and Theorem 3.2(i), we have %Hfl — f{)HlHQ = Op(Tdrnir + Cy7y) =
Op(d3T'+N~1). 1

To prove Theorem 3.3, we need the following two lemmas.

Lemma A.7 Suppose that Assumptions 8.1-8.8 hold. Then for any ¢ > 0,
(Z) P (maxlSiSN H%JEQUZ‘H > Cd’NT) = 0(]\/'*1)7
) =o(N71).
Lemma A.8 Suppose that Assumptions 3.1-3.3 hold. Then for any ¢ > 0,
(i) P (maxlgigN IRy > c (dTnNT +TV2q 20y ) (¥nr + T~ V/2(log T)3 )) o(N-1),
(i) P (maxlsZ‘SN || Ras| > Cle/QN(l/QQ)QNT) =o(N71),
(ZZZ) P (maxlSiSN ||R3l|| > Cd;/zN(l/mZ)QNT) = O(N_l),
(iv) P (maxi<i<n | Ral| > c(dr + NO/2D)pnr) = o(N71),
- BUH > ¢ (NA/2Dy g + )\(logT)E/z)) =o(N71Y) for any € > 0,
ﬁO
22 My fPN;

- - 1 ../
(ii) P (maxlgiSN Hﬁleﬁ)uf

(vi) P (N YL, ‘
(vii) P (
Proof of Theorem 3.3. (i) Fix k € {1,..., K}. By the consistency of d; and j;, we have f; — & =
a —a? # 0 for all i € G9 and [ # k. Now, suppose that [|3; — @|| # 0 for some i € GY. Then the first

> cd? wNT> =o(N~1Y) for any € > 0,

> NV (dpnyy + T-V2d*CRE)) = o(N7Y).
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order condition (with respect to §;) for the minimization of the objective function (2.8) implies that

.2 2 )
Opx1 = — Tx Mfou —I- T z(]\4f1 Mfl)ui T ;M fl/\ T2 ZM 2, T(ag — )
A - . R A .
( M z; + AU ) T(B; —dg) + T Z €ij H |8; — dull
1B; — | J=1j#k  1=1,1#j

= Ay + Ag; — Az + Ay + As; + Agi, say,

where é;; are defined in the proof of Theorem 3.2(i), éx; = H{il 14k 1Bi—éul & & = H{iu#k a?—af| >0
for i € G by Assumption 3.3(ii). Let ¥n7 = NYCDynr + A(log T)</2. Let ¢ denote a generic constant

that may vary across lines. By Lemma A.8(v)-(vi), we have

P(max‘ ):O(N_ andP(
i€GY

This, in conjunction with the proof of Theorem 3.2(i)-(iii), implies that

50

> cd3 z/JNT> =o(N7Y). (A.17)

P(|lax — ad|| > cdrnr) = o(N™1), and P(max ek — | = c/2) = o(N7H). (A.18)
i€GY

By (A.17)-(A.18) and the fact that max;e g 2 X} M @i < cdr pmax a.8., we have P (maxleco
=o(N~1') and P (maxiegg Ag;

can directly claim that

A4z > Cd%Tﬂ)NT)
> c)\T\I/NT> = o(N~1). By Lemma A.7(ii) and Lemma A.8(i),(iii), we

P <max HAMH > CTbTwNT> = O(N_l),
ieGY

p (m?;o( |Azi|| > ¢ (TdvaT + Tl/le/2 ) (1/JNT +T72(log T)? )) o(N~1), and
i€G?

P <?é%>§ 13| > eNY24(Tdrnnr + T1/2d1T/QCN1T)> =o(N7h).
k

For As;, we have

; — G|

A R N o . 2 Ak 5 N
(Bi — a) Asi = (B — ag)’ <T233§Mf1$i + ”AAIp> T(B; — aw)
> 2Qiaa |5 — ) + TAéki 1B — duel| > A5 — |-
Combing above results together, it follows that P(Z; y7) = 1 — o( N 1), where

EpNT = {Hel%}g | Agi]| < ¢ (TdT"?NT + T1/2d1/2 ) (Z/JNT +T72(logT) )}
el

" {ma)g | Asil| < eN'Y2U(Tdpnnr + Tl/le/zONT)} : {ma)uc |é’“i - C%| < 62/2}
i€G9 i€q?

M < max
ZGG

< cd%Tz/JNT} N {max

i€GY

< C)\T\I’NT} .
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Then conditional on Zjyr, we have that uniformly in i € GY,

’ - O‘k A2z + A?ﬂ + A41 + A5z + A6z)

> |(B; — ) As:

- )(Bz — ) (Ags + As; + Ay + Agi)

{cTAck - (N1/2q (Td1/277 NT + Tl/zdl/QCNT) + Td2 Nt + AT@NT)} 135 — 6ul

>cTA B — dull/2,

where the last inequality follows by the fact that N1/2 (le/ Nt + T1/2d1/20 ) +Td? FUONT + ATV N7
= o(T'\) for sufficiently large (N,T) by Assumption 3.3(iv). It follows that

P(Epnri) = P(i ¢ Grli € GY) = P(Ay; = Ag; + Asi + Ayi + As; + Agi)
P (|(Bi —G) Ay > |(Bi — an) Asi — (Bi — ) (Ags + Az + Agy + A6i))

< P(||Ai|| > ¢TAS /4, Zent) +o(N7H) =0 as (N, T) = oo

where the last inequality follows because that TA > Tbriynr by Assumption 3.3(iv). Consequently, we
can conclude that w.p.a.1 3; — dy, must be in position where ||3; — a|| is not differentiable with respect
to B; for any i € GY. That is P(||3; — éx|| = 0i € GY) =1 —o(N~1) as (N, T) — oo

For uniform consistency, we have that

K
P(Uf_ Exnr) <) P(Egpnt) < Z > P(Exnr.)
k=1 k=1ieGY

< N max P(||Ai1]| > ¢TA)/4) +0(1) =0 as (N,T) — oo

1<i<N
This completes the proof of (i). Then the proof of (ii) directly follows SSP and thus omitted. B

To prove Theorem 3.4, we need the following two lemmas.

Lemma A.9 Suppose that Assumptions 8.1-8.8 hold and /N = o (T). Then for any k= 1,..., K,
(i) ﬁ Zieék x;Mflflo)‘?i = Nsz ZzGGk ~ Zj 1 zM xja”bj ﬁ ZzeGk % Z;Vd aijngfluj -
ﬁ Zieék % Z;\f:l aijx;Mf} fg)\gj +op(N-Y2T1),
(it) §ogz Diec, VM p T = worz Dieay TiMppi + op(1),
) ﬁ Dica, TiMy (uf - % Zj\;l u;faij) = Uknt +0p(1),
(1) N7z Liccn, N 2ojec, TiMp %01 = murr ieay  2ojecy TiMporjai; + op(1).
Lemma A.10 Suppose that Assumptions 3.1-3.3 hold and /N = o(T). Then
(i) Qnr % Qo.
(i1) Uxnt = Vint + Brnr +op(1),
(iii) Vit % N (0,Q0) conditional on C,
where Qo = limy 7500 ONT-
Proof of Theorem 3.4. (i) To study of the oracle property of the C-Lasso estimator, we invoke the

sub-differential calculus. A necessary and sufficient condition for {3;} and {¢} to minimize the objective
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function in (2.8) is that for each ¢ = 1,..., N (resp. k = 1,..., K), Op,x1 belongs to the sub-differential of
QﬁTJ\(,@, a, fl) with respect to 8; (resp. «aj) evaluated at {Bz} and {&x}. That is, for each i = 1,..., N
and k=1, ..., K, we have

K K
2 A A R
0p><1 — _Wx;M ( - zﬁz N Z H ||ﬂz - Oél”, (Alg)
=l =10
A A
01 = 5 Sew [ 16— al, (A.20)
i=1 1=1,l#k

where é;; = ng:jju if |3 — | # 0 and ||é;;]| < 1if ||8; — & = 0. First we observe that [|3; — ax| = 0

for any 7 € e by the definition of G}, then Bi—éy — al —a? = 0 for any i € Gy and # k by Assumption

3.3(ii). Tt follows that ||é;,|| < 1 for any i € G, and é;; = \Ig:zJH = Hzf oy ” w.p.a.1 for any i € Gy and
j # k. This further implies that w.p.a.1l

K

> Z H EEEDY Z Tar—ay L1 Nl =aill =0,
icGy i=Li#k  1=11#] icGy =1k I F =11
and
N K
Ops1 =3 e [[ 118 —aull
i=1  I=1,l#k
K K K K
=Y e ] law—al+ > e [ IBi—al+ > D ew [[ lay—al
ieCy  I=Lik icGo  I=Ll#k i=Li#kica,  1=Ll#k
K K
= e I[ law—al+ > ex [ 18 —all. (A.21)
i€Gy I=1,l#k icGo 1=1,l#k
Then by (A.19), (A.20) and (A.21) we have
A K
NkT2 > @My (g~ wid) + 5 D e [ 18— aull = 0psar. (A.22)

ZEGk iEéo I=1,l#k
Noting that 1{i € G} = 1{i € G} + 1{i € G, \ GO} — 1{i € G\ G1.} and y; = ;00 + fON); + u? when

i € GY, we have

NszZ M1y’_ T2 Zl‘ ’ﬁ? TQZfol)\ T2Zx fll

1€Gy ieGy ieGy i€Gy

1
/ 0 / 0
NkTQ E x; M T BT A ep— N, T2 E wi My iy — N.T? E ;M o

ZEG zeék\GO iGGg\ék
TQZxM TN, + T2 > @M (ui + f9A9). (A.23)
ieG ieGy
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Combining (A.22) and (A.23) yields

71 ! A 0 1 / 04,0 1 ’ 04,0
NI Z xiMflxi(Oék —ap) = N.T? Z xiMflfl g + NI Z z; My, (ui + f5 )‘21‘)
€G]y i€Gy, 1€G

+ élk — ng + égk, (A.24)

where Cyj = ﬁzieék\cg x;MflmiB?, Cop = ﬁziecg\ék ngflxiag, and Csp = ﬁzieéo Eil
x 1121 124 I3: — éul. By Theorem 3.3 and Lemmas S1.11-S1.12 in SSP, we have P(NV/2T|Cyy > €) <
P(Fynt) — 0, P(NY2T||Cor|| > €) < P(Epnr) — 0, and P(NY2T||Cap|| > €) < S0, Yieay Pli €
Goli € G) < Y42y Yiean P(Exnt,i) = o(1). Tt follows that [[Ciy — Cay, + Cax|| = op(N~Y/2T1). By

Lemma A.9 (i), we have as ‘/T—N —0

N
NkTQ Z fl)‘(l)z: N, T2 Z Zx; xjamAJ Ny, T2 Z ZGUIM 7]

ZGGk ZGGk j:1 TEGk J=1
Nsz Z Zaw M;, f35; +op(N~V2T7). (A.25)
zEGk J 1

In addition,

NkTQ Z Zx M; :E]a”b = NkTQ Z Z Z x; M xja” —of) +op(N~V2T71) (A.26)

i€G,  J=1 i€Gy l Ljed

by Theorem 3.3. Let Q17 :diag(ﬁ Zieél x,’iMflxi7 . ﬁ Zieék x;Mflxi> and QQNT isa Kpx
Kp matrix with typical blocks ﬁkT ZlGGk Zjeél aijx;Mfl x; such that

1 N e aq M os s 1 N . o A

NNTZ DicCy 2ajec WMy @i o RRE Dl 2ajecy My

1 R I M s 1 R o Ve

A NNGT? 2uicCy 2jely GiTiMp Tis oo FRgTe ey 2ojecy GiitiMy, 25,
Qant = . i

1 N s oast M s .. —L1 . . o AN

NNKT? ZiEGK ZjeGl aijri My xj, NNxT? ZieGK ZjeGK aije; My x;

Combining (A.24)-(A.26), we have
VNTvec(é — a®) = (Qint — Qant) ™'V DnUnr + 0p(1)

where the kth element of Uny is

A 1
Urnt = N Z T/éMfl (UHrfz)\(z)i Zazy Uj +f2)\gg)
1€Gy
and Dy —d1ag( s ey NK) By Lemma A.9(ii)-(iv), we have that Q1NT - QQNT =Qnr +op(1), Unt =

Unt + 0op(1), Where Unt and Qn7 are defined in Theorem 3.4. Then we have \/NTvec(d —a’) =
QXIITV DnUnt + Op(l). By Lemma AlO(ll)7 we have UpnT — BkNT,l — BkNT}Q = VinT + 0P (1), where
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Vint and Bynyt = BinT,1 + BinT,2 are defined in Theorem 3.4. Thus,
VNTvec(a — a®) = Qnb/Dn (Var + Byr) + 0p(1), (A.27)

where Vyr = ViNT, -, VK NT) and Byt = (BiNT, -.-, Bk nT). This completes the proof of Theorem 3.4.

(ii) By Lemma A.10 (i) and (iii), we have
QNT S Qo and Vyr A N(0,9) conditional C. (A.28)

Combining (A.27) and (A.28), we have v NTvec(&—a®)—v/DnQ iy Byr A MN(0,limy 00 DnQp ' Q0Q0 ).
]

To prove Theorem 3.5, we need the following lemma.

Lemma A.11 Suppose that Assumptions 3.1-3.3 hold and /N = o (T). Then as (N,T) — oo,
(i) ﬁ”fl:\u — A% = Op(VarTnnt) + Op(Cyy),
(ii) J=|\f2 = fSHa|| = Op(Cip)
(it1) = Tiec, (o = H7'23;) = op(1),
(iv) Jz || fhes = 1838|| = Or(CD),
(v) ﬁ D i (Ag1 i — Ag1 ) = op(1),
(vi) 3 0 Yey Gas — 5as) L{s < 1} = op(1),
(vii) A= Cicao (Basidoi — A21:03) = op(1),
(Vil) — Yreqe Sy Sy [;%1 {5 <t} Aosidas — 551 {s < t} AM,AQZ} = op(1).

30 0 _ 15N 4o
where Ay; = A3, — § D051 A2;0ij-

Proof of Theorem 3.5. (i) We first consider the bias-correction post-Lasso estimators vec(dlg). By

construction and Theorem 3.4, we have

V' NTvec <dlg — ao) = V/NTvec (&lg — (Sl) + v/ NTvec (d — ao)
= VDnQyyVnt + /Dy [Q&lT (Bnr1 + Byr2) — Qnb (BNT,l + BNT,2)}
—I—Op(l).

It suffices to show the \/]VTvec(dlgf — ao) = \/DNQ;V}TVNT‘FOP(l) by (il) Qint—Qant = QnT+op(1),
(i2) Byr.1 = By7a +0p(1), and (i3) Byro = Byt + op(1). (i1) holds by Lemma A.9 (i) and (iv). For
(i2), it suffices to show that BkNT’l — Bynra = op (1) for k = 1,..., K. By Theorem 3.3 and using

arguments as used in the proof of Lemma A.9(ii), we can readily show that BkNT,l = BkNT’l + op(1),
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where BkNT,l = \/% ZiEGg A21,i — ﬁ ZieG% Zthl ZZ:I ﬁts]- {S < t} A2171‘. It follows that

T T
. 1 N 1 -
Binri— B - Aot i — Aot s) — [”51 <Y Aoy i — ss1 {5 <t} Aoy
ENT,1 ENT,1 \/]Tk;)( 21, 21,i) TNT EZGO;; Sus1{s <t} Ao —sas1{s <t} Aoy,
1€GY i€GY
+op(1)
- jv* Y (Bary Azlz)—;i22t51{8<t} Vi > (Ao — Agry)
k GGz t=1 s=1 kiEGg
T T
VN, 1
- Tk D (Gas — ) 1{s < t} A > Ao | +op(1)
t=1 s=1 k ZEG%
= Bint (1) + Benta (2) + Benra (3) +op(1), say,

We can prove BkNTJ = Binr1 + op(1) by showing that Bynr1 (I) = op (1) for [ = 1,2,3. Noting that

XL X s s <] < AL L Al [ A = 0r (1) and 3 T Aori = 0p (1), these
results would follow by Lemma A.11(v)-(vi). To show (i3), we first observe that

N
1 1
B = E @) Mofd A — =Y A.ai;
ENT,2 'N.T lezG:O ($z| ) f{’fQ 2i N; 25 @ij
k
1 3 1 -
Y E (z;]C) f3 X3 - E (x}|C) Pyo fA9; = Binr21 — Brnt 22, say,
NkTiezc; («510) £579 WTE; (251C) Pyp f525
k k

where A3, = A, — £ 5200 A ai;. Let ¢f2f1fz = (¢f2/1 (L), ¢f2F2(L)), 65772 = (057 (L), 957 (L)) =
(¢=71 (L), ¢°/2 (L)), and v{** = (vf"',v]"'). Note that e;; = w5, = ¢5* (L) vlt + ¢5° (L) v, + ¢=1 (L) vf* +

¢=2 (L) v{*. By the BN decomposition and the independence of {v%¢} and {v{1/2}, we have

e = Sawi = ¢PI (L)l + @RI (L)of* = TN (L)o]

_ ¢f2,f1f2(1)vtf1f2 + SyWit—1 — SaWis,
t

t
Ec (xzt) = Fc <S2 Z w2m> = Z (d)ffl (L) vj;} + gb?fl? (L) UTfi) — ¢€,f1f2 (L) thlfz
m=1

m=1

= ¢ V)V 4 SoEe (i — i) -

/
where V172 = (V1 vy = (Zt ol S vf2’) , wi¢ and w;; are defined in Assumption 3.1. Let

m=1"m > m=1"m
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* 1 Y
Binro1 = 7 2oicay 52 Doreo 2oimo Pilr®; 1 SiA;- It follows that
Bent21 — BZNT 21

- F Z Z¢ef1fz L)V fpfile ghafifa (L)) Z S?ZZ@HW”SM%

ZGGO t=1 EGO r=0 (=0
= Z Z¢5 f1f2 Vf1f2 f1f2/ _ ]T)(bf%flfz(l)/j\gi
ZEGO t=1

T-1 o]

1 _

{ (Ec Wit y1) E bi l+1¢zl> S4A%; -7 E Gi 14195 15409,
1=0

zEGO t=1 1=0

T T
_ _ 1 ) : _
Z (EC s 0 f1f2/¢f2,f1f2(1)/ _ ¢i,0¢i(1),‘94/1> )‘(2)1' + T ZEC (wit) Utf f2/¢f27f1f2(1)//\(2)i
t=1 t=1
—lEc Zwt @l I, + lEc (win) W SHAY;
T 7 VT~ 4724 T 7 0 2%

\/7 Z Z S {Rle zT2"‘RzT?,+RzT4+RzT5+sz%6}S4>‘2w
i€eGY i€GY

where we use the fact that ¢;’ Sl (1) gl f2 (1) = Sy (1) ¢; (1)) S} by construction and that D
Gia+r 9y = i (1) ¢i (1 ) =3 Gii+19;, + $i00i(1)". Following the proof of Lemma A.7 in Huang et al.
(2017), we can show thatﬁ Ziec% SQR{;JSQI\% =op(1) for 1 =1,2,...,6 and ﬁ ZieGg EWQ2) =o.
It follows that BynT,21 = Bjnr 21 +0p( )= \/% ZIGGU Aoy ;A\y;+0p(1). Analogously, we have Byn7.22 =

B;NT,QQ"‘OP (1), where B;:NT,22 \ﬁ ZzEGO T Zt 1 Ze psas1{s <t} xSy Z:io Z?io ¢iyl+r¢;,lsij‘8i'
Let BZNT,z = B;:NT,21 - BZNT,22~ Then

T T oo o0
Binro = \/—k Z Z Z (s =1} —sa,1{s < 1}) S ZZ@JM@,ZS&;\&

zEGO t:1 s=1 r=0 [=0
1 L > f f
-z S s = 1)l ]33 (eif 0" + 6in o) 2) -3 %,
t=1s=1 r=0 [=0 16G0
1 LT
= 7 Z [{s =t} —sas1{s <t} —— Z Aog i\

—_

t=1 s= eG“

By Theorem 3.3 and using arguments as used in the proof of Lemma A.9(ii), we can readily show that

BkNT}Q = BkNT’Q“FOP( ) where Bk;NT’Q \/— ZzGGO A24 Z)\QZ \/—T ZZGGO Zt 1 ZS 1 P | {S < t} A24 Z)\QZ

Thus we can prove that BeNTyz = Bnt2 + op(1) by showing BkNT,Q = Binra + op(l) for k =1,..., K.
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Note that

. *
Binr2 — BkNT,Q

T T
.Y — 1 N ~ .y —_
= \/— Z (Agg g — Doy i Ay;) — INT Z Z |:%ts]~ {s <t} Agyidai — 51 {s <t} Az4,i/\81}

1€GY €GO t=1 s=1

= Op(l) — OP(].) = Op(l)

?r-o

by Lemma A.11(vii)-(viii). Consequently, BkNT,z — BinT,2 = op(1).

In sum, we have \/NTvec(d%C - ao) = VDNQnr VT +0p(1).

(ii) For the fully-modified post-Lasso estimators ézém, we first consider the asymptotic distribution for
the infeasible version of fully modified post-Lasso estimator aG Noting that y;” = x;a) O+ FONY + fINg, +

F. by (A.24) and (A.25) and Theorem 3.3, we have
0
Nsz Z :UM wz( ag —ad) = NkTQ Z :cM (u + fINY;) + T2 Z :vM fl)\h
ZGGk eGU ZGGk

1
- WB;:NTJ - WB]{NT’Q + OP(N_l/QT_l). (A29)

Combing (A.26), (A.29) and Lemma A.9(i) yields

1

Nk.T2 Z L M xl(aGk - ak T2 Z Zl‘ Mflxjaw

i€G ZEGk Jj=1
1 al 1
= W Z "E;Mf? Ui Z a” N T2 Z X Mfgf] )\ N )\g]am
k i€GY Jj=1 ieGY Jj=1
1

——— B - 73 + N—V2p—t

VNL.T ENT,1 VNLT kENT,2 op( )
y (A.26) and Lemma A.10 (i)-(iii), we have
\/NTVGC(&ém — ) (Q QQNT) 1\/ Dy ((U}\L,qu« + Uj([zT> — B]J\r,T’l — BNT’Q) + Op(l)

VDNQNT Vi +op(1)

where

N
1
UI?,TVT = N TT Z ngf{’ u;—_ﬁzaiju;_ )
; :

1 d ue, I u/
Vinta = JNT Z SE¢I(1)ZZ {Zas (Vigmolo ™) — [1{t = s} — sa,1 {s < t}] I14,,} 61 (1)'S

16@2 t=1 s=1
N
1 1
Vire = (j|C)1{i € G}, }—— aij—E(@5[C) ¢ Mou],
’ VNk 12:; T ]EXG:O T s
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and U,y = Uphp + U,{fNT and Vi'yr = Vilur 1 + Vily 1o + Vinr s are the kth block-element of Uy, and
Var, respectively. We have a new error process w;, = (uj;, Az}, Af{,, f5,)’ whose partial sum satisfies
the multivariate invariance principle: \F Z[T] wzt = B+ BM (Qj) Following the proof of Lemma
A.10(iii) (see also Theorem 9 in Phillips and Moon), we can show that V. 4 N(0,9Qf) condition on C

where Qf = limy 700 Q]J(,T and Q]J(, =Var (V T|C) Then we have
VNTvec(af™ — a®) % MN(0, Jim DyQy 5@y ™).

Next, we show that dém is asymptotically equivalent to dgm by showing that v N T(&ém - dém) =

op (1). Note that
V@thgn*dngvaN[K%NT‘%%NTYJ(ﬁ$r+3$ny+BNnﬁ‘*Q&%(Uﬁr+BEny+BNﬂﬁ}~

Then it suffices to show (iil) Qint — Qant = QN + op(1), (ii2) BJ'\",TJ = BR‘,TJ + op(1),(ii3) UNT =
Uy +op(1), and (ii4) Byra = Byr.2 + op(1). In the proof of bias-correction post-Lasso estimators,
we have already prove (iil) and (ii4). For (ii2), we can apply analogous arguments as used in the proof

of Lemma A.11(v) to prove that E¢ H\/% ZZGGk(Q - QZ)H = Op(£ + &) = op(1). Since A}

lml_

2
A 7le,iQ7_n};Am,17 this implies that H - ZzGGk( 3‘171- - A;’Li)

= op (1). The latter further implies
that BJJ{,TJ = Byp, +op(1). For (ii3) we can apply Theorem 3 to show that

T+ + _  Tru+ rru+ rru+ u+
UkNT_UkNT - UkNT_UkNT+UkNT_UkNT

N N
N 1 N 1
= N7 E oMy |4 — N E agif 7T E ai My | uf — ~ g ajul | +op(1)
v VIV i=1

i€Gr Jj=1 i€Gr
1 /
= oM (af —uf) - i M ; a;; +op(1
R 70 8 41~ s 5 0 6 = ot
K
1
= m Z L sz (Ql? 29221 Q12 192217> \/7T Z xZP Az; (Ql? zQ227 Ql? 19221>
i€GY i€qy
N
1 —_ A A —
_W Z Zl‘;MﬂA.’I}j (QIQ,jQQZIj - ngij221j) Qi + Op(l)
i€Gy j=1

= UU, +UU;+UUs +op(1),

~ u N -~ u e
where U}'Y - = ﬁ ZieG% ziMj, (uir - % > =1 aiju;r> and UlNr — Ui = op(1) by Lemma A.9(iii).
Following the proof of Lemma A.11(v), we can show that UU; = op(1) for | = 1, 2, 3. The (ii3) follows.
This completes the proof of (ii).
(iii) The proof is analogous to that of (ii) and thus omitted. W

To prove Theorems 3.6-3.7, we need the following two lemmas.

Lemma A.12 Suppose that Assumptions 3.1-3.8 and 3.5 hold. Then
(i) For any 1 <r <1° Vi(r,G") — Vi(r, GOH") = Op(CyL),
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(ii) For each r with 0 < r < Y, there exist a positive number c, such that plim (n, 7)o inf (Vi (7, GH")—
Vi(r%,G%)) = ¢,

(iii) For any fized r, with 1° < r < rmax, Va(r, G7) = V1(10,G"") = Op(Cya),
where Vi (r, GOH") is defined analogously to Vi (r, G™) with G" replaced by G°H”, H" = (N~'AYA%)(T—'GYG"),
and G° = Af°.
Lemma A.13 Suppose that Assumptions 3.1-3.83 and 3.6 hold. Then

(i) For any 1 <1y <19, Va(ry, f11) = Va(ry, fOHTY) = Op(VT),

(it) For any 1 < ry <), we have plim(y 1) o0 inf dp T~ [Va(r1, [ H{") — Va(ry, f?)] = dy, for some
dr, >0,

(iii) For any 9 < r1 < rmax, Va(ry, f1) — V2(7"?7frg) = Op(1),
where Va(ry, fOHT) is defined analogously to Va(ry, fI*) with fT* replaced by fOHT, and HI* = (N~1AYA?)
X(T2ffr).
Proof of Theorem 3.6. Noting that ICy(r) — ICy(r%) = Vi(r,G") — V4(r?, G™") = (° — r)g1 (N, T), it
suffices to show that P (Vl(r, Gr) — Vl(ro,@TO) < (r® —=m)g (N, T)) — 0 as (N,T) — oo when r # r0.
We consider the under- and over-fitted models, respectively. When 0 < r < r%, we make the following

decomposition:

Vi(r,GT) = Vi(°, ™) = Wi(r,G") = V(r,G°H")| + [Vi(r, G°H") — Vi (r°, G°H™")]
FVA(r0, GOH™) — Vi (r©, G,

Lemma A.12(i) implies that the first and third terms on the right hand side of the last displayed equation
are both Op(Cy4). Noting that V3 (r, GOHTO) = V1(r°, GY), the second term has a positive probability
limit ¢, when 7 < r% by Lemma A.12(ii). It follows that P(ICy(r) < IC1(r°)) — 0 as g1(N,T) — 0 as
(N,T) — oo under Assumption 3.5.

Now, we consider the case where ¥ < r < rpy.x, Note that C%, (Vl(r, G = Vi (r°, G”’O)) = Op(1) and
C31(r—1°g1(N,T) > C%791(N,T) — oo by Lemma A.12(iii) and Assumption 3.5, we have P(IC(r) <
IC1(r%) = P(Vi(r,G") = Vi (r®,G"") < (° = 1)g1(N, T)) = 0 as (N,T) — cc. B

Proof of Theorem 3.7. Noting that IC5(r) — ICo(r9) = Va(ry, 1) — Va(r?, flr(f) — (1Y —7r1)g2(N,T), it
suffices to show that P (Vg(rl, friy — Vg(r(f,ff?) < (Y —r1)g2(N, T)) — 0 as (N,T) — oo when r # r°.
First, when r; < ¥, we consider the decomposition:
3 prd £ 1 1 )
Va(re, 1) = Va(rd, 1) = [Valrn, ) = Valr, SRHT)] + [Valra, SOHT) = Vo, S0HT)|
0 0yt o pro
+[vot s E) - Ve £

=DDy + DDs + DDs3, say.

By Lemma A.13), DD; = Op(T'/?), DD, is of exact probability order Op(T/loglogT), and DD3 =
Op (1). It follows that

PIC(r1) < ICo(9)) = P (Va(ri, f71) = Voo, f17) < (1 = 10)ga(N, 7)) =5 0
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as go(N,T)loglogT/T — 0 under Assumption 3.5.
A, A0
Next, for r; > 9, we have V(ri, f{*) — V(r?, f|*) = Op(1) for r; > 9 by Lemma A.13(iii), and
(r1 —19)g2(N,T) — oo by Assumption 3.5. This implies that

N AT(J
P(ICo(r1) — IC5(r]) < 0) = P(Va(ry, fi*) = Va(r, fi1) < (1] — r1)g2(N, T)) — 0.
as N,T —oco. B
To prove Theorem 3.8, we need the following lemma.

Lemma A.14 Suppose that Assumptions 3.1-3.3 and 3.7 hold. Then

~2 A2 2
max g, =0Op(v
Ko<K<Kmax | CEN TG (Ko,N) P(UNT)

~ K T a .
where O’é(K’M = N7 Dokt DoicGr (i) 2atet Wit — GP(K N — AL (KN fre(K, N2 and vyg is defined
in Section 3.6.

Proof of Theorem 3.8. First, we can show that

IC3(K0, )\) = hl[‘/g(Ko)] —|—pKogg(N T)

ID*Z > Z Yit — G Ko — A1i(Ko, N fre (Ko, A) 2+o(1)£>1n(0§).
k( )*

k=1icGy(Ko,\) t=1

We consider the cases of under- and over-fitted models separately. When 1 < K < K, we have
1 XK T R R 9
VoK) =xp > S [ie = G5 i — MBS N Fua ()]

K T
1 : ; 2
. ~ fmt /
> E E it — G it — A1 (K K
1<%1<DK0 G(K>efG NT L L [y” Qo r oyt Aui(B A) fua( ’)‘)}
=1l1€eCGk,k t=

= min inf 6%(,().
ISK<Ko G(K)eGk

By Assumption 3.6 and Slutsky’s Lemma, we can demonstrate

> £2 P 2 2y
1<%1<11K0 IC5(K, \) 1<r}1%1<nK0 GUglefG In(6zx)) +pKgs(N,T) = In(c”) > In(op)

It follows that P(min1<K<K0 IC3(K /\) > IC3(K0, /\)) — 1.

When Ky < K < Kppax, we can show that NT[52 Teik.) 62‘(;{ )\)] = Op(1) when there is no unobserved
&2 ]

2 152
common factor and no endogeneity in x;;, 6 NT[ 6 (Ko N

G = Op(1) when there are only unobserved
nonstationary common factors and C%,,[62 &K &é (Ko )\)] Op(l) when there are both nonstationary

o1



and stationary common factors. Then by Lemma 14,

P( min ICg(K, )\) > ICg(KmA))
KeK+

_ . -2 ~2 ~2 =2
=P (KHGHI& vypIn (Ué(K,,\)/Ué(KO,,\)) + vnrgs(N, T)(K — Ko) > 0)
~P < min g7 (5—2G(K,A) - 5—2@(1(0,)\)) 610 T VNT93(N, T)(K = Ko) > o>

KeK+

=1 as (N, T)—oo. B
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