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1 Introduction

Econometric methods for nonstationary panel model have been extensively used in applied economics.

The asymptotic properties for it are well explored in classical settings, such as the assumptions of common

long-run relations and cross-sectional independence among individuals. Even though those assumptions

offer estimation efficiency and help us simplify the asymptotic theory, they are often hard to meet in real-

world problems. In one case, researchers often face the issue of unobserved parameter heterogeneity that

figures within the model, including the “convergence club” (Durlauf and Johnson (1995), Quah (1997)),

“Lucas paradox” (Lucas (1990)), the relation between income and democracy (Acemoglu et al. (2008)),

and “resources curse” (Van der Ploeg (2011)). In another case, globalization and international spillovers

raise to a new challenge–cross-sectional dependence among individuals. In general, both the presence of

unobserved heterogeneity and cross-sectional dependence can substantially complicate statistical inference

for nonstationary panels. The classical settings, which ignore these two issues, lead to inconsistent esti-

mation and imprecise inference. Essentially, the main contributions of our paper are not only to offer a

flexible and comprehensive econometric model, which is closer to the real economic questions, but also

seek to maintain certain degree of parsimony by imposing the latent group structures.

In this paper, we propose a novel econometric method that allow us to study the unobserved parameter

heterogeneity and cross-sectional dependence simultaneously in nonstationary panel model, especially ac-

count for the problems facing in economic growth literature. Recently there is a growing list of theoretical

papers accounting for the unobserved heterogeneity in large dimensional panel models by imposing latent

group patterns, see Bonhomme and Manresa (2015), Su, Shi and Phillips (2016, SSP hereafter), Su et

al. (2017). Our baseline model is obtained from SSP, where they employ the Classifier-Lasso (C-Lasso,

hereafter) technique to study the unobserved grouped patterns in stationary panel data. The results of

C-Lasso estimators identify group membership and estimate the group-specific slope coefficients simul-

taneously via shrinkage procedure. Huang et al. (2017) establish the asymptotic theory for the latent

group patterns in cointegrated panel models. They do not allow for cross-sectional dependence. Under our

grouped nonstationary panel model, cross-sectional dependence is characterized by unobserved common

factors, which can be either stationary or nonstationary. Then we provide a purely data-driven method,

based on penalized principal component (PPC, hereafter) method, to account for the unobserved parame-

ter heterogeneity and cross-sectional dependence simultaneously in nonstationary panels. Our framework

allows us to jointly estimate the group-specific long-run relations, unobserved common factors and identify

individuals’ membership. Thus, our results generalize the SSP model by allowing nonstationary variables

and cross-sectional dependence.

By using PPC-based methods, the grouped nonstationary panel model provides a practical approach

to maintaining the estimation efficiency gains from employing the panel data while allowing some degree of

freedom on parameter heterogeneity. We show that PPC-based methods provide consistent estimators to

the group-specific long-run relations and unobserved common factors even when individuals’ membership

were unknown. Moreover, the PPC-based methods simultaneously account for the issue of cross-sectional

dependence in panels. It is commonly acknowledged that many economic variables exhibit common pat-

terns across individuals due to global shocks, spatial effects or as a result of social interactions. When
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existing unobserved common patterns, the classical least square methods lead to several problems, such

as biased inference, inconsistent estimators and spurious regression, see Baltagi and Pesaran (2007) and

Bai et al.(2009). There are two main approaches to study cross-sectional dependence–the factor structure

approach and the spatial approach, see Bai and Ng (2002, 2004) and Lee (2004). In this sense, our PPC-

based method is also related to the factor structure model, see Bai and Ng (2002), Bai and Ng (2004),

Pesaran (2006), and Moon and Weidner (2015). The multi-factor structure model assumes that cross-

sectional dependence is characterized by the common factors, which can be estimated by either principal

component method or cross-sectional mean method. In this paper, we employ the principal component

method, proposed by Bai and Ng (2004), to estimate the unobserved common patterns.

The international R&D spillovers model of Coe and Helpman(1995) (CH, hereafter) motivates our

empirical application. They estimate total factor productivity (TFP, hereafter) on domestic R&D capital

stock and foreign R&D capital stock to study the two sources of technology changes–domestic innovations

and catch-up effects. The innovation part is explained by the increasing function of TFP on domestic

R&D capital stock. And the catch-up effects through the channel of international R&D spillovers favor

the hypothesis of convergence across economies. Our main empirical interest is to explain the “growth

convergence puzzle” through the technology spillovers model. There are two main problems in the econo-

metric methodology of CH model. First, the important assumption underlying the CH model is that all

countries obey a common linear specification. However, cross-countries productivity behavior typically

reaches multiple steady states. And most theoretical growth models suggest the multiple regimes of con-

vergence across economies, see Solow (1956) and Eaton and Kortum (2002), which imply the unobserved

parameter heterogeneity within the economic growth model. It is a natural relaxation to allow the pa-

rameters vary across countries. Second, those economic variables, like TFP and R&D stocks, apparently

share some common patterns, such as global technology trends, international financial crisis shocks, and

oil price shocks. Obviously, the CH model fails to account for the unobserved parameter heterogeneity

and common patterns due to the limitations in econometric methodologies. As a result, the international

R&D spillovers model may be misspecified, which leads to biased estimates and incorrect inference. In

general, our econometric model yields a direct solution for the unobserved heterogeneity and cross-sectional

dependence, first, to allow the latent group structures in parameters of interests and, second, to estimate

the unobserved common patterns directly from data. From those two features we simultaneously identify

the multiple regimes of convergence across economies from the international R&D spillovers model and

account for unobserved technology trends across countries.

In this paper, we first introduce a nonstationary panel model with latent group structures and cross-

sectional dependence, where the slope coefficients are heterogeneous across groups and homogeneous within

a group. Then we propose a penalized principal component-based (PPC-based, hereafter) method that

jointly estimates the group-specific long-run relations, unobserved common factors and infers group mem-

bership. Further, we iteratively perform the PPC-based method and obtain three types of estimators–C-

Lasso, post-Lasso and continuous-updated-Lasso (Cup-Lasso, hereafter) estimators. In asymptotic theory,

we establish the preliminary rates of convergence for the group-specific long-run relations and unobserved

common factors. Based on the preliminary rates of convergence, we establish the classification consistency,
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which indicates that all individuals are classified into correct group with a probability approaching one

(w.p.a.1). Third, our long-run estimators have asymptotic biases since we allow for weakly dependent error

processes and unobserved stationary common factors. The first source of biases is common acknowledged

in nonstationary time series due to serial correlation and endogeneity issues. An additional bias comes

from the unobserved stationary common factors. Therefore we employ the fully modified procedures, pro-

posed by Phillips and Hansen (1990) for bias-correction. After bias-correction, our estimators achieve the
√
NT consistency in homogeneous nonstationary panel model. Fourth, we establish the oracle properties

of the C-Lasso estimators, post-Lasso and Cup-Lasso versions, which are asymptotically equivalent to the

corresponding infeasible estimators, obtained by knowing the exact individuals’ group membership. At

last, we develop the limiting distributions of group-specific estimators, which help to make inference about

our group-specific long-run relations. Three information criteria are introduced to estimate the number of

unobserved common factors and the number of groups. We demonstrate that those information criteria

can select the correct number of unobserved common factors and group w.p.a.1. Our simulation results

show good finite sample performance for both estimation and classification.

Because our PPC-based estimation method allows us to account for the unobserved heterogeneity and

cross-sectional dependence simultaneously, it is the best fitted method to study the heterogeneous behavior

in growth convergence model. In empirical application, we report both pooled FMOLS estimates and

group-specific Cup-Lasso estimates with cross-sectional dependence, comparing with Coe et al. (2009)’s

(CH2009, hereafter) estimates. The pooled FMOLS estimates are quantitatively similar to CH2009 ones.

It confirms the international R&D spillovers after controlling unobserved global trends. Then we notice

that the group-specific Cup-Lasso estimates show heterogeneous behavior. It indicates multiple regimes of

growth convergence. In addition, we document the group classification results. The countries are classified

into three groups–“Convergence”, “Divergence”, and “Balance”. The major sources of technology changes

in “Convergence” group come from global technology diffusions. As a result, the catch-up effects through

the channel of technology diffusion are the main forces towards convergence in income. On the contrary,

countries in “Divergence” group show an opposite story. The technology changes rely mainly on their

domestic R&D stock. They fail to benefit from international R&D spillovers. For the “Balance” group,

they have balanced sources in technology growth both innovations and international spillovers. In general,

we identify multiple regimes of growth convergence across economies through the channel of technology

changes.

Our econometric theory also speak to recent literature trying to detect the unobserved heterogeneity

by grouping or clustering. For example, Yuan and Lin (2006) consider the problem of selecting grouped

variables for accurate prediction in regression. Qian and Su (2016) study the unobserved group structure

on time dimension to detect the structure breaks. Bonhomme and Manresa (2015) allow time-varying

grouped patterns of heterogeneity in stationary linear panel models. Their focus is to detect the latent

group patterns in fixed effects. Sarafidis and Weber (2015) propose a partially heterogeneous model for the

panel data with fixed T , where the cross-sectional individuals are grouped into clusters. One advantage

of our approach is that we allow nonstationary variables and estimate the long-run cointegrating relations

with latent group structures. Our approach also simultaneously handle the unobserved common patterns
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across individuals and the unobserved heterogeneity. Lastly, our paper is closely related to the long

literature on economic growth, in particular the analysis of global technology diffusion. In this context,

our results using grouped nonstationary panel models with cross-sectional dependence provide a purely

data-driven method for the “convergence puzzle”. It empirically identifies the multiple steady states in

growth convergence.

This paper is structured as follows. Section 2 introduces nonstationary panel model with latent group

structures and cross-sectional dependence and proposes a penalized principal component estimation. Sec-

tion 3 explains the main assumptions and establishes the asymptotic properties of three types of Lasso

estimators. Section 4 reports simulation results. Section 5 studies the heterogeneous behavior of growth

convergence. Section 6 concludes. All proofs are relegated to the appendix.

NOTATION. Hereafter, we write the integral
∫ 1

0
W (s)ds as

∫
W and define Ω1/2 to be any matrix such

that Ω = (Ω1/2)(Ω1/2)′, and BM(Ω) to denote Brownian motion with the covariance matrix Ω. For any

m× n real matrix A, we write the Frobenius norm ‖A‖, the spectral norm ‖A‖sp, the transpose A′. The

operator
d→ denotes convergence in distribution,

p→ convergence in probability, ⇒ weak convergence, a.s.

almost surely, and [x] the largest integer less than or equal to x. When A is symmetric, we use µmax(A)

and µmin(A) to denote its largest and smallest eigenvalues, respectively. Let M <∞ be a generic positive

number, not depending on T or N . We also define the matrix that projects onto orthogonal space of A

as MA = IT − A(AA′)−1A′. Let 0p×1 denote a p× 1 vector of zeros and 1{·} the indicator function. We

use “p.d.” and “p.s.d.” to abbreviate “positive definite” and “positive semidefinite”, respectively. Unless

indicated explicitly, we use (N,T )→∞ to stand for that N and T pass jointly to infinity.

2 Model and Estimation

In this section, we first introduce the nonstationary panel model with latent group structures and cross-

sectional dependence. Then we propose a penalized principal component method to estimate the model.

2.1 Nonstationary panel model with latent group structures and cross-sectional

dependence

The generating process of (yit, xit) is as followsyit = β0′
i xit + eit

xit = xit−1 + εit,
(2.1)

where yit is a scalar, xit is a p × 1 vector of nonstationary regressors of order one (I(1) process) for all i,

eit is the error term and assumed to be cross-sectionally dependent due to unobserved common factors, εit

is assumed to have zero mean and finite long-run variance, and β0
i is a p× 1 vector of unknown long-run

cointegrating relations. We assume that the long-run cointegrating relations βi are heterogeneous across

groups and homogeneous within a group. And we denote the true values of βi as β0
i , to follow the latent
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group structures, such that

β0
i =


α0

1 if i ∈ G0
1

...
...

α0
K if i ∈ G0

K

, (2.2)

where α0
j 6= α0

k for any j 6= k,
⋃K
k=1G

0
k = {1, 2, . . . N}, and G0

k

⋂
G0
j = ∅ for any j 6= k. Let Nk = #Gk

denote the cardinality of the set G0
k. For the moment, we assume that the number of group K is known

and fixed but each individual’s group membership is unknown. A information criterion is proposed to

determine the number of groups in Section 3.6.

Since eit is assumed to be cross-sectionally dependent, it allows for unobserved common patterns across

individual i. By Bai and Ng (2004), we impose a multi-factor structure on eit to model cross-sectional

dependence. That is,

eit = λ0′
i f

0
t + uit = λ0′

1if
0
1t + λ0′

2if
0
2t + uit,

where f0
t is an r× 1 vector of unobserved common factors that contains an r1 × 1 vector of nonstationary

factors f0
1t of order one (I(1) process) and an r2 × 1 vector of stationary factors f0

2t (I(0) process), λi

is an r × 1 vector of factor loadings and uit is the idiosyncratic component of eit with zero mean and

finite long-run variance and assumed to cross-sectionally independent. We emphasize that cross-sectional

dependence only comes from common factors ft such that eit and ejt are correlated due to common factors

ft in the form of E(eitejt) = λ′iE(ftf
′
t)λj 6= 0.

If ft only contains stationary factors, in some cases we still can obtain consistent estimators of βi by

the penalized-least-squares based (hereafter, PLS-based) method, proposed by Huang et al. (2017) when

ignoring cross-sectional dependence. However, if there are serial correlations between dependent variable

xit and unobserved common factors ft, ignoring those factors ft yields biased inference for βi. Furthermore,

the unobserved nonstationary factors will lead to inconsistency due to spurious regression. In general, we

fail to obtain consistent and unbiased group-specific estimators by the PLS-based method when existing

cross-sectional dependence in nonstationary panel models.

Now we impose the multi-factor error structure to the first equation of (2.1) as follows

yit = β0′
i xit + λ0′

i f
0
t + uit. (2.3)

Our estimation procedures are performed on model (2.3) by penalized principal component method, pro-

posed in Section 2.2. Let

α ≡ (α1, ..., αK0
), β ≡ (β1, ..., βN ), Λ = (λ1, ..., λN )′, and f = (f1, ..., fT )′.

The true values of α, β,Λ and f are denoted as α0,β0,Λ0, and f0 respectively. We also use α0
k, β

0
i , λ

0
i and

f0
t denote the true value of αk, βi, λi and ft. Our interest is to infer each individual’s group identity and

obtain consistent estimators of both group-specific long-run relations αk and unobserved common factors

ft.
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2.2 Penalized principal component estimation

In this section, we propose an iterative PPC-based procedure to simultaneously estimate the long-run rela-

tions βi, unobserved common factors ft and identify group membership. Here, we rewrite the nonstationary

panel model with latent group structures and multi-factor error structure (2.3) in vector form,

yi = xiβ
0
i + f0λ0

i + ui = xiβ
0
i + f0

1λ
0
1i + f0

2λ
0
2i + ui, (2.4)

where f0 = (f0
1 , f

0
2 ), λ0

i = (λ0′
1i, λ

0′
2i)
′, yi = (yi1, ..., yiT )′, xi, f

0
1 , f0

2 , and ui are analogously defined. As

we discussed in Section 2.1, we can still obtain consistent estimates of βi when ignoring the unobserved

stationary common factors. The principal component estimators of βi and f0
1 are obtained from the

following least objective function

SSR(βi, f1,Λ1) =

N∑
i=1

(yi − xiβi − f1λ1i)
′(yi − xiβi − f1λ1i), (2.5)

subject to the constraint
f ′1f1
T 2 = Ir1 and Λ′1Λ1 being diagonal. Define the projection matrix Mf1 =

IT − Pf1 = IT − f1f
′
1

T 2 . We can obtain the least squares estimator of βi for each given f1 is

β̂i = (x′iMf1xi)
−1x′iMf1yi.

Given βi, the variable ei = yi − xiβi = fλi + ui has a pure factor structure. Let e = (e1, e2, ..., eN ), a

T ×N matrix and Λ1 = (λ11, ..., λ1N )′ a N×r1 matrix. We can obtain the following least squares objective

function for f1

tr [(e− f1Λ′1)(e− f1Λ′1)′] .

By Bai (2009), we can concentrating out Λ1 by its least square estimator, such that Λ1 = e′f1(f ′1f1)−1 =

e′f1/T
2. The objective function (2.5) becomes

tr (e′Mf1e) = tr(e′e)− tr
(
f ′1ee

′f1/T
2
)
.

The final least squares estimator (β̂, f̂1) is the solution of the set of nonlinear equations,

β̂i =
(
x′iMf̂1

xi

)−1 (
x′iMf̂1

yi

)
, (2.6)

f̂1V1,NT =

[
1

NT 2

N∑
i=1

(
yi − xiβ̂i

)(
yi − xiβ̂i

)′]
f̂1, (2.7)

where Mf̂1
= IT − 1

T 2 f̂1f̂
′
1, 1

T 2 f̂
′
1f̂1 = Ir1 , and V1,NT is a diagonal matrix consisting of the r1 largest

eigenvalues of the matrix inside the brackets, arranged in decreasing order. Based on (2.6) and (2.7), we
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can further show that Λ̂′1Λ̂1 is a diagonal matrix with descending diagonal elements as follows,

1

N
Λ̂′1Λ̂1 = T−2f̂ ′1

(
1

NT 2

N∑
i=1

(
yi − xiβ̂i

)(
yi − xiβ̂i

)′
f̂1

)
=

(
1

T 2
f̂ ′1f̂1

)
V1,NT = V1,NT .

Given the initial estimates of βi and f1 obtained from (2.6) and (2.7), we propose the penalized principal

component method to estimate β and α , where β exhibits the latent group structures. The PPC criterion

function is given by

Qλ,KNT (β,α, f1) = QNT (β, f1) +
λ

N

N∑
i=1

K∏
k=1

‖βi − αk‖ (2.8)

where QNT (β, f1) = 1
NT 2

∑N
i=1 (yi − xiβi)′Mf1 (yi − xiβi) , λ = λ(N,T ) is the tuning parameter. Mini-

mizing the PPC criterion function in (2.8) produces the Classifier-Lasso (C-Lasso, hereafter) estimators of

βi and αk, respectively. Then we update the estimates of the nonstationary common factors f1 as follows

f̂1V1,NT =

 1

NT 2

K∑
k=1

∑
i∈Ĝk

(yi − xiα̂k)(yi − xiα̂k)′

 f̂1. (2.9)

with the identification restrictions: 1
T 2 f̂

′
1f̂1 = Ir1 and Λ̂′1Λ̂1 is a diagonal matrix with descending diagonal

elements. Since we allow for both stationary and nonstationary common factors, we minimize the following

equation to obtain consistent estimates of the stationary common factors f2,

f̂2V2,NT =

 1

NT

K∑
k=1

∑
i∈Ĝk

(yi − xiα̂k − f̂1λ̂1i)(yi − xiα̂k − f̂1λ̂1i)
′

 f̂2. (2.10)

with the identification restrictions: 1
T f̂
′
2f̂2 = Ir2 and V2,NT is a diagonal matrix with descending diagonal

elements. After obtaining the estimates of f2, we apply bias-correction in post-Lasso estimators of β and

α. The biases emerge from the unobserved stationary common factors, endogeneity, and serial correlation

issues from the weakly dependent error terms.

Now we summarize the estimation procedures in PPC-based estimation method. We first obtain the

prior estimates of β̂i and f̂1 by solving equations (2.6) and (2.7). Second, we minimize the above PPC

criterion function (2.8), which produces the C-Lasso estimates β̂ and α̂. Third, with C-Lasso estimates

of α, we update the estimates of nonstationary common factor f1 by (2.9) and estimate the stationary

common factors f2 by (2.10). Forth, we apply bias-correction by the fully modified method in the post-

Lasso estimator of α, which is explained in Section 3.4. We iterate steps 2–4 until achieving convergence

to obtain the Cup-Lasso estimators. Our estimators, which we will refer to as “C-Lasso”, “post-Lasso”,

and “Cup-Lasso”, are based on the optimal group on the cross-sectional individuals, according to the PPC

criterion function. The triplet (β̂, α̂, f̂1) jointly minimizes the objective function (2.8). Let β̂i and α̂k

denote the ith and kth columns of β̂ and α̂, respectively, i.e., β̂ ≡ (β̂1, ..., β̂N ) and α̂ ≡ (α̂1, ..., α̂K). We

will study the asymptotic properties of the C-Lasso, post-Lasso and Cup-Lasso estimators below.
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3 Asymptotic Theory

3.1 Main assumptions

In this subsection, we introduce the main assumptions that are needed to study the asymptotic properties

of our estimators β̂, α̂ and f̂1.

Let Qixx(f1) = 1
T 2x

′
iMf1xi, Q1(f1) =diag(Q1,xx, ..., QN,xx), and

Q2(f1) =


1

NT 2x
′
1Mf1x1a11

1
NT 2x

′
1Mf1x2a12 · · · 1

NT 2x
′
1Mf1xNa1N

1
NT 2x

′
2Mf1x1a21

1
NT 2x

′
2Mf1x2a22 · · · 1

NT 2x
′
2Mf1xNa2N

...
...

. . .
...

1
NT 2x

′
NMf1x1aN1

1
NT 2x

′
NMf1x2aN2 · · · 1

NT 2x
′
NMf1xNaNN

 ,

where f1 satisfies 1
T 2 f

′
1f1 = Ir1 . Note that Q2(f1) is an Np×Np matrix. Let wit = (uit, ε

′
it,∆f

0′
1t , f

0′
2t , )

′.

Let M be a generic constant that can vary across lines.

We make the following assumptions on {wit} and {λi} .
Assumption 3.1 (i) For each i, {wit, t ≥ 1} is a linear process: wit = φi(L)vit =

∑∞
j=0 φijvi,t−j, where

vit = (vuit, v
ε′
it , v

f1′
it , v

f2′
it )′ is a (1+p+r1 +r2)×1 vector sequence of i.i.d. random variables over t with zero

mean and variance matrix I1+p+r; max1≤i≤N E(‖vit‖2q+ε) < M, where q > 4 and ε is an arbitrarily small

positive constant; vuit, v
ε
it, v

f1
t , and vf2t are mutually independent, and (vuit, v

ε′
it)
′ are independent across i.

(ii) max1≤i≤N
∑∞
j=0 j

k‖φij‖ <∞ and |φi(1)| 6= 0 for some k ≥ 2.

(iii) uit and εit are cross-sectionally independent conditional on C.
(iv) λi is independent of vjt for all i, j,and t.

Following Phillips and Solo (1992), we assume that {wit} = {wit, t ≥ 1} is a linear process in Assump-

tion 3.1(i). For latter reference, we partition φi(L) conformably with wit as follows:

φi(L) =


φuui (L) φuεi (L) φuf1i (L) φuf2i (L)

φεui (L) φεεi (L) φεf1i (L) φεf2i (L)

φf1u(L) φf1ε(L) φf1f1(L) φ
f1f2

(L)

φf2u(L) φf2ε(L) φf2f1(L) φf2f2(L)

 =


φuui (L) φuεi (L) φuf1i (L) 0

φεui (L) φεεi (L) φεf1i (L) φεf2i (L)

0 0 φf1f1(L) φ
f1f2

(L)

0 0 φf2f1(L) φf2f2(L)

 . (3.1)

Since both nonstationary and stationary common factors do not depend on i, we have φf1u(L) = φf1ε(L) =

φf2u(L) = φf2ε(L) = 0. Moreover, we assume that φuf2i (L) = 0. This indicates that there exists no serial

correlation or contemporaneous correlation between the regression error uit and the unobserved stationary

common factors f0
2t, and it ensures the consistency for our initial estimators. The finite 2q + ε moments

for q > 4 ensure the validity of the law of large numbers (LLN) and functional central limit theory (FCLT)

for the weakly dependent linear process {wit}. We will frequently apply the Beveridge and Nelson (BN)

decomposition

wit = φi(1)Vit + w̃it−1 − w̃it,

where w̃it =
∑∞
j=0 φ̃ijvi,t−j and φ̃ij =

∑∞
s=j+1 φs. Assumption 3.1(ii) gives the summability conditions on

9



the coefficients matrix φij . By Lemma (BN) in Phillips and Solo (1992), we have
∑∞
j=1 j

k‖φij‖k <∞→∑∞
j=0 ‖φ̃ij‖k <∞, which implies that w̃it has Wold decomposition and behaves like a stationary process.

Specifically, we have
∑∞
j=0

∥∥∥φ̃ij∥∥∥2

< ∞ under
∑∞
j=1 j

1/2‖φij‖ < ∞. The suitable choice of k ensures

that finite kth moment of w̃it. In our case, we need strong conditions to ensure the uniform behavior

across i. The second part of Assumption 3.1(ii) rules out potential cointegration relation among xit and

f0
1t. Assumption 3.1(iii) emphasizes that the cross-sectional dependence only comes from the unobserved

common factors. Assumption 3.1(iv) ensures that the factor loadings are independent of the generalization

of the error processes both over t and across i.

Assumption 3.1 ensures the multivariate invariance principle for the partial sum process of wit. That

is,

1√
T

[Tr]∑
t=1

wit ⇒ Bi(r) ≡ BMi(Ωi) as T →∞ for all i,

where Bi = (B1i, B
′
2i, B

′
3, B

′
4)′ is a (1+p+r1 +r2)×1 vector of Brownian motions with long-run covariance

matrix Ωi. We can also define the temporal variance Σi = E(wi0w
′
i0) and the one-sided long-run covariance

matrix ∆i =
∑∞
j=0E(wi0w

′
ij) = Γi + Σi of {wit}, where Ωi has the following partition

Ωi =

∞∑
j=−∞

E(wijw
′
i0) = Γ′i + Γi + Σi =


Ω11,i Ω12,i Ω13,i Ω14,i

Ω21,i Ω22,i Ω23,i Ω24,i

Ω31,i Ω32,i Ω33 Ω34

Ω41,i Ω42,i Ω43 Ω44

 .

Let S1, S2, S3, and S4 denote respectively the 1×(1+p+r), p×(1+p+r), r1×(1+p+r) and r2×(1+p+r),

selection matrices such that S1wit = uit, S2wit = εit, S3wit = ∆f0
1t, and S4wit = f0

2t.

Assumption 3.2 (i) As N → ∞, 1
NΛ0′Λ0 p→ Σλ > 0. max1≤i≤N E‖λ0

i ‖2q ≤ M for some q ≥ 4 and

Λ0′
1 Λ0

2 = OP
(
N1/2

)
.

(ii) E‖∆f0
1t‖2q+ε ≤ M and E‖f0

2t‖2q+ε ≤ M for some ε > 0, q ≥ 4 and for all t. As T → ∞,
1
T 2

∑T
t=1 f

0
1tf

0′
1t

d→
∫
B3B3 and 1

T

∑T
t=1 f

0
2tf

0′
2t

p→ Σ44 > 0, where B3 is a r1-vector of Brownian motions

with long-run covariance matrix Ω33 > 0.

(iii) Let γN (s, t) = E( 1
N

∑N
i=1 uituis) and ξst = 1

N

∑N
i=1 uituis−E( 1

N

∑N
i=1 uituis). Then max1≤s,t≤T N

2

×E|ξst|4 ≤M and T−1
∑T
s=1

∑T
t=1 ‖γN (s, t)‖2 ≤M.

(iv) There exists a constant ρmin > 0 such that P (min1≤i≤N inff1 µmin (Q1(f1)− 2Q2(f1)) ≥ cρmin) =

1− o(N−1), where the inf is taken respect to f1 such that 1
T 2 f

′
1f1 = Ir1 .

Assumption 3.1(i)-(iii) imposes standard moment conditions in the factor literature; see, e.g., Bai

and Ng (2002, 2004). The last condition in 3.1(i) indicates that the stationary factor loadings and the

nonstationary factor loadings can be only weakly correlated, which will greatly facilitate the derivation.

Assumption 3.1(iii) imposes conditions on the error processes {uit}, which are adapted from Bai (2003)

and allow for weak forms of cross-sectional and serial dependence in the error processes. Assumption

3.1(iv) assumes Q1(f1)− 2Q2(f1) is positive definite in the limit across i when f1 satisfies the restriction
1
T 2 f

′
1f1 = Ir1 . This assumption is the identification condition for βi, which is related to ASSUMPTION
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A in Bai (2009, p.1241). Since f1 is to be estimated, the identification condition for βi is imposed on the

set of f1 satisfying the restriction 1
T 2 f

′
1f1 = Ir1 .

Assumption 3.3 (i) For each k = 1, ...,K0, Nk/N → τk ∈ (0, 1) as N →∞.

(ii) min1≤k 6=j≤K
∥∥α0

k − α0
j

∥∥ ≥ cα for some fixed cα > 0.

(iii) As (N,T )→∞, N/T 2 → c1 ∈ [0,∞), T/N2 → c2 ∈ [0,∞).

(iv) As (N,T )→∞, λdT → 0, λTN−1/qd−2
T / (log T )

1+ε →∞, and d2
TN

1/qT−1 (log T )
1+ε → 0.

Assumption 3.3(i)-(ii) are borrowed from SSP. Assumption 3.3(i) implies that each group has an asymp-

totically non-negligible number of individuals as N →∞ and Assumption 3.3(ii) requires the separability

of the group-specific parameters. Similar conditions are assumed in the panel literature with latent group

patterns, see, e.g., Bonhomme and Manresa (2015), Ando and Bai (2016), and Su et al. (2017). Assump-

tion 3.3(iii)-(iv) imposes conditions to control the relative rates at which N and T pass to infinity. Note

that N can pass to infinity at a faster or slower rate than T . The involving of dT is due to the law of

iterated logarithm, such that dT = O(log log T ). One can verify that the range of values for λ to satisfy

Assumption 3.3(iv) is λ ∝ T−α for α ∈ (0, q−1
q ).

3.2 Preliminary rates of convergence

Let b̂i = β̂i−β0
i , δNT = min(

√
N,T ), CNT = min(

√
N,
√
T ), η2

NT = 1
N

∑N
i=1

∥∥∥b̂i∥∥∥2

, andH1 = ( 1
NΛ0′

1 Λ0
1)( 1

T 2 f
0′
1 f̂1)

×V −1
1,NT . The consistency of β̂i and f̂1 is ensured by the following theorem.

Theorem 3.1 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 1
N

∑N
i=1

(
β̂i − β0

i

)′
1
T 2x

′
iMf̂1

xi

(
β̂i − β0

i

)
= oP (1),

(ii)
∥∥∥Pf̂1 − Pf0

1

∥∥∥ = oP (1),

(iii) 1
N

∑N
i=1 ‖β̂i − β0

i ‖2 = oP (1),

(iv) 1
T ‖f̂1 − f0

1H1‖ = OP (ηNT ) + 1√
T
OP (C−1

NT ).

Theorem 3.1(i) establishes the weighted mean square consistency of {β̂i}. 3.1(ii) shows that the space

spanned by the columns of f̂1 and f0
1 are asymptotically the same. Given the weighted mean square

consistency and Assumption 3.2(iv), we can further establish the non-weighted mean square consistency

of βi in 3.1(iii). As expected, Theorem 3.1(iv) indicates that the true factor f0
1 can only be identified up

to a nonsingular rotation matrix. Compared to Bai and Ng (2004) and Bai et al. (2009), our results allow

for both heterogeneous slope coefficients and unobserved stationary and nonstationary common factors.

The following theorem establishes the rate of convergence for the individual and group-specific estima-

tors and the estimated factors as well.

Theorem 3.2 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 1
N

∑N
i=1 ‖β̂i − β0

i ‖2 = OP (dTT
−2),

(ii) β̂i − β0
i = OP (d

1/2
T T−1 + λ) for i = 1, 2, ..., N ,

(iii) (α̂(1), ..., α̂(K))−(α0
1, ..., α

0
K) = OP (dTT

−1) for some suitable permutation (α̂(1), ..., α̂(K)) of (α̂1, ..., α̂K),

(iv) T−1‖f̂1 − f0
1H1‖2 = OP (N−1 + d2

TT
−1).
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Theorem 3.2(i)-(ii) establishes the mean-square and point-wise convergence of the slope coefficients βi,

respectively. The usual super consistency of nonstationary estimators β̂i is preserved if λ = O(T−1) despite

the fact that we ignore the unobserved stationary common factors and allow for correlation between uit and(
xit, f

0
1t

)
. Theorem 3.2(iii) indicates that the group-specific parameters, α0

1, ..., α
0
K0
, can be consistently

estimated. Theorem 3.2(iv) updates the convergence rate of the unobserved nonstationary factors in

Theorem 3.1(iv).

For notational simplicity, hereafter we simply write α̂k for α̂(k) as the consistent estimator of α0
k’s. Let

Ĝk = {i ∈ {1, 2, ..., N} : β̂i = α̂k} for k = 1, ...,K. Let Ĝ0 denote the group of individuals in {1, 2, ..., N}
that are not classified into any of the K groups.

3.3 Classification consistency

In this subsection, we study the classification consistency. Define

ÊkNT,i = {i 6∈ Ĝk|i ∈ G0
k} and F̂kNT,i = {i 6∈ G0

k|i ∈ Ĝk},

where i = 1, ..., N and k = 1, ...K0. Let ÊkNT = ∪i∈ĜkÊkNTi and F̂kNT = ∪i∈Ĝk F̂kNTi. The events ÊkNT

and F̂kNT mimic Type I and Type II errors in statistical tests. Following SSP, we say that a classification

method is individual consistent if P (ÊkNT,i) → 0 as (N,T ) → ∞ for each i ∈ G0
k and k = 1, ...,K,

and P (F̂kNT,i) → 0 as (N,T ) → ∞ for each i ∈ G0
k and k = 1, ...,K. It is uniformly consistent if

P (∪Kk=1ÊkNT )→ 0 and P (∪Kk=1F̂kNT )→ 0 as (N,T )→∞.

The following theorem establishes the uniform classification consistency.

Theorem 3.3 Suppose that Assumptions 3.1-3.3 hold. Then

(i) P (∪K0

k=1ÊkNT ) ≤
∑K0

k=1 P (ÊkNT )→ 0 as (N,T )→∞,
(ii) P (∪K0

k=1F̂kNT ) ≤
∑K0

k=1 P (F̂kNT )→ 0 as (N,T )→∞.

Theorem 3.3 implies the uniform classification consistency– all individuals within a certain group, say

G0
k, can be simultaneously correctly classified into the same group (denoted Ĝk) w.p.a.1. Conversely, all

individuals that are classified into the same group, say Ĝk, simultaneously belong to the same group (G0
k)

w.p.a.1.
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3.4 The oracle properties, post-Lasso and Cup-Lasso estimators

In this subsection, we study the oracle properties of PPC-based estimators. To proceed, we add some

notations. For k = 1, ...,K, we define

UkNT =
1√
NkT

∑
i∈G0

k

xiMf0
1

(ui + f0
2λ

0
2i

)
− 1

N

N∑
j=1

(
uj + f0

2λ
0
2j

)
aij

 ,

BkNT,1 =
1√
NkT

∑
i∈G0

k

(
T∑
t=1

T∑
s=1

[1 {t = s} − κts1 {s ≤ t}]

)
∆21,i,

BkNT,2 =
1√
NkT

∑
i∈G0

k

EC (xi)
′
Mf0

1

λ0
2i −

1

N

N∑
j=1

λ0
2jaij

 ,

VkNT =
1√
NkT

∑
i∈G0

k

Sεφ†i (1)

T∑
t=1

T∑
s=1

{κ̄ts (V uεit v
uε′
is )− [1 {t = s} − κts1 {s ≤ t}] I1+p}φ†i (1)′Su′

+
1√
NkT

N∑
i=1

EC (x′i) 1
{
i ∈ G0

k

}
− 1

N

∑
j∈G0

k

aijEC(x
′
j)

Mf0
1
ui

+
1√
NkT

∑
i∈G0

k

[xi − EC (xi)]
′Mf0

1
f0

2λ
0
2i,

where κts = f0′
1t(f

0′
1 f

0
1 )−1f0

1s, κ̄ts = 1 {t = s} − κts, C = σ
(
Λ0, f0

)
, EC (·) = EC (·|C) ,

φ†i (L) =

(
φu†i (L)

φε†i (L)

)
=

(
φuui (L) φuεi (L)

φεui (L) φεεi (L)

)
, Su = (1, 01×p) , and Sε = (0p×1, Ip) .

Let

Q1NT = diag

 1

N1T 2

∑
i∈G0

1

x′iMf0
1
xi, . . . ,

1

NKT 2

∑
i∈G0

K

x′iMf0
1
xi

 and Q2NT =


Q2NT,11 · · · Q2NT,1K

...
. . .

...

Q2NT,K1 · · · Q2NT,KK

 ,

where Q2NT,kl = 1
NkNT 2

∑
i∈G0

k

∑
j∈G0

l
x′iMf0

1
xjaij for k, l = 1, ...,K. Let

QNT = Q1NT −Q2NT and Q0 =


Q1,1 −Q2,11 −Q2,12 . . . −Q2,1K

−Q2NT,21 Q1,2 −Q2,22 . . . −Q2,2K

...
...

. . .
...

−Q2,K1 −Q2,K2 . . . Q1NT,K −Q2,KK

 ,

whereQ1,k = limN→∞
1
Nk

∑
i∈G0

k
EC

(∫
B̃2iB̃

′
2i

)
, Q2,kl = limN→∞

1
NNk

∑
i∈G0

k

∑
j∈G0

l
aijEC

(∫
B̃2,iB̃2,j

)
,

and B̃2i = B2,i −
∫
B2,iB

′
3

(∫
B3B

′
3

)−1
B3.

Let α̂ = (α̂1, ..., α̂K). Let UNT = (U ′1NT , . . . , U
′
KNT )

′
, BNT = (B′1NT , . . . , B

′
KNT )

′
, VNT = (V ′1NT , . . . , V

′
KNT )

′
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and BkNT = BkNT,1+BkNT,2. The following theorem reports the Bahadur-type representation and asymp-

totic distribution of vec(α̂−α0).

Theorem 3.4 Suppose that assumptions 3.1-3.3 hold and
√
N = o (T ). Let α̂k be obtained by solving

(2.8). Then

(i)
√
NT vec(α̂−α0) =

√
DNQ

−1
NTUNT + oP (1) =

√
DNQ

−1
NT (VNT +BNT ) + oP (1),

(ii)
√
NT vec(α̂−α0)−

√
DNQ

−1
NTBNT

d→MN(0, limN→∞DNQ
−1
0 Ω0Q

−1
0 ) as (N,T )→∞,

where DN =diag
(
N
N1
, ..., N

NK

)
, Ω0 = lim(N,T )→∞ΩNT , and ΩNT =Var(VNT |C) .

Theorem 3.4 indicates that VNT and BNT are associated with the asymptotic variance and bias of

α̂k’s, respectively. Note that BkNT = BkNT,1 + BkNT,2, which indicates the two sources of biases. The

appearance of BkNT,1 results from the correlation between (xit, f1t) and uit and the serial correlation

among the innovation process {wit}. Apparently, the presence of the unobserved nonstationary factors

f0
1t complicates the formula for BkNT,1 through the term κts(= f0′

1t(f
0′
1 f

0
1 )−1f0

1s). The second source of

asymptotic bias is due to the unobserved stationary factors f0
2t so that BkNT,2 = 0 if f0

2t is absent from the

model. In the special case where neither f0
1t nor f0

2t is present in the model, we have BkNT = BkNT,1 =
1√
Nk

∑
i∈G0

k
∆21,i. This is the usual bias term for panel cointegrating regression that is associated with

the one-sided long-run covariance; see Phillips (1995) and Phillips and Moon (1999). Note that the ith

element of VNT is independent across i conditional on C and EC (VNT ) = 0. This makes it possible for us

to derive a version of conditional CLT for VNT and establish the limiting distribution of our estimators α̂

in 3.4(ii).

As we show in the proof of Theorem 3.4, the asymptotic bias term BNT is of O(
√
Nk), which implies

the T -consistency of the C-Lasso estimators α̂k. In order to obtain the
√
NT -convergence rate, we call

upon various procedures to remove the asymptotic bias by constructing consistent estimates of BNT .

3.4.1 The fully modified procedure

In this subsection, we first obtain the estimates of unobserved stationary factors f0
2t from (2.10). Then

we employ the fully modified procedure of Phillips and Hansen (1990) and Phillips (1995) to make bias-

corrections for endogeneity and serial correlation. Below we consider the three types of bias-corrected

estimators: the bias-corrected post-Lasso estimator α̂bc
Ĝk

, the fully-modified post-Lasso estimator α̂fm
Ĝk
,

and the fully-modified Cup-Lasso estimator α̂cup
Ĝk

.

Following Phillips and Hansen (1990), we first construct consistent time series estimators of the long-run

covariance matrix Ωi and the one-sided long-run covariance matrix ∆i by

Ω̂i =

T−1∑
j=−T+1

ω

(
j

H

)
Γ̂i(j), and ∆̂i =

T−1∑
j=0

ω

(
j

H

)
Γ̂i(j),

where ω(·) is a kernel function, H is the bandwidth parameter, and Γ̂i(j) = 1
T

∑T−j
t=1 ŵit+jŵ

′
it with ŵit =

(ûit,∆x
′
it,∆f̂

′
1t, f̂

′
2t)
′. We partition Ω̂i and ∆̂i conformably with Ωi.

We make the following assumption on the kernel function and bandwidth.

14



Assumption 3.4 (i) The kernel function ω(·): R→ [−1, 1] is a twice continuously differentiable symmet-

ric function such that
∫∞
−∞ ω(x)2dx ≤ ∞, ω(0) = 1, ω(x) = 0 for |x| ≥ 1, and lim|x|→1 ω(x)/(1− |x|)q =

c > 0 for some q ∈ (0,∞).

(ii) As (N,T )→∞, N/H2q → 0 and H/T → 0.

The endogeneity correction is achieved by modifying the variable yit with the follow transformation

ŷ+
it = yit − Ω̂12,iΩ̂

−1
22,i∆xit. (3.2)

This would lead to the modified equation

ŷ+
it = β0′

i xit + λ0′
1if

0
1t + λ0′

2if
0
2t + û+

it

where û+
it = uit − Ω̂12,iΩ̂

−1
22i∆xit. Define

∆̂+
12,i = ∆̂12,i − Ω̂12,iΩ̂

−1
22i∆̂22,i. (3.3)

By Phillips (1995), (3.2) and (3.3) give correction for the endogeneity and serial correlation, respectively.

Therefore, we can obtain the bias-correction post-Lasso estimator α̂bc
Ĝ
, fully modified post-Lasso esti-

mator α̂fm
Ĝk

, and the updated estimators of f̂1 and f̂2 by iteratively solving (3.4)-(3.7), such that

vec
(
α̂bc
Ĝ

)
= vec (α̂)− 1√

NT

√
DNQ

−1
NT

(
B̂NT,1 + B̂NT,2

)
, (3.4)

α̂fm
Ĝk

=

∑
i∈Ĝk

x′iMf̂1
xi

−1∑
i∈Ĝk

x′iMf̂1
ŷ+
i − T

√
Nk

(
B̂+
kNT,1 + B̂kNT,2

) , (3.5)

f̂1V1,NT =

 1

NT 2

K∑
k=1

∑
i∈Ĝk

(ŷi − xiα̂Ĝk)(ŷi − xiα̂Ĝk)′

 f̂1, (3.6)

f̂2V2,NT =

 1

NT

K∑
k=1

∑
i∈Ĝk

(ŷi − xiα̂Ĝk − f̂1λ̂1i)(ŷi − xiα̂Ĝk − f̂1λ̂1i)
′

 f̂2, (3.7)

where

B̂kNT,1 =
1√
NkT

∑
i∈Ĝk

(
T∑
t=1

T∑
s=1

[1 {t = s} − κ̂ts1 {s ≤ t}]

)
∆̂21,i,

B̂+
kNT,1 =

1√
NkT

∑
i∈Ĝk

(
T∑
t=1

T∑
s=1

[1 {t = s} − κ̂ts1 {s ≤ t}]

)
∆̂+

21,i,

BkNT,2 =
1√
NkT

∑
i∈Ĝk

(
1

T

T∑
t=1

T∑
s=1

[1 {t = s} − κ̂ts1 {s ≤ t}]

)
∆̂24,i

ˆ̄λ2i,

κ̂ts = f̂ ′1t(f̂
′
1f̂1)−1f̂1s = f̂ ′1tf̂1s/T

2 and ˆ̄λ2i = λ̂2i− 1
N

∑N
j=1 λ̂2j âij . We obtain the fully modified Cup-Lasso
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estimators α̂cup
Ĝk

by iteratively solving (2.8), and (3.5)-(3.7), where we update the group classification results

in each iteration.

Let α̂fm
Ĝ

= (α̂fm
Ĝ1
, ..., α̂fm

ĜK
) and α̂cup

Ĝ
= (α̂cup

Ĝ1
, ..., α̂cup

ĜK
). We establish the limiting distribution of the

bias-correction post-Lasso estimators α̂bc
Ĝ
, the fully modified post-Lasso estimators α̂fm

Ĝ
and the Cup-Lasso

estimators α̂cup
Ĝ

by the following theorem.

Theorem 3.5 Suppose that assumptions 3.1-3.4 hold. Let α̂bc
Ĝ

be obtained by iteratively solving (3.4),

(3.6)-(3.7), α̂fm
Ĝ

be obtained by iteratively solving (3.5)-(3.7) and α̂cup
Ĝ

be obtained by iteratively solving

(2.8) and (3.5)-(3.7). As (N,T )→∞ with
√
N = o (T ), we have

(i)
√
NT vec(α̂bc

Ĝ
−α0)

d→MN(0, limN→∞DNQ
−1
0 Ω0Q

−1
0 ),

(ii)
√
NT vec(α̂fm

Ĝ
−α0)

d→MN(0, limN→∞DNQ
−1
0 Ω+

0 Q
−1
0 ),

(iii)
√
NT vec(α̂cup

Ĝ
−α0)

d→MN(0, limN→∞DNQ
−1
0 Ω+

0 Q
−1
0 ),

where Ω+
0 = limN,T→∞ Ω+

NT and Ω+
NT =Var

(
V +
NT |C

)
.

All three types of estimators achieve
√
NT consistency and have a mixture normal limit distribution.

One can construct the asymptotic t-tests and Wald-tests as usual provided one can obtain consistent

estimates of Q0 and Ω+
0 . The procedure is standard given the estimated group structure.

3.5 Estimating the number of unobserved factors

In the previous subsections, we assume that the numbers of nonstationary and stationary factors, r1 and r2,

are known. In this subsection, we propose two information criteria to determine the number of unobserved

factors before the PPC estimation procedure. Let r1 denote a generic number of nonstationary factors.

Let r denote a generic total number of nonstationary and stationary factors. We now use r0
1 and r0 to

denote their true values, which are assumed to be bounded above by a finite integer rmax.

Bai et al. (2009) find that it is not necessary to distinguish I(0) and I(1) factors when one tries to

determine the total number of factors based on the first differenced model. After the first differencing,

(2.3) takes the form

∆yit = β0′
i ∆xit + λ0′

i ∆f0
t + ∆uit, t = 2, ..., T, (3.8)

where e.g., ∆yit = yit − yi,t−1. Since the true dimension r0 is unknown, we start with a model with r

unobservable common factors. We now write the factors and factor loadings respectively as frt and λri ,

where the superscipt r highs the dimension of the underlying factors or factor loadings. Let Gr ≡ ∆fr

be a matrix of (T − 1)× r unobserved differenced factors with a typical row given by (Grt )
′ ≡ (∆frt )′. We

consider the minimization problem

{
Ĝr, Λ̂r

}
= arg min

Λr,Gr

1

NT

N∑
i=1

T∑
t=2

(∆yit − β̂′i∆xit − λr′i Grt )2,

s.t. Gr′Gr/T = Ir and Λr′Λr is diagonal,

where Ĝr = (Ĝr′2 , ..., Ĝ
r′
T )′, Λ̂r = (λ̂r′1 , ..., λ̂

r′
N )′, and β̂i’s are obtained from the model with r1 = rmax

nonstationary factors. It is easy to show that β̂i’s are T -consistent, which suffices for our purpose. It is
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well known that given Ĝr, we can solve Λ̂r from the least squares regression as a function of Ĝr. But we

will suppress the dependence of Λ̂r on Ĝr and define V1(r, Ĝr) = 1
NT

∑N
i=1

∑T
t=2(∆yit− β̂′i∆xit− λ̂r′i Ĝrt )2.

Following Bai and Ng (2002), we consider the following information criterion

IC1(r) = log V1(r, Ĝr) + rg1(N,T ), (3.9)

where g1(N,T ) is a penalty function. Let r̂ = arg min0≤r≤rmax IC1(r). We add the following assumption.

Assumption 3.5 As (N,T )→∞, g1(N,T )→ 0 and C2
NT g1(N,T )→∞, where CNT = min(

√
N,
√
T ).

Assumption 3.5 is common in the literature. It requires that g1(N,T ) pass to zero at certain rate so

that both over- and under-fitted models can be eliminated asymptotically.

The following theorem demonstrates that we can apply IC1(r) to consistently estimate r0.

Theorem 3.6 Suppose that Assumptions 3.1-3.3 and 3.5 hold. Then P (r̂ = r0)→ 1 as (N,T )→∞.

Theorem 3.6 indicates that we can determine the total number of factors r0 consistently by minimizing

IC1(r).

As we have discussed in Section 3.4, ignoring the unobserved stationary factors will not affect the

consistency of slope coefficient estimator, but generate a bias term that is asymptotically non-negligible.

For this reason, it is important to distinguish between nonstationary and stationary factors. Fortunately,

it is possible to estimate the number of unobserved nonstationary factors, r0
1, consistently based on the

level data. Once we obtain the consistent estimate of r0
1, we can also obtain the consistent estimate of the

number of unobserved stationary factors, r0
2, based on Theorem ??.

Let fr11 be a matrix of T × r1 nonstationary factors and λr11i be an r1× 1 vector of nonstationary factor

loadings. Given the preliminary T -consistent estimators β̂i’s, we consider the following minimization

problem

{
f̂r11 , Λ̂r1

}
= arg min

Λr1 ,f
r1
t

1

NT

N∑
i=1

T∑
t=1

(yit − β̂′ixit − λ
r1′
i fr11t )2,

s.t. fr1′1 fr11 /T 2 = Ir1 and Λr1′Λr1 is diagonal.

Given f̂r11 = (f̂r1′11 , ..., f̂
r1′
1T )′, we can solve Λ̂r1 = (λ̂r1′11 , ..., λ̂

r1′
1N )′ as a function of f̂r11 through the least

squares regression. But we suppress the dependence of Λ̂r1 on f̂r11 and define

V2(r1, f̂
r1
1 ) =

1

NT

N∑
i=1

T∑
t=1

(yit − β̂′ixit − λ̂
r1′
i f̂r11t )2.

We consider the information criterion:

IC2(r1) = log V2(r1, f̂
r1
1 ) + r1g2(N,T ), (3.10)

where g2(N,T ) is a penalty function. Let r̂1 = arg min0≤r1≤rmax
IC2(r1). We add the following condition.
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Assumption 3.6 As (N,T )→∞, g2(N,T ) log log(T )
T → 0 and g2(N,T )→∞.

Apparently, the conditions on g2(N,T ) are quite different from the conventional conditions for the

penalty function used in information criteria in the stationary framework (e.g., g1(N,T ) in Assumption

3.5). In particular, we now require that g2(N,T ) diverge to infinity rather than converge to zero as

in Assumption 3.5. The intuition is that the mean squared residual, V2(r1, f̂
r1
1 ), does not have a finite

probability limit when the number of nonstationary common factors is under-specified. In fact, we can

show that log log T
T V2(r1, f̂

r1
1 ) converges in probability to a positive constant when 0 ≤ r1 < r0

1. On the

other hand, we have V2(r1, f̂
r1
1 )− V2(r0

1, f̂
r01
1 ) = OP (1) when r1 > r0

1.

The following theorem suggests that the use of IC2(r1) helps to determine r0
1 consistently.

Theorem 3.7 Suppose that Assumptions 3.1-3.3 and 3.6 hold. Then P (r̂1 = r0
1)→ 1 as (N,T )→∞.

In the simulations and applications below, we simply follow Bai and Ng (2002) and Bai (2004) and set

g1(N,T ) =
N + T

NT
ln
(
C2
NT

)
and g2(N,T ) = αT g1(N,T ),

where αT = T
4 log log(T ) . We first estimate the total number of unobserved factors by r̂ based on the first-

differenced model, and then estimate the number of unobserved nonstationary factors by r̂1 based on the

level model. The estimator of r0
2 is then given by r̂2 ≡ r̂ − r̂1.

3.6 Determination of the number of groups

In this subsection, we propose a BIC-type information criterion to determine the number of groups, K.

We assume that the true number of group, K0, is bounded from above by a finite integer Kmax. We now

consider the PPC criterion function

QKNT,λ(β,α, f1) = QNT (β, f1) +
λ

N

N∑
i=1

K∏
k=1

‖βi − αk‖,

where 1 ≤ K ≤ Kmax. By minimizing the above criterion function, we obtain the estimates β̂i(K,λ),

α̂k(K,λ), λ̂1i(K,λ) and f̂1t(K,λ) of β0
i , α

0
k, λ

0
i and f0

1t, where we make by the β̂i, α̂k, λ̂1i and f̂1t on (K,λ)

explicit. Let Ĝk(K,λ) = {i ∈ {1, 2, ..., N} : β̂i(K,λ) = α̂k(K,λ)} for k = 1, ...,K, and Ĝ(K,λ) =

{Ĝ1(K,λ), ..., ĜK(K,λ)}. Let α̂cup
Ĝk(K,λ)

denote the Cup-Lasso estimate of α0
k. Define

V3(K) =
1

NT

K∑
k=1

∑
i∈Ĝk(K,λ)

T∑
t=1

[
yit − α̂cup′Ĝk(K,λ)

xit − λ̂1i(K,λ)′f̂1t(K,λ)
]2
.

Following SSP and Lu and Su (2016), we consider the following information criterion

IC3(K,λ) = log V3(K) + pKg3(N,T ), (3.11)

where g3(N,T ) is a penalty function. Let K̂(λ) = arg min1≤K≤Kmax
GIC(K,λ).
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Let G(K) = (GK,1, ..., GK,K) be any K-partition of the set of individual index {1, 2, ..., N}. Define

σ̂2
G(K) = 1

NT

∑K
k=1

∑
i∈ĜK,k

∑T
t=1[yit − α̂cup′ĜK,k

xit − λ̂i(K,λ)′f̂t(K,λ)]2, where α̂cup
ĜK,k

is analogously defined

as α̂cup
Ĝk(K,λ)

with Ĝk(K,λ) being replaced by GK,k. Let σ2
0 =plim(N,T )→∞

1
NT

∑N
i=1

∑
i∈G0

k

∑T
t=1[yit −

α0′
k xit − λ0′

i f
0
t ]2. Define

νNT =


(NT )−1/2 when there is no unobserved common factor,

δ−1
NT when there are only unobserved nonstationary common factors,

C−1
NT when there are both unobserved nonstationary and stationary common factors.

νNT indicates the effect of estimating the nonstationary panel on the use of IC3(K,λ) under different

scenarios.

We add the following assumption.

Assumption 3.7 (i) As (N,T )→∞, min1≤K<K0
infG(K)∈GK σ̂

2
G(K)

p→ σ2 > σ2
0 .

(ii) As (N,T )→∞, g3(N,T )→ 0 and g3(N,T )/ν2
NT →∞.

Assumption 3.6(i) requires that all under-fitted models yield asymptotic mean square errors larger than

σ2
0 , which is delivered by the true model. Assumption 3.6(ii) imposes the typical conditions on the penalty

function g3(N,T ) : it cannot shrink to zero either too fast or too slowly.

The following theorem justifies the validity of using IC3 to determine the number of groups.

Theorem 3.8 Suppose that Assumption 3.1-3.4 and 3.7 hold. Then P (K̂(λ) = K0)→ 1 as (N,T )→∞.

Theorem 3.8 indicates that as long as λ satisfies Assumption 3.3(iv) and g3(N,T ) satisfies Assumption

3.6(ii), we have inf1≤K≤Kmax,K 6=K0 IC3(K,λ) > IC3(K0, λ) as (N,T )→∞. Consequently, the minimizer

of IC3(K,λ) with respect to K is equal to K0 w.p.a.1 for a variety choices of λ.

4 Monte Carlo Simulations

In this section, we evaluate the finite sample performance of the C-Lasso, bias-corrected post-Lasso, fully-

modified post-Lasso and Cup-Lasso estimators and that of the information criteria for determining the

number of groups and the number of common factors.

4.1 Data generating processes

We consider four data generating processes (DGPs) that cover the cases of both stationary and nonsta-

tionary unobserved common factors. Throughout these DGPs, the observations in each DGP are drawn

from three groups with N1 : N2 : N3 = 0.3 : 0.4 : 0.3. There are four combinations of the sample sizes with

N = 50, 100 and T = 40, 80.

DGP1 (Strictly exogenous nonstationary regressors and unobserved stationary common factors) The
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observations (yit, x
′
it) are generated from the following model,yit = β′ixit + c(λ′2if2t) + uit

xit = xit−1 + εit

(4.1)

where xit = (x1it, x2it)
′ is a 2 × 1 vector of nonstationary regressors, f2t is a 2 × 1 vector of stationary

common factors. Let wit = (uit, ε
′
it, f

′
2t)
′ ∼ i.i.d. N(0, I5). The factor loadings λ2i are i.i.d. N((1, 1)′, I2)

for i = 1, ..., N . We use c to control the importance of unobserved common factors and let c = 0.5. The

long-run slope coefficients βi exhibits the group-structure in (2.2) for K = 3 and the true values are

(α0
1, α

0
2, α

0
3) =

((
0.4

1.6

)
,

(
1

1

)
,

(
1.6

0.4

))
.

DGP2 (Weakly dependent nonstationary regressors and unobserved nonstationary common factors) The

observations (yit, x
′
it, f

′
1t) are generated from the following model,


yit = β0′

i xit + c(λ′1if1,t) + uit

xit = xit−1 + εit

f1t = f1t−1 + νt

(4.2)

where xit = (x1it, x2it)
′ is a 2× 1 vector of nonstationary regressors, f1t is a 2× 1 vector of nonstationary

common factors. The idiosyncratic errors wit = (uit, ε
′
it,∆f

′
1t)
′ are generated from a linear process:

wit =
∑∞
j=0 ψijvi,t−j , where vit are i.i.d. N(0, I5), ψij = j−3.5 ∗ Ω1/2, Ω1/2 is the symmetric square root

of Ω, where Ωlm = 0.2 for l 6= m, Ωll = 1 for l = 2, 3, 4, 5 and Ω11 = 0.25. Let c = 1. The factor loadings

of nonstationary common factors are i.i.d. λ1i ∼ N((1, 1)′, I2). The true coefficients of βi are the same in

DGP1.

DGP3 (Weakly dependent nonstationary regressors and mixed unobserved stationary and nonstationary

common factors) The observations (yit, x
′
it, f

′
1t) are generated from the following model,


yit = β′ixit + c1(λ′1if1t) + c2(λ′2if2t) + uit

xit = xit−1 + εit

f1t = f1t−1 + νt

(4.3)

where xit = (x1it, x2it)
′ is a 2 × 1 vector of nonstationary regressors, f1t is a 2 × 1 vector of non-

stationary common factors, and f2t contains one stationary common factors. The idiosyncratic errors

wit = (uit, ε
′
it,∆f

′
1t, f

′
2t)
′ are generated from a linear process: wit =

∑∞
j=0 ψijvi,t−j where vit are i.i.d.

N(0, I6), ψij = j−3.5 ∗Ω1/2, Ω1/2 is the symmetric square root of Ω where Ωlm = 0.2 for l 6= m, Ω11 = 0.25,

and Ωll = 1 for l = 2, ..., 6. Let c1 = 1 and c2 = 0.5. The factor loadings λi = (λ′1i, λ
′
2i)
′ are i.i.d.

λ1i ∼ N((1, 1, 1)′, I3). The true coefficients of βi are the same in DGP1.

DGP4 (Weakly dependent nonstationary regressors and mixed unobserved stationary and nonstationary
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Table 1: Frequency for selecting r = 1, 2, ..., 5 total factors and r1 = 0, 1, ..., 4 nonstationary factors

Differenced Data Level Data
N T r = 1 r = 2 r = 3 r = 4 r = 5 r1 = 0 r1 = 1 r1 = 2 r1 = 3 r1 = 4

DGP1 50 40 0 1.000 0 0 0 1.000 0 0 0 0
50 80 0 1.000 0 0 0 1.000 0 0 0 0
100 40 0 1.000 0 0 0 0.998 0.002 0 0 0
100 80 0 1.000 0 0 0 1.000 0 0 0 0

DGP2 50 40 0 1.000 0 0 0 0 0.004 0.964 0.032 0
50 80 0 1.000 0 0 0 0.004 0.016 0.976 0.004 0
100 40 0 1.000 0 0 0 0 0.002 0.958 0.040 0
100 80 0 1.000 0 0 0 0 0.002 0.976 0.022 0

DGP3 50 40 0 0 1.000 0 0 0.018 0.088 0.894 0 0
50 80 0 0 1.000 0 0 0.006 0.026 0.968 0 0
100 40 0 0 1.000 0 0 0 0.008 0.972 0.020 0
100 80 0 0 1.000 0 0 0 0.012 0.988 0 0

DGP4 50 40 0 0 0.998 0.002 0 0.002 0.060 0.938 0 0
50 80 0 0 1.000 0 0 0.004 0.016 0.980 0 0
100 40 0 0 1.000 0 0 0 0.012 0.988 0 0
100 80 0 0 1.000 0 0 0 0.008 0.992 0 0

common factors) The settings of DGP4 is the same with those of DGP3, except for allowing weakly

correlation among factor loadings λi ∼ i.i.d. N((1, 1, 1)′, I3 ∗ Ω2), where Ω2,lm = 2/
√
N for l 6= m.

In all cases, the number of replications is 500.

4.2 Estimate number of unobserved factors

In this subsection, we assess the performance of two information criteria proposed in Section 3.5 before

determining the number of group and PPC-based estimation procedure. We choice the BIC-type penal-

ty function g1(N,T ) = N+T
NT log(min(N,T )) to determine the total number of unobserved factors and

g2(N,T ) = T
4 log(log(T )) × g1(N,T ) to determine the number of unobserved nonstationary factors. Based

on 500 replications for each DGP, Table 1 displays the probability that a particular factor size from 0 to

5 is selected according to the information criteria proposed for both differenced data and level data. In

differenced data, when T = 40, the probabilities are more than 99% in all cases and tend to unit when

T = 80 for selecting the total number of unobserved factors. The information criterion for level data

performs as good as that in difference data when T = 80. When T=40, the probabilities are at least 90%

in all cases. The simulation results show that our two information criteria in both differenced data and

level one works fairly well.

4.3 Determine the number of groups

The results from previous subsection show that the information criteria are useful even though we have

no information of latent group structures. This section focuses on the performance of the information

criterion for determining the number of groups, where we assume that the number of unobserved factors
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Table 2: Frequency for selecting K=1,2,...,6 groups

N T 1 2 3 4 5 6
DGP1 50 40 0 0 0.9860 0.0140 0 0

50 80 0 0 0.9940 0.0060 0 0
100 40 0 0 0.9700 0.0280 0 0.0020
100 80 0 0 1.0000 0 0 0

DGP2 50 40 0 0 1.0000 0 0 0
50 80 0 0 1.0000 0 0 0
100 40 0 0 1.0000 0 0 0
100 80 0 0 1.0000 0 0 0

DGP3 50 40 0 0 0.9760 0.0180 0.0060 0
50 80 0 0 0.9980 0.0020 0 0
100 40 0 0 0.9740 0.0240 0.0020 0
100 80 0 0 1.0000 0 0 0

DGP4 50 40 0 0 0.9920 0.0060 0.0020 0
50 80 0 0 1.0000 0 0 0
100 40 0 0 0.9900 0.0100 0 0
100 80 0 0 1.0000 0 0 0

are known. Here the penalty function ρ(N,T ) = 1
3 × log(min(N,T ))/min(N,T ), which satisfies the two

restrictions proposed in Theorem 3.9. Due to space limitations, we report outcomes under the tuning

parameter λ = cλ × T−3/4, where cλ = 0.1. Based on 500 replications for each DGP, Table 2 displays the

probability that a particular group size from 1 to 6 is selected according to the information criterion. The

true number of group is 3. When N = 50 the probabilities are more than 99% in all cases and tend to

unit when T=80.

4.4 Classification and point estimation

In this subsection, we test the performance of classification and estimation when we have prior knowledge

of the number of groups and that of unobserved factors. Table 3 and Table 4 report classification and

point estimation results from 500 replications for each DGP. As shown in Table 3 and Table 4, we set

the tuning parameter in the objective function (2.8) λ = cλ × T−3/4 and choose a sequence of increasing

constants of cλ = (0.025, 0.05, 0.1, 0.2)1 to test the sensitivity of classification and estimation performance.

Here we only report the performance results for the first coefficient α1 = {α1,k}K0

k=1 in each model. In

general, the outcomes are found robust over specified range of constants. Column 4 and 7 report the

percentage of correct classification of the N units, calculated as 1
N

∑K0

k=1

∑
i∈Ĝk 1{β0

i = α0
k}, averaged

over the 500 replications. Column 5-6 and 8-9 summarize the estimation performance, such as root-mean-

squared error (hereafter, RMSE), and bias. For simplicity we define weighted average RMSE and bias,

as 1
N

∑K0

k=1NkRMSE(α̂1,k) with α̂1,k the same as bias. The estimate of the long-run covariance matrix is

based on Fejer kernel with bandwidth set at 10. Results of other kernels (quadratic spectral kernel and

Parzen kernel) are not reported, there are no essential differences for most cases. For comparison purpose,

1Due to space limitation, we only report the results when cλ = (0.1, 0.2). The rest results are available upon request.
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we report the results of corresponding statistics of the C-Lasso, bias-corrected post-Lasso, fully-modified

post-Lasso, Cup-Lasso, and oracle estimators. The oracle estimator utilizes the exact group identity G0
k,

which is infeasible in practice.

For classification results, the correct classification percentage approaches 100% when T increases. The

results with different cλ’s are quite similar, indicating the robustness of our algorithm to the choice of

tuning parameter. In particular, we iteratively minimize the PPC objective function to obtain the Cup-

Lasso estimators. The correct classification percentage is higher than that of C-Lasso and post-Lasso

estimators in all cases. For estimation performance, the RMSE, bias, and coverage of post-Lasso and Cup-

Lasso estimators approach that of oracle ones in DGP1. Since we only introduce stationary factors and

strictly exogenous nonstationary regressors, there is no asymptotic bias coming from the endogeneity and

serial correlation. The RMSE and coverage of C-Lasso estimators are poor due to ignoring the unobserved

stationary factors in PPC-based estimation procedure. In DGP2 and DGP3, the performance of C-Lasso

estimator is poorer due to the additional sources of non-negligible bias from the endogeneity and serial

correlation. And we show that the fully modified procedure work better compared to direct bias-correction

procedure. The performance of Cup-Lasso estimators is better than that of post-Lasso ones due to updated

group classification results. In general, the finite sample performance of the Cup-Lasso estimators is close

to that of the oracle ones, which empirically confirms oracle efficiency of the Cup-Lasso estimators. In

practice, we recommend Cup-Lasso estimators for estimation and inference.

5 Empirical Application: Growth Convergence Puzzle

Many researchers have explored the behavior of economic growth across multiple countries. The main

question in this literature is whether economies exhibit convergence. Here we study the heterogeneous

behavior of convergence through the channel of technology changes. The benchmark model is the interna-

tional R&D spillovers model, proposed by Coe and Helpman (1995), where they regress the total factor

productivity (TFP) on domestic R&D stock and foreign R&D stock. Their work suggests that the inter-

national R&D spillovers are some forces toward convergence through the channel of technology changes.

There are two potential problems in their work. First, even though it is commonly accepted that there are

multiple steady states for convergence across economies in theoretical growth model, we cannot empirically

identify the heterogeneous behavior of convergence. In addition, they haven’t account for the unobserved

common patterns across countries. Since our PPC-based estimation method simultaneously accounts for

the unobserved heterogeneity and cross-sectional dependence, it gives us a purely data-driven approach to

study the heterogeneous behavior in economies’ convergence. Furthermore, technology change is the main

source of economies’ growth. We specify the channel of convergence through technology changes by rees-

timating CH2009 dataset. Comparing to CH model, we allow for heterogeneous parameters and consider

the unobserved common patterns across countries. Specifically, we impose the latent group structures on

the long-run relations between technology changes, domestic R&D stock, and foreign R&D stock. These

heterogeneous long-run relations explain the puzzle of economies convergence–some countries may fail to

convergence in a long run.
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Table 3: Classification and point estimation of α1 for DGP1 and DGP2

cλ 0.1 0.2

N T % Correct RMSE Bias % Correct RMSE Bias
specification specification

DGP1
50 40 C-Lasso 99.68 0.0137 0.0049 99.70 0.0130 0.0047

50 40 postbc-Lasso 99.68 0.0130 0.0003 99.70 0.0129 0.0002

50 40 postfm-Lasso 99.68 0.0129 0.0004 99.70 0.0128 0.0003
50 40 Cup-Lasso 99.68 0.0126 -0.0002 99.70 0.0126 -0.0002
50 40 Oracle - 0.0126 -0.0002 - 0.0126 -0.0002
50 80 C-Lasso 100 0.0081 0.0031 100 0.0077 0.0028

50 80 postbc-Lasso 100 0.0070 0.0003 100 0.0070 0.0003

50 80 postfm-Lasso 100 0.0069 0.0004 100 0.0069 0.0004
50 80 Cup-Lasso 100 0.0069 0.0004 100 0.0069 0.0004
50 80 Oracle - 0.0069 0.0001 - 0.0069 0.0001
100 40 C-Lasso 99.69 0.0109 0.0054 99.73 0.0101 0.0046

100 40 postbc-Lasso 99.69 0.0091 0.0007 99.73 0.0087 0.0004

100 40 postfm-Lasso 99.69 0.0090 0.0007 99.73 0.0086 0.0004
100 40 Cup-Lasso 99.69 0.0090 0.0007 99.73 0.0086 0.0004
100 40 Oracle - 0.0087 -0.0001 - 0.0087 -0.0001
100 80 C-Lasso 100 0.0062 0.0032 99.99 0.0058 0.0029

100 80 postbc-Lasso 100 0.0046 0.0005 99.99 0.0046 0.0005

100 80 postfm-Lasso 100 0.0046 0.0005 99.99 0.0046 0.0005
100 80 Cup-Lasso 100 0.0046 0.0005 99.99 0.0046 0.0005
100 80 Oracle - 0.0046 0.0004 - 0.0046 0.0004

DGP2
50 40 C-Lasso 97.68 0.0654 0.0146 97.53 0.0743 0.0146

50 40 postbc-Lasso 97.68 0.0405 0.0048 97.53 0.0430 0.0048

50 40 postfm-Lasso 97.68 0.0405 0.0042 97.53 0.0430 0.0041
50 40 Cup-Lasso 100 0.0094 0.0004 100 0.0094 0.0004
50 40 Oracle - 0.0094 0.0004 - 0.0094 0.0004
50 80 C-Lasso 99.21 0.0233 0.0047 99.19 0.0254 0.0047

50 80 postbc-Lasso 99.21 0.0195 -0.0004 99.19 0.0195 -0.0007

50 80 postfm-Lasso 99.21 0.0194 -0.0005 99.19 0.0194 -0.0009
50 80 Cup-Lasso 100 0.0047 -0.0001 100 0.0047 -0.0001
50 80 Oracle - 0.0047 -0.0001 - 0.0047 -0.0001
100 40 C-Lasso 97.45 0.0500 0.0135 97.37 0.0543 0.0119

100 40 postbc-Lasso 97.45 0.0601 -0.0011 97.37 0.0584 -0.0010

100 40 postfm-Lasso 97.45 0.0601 -0.0016 97.37 0.0585 -0.0015
100 40 Cup-Lasso 100 0.0069 -0.0016 100 0.0069 -0.0016
100 40 Oracle - 0.0069 -0.0016 - 0.0069 -0.0016
100 80 C-Lasso 99.25 0.0181 0.0061 99.23 0.0194 0.0057

100 80 postbc-Lasso 99.25 0.0172 0.0012 99.23 0.0170 0.0010

100 80 postfm-Lasso 99.25 0.0171 0.0010 99.23 0.0170 0.0010
100 80 Cup-Lasso 100 0.0032 -0.0001 100 0.0032 -0.0001
100 80 Oracle - 0.0032 -0.0001 - 0.0032 -0.0001
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Table 4: Classification and point estimation of α1 for DGP3 and DGP4

cλ 0.1 0.2

N T % Correct RMSE Bias % Correct RMSE Bias
specification specification

DGP3
50 40 C-Lasso 96.97 0.0563 0.0118 96.87 0.0632 0.0101

50 40 postbc-Lasso 96.97 0.0522 0.0029 96.87 0.0516 0.0022

50 40 postfm-Lasso 96.97 0.0524 0.0023 96.87 0.0519 0.0016
50 40 Cup-Lasso 99.85 0.0145 0.0015 99.81 0.0146 0.0015
50 40 Oracle - 0.0150 0.0014 - 0.0150 0.0014
50 80 C-Lasso 99.15 0.0297 0.0056 99.11 0.0327 0.0047

50 80 postbc-Lasso 99.15 0.0275 0.0015 99.11 0.0265 0.0013

50 80 postfm-Lasso 99.15 0.0274 0.0015 99.11 0.0265 0.0013
50 80 Cup-Lasso 100 0.0073 0.0010 100 0.0073 0.0010
50 80 Oracle - 0.0073 0.0006 - 0.0073 0.0006
100 40 C-Lasso 98.65 0.0299 0.0119 98.43 0.0300 0.0110

100 40 postbc-Lasso 98.65 0.0214 0.0028 98.43 0.0222 0.0035

100 40 postfm-Lasso 98.65 0.0213 0.0023 98.43 0.0222 0.0031
100 40 Cup-Lasso 99.93 0.0108 0.0020 99.83 0.0110 0.0021
100 40 Oracle - 0.0109 0.0018 - 0.0109 0.0018
100 80 C-Lasso 99.05 0.0194 0.0060 99.01 0.0208 0.0053

100 80 postbc-Lasso 99.05 0.0181 0.0007 99.01 0.0183 0.0007

100 80 postfm-Lasso 99.05 0.0180 0.0006 99.01 0.0182 0.0005
100 80 Cup-Lasso 100 0.0054 -0.0002 100 0.0054 -0.0002
100 80 Oracle - 0.0054 -0.0003 - 0.0054 -0.0003

DGP4
50 40 C-Lasso 96.92 0.0566 0.0110 96.77 0.0634 0.0099

50 40 postbc-Lasso 96.92 0.0508 0.0018 96.77 0.0498 0.0008

50 40 postfm-Lasso 96.92 0.0511 0.0013 96.77 0.0501 0.0008
50 40 Cup-Lasso 99.91 0.0130 0.0014 99.87 0.0130 0.0015
50 40 Oracle - 0.0134 0.0014 - 0.0134 0.0014
50 80 C-Lasso 98.99 0.0299 0.0055 98.93 0.0331 0.0045

50 80 postbc-Lasso 98.99 0.0277 0.0009 98.93 0.0263 0.0013

50 80 postfm-Lasso 98.99 0.0277 0.0008 98.93 0.0263 0.0013
50 80 Cup-Lasso 100 0.0066 0.0010 100 0.0066 0.0010
50 80 Oracle - 0.0065 0.0007 - 0.0065 0.0007
100 40 C-Lasso 98.77 0.0291 0.0123 98.53 0.0295 0.0113

100 40 postbc-Lasso 98.77 0.0205 0.0032 98.53 0.0217 0.0037

100 40 postfm-Lasso 98.77 0.0204 0.0027 98.53 0.0216 0.0032
100 40 Cup-Lasso 99.94 0.0102 0.0020 99.87 0.0103 0.0021
100 40 Oracle - 0.0103 0.0017 - 0.0103 0.0017
100 80 C-Lasso 99.04 0.0197 0.0059 99.02 0.0211 0.0053

100 80 postbc-Lasso 99.04 0.0181 0.0009 99.02 0.0183 0.0008

100 80 postfm-Lasso 99.04 0.0180 0.0007 99.02 0.0183 0.0007
100 80 Cup-Lasso 100 0.0050 -0.0002 100 0.0050 -0.0002
100 80 Oracle - 0.0050 -0.0002 - 0.0050 -0.0002
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The innovation of Coe and Helpman’s model is to explain TFP not only by domestic R&D stock but

also foreign R&D stock from trading partners. In growth literature, TFP is the Solow residual, and often

regarded as a measure of technology changes, defined by

log(TFP ) = log(Y )− θ log(K)− (1− θ) log(L), (5.1)

where Y is the final output, L is the labor force, K is the capital stock, and θ is the share of capital in GDP.

It is well accepted that domestic R&D investment is one of the main sources of the TFP by innovation and

improving the qualities of goods. Coe and Helpman (1995) argue that international trade in intermediate

goods enables a country to gain access to all inputs available in the rest of the world. In this aspect,

the foreign R&D stocks from a country’s trading partners also affect this country’s TFP. They establish

estimation equation of the TFP as follow,

log(Fit) = µ0
i + βdi log(sdit) + βfi log(sfit) + uit,

where i is the country index, F is the total factor productivity, sd is the real domestic R&D capital stock,

sf is the real foreign R&D capital stock. We follow their specification on the international R&D spillovers

model and introduce the unobserved common patterns, such that

log(Fit) = βdi log(sdit) + βfi log(sfit) + λ′ift + uit, (Eq1)

where eit is cross-sectionally dependent with unobserved common patterns. Here we consider (βdi , β
f
i ) as

the long-run cointegrating relations with latent group structures. The unobserved common patterns are

modeled by the multi-factor structure as eit = λ′ift+uit and the fixed effects µ0
i are captured by the factor

structure.

In addition, we consider logarithm of human capital (H) as an additional explanatory variable, see

(Eq2)

log(Fit) = βdi log(sdit) + βfi log(sfit) + βhi log(h) + λ′ift + uit. (Eq2)

The human capital accounts for innovation outside the R&D sector and other aspects of human capital not

captured by formal R&D. Engelbrecht (1997) suggests that human capital is found to affect TFP directly

as a factor of production, and as a channel for international technology diffusion associated with catch-up

effects across countries.

We obtain CH2009 datasets from 1971-2004 for 24 OECD countries. The bilateral import weighted

R&D Sf−biw from trading partners is a measure of foreign R&D stock. Human capital is measured by year

of schooling. See Coe and Helpman’s appendix for detailed definition and construction of these variables.

5.1 Estimation Results

Before the PPC-based estimation procedure, we first employ information criteria in Section 3.5 to es-

timate the number of unobserved factors. We set penalty function as g1(N,T ) = N+T
NT log(min(N,T ))

and g2(N,T ) = T
2 log log T × g1(N,T ). The results for both differenced and level data indicates one unob-
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Table 5: The information criterion for K0 (Eq1 & Eq2)

Eq1

K/cλ 0.05 0.1 0.2 0.4 0.6

K = 1 -4.6315 -4.6584 -4.6812 -4.6834 -4.6794
K = 2 -4.8073 -4.8760 -4.7356 -4.8319 -4.8332
K = 3 -5.0084 -5.0942 -5.2130 -5.2221 -5.0992
K = 4 -4.8985 -4.9708 -5.0092 -4.6353 -4.9279
K = 5 -4.8598 -4.8240 -4.4272 -4.9821 -4.8042
K = 6 -4.4159 -4.2700 -3.6774 -4.8858 -4.6118

Eq2

K/cλ 0.05 0.1 0.2 0.4 0.6

K = 1 -4.6011 -4.6311 -4.6845 -4.6876 -4.6889
K = 2 -4.5674 -4.8101 -4.8693 -4.8138 -4.8127
K = 3 -3?9180 -4.2002 -4.7259 -4.7467 -4.7045
K = 4 -2.8630 -3.5698 -4.0314 -4.2412 -4.2497
K = 5 -2.2351 -4.0434 -1.9373 -3.5935 -4.0737
K = 6 -2.7073 -3.6627 -3.1292 -3.7489 -2.6413

served nonstationary common factors. We fix r = r1 = 1 in the determination of number groups and the

PPC-based estimation procedure.

We set ρ(N,T ) = 2
3 × log(min(N,T ))/min(N,T ) and tuning variable λ = cλ × T−3/4 where cλ =

(0.05, 0.1, 0.2, 0.4, 0.6). Table 5 reports the information criterion as a function of the number of groups

under these tuning parameters. The information criterion suggests three groups for (Eq1) and two groups

for (Eq2). In our estimation, we first set the number of groups and then specify cλ = 0.2, where the

information criterion achieves the minimal values.

Table 6 reports the main results of pooled FMOLS and Cup-Lasso estimates with one unobserved non-

stationary common factors, where we compare our results to CH2009. In (Eq1), we have two explanatory

variables (log(Sd), log(Sf−biw)). First, we compare the result of CH2009 with the pooled FMOLS after

controlling cross-sectional dependence. The coefficients of log(Sd) in CH2009 is qualitatively similar to our

pooled FMOLS. The only difference is the slope coefficient of foreign R&D stock, which decrease more than

half after considering one unobserved nonstationary common factors. The nonstationary common factor

stands for the unobserved global trends in technology changes. It is reasonable that the direct spillovers

effects of foreign R&D stock decrease when the unobserved global technology patterns are taken into con-

sideration. Second, we identify quite difference behavior in the group-specific Cup-Lasso estimates. The

estimates of group 1 have the largest estimates on the domestic R&D stock and negative one on foreign

R&D. For group 2 and group 3, they both have positive estimates on domestic R&D stock and foreign one.

In particular, both estimates in group 2 are larger than that of group 3. We summarize the estimation

results into three aspects. On the one hand, those results indicate that technology changes of countries in

group 1 rely mainly on domestic R&D stock, which stands for the innovation. In addition, the long-run

relation between TFP and foreign R&D stock are negative, which suggests that they cannot benefit from

international R&D spillovers. Furthermore, it implies that countries in group 1 don’t favor convergence

through the channel of technology changes. We call it as “Divergence” group. On the other hand, tech-
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Table 6: PPC estimation results for (Eq1) and (Eq2)

Eq1
Slope coefficients Pooled Pooled Group 1 Group 2 Group 3

CH2009 FM-OLS Cup-Lasso Cup-Lasso Cup-Lasso
log(Sd) 0.095*** 0.090*** 0.302*** 0.102*** 0.049***

(0.0053) (0.0134) (0.0300) (0.0251) (0.0147)
log(Sf−biw) 0.213*** 0.092*** -0.143*** 0.161*** 0.125***

(0.0136) (0.0222) (0.0336) (0.0501) (0.0281)
Eq2

Slope coefficients Pooled Pooled Group 1 Group 2
CH2009 FM-OLS Post-Lasso Post-Lasso

log(Sd) 0.098*** 0.049*** 0.071*** -0.098***
(0.0160) (0.0163) (0.0174) (0.0270)

log(Sf−biw) 0.035*** 0.132*** 0.063* 0.323***
(0.0111) (0.0316) (0.0332) (0.0398)

log(h) 0.725*** 0.644*** 0.638*** 0.680***
(0.0870) (0.1204) (0.1302) (0.1791)

Note: *** 1% significant; ** 5% significant; * 10% significant.

nology changes of countries in group 2 have balanced sources–innovation effects from domestic R&D stock

and catch-up effects from the international R&D spillovers. And the magnitudes of those estimates are

similar. In this respect, it favors convergence hypothesis for countries in group 2. Here we refer it as

“Balance” group. Then the technology changes in group 3 are mainly determined by foreign R&D stock.

They are classified as “Convergence” group.

In (Eq2), we introduce an additional regressor–human capital, which is regarded as a direct sources of

technology changes. Our results confirm that human capital is the one of the main sources of productivity

growth. In general, similar heterogeneous behavior preserves in (Eq2). First, we can still classify those

countries into two groups and define them as “Balance ”and “Convergence ”. For group 1, the innovation

effects and catch-up effects have similar magnitude. For group 2, referred as “Convergence ”, where they

have significant positive estimates on foreign R&D stocks.

The PPC-based estimation procedure simultaneously determine the group identities and estimate pa-

rameters. Table 7 reports the group classification results. We have discussed that the estimation results of

countries in group 1 indicate a potential divergence behavior of economies. There are basically two types

of countries in “Divergence” group–“Bellwether” and “Loser”. The productivity growth much relies on

their own innovation, countries like France, Germany, United States are bellwether in global, which own

61.1% proportion of global R&D stock. On the contrary, the rest countries in group 1 only accounts for

1.5% proportion of global R&D stock. Since most OECD countries are classified into group 2 and group

3. it confirms the recent work of Keller (2004) that the major sources of technical changes leading to

productivity growth in OECD countries are not domestic, instead, they lie aboard through the channel of

international technology diffusion. Furthermore, countries like Israel, South Korea and United Kingdom

are classified in “Balance” group. Productivity growth of countries in group 2 relies on both innovation

and catch-up effects through the channel of international technology diffusion.

28



Table 7: Group classification results of Eq1 and Eq2

Eq1
Group 1 “Divergence” (N1 = 7)

Austria Denmark France Germany New Zealand
Norway United States

Group 2 “Balance” (N2 = 7)
Canada Ireland Israel South Korea Netherlands
Portugal United Kingdom

Group 3 “Convergence” (N3 = 10)
Australia Belgium Finland Greece Iceland
Italy Japan Spain Sweden Switzerland

Eq2
Group 1 “Balance ” (N1 = 18)

Austria Belgium Finland France Germany
Iceland Ireland Israel Italy Japan
South Korea Netherlands New Zealand Portugal Spain
Sweden Switzerland United States

Group 2 “Convergence” (N2 = 6)
Australia Canada Denmark Greece Norway
United Kingdom

Overall, we re-estimate Coe and Helpman’s model by both pooled FMOLS and group-specific PPC

method with unobserved global trends. Our pooled FMOLS confirms the international R&D spillovers in

global after considering unobserved global trend. In addition, our Cup-Lasso estimates show heterogeneous

behavior of the long-run relations between domestic R&D and foreign R&D on TFP. It indicates multiple

regimes of economies’ convergence behaviors. This is also empirically confirms the “Club convergence”

theory proposed by Quah (1996, 1997). Countries in the convergence club tend to grow faster and further

behind they fall. In our model, we specify the channel of convergence through the technology diffusion.

Based on estimation results, we classified those countries into three clubs–“Divergence”, “Convergence”,

and “Balance”. We can conclude that international technology diffusion is the major sources of productivity

growth of countries in “Convergence” group. The catch-up effect through the channel of technology

diffusion is a force towards convergence in income for those countries. On the contrary, countries in

“Divergence” group show a opposite story. The productivity growth relies highly on their own R&D stock

and they cannot benefit from international R&D spillovers.

6 Conclusion

The main contribution of this paper is to propose a novel approach that handle the unobserved hetero-

geneity and cross-sectional dependence in nonstationary panel model. We assume that cross-sectional

dependence is generated by the unobserved common factors, which can be either stationary or nonsta-

tionary. In general, the penalized least square estimators are inconsistent due to the spurious regression

induced by unobserved nonstationary factors. We propose the penalized principal component method that

jointly estimates the group-specific long-run relations, identifies individuals’ membership and unobserved
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common factors through iterative procedure. The C-Lasso estimators have asymptotic non-negligible bi-

ases due to weakly dependent error processes and unobserved stationary factors. We employ the fully

modified procedure for bias-correction. Since our PPC-based method allows us to account for the unob-

served heterogeneity and cross-sectional dependence simultaneously, it is best fitted method to explain

growth convergence puzzle. Our empirical results identify multiple steady states of convergence across

economies.
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Appendix

In this appendix, we prove the main results, namely, Theorems 3.1-3.9 in the paper. The proofs of these

results need some technical lemmas whose proofs are relegated to the online supplementary Appendix B.

A Proof of the Main Results in Section 3

To proceed, we define some notations.

(i) Let H1 =
(

1
NΛ0′

1 Λ0
1

) (
1
T 2 f

0′
1 f̂1

)
V −1

1,NT , H2 =
(

1
NΛ0′

2 Λ0
2

) (
1
T f

0′
2 f̂2

)
V −1

2,NT and aij = λ0′
1i(

Λ0′
1 Λ0

1

N )−1λ0
1j .

(ii) Let b = (b1, ..., bN ) and b =vec(b), where bi = βi − β0
i for i = 1, ..., N . Let b̂ = (b̂1, ..., b̂N ) and

b̂ =vec(b̂), where b̂i = β̂i − β0
i .

(iii) Let η2
NT = 1

N

∑N
i=1 ‖b̂i‖2, %2

NT = 1
K

∑K
k=1

∥∥α̂k − α0
k

∥∥2
, CNT = min(

√
N,
√
T ), δNT = min(

√
N,T ),

and ψNT = N1/qT−1(log T )1+ε for some ε > 0.

(iv) Let Q̂i,xx = 1
T 2x

′
iMf̂1

xi, Qi,xx = 1
T 2x

′
iMf1xi, and Qi,xx(f0

1 ) = 1
T 2x

′
iMf0

1
xi.

(v) Without loss of generality, we set xi0 = 0 throughout the proof of the main results and supplemen-

tary Appendix.

To prove Theorem 3.1, we need four lemmas.

Lemma A.1 Suppose that Assumptions 3.1 hold. Then for each i = 1, ..., N,

(i) 1
T 2x

′
iMf0

1
xi ⇒

∫
B̃2iB̃

′
2i,

(ii) 1
T x
′
iMf0

1
ui ⇒

∫
(B2i − π′iB3) dB1i + (∆21,i − π′i∆31,i),

where B̃2i = B2i −
∫
B2iB

′
3

(∫
B3B

′
3

)−1
B3 and πi =

(∫
B3B

′
3

)−1 ∫
B3B

′
2i.

Lemma A.2 Suppose that Assumptions 3.1-3.2 hold. Then for any fixed small constant c ∈ (0, 1/2),

(i) lim supT→∞ µmax

(
W ′iWi

dTT 2

)
≤ (1 + c)ρmax a.s.,

(ii) lim infT→∞ µmin

(
dTW

′
iWi

T 2

)
≥ cρmin a.s.,

(iii) lim supT→∞ µmax

(
x′iMf01

xi

dTT 2

)
≤ (1 + c)ρmax a.s.,

(iv) lim infT→∞ µmin

(
dT x

′
iMf01

xi

T 2

)
≥ [(1 + c)ρmax]−1 a.s.,

where Wit = (x′it, f
0′
1t)
′ and Wi = (Wi,1,Wi,2, ...,Wi,T )′.

Lemma A.3 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 1
N

∑N
i=1

∥∥∥ 1
T 2x

′
iMf0

1
ui

∥∥∥2

= OP (d2
TT
−2),

(ii) 1
N

∑N
i=1

∥∥∥ 1
T 2x

′
iMf0

1
u∗i

∥∥∥2

= OP (d2
TT
−2),

(iii)
∥∥∥ 1
NT 2

∑N
j=1 x

′
iMf0

1
ujaij

∥∥∥ = OP (dTT
−1),

(iv) 1
N

∑N
i=1

∥∥∥ 1
T 2x

′
iMf0

1
xi

∥∥∥ = OP (dT ),

where f1 satisfies 1
T 2 f

′
1f1 = Ir1 and u∗i = ui + f0

2λ
0
2i.

Lemma A.4 Suppose that Assumptions 3.1-3.2 hold. Then

(i) supf1 supN−1‖b‖2≤M

∥∥∥ 1
NT 2

∑N
i=1 b

′
ix
′
iMf1u

∗
i

∥∥∥ = oP (d−3
T ),

(ii) supf1

∥∥∥ 1
NT 2

∑N
i=1 λ

0′
1if

0′
1 Mf1u

∗
i

∥∥∥ = oP (d−3
T ),
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(iii) supf1

∥∥∥ 1
NT 2

∑N
i=1 u

∗′
i Pf1u

∗
i

∥∥∥ = oP (d−3
T ),

where the sup is taken with respect to f1 such that
f ′1f1
T 2 = Ir1 and u∗i are defined in Lemma A.3.

Proof of Theorem 3.1. (i) Let Qi,NT (βi, f1) = 1
T 2 (yi − xiβi)′Mf1(yi − xiβi) and QK,λi,NT (βi, α, f1) =

Qi,NT (βi, f1)+λ
∏K
k=1 ‖βi−αk‖. Then QK,λNT (β,α, f1) = 1

N

∑N
i=1Q

K,λ
i,NT (βi, α, f1). Noting that yi−xiβi =

−xibi + λ0′
1if

0′
1 + u∗i , we have

Qi,NT (βi, f1)−Qi,NT (β0
i , f

0
1 ) =

1

T 2
(b′ix

′
iMf1xibi + λ0′

1if
0′
1 Mf1f

0
1λ

0
1i − 2b′ix

′
iMf1f

0
1λ

0
1i)

+
1

T 2
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1if
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∗
i − 2b′ix

′
iMf1u

∗
i )−

1

T 2
u∗′i (Pf1 − Pf0

1
)u∗i , (A.1)

where u∗i = ui + f0
2λ

0
2i. Let Si,NT (βi, f1) = 1

T 2

(
b′ix
′
iMf1xibi + λ0′

1if
0′
1 Mf1f

0
1λ

0
1i − 2b′ix

′
iMf1f

0
1λ

0
1i

)
. Then

we have

QNT (β, f1)−QNT (β0, f0
1 ) =

1

N

N∑
i=1

Si,NT (βi, f1)

+
1

NT 2

N∑
i=1

(
2λ0′

1if
0′
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1
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)
=

1

N

N∑
i=1

Si,NT (βi, f1) + oP (d−3
T ), (A.2)

where the last three terms on the right hand side of (A.2) are oP (d−3
T ) uniformly in {bi} and f1 such that

f ′1f1
T 2 = Ir1 and 1

N

∑N
i=1 ‖bi‖2 ≤M by Lemma A.4(i)-(iii) and the fact that 1

NT 2

∑N
i=1 u

∗′
i Pf0

1
u∗i = oP (d−3

T ).

Then we have

QK,λNT (β, α̂, f1)−QK,λNT (β0,α0, f0
1 ) =

1

N

N∑
i=1

[QNT,i(βi, f1)−QNT,i(β0
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0
1 )] +

λ

N

N∑
i=1

K0∏
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≥SNT (β, f1) + oP (d−3
T ). (A.3)

where SNT (β, f1) = 1
N

∑N
i=1 Si,NT (βi, f1). Then by (A.2) and (A.3) and the fact that QK,λNT (β̂, α̂, f̂1) −

QK,λNT (β0,α0, f0
1 ) ≤ 0, we have
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Similarly, by (A.2), (A.3) and Lemma A.4(i)-(iii), we have

QK,λNT (β, α̂, f̂1)−QK,λNT (β0,α0, f̂1) =
1

N

N∑
i=1

[QNT,i(βi, f̂1)−QNT,i(β0
i , f̂1)] +

λ

N

N∑
i=1

K0∏
k=1

‖βi − α̂k‖

≥ 1

NT 2

N∑
i=1

[
b′ix
′
iMf̂1

xibi − 2b′ix
′
iMf̂1

f0
1λ

0
1i

]
+ oP (d−3

T ). (A.5)
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This, in conjunction with the fact that QK,λNT (β̂, α̂, f̂1)−QK,λNT (β0,α0, f̂1) ≤ 0, implies that

1

NT 2

N∑
i=1

[
b̂′ix
′
iMf̂1

xib̂i − 2b̂′ix
′
iMf̂1

f0
1λ

0
1i

]
≤ oP (d−3

T ). (A.6)

Combining (A.4) and (A.6) yields that

oP (d−3
T ) =

1

NT 2
λ0′

1if
0′
1 Mf̂1

f0
1λ

0
1i = tr

[(
f0′

1 Mf̂1
f0

1

T 2

)(
Λ0′

1 Λ0
1

N

)]
≥ tr

(
f0′

1 Mf̂1
f0

1

T 2

)
µmin

(
Λ0′

1 Λ0
1

N

)
.

It follows that tr

(
f0′
1 Mf̂1

f0
1

T 2

)
= oP (d−3

T ) as µmin

(
Λ0′

1 Λ0
1

N

)
is bounded away from zero in probability by

Assumption 3.2(i). As in Bai (2009, p.1265), this implies that

f0′
1 Mf̂1

f0
1

T 2
=
f0′

1 f
0
1

T 2
− f0′

1 f̂1

T 2

f̂1
′
f0

1

T 2
= oP (d−3

T ), (A.7)

and
f0′
1 f̂1
T 2 is asymptotically invertible by the fact that

f0′
1 f

0
1

T 2 is asymptotically invertible from Assump-

tion 3.2(ii). (A.7) implies that
f̂ ′1Pf01

f̂1

T 2 − Ir1 = oP (d−3
T ), which further implies that

∥∥∥Pf̂1 − Pf0
1

∥∥∥2

=

2tr

(
Ir1 −

f̂1
′
P
f01
f̂1

T 2

)
= oP (d−3

T ). By Cauchy-Schwarz inequality and (A.6),

oP (d−3
T ) ≥ 1

NT 2

N∑
i=1

b̂′ix
′
iMf̂1

xib̂i − 2

{
1

NT 2

N∑
i=1

b̂′ix
′
iMf̂1

xib̂i

}1/2{
1

NT 2
λ0′

1if
0′
1 Mf̂1

f0
1λ

0
1i

}1/2

. (A.8)

This result, in conjunction with (A.7), implies that 1
NT 2

∑N
i=1 b̂

′
ix
′
iMf̂1

xib̂i = oP (d−3
T ). So we have shown

parts (i) and (ii) in the theorem.

(iii) By the results in parts (i) and (ii) and Lemma A.2(i) and (iv), we have

oP (d−3
T ) =

1

N

N∑
i=1

b̂′i

(
1

T 2
x′iMf̂1

xi

)
b̂i

=
1

N

N∑
i=1

b̂′i

(
1

T 2
x′iMf0

1
xi

)
b̂i +

1

N

N∑
i=1

b̂′i

(
1

T 2
x′i(Mf̂1

−Mf0
1
)xi

)
b̂i

≥ 1

dT
min

1≤i≤N
µmin

(
dT
T 2
x′iMf0

1
xi

)
1

N

N∑
i=1

‖b̂i‖2 − max
1≤i≤N

‖xi‖2

T 2
‖Pf0

1
− Pf̂1‖

1

N

N∑
i=1

‖b̂i‖2

≥ 1

dT

(
cρmin − oP (d−1

T )
) 1

N

N∑
i=1

‖b̂i‖2,

where the second inequality follows from the fact that min1≤i≤N µmin

(
dT
T 2x

′
iMf0

1
xi

)
≥ cρmin > 0 a.s. by

Lemma A.2(iv), and max1≤i≤N
‖xi‖2
T 2 ≤ max1≤i≤N dTµmax

(
x′ixi
dTT 2

)
= OP (dT ) by Lemma A.2(i). Then we

have 1
N

∑N
i=1 ‖b̂i‖2 = oP (d−2

T ) = oP (1).

(iv) We want to establish the consistency of the estimated factor space f̂1, which extends the results

of Bai and Ng (2004) and Bai (2009). Our model allows for the heterogeneous slope coefficients and
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unobserved stationary common factors. We estimate f̂1 from equation (2.9) in Section 2.2 as follows[
1

NT 2

N∑
i=1

(yi − xiβ̂i)(yi − xiβ̂i)′
]
f̂1 = f̂1V1,NT . (A.9)

Combining (A.9) and the fact that yi − xiβ̂i = −xib̂i + f0λ0
i + ui = −xib̂i + f0

1λ
0
1i + f0

2λ
0
2i + ui, we have

f̂1V1,NT =
1

NT 2

N∑
i=1

xib̂ib̂
′
ix
′
if̂1 −

1

NT 2

N∑
i=1

xib̂iλ
0′
i f

0′f̂1 −
1

NT 2

N∑
i=1

xib̂iu
′
if̂1

− 1

NT 2

N∑
i=1

f0λ0
i b̂
′
ix
′
if̂1 −

1

NT 2

N∑
i=1

uib̂
′
ix
′
if̂1 +

1

NT 2

N∑
i=1

f0λ0
iu
′
if̂1

+
1

NT 2

N∑
i=1

uiλ
0′
i f

0′f̂1 +
1

NT 2

N∑
i=1

uiu
′
if̂1 +

1

NT 2

N∑
i=1

f0
2λ

0
2iλ

0′
2if

0′
2 f̂1

+
1

NT 2

N∑
i=1

f0
1λ

0
1iλ

0′
2if

0′
2 f̂1 +

1

NT 2

N∑
i=1

f0
2λ

0
2iλ

0′
1if

0′
1 f̂1 +

1

NT 2

N∑
i=1

f0
1λ

0
1iλ

0′
1if

0′
1 f̂1

≡I1 + ...+ I11 +
1

NT 2

N∑
i=1

f0
1λ

0
1iλ

0′
1if

0′
1 f̂1, say.

It follows that f̂1V1,NT − f0
1

(
Λ0′

1 Λ0
1

N

)(
f0′
1 f̂1
T 2

)
= I1 + ...+ I11. Let H1 =

(
Λ0′

1 Λ0
1

N

)(
f0′
1 f̂1
T 2

)
V −1

1,NT . Then it is

easy to see that H1 = OP (1), it is asymptotically nonsingular, and

f̂1H
−1
1 − f0

1 = [I1 + ...+ I11]

(
f0′

1 f̂1

T 2

)−1(
Λ0′

1 Λ0
1

N

)−1

.

Note that

1

T

∥∥∥f̂1H
−1 − f0

1

∥∥∥ ≤ 1

T
(‖I1‖+ ...+ ‖I11‖)

∥∥∥∥∥∥
(
f0′

1 f̂1

T 2

)−1
∥∥∥∥∥∥
∥∥∥∥∥
(

Λ0′
1 Λ0

1

N

)−1
∥∥∥∥∥ .

It remains to analyze ‖Il‖ for l = 1, 2, ..., 11. For I1, we have that by the result in (iii),

1

T
‖I1‖ =

1

T

∥∥∥∥∥ 1

NT 2

N∑
i=1

xib̂ib̂
′
ix
′
if̂1

∥∥∥∥∥ ≤ 1

N

N∑
i=1

‖xi‖
T
‖b̂i‖2

‖x′if̂1‖
T 2

≤ max
1≤i≤N

‖xi‖2

T 2

‖f̂1‖
T

1

N

N∑
i=1

‖b̂i‖2 = OP (dT η
2
NT ) = oP (ηNT ),

where we use the fact that max1≤i≤N
‖xi‖2
T 2 = OP (dT ) by Lemma A.2(i) and ‖f̂1‖T ≤ √r1. For I2, we have

1

T
‖I2‖ =

1

T

∥∥∥∥∥ 1

NT 2

N∑
i=1

xib̂iλ
0′
i f

0′f̂1

∥∥∥∥∥ ≤ ‖f0′ f̂1‖
T 2

max
1≤i≤N

‖xi‖
T

1

N

N∑
i=1

‖b̂iλ0′
i ‖

≤ ‖f
0′ f̂1‖
T 2

max
1≤i≤N

‖xi‖
T

{
1

N

N∑
i=1

‖b̂i‖2
}1/2{

1

N

N∑
i=1

‖λ0
i ‖2
}1/2

= OP (
√
dT ηNT ),
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where we use the fact that ‖f
0′ f̂1‖
T 2 = OP (1) and 1

N

∑N
i=1 ‖λ0

i ‖2 = OP (1) by Assumption 3.2(i). For I3,

1

T
‖I3‖ =

1

T

∥∥∥∥∥ 1

NT 2

N∑
i=1

xibiu
′
if̂1

∥∥∥∥∥ ≤ max
1≤i≤N

‖xi‖
T

1

NT 2

N∑
i=1

‖b̂iu′if̂1‖

≤ 1√
T

‖f̂1‖
T

max
1≤i≤N

‖xi‖
T

{
1

N

N∑
i=1

‖b̂i‖2
}1/2{

1

N

N∑
i=1

‖ui‖2

T

}1/2

= OP

(√
dT
T
ηNT

)
,

where 1
N

∑N
i=1

‖ui‖2
T = OP (1) by Assumption 3.1(i). For I4,

1

T
‖I4‖ =

∥∥∥∥∥ 1

NT 2

N∑
i=1

f0λ0
i b̂
′
ix
′
if̂1

∥∥∥∥∥ ≤ 1

N

N∑
i=1

‖f0‖
T

∥∥∥λ0
i b̂
′
i

∥∥∥∥∥∥∥∥x′if̂1

T 2

∥∥∥∥∥
≤ ‖f

0‖
T

‖f̂1‖
T

max
1≤i≤N

‖xi‖
T

{
1

N

N∑
i=1

‖b̂i‖2
}1/2{

1

N

N∑
i=1

‖λ0
i ‖2
}1/2

= OP (
√
dT ηNT ).

where ‖f
0‖
T ≤ ‖f

0
1 ‖
T + 1√

T

‖f0
2 ‖√
T

= OP (1). For I5,

1

T
‖I5‖ =

1

T

∥∥∥∥∥ 1

NT 2

N∑
i=1

uib̂
′
ix
′
if̂1

∥∥∥∥∥ ≤ max
1≤i≤N

‖x′if̂1‖
T 2

1

NT

N∑
i=1

‖uib̂′i‖

≤ 1√
T

‖f̂1‖
T

max
1≤i≤N

‖xi‖
T

{
1

N

N∑
i=1

‖ui‖2

T

}1/2{
1

N

N∑
i=1

‖b̂i‖

}1/2

= OP

(√
dT
T
ηNT

)
.

For I6,

1

T
‖I6‖ =

1

T

∥∥∥∥∥ 1

NT 2

N∑
i=1

f0λ0
iu
′
if̂1

∥∥∥∥∥ =
1

T

∥∥∥∥ 1

NT 2
f0Λ0′uf̂1

∥∥∥∥
≤ 1√

NT

(
1

T

∥∥∥f̂1

∥∥∥)( 1

T

∥∥f0
∥∥) 1√

NT

∥∥Λ0′u
∥∥ = OP (T−1/2N−1/2),

where u = (u1, ..., uN )′ and we have used the fact that 1
NT

∥∥Λ0′u
∥∥2

= OP (1) by Assumption 3.2(iii).

Analogously, we can show that 1
T ‖I7‖ = OP (T−1/2N−1/2). For I8,

1

T 2
‖I8‖2 =

1

T 2

∥∥∥∥∥ 1

NT 2

N∑
i=1

uiu
′
if̂1

∥∥∥∥∥
2

=
1

T 2

∥∥∥∥ 1

NT 2
u′uf̂1

∥∥∥∥2

≤ 2

T∑
t=1

∥∥∥∥∥T−3
T∑
s=1

γN (s, t)f̂ ′1s

∥∥∥∥∥
2

+ 2

T∑
t=1

∥∥∥∥∥T−3
T∑
s=1

ξstf̂
′
1s

∥∥∥∥∥
2

≡ 2 (‖I8(a)‖+ ‖I8(b)‖) ,

where γN (s, t) and ξst are defined in Assumption 3.2(iii). For I8(a),

‖I8(a)‖2 ≤
T∑
t=1

∥∥∥∥∥T−3
T∑
s=1

γN (s, t)f̂ ′1s

∥∥∥∥∥
2

≤ T−3

(
T−2

T∑
s=1

‖f̂1s‖2
)(

T−1
T∑
t=1

T∑
s=1

‖γN (s, t)‖2
)

= OP (T−3),
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where T−1
∑T
s=1

∑T
t=1 ‖γN (s, t)‖2 ≤M by Assumption 3.2(iii) (see also Lemma 1(i) in Bai and Ng (2002)).

For I8(b),

‖I8(b)‖ =

T∑
t=1

∥∥∥∥∥T−3
T∑
s=1

ξstf̂
′
1s

∥∥∥∥∥
2

≤ T−2N−1

(
T−2

T∑
s=1

∥∥∥f̂1s

∥∥∥2
)(

T−2N

T∑
t=1

T∑
s=1

‖ξst‖2
)

= OP (T−2N−1),

where we use the fact that E(‖ξst‖2) ≤ N−2M under Assumption 3.2(iii). Then we have 1
T ‖I8‖ =

OP (N−1/2T−1 + T−3/2). For ‖I9‖,

1

T
‖I9‖ =

1

T

∥∥∥∥ 1

NT 2
f0

2 Λ0′
2 Λ0

2f
0′
2 f̂1

∥∥∥∥ ≤ 1

T

‖f0
2 ‖2

T

‖f̂1‖
T

∥∥∥∥Λ0′
2 Λ0

2

N

∥∥∥∥ = OP (T−1).

For ‖I10‖,

1

T
‖I10‖ =

1

T

∥∥∥∥ 1

NT 2
f0

1 Λ0′
1 Λ0

2f
0′
2 f̂1

∥∥∥∥ ≤ 1√
NT

‖f0
1 ‖
T

‖f0
2 ‖√
T

‖f̂1‖
T

∥∥Λ0′
1 Λ0

2

∥∥
√
N

= OP ((NT )−1/2),

where
Λ0′

1 Λ0
2√

N
= OP (1) by Assumption 3.2(i). Analogously, we have 1

T ‖I11‖ = OP ((NT )−1/2). In sum, we

have shown that
1

T

∥∥∥f̂1H
−1
1 − f0

1

∥∥∥ = OP (
√
dT ηNT ) +

1√
T
OP (C−1

NT ).

Then (iv) follows. �

To prove Theorem 3.2, we need the following two lemmas.

Lemma A.5 Suppose that Assumptions 3.1-3.2 hold. Then

(i) 1
T f

0′

1 (f̂1 − f0
1H1) = OP (T

√
dT ηNT + δ−1

NT ),

(ii) 1
T f̂
′
1(f̂1 − f0

1H1) = OP (T
√
dT ηNT + δ−1

NT ),

(iii) ‖Pf̂1 − Pf0
1
‖2 = OP (

√
dT ηNT + T−1δ−1

NT ),

(iv) 1
T u
∗′
k

(
f̂1H

−1
1 − f0

1

)
= OP (

√
TdT ηNT + δ−1

NT ) for each k = 1, ..., N.

Lemma A.6 Suppose that Assumptions 3.1-3.2 hold. Let R1i = 1
T 2x

′
i(Pf0

1
−Pf̂1)u∗i , R2i = 1

T 2x
′
iMf̂1

f0
1λ

0
1i−

1
NT 2

∑N
j=1 x

′
iMf̂1

xjaij b̂j+
1

NT 2

∑N
j=1 aijx

′
iMf̂1

uj , R3i = 1
NT 2

∑N
j=1 aijx

′
i(Pf0

1
−Pf̂1)uj , and R4i = 1

T 2x
′
iMf0

1
u∗i

− 1
NT 2

∑N
j=1 aijx

′
iMf0

1
uj . Then

(i) R1i = OP (ς1NT ) for each i = 1, ..., N, and N−1
∑N
i=1 ‖R1i‖2 = OP (ς21NT ),

(ii) R2i = OP (ς2NT ) for each i = 1, ..., N, and N−1
∑N
i=1 ‖R2i‖2 = OP (ς22NT ),

(iii) R3i = OP (ς3NT ) for each i = 1, ..., N, and N−1
∑N
i=1 ‖R3i‖2 = OP (ς23NT ),

(iv) R4i = OP (T−1) for each i = 1, ..., N, and N−1
∑N
i=1 ‖R4i‖2 = OP (T−2),

where ς1NT = T−1/2
√
dT ηNT + dT η

2
NT + T−1C−1

NT , ς2NT = T−1
√
dT ηNT + dT η

2
NT + T−1δ−1

NT , and ς3NT =

T−1/2d
1/4
T η

1/2
NT + T−1δ

−1/2
NT .

Proof of Theorem 3.2. (i) Based on the sub-differential calculus, a necessary condition for β̂i, α̂k, and f̂1

to minimize the objective function (2.8) is the for each i = 1, ..., N , 0p×1 belongs to the sub-differential of

36



QKNT,λ(β, α, f1) with respect to βi (resp. αk) evaluated at {β̂i}, {α̂k} and f̂1. That is, for each i = 1, ..., N

and k = 1, ...,K, we have

0p×1 = − 2

T 2
x′iMf̂1

(yi − xiβ̂i) + λ

K∑
j=1

êij

K∏
l=1,l 6=j

‖β̂i − α̂l‖, (A.10)

where êij =
β̂i−α̂j
‖β̂i−α̂j‖

if ‖β̂i − α̂j‖ 6= 0 and ‖êij‖ ≤ 1 if ‖β̂i − α̂j‖ = 0. Noting that yi = xiβ
0
i + f̂1H

−1
1 λ0

1i +

u∗i + (f0
1 − f̂1H

−1
1 )λ0

1i, (A.10) implies that

Q̂i,xxb̂i =
1

T 2
x′iMf̂1

u∗i +
1

T 2
x′iMf̂1

f0
1λ

0
1i −

λ

2

K0∑
j=1

êij

K∏
l=1,l 6=j

‖β̂i − α̂l‖, (A.11)

which can be rewritten as

Q̂i,xxb̂i =
1

NT 2

N∑
j=1

x′iMf̂1
xjaij b̂j +Ri, (A.12)

where Ri = R1i + R2i − R3i + R4i − R5i, R1i, R2i, R3i and R4i are defined in the statement of Lemma

A.6, and R5i = λ
2

∑K
j=1 êij

∏K
l=1,l 6=j ‖β̂i− α̂l‖. By Lemma A.6(i)-(iv), we have that

∑4
l=1

1
N

∑N
i=1 ‖Rli‖2 =

OP (T−1d
1/2
T ηNT + d2

T η
4
NT + T−2C−2

NT + T−2δ−1
NT + T−2) = OP (T−1d

1/2
T ηNT + d2

T η
4
NT + T−2). In addition,

we can show that 1
N

∑N
i=1 ‖R5i‖2 = OP

(
λ2
)
. It follows that 1

N

∑N
i=1 ‖Ri‖2 = OP (T−1d

1/2
T ηNT +d2

T η
4
NT +

T−2 + λ2).

Let Q̂1 = diag(Q̂1,xx, ..., Q̂N,xx) and Q̂2 as an Np × Np matrix with typical blocks 1
NT 2x

′
iMf̂1

xjaij ,

such that

Q̂2 =


1

NT 2x
′
1Mf̂1

x1a11
1

NT 2x
′
1Mf̂1

x2a12 · · · 1
NT 2x

′
1Mf̂1

xNa1N

1
NT 2x

′
2Mf̂1

x1a21
1

NT 2x
′
2Mf̂1

x2a22 · · · 1
NT 2x

′
2Mf̂1

xNa2N

...
...

. . .
...

1
NT 2x

′
NMf̂1

x1aN1
1

NT 2x
′
NMf̂1

x2aN2 · · · 1
NT 2x

′
NMf̂1

xNaNN

 .

Let R = (R′1, ..., R
′
N )′. Then (A.12) implies that (Q̂1 − Q̂2)b̂ = R. It follows that

‖R‖2 = tr(b̂
′
(Q̂1 − Q̂2)′(Q̂1 − Q̂2)b̂) ≥ ‖b̂‖2

[
µmin

(
Q̂1 − Q̂2

)]2
.

By Assumption 3.2(v), we have that µmin

(
Q̂1 − Q̂2

)
≥ ρmin/2 > 0 w.p.a.1. Then we have 1

N ‖b̂‖
2 ≤

ρ2min

4N

∑N
i=1 ‖Ri‖2 = OP (T−1d

1/2
T ηNT + d2

T η
4
NT + T−2 + λ2) = OP

(
dTT

−2 + λ2
)
. Consequently, we prove

the means square convergence rate of C-Lasso estimators that 1
N

∑N
i=1 ‖b̂i‖2 = OP

(
dTT

−2 + λ2
)
.

Next, we want to strengthen the last result to a stronger one: 1
N

∑N
i=1 ‖b̂i‖2 = OP (dTT

−2). Let

β = β0 + dTT
−1v, where v = (v1, ..., vN ) is a p×N matrix. Let v =vec(v) . We wan to show that for any

given ε∗ > 0, there exists a large constant L = L(ε∗) such that for sufficiently large N and T we have

P

{
inf

1
N

∑N
i=1 ‖vi‖2=L

Qλ,KNT (β + d
1/2
T T−1v, α̂, f̂1) > Qλ,KNT (β0,α0, f̂1)

}
≥ 1− ε∗.

Regardless the property of f̂1 and α̂, this implies that w.p.a.1 there is a local minimum β̂ = (β̂1, ..., β̂N )
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such that 1
N

∑N
i=1 ‖b̂i‖2 = OP (dTT

−2). Note that

T 2
[
Qλ,KNT (β + d

1/2
T T−1v, α̂, f̂1)−Qλ,KNT (β0,α0, f̂1)

]
≥
d

1/2
T

N

N∑
i=1

(
d

1/2
T

T 2
v′ix
′
iMf̂1

xivi −
2

T
v′ix
′
iMf̂1

(f0
1 − f̂1H1)λ0

1i −
2

T
v′ix
′
iMf̂1

u∗i

)

=
dT
N

N∑
i=1

1

T 2
v′ix
′
iMf̂1

xivi

−
2d

1/2
T

N

N∑
i=1

v′i

TR2i +
1

T
x′iMf̂1

u∗i +
1

NT

N∑
j=1

aijx
′
iMf̂1

xj b̂j −
1

NT

N∑
j=1

aijx
′
iMf̂1

uj


≡ D1NT − 2D2NT , say.

where R2i = 1
T 2x

′
iMf̂1

f0
1λ

0
1i − 1

NT 2

∑N
j=1 x

′
iMf̂1

xjaij b̂j + 1
NT 2

∑N
j=1 aijx

′
iMf̂1

uj as defined in Lemma A.6.

By Assumption 3.2(v) and Lemma A.5(iii), D1NT = dT
N v′Q̂1v ≥ dTµmin

(
Q̂1

)
N−1 ‖v‖2 ≥ dT ρminN

−1 ‖v‖2 /2
w.p.a.1. By Lemmas A.6(i)-(ii) and A.5(iii),

T 2

dTN

N∑
i=1

‖R2i‖2 =
T 2

dT
OP (T−2dT η

2
NT + d2

T η
4
NT + T−2δ−2

NT ) = oP (1),

1

dTNT 2

N∑
i=1

‖x′iMf̂1
u∗i ‖2 ≤ 2T 2

dTN

N∑
i=1

∥∥∥∥ 1

T 2
x′i(Mf̂1

−Mf0
1
)u∗i

∥∥∥∥2

+
2

dTN

N∑
i=1

∥∥∥∥ 1

T
x′iMf0

1
u∗i

∥∥∥∥2

=
T 2

dT
OP (T−1dT η

2
NT + d2

T η
4
NT + T−2C−2

NT ) +
1

dT
OP (1) = oP (1).

Next, we have

1

dTN3T 2

N∑
i=1

N∑
j=1

‖aijx′iMf̂1
xj b̂j‖2 ≤

1

dT

1

N3T 2

N∑
i=1

N∑
j=1

‖aij‖2
∥∥∥x′iMf̂1

xj b̂j

∥∥∥2

≤ T 2

N

[
µmin

(
Λ0′

1 Λ0
1

N

)]−2{
max

1≤j≤N

1

dTT 2
‖xj‖2

}
max

1≤j≤N

∥∥λ0
1j

∥∥2

×

{
1

NT 2

N∑
i=1

∥∥λ0
1i

∥∥2 ‖xi‖2
} 1

N

N∑
j=1

∥∥∥b̂j∥∥∥2


=
T 2

N
OP (1)OP (1) oP

(
N1/q

)
OP (1)OP

(
dTT

−2 + λ2
)

= oP (1) .

where we use the fact that max1≤j≤N
1

dTT 2 ‖xj‖2 = OP (1) by Lemma A.2(i), max1≤j≤N
∥∥λ0

1j

∥∥2
=

oP
(
N1/q

)
by Assumption 3.2(i) and Markov inequality, and 1

NT 2

∑N
i=1

∥∥λ0
1i

∥∥2 ‖xi‖2 = OP (1) by Markov
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inequality and 1
N

∑N
j=1

∥∥∥b̂j∥∥∥2

= OP
(
dTT

−2 + λ2
)
. Similarly, we have by Lemma A.5(iii),

1

dTN3T 2

N∑
i=1

N∑
j=1

‖aijx′iMf̂1
uj‖2

≤ 1

dT

1

N3T 2

N∑
i=1

N∑
j=1

‖aij‖2
∥∥∥x′iMf̂1

uj

∥∥∥2

≤ 1

dT

[
µmin

(
Λ0′

1 Λ0
1

N

)]−2
2

N3T 2

N∑
i=1

N∑
j=1

∥∥λ0
1i

∥∥2 ∥∥λ0
1j

∥∥2
{∥∥∥x′i(Mf̂1

−Mf0
1
)uj

∥∥∥2

+
∥∥∥x′iMf0

1
uj

∥∥∥2
}

=
1

dT
OP

(
N−1TdT (

√
dT ηNT + δ−1

NT ) + 1
)

= oP (1) .

It follows that

|D2NT | ≤ dT

{
1

N

N∑
i=1

‖vi‖2
}1/2


(

T 2

dTN

N∑
i=1

‖R̄2i‖2
)1/2

+

(
1

dTNT 2

N∑
i=1

‖x′iMf̂1
u∗i ‖2

)1/2

+

 1

dTN3T 2

N∑
i=1

N∑
j=1

‖aijx′iMf̂1
b̂j‖2

1/2

+

 1

dTN3T 2

N∑
i=1

N∑
j=1

‖aijx′iMf̂1
uj‖2

1/2


= dTN
−1/2 ‖v‖ oP (1) .

ThenD1NT dominatesD2NT for sufficiently large L. That is T 2[Qλ,KNT (β+ d
1/2
T T−1v, α̂, f̂1)−Qλ,KNT (β0,α0, f̂1)] >

0 for sufficiently large L. Consequently, the result in (i) follows.

(ii) We study the probability bound for each term on the right hand side of (??). For the first term,

we have by Lemma A.6(i)∥∥∥∥ 1

T 2
x′iMf̂1

u∗i

∥∥∥∥ ≤ ∥∥∥∥ 1

T 2
x′iMf0

1
u∗i

∥∥∥∥+

∥∥∥∥ 1

T 2
x′i(Mf̂1

−Mf0
1
)u∗i

∥∥∥∥
= OP (T−1) +OP (T−1/2

√
dT ηNT + dT η

2
NT + T−1C−1

NT ) = OP (dTT
−1). (A.13)

For the second term, we can readily apply Lemmas A.6(ii), A.5(iii) and A.3(iii), and Theorem 3.2(i) to

obtain

∥∥∥∥ 1

T 2
x′iMf̂1

f0
1λ

0
1i

∥∥∥∥ ≤ ‖R2i‖+

∥∥∥∥∥∥ 1

NT 2

N∑
j=1

x′iMf̂1
xj b̂jaij

∥∥∥∥∥∥+

∥∥∥∥∥∥ 1

NT 2

N∑
j=1

x′iMf̂1
ujaij

∥∥∥∥∥∥
=OP (T−1

√
dT ηNT + dT η

2
NT + T−1δ−1

NT ) +OP (ηNT ) +OP (dTT
−1) = OP (dTT

−1).

(A.14)

The third term is OP (λ) . By Lemma A.5(iii), µmin

(
1
T 2x

′
iMf̂1

xi

)
= µmin

(
1
T 2x

′
iMf0

1
xi

)
+ oP (1) . Noting

that
(

1
T 2x

′
iMf0

1
xi

)−1

is the principal p×p submatrix of
(

1
T 2W

′
iWi

)−1
, µmin

(
1
T 2x

′
iMf0

1
xi

)
≥ µmin

(
1
T 2W

′
iWi

)
,

and the last object is bounded away from zero w.p.a.1. It follows that b̂i = OP (dTT
−1+λ) for i = 1, 2, ..., N.

(iii) Let PNT (β,α) = 1
N

∑N
i=1

∏K
k=1 ‖βi−αk‖ and ĉiNT (α) =

∏K−1
k=1 ‖β̂i−αk‖+

∏K−2
k=1 ‖β̂i−αk‖×‖β0

i −
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αK‖+ ...+
∏K
k=2 ‖β0

i −αk‖. By SSP, we have that as (N,T )→∞,
∣∣∣∏K

k=1

∥∥∥β̂i − αk∥∥∥−∏K
k=1

∥∥β0
i − αk

∥∥∣∣∣ ≤
ĉiNT (α)‖β̂i−β0

i ‖, where ĉiNT (α) ≤ CKNT (α)(1 + 2‖β̂i−β0
i ‖) and CKNT (α) = max1≤i≤N max1≤s≤k≤K−1∏s

k=1 cks‖β0
i − αk‖K−1−s = max1≤l≤K max1≤s≤k≤K0−1

∏s
k=1 cks‖α0

l − αk‖K−1−s = O(1) with cks being

finite integers. It follows that as (N,T )→∞

|PNT (β̂,α)− PNT (β0,α)| ≤ CKNT (α)
1

N

N∑
i=1

‖b̂i‖+ 2CKNT (α)
1

N

N∑
i=1

‖b̂i‖2

≤ CKNT (α)

{
1

N

N∑
i=1

‖b̂i‖2
}1/2

+OP (dTT
−2) = OP (d

1/2
T T−1). (A.15)

By (A.15) and the fact that PNT (β0,α0) = 0 and that PNT (β̂, α̂)− PNT (β̂,α0) ≤ 0. we have

0 ≥ PNT (β̂, α̂)− PNT (β̂,α0) = PNT (β0, α̂)− PNT (β0,α0) +OP (d
1/2
T T−1)

=
1

N

N∑
i=1

K∏
k=1

‖β0
i − α̂k‖+OP (d

1/2
T T−1)

=
N1

N

K∏
k=1

‖α̂k − α0
1‖+

N2

N

K∏
k=1

‖α̂k − α0
2‖+ ...+

NK
N

K∏
k=1

‖α̂k − α0
K‖+OP (d

1/2
T T−1) (A.16)

By Assumption 3.3(i), Nk/N → τk ∈ (0, 1) for each k = 1, ...K. So (A.16) implies that
∏K
k=1 ‖α̂k − α0

l ‖ =

OP (d
1/2
T T−1) for l = 1, ...K. It follows that (α̂(1), ..., α̂(K))− (α0

1, ..., α
0
K) = OP (d

1/2
T T−1).

(iv) By Theorem 3.1(iv) and Theorem 3.2(i), we have 1
T ‖f̂1 − f0

1H1‖2 = OP (TdT η
2
NT + C−2

NT ) =

OP (d2
TT
−1 +N−1). �

To prove Theorem 3.3, we need the following two lemmas.

Lemma A.7 Suppose that Assumptions 3.1-3.3 hold. Then for any c > 0,

(i) P
(
max1≤i≤N

∥∥ 1
T 2x

′
iu
∗
i

∥∥ > cψNT
)

= o(N−1),

(ii) P
(

max1≤i≤N

∥∥∥ 1
T 2x

′
iMf0

1
u∗i

∥∥∥ > cdTψNT

)
= o(N−1).

Lemma A.8 Suppose that Assumptions 3.1-3.3 hold. Then for any c > 0,

(i) P
(

max1≤i≤N ‖R1i‖ > c
(
dT ηNT + T−1/2d

1/2
T C−1

NT

) (
ψNT + T−1/2(log T )3

))
= o(N−1),

(ii) P
(

max1≤i≤N ‖R2i‖ > cd
1/2
T N (1/2q)ς2NT

)
= o(N−1),

(iii) P
(

max1≤i≤N ‖R3i‖ > cd
1/2
T N (1/2q)ς2NT

)
= o(N−1),

(iv) P
(
max1≤i≤N ‖R4i‖ > c(dT +N (1/2q))ψNT

)
= o(N−1),

(v) P
(

max1≤i≤N

∥∥∥β̂i − β0
i

∥∥∥ > c
(
N (1/2q)ψNT + λ(log T )ε/2

))
= o(N−1) for any ε > 0,

(vi) P

(
1
N

∑N
i=1

∥∥∥β̂i − β0
i

∥∥∥2

> cd2
Tψ

2
NT

)
= o(N−1) for any ε > 0,

(vii) P
(

max1≤i≤N

∥∥∥ 1
T 2x

′
iMf̂1

f0
1λ

0
1i

∥∥∥ > cN1/2q(dT ηNT + T−1/2d
1/2
T C−1

NT )
)

= o(N−1).

Proof of Theorem 3.3. (i) Fix k ∈ {1, ...,K}. By the consistency of α̂k and β̂i, we have β̂i − α̂l
p→

α0
k − α0

l 6= 0 for all i ∈ G0
k and l 6= k. Now, suppose that ‖β̂i − α̂k‖ 6= 0 for some i ∈ G0

k. Then the first
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order condition (with respect to βi) for the minimization of the objective function (2.8) implies that

0p×1 =− 2

T
x′iMf0

1
u∗i +

2

T
x′i(Mf0

1
−Mf̂1

)u∗i −
2

T
x′iMf̂1

f0
1λ

0
1i +

2

T 2
x′iMf̂1

xiT (α̂k − α0
k)

+

(
2

T 2
x′iMf̂1

xi +
λĉki

‖β̂i − α̂k‖
Ip

)
T (β̂i − α̂k) + Tλ

K∑
j=1,j 6=k

êij

K∏
l=1,l 6=j

‖β̂i − α̂l‖

≡ −Â1i + Â2i − Â3i + Â4i + Â5i + Â6i, say,

where êij are defined in the proof of Theorem 3.2(i), ĉki =
∏K
l=1,l 6=k ‖β̂i−α̂l‖

p→ c0k ≡
∏K
l=1,l 6=k ‖α0

k−α0
l ‖ > 0

for i ∈ G0
k by Assumption 3.3(ii). Let ΨNT = N1/(2q)ψNT + λ(log T )ε/2. Let c denote a generic constant

that may vary across lines. By Lemma A.8(v)-(vi), we have

P

(
max
i∈G0

k

∥∥∥β̂i − β0
i

∥∥∥ > cΨNT

)
= o(N−1) and P

(
1

N

N∑
i=1

∥∥∥β̂i − β0
i

∥∥∥2

> cd2
Tψ

2
NT

)
= o(N−1). (A.17)

This, in conjunction with the proof of Theorem 3.2(i)-(iii), implies that

P (‖α̂k − α0
k‖ > cdTψNT ) = o(N−1), and P (max

i∈G0
k

∣∣ĉki − c0k∣∣ ≥ c0k/2) = o(N−1). (A.18)

By (A.17)-(A.18) and the fact that maxi∈G0
k

1
T 2x

′
iMf̂1

xi ≤ cdT ρmax a.s., we have P
(

maxi∈G0
k

∥∥∥Â4i

∥∥∥ > cd2
TTψNT

)
= o(N−1) and P

(
maxi∈G0

k

∥∥∥Â6i

∥∥∥ > cλTΨNT

)
= o(N−1). By Lemma A.7(ii) and Lemma A.8(i),(iii), we

can directly claim that

P

(
max
i∈G0

k

‖Â1i‖ > cTbTψNT

)
= o(N−1),

P

(
max
i∈G0

k

‖Â2i‖ > c
(
TdT ηNT + T 1/2d

1/2
T C−1

NT

)(
ψNT + T−1/2(log T )3

))
= o(N−1), and

P

(
max
i∈G0

k

‖Â3i‖ > cN1/2q(TdT ηNT + T 1/2d
1/2
T C−1

NT )

)
= o(N−1).

For Â5i, we have

(β̂i − α̂k)′Â5i = (β̂i − α̂k)′

(
2

T 2
x′iMf̂1

xi +
λĉki

‖β̂i − α̂k‖
Ip

)
T (β̂i − α̂k)

≥ 2Q̂i,xxT‖β̂i − α̂k‖2 + Tλĉki‖β̂i − α̂k‖ ≥ cTλc0k‖β̂i − α̂k‖.

Combing above results together, it follows that P (Ξk,NT ) = 1− o(N−1), where

Ξk,NT =

{
max
i∈G0

k

‖Â2i‖ < c
(
TdT ηNT + T 1/2d

1/2
T C−1

NT

)(
ψNT + T−1/2(log T )3

)}
∩
{

max
i∈G0

k

‖Â3i‖ < cN1/2q(TdT ηNT + T 1/2d
1/2
T C−1

NT )

}
∩
{

max
i∈G0

k

∣∣ĉki − c0k∣∣ < c0k/2

}
∩
{

max
i∈G0

k

∥∥∥Â4i

∥∥∥ < cd2
TTψNT

}
∩
{

max
i∈G0

k

∥∥∥Â6i

∥∥∥ < cλTΨNT

}
.
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Then conditional on ΞkNT , we have that uniformly in i ∈ G0
k,∣∣∣(β̂i − α̂k)′(Â2i + Â3i + Â4i + Â5i + Â6i)

∣∣∣
≥
∣∣∣(β̂i − α̂k)′Â5i

∣∣∣− ∣∣∣(β̂i − α̂k)′(Â2i + Â3i + Â4i + Â6i)
∣∣∣

≥
{
cTλc0k − c

(
N1/2q

(
Td

1/2
T ηNT + T 1/2d

1/2
T C−1

NT

)
+ Td2

TψNT + λTΨNT

)}
‖β̂i − α̂k‖

≥cTλc0k‖β̂i − α̂k‖/2,

where the last inequality follows by the fact that N1/2q
(
Td

1/2
T ηNT + T 1/2d

1/2
T C−1

NT

)
+Td2

TψNT +λTΨNT

= o(Tλ) for sufficiently large (N,T ) by Assumption 3.3(iv). It follows that

P (ÊkNT,i) = P (i /∈ Ĝk|i ∈ G0
k) = P (Â1i = Â2i + Â3i + Â4i + Â5i + Â6i)

≤ P
(
|(β̂i − α̂k)′Â1i| ≥ |(β̂i − α̂k)′Â5i − (β̂i − α̂k)′(Â2i + Â3i + Â4i + Â6i)

)
≤ P (‖Âi1‖ ≥ cTλc0k/4,ΞkNT ) + o(N−1)→ 0 as (N,T )→∞,

where the last inequality follows because that Tλ � TbTψNT by Assumption 3.3(iv). Consequently, we

can conclude that w.p.a.1 β̂i − α̂k must be in position where ‖βi − αk‖ is not differentiable with respect

to βi for any i ∈ G0
k. That is P (‖β̂i − α̂k‖ = 0|i ∈ G0

k) = 1− o(N−1) as (N,T )→∞.

For uniform consistency, we have that

P (∪Kk=1ÊkNT ) ≤
K∑
k=1

P (ÊkNT ) ≤
K∑
k=1

∑
i∈G0

k

P (ÊkNT,i)

≤ N max
1≤i≤N

P (‖Âi1‖ ≥ cTλc0k/4) + o(1)→ 0 as (N,T )→∞.

This completes the proof of (i). Then the proof of (ii) directly follows SSP and thus omitted. �

To prove Theorem 3.4, we need the following two lemmas.

Lemma A.9 Suppose that Assumptions 3.1-3.3 hold and
√
N = o (T ) . Then for any k = 1, ...,K,

(i) 1
NkT 2

∑
i∈Ĝk x

′
iMf̂1

f0
1λ

0
1i = 1

NkT 2

∑
i∈Ĝk

1
N

∑N
j=1 x

′
iMf̂1

xjaij b̂j− 1
NkT 2

∑
i∈Ĝk

1
N

∑N
j=1 aijx

′
iMf̂1

uj−
1

NkT 2

∑
i∈Ĝk

1
N

∑N
j=1 aijx

′
iMf̂1

f0
2λ

0
2j + oP (N−1/2T−1),

(ii) 1
NkT 2

∑
i∈Ĝk x

′
iMf̂1

xi = 1
NkT 2

∑
i∈G0

k
x′iMf0

1
xi + oP (1),

(iii) 1√
NkT

∑
i∈Ĝk x

′
iMf̂1

(
u∗i − 1

N

∑N
j=1 u

∗
jaij

)
= UkNT + oP (1),

(iv) 1
NkT 2

∑
i∈Ĝk

1
N

∑
j∈Ĝl x

′
iMf̂1

xjaij = 1
NkT 2

∑
i∈G0

k

1
N

∑
j∈G0

l
x′iMf0

1
xjaij + oP (1).

Lemma A.10 Suppose that Assumptions 3.1-3.3 hold and
√
N = o (T ) . Then

(i) QNT
d→ Q0,

(ii) UkNT = VkNT +BkNT + oP (1),

(iii) VNT
d→ N (0,Ω0) conditional on C,

where Ω0 = limN,T→∞ ΩNT .

Proof of Theorem 3.4. (i) To study of the oracle property of the C-Lasso estimator, we invoke the

sub-differential calculus. A necessary and sufficient condition for {β̂i} and {α̂k} to minimize the objective
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function in (2.8) is that for each i = 1, ..., N (resp. k = 1, ...,K), 0p×1 belongs to the sub-differential of

QKNT,λ(β, α, f̂1) with respect to βi (resp. αk) evaluated at {β̂i} and {α̂k}. That is, for each i = 1, ..., N

and k = 1, ...,K, we have

0p×1 = − 2

NT 2
x′iMf̂1

(yi − xiβ̂i) +
λ

N

K∑
j=1

êij

K∏
l=1,l 6=j

‖β̂i − α̂l‖, (A.19)

0p×1 =
λ

N

N∑
i=1

êik

K∏
l=1,l 6=k

‖β̂i − α̂l‖, (A.20)

where êij =
β̂i−α̂j
‖β̂i−α̂j‖

if ‖β̂i − α̂j‖ 6= 0 and ‖êij‖ ≤ 1 if ‖β̂i − α̂j‖ = 0. First we observe that ‖β̂i − α̂k‖ = 0

for any i ∈ Ĝk by the definition of Ĝk, then β̂i− α̂l → α0
k−α0

l 6= 0 for any i ∈ Ĝk and l 6= k by Assumption

3.3(ii). It follows that ‖êik‖ ≤ 1 for any i ∈ Ĝk and êij =
β̂i−α̂j
‖β̂i−α̂j‖

=
α̂k−α̂j
‖α̂k−α̂j‖ w.p.a.1 for any i ∈ Ĝk and

j 6= k. This further implies that w.p.a.1

∑
i∈Ĝk

K∑
j=1,j 6=k

êij

K∏
l=1,l 6=j

‖β̂i − α̂l‖ =
∑
i∈Ĝk

K∑
j=1,j 6=k

α̂k − α̂j
‖α̂k − α̂j‖

K∏
l=1,l 6=j

‖α̂k − α̂l‖ = 0p×1,

and

0p×1 =

N∑
i=1

êik

K∏
l=1,l 6=k

‖β̂i − α̂l‖

=
∑
i∈Ĝk

êik

K∏
l=1,l 6=k

‖α̂k − α̂l‖+
∑
i∈Ĝ0

êik

K∏
l=1,l 6=k

‖β̂i − α̂l‖+

K∑
j=1,j 6=k

∑
i∈Ĝj

êik

K∏
l=1,l 6=k

‖α̂j − α̂l‖

=
∑
i∈Ĝk

êik

K∏
l=1,l 6=k

‖α̂k − α̂l‖+
∑
i∈Ĝ0

êik

K∏
l=1,l 6=k

‖β̂i − α̂l‖. (A.21)

Then by (A.19), (A.20) and (A.21) we have

2

NkT 2

∑
i∈Ĝk

x′iMf̂1
(yi − xiα̂k) +

λ

N

∑
i∈Ĝ0

êik

K∏
l=1,l 6=k

‖β̂i − α̂l‖ = 0p×1. (A.22)

Noting that 1{i ∈ Ĝk} = 1{i ∈ G0
k}+ 1{i ∈ Ĝk \G0

k} − 1{i ∈ G0
k \ Ĝk} and yi = xiα

0
k + f0

1λ
0
1i + u∗i when

i ∈ G0
k, we have

1

NkT 2

∑
i∈Ĝk

xiMf̂1
yi =

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
xiβ

0
i +

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
f0

1λ
0
1i +

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
u∗i

=
1

NkT 2

∑
i∈G0

k

x′iMf̂1
xiα

0
k +

1

NkT 2

∑
i∈Ĝk\G0

k

x′iMf̂1
xiβ

0
i −

1

NkT 2

∑
i∈G0

k\Ĝk

x′iMf̂1
xiα

0
k

+
1

NkT 2

∑
i∈Ĝk

x′iMf̂1
f0

1λ
0
1i +

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
(ui + f0

2λ
0
2i). (A.23)
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Combining (A.22) and (A.23) yields

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
xi(α̂k − α0

k) =
1

NkT 2

∑
i∈Ĝk

x′iMf̂1
f0

1λ
0
1i +

1

NkT 2

∑
i∈Ĝk

x′iMf̂1

(
ui + f0

2λ
0
2i

)
+ Ĉ1k − Ĉ2k + Ĉ3k, (A.24)

where Ĉ1k = 1
NkT 2

∑
i∈Ĝk\G0

k
x′iMf̂1

xiβ
0
i , Ĉ2k = 1

NkT 2

∑
i∈G0

k\Ĝk
x′iMf̂1

xiα
0
k, and Ĉ3k = λ

2Nk

∑
i∈Ĝ0

êik

×
∏K
l=1,l 6=k ‖β̂i − α̂l‖. By Theorem 3.3 and Lemmas S1.11-S1.12 in SSP, we have P (N1/2T‖Ĉ1k‖ ≥ ε) ≤

P (F̂kNT ) → 0, P (N1/2T‖Ĉ2k‖ ≥ ε) ≤ P (ÊkNT ) → 0, and P (N1/2T‖Ĉ3k‖ ≥ ε) ≤
∑K
k=1

∑
i∈G0

k
P (i ∈

Ĝ0|i ∈ G0
k) ≤

∑K
k=1

∑
i∈G0

k
P (ÊkNT,i) = o(1). It follows that ‖Ĉ1k − Ĉ2k + Ĉ3k‖ = oP (N−1/2T−1). By

Lemma A.9 (i), we have as
√
N
T → 0

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
f0

1λ
0
1i =

1

NkT 2

∑
i∈Ĝk

1

N

N∑
j=1

x′iMf̂1
xjaij b̂j −

1

NkT 2

∑
i∈Ĝk

1

N

N∑
j=1

aijx
′
iMf̂1

uj

− 1

NkT 2

∑
i∈Ĝk

1

N

N∑
j=1

aijx
′
iMf̂1

f0
2λ

0
2j + oP (N−1/2T−1). (A.25)

In addition,

1

NkT 2

∑
i∈Ĝk

1

N

N∑
j=1

x′iMf̂1
xjaij b̂j =

1

NkT 2

∑
i∈Ĝk

1

N

K∑
l=1

∑
j∈Ĝl

x′iMf̂1
xjaij

(
α̂l − α0

l

)
+ oP (N−1/2T−1) (A.26)

by Theorem 3.3. Let Q̂1NT =diag
(

1
N1T 2

∑
i∈Ĝ1

x′iMf̂1
xi, . . . ,

1
NKT 2

∑
i∈ĜK x

′
iMf̂1

xi

)
and Q̂2NT is a Kp×

Kp matrix with typical blocks 1
NNkT

∑
i∈Ĝk

∑
j∈Ĝl aijx

′
iMf̂1

xj such that

Q̂2NT =


1

NN1T 2

∑
i∈Ĝ1

∑
j∈Ĝ1

aijx
′
iMf̂1

xj , . . . 1
NN1T 2

∑
i∈Ĝ1

∑
j∈ĜK aijx

′
iMf̂1

xj
1

NN2T 2

∑
i∈Ĝ2

∑
j∈Ĝ1

aijx
′
iMf̂1

xj , . . . 1
NN2T 2

∑
i∈Ĝ2

∑
j∈ĜK aijx

′
iMf̂1

xj ,
...

. . .
...

1
NNKT 2

∑
i∈ĜK

∑
j∈Ĝ1

aijx
′
iMf̂1

xj , · · · 1
NNKT 2

∑
i∈ĜK

∑
j∈ĜK aijx

′
iMf̂1

xj

 .

Combining (A.24)-(A.26), we have

√
NTvec(α̂−α0) = (Q̂1NT − Q̂2NT )−1

√
DN ÛNT + oP (1),

where the kth element of ÛNT is

ÛkNT =
1√
NkT

∑
i∈Ĝk

x′iMf̂1

(ui + f0
2λ

0
2i

)
− 1

N

N∑
j=1

aij
(
uj + f0

2λ
0
2j

)
and DN =diag( NN1

, ..., N
NK

). By Lemma A.9(ii)-(iv), we have that Q̂1NT − Q̂2NT = QNT + oP (1), ÛNT =

UNT + oP (1), where UNT and QNT are defined in Theorem 3.4. Then we have
√
NTvec(α̂ − α0) =

Q−1
NT

√
DNUNT + oP (1). By Lemma A.10(ii), we have UkNT − BkNT,1 − BkNT,2 = VkNT + oP (1), where
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VkNT and BkNT = BkNT,1 +BkNT,2 are defined in Theorem 3.4. Thus,

√
NTvec(α̂−α0) = Q−1

NT

√
DN (VNT +BNT ) + oP (1), (A.27)

where VNT = (V1NT , ..., VKNT ) and BNT = (B1NT , ..., BKNT ). This completes the proof of Theorem 3.4.

(ii) By Lemma A.10 (i) and (iii), we have

QNT
d→ Q0 and VNT

d→ N(0,Ω0) conditional C. (A.28)

Combining (A.27) and (A.28), we have
√
NTvec(α̂−α0)−

√
DNQ

−1
NTBNT

d→MN(0, limN→∞DNQ
−1
0 Ω0Q

−1
0 ).

�

To prove Theorem 3.5, we need the following lemma.

Lemma A.11 Suppose that Assumptions 3.1-3.3 hold and
√
N = o (T ). Then as (N,T )→∞,

(i) 1√
T
‖f̂1λ̂1i − f0

1λ
0
1i‖ = OP (

√
dTTηNT ) +OP (C−1

NT ),

(ii) 1√
T
‖f̂2 − f0

2H2‖ = OP (C−1
NT )

(iii) 1√
Nk

∑
i∈Ĝk

(
λ̂2i −H−1

2 λ0
2i

)
= oP (1),

(iv) 1√
T

∥∥∥f̂2λ̂2i − f0
2λ

0
2i

∥∥∥ = OP (C−1
NT ),

(v) 1√
Nk

∑
i∈Ĝk(∆̂21,i −∆21,i) = oP (1),

(vi)
√
Nk
T

∑T
t=1

∑T
s=1 (κ̂ts − κts) 1 {s ≤ t} = oP (1),

(vii) 1√
Nk

∑
i∈G0

k
(∆̂24,i

ˆ̄λ2i −∆24,iλ̄
0
2i) = oP (1),

(viii) 1√
NkT

∑
i∈G0

k

∑T
t=1

∑T
s=1

[
κ̂ts1 {s ≤ t} ∆̂24,i

ˆ̄λ2i − κts1 {s ≤ t}∆24,iλ̄
0
2i

]
= oP (1).

where λ̄0
2i = λ0

2i − 1
N

∑N
j=1 λ

0
2jaij .

Proof of Theorem 3.5. (i) We first consider the bias-correction post-Lasso estimators vec(α̂bc
Ĝ

). By

construction and Theorem 3.4, we have

√
NTvec

(
α̂bc
Ĝ
−α0

)
=
√
NTvec

(
α̂bc
Ĝ
− α̂

)
+
√
NTvec

(
α̂− α0

)
=

√
DNQ

−1
NTVNT +

√
DN

[
Q−1
NT (BNT,1 +BNT,2)− Q̂−1

NT

(
B̂NT,1 + B̂NT,2

)]
+oP (1).

It suffices to show the
√
NTvec

(
α̂bc
Ĝ
−α0

)
=
√
DNQ

−1
NTVNT +oP (1) by (i1) Q̂1NT−Q̂2NT = QNT +oP (1),

(i2) B̂NT,1 = BNT,1 + oP (1), and (i3) B̂NT,2 = BNT,2 + oP (1). (i1) holds by Lemma A.9 (i) and (iv). For

(i2), it suffices to show that B̂kNT,1 − BkNT,1 = oP (1) for k = 1, ...,K. By Theorem 3.3 and using

arguments as used in the proof of Lemma A.9(ii), we can readily show that B̂kNT,1 = B̃kNT,1 + oP (1),
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where B̃kNT,1 = 1√
Nk

∑
i∈G0

k
∆̂21,i − 1√

NkT

∑
i∈G0

k

∑T
t=1

∑T
s=1 κ̂ts1 {s ≤ t} ∆̂21,i. It follows that

B̂kNT,1 −BkNT,1 =
1√
Nk

∑
i∈G0

k

(∆̂21,i −∆21,i)−
1√
NkT

∑
i∈G0

k

T∑
t=1

T∑
s=1

[
κ̂ts1 {s ≤ t} ∆̂21,i − κts1 {s ≤ t}∆21,i

]
+oP (1)

=
1√
Nk

∑
i∈G0

k

(∆̂21,i −∆21,i)−
1

T

T∑
t=1

T∑
s=1

κ̂ts1 {s ≤ t}

 1√
Nk

∑
i∈G0

k

(∆̂21,i −∆21,i)


−
√
Nk
T

T∑
t=1

T∑
s=1

(κ̂ts − κts) 1 {s ≤ t}

 1

Nk

∑
i∈G0

k

∆21,i

+ oP (1)

≡ BkNT,1 (1) +BkNT,1 (2) +BkNT,1 (3) + oP (1), say,

We can prove B̂kNT,1 = BkNT,1 + oP (1) by showing that BkNT,1 (l) = oP (1) for l = 1, 2, 3. Noting that∣∣∣ 1
T

∑T
t=1

∑T
s=1 κ̂ts1 {s ≤ t}

∣∣∣ ≤ 1
T 3

∑T
t=1

∑T
s=1

∥∥∥f̂1t

∥∥∥ ∥∥∥f̂1s

∥∥∥ = OP (1) and 1
Nk

∑
i∈G0

k
∆21,i = OP (1) , these

results would follow by Lemma A.11(v)-(vi). To show (i3), we first observe that

BkNT,2 =
1√
NkT

∑
i∈G0

k

E (x′i|C)Mf0
1
f0

2

λ0
2i −

1

N

N∑
j=1

λ0
2jaij


=

1√
NkT

∑
i∈G0

k

E (x′i|C) f0
2 λ̄

0
2i −

1√
NkT

∑
i∈G0

k

E (x′i|C)Pf0
1
f0

2 λ̄
0
2i ≡ BkNT,21 −BkNT,22, say,

where λ̄0
2i = λ0

2i − 1
N

∑N
j=1 λ

0
2jaij . Let φf2,f1f2 = (φf2f1(L), φf2f2(L)), φε,f1f2i = (φεf1i (L) , φεf2i (L)) =

(φεf1 (L) , φεf2 (L)), and vf1f2t = (vf1′t , vf1′t )′. Note that εit = wεit = φεui (L) vuit + φεεi (L) vεit + φεf1 (L) vf1t +

φεf2 (L) vf2t . By the BN decomposition and the independence of {vuεit } and {vf1f2s }, we have

f0
2t = S4wit = φf2f1(L)vf1t + φf2f2(L)vf2t = φf2,f1f2(L)vf1f2t

= φf2,f1f2(1)vf1f2t + S4w̃it−1 − S4w̃it,

EC (xit) = EC

(
S2

t∑
m=1

wim

)
=

t∑
m=1

(
φεf1i (L) vf1m + φεf2i (L) vf2m

)
= φε,f1f2 (L)V f1f2t

= φε,f1f2i (1)V f1f2t + S2EC (w̃i0 − w̃it) .

where V f1f2t = (V f1′t , V f2′t )′ =
(∑t

m=1 v
f1′
m ,
∑t
m=1 v

f2′
m

)′
, wit and w̃it are defined in Assumption 3.1. Let
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B∗kNT,21 = 1√
Nk

∑
i∈G0

k
S2

∑∞
r=0

∑∞
l=0 φi,l+rφ

′
i,lS
′
4λ̄

0
2i. It follows that

BkNT,21 −B∗kNT,21

=
1√
Nk

∑
i∈G0

k

1

T

T∑
t=1

φε,f1f2i (L)V f1f2t vf1f2′t φf2,f1f2(L)′λ̄0
2i −

1√
Nk

∑
i∈G0

k

S2

∞∑
r=0

∞∑
l=0

φi,l+rφ
′
i,lS4λ̄

0
2i

=
1√
Nk

∑
i∈G0

k

1

T

T∑
t=1

φε,f1f2 (1) (V f1f2t vf1f2′t − Ir)φf2,f1f2(1)′λ̄0
2i

+
1√
Nk

∑
i∈G0

k

S2

{
1

T

T−1∑
t=1

(
EC (wit+1) w̃′it −

∞∑
l=0

φi,l+1φ
′
i,l

)
S′4λ̄

0
2i −

1

T

∞∑
l=0

φi,l+1φ
′
i,lS
′
4λ̄

0
2i

− 1

T

T∑
t=1

(
EC (w̃i0) vf1f2′t φf2,f1f2(1)′ − φ̃i,0φi(1)′S′4

)
λ̄0

2i +
1

T

T∑
t=1

EC (w̃it) v
f1f2′
t φf2,f1f2(1)′λ̄0

2i

− 1

T
EC

(
T∑
t=1

wit

)
w̃′iTS

′
4λ̄

0
2i +

1

T
EC (wi1) w̃′i0S

′
4λ̄

0
2i

}

≡ 1√
Nk

∑
i∈G0

k

Qf2iT +
1√
Nk

∑
i∈G0

k

S2

{
Rf2iT,1 +Rf2iT,2 +Rf2iT,3 +Rf2iT,4 +Rf2iT,5 +Rf2iT,6

}
S′4λ̄

0
2i,

where we use the fact that φε,f1f2i (1)φf2,f1f2(1)′ = S2φi (1)φi (1)
′
S′4 by construction and that

∑∞
r=0

∑∞
l=0

φi,l+rφ
′
i,l = φi (1)φi (1)

′ −
∑∞
l=0 φi,l+1φ

′
i,l + φ̃i,0φi(1)′. Following the proof of Lemma A.7 in Huang et al.

(2017), we can show that 1√
Nk

∑
i∈G0

k
S2R

f2
iT,lS

′
4λ̄

0
2i = oP (1) for l = 1, 2, ..., 6 and 1√

Nk

∑
i∈G0

k
E(Qf2iT ) = 0.

It follows that BkNT,21 = B∗kNT,21+oP (1) = 1√
Nk

∑
i∈G0

k
∆24,iλ̄

0
2i+oP (1). Analogously, we have BkNT,22 =

B∗kNT,22 +oP (1) , where B∗kNT,22 = 1√
Nk

∑
i∈G0

k

1
T

∑T
t=1

∑T
s=1 κts1 {s ≤ t}×S2

∑∞
r=0

∑∞
l=0 φi,l+rφ

′
i,lS
′
4λ̄

0
2i.

Let B∗kNT,2 = B∗kNT,21 −B∗kNT,22. Then

B∗kNT,2 =
1√
Nk

∑
i∈G0

k

1

T

T∑
t=1

T∑
s=1

(1{s = t} − κts1 {s ≤ t})S2

∞∑
r=0

∞∑
l=0

φi,l+rφ
′
i,lS
′
4λ̄

0
2i

=
1

T

T∑
t=1

T∑
s=1

[1{s = t} − κts1 {s ≤ t}]
∞∑
r=0

∞∑
l=0

(
φεf1l+rφ

f2f1
l + φεf2l+rφ

f2f2

l

) 1√
Nk

∑
i∈G0

k

λ̄0
2i

=
1

T

T∑
t=1

T∑
s=1

[1{s = t} − κts1 {s ≤ t}]
1√
Nk

∑
i∈G0

k

∆24,iλ̄
0
2i.

By Theorem 3.3 and using arguments as used in the proof of Lemma A.9(ii), we can readily show that

B̂kNT,2 = B̃kNT,2+oP (1), where B̃kNT,2 = 1√
Nk

∑
i∈G0

k
∆̂24,i

ˆ̄λ2i− 1√
NkT

∑
i∈G0

k

∑T
t=1

∑T
s=1 κ̂ts1 {s ≤ t} ∆̂24,i

ˆ̄λ2i.

Thus we can prove that B̂NT,2 = BNT,2 + oP (1) by showing B̃kNT,2 = B∗kNT,2 + oP (1) for k = 1, ...,K.
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Note that

B̃kNT,2 −B∗kNT,2

=
1√
Nk

∑
i∈G0

k

(∆̂24,i
ˆ̄λ2i −∆24,iλ̄

0
2i)−

1√
NkT

∑
i∈G0

k

T∑
t=1

T∑
s=1

[
κ̂ts1 {s ≤ t} ∆̂24,i

ˆ̄λ2i − κts1 {s ≤ t}∆24,iλ̄
0
2i

]
= oP (1)− oP (1) = oP (1)

by Lemma A.11(vii)-(viii). Consequently, B̂kNT,2 −BkNT,2 = oP (1).

In sum, we have
√
NTvec

(
α̂bc
Ĝ
−α0

)
=
√
DNQ

−1
NTVNT + oP (1).

(ii) For the fully-modified post-Lasso estimators α̂fmGk , we first consider the asymptotic distribution for

the infeasible version of fully modified post-Lasso estimator α̃fmGk . Noting that y+
i = xiα

0
k+f0

1λ
0
1i+f0

2λ
0
2i+

u+
i , by (A.24) and (A.25) and Theorem 3.3, we have

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
xi(α̃

fm
Gk
− α0

k) =
1

NkT 2

∑
i∈G0

k

x′iMf̂1

(
u+
i + f0

2λ
0
2i

)
+

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
f0

1λ
0
1i

− 1√
NkT

B+
kNT,1 −

1√
NkT

BkNT,2 + oP (N−1/2T−1). (A.29)

Combing (A.26), (A.29) and Lemma A.9(i) yields

1

NkT 2

∑
i∈Ĝk

x′iMf̂1
xi(α̃

fm
Gk
− α0

k)− 1

NkT 2

∑
i∈Ĝk

1

N

N∑
j=1

x′iMf̂1
xjaij b̂j

=
1

NkT 2

∑
i∈G0

k

x′iMf0
1

u+
i −

1

N

N∑
j=1

u+
j aij

+
1

NkT 2

∑
i∈G0

k

x′iMf0
1
f0

2

λ0
2i −

1

N

N∑
j=1

λ0
2jaij


− 1√

NkT
B+
kNT,1 −

1√
NkT

BkNT,2 + oP (N−1/2T−1)

By (A.26) and Lemma A.10 (i)-(iii), we have

√
NTvec(α̃fmG −α0) = (Q̂1NT − Q̂2NT )−1

√
DN

((
Uu+
NT + Uf2NT

)
−B+

NT,1 −BNT,2
)

+ oP (1)

=
√
DNQ

−1
NTV

+
NT + oP (1)

where

Uu+
k,NT =

1√
NkT

∑
i∈G0

k

x′iMf0
1

u+
i −

1

N

N∑
j=1

aiju
+
j

 ,

V +
kNT,1 =

1√
NkT

∑
i∈G0

k

Sεφ†i (1)

T∑
t=1

T∑
s=1

{
κ̄ts
(
V uεit v

uε,+′
is

)
− [1 {t = s} − κts1 {s ≤ t}] I1+p

}
φ†i (1)′Su′,

V +
kNT,2 =

1√
Nk

N∑
i=1

 1

T
E (x′i|C) 1

{
i ∈ G0

k

}
− 1

N

∑
j∈G0

k

aij
1

T
E(x′j |C)

Mf0
1
u+
i ,
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and U+
k,NT = Uu+

k,NT +Uf2k,NT and V +
kNT = V +

kNT,1 +V +
kNT,2 +VkNT,3 are the kth block-element of U+

NT and

V +
NT , respectively. We have a new error process w+

it = (u+
it,∆x

′
it,∆f

′
1t, f

′
2t, )
′ whose partial sum satisfies

the multivariate invariance principle: 1√
T

∑[T ·]
t=1 w

+
it ⇒ B+

i = BM(Ω+
i ). Following the proof of Lemma

A.10(iii) (see also Theorem 9 in Phillips and Moon), we can show that V +
NT

d→ N(0,Ω+
0 ) condition on C

where Ω+
0 = limN,T→∞Ω+

NT and Ω+
NT =Var

(
V +
NT |C

)
. Then we have

√
NTvec(α̃fmG −α0)

d→MN(0, lim
N→∞

DNQ
−1
0 Ω+

0 Q
−1
0 ).

Next, we show that α̂fmG is asymptotically equivalent to α̃fmG by showing that
√
NT (α̂fmG − α̃fmG ) =

oP (1) . Note that

√
NT (α̂fmG −α̃

fm
G ) =

√
DN

[
(Q̂1NT − Q̂2NT )−1

(
Û+
NT + B̂+

NT,1 + B̂NT,2

)
−Q−1

NT

(
U+
NT +B+

NT,1 +BNT,2

)]
.

Then it suffices to show (ii1) Q̂1NT − Q̂2NT = QNT + oP (1), (ii2) B̂+
NT,1 = B+

NT,1 + oP (1),(ii3) Û+
NT =

U+
NT + oP (1), and (ii4) B̂NT,2 = BNT,2 + oP (1). In the proof of bias-correction post-Lasso estimators,

we have already prove (ii1) and (ii4). For (ii2), we can apply analogous arguments as used in the proof

of Lemma A.11(v) to prove that EC

∥∥∥ 1√
Nk

∑
i∈Ĝk(Ω̂i − Ωi)

∥∥∥ = OP (HT + N
H2q ) = oP (1) . Since ∆+

lm,i =

∆lm,i−Ωlm,iΩ
−1
mi∆m,i, this implies that

∥∥∥ 1√
Nk

∑
i∈Ĝk(∆̂+

21,i −∆+
21,i)

∥∥∥2

= oP (1) . The latter further implies

that B̂+
NT,1 = B+

NT,1 + oP (1). For (ii3) we can apply Theorem 3 to show that

Û+
kNT − U

+
kNT = Ûu+

kNT − Ũ
u+
kNT + Ũu+

kNT − U
u+
kNT

=
1√
NkT

∑
i∈Ĝk

x′iMf̂1

û+
i −

1

N

N∑
j=1

aij û
+
j

− 1√
NkT

∑
i∈Ĝk

x′iMf̂1

u+
i −

1

N

N∑
j=1

aiju
+
j

+ oP (1)

=
1√
NkT

∑
i∈G0

k

x′iMf̂1

(
û+
i − u

+
i

)
− 1√

NkNT

∑
i∈G0

k

N∑
j=1

x′iMf̂1

(
û+
j − u

+
j

)
aij + oP (1)

=
1√
NkT

∑
i∈G0

k

x′i∆xi

(
Ω12,iΩ

−1
22i − Ω̂12,iΩ̂

−1
22i

)
− 1√

NkT

∑
i∈G0

k

x′iPf̂1∆xi

(
Ω12,iΩ

−1
22i − Ω̂12,iΩ̂

−1
22i

)

− 1√
NkNT

∑
i∈G0

k

N∑
j=1

x′iMf̂1
∆xj

(
Ω12,jΩ

−1
22j − Ω̂12,jΩ̂

−1
22j

)
aij + oP (1)

≡ UU1 + UU2 + UU3 + oP (1),

where Ũu+
kNT = 1√

NkT

∑
i∈G0

k
x′iMf̂1

(
u+
i − 1

N

∑N
j=1 aiju

+
j

)
and Ũu+

kNT −U
u+
kNT = oP (1) by Lemma A.9(iii).

Following the proof of Lemma A.11(v), we can show that UUl = oP (1) for l = 1, 2, 3. The (ii3) follows.

This completes the proof of (ii).

(iii) The proof is analogous to that of (ii) and thus omitted. �

To prove Theorems 3.6-3.7, we need the following two lemmas.

Lemma A.12 Suppose that Assumptions 3.1-3.3 and 3.5 hold. Then

(i) For any 1 ≤ r ≤ r0, V1(r, Ĝr)− V1(r,G0Hr) = OP (C−1
NT ),
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(ii) For each r with 0 ≤ r < r0, there exist a positive number cr such that plim(N,T )→∞ inf(V1(r,G0Hr)−
V1(r0, G0)) = cr,

(iii) For any fixed r, with r0 ≤ r ≤ rmax, V1(r, Ĝr)− V1(r0, Ĝr
0

) = OP (C−2
NT ),

where V1(r,G0Hr) is defined analogously to V1(r, Ĝr) with Ĝr replaced by G0Hr, Hr = (N−1Λ0′Λ0)(T−1G0′Ĝr),

and G0 = ∆f0.

Lemma A.13 Suppose that Assumptions 3.1-3.3 and 3.6 hold. Then

(i) For any 1 ≤ r1 ≤ r0
1, V2(r1, f̂

r1
1 )− V2(r1, f

0
1H

r1
1 ) = OP (

√
T ),

(ii) For any 1 ≤ r1 < r0
1, we have plim(N,T )→∞ inf dTT

−1[V2(r1, f
0
1H

r1
1 ) − V2(r1, f

0
1 )] = dr1 for some

dr1 > 0,

(iii) For any r0
1 ≤ r1 ≤ rmax, V2(r1, f̂

r1)− V2(r0
1, f̂

r01 ) = OP (1),

where V2(r1, f
0
1H

r1
1 ) is defined analogously to V2(r1, f̂

r1
1 ) with f̂r11 replaced by f0

1H
r1
1 , and Hr1

1 = (N−1Λ0′Λ0)

×(T−2f0′f̂r1).

Proof of Theorem 3.6. Noting that IC1(r) − IC1(r0) = V1(r, Ĝr) − V1(r0, Ĝr
0

) − (r0 − r)g1(N,T ), it

suffices to show that P
(
V1(r, Ĝr)− V1(r0, Ĝr

0

) < (r0 − r)g1(N,T )
)
→ 0 as (N,T ) → ∞ when r 6= r0.

We consider the under- and over-fitted models, respectively. When 0 ≤ r < r0, we make the following

decomposition:

V1(r, Ĝr)− V1(r0, Ĝr
0

) = [V1(r, Ĝr)− V (r,G0Hr)] + [V1(r,G0Hr)− V1(r0, G0Hr0)]

+[V1(r0, G0Hr0)− V1(r0, Ĝr
0

)].

Lemma A.12(i) implies that the first and third terms on the right hand side of the last displayed equation

are both OP (C−1
NT ). Noting that V1(r0, G0Hr0) = V1(r0, G0), the second term has a positive probability

limit cr when r < r0 by Lemma A.12(ii). It follows that P (IC1(r) < IC1(r0)) → 0 as g1(N,T ) → 0 as

(N,T )→∞ under Assumption 3.5.

Now, we consider the case where r0 < r ≤ rmax, Note that C2
NT

(
V1(r, Ĝr)− V1(r0, Ĝr

0

)
)

= OP (1) and

C2
NT (r− r0)g1(N,T ) > C2

NT g1(N,T )→∞ by Lemma A.12(iii) and Assumption 3.5, we have P (IC1(r) <

IC1(r0)) = P (V1(r, Ĝr)− V1(r0, Ĝr
0

) < (r0 − r)g1(N,T ))→ 0 as (N,T )→∞. �

Proof of Theorem 3.7. Noting that IC2(r1)− IC2(r0
1) = V2(r1, f̂

r1
1 )−V2(r0

1, f̂
r01
1 )− (r0

1 − r1)g2(N,T ), it

suffices to show that P
(
V2(r1, f̂

r1
1 )− V2(r0

1, f̂
r01
1 ) < (r0

1 − r1)g2(N,T )
)
→ 0 as (N,T ) → ∞ when r 6= r0.

First, when r1 < r0
1, we consider the decomposition:

V2(r1, f̂
r1
1 )− V2(r0

1, f̂
r01
1 ) =

[
V2(r1, f̂

r1)− V2(r1, f
0
1H

r1
1 )
]

+
[
V2(r1, f

0
1H

r1
1 )− V2(r0

1, f
0
1H

r01
1 )
]

+
[
V (r0

1, f
0
1H

r01
1 )− V (r0

1, f̂
r01
1 )
]

≡DD1 +DD2 +DD3, say.

By Lemma A.13), DD1 = OP (T 1/2), DD2 is of exact probability order OP (T/ log log T ), and DD3 =

OP (1). It follows that

P (IC2(r1) < IC2(r0
1)) = P

(
V2(r1, f̂

r1
1 )− V2(r0

1, f̂
r01
1 ) < (r0

1 − r1)g2(N,T )
)
→ 0
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as g2(N,T ) log log T/T → 0 under Assumption 3.5.

Next, for r1 > r0
1, we have V (r1, f̂

r1
1 ) − V (r0

1, f̂
r01
1 ) = OP (1) for r1 > r0

1 by Lemma A.13(iii), and

(r1 − r0
1)g2(N,T )→∞ by Assumption 3.5. This implies that

P (IC2(r1)− IC2(r0
1) < 0) = P (V2(r1, f̂

r1
1 )− V2(r0

1, f̂
r01
1 ) < (r0

1 − r1)g2(N,T ))→ 0.

as N,T →∞. �

To prove Theorem 3.8, we need the following lemma.

Lemma A.14 Suppose that Assumptions 3.1-3.3 and 3.7 hold. Then

max
K0≤K≤Kmax

∣∣∣σ̂2
G(K,λ)

− σ̂2
Ĝ(K0,λ)

∣∣∣ = OP (ν2
NT )

where σ̂2
G(K,λ)

= 1
NT

∑K
k=1

∑
i∈Ĝk(K,λ)

∑T
t=1[yit − α̂cup′Ĝk(K,λ)

xit − λ̂1i(K,λ)′f̂1t(K,λ)]2 and νNT is defined

in Section 3.6.

Proof of Theorem 3.8. First, we can show that

IC3(K0, λ) = ln[V3(K0)] + pK0g3(N,T )

= ln
1

NT

K0∑
k=1

∑
i∈Ĝk(K0,λ)

T∑
t=1

[
yit − α̂fm′Ĝk(K0,λ)

xit − λ̂1i(K0, λ)′f̂1t(K0, λ)
]2

+ o(1)
p→ ln(σ2

0).

We consider the cases of under- and over-fitted models separately. When 1 ≤ K < K0, we have

V3(K) =
1

NT

K∑
k=1

∑
i∈Ĝk(K0,λ)

T∑
t=1

[
yit − α̂fm′Ĝk(K,λ)

xit − λ̂1i(K,λ)′f̂1t(K,λ)
]2

≥ min
1≤K<K0

inf
G(K)∈GK

1

NT

K∑
k=1

∑
i∈GK,k

T∑
t=1

[
yit − α̂fm′Ĝk(K,λ)

xit − λ̂1i(K,λ)′f̂1t(K,λ)
]2

= min
1≤K<K0

inf
G(K)∈GK

σ̂2
G(K) .

By Assumption 3.6 and Slutsky’s Lemma, we can demonstrate

min
1≤K<K0

IC3(K,λ) ≥ min
1≤K<K0

inf
G(K)∈GK

ln(σ̂2
G(K)) + pKg3(N,T )

p→ ln(σ2) > ln(σ2
0).

It follows that P (min1≤K<K0
IC3(K,λ) > IC3(K0, λ))→ 1.

When K0 < K ≤ Kmax, we can show that NT [σ̂2
Ĝ(K,λ)

−σ̂2
Ĝ(K0,λ)

] = OP (1) when there is no unobserved

common factor and no endogeneity in xit, δ
2
NT [σ̂2

Ĝ(K,λ)
−σ̂2

Ĝ(K0,λ)
] = OP (1) when there are only unobserved

nonstationary common factors and C2
NT [σ̂2

Ĝ(K,λ)
− σ̂2

Ĝ(K0,λ)
] = OP (1) when there are both nonstationary
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and stationary common factors. Then by Lemma 14,

P

(
min
K∈K+

IC3(K,λ) > IC3(K0, λ)

)
=P

(
min
K∈K+

ν−2
NT ln

(
σ̂2
Ĝ(K,λ)

/σ̂2
Ĝ(K0,λ)

)
+ ν−2

NT g3(N,T )(K −K0) > 0

)
≈P

(
min
K∈K+

ν−2
NT

(
σ̂2
Ĝ(K,λ)

− σ̂2
Ĝ(K0,λ)

)
/σ̂2

Ĝ(K0,λ)
+ ν−2

NT g3(N,T )(K −K0) > 0

)
→1 as (N,T )→∞. �
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