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Abstract

We study an auction that maximizes the expected social surplus under an upper-

bound constraint on the seller’s expected revenue, which we call a revenue cap. Such

a constrained-efficient auction may arise, for example, when: (i) the auction designer

is “pro-buyer”, that is, he maximizes the weighted sum of the buyers’ and seller’s

auction payoffs, where the weight for the buyers is greater than that for the seller; (ii)

the auction designer maximizes the (unweighted) total surplus in a multi-unit auction

in which the number of units the seller owns is private information; or (iii) multiple

sellers compete to attract buyers before the auction. We characterize the mechanisms

for constrained-efficient auctions and identify their important properties. First, the

seller sets no reserve price and sells the good for sure. Second, with a nontrivial
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revenue cap, “bunching” is necessary. Finally, with a sufficiently severe revenue cap,

the constrained-efficient auction has a bid cap, so that bunching occurs at least “at the

top,” that is, “no distortion at the top” fails.

1 Introduction

We consider a single-object auction in which buyers have independent and private values. In

the literature on the theory of auction design, much of the research focuses on auctions in

which the designer’s objective is a total surplus, revenue, or a convex combination of both.

Under a standard “regularity” condition,1 the designer’s maximization problem reduces to

unconstrained maximization of the expected virtual surplus and the solution is obtained by

pointwise maximization. These objectives can be considered as weakly “pro-seller”, because

the designer essentially maximizes a weighted sum of the buyers’ payoffs (their total values

minus revenue) and the seller’s payoffs (revenue), where the weight for the seller is weakly

greater than that for the buyers.

In this paper, we consider the converse objective of the designer, which we believe is

equally important. Namely, the auction designer is “pro-buyer” in the sense that his objective

is a weighted sum of the buyers’ and seller’s payoffs where the weight for the seller is smaller :

equivalently, his objective is a weighted sum of the total surplus and the revenue, where the

weight for the revenue is negative.2 Using the standard argument, we show that a similar

mathematical problem also arises when the designer maximizes the total surplus under an

upper-bound constraint for the seller’s revenue, which we call a “revenue cap”.3

The pro-buyer objective is reasonable, for example, if the auction designer is a social plan-

ner who tends to choose pro-consumer policies for political reasons, as discussed by Baron

and Myerson (1982) and Baron (1988), in the context of the regulation of a monopolistic

1For example, the monotone virtual value condition in Myerson (1981).
2The extreme case is the maximization of the buyers’ payoffs. McAfee and McMillan (1992) show that

random allocation maximizes the buyers’ payoffs in the presence of cartels.
3The same problem arises when the designer minimizes the revenue under a lower-bound constraint for

the total surplus.
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firm.4 Even if the weights are potentially the same, the designer’s problem may be repre-

sented in the same manner if there are some transaction costs for payments from buyers to

the seller. For example, Caillaud et al. (1988) and Laffont and Tirole (1986) consider a situ-

ation in which the government, in regulating a monopolist, in principle aims to maximize the

sum of the consumer surplus and the producer surplus, but the transaction costs distort the

weights, which are higher for the consumers.5 The designer also takes a pro-buyer objective

when the marginal utility of money is greater for buyers than for the seller.6 For example, a

buyer may have more investment opportunities than the seller but face a liquidity problem,

and hence the buyer’s value of keeping money at hand is higher than the seller’s.

Although closely related, our “revenue cap” formulation is relevant to the seller’s incentive

problem.7 An important example is a multi-unit auction in which the number of units owned

by the seller is private information. Suppose that the seller has two units of homogeneous

objects and there are two buyers, each of whom demands at most one unit. An efficient

mechanism allocates one unit for each buyer, which yields zero revenue with probability one.

Thus, the seller is better off by throwing away one unit and pretending to have just one unit

for sale. Given this incentive concern, the designer needs to modify the auction mechanism

by decreasing the expected revenue in the single-unit auction, and/or increasing the expected

revenue in the two-unit auction. More specifically, a constrained-efficient auction mechanism

is characterized by R ∈ R+ such that: (i) it maximizes the expected surplus subject to

revenue cap R with a single unit; and (ii) it maximizes the expected surplus subject to

4Besley and Coate (2003) report empirical evidence showing that regulators are more likely to choose
pro-consumer policies if they are elected.

5Engel et al. (2013) discuss public–private partnerships in which such transaction costs exist, as well as
another source of the smaller weight for the producer surplus; if the social planner is the government of a
country, the planner will be in favor of consumers because producers are often firms from other countries.

6DeMarzo and Duffie (1999) analyze a security design problem in which the issuer’s discount rate is higher
than the market rate because of credit constraints.

7This formulation of the revenue cap is also related to the price cap in the context of the regulation of a
monopolistic firm. Armstrong et al. (1995) analyze the expected-revenue regulation when non-linear pricing
is allowed. Since they consider divisible goods mainly with a convex cost function, the firm increases the
quantity of the production to fulfill the cap. In our model, the good is indivisible and such manipulation
of the quantity of goods is impossible. See Armstrong and Sappington (2007) for a survey of the optimal
regulation of a monopolist.
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“revenue floor” R with two units. Since problem (ii) can be solved using the standard

approach (such as in Myerson (1981)), we concentrate on problem (i) here. We formally

discuss this multi-unit auction problem in Section 4.1.

Finally, even if an auction mechanism is designed by a revenue-maximizing seller, if buyers

have outside options at the ex ante stage, and if those outside options are significant, then the

seller’s problem can be rewritten as a maximization of a weighted sum of the buyers’ payoffs

and revenue, where the revenue has a smaller weight. For example, such ex ante outside

options may be relevant when there are multiple sellers competing to attract buyers.8

On the basis of the standard envelope conditions, the expected revenue can be represented

as the expected virtual surplus. Therefore, our problem with a “revenue cap” reduces to

the maximization of the expected surplus minus (a positive constant weight times) the

expected virtual surplus subject to the standard monotonicity constraints and the revenue-

cap constraint. This weight for the virtual surplus is uniquely determined by the given

revenue cap. Constrained-efficient mechanisms given a negative weight for the virtual surplus

have very different properties to those in the standard case with a positive weight. First, the

above weighted sum is positive for all types, which implies that the seller always sells the

object. This contrasts with the standard revenue-maximizing auction with a reserve price,

in which no buyer obtains the object if every buyer’s value is lower than the reserve price.

Second, with a nontrivial revenue cap, bunching is necessary. To provide some intuition,

consider the designer’s maximization of expected total surplus under a constraint whereby the

seller’s expected revenue does not exceed R, where R is strictly between 0 and the expected

revenue in a second-price auction. Suppose, conversely, that the above weighted sum is

nondecreasing in each buyer’s value. Then, as in the standard case in the literature, the

solution is obtained by pointwise maximization, and in the current case we obtain a second-

price auction. However, this contradicts the revenue-cap constraint. This means that with

a nontrivial revenue cap, the above weighted sum cannot be nondecreasing in each buyer’s

8Peters and Severinov (1997, Section 3) study competition among sellers offering second-price auctions
with reserve prices in which each buyer chooses a seller at the ex ante stage (i.e., before knowing his value).
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value everywhere, and therefore monotonicity constraints must be binding somewhere.

Third, although the exact location for bunching depends on the shape of the value distri-

bution, we show that if the revenue-cap constraint is sufficiently severe, then bunching must

occur (at least) “at the top”. As we see later, this essentially means that the constrained-

efficient auction mechanism has a “bid cap”, that is, the highest possible bid for each bidder

is strictly less than his highest possible value. Obviously, such a bid cap lowers efficiency,

but nevertheless it effectively constrains revenue.

The third property is of interest for the following reasons. First, it contrasts with the

standard auction with a positive weight, which generally exhibits “no distortion at the top”.9

Our result shows that if the designer is sufficiently pro-buyer, then this well-known result no

longer holds. Second, it has an important policy implication. Although a bid cap is often

imposed in auctions in practice, such as in public procurement (Decarolis, 2009; Ishii, 2008;

Eun, 2016) and in online auctions,10 the standard approach (where “no distortion at the top”

robustly holds) fails to provide a rationale for such a policy.11 Our result provides a rationale

by showing a logical connection between a revenue cap, which represents the degree to which

the designer is pro-buyer, and a bid cap, which is a specific constraint on the auction rule.

Finally, it suggests a potential reason why auctions with “Buy It Now” options have become

popular in online auction environments such as eBay and Yahoo auction. For example,

Anderson et al. (2008) and Reynolds and Wooders (2009) report that approximately 30–

40% of eBay auctions in their data sets employ a “Buy It Now” option. Our result suggests

that under harsh competition among multiple sellers to attract buyers, a seller may prefer

to use “pro-buyer” auction formats that involve bid-capping.

The remainder of the paper is organized as follows. In Section 2, we introduce our

9For this terminology in a principal-agent model, see Fudenberg and Tirole (1991).
10For example, “Buy It Now” options in eBay, which provides services in many countries such as in the

US, and “Buy Now” options in Yahoo auction, which provides services in several countries such as in Japan.
11Budish and Takeyama (2001) and Reynolds and Wooders (2009) show that adding a “Buy It Now” option

can raise expected revenue when bidders are risk-averse. Mathews (2004) considers a dynamic environment,
and shows that a “Buy It Now” option is useful for extracting rent from impatient buyers. Kirkegaard and
Overgaard (2008) consider an alternative dynamic environment with multiple sellers, and show that an early
seller has an incentive to use a “Buy It Now” option to avoid competition with late sellers.
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model. In Section 3, we present our main results. We consider two applications in Section 4:

a multiple-unit auction and ex ante competition among sellers. Section 5 concludes.

2 Model

We consider a single-unit auction with independent and private values, except in Section 4,

where we consider a multi-unit auction (Section 4.1) and a simple competing auction envi-

ronment (Section 4.2). A seller owns an indivisible object (valueless for the seller), and n

(≥ 2) buyers potentially wish to buy it. Let N = {1, 2, . . . , n} denote the set of buyers.

For each buyer i ∈ N , his value vi of the object is independently and identically dis-

tributed according to a cumulative distribution function F over [0, 1].12 We assume that this

distribution is associated with a positive and continuously differentiable density function f

on [0, 1]. Let ψ(x) = x − 1−F (x)
f(x)

be the virtual value function. We denote a typical value

profile by v = (v1, . . . , vn) ∈ [0, 1]n, and for each i ∈ N , let v−i be the profile of the other

buyers’ values.

Each buyer i ∈ N has a quasi-linear payoff function: if he obtains the object with

probability qi ∈ [0, 1] and makes a monetary transfer ti ∈ R, then his payoff is qivi− ti. The

seller’s payoff is revenue
∑

i ti.

A (direct) auction mechanism (or a mechanism) (q, t) = (qi, ti)i∈N comprises an assign-

ment function q : [0, 1]n → [0, 1]n satisfying
∑

i∈N qi(v) ≤ 1 for all v ∈ [0, 1]n,13 and a trans-

fer function t : [0, 1]n → Rn. An assignment function is symmetric if for all permutations

σ : N → N , each i ∈ N and each v ∈ [0, 1]n, qi(vσ(1), . . . , vσ(n)) = qσ(i)(v). For each i ∈ N ,

given that the other agents report truthfully, we denote the interim probability of winning

the object by Qi(vi) = Ev−i

[
qi(vi, v−i)

]
, and the interim transfer by Ti(vi) = Ev−i

[
ti(vi, v−i)

]
,

where Ev−i
[·] denotes the expectation with respect to v−i.

Therefore, the interim payoff for buyer i ∈ N with value vi ∈ [0, 1] when he reports v̂i is

12Our results can be generalized to the case with asymmetric distributions across agents.
13If

∑
i∈N qi(v) < 1, the seller keeps the object with positive probability 1−

∑
i∈N qi(v).
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given by

Ui(v̂i| vi) = Qi(v̂i)vi − Ti(v̂i).

The mechanism (q, t) is (Bayesian) incentive-compatible if

Ui(vi| vi) ≥ Ui(v̂i| vi) for each i ∈ N and each vi, v̂i ∈ [0, 1]. (IC)

The mechanism (q, t) is (interim) individually rational if

Ui(vi| vi) ≥ 0 for each i ∈ N and each vi ∈ [0, 1]. (IR)

We also assume the following constraint. The mechanism (q, t) satisfies nonnegative

payments if

ti(v) ≥ 0 for each i ∈ N and each v ∈ [0, 1]n. (NP)

We believe that this is a reasonable restriction on feasible mechanisms given that pay-

ment from the seller to the buyer is unrealistic in many auctions in practice. In the standard

problem in the literature in which the designer assigns a positive weight for revenue, nonneg-

ative payments are necessarily satisfied in the solution. However, in our problem, in which

revenue has a negative weight, nonnegative payments play an important role. We further

discuss this point in Remark 1 after we introduce our main optimization problem.

The goal of the auction designer is to design a “pro-buyer” auction mechanism in a certain

sense. Although there are several essentially equivalent formulations, we first introduce

the surplus maximization problem under an upper-bound constraint for revenue, that is, a

revenue cap. More specifically, let R ∈ R+ denote an exogenously given upper bound for
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expected revenue. Our problem is then expressed as follows:

max
(q,t)

Ev
[∑
i∈N

qi(v)vi
]

(P0(R))

subject to Ev
[∑
i∈N

ti(v)
]
≤ R, (RC)

(IC), (IR), and (NP).

Of course, the problem is trivial if R ≥ Re, where Re is the expected revenue in the

second-price auction without a revenue cap, because it achieves the highest surplus. The

case with R = 0 is also trivial because the only possibility is to allocate the object to one

buyer, possibly randomly but independent of the reported type profile. Therefore, in the

following we assume that R ∈ (0, Re).

Remark 1. Without (NP), our problem is trivial. For example, consider the procedure

whereby the seller first needs to pay an entrance fee Re, which is distributed among the

buyers, and then the seller runs a second-price auction. Then the expected revenue is always

zero (and hence the revenue-cap constraint is always satisfied) and S is maximized. A

problem with this procedure is that the seller incurs a loss if the buyers’ realized values are

low. Therefore, the seller’s participation (although not explicitly modeled in this paper) may

become problematic if his budget is constrained. Another potential problem is participation

by “nonserious buyers”.14 Suppose that there are many “nonserious buyers” whose values are

zero and who need to pay a fixed (socially wasteful) cost to participate in the auction (e.g.,

opportunity costs for more valuable economic activities). In an anonymous environment in

which serious buyers cannot be distinguished from nonserious ones, nonserious buyers enter

the auction to earn a part of the seller’s entrance fee. The social cost of their entrance can

almost countervail the surplus obtained in the second-price auction.15

14McAfee and McMillan (1992) discuss the effects of nonserious buyers in auctions with cartels.
15Formally, avoiding participation of nonserious buyers may be represented by Ti(0) ≥ 0, i ∈ N , which is

logically weaker than (ex post) nonnegative payments. However, in fact, we obtain the same results even if
we replace the nonnegative-payment constraint by this weaker condition.
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Another possibility may be to appoint one of the buyers randomly before their type

reports (say buyer 1), run the second-price auction among all buyers except for buyer 1, and

then give all the realized revenue to buyer 1. In this procedure, the seller’s ex post revenue

is zero, while the surplus is not maximized (because buyer 1 does not bid). Therefore, when

n is small, this is not a good alternative. Conversely, when n is very large, the effect of

excluding one buyer hardly affects the realized surplus; in fact, the expected surplus in this

case converges to that in the (all-buyer) second-price auction as n goes to infinity. Instead,

the problem again involves the possibility of nonserious buyers. As in the first alternative,

many nonserious buyers may enter the game in an anonymous environment in which they

may possibly be selected as the revenue absorber. Their socially wasteful entrance may again

countervail the surplus obtained in the second-price auction.

Throughout the paper, we do not explicitly model the participation decisions of nonseri-

ous buyers. Instead, we simply impose the constraint (NP) to rule out such a possibility.

3 Constrained efficiency

In this section, we characterize the constrained-efficient auction mechanism and discuss its

important properties.

The following revenue-equivalence result is standard in the literature, and hence we omit

the proof.

Lemma 1. (q, t) satisfies (IC), (IR), and (NP), if and only if, for each i, (i) Qi(vi) is

nondecreasing in vi (“interim monotonicity”), and (ii) for each vi,

Ti(vi) = Qi(vi)vi −
∫ vi

0

Qi(ṽi)dṽi,
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where (ii) implies

Ev
[∑
i∈N

ti(v)
]

= Ev
[∑
i∈N

qi(v)ψ(vi)
]
.

Therefore, we can rewrite our original problem P0(R) as follows, which we call problem

P1(R).

max
q

Ev
[∑
i∈N

qi(v)vi
]

(P1(R))

subject to Ev
[∑
i∈N

qi(v)ψ(vi)
]
≤ R, (RC′)

Qi(vi) is nondecreasing for all i ∈ N . (M)

Let Q∗1(R) be the set of solutions to problem P1(R).16 We investigate this set Q∗1(R) of

solutions using a two-step procedure. First, we reduce problem P1(R) to the maximization

of a Lagrangian function shown to have a (weakly) larger set of solutions that may or may

not satisfy the revenue-cap constraint. Second, among solutions in the reduced problem,

we choose those that satisfy the revenue-cap constraint. Because the Lagrangian is the

weighted sum of the expected surplus and the expected revenue, the maximization problem

for a weighted sum of the buyers’ and seller’s payoffs is solved as a byproduct of solving

the problem with a revenue cap. We note that, as emphasized in the Introduction, this

Lagrangian maximization problem has economically significant implications.

Because the set of all assignment functions q that satisfy the constraints is (weak-*)

compact and convex, for each R ∈ (0, Re), there exists a Lagrangian multiplier λ > 0 such

that (q∗, λ) is a saddle point of the Lagrangian

L = Ev
[∑
i∈N

qi(v)vi
]

+ λ
(
R− Ev

[∑
i∈N

qi(v)ψ(vi)
])

.

16If q ∈ Q∗1(R), then obviously any q̂ that is interim monotonic and satisfies q = q̂ almost everywhere is
also in Q∗1(R). Throughout the paper, we treat such q and q̂ as equivalent and do not distinguish between
them.
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More formally, we have a reduced formulation of our problem as follows.

Proposition 1. Let R ∈ (0, Re). There exists λ > 0 such that for any solution q∗ ∈ Q∗1(R),

q∗ is also a solution to the following problem.

max
q

Ev
[∑
i∈N

qi(v)(vi − λψ(vi))
]

(P2(λ))

subject to (M).

Moreover, such λ > 0 is unique for each R ∈ (0, Re) and is nonincreasing in R.

The saddle point argument is standard, and hence we omit the proof.17 Thus, the only

subtlety here is the uniqueness of the Lagrangian multiplier λ. We provide a formal proof

in Appendix A.1.

The objective of problem P2(λ) can be interpreted as a weighted sum of the buyers’

expected payoffs and the seller’s expected revenue, where the weight for the seller is smaller

than that for the buyers. In fact,

Ev
[∑
i∈N

qi(v)(vi − λψ(vi))
]

= Ev
[∑
i∈N

qi(v)(vi − ψ(vi))
]

+ (1− λ)Ev
[∑
i∈N

qi(v)ψ(vi)
]

= Ev
[
(Buyers’ total payoffs) + (1− λ)(Seller’s revenue)

]
,

where the seller’s weight is 1− λ < 1.

Let Q∗2(λ) be the set of all solutions to problem P2(λ). We denote such a unique λ by

λ(R) when we want to be clear that λ is the Lagrangian multiplier corresponding to R.

Then Proposition 1 implies that Q∗1(R) ⊆ Q∗2(λ(R)). Thus, for each R ∈ (0, Re), we can

obtain the set of solutions Q∗1(R) by solving problem P2(λ) for each λ > 0, restricting the

set of solutions in Q∗2(λ) to those yielding expected revenue equal to R. Mathematically,

problem P2(λ) is viewed as a “subproblem” of P1(R) in this sense. Thus, in what follows

17See Luenberger (1969, Chapter 8) for technical details of the Lagrangian method in an infinite-
dimensional space.
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we first solve problem P2(λ).

In Section 3.3, we provide a sufficient condition for the shape of ψ with which Q∗1(R) =

Q∗2(λ(R)). However, in general, it is possible that different q, q̂ ∈ Q∗2(λ) yield different ex-

pected surplus and revenue pairs (even though, of course, the expected surplus minus λ

times the expected revenue must be the same). Therefore, in solving P2(λ) we are particu-

larly interested in the extremal solutions (i.e., those that achieve the highest/lowest pairs of

expected surplus and revenue).

Before the formal analysis, we provide some intuition regarding how to determine the

winner of the auction in problem P2(λ). Consider the second-price auction as a benchmark,

which violates the revenue-cap constraint. We modify the mechanism from this benchmark to

reduce the expected revenue or, equivalently, the expected virtual value,18 without reducing

the expected surplus by much. Imagine that at some value profile v = (v1, . . . , vn), the

winner of an auction is changed from buyer i (who has the highest value by definition of

the second-price auction) to buyer j (6= i). Then the surplus decreases by vi − vj and the

virtual surplus decreases by ψ(vi) − ψ(vj). Therefore, if we change the allocation at v, the

best way is to give the object to buyer j who attains the highest ratio of
ψ(vi)−ψ(vj)

vi−vj . In other

words, the difference “rate” for the virtual value ψ, rather than the difference itself, matters

in constructing the revenue-capped efficient auction. In fact, the form of the objective in

problem P2(λ) implies that buyer j wins the object at v if vj − λψ(vj) > vk − λψ(vk) for all

k 6= j or, equivalently,

λ
ψ(vj)− ψ(vk)

vj − vk
> 1,

where λ may be interpreted as the shadow price for the revenue-cap constraint.

Although our basic idea is to modify the mechanism according to the argument above,

such modification may well lead to a violation of the monotonicity constraint. Thus, to

18See Lemma 1 for the equivalence between the expected revenue and the expected virtual value.
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fully characterize the solution to our problem, we use a “bunching” technique developed by

Myerson (1981, Section 6) and Baron and Myerson (1982).19

Let ϕ(x) = x − λψ(x) for each x ∈ [0, 1]. We introduce a function ϕ̄ : [0, 1] → R as

follows. Because the cumulative distribution function F has a positive density function, F

is continuous and strictly increasing, and thus has a continuous inverse function F−1. For

each p ∈ [0, 1], let h(p) = ϕ
(
F−1(p)

)
and

H(p) =

∫ p

0

h(p′)dp′.

Note that H is continuously differentiable because h(p) = F−1(p)−λψ(F−1(p)) is continuous.

Let G be the “convex hull” of H, defined by

G(p) = min{αH(p′) + (1− α)H(p′′) | (p′, p′′, α) ∈ [0, 1]3 s.t. αp′ + (1− α)p′′ = p}.

This function G is convex and continuously differentiable. Let g denote its derivative, and

we define ϕ̄(x) = g(F (x)). Since g is continuous, ϕ̄ is also continuous. Intuitively, ϕ̄ modifies

ϕ by “flattening” the non-monotonic part of ϕ so that ϕ̄ is monotonic. This modified version

of the virtual value function, ϕ̄, plays a central role in our characterization. We first show

that ϕ̄(x) is always positive when x > 0.

Lemma 2. For all x > 0 and all λ > 0, ϕ̄(x) > 0.

Proof. See Appendix A.2.

This property is used repeatedly in our subsequent analysis. The following proposition

provides a solution to P2(λ).

Proposition 2. For each λ > 0, let Q∗∗2 (λ) be the set of interim monotonic assignment

functions q such that

19Toikka (2011) generalizes this technique. See Guensnerie and Laffont (1984) for a general methodology
applying optimal control theory.
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(i) for each v ∈ [0, 1]n,
∑
{i|ϕ̄(vi)=maxj∈N ϕ̄(vj)} qi(v) = 1, and

(ii) for each i ∈ N and each vi ∈ [0, 1], if G(F (vi)) < H(F (vi)), then Qi is differentiable

at vi and Q′i(vi) = 0.

Then Q∗∗2 (λ) ⊂ Q∗2(λ), and for any solution q̃ ∈ Q∗2(λ) there exists q ∈ Q∗∗2 (λ) such that

q(v) = q̃(v) with probability one.

Proof. See Appendix A.3.

Similar to the standard situation in the literature, the optimal assignment function max-

imizes (the modified version of) the virtual surplus, Ev[
∑

i qi(v)ϕ̄(vi)]. Because Lemma 2

guarantees ϕ̄(vi) > 0 (with probability one), buyer i wins if ϕ̄(vi) is the highest among all the

buyers. However, owing to potential bunching, i does not necessarily win with probability

one even if his value vi is the highest among all the buyers, when there is another agent j

who has vj < vi but ϕ̄(vi) = ϕ̄(vj). In fact, values in each interval {x | ϕ̄(x) = ϕ̄(vi)} may

be bunched together with vi in the sense that the interim winning probability for buyer i is

constant in each of these intervals.

As suggested in the statement, there can be multiple solutions to problem P2(λ). They

differ in the tie-breaking rule, that is, who wins if there are multiple buyers who have

the highest value of ϕ̄. In the standard situation in which bunching does not occur, such

differences are not essential because the probability of ties among virtual values is zero.

However, in our environment, such events may occur with a strictly positive probability.

For each λ > 0, we introduce two symmetric assignment functions q∗ and q∗∗, each of

which turns out to be an “extreme” solution to problem P2(λ) in the sense that they lead to

the minimum or maximum expected revenue among all solutions.20 Let q∗ be an assignment

20The minimum and maximum coincide in some cases and differ in other cases. We discuss the multiplicity
of expected revenues in Section 3.2.4.
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function defined by, for each i ∈ N and v ∈ [0, 1]n,

q∗i (v) =


1/ |arg maxj∈N ϕ̄(vj)| if i ∈ arg maxj∈N ϕ̄(vj),

0 otherwise.

(1)

This assignment function q∗ assigns the object to one of the agents with the largest value of

ϕ̄(vi) with equal probability. Thus, bunching occurs on each interval on which ϕ̄ is constant.

That is, for each i ∈ N , Q∗i (vi) is constant when ϕ̄(vi) is constant.

The next assignment function q∗∗ may not lead to bunching on the entire region within

such an interval. For each x ∈ [0, 1], let

b(x) = max{y ∈ [0, x] |H(F (y)) = G(F (y))},

b(x) = min{y ∈ [x, 1] |H(F (y)) = G(F (y))}.

Because G(0) = H(0), G(1) = H(1), and F,G,H are all continuous, the above maximum

and minimum always exist. By definition, b(x) ≤ b(x) for all x ∈ [0, 1], and b(x) = b(x) if

and only if both are equal to x (or, equivalently, H(F (x)) = G(F (x))). For each x ∈ [0, 1],

let B(x) be either an open interval or a singleton defined by

B(x) =


(
b(x), b(x)

)
if b(x) < b(x),

{x} if b(x) = b(x).

If b(x) < b(x), then B(x) is the maximum open interval containing x such that H(F (y)) >

G(F (y)) for all y in the interval. By the definition of ϕ̄, for each x ∈ [0, 1], ϕ̄ must be constant

on B(x). It is possible, however, that B(x) is not the maximal interval in which ϕ̄ is constant,

that is, ϕ̄ may take the same value on B(x) and B(x′) even when B(x)∩B(x′) = ∅. Let q∗∗
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be defined by, for each i ∈ N and v ∈ [0, 1]n,

q∗∗i (v) =


1/ |{j ∈ N | vj ∈ B(maxk∈N vk)}| if vi ∈ B(maxk∈N vk),

0 otherwise.

(2)

This assignment function q∗∗ has the same property as q∗ whereby the object is assigned

to one of the agents with the largest value of ϕ̄(vi), but is different from q∗ in that even if

i ∈ arg maxj∈N ϕ̄(vj), it is possible that i wins with probability zero. This occurs if there

exist j ∈ N with vi < vj and y ∈ (vi, vj) such that G(F (y)) = H(F (y)). In this case, even

if ϕ̄(vj) = ϕ̄(vi), then vi /∈ B(maxk∈N vk). Let Q∗∗i (vi) = Ev−i
[q∗∗i (vi, v−i)] be the interim

assignment probability.

Proposition 3. For each λ > 0, both assignment functions q∗ and q∗∗ solve problem P2(λ).

Moreover, q∗ yields the minimum expected revenue and the minimum expected surplus among

Q∗2(λ), and q∗∗ yields the maximum expected revenue and the maximum expected surplus

among Q∗2(λ).

Proof. See Appendix A.4.

Proposition 3 shows how we can choose the solution among Q∗2(λ) whose expected rev-

enue equals the given revenue cap R ∈ (0, Re). Suppose that the expected revenues under

q∗ and q∗∗ are R∗ and R∗∗, respectively. Then Proposition 3 implies that Q∗2(λ(R)) =⋃
R′∈[R∗,R∗∗]Q∗1(R′). If R∗ = R∗∗, then any solution to problem P2(λ) yields the same

level of expected revenue, and Q∗1(R) = Q∗2(λ(R)). If R∗ < R∗∗ and R ∈ [R∗, R∗∗],

then Q∗1(R) ( Q∗2(λ(R)), and αq∗ + (1 − α)q∗∗ is a solution to problem P1(R), where

α = (R∗∗ −R)/(R∗∗ −R∗).

3.1 General properties of the constrained-efficient mechanism

Although the exact form of the constrained-efficient mechanism varies with parameters such

as the distribution F , we can derive important properties in common.
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The first property is that for almost all v ∈ [0, 1]n, the seller does not keep the object.

Proposition 4. For any R ∈ (0, Re) and any solution q ∈ Q∗1(R), we have
∑

i∈N qi(v) = 1

with probability one.

Proof. By Proposition 1, if q ∈ Q∗1(R), then q ∈ Q∗2(λ(R)). The statement is a direct

implication of (i) in Proposition 2.

This proposition says that in any constrained-efficient auction, a reserve price cannot be

set. We note that this property is not as obvious as it seems. Since we do not assume that

the virtual value function is monotonic, it is possible that the introduction of a reserve price

lowers the expected revenue. Proposition 4 claims that bunching is a better tool to reduce

the expected revenue even in such cases.

The second property of our constrained-efficient mechanism is that when R ∈ (0, Re),

some bunching is necessary. With a revenue cap strictly less than Re, the expected rev-

enue (and the expected surplus) must be lowered from the (efficient) second-price auction.

However, as in the previous result, the object is sold with probability one. This is the main

intuitive reason why bunching is necessary to achieve revenue reduction.

Recall that Q∗i is the interim probability of q∗i defined in equality (1). According to

the following proposition, values corresponding to some intervals are pooled (or bunched)

together in the sense that Q∗i is constant in this interval.

Proposition 5. For each R ∈ (0, Re) and each i ∈ N , there exists an open interval (a, b) ⊂

[0, 1] on which the interim probability Q∗i (x) is constant, where q∗ is given by equality (1)

with λ = λ(R).

Proof. Let λ = λ(R). If Q∗i (vi) is not constant in any open interval, then Q∗i (vi) is strictly

increasing by interim monotonicity. Then the definition of q∗ implies that ϕ̄(x) is strictly

increasing. In this case, the auction given by q∗ is the same as the second-price auction that

leads to efficiency. This contradicts R < Re. Therefore Q∗i (vi) is constant in some open

interval.
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We note that an analogous argument shows that Q∗∗i (vi) is constant in some interval.21

In addition to Proposition 5, we can show that as the revenue cap R becomes more

stringent so that λ(R) becomes (weakly) higher, the bunching regions become larger in the

set-inclusion order.

Proposition 6. Suppose that for each R ∈ (0, Re) and each λ̃ > λ(R), q∗ is the solution

to problem P2(λ(R)) and q̃∗ is the solution to problem P2(λ̃) defined in equality (1). Let Q∗i

and Q̃∗i be the interim probability for buyer i in q∗ and q̃∗, respectively. For each i ∈ N , if

Q∗i is constant on (a, b), then Q̃∗i is constant (at least) on the same interval (a, b).

Proof. See Appendix A.5.

The exact regions where bunching occurs depend on the parameters. However, when the

revenue-cap constraint is “severe enough” so that λ(R) > 1/2,22 bunching must occur (at

least) at the top, that is, the highest possible value of the object for a region close to 1. In

the standard case with a positive weight on revenue, we generally have the property of “no

distortion at the top”, which implies that the buyer with vi = 1 wins with probability one.

However, this property is lost in our context.

Proposition 7. For all λ > 1/2 and all q ∈ Q∗2(λ), q exhibits distortion at the top for at

least n− 1 buyers, that is, there exists j ∈ N such that limvi↗1Qi(vi) < 1 for each i 6= j. In

particular, if q is symmetric, then limvi↗1Qi(vi) < 1 for each i ∈ N .

Proof. First, observe that ϕ′(1) = 1 − 2λ. Thus, if λ > 1/2, then ϕ′(1) < 0. Because

we assume the continuous differentiability of f , ϕ′ is continuous. Thus, there exists w <

1 such that ϕ′(x) < 0 for all x ∈ (w, 1). On the interval (F (w), 1), we have H ′′(p) =

ϕ′(F−1(p))dF
−1(p)
dp

< 0, and hence H(p)−G(p) > 0. By Proposition 2 (ii), Qi(x) is constant

for all x ∈ (w, 1) and all i ∈ N .

21If Q∗∗i (vi) is strictly increasing, then H(F (x)) = G(F (x)) for almost all x by Proposition 2 (ii). This
implies that B(x) = {x} for almost all x, and thus q∗∗ agrees with the efficient assignment function almost
everywhere, contradicting R < Re.

22As a caveat, we do not claim that R “severe enough” to induce λ(R) > 1
2 always exists; for example, see

the concave virtual-values case in Section 3.2.2.
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Suppose that there exists j ∈ N such that limvj↗1Qj(vj) = 1. Then Qj(x) = 1 for all

x ∈ (w, 1), that is, if vj ∈ (w, 1), then qj(vj, v−j) = 1 for almost all v−j ∈ [0, 1]n−1. In

particular, qi(v) = 0 for all i 6= j and almost all v ∈ (w, 1)n. This implies that for all i 6= j

and almost all vi ∈ (w, 1), Qi(vi) ≤ F (w) < 1, and thus limvi↗1Qi(vi) is lower than 1.

If q is symmetric, for all i ∈ N and all vi ∈ (w, 1), Qi(vi) ≤ (1 + (n − 1)F (w))/n < 1,

and thus limvi↗1Qi(vi) is lower than 1.

This result provides a logical connection between a revenue cap, which represents the

degree to which the designer is pro-buyer, and a bid cap, which is a specific constraint on

the auction rule.

So far, λ(R) is not necessarily less than 1 for R ∈ (0, Re). This means that in the cor-

responding maximization problem P2(λ(R)) of a weighted sum of the buyers’ and seller’s

payoffs, the weight for the seller may be negative. In such a case, we may consider it strange

to interpret this problem as a social planner’s weighted surplus maximization problem, be-

cause each person is usually assigned a nonnegative weight for such a problem. However,

this “strange” situation never occurs in the regular cases in which F has a strictly in-

creasing hazard rate. In fact, if λ ≥ 1 and the hazard rate is strictly increasing, then

ϕ(vi) = vi − λ ·
(
vi − 1−F (vi)

f(vi)

)
= −(λ − 1)vi + λ1−F (vi)

f(vi)
is strictly decreasing in vi. There-

fore, given the interim monotonicity constraint for the assignment function, the solution

to problem P2(λ(R)) is constant, which obviously implies that the seller’s revenue is zero,

contradicting the assumption R > 0.

We summarize the argument in the following proposition.

Proposition 8. If F has a strictly increasing hazard rate, then λ(R) ∈ (0, 1) for each

R ∈ (0, Re).
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3.2 Convex/concave virtual values

Complete characterization of bunching regions is generally a daunting task, but can be

straightforward in certain cases. In this section, we consider distributions F such that

the virtual value function ψ(x) = x − 1−F (x)
f(x)

is either convex or concave. As discussed

before, the inverse of the difference rate of ψ is interpreted as a shadow price, which changes

monotonically when ψ is either convex or concave. This monotonicity simplifies our analysis.

A variety of distributions satisfy such convexity or concavity. A class of special cases

includes distributions with a constant or linear hazard rate, such as exponential and uniform

distributions. Other examples follow.

Example 1. Let F (x) = xα, where α is a positive constant. Then the virtual value function

is convex if α ∈ (0, 1], and concave if α ≥ 1.23

Example 2. Let f(x) = α(x− 1/2) + 1, where α ∈ (−2, 2). Then the virtual value function

is convex if α ∈ (−2, 0], and concave if α ∈ [0, 2).

3.2.1 Convex virtual values

We consider the case in which ψ is convex or, equivalently, ϕ is concave. In this case,

bunching occurs only at the top.

Proposition 9. Suppose that ψ(x) is convex. For each R ∈ (0, Re), we have λ(R) ≥ 1/2,

and there exists a solution q∗ to problem P1(R) and w̄ ∈ (0, 1) such that for each i ∈ N and

each v ∈ [0, 1]n,

q∗i (v) =


1/ |arg max{vj | j ∈ N, vj ≥ w̄}| if vi ≥ w̄,

1/ |arg max{vj | j ∈ N}| if vi = maxj∈N vj < w̄,

0 otherwise.

23This example violates our regularity assumption that F has a positive and continuously differentiable
density function on [0, 1]. However, we can show that our results so far hold true for these cases.
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Figure 1: A constrained-efficient assignment function q∗(v1, v2) when the virtual value func-
tion is convex.

Proof. We first show that λ = λ(R) ≥ 1/2. Assume that λ < 1/2. Because ϕ′(1) = 1−2λ >

0, the concavity of ϕ implies that ϕ′(x) > 0 for all x ∈ [0, 1], that is, ϕ is strictly increasing.

Thus, ϕ̄ is also strictly increasing. Proposition 2 implies that the expected revenue equals

Re. This contradicts the assumption R < Re.

We now show that q∗ is a solution for some w̄ ∈ (0, 1). By the concavity of ϕ, there

exists w ∈ [0, 1] such that ϕ is nondecreasing on [0, w] and nonincreasing on [w, 1]. Then

H(p) =
∫ p

0
ϕ(F−1(p′)) dp′ is convex on [0, F (w)] and concave on [F (w), 1]. This implies that

there exists w̄ ∈ [0, 1] such that ϕ̄ is strictly increasing on [0, w̄) and constant on [w̄, 1]. We

show that w̄ 6= 0 or 1. If w̄ = 0, the expected revenue equals Re. If w̄ = 1, the expected

revenue is zero. By Proposition 3, q∗ takes the form in the statement.

The assignment function q∗ in Proposition 9 is shown in Figure 1 for n = 2. This q∗ can

be achieved in a second-price auction with bid cap w̄, where each buyer i bids the true value

if vi ≤ w̄, and w̄ otherwise. By Lemma 1, a corresponding transfer function is the one in the

second-price auction with bid cap w̄.

Example 3. Let n = 2 and F (x) =
√
x in [0, 1]. As noted in Example 1, this distribution

is associated with a strictly convex virtual value function. Straightforward computation

shows that for each w̄ ∈ [0, 1], the auction in Proposition 9 yields expected revenue given by

w̄ − 4
3
w̄

3
2 + 1

2
w̄2. This relationship between revenue cap R and w̄ is described in Figure 2.
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Figure 2: The threshold w̄ when n = 2 and F (x) =
√
x.

In the efficient auction with w̄ = 1, the seller earns an expected revenue of 1/6. If R lies

between 0 and 1/6, the mechanism in Proposition 10 is a constrained-efficient auction with

bid cap w̄ corresponding to R.

3.2.2 Concave virtual values

We consider the case in which ψ is concave or, equivalently, ϕ is convex. In this case,

bunching occurs only at the bottom.

Proposition 10. Suppose that ψ(x) is concave. For each R ∈ (0, Re), λ(R) ≤ 1/2 and

there exist a solution q∗ to problem P1(R) and w ∈ (0, 1) such that for each i ∈ N and each

v ∈ [0, 1]n,

q∗i (v) =


1/ |arg maxj∈N vj| if vi = maxj∈N vj > w,

1/n if maxj∈N vj ≤ w,

0 otherwise.

Proof. We first show that λ = λ(R) ≤ 1/2. Assume that λ > 1/2. Because ϕ′(1) = 1−2λ <

0, the convexity of ϕ implies that ϕ′(x) < 0 for all x ∈ [0, 1]. Thus, ϕ̄ is constant on [0, 1].

Proposition 2 implies that the expected revenue equals 0. This contradicts the assumption
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Figure 3: A constrained-efficient assignment function q∗(v1, v2) when the virtual value func-
tion is concave.

R > 0.

We now show that q∗ is a solution for some w ∈ (0, 1). By the convexity of ϕ, there

exists w ∈ [0, 1] such that H(p) =
∫ p

0
ϕ(F−1(p′)) dp′ is concave on [0, F (w)], and convex on

[F (w), 1]. This implies that there exists w ∈ [0, 1] such that ϕ̄ is constant on [0, w] and

strictly increasing on (w, 1]. By Proposition 3, q∗ takes the form in the statement.

Finally, we show that w 6= 0 or 1. If w = 0, the expected revenue equals Re. If w = 1,

the expected revenue is zero. Both contradict the assumption R ∈ (0, Re).

The assignment function q∗ in Proposition 10 is shown in Figure 3 for n = 2. This q∗ can

be achieved using a modified form of the second-price auction with minimum bid w, where

each buyer i bids the true value if vi ≥ w, and w otherwise. By Lemma 1, a corresponding

transfer function is such that if the bid by i is the highest, then: (a) if this bid is w, the

winner’s payment is zero; (b) if this bid exceeds w and the second highest bid is w, then the

payment is n−1
n
w; and (c) if both this bid and the second highest bid exceed w, the payment

equals the second highest bid.

Example 4. Let n = 2 and F (x) = x2 in [0, 1]. As noted in Example 1, this distribution

is associated with a concave virtual value function. Straightforward computation shows

that for each w ∈ [0, 1], the auction in Proposition 9 yields expected revenue given by

8
15
− 1

3
w3 − 1

5
w5. This relationship between revenue cap R and w is illustrated in Figure 4.
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Figure 4: The threshold w when n = 2 and F (x) = x2.

In the efficient auction with w = 0, the seller earns an expected revenue of 8/15. If R lies

between 0 and 8/15, the mechanism in Proposition 10 is a constrained-efficient auction with

w corresponding to R.

3.2.3 Linear virtual values

If the virtual value ψ(x) is an affine function,24 ψ(x) is both convex and concave, and thus

both assignment functions defined in Propositions 9 and 10 are constrained-efficient. This

observation suggests that multiple constrained-efficient auctions exist in this case. We pick

the uniform distribution as a representative case and analyze this in more detail because the

solutions can be computed directly.

Consider the uniform distribution on [0, 1] under which the virtual value function is

ψ(x) = 2x− 1. Let λ = 1/2. Then problem P2(1/2) is rewritten as

max
q

Ev
[1
2

∑
i∈N

qi(v)
]

subject to (M).

Thus, any interim monotonic assignment function q is a solution to problem P2(1/2) if q

24This holds if F (x) = 1− (1− x)γ for some γ > 0.
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satisfies Ev
[∑

i∈N qi(v)
]

= 1. For each R ∈ (0, Re), any solution to problem P1(R) must

satisfy Ev
[∑

i∈N qi(v)
]

= 1 by Proposition 4. Hence, λ(R) = 1/2 for all R ∈ (0, Re).

Problem P1(R) is rewritten as

max
q

Ev
[∑
i∈N

qi(v)vi
]

subject to Ev
[∑
i∈N

qi(v)vi
]
≤ 1

2
(R + 1), and (M),

where Ev
[∑

i∈N qi(v)
]

= 1. Therefore, an interim monotonic assignment function q is a solu-

tion to problem P1(R) if and only if q satisfies Ev
[∑

i∈N qi(v)
]

= 1 and Ev
[∑

i∈N qi(v)vi
]

=

1
2
(R + 1). This implies that solutions in Q∗2(1/2) yield multiple levels of the expected rev-

enue and the expected surplus. Intuitively, we can obtain the constrained-efficient auction

by bunching on any interval(s) if the resulting expected revenue equals R.

3.2.4 Relationship between P1(R) and P2(λ) in convex/concave cases

As informally discussed in the Introduction, problem P1(R) involving surplus maximization

subject to a revenue cap is related to the maximization of a weighted sum of the expected

revenue and buyers’ payoffs according to P2(λ). We now discuss connections between these

problems.

In Proposition 1, we proved that for each R ∈ (0, Re) there exists a unique λ(R) > 0

satisfying Q∗1(R) ⊆ Q∗2(λ(R)). In general, the converse is not true. In Section 3.2.3, we

observed a special case in which problem P2(λ) has multiple solutions that lead to multiple

levels of the expected revenue. We now present another example in which Q∗1(R) ( Q∗2(λ(R))

holds true.

Example 5. Suppose that for each x ∈ [0, 1], f(x) = e−x
2/2/Γ, where Γ =

∫ 1

0
e−x

2/2 dx.

This is the density function for the truncated standard normal distribution defined on [0, 1].

Numerical computation gives Figure 5, which shows the relationship between λ and R.
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Figure 5: Relationship between λ and R under the standard normal distribution truncated
on [0, 1].

If λ ≤ 1/2 (=: λ), the essentially unique solution to problem P2(λ) is the efficient assign-

ment function, which leads to an expected revenue of Re = 0.297. If λ < λ < λ̄ := 0.549,

the expected revenue in the solutions to problem P2(λ) is unique and strictly decreasing in

λ. If λ = λ̄, problem P2(λ) has solutions that lead to multiple levels of expected revenues:

R = 0.204 under the assignment function q∗∗ defined in (2), and R = 0 under the assignment

function q∗ defined in (1). Conversely, λ(R) is constant on (0, 0.204] and strictly decreasing

on (0.204, Re).

We roughly explain this behavior of λ(R). Under this distribution, there exists x̄ ∈ (0, 1)

such that the virtual value function ψ is strictly convex on (0, x̄), and strictly concave on

(x̄, 1). Since ψ′(0) = ψ′(1) = 2 in this specific case, (ψ(y) − ψ(x))/(y − x) < 2 for all

0 ≤ x < y ≤ 1. By the “shadow price” argument, the solution of P2(λ) with λ ≤ 1/2

is the efficient assignment function. For λ ∈ (1/2, λ̄), bunching occurs in the region with

larger values of ψ′. Because ψ′(x) is larger when x is close to 0 or close to 1, there exists

0 < w < w < 1 such that the interim assignment probability Q∗i (vi) is constant on (0, w) and

on (w, 1). As λ increases, w increases and w decreases. These changes make the bunching

region larger and the expected revenue smaller. Eventually, w and w coincide when λ reaches

some value λ̄. In this limit as λ ↗ λ̄, the assignment function converges to q∗∗ defined in
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(2), under which Q∗∗i (vi) is constant on the two intervals and discontinuous at vi = w = w.

Conversely, it can be shown that (ψ(y)− ψ(x))/(y − x) > 1/λ̄ for almost all 0 ≤ x < y ≤ 1.

This implies that if λ = λ̄, then ϕ̄(x) is constant on [0, 1]. Thus, q∗ defined in (1) is constant

on the entire domain, and leads to an expected revenue of zero.

The argument in this example suggests that multiplicity of the expected revenue may

arise if there exists 0 ≤ a < b < c ≤ 1 such that ψ is strictly convex on (a, b), and strictly

concave on (b, c). We can show that revenue uniqueness holds in other special cases discussed

in Sections 3.2.1 and 3.2.2.

Proposition 11. Suppose that R ∈ (0, Re). If ψ is strictly convex, any solution q ∈

Q∗2(λ(R)) yields expected revenue equal to R. If ψ is strictly concave, any solution q ∈

Q∗2(λ(R)) yields expected revenue equal to R. Therefore, when ψ is strictly convex or strictly

concave, Q∗1(R) = Q∗2(λ(R)) for all R ∈ (0, Re).

Proof. Let λ = λ(R). Suppose that ψ is strictly convex. By the strict concavity of ϕ,

there exists w ∈ [0, 1] such that ϕ is strictly increasing on (0, w), and strictly decreasing on

(w, 1). Then H(p) =
∫ p

0
ϕ(F−1(p′)) dp′ is strictly convex on (0, F (w)), and strictly concave on

(F (w), 1). This implies that there exists unique w̄ ∈ [0, w) such that ϕ̄ is strictly increasing

on [0, w̄), and constant on [w̄, 1]. In addition, we have H(F (x)) > G(F (x)) for all x ∈ (w̄, 1).

Therefore, q∗ = q∗∗ by Proposition 2. Hence, the expected revenue for solutions in Q∗2(λ(R))

is unique.

The case with strictly concave ψ can be shown similarly.

Proposition 11 may be interpreted as a type of revenue-equivalence result, although

there is an important difference. The standard revenue equivalence involves two mechanisms

that have equivalent assignment functions, and claims that they yield the same expected

revenue. The result here is different in that we consider two mechanisms that have different

assignment functions. Nevertheless, when these maximize the same objective, that is, a pro-

buyer-weighted expected surplus, then they yield the same expected revenue (and the same
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expected surplus) if ψ is either strictly convex or strictly concave.

4 Applications

4.1 Multi-unit auction

In this section, we consider auctions in which the seller possesses multiple units of a good

with some positive probability.

For simplicity, assume that a seller possesses at most two units of homogeneous objects.

The number of units owned by the seller is his private information. He has one unit with

probability π ∈ (0, 1), and two units with probability 1−π. If he has two units, he can falsely

report that he has only one unit, and dispose of the remaining unit secretly. Conversely, it

is impossible to misreport that he has two units when he has only one unit. There are two

buyers, each of whom has a single-unit demand.25

The auction designer designs a direct mechanism
(
(qk, tk)

)2

k=1
in which the seller and

the buyers simultaneously report their private information; the seller reports the number of

units k he possesses, and each buyer i = 1, 2 reports his value vi. For each k = 1, 2, (qk, tk)

is the auction mechanism when the seller provides k units. Feasibility requires qki ∈ [0, 1]

and
∑

i q
k
i (v) ≤ k for all i, k, v.

Let Rk be the expected revenue from auction (qk, tk) for each k. To rule out an incentive

to misreport the number of units when the seller has two units, we need R1 ≤ R2. Therefore,

we consider the maximization problem

max
((q1,t1),(q2,t2))

πS1 + (1− π)S2 (3)

subject to (IC), (IR), (NP) for each k = 1, 2, and

R1 ≤ R2, (GRM)

25We consider this two-buyer, two-unit setting for simplicity, but we obtain a similar conclusion in more
general settings.
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where Sk is the expected social surplus in auction (qk, tk) for each k = 1, 2. We refer to

constraint (GRM) as goods revenue monotonicity.26

In the efficient mechanism, if the seller has two units, then both buyers obtain the objects

without payments, regardless of their values. This implies that R2 = 0. Conversely, if the

seller has only one unit, then the second-price auction yields a positive expected revenue

R1 > 0. Therefore, efficiency is incompatible with the constraint (GRM), and in the second-

best problem (3), (GRM) must be binding. More specifically, let
(
(q̄1, t̄1), (q̄2, t̄2)

)
be a

solution to problem (3). Then there exists a constant R̄ > 0 such that for each k = 1, 2,

(q̄k, t̄k) solves

max
(qk,tk)

Sk (3.k)

subject to (IC), (IR), (NP), and Rk = R̄.

Since (GRM) is binding, R̄ is less than or equal to the expected revenue from the efficient

second-price auction with a single unit. Thus, problem (3.k) with k = 1 is the same as

P0(R̄) in Section 2. For k = 2, problem (3.k) can be analyzed in a standard manner, and

the solution is a uniform-price auction with some reserve price. The level of R̄ is determined

to maximize the expected social surplus πS1 + (1− π)S2.

4.2 Buyers’ outside options at the ex ante stage

In some cases, buyers may have outside options before participating in the auction, and

choose not to participate if the payoff from the outside option exceeds the ex ante expected

payoff in the auction. For example, other sellers who sell competing goods may exist, and

buyers choose the seller that gives the largest expected payoff.

In this subsection, we assume that the hazard rate f(x)
1−F (x)

is strictly increasing. We focus

on a fixed seller and suppose that n buyers participate in this seller’s auction. We assume

26Muto and Shirata (2016) provide a restricted domain of valuation profiles in which efficient auctions
satisfying goods revenue monotonicity exist among general combinatorial auctions.
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symmetry between buyers, and denote by u ≥ 0 the outside-option payoff for each buyer. To

attract buyers, the seller has to guarantee to each buyer an ex-ante expected payoff greater

than or equal to u. If the seller wants to maximize the expected revenue conditional on the

given set of participating buyers, he solves

max
(q,t)

Ev
[∑
i∈N

ti(v)
]

subject to (IC), (IR), (NP), and (buyer’s expected payoff) ≥ u.

We also assume that u is sufficiently high so that this constraint arising from the outside

option is binding. Since symmetry between agents implies that

(each buyer’s ex-ante expected payoff) =
1

n

(
(expected surplus)− (expected revenue)

)
=

1

n

(
Ev
[∑
i∈N

qi(v)vi
]
− Ev

[∑
i∈N

ti(v)
])

,

the above problem is equivalent to

max
(q,t)

Ev
[∑
i∈N

ti(v)
]

(4)

subject to (IC), (IR), (NP), and Ev
[∑
i∈N

qi(v)vi
]
− Ev

[∑
i∈N

ti(v)
]

= nu.

We now revisit the original problem P0(R).

max
(q,t)

Ev
[∑
i∈N

qi(v)vi
]

subject to (IC), (IR), (NP), and Ev
[∑
i∈N

ti(v)
]
≤ R.

Let S be the maximum social surplus in the above problem. Since we assumed strict mono-

tonicity for the hazard rate, Proposition 8 implies that λ(R) < 1 for all R ∈ (0, Re). Since

the differential coefficient for the Lagrangian at the optimal point is zero, the expected so-
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cial surplus S in the constrained-efficient auction decreases at a speed slower than R does.

Therefore, if S (and S ′) is the expected social surplus in the constrained-efficient auction

with R (and R′), then R > R′ if and only if S − R < S ′ − R′. Thus, the revenue-cap con-

straint can be replaced by Ev
[∑

i∈N qi(v)vi
]
− Ev

[∑
i∈N ti(v)

]
≥ S − R. Since we assumed

that R < Re, the revenue-cap constraint is binding. Therefore, our original problem P0(R)

is equivalent to

max
(q,t)

Ev
[∑
i∈N

qi(v)vi
]

subject to (IC), (IR), (NP), and Ev
[∑
i∈N

qi(v)vi
]
− Ev

[∑
i∈N

ti(v)
]

= S −R.

This problem has the same form as (4) up to a constant. Hence, the problems with the

outside option and our original problem have a common set of solutions when the hazard

rate is strictly increasing. In conclusion, our analysis can be useful even in certain situations

in which the seller’s objective is revenue maximization.

5 Conclusion

We study a “pro-buyer” auction design problem involving maximization of the expected

social surplus under a revenue-cap constraint. This problem is formally related to the max-

imization of a weighted sum of the expected social surplus and the expected revenue where

the weight for the expected revenue is negative.

We characterize such a revenue-capped efficient auction and identify three general features

that are in stark contrast to the standard case in the literature. First, the object is sold

with probability one (i.e., no reserve price). Second, bunching must occur in some region

of values (i.e., failure of pointwise maximization), and this bunching region stretches as the

revenue-cap constraint becomes more stringent. Third, with a sufficiently severe revenue cap,

bunching must occur at least at the top (i.e., failure of “no distortion at the top”). Thus,
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the introduction of a maximum bid is necessary in this case. The revenue-capped efficient

auction takes a simple form if the virtual value function is either convex or concave. Finally,

we identify two applications, a multi-unit auction and an ex ante competition among sellers,

for which our analysis could be useful.

A Appendix

A.1 Proof of uniqueness of λ in problem P1(R)

Pick λ1 and λ2 satisfying λ1 < λ2. We fix a solution qk to problem P2(λk) for each k = 1, 2.

Let Sk and Rk be the expected social surplus and expected revenue, respectively, under qk for

each k = 1, 2. We assume that Rk ∈ (0, Re) for each k = 1, 2 and prove that R1 > R2. This

shows that λ1 6= λ2 implies R1 6= R2, and the uniqueness of λ follows for each R ∈ (0, Re).

We assume that R1 ≤ R2, and derive a contradiction. Since the objective function of

P2(λk) equals Sk−λkRk for each k, the value of the objective at (q2, λ1) is S2−λ1R2. Since

q1 is a solution to problem P2(λ1), we have S1 − λ1R1 ≥ S2 − λ1R2. Since q2 is a solution

to problem P2(λ2), we have S2 − λ2R2 ≥ S1 − λ2R1. Applying these two inequalities,

we have λ1(R2 − R1) ≥ S2 − S1 ≥ λ2(R2 − R1). Since we assumed that R1 ≤ R2, then

(R1, S1) = (R2, S2). By this equality, problems P2(λ1) and P2(λ2) share the same set of

solutions. Specifically, let q∗ be the solution to problem P2(λ2) defined in equality (1) when

λ = λ2.27 This must be a solution to problem P2(λ1). Since R2 < Re, there exists an open

interval in which ϕ̄(x) is constant. (Otherwise, ϕ̄ is strictly increasing, and q∗ assigns the

object efficiently. This contradicts the assumption R < Re.)

Let (a, b) (where 0 ≤ a < b ≤ 1) be the interval such that ϕ̄(x) < ϕ̄(a) for all x ∈ [0, a)

and ϕ̄(x) > ϕ̄(b) for all x ∈ (b, 1]. Since ϕ̄ is continuous, ϕ̄(a) = ϕ̄(b). Since ϕ̄(x) = ϕ(x)

whenever ϕ̄(x) is strictly increasing in a small neighborhood of x, we have ϕ̄(a) = ϕ(a) and

27Proposition P0(R) proves that q∗ is the solution to problem P2(λ2). We note that Proposition P0(R)
does not rely on uniqueness of λ.
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ϕ̄(b) = ϕ(b). Thus, ϕ(a) = ϕ(b), that is, a−λ2ψ(a) = b−λ2ψ(b). Because b > a, then ψ(b)−

ψ(a) = (b− a)/λ2 > 0. Let ϕλ1(x) := x− λ1ψ(x) for each x ∈ [0, 1]. Then we have ϕλ1(a) <

ϕλ1(b) because ϕλ1(b) − ϕλ1(a) = (b − a) − λ1(ψ(b) − ψ(a)) > (b − a) − λ2(ψ(b) − ψ(a)) =

ϕ(b) − ϕ(a) = 0. Since ϕλ1 is continuous, there exist a′ and b′ such that a < a′ < b′ < b,

maxx∈[a,a′] |ϕλ1(x)−ϕλ1(a)| ≤ (ϕλ1(b)−ϕλ1(a))/6, and maxx∈[b′,b] |ϕλ1(x)−ϕλ1(b)| ≤ (ϕλ1(b)−

ϕλ1(a))/6. Let Ṽ = {v ∈ [0, 1]n | ∃j ∈ N such that vj ∈ [b′, b] and vk ∈ [a, a′] for ∀k 6= j},

and let q̃ be the following assignment function: for each i ∈ N and each v ∈ [0, 1],

q̃i(v) =


1 if v ∈ Ṽ and vi ∈ [b′, b],

0 if v ∈ Ṽ and vi ∈ [a, a′],

q∗(v) if v 6∈ Ṽ .

This assignment function satisfies monotonicity.

Let ā ∈ arg maxx∈[a,a′] ϕλ1(x), b̄ ∈ arg maxx∈[b′,b] ϕλ1(x), and b ∈ arg minx∈[b′,b] ϕλ1(x).

Since

Ev

[∑
i∈N

q∗i (v)ϕλ1(vi)
∣∣∣ v ∈ Ṽ ] ≤ 1

n
ϕλ1(b̄) +

n− 1

n
ϕλ1(ā) and

Ev

[∑
i∈N

q̃i(v)ϕλ1(vi)
∣∣∣ v ∈ Ṽ ] ≥ ϕλ1(b),

we have

Ev

[∑
i∈N

q̃i(v)ϕλ1(vi)
∣∣∣ v ∈ Ṽ ]− Ev[∑

i∈N

q∗i (v)ϕλ1(vi)
∣∣∣ v ∈ Ṽ ]

≥ ϕλ1(b)−
1

n
ϕλ1(b̄)−

n− 1

n
ϕλ1(ā)

=
n− 1

n

(
ϕλ1(b)− ϕλ1(a)

)
−
(
ϕλ1(b)− ϕλ1(b)

)
− 1

n

(
ϕλ1(b̄)− ϕλ1(b)

)
− n− 1

n

(
ϕλ1(ā)− ϕλ1(a)

)
≥ n− 1

n

(
ϕλ1(b)− ϕλ1(a)

)
− 1

6

(
ϕλ1(b)− ϕλ1(a)

)
− 1

6n

(
ϕλ1(b)− ϕλ1(a)

)
− n− 1

6n

(
ϕλ1(b)− ϕλ1(a)

)
=
(n− 1

n
− 1

3

)(
ϕλ1(b)− ϕλ1(a)

)
> 0.
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Therefore, q̃ improves the value of the objective in problem P2(λ1). This contradicts the

assumption that q∗ is a solution to problem P2(λ1).

A.2 Proof of Lemma 2

Note that, for all x ∈ [0, 1],

∫ x

0

ψ(y) dF (y) =

∫ x

0

(
yf(y)− (1− F (y))

)
dy

= −x(1− F (x)).

Set λ > 0 arbitrarily. For all x ∈ [0, 1],

H(F (x)) =

∫ x

0

(
y − λψ(y)

)
dF (y)

=

∫ x

0

y dF (y) + λx(1− F (x)).

Thus, H(0) = 0 and H(p) > 0 for all p ∈ (0, 1], and by the property of a convex hull, we have

G(0) = 0 and G(p) > 0 for all p ∈ (0, 1]. This implies that g(0) ≥ 0, and by the convexity

of G, g(p) ≥ 0 for all p ∈ [0, 1]. If g(p) = 0 for some p ∈ (0, 1], then by the convexity of G,

g(p′) = 0 for all p′ ∈ [0, p], which implies that G(p) = 0. Because this is a contradiction, we

have g(p) > 0 for all p ∈ (0, 1]. Hence, ϕ̄(x) > 0 for all x > 0 and all λ > 0.

A.3 Proof of Proposition 2

The proof is based on Myerson (1981, Section 6). The objective in problem P2(λ) is rewritten

as follows:

∑
i∈N

Ev
[
qi(v)

(
vi − λψ(vi)

)]
=
∑
i∈N

Evi
[
Qi(vi)ϕ(vi)

]
=
∑
i∈N

Evi
[
Qi(vi)

(
g(F (vi)) + h(F (vi))− g(F (vi))

)]
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=
∑
i∈N

Evi
[
Qi(vi)ϕ̄(vi)

]
+
∑
i∈N

Evi
[
Qi(vi)

(
h(F (vi))− g(F (vi))

)]
=
∑
i∈N

Evi
[
Qi(vi)ϕ̄(vi)

]
+
∑
i∈N

[
Qi(vi)

(
H(F (vi))−G(F (vi))

)]1
0
−
∑
i∈N

∫ 1

0

(
H(F (vi))−G(F (vi))

)
dQi(vi).

Because G(0) = H(0) and G(1) = H(1) by the definition of G, then
∑

i∈N
[
Qi(vi)

(
H(F (vi))−

G(F (vi))
)]1

0
= 0. Therefore,

∑
i∈N

Evi
[
Qi(vi)ϕ(vi)

]
=
∑
i∈N

Evi
[
Qi(vi)ϕ̄(vi)

]
+
∑
i∈N

∫ 1

0

(
G(F (vi))−H(F (vi))

)
dQi(vi). (5)

We first show that Q∗∗2 (λ) ⊂ Q∗2(λ). It suffices to show that if q ∈ Q∗∗2 (λ), then q maximizes

both terms on the right-hand side of (5) separately. First, q maximizes the first term∑
i∈N Evi

[
Qi(vi)ϕ̄(vi)

]
by Lemma 2 and (i) in the statement. Second, q maximizes the

second term on the right-hand side of (5) because of the following. Since H(p) ≥ G(p) for

all p ∈ [0, 1] by the definition of G, the second term is nonpositive. We show that if q satisfies

(ii) in the statement, then the second term is zero. Suppose that there exists x ∈ (0, 1) such

that G(F (x)) < H(F (x)). Because G and H are continuous, there exists vi, v
′
i ∈ (0, 1) such

that vi < x < v′i and G(F (y)) < H(F (y)) for all y ∈ (vi, v
′
i). By (ii), Qi(x) is constant in

(vi, v
′
i). This implies that

∑
i∈N
∫ v′i
vi

(
G(F (x)) − H(F (x))

)
dQi(x) = 0. Because x ∈ (0, 1)

was arbitrary, the second term is zero. This shows that q is a solution to problem P2(λ). It

is easy to see that q∗ ∈ Q∗∗2 (λ), where q∗ is defined in equality (1), and thus Q∗∗2 (λ) 6= ∅.

We now show that if q̃ is a solution to problem P2(λ), then there exists q ∈ Q∗∗2 (λ) such

that Prob{v | q̃(v) = q(v)} = 1. Note that the argument in the above paragraph shows that

q∗ maximizes both terms on the right-hand side of (5). Thus, if q̃ ∈ Q∗2(λ), then q̃ also

maximizes both terms on the right-hand side of (5). Because q̃ maximizes the first term,

q̃ satisfies (i) in the statement with probability one. Because q̃ maximizes the second term

(i.e., the value of the second term is zero) and Q̃i is nondecreasing, for each vi ∈ (0, 1),
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if H(F (vi)) > G(F (vi)), then there must be a small neighborhood of vi in which Q̃i(x) is

constant. Thus, Q̃i is differentiable at vi and Q̃′i(vi) = 0. Therefore, q̃ satisfies (ii) in the

statement with probability one.

A.4 Proof of Proposition 3

It is obvious that q∗ and q∗∗ satisfy conditions (i) and (ii) in Proposition 2, and thus q∗, q∗∗ ∈

Q∗2(λ).

To clarify the dependence on λ, we denote ϕλ(x) = x−λψ(x) andHλ(p) =
∫ p

0
ϕλ(F

−1(p′)) dp′

for each λ > 0. Let Gλ(p) be the convex hull of Hλ(p), and let ϕ̄λ(x) = G′λ(F
−1(x)). We

now prove the following lemma.

Lemma 3. For each x, x′ ∈ [0, 1] with x < x′ and each λ̄ > 0: (i) if ϕ̄λ̄(x) = ϕ̄λ̄(x
′), then

ϕ̄λ(x) = ϕ̄λ(x
′) for all λ ≥ λ̄; and (ii) if ϕ̄λ̄(x) < ϕ̄λ̄(x

′), then there exists λ̂ > λ̄ such that

ϕ̄λ(x) < ϕ̄λ(x
′) for all λ ∈ [λ̄, λ̂].

Proof of Lemma 3. Let x, x′ ∈ [0, 1] with x < x′ and λ̄ > 0. First we prove (i). Suppose

that ϕ̄λ(x) = ϕ̄λ̄(x
′). Equivalently, there exists a, b ∈ [0, 1] with a ≤ x < x′ ≤ b such that

for all y ∈ (a, b),

Hλ̄(F (y)) ≥ Hλ̄(F (a)) + (F (y)− F (a))
Hλ̄(F (b))−Hλ̄(F (a))

F (b)− F (a)
.

Observe that for any λ ≥ λ̄,

1

λ

(
Hλ(F (y))−Hλ(F (a))− (F (y)− F (a))

Hλ(F (b))−Hλ(F (a))

F (b)− F (a)

)
− 1

λ̄

(
Hλ̄(F (y))−Hλ̄(F (a))− (F (y)− F (a))

Hλ̄(F (b))−Hλ̄(F (a))

F (b)− F (a)

)
=
(1

λ̄
− 1

λ

)(
(F (y)− F (a))

∫ b
a
wdF (w)

F (b)− F (a)
−
∫ y

a

w dF (w)
)

=
(1

λ̄
− 1

λ

)((F (y)− F (a))
∫ b
y
wdF (w)

F (b)− F (a)
−

(F (b)− F (y))
∫ y
a
wdF (w)

F (b)− F (a)

)
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≥
(1

λ̄
− 1

λ

)((F (y)− F (a))(F (b)− F (y))y

F (b)− F (a)
− (F (b)− F (y))(F (y)− F (a))y

F (b)− F (a)

)
= 0.

Therefore, for all y ∈ (a, b) and all λ ≥ λ̄ we obtain

Hλ(F (y)) ≥ Hλ(F (a)) + (F (y)− F (a))
Hλ(F (b))−Hλ(F (a))

F (b)− F (a)
,

which implies that ϕ̄λ(x) = ϕ̄λ(x
′).

We now prove (ii). Suppose that ϕ̄λ̄(x) < ϕ̄λ̄(x
′). Equivalently, for any a, b ∈ [0, 1] with

a ≤ x < x′ ≤ b there exists y ∈ (a, b) such that

Hλ̄(F (y)) < Hλ̄(F (a)) + (F (y)− F (a))
Hλ̄(F (b))−Hλ̄(F (a))

F (b)− F (a)
.

By the continuity of Hλ(F (a)), Hλ(F (b)) and Hλ(F (y)) in λ, there exists λ̂ > λ̄ such that,

for all λ ∈ [λ̄, λ̂],

Hλ(F (y)) < Hλ(F (a)) + (F (y)− F (a))
Hλ(F (b))−Hλ(F (a))

F (b)− F (a)
.

Therefore, ϕ̄λ(x) < ϕ̄λ(x
′) for all λ ∈ [λ̄, λ̂].

Let q∗(·;λ) be the assignment function defined in (1). We show that q∗(·;λ) achieves the

minimum expected revenue for each λ > 0.

Let v ∈ [0, 1]n. Applying Lemma 3 for each pair of (x, x′) ∈ {v1, . . . , vn}2 with x < x′,

we obtain λ̂ > λ̄ such that for each i, j ∈ N and each λ ∈ [λ̄, λ̂],

ϕ̄λ̄(vi) Q ϕ̄λ̄(vj) ⇐⇒ ϕ̄λ(vi) Q ϕ̄λ(vj).

Hence, q∗(v;λ) gives the same assignment for all λ ∈ [λ̄, λ̂].

Applying this for each v ∈ [0, 1]n, we obtain pointwise convergence of
∑

i q
∗
i (v;λ)ψ(vi)f(v)
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to
∑

i q
∗
i (v; λ̄)ψ(vi)f(v) as λ↘ λ̄. Because

∑
i q
∗
i (v;λ)ψ(vi)f(v) is bounded uniformly across

all v, by the dominated convergence theorem we have

Ev
[∑
i∈N

q∗i (v;λ)ψ(vi)
]

=

∫
v∈[0,1]n

∑
i∈N

q∗i (v;λ)ψ(vi)f(v)dv

→
∫
v∈[0,1]n

∑
i∈N

q∗i (v; λ̄)ψ(vi)f(v)dv (as λ↘ λ̄)

= Ev
[∑
i∈N

q∗i (v; λ̄)ψ(vi)
]
,

that is, the expected revenue under assignment function q∗(·;λ) converges to the expected

revenue under assignment function q∗(·; λ̄) as λ↘ λ̄.

Because λ(R) is a nonincreasing function, the limit of the expected revenue under q∗(·;λ)

as λ ↘ λ̄ is weakly less than the expected revenue under any q ∈ Q∗2(λ). This means that

the expected revenue under q∗ is minimum among all q ∈ Q∗2(λ).

We now prove the following lemma.

Lemma 4. For each λ̄ > 0: (i) for each x ∈ [0, 1], if Gλ̄(F (x)) = Hλ̄(F (x)), then

Gλ(F (x)) = Hλ(F (x)) for all λ ∈ (0, λ̄]; and (ii) for each x, x′ ∈ [0, 1] with x < x′, if

Gλ̄(F (y)) > Hλ̄(F (y)) for all y ∈ [x, x′], then there exists λ̂ ∈ (0, λ̄) such that Gλ(F (y)) >

Hλ(F (y)) for all λ ∈ [λ̂, λ̄] and all y ∈ [x, x′].

Proof of Lemma 4. Let x ∈ [0, 1] and λ̄ > 0. We first prove (i). Suppose that Gλ̄(F (x)) =

Hλ̄(F (x)). Equivalently, for any a, b ∈ [0, 1] with a < x < b,

Hλ̄(F (x)) ≤ Hλ̄(F (a)) + (F (x)− F (a))
Hλ̄(F (b))−Hλ̄(F (a))

F (b)− F (a)
.

Observe that for any λ ∈ (0, λ̄],

1

λ

(
−Hλ(F (x)) +Hλ(F (a)) + (F (x)− F (a))

Hλ(F (b))−Hλ(F (a))

F (b)− F (a)

)
− 1

λ̄

(
−Hλ̄(F (x)) +Hλ̄(F (a)) + (F (x)− F (a))

Hλ̄(F (b))−Hλ̄(F (a))

F (b)− F (a)

)
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=
(1

λ
− 1

λ̄

)(
(F (x)− F (a))

∫ b
a
wdF (w)

F (b)− F (a)
−
∫ x

a

w dF (w)
)

=
(1

λ
− 1

λ̄

)((F (x)− F (a))
∫ b
x
wdF (w)

F (b)− F (a)
−

(F (b)− F (x))
∫ x
a
wdF (w)

F (b)− F (a)

)
≥
(1

λ
− 1

λ̄

)((F (x)− F (a))(F (b)− F (x))x

F (b)− F (a)
− (F (b)− F (x))(F (x)− F (a))x

F (b)− F (a)

)
= 0.

Therefore, for all x ∈ (a, b) and all λ ∈ (0, λ̄], we obtain

Hλ(F (y)) ≤ Hλ(F (a)) + (F (y)− F (a))
Hλ(F (b))−Hλ(F (a))

F (b)− F (a)
,

which implies that Gλ(F (x)) = Hλ(F (x)).

Now we prove (ii). Suppose that Gλ̄(F (y)) > Hλ̄(F (y)) for all y ∈ [x, x′]. Equivalently,

there exists a, b ∈ [0, 1] such that a ≤ x < x′ ≤ b, and for all y ∈ [x, x′],

Hλ̄(F (y)) > Hλ̄(F (a)) + (F (y)− F (a))
Hλ̄(F (b))−Hλ̄(F (a))

F (b)− F (a)
.

By the continuity of Hλ(F (a)), Hλ(F (b)) and Hλ(F (x)) in λ, there exists λ̂ ∈ (0, λ̄] such

that, for all y ∈ [x, x′] and all λ ∈ [λ̂, λ̄],

Hλ(F (y)) > Hλ(F (a)) + (F (y)− F (a))
Hλ(F (b))−Hλ(F (a))

F (b)− F (a)
.

Therefore, Gλ(F (y)) > Hλ(F (y)) for all y ∈ [x, x′] and all λ ∈ [λ̂, λ̄].

Let q∗∗(·;λ) be the assignment function defined in (2). We show that q∗∗(·;λ) achieves

the maximum expected revenue for each λ > 0.

Applying Lemma 4 for each x, x′ ∈ [0, 1] with x < x′, there exists λ̂ ∈ (0, λ̄) such that
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for each λ ∈ [λ̂, λ̄],

Gλ̄(y) > Hλ̄(y) for all y ∈ [x, x′] ⇐⇒ Gλ(y) > Hλ(y) for all y ∈ [x, x′].

Thus, for each v ∈ [0, 1]n there exists λ̂ ∈ (0, λ̄) such that for each i, j ∈ N and each

λ ∈ [λ̂, λ̄],

Bλ̄(vi) = Bλ̄(vj) ⇐⇒ Bλ(vi) = Bλ(vj),

where for each λ, Bλ(x) is the set B(x) introduced before the definition of q∗∗. Hence, for

each v ∈ [0, 1]n, q∗∗(v;λ) gives the same assignment for all λ ∈ [λ̂, λ̄].

Applying this, for each v ∈ [0, 1] we obtain pointwise convergence of
∑

i q
∗∗
i (v;λ)ψ(vi)f(v)

to
∑

i q
∗∗
i (v; λ̄)ψ(vi)f(v) as λ ↗ λ̄. Because

∑
i q
∗∗
i (v;λ)ψ(vi)f(v) is bounded uniformly

across all v, by the dominated convergence theorem,

Ev
[∑
i∈N

q∗∗i (v;λ)ψ(vi)
]

=

∫
v∈[0,1]n

∑
i∈N

q∗∗i (v;λ)ψ(vi)f(v)dv

→
∫
v∈[0,1]n

∑
i∈N

q∗∗i (v; λ̄)ψ(vi)f(v)dv (as λ↗ λ̄)

= Ev
[∑
i∈N

q∗∗i (v; λ̄)ψ(vi)
]
,

that is, the expected revenue under assignment function q∗∗(·;λ) converges to the expected

revenue under assignment function q∗∗(·; λ̄) as λ↗ λ̄.

Because λ(R) is a nonincreasing function, the limit of the expected revenues under

q∗∗(·;λ) as λ ↗ λ̄ is weakly greater than the expected revenue under any q ∈ Q∗2(λ). This

means that the expected revenue under q∗∗ is maximum among all q ∈ Q∗2(λ).
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A.5 Proof of Proposition 6

To clarify the dependence on λ, we denote ϕλ(x) = x−λψ(x) and Hλ(p) =
∫ p

0
ϕλ(F

−1(p′)) dp′

for each λ > 0. Let Gλ(p) be the convex hull of Hλ(p), and let ϕ̄λ(x) = G′λ(F
−1(x)).

By Proposition 1, q ∈ Q∗2(λ(R)). By Lemma 3 (i) in Appendix A.4, for each x, x′ ∈ [0, 1]

and each λ̃ ≥ λ(R), ϕ̄λ(R)(x) = ϕ̄λ(R)(x
′) implies that ϕ̄λ̃(x) = ϕ̄λ̃(x

′). Therefore, for each

i ∈ N , if Q∗i (vi) is constant on (a, b), then Q̃∗i (vi) is also constant on (a, b).
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