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Abstract

Many institutions aggregate information for a common objective via coarse
communication. Coarseness gives rise to interesting institution design
problems which would otherwise be trivial. The paper first elaborates on
this point with an analysis of the optimal binary voting systems for the
Condorcet Jury Problem, then proposes a unified framework for model-
ing a general class of information-aggregating institutions. Within this
class, it is shown that institution A outperforms institution B for any
common objective if and only if the underlying communication infras-
tructure of A can be obtained from that of B by a sequence of elemen-
tary operations. Each operation either removes redundant communica-
tion instruments from B or introduces effective ones to it. The general
analysis is applied to two specific problems. In the first application, it
is shown that an optimal generalized voting system has a sequential
procedure and a dictatorship-like rule. In the second application, it is
shown that data overload can be avoided for an organization with limited
data-processing capacity.

1 Introduction

This paper studies information-aggregating institutions in which precise
internal communication is not possible.
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It is often very difficult for an informed person to convey his information
precisely to an uninformed person. In the first place, the communication
instrument available to the informed person, such as words, gestures, or
some other medium, may not be sufficient to express the complexity of his
information. In addition, upon receiving the message that carries the infor-
mation, the uninformed person may fail to digest the message to its utmost
precision. For example, imagine an expert who wishes to report an impor-
tant number to a manager. The decimal expansion of this number is very
long. To save time, the expert reports this number only to its fourth decimal
place. To save memory, the manager memorizes the report only to its sec-
ond decimal place. In this example, time and memory impose constraints
on communication and render it coarse.
Many institutions are established to aggregate information coarsely from
a group of people working on a common objective when precise communi-
cation within the group is impossible or costly due to restrictions on time,
memory, or other resources. For example, a voting system is established to
aggregate information coarsely from the public via votes, because gathering
each individual’s precise opinion about the candidates is costly. Similar in-
stitutions include surveys, polls and ratings. As another example, a firm’s
hierarchical briefing system is established to aggregate information coarsely
from different divisions of the firm via briefs, because collecting and process-
ing detailed reports in a centralized fashion is costly. As a third example,
when it is difficult for a person to meticulously remember everything he has
in mind, he often uses the “mnemonic institution” of taking short notes or
forming crude impressions to remind his future self of what he knows in the
present.
The infeasibility of precise communication within institutions gives rise to
interesting design problems that would otherwise be trivial. Indeed, given
common interest induced by the common objective, first-best information ag-
gregation can be easily achieved in equilibrium by an institution permitting
precise communication. It is plain to see that, regardless of institutional
details, every such institution is reducible to the direct mechanism that im-
plements the efficient outcome. On the other hand, an institution that does
not permit precise communication cannot be reduced to a direct mechanism,
and consequently institutional details become important to determine its
performance.
To elaborate on the design problem regarding institutions not permitting
precise communication, this paper first analyzes the optimal binary voting
system in a common values environment. In this problem, which is known
as the Condorcet Jury Problem, a group of privately informed jurors have
to arrive at a verdict to find a defendant guilty or innocent. The jury must
use a binary voting system to solve the problem. A binary voting system re-
quires that each juror is given one opportunity to cast a vote of either “guilty”
or “innocent”. Every binary voting system is characterized by two institu-
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tional components: the procedure and the rule. The procedure specifies the
number of stages the voting has and who votes in each stage. The procedure
may imply simultaneous voting, sequential voting, or a mixture of both. The
rule specifies the verdict for each vote profile. The rule may correspond to a
simple majority rule, a unanimous rule, or even some non-standard rule.
Three design problems are considered. In the first problem, given that there
is no restriction on the number of stages of voting, among the optimal binary
voting systems there is a system that has a sequential procedure and a rule
under which the last voter serves as a dictator. In the second problem, given
that voting has to finish in one stage, among the optimal one-stage systems
there is a system that has a weighted majority rule. In the third problem,
given that the procedure is fixed and has two stages, it turns out that the
optimal system may have a counterintuitive rule: If a voter unilaterally
changes his vote from “guilty” to “innocent”, the verdict may change from
“innocent” to “guilty”.
The paper then proposes a framework for modeling a general class of information-
aggregating institutions including typical voting systems, hierarchical orga-
nizations, and institutions of other sorts. An institution within this class is
built on a communication infrastructure which provides each participant
with (1) a set of messages for him to convey information to other partici-
pants, and (2) a set of units called perceptions for him to receive and pro-
cess messages from other participants. Communication constraints on the
sending side are captured by the fact that the set of messages available to a
participant may be smaller than the set of all pieces of information he may
wish to convey. Communication constraints on the receiving side are cap-
tured by the fact that a participant may be unable to distinguish between
distinct message profiles if they correspond to the same perception.

A robust Pareto order is introduced to compare institutions within this class:
Institution A is said to dominate institution B if, for any common objective,
the best equilibrium under A generates a weakly higher common expected
payoff than the best equilibrium under B. The purpose of focusing on the
dominance order is threefold. First, for a more specific design problem, the
designer can use the dominance order to eliminate dominated institutions
without having to know the environment parameters that determine the
common objective. Second, understanding why an institution dominates an-
other provides insight to understanding the advantages or disadvantages of
specific institutional details. Third, from a theoretical perspective, the com-
parison of institutions in terms of dominance is parallel to the comparison
of experiments analyzed in Blackwell (1951). This parallelism is discussed
in more detail in Section 2.
The paper provides two characterizations of the dominance order. First, in-
stitution A dominates institution B if and only if A can induce weakly more
social choice functions in pure strategies than B. Therefore, “better” and
“more versatile” turn out to be equivalent regarding institutions. Second,
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if the set of all pieces of information each player may have is sufficiently
rich, then institution A dominates institution B if and only if the underly-
ing communication infrastructure of A can be obtained from that of B by a
sequence of operations, each operation either removes redundant messages
or perceptions from B, or introduces effective messages or perceptions to
B. The sufficiency part is relatively straightforward, although identifying
redundant messages and perceptions calls for care, in particular if the insti-
tution is complicated. Necessity is more difficult to establish. The argument
is based on the observation that there is a social choice function inducible
by institution B in pure strategies such that any other institution that can
induce the same social choice function in pure strategies must embed the
effective part of B, that is, the underlying communication infrastructure of
B with redundant messages and perceptions removed. Thus it is possible to
construct a sequence of redundancy-reducing operations that transforms B
to its effective part, and then there is a sequence of complementing opera-
tions that transforms the effective part of B to A

The general analysis is applied to two specific problems. The first applica-
tion investigates the design problem regarding generalized voting systems.
It is shown that among the optimal generalized voting systems there is one
that has a sequential procedure, a full disclosure policy, and a rule under
which the last voter is always pivotal. The second application analyzes the
marginal benefit of perceptions and messages within a hierarchical organi-
zation. It is shown that under mild conditions the marginal benefit of either
perceptions or messages is always strictly positive. In particular, the result
implies that even if an organization has very limited message-processing
capacity, it will still strictly benefit from having more available messages.
In the rest of the paper, Section 2 discusses the relevant literature. Section
3 analyzes the Condorcet Jury Problem. Section 4 introduces the general
model. Section 5 presents analysis of the dominance order. Section 6 applies
the general analysis to two problems. Section 7 concludes. The Appendices
include the proofs and some technical details.

2 Literature

Two literatures within the field of mechanism design and implementation
have explicitly considered communication constraints. One of them inves-
tigates the minimal amount of communication necessary to implement a
given social choice function. Within this literature, Nisan and Segal (2006)
and Segal (2007) show that for a class of social choice functions the minimal
communication mechanisms are generalized price mechanisms, assuming
sincere players. Fadel and Segal (2009) and Segal (2010) consider simi-
lar implementation questions with strategic players. In spirit this litera-
ture may be seen as solving the dual problem to the problem studied in the
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present paper. The present paper asks for the efficiency maximizing mech-
anism subject to communication constraints, whereas papers in the above
literature ask for the communication minimizing mechanism that achieves
certain efficiency level.
The other literature considers mechanism design problems subject to given
communication constraints. Recent papers in this literature include Blum-
rosen et al. (2007), Van Zandt (2007), Kos (2012), Blumrosen and Feldman
(2013), Kos (2014), and Mookherjee and Tsumagari (2014). All of the pa-
pers assume the presence of conflicts of interest among the players, and a
main emphasis of the literature is the interplay between communication
constraints and incentive constraints. The present paper, by considering
an environment with common interest, removes the tension between infor-
mation aggregation and preference aggregation, and thus allows a sharper
focus on implications of communication constraints alone.

The quest for the optimal voting system for the Condorcet Jury Problem
may be viewed as a specific mechanism design exercise regarding institu-
tions subject to communication constraints. The formulation of the Con-
dorcet Jury Problem is historically attributed to Condorcet (1785). Papers
discussing information aggregation efficiency of various voting systems in-
clude Feddersen and Pesendorfer (1998), McLennan (1998), and Duggan
and Martinelli (2001), all of which emphasize asymptotic efficiency as the
jury size grows large. For a fixed jury, Costinot and Kartik (2007) show
that the optimal voting system is invariant to the possibility of boundedly
rational voters. Dekel and Piccione (2000) show that in a symmetric envi-
ronment, any equilibrium under simultaneous voting stays an equilibrium
under sequential voting. They conclude with a note that sequentiality does
not bring improvement in terms of information aggregation. The present
paper shows that, if a voting system is evaluated by its best equilibrium,
instead of by its worst one as is implicitly assumed in Dekel and Piccione
(2000), then sequentiality may bring improvement.

As mentioned in the Introduction, the comparison of institutions studied in
the present paper is analogous to the comparison of experiments studied in
Blackwell (1951). Indeed, similar to an experiment à la Blackwell, an insti-
tution may be viewed as a device that generates signals (messages) to facil-
itate decision-making based on the true state (the dispersed information).
On the other hand, unlike an experiment, an institution has a multi-player
dynamic structure and the signals (messages) are generated endogenously
by strategic players. In Blackwell (1951), an experiment dominates another
if and only the former can be obtained from the latter by a well-defined trans-
formation. This corresponds in spirit to the finding of the present paper that
an institution dominates another if and only if the former can be obtained
from the latter by a sequence of well-defined operations.
Chapter 8 of Marschak and Radner (1972) extends Blackwell’s single-player
model to multiple players. In their model, players move sequentially, and
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later players make decisions based on their own information and noisy real-
ization of messages from earlier players. The model in the present paper has
a similar sequential procedure. In two important aspects the two models are
different. First, in the present model players are strategic, whereas they are
non-strategic in the model of Marschak and Radner (1972). Second, imper-
fection of communication in the present model is due to coarseness, whereas
it is due to noise in the model of Marschak and Radner (1972). The analysis
of Marschak and Radner (1972) is restricted to specific examples and has a
different focus.

3 The Condorcet Jury Problem

In this section we view the classical Condorcet Jury Problem from an insti-
tution design perspective.

A jury J = {1, ..., n} has to reach a verdict on a defendant. The verdict is
either “guilty” (G) or “innocent” (I). Let ω = G denote the event that the
defendant is in fact guilty, and ω = I that the defendant is in fact innocent.
ω = G with probability π where 0 < π < 1, and ω = I with probability
1− π. Every juror receives a payoff of 1 if the verdict matches the fact ω, or
0 otherwise.

Each juror i has a private signal xi that carries some information about ω.
Specifically, xi is independently drawn from a finite, but possibly very large,
subset Xi of R with probability f iω(xi) > 0 conditional on ω. 1 Assume that
for any i ∈ J ,

(MLRP) fi
G(xi)

fi
I(xi)

>
fi
G(x′i)

fi
I(x′i)

if xi > x′i.

Assumption MLRP implies that a higher signal carries a stronger evidence
for ω = G.
Suppose that, due to a shortage of resources necessary for precise communi-
cation among the jurors to fully reveal their information, the jury has to use
a binary voting system to reach the verdict. In a binary voting system,
each juror can send a message once, and the set of messages available to
him is {G, I}. The messages may be interpreted as votes, and the action of
sending a message may be interpreted as voting.

Each binary voting system is characterized by two institutional components.
The first is the procedure that specifies the order in which the jurors vote.
The procedure is formulated as a function r : J → N, with the interpretation
that r(i) > r(j) means i votes after j, and r(i) = r(j) means i and j vote

1The finiteness assumption is to simplify analysis. See also Footnote ??.
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simultaneously. Assume that a juror can see all previously casted votes. 2

The second institutional component is the rule that specifies a verdict for
each vote profile. The rule is formulated as a function d : {G, I}n → {G, I}
such that d(z1, ..., zn) is the verdict given vote profile (z1, ..., zn). A binary
voting system with procedure r and rule d is denoted as (r, d).
Let ΣV (r) denote the set of all strategy profiles of the game induced by voting
system (r, d). (Note that ΣV (r) does not depend on d.) Given the common
payoff function and the common prior, all voters’ ex ante preferences over
ΣV (r) can be represented by the same expected payoff function u(·|r, d). The
value of (r, d) is defined as the highest common expected payoff achieved by
any perfect Bayesian equilibrium of the game induced by (r, d). Let U(r, d)
denote the value of (r, d). We can Pareto-rank voting systems by their values,
and say that the optimal system is the one with the highest value.

Calculating the value of a voting system from definition can be computation-
ally heavy, because it is often tedious to determine the set of equilibria of a
game. Fortunately, as asserted by the following lemma, the common inter-
est environment allows us to simplify the calculation by circumventing that
step. The lemma, which follows immediately from the proof of Proposition
3 to appear later, generalizes Theorem 1 in McLennan (1998).

Lemma 1. U(r, d) = maxσ∈ΣV (r) u(σ|r, d).

Voting takes place in multiple stages under a sequential or partially se-
quential procedure, and may require a long time to finish if there are many
stages. It is thus reasonable to consider situations in which the jury can only
use a voting system whose procedure has a limited number of stages. Below
we study the optimal voting systems in three cases. In the first case, there
is no restriction on the number of stages of voting. In the second case, voting
has to take place in one stage. In the third case, a particular procedure with
two stages is used.

3.1 Unlimited Number of Stages

When there is no restriction on the number of stages, the following propo-
sition asserts that, to find an optimal voting system, it suffices to focus on
ones that have a sequential procedure and a rule that depends only on the
last voter’s vote.

Proposition 1. Among the optimal binary voting systems there is (r∗, d∗)
such that:

1. r∗ is a sequential procedure.
2Here, to keep the example simple, we do not consider partial disclosure of previously casted

votes. Partial disclosure policies are discussed in Section 6.
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2. d∗ depends only on the last voter’s vote.

The proof is based on the observation that any pure strategy profile under
(r, d) can be “replicated” by an outcome-equivalent pure strategy profile un-
der (r∗, d∗). It follows that the best strategy profile under (r∗, d∗) must be
no worse than the best strategy profile under (r, d), which then implies that
the value of (r∗, d∗) must be no less than that of (r, d) by Lemma 1.
Section A.1 in the Appendices gives a direct proof of this proposition. It will
become clear that the proposition can also be derived as a corollary of Propo-
sition 5, which is proved using the machinery to be introduced in Section 5.
Moreover, the proof of Proposition 5 gives an alternative explanation for the
superiority of (r∗, d∗): The system with a sequential procedure and a dic-
tatorial rule makes full use of the communication instruments allowed by
binary voting, whereas any other binary voting system does not.

3.2 One Stage

Suppose that voting must take place in a single stage, that is, the proce-
dure must be simultaneous. Finding an optimal voting system in this case
is equivalent to finding an optimal rule for simultaneous voting. The follow-
ing proposition asserts that, for this quest, it suffices to focus on weighted
majority rules. Rule d is a weighted majority rule if there is a vector of non-
negative weights (w1, ..., wn) and a threshold k such that d(z1, ..., zn) = G if
and only if

∑
i∈J wi1(zi) ≥ k, where 1(zi) = 1 if zi = G or 1(zi) = 0 otherwise.

Proposition 2. Among the optimal rules for simultaneous voting there is a
weighted majority rule.

The proof is built on the observation that, given any vote profile (z1, ..., zn),
an optimal rule d∗ produces verdictG if and only if ω = G is more likely than
ω = I conditional on players following the best strategy profile s∗ under d∗
and the realized vote profile being (z1, ..., zn). In other words, if the rule is
replaced with an uninformed decision maker whose interest is aligned with
those of the players, the decision maker would also choose verdict G given
(z1, ..., zn) based on Bayesian updating. Proposition 2 then follows from the
fact that the probability of ω = G conditional on s∗ and (z1, ..., zn) is log-
linear in the number of G-votes contained in (z1, ..., zn).

3.3 Two Stages: Non-Monotonicity

In this subsection we present an example showing that, if the procedure is
partially sequential, the optimal voting systems may display counterintu-
itive properties.
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There are three jurors. Suppose the procedure is fixed: Juror 1 votes in the
first stage, Jurors 2 and 3 vote simultaneously in the second stage. Again
we look for the optimal rule for this particular procedure. The environment
parameters are as follows. π = 1−π = 0.5. Tables 1 and 2 respectively show
the conditional probabilities of x1 and x2. The conditional probabilities of
x3 are the same as x2.

Table 1: f1
ω(x1)

ω = G ω = I
x1 = 1 0.6 0.4
x1 = 0 0.4 0.6

Table 2: f2
ω(x2)

ω = G ω = I
x1 = 1 0.4 0.1
x1 = 1/2 0.5 0.5
x1 = 0 0.1 0.4

Using Lemma 1 we find multiple optimal rules. The unique best equilib-
rium under each optimal rule is in cutoff strategies. There is only one opti-
mal rule d∗ under which the best equilibrium is “truthful”, in the sense that
each juror votesG if and only if his signal is above the cutoff. Recall that As-
sumption MLRP implies higher signals are more indicative of ω = G. Thus
in a truthful equilibrium jurors always use a G-vote to express a stronger
evidence supporting ω = G, whereas in an equilibrium that is not truthful,
a juror sometimes uses an I-vote to express a stronger evidence support-
ing ω = G. It is reasonable to consider d∗ as superior to the other optimal
rules, because presumably the jurors can more easily coordinate on a truth-
ful equilibrium.

However, d∗ displays a counterintuitive property: It is not monotone in the
vote profile. In particular, it is the case that

d∗(G,G, I) = I, d∗(I,G, I) = G,

that is, if Juror 1 unilaterally changes his vote from G to I, the verdict
changes in the opposite direction from I to G. This property is unexpected
because a G vote from Juror 1 carries stronger evidence supporting ω = G
than an I vote.

To explain the phenomenon, notice that in the best equilibrium under d∗, the
aggregate evidence contained in the (G, I) vote combination from Jurors 2
and 3 depends on the vote from Juror 1. If Juror 1’s vote is G then Juror
2 votes G if x2 ∈ {1/2, 1}, whereas if Juror 1’s vote is I then Juror 2 votes
G if x2 = 1. Juror 3’s strategy is the same as Juror 2’s. It is easy to verify
that the aggregate evidence contained in the (G, I) vote combination from
Jurors 2 and 3 is against, and overrules, the evidence contained in the vote
from Juror 1.
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4 The Model

In this section we introduce a framework for modeling a general class of in-
stitutions that is broad enough to capture many specific real life institutions,
including binary voting systems analyzed in the previous section.

4.1 The Common Objective

A group N = {1, ..., N} of players work on a common objective. Each player
i ∈ N contributes by choosing an action ai from a finite set Ai. Ai could
be a singleton {null}, that is, the common objective does involve any actual
action from player i. We shall see the player can still contribute by providing
information. A vector of actions a = (a1, ..., aN ) is called an outcome. A =
A1 × ...×AN is the set of all feasible outcomes.

The value of an outcome depends on the state of the world (hereby state),
which is an N−tuple x = (x1, ..., xN ) from a finite set X = X1 × ... × XN .
Each player i only observes xi but not other dimensions of the state. The
common prior distirbution of x is denoted as F . Every player receives the
same payoff φ(a,x) if the outcome is a and the state is x.

The group may be concerned with multiple common objectives: It could be
that they co-operate many times on different common objectives, or it could
be that they co-operate only once but are uncertain of which common objec-
tive they will face. Assume A and X are the same across common objectives
but φ and F can vary. We use objective-specific parameters (φ, F ) to denote
a particular common objective.

4.2 The Institution

Within the model, an institution refers to the indirect mechanism described
as follows. Players move sequentially according to their indices: Player 1
moves first, Player 2 moves second, etc. Every player moves only once. When
it is player i’s turn to move, he chooses action ai fromAi, and he also chooses
a message mi from some set Mi to send to players who have not moved yet.
Mi is the set of messages provided to player i by the institution. Player N
does not send any message. For Player N to have a non-trivial role in the
institution, we assume that |AN | > 1.
Players do not observe actions chosen by the other players. A player imper-
fectly observes the messages he has received. Let Ti = M1×...×Mi−1 denote
the set of message profiles that player i may receive. i’s observation of re-
ceived messages is determined by a partition Pi of Ti. Each element p of Pi
is called a perception of i. i can distinguish between two message profiles
if and only if they are in different perceptions of his. Therefore it can be said
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that player i perceives all message profiles in the same perception p ∈ Pi as
if they are the same.
Define T = ∪i∈N Ti, P = ∪i∈N Pi, and M = ∪i<NMi. The institution is
denoted by the tuple (T, P,M).
Below we show various real life institutions that the general model captures.
Example 1. Voting

Consider a voting system that generalizes the binary voting system analyzed
in Section 3. A group J of voters have to collectively choose from a set Y of
candidates. Each voter i ∈ J receives a private signal xi. The value of
each candidate is the same to all voters and depends on the vector of private
signals (xi)i∈J .
Each voter has to cast one vote from the set of votes Z. 3 To avoid trivial
cases assume |Y | > 1 and |Z| > 1. The voting system consists of three
institutional components: the procedure r : J → N that assigns each voter i
to the r(i)th stage of the voting, the rule d : Z |J| → Y that elects candidate
d(z) given vote profile z, and a disclosure policy t which specifies how past
votes are disclosed to those who have not voted yet. Examples of disclosure
policies include full disclosure, disclosing the votes but not the voters’ indices
(anonymous voting), etc.
To capture voting system (r, d, t) using the general institution model intro-
duced above, index the voters as 1, ..., |J | such that i > j if r(i) > r(j). Let
N = {1, ..., |J |, |J |+1} where player |J |+1 represents the rule d. The action
set Ai is the singleton {a} for every i ≤ |J |, whereas A|J|+1 = Y . Note that
only player |J |+1 has a non-singleton action set, because he represents d and
thus him alone determines the real outcome, that is, the chosen candidate
from Y .

For each player i ≤ |J |, Xi is the set of private signals that voter i may
observe. X|J|+1 = {x}, implying that the voter representing the rule always
receives the uninformative signal x.

For any outcome a = (a, ..., a, y) and vector of private signals x = (x1, ..., x|J|, x),
φ(a,x) is the expected value of candidate y conditional on each voter i ob-
serving private signal xi.
Voting system (r, d, t) is represented by institution (T, P,M) as follows:

1. For each i ≤ |J |, Mi is equal to Z, that is, a vote is interpreted as a
message provided by the institution.

2. For each i ≤ |J |, Pi is consistent with voter i’s observation of votes
from voters 1, ..., i − 1 under procedure r and disclosure policy t. For
example, if two vote profiles (z1, ..., zi−1) and (z′1, ..., z

′
i−1) differ only at

3Typically Z = Y . The present formulation allows other voting protocols, for example the
inclusion of blank votes or abstention.
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votes from those who vote simultaneously with i, that is, if zj = z′j
for every j where r(j) < r(i), then the two vote profiles are in the
same perception of i. As another example, if according to the disclosure
policy voter i may only observe the number of votes already casted for
one particular candidate y, then (z1, ..., zi−1) and (z′1, ..., z

′
i−1) are in the

same perception of i if the number of votes for y from those who voted
before i are the same in both vote profiles.

3. For player |J | + 1, vote profiles (z1, ..., z|J|) and (z′1, ..., z
′
|J|) are in the

same perception if and only if d(z1, ..., z|J|) = d(z′1, ..., z
′
|j|).

It is plain to see that the game induced by voting system (r, d, t) is essentially
the same game as that induced by institution (T, P,M) in which player |J |+1
is committed to choose d(z1, ..., z|J|) given his perception that contains vote
profile (z1, ..., z|J|). 4

Example 2. Reporting

If we replace the rule in the voting model with an uninformative decision
maker, the consequent model captures the situation in which a group of
consultants advise an uninformed boss on choosing a project from the set of
alternatives Y . The voters are reinterpreted as consultants, Player |J | + 1
as the boss, the votes as internal reports, the procedure and the disclosure
policy as a protocol that organizes reporting.

Example 3. Organization

An organization has N levels. The official of level i gathers intelligence xi ∈
Xi, and has to take immediate action ai ∈ Ai in response. Moreover, he
also sends a message mi ∈ Mi to inform the officials of levels above him.
The organization is modeled by institution (T, P,M). Mi is interpreted as
internal codes available to the official of level i. Pi can either be used to
describe how the official of level i interprets the codes he has received, or
the code-processing protocol of the organization.

Example 4. Memory

Institution (T, P,M) can also model the dynamic optimization problem of
a single person with imperfect recall. There is only one man, who on each
day i learns something xi ∈ Xi, and does something ai ∈ Ai. Moreover,
to remind himself of what he has learnt or done, he takes down a note, or
forms a crude impression, in the form of mi ∈ Mi. Pi represents how the
person digests past notes or recalls past impressions. For example, if distinct
(m1, ...,mi−1) and (m′1, ...,m

′
i−1) belong to the same p ∈ Pi, it may reflect the

fact that on the ith day impressions (m1, ...,mi−1) and (m′1, ...,m
′
i−1) strike

the person as the same, or the fact that the person does not read his notes
4Apart from the modeling artifact that, in the game induced by institution (T, P,M), the

voters take the dummy action a along the way, and player |J | + 1 receives an uninformative
signal x.
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very carefully. The decision maker with limited memory studied in Wilson
(2014), for example, can be reformulated, with small modifications, as an
infinite-horizon extension of the present model in which the decision maker
can only recall the note he took down in the previous period. �
Institution (T, P,M) can be schematically depicted as a rooted tree equipped
with a partition. Each node of the tree represents a message profile, and
each edge represents a message. The root of the tree is the empty message
profile. Two nodes are linked if one is extended from the other by one mes-
sage, and the message is the edge that links the two nodes. The partitioning
of the nodes at level i, which are i− 1 degrees from the root, agrees with the
partitioning of Ti by Pi. Figure 1 shows the graph representing the vot-
ing system with two voters, the simultaneous procedure, and the rule that
chooses verdict G only if both votes are G.

Figure 1: Simultaneous voting, unanimous rule

The graph of an institution visually resembles that of an extensive form
game in which histories correspond to message profiles and information sets
correspond to perceptions. It should be noted that the graph of an institution
does not fully depict the game induced by the institution, because for each
player i the choice of action ai and the acquisition of information xi are not
reflected in the graph.

5 Comparing Institutions

The common interest environment provides us with a natural measure to
evaluate an institution.
Definition. The value of institution (T, P,M) for common objective (φ, F )
is the highest common expected payoff achievable by any perfect Bayesian
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equilibrium of the game induced by (T, P,M) and (φ, F ). 5

For a given common objective, all institutions are totally Pareto-ordered by
their values. Finding an optimal institution among a set of alternatives
becomes a standard optimization problem. However, it is often the case that
when an institution is to be established, the objective-specific parameters
are unknown to the designer. Moreover, the same institution may be used
repeatedly for variable common objectives. Due to these concerns, we would
like to Pareto-order institutions without knowledge of the objective-specific
parameters. It is thus natural to consider the parameter-free dominance
order defined as follows.
Definition. Institution (T ′, P ′,M ′) dominates another institution (T, P,M)
if the value of (T ′, P ′,M ′) is weakly higher than the value of (T, P,M) for any
(φ, F ) where φ is a real valued function on A×X and F is a probability func-
tion on X.

Clearly the dominance order is reflexive and transitive. It may not be com-
plete, though.

Remark: When an institution is defined, it is assumed that players move
sequentially according to their indices. Hence when comparing (T ′, P ′,M ′)
and (T, P,M) we implicitly assume that players move in the same order un-
der both institutions. A natural question that follows is whether it is pos-
sible to compare two mechanisms, both describable by the general model
if players are indexed appropriately, but under which the players de facto
move in different orders. This indeed is possible, because, after all, if the
common objective is the same, then any two mechanisms can be compared
by their values. Thus, the dominance order can naturally be extended to
the set of all mechanisms without restriction on the order of moves. In this
paper, as a first step of the research agenda, we focus only on institutions
with the same order of moves.
A pure strategy profile s under institution (T, P,M) induces a social choice
function ααα(·|s) : X → A, such that if the players follow s, then in state
x the outcome is ααα(x|s). Let C(T, P,M) denote the set of all social choice
functions inducible by a pure strategy profile under (T, P,M). The following
proposition gives a simple characterization of the dominance order.

Proposition 3. Institution (T ′, P ′,M ′) dominates another institution (T, P,M)
if and only if C(T, P,M) ⊂ C(T ′, P ′,M ′).

The proposition is a corollary of a more general result, Proposition 8 in
Section A.4, that asserts an analogous statement for any two finite mech-
anisms. Within the present context, the proof is based on the observation
that among the strategy profiles that maximize the common expected pay-
off there is a pure strategy equilibrium. Therefore (T ′, P ′,M ′) must have a

5The value exists because the induced game is a finite.
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(weakly) higher value than (T, P,M) for any common objective because it can
induce more social choice functions in pure strategies. On the other hand,
for any pure strategy profile s under (T, P,M) there is a common objective
for whichααα(·|s) is efficient, therefore if (T ′, P ′,M ′) has a weakly higher value
for this common objective, (T ′, P ′,M ′) must also be able to induce ααα(·|s) in
pure strategies.
The reader is reminded of the main message of Blackwell (1951) that an
experiment is more valuable if and only if it is more informative. The more
informative experiment à la Blackwell allows more state-to-action mappings
for the concerned single-player decision problem. Proposition 3 thus strikes
a similar note. Indeed, because of common interest, the institution can be
interpreted as a dynamic decision situation that a single player faces, as
Example 4 in Section 4 suggests. It should be noted, however, that the in-
formation structure induced by an institution is endogenously generated via
messages, whereas that induced by an experiment is exogenously generated
via noisy signals.

In Blackwell (1951) the “more informative” order of experiments has a very
simple structural characterization, which can be verified by examining the
distribution functions representing the experiments. The rest of the section
is dedicated towards a goal in the same spirit, and gives us a method to
compare institutions by examining their structures.

To preview, the structural characterization of the dominance order takes
the following form: Institution (T ′, P ′,M ′) dominates institution (T, P,M)
if and only if (T ′, P ′,M ′) can be obtained from (T, P,M) by a sequence of
operations, each being of one of the following five types: (1) expanding, (2)
refining, (3) trimming, (4) relabeling, and (5) merging. Each type of oper-
ation involves adding or removing messages, perceptions, or both. Before
elaborating on the operations, we first introduce a useful auxiliary concept,
the improper institution, which is the “intermediate product” produced in
the process of obtaining one institution from another using the operations.

Improper Institutions

An improper institutions has a similar message-perception backbone as
a (proper) institution introduced in Section 4. The only difference is that
the set of messages available to a player in an improper institution may
depend on which message profile he has received. Note that the improper
institution is a generalization of the (proper) institution. We extend the
system of notation denoting components of a (proper) institution to denote
the components of an improper institution: For each i ∈ N , Ti is the set of
message profiles player i may receive. Pi is a partition of Ti that represents
i’s perception. If i < N then for each h ∈ Ti, M(h) is the set of messages
available to i if the message profile he receives is h. Denote T = ∪i∈N Ti and
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P = ∪i∈N Pi. The tuple (T, P,M), whereM now denotes the correspondence
that determines the set of available messages for each received message
profile, is now used to represent an improper institution. Clearly, if (T, P,M)
is a proper institution then M(h) = Mi for each h ∈ Ti.
For a generic message profile h, let hj denote the jth component of h, let h(j)
denote the first j components of h, and let |h| denote the length of h. Thus
for any h ∈ Ti we have h = (h1, ..., hi−1), h(j) = (h1, ..., hj), and |h| = i− 1.
Given h ∈ Ti, message profile g ∈ T is said to be a descendant of h, and
h is said to be an ancestor of g, if g is an extension of h. Clearly, if g is a
descendant of h then h = g(|h|). Moreover, if g is a one-component extension
of h, then h is said to be the parent of g, and g is said to be a child of h.
Clearly, if h is the parent of g then h = g(|g| − 1). If h is the parent of g and
the last component of g is m, we sometimes denote g as h×m.

If distinct g and g′ are descendants of h such that (1) |g| = |g′|, and (2) gj = g′j
for any j 6= |h| + 1, then g and g′ are said to be h−cousins. Note that two
h−cousins only differ at the |h|th component. 6

Let P (h) denote the perception p ∈ P that contains message profile h.

We require that an improper institution (T, P,M) must satisfy the following
regularity conditions:

C1 Ti is nonempty for any i ∈ N .

C2 If h ∈ T then every ancestor of h is in T .

C3 If h ∈ T then h×m ∈ T if and only if m ∈M(h).

C4 If P (h) = P (h′) then M(h) = M(h′).
C1 and C2 imply that the graph representing (T, P,M) is a rooted tree with
N levels. C3 implies that the tree is generated by M . C4 implies that the
sets of available messages given different message profiles in the same per-
ception are the same.

Note that given C4, conditional on perception p ∈ Pi, player i cannot acquire
additional information on which particular message profile in p is the one he
has received by examining the set of currently available messages. There-
fore it causes no ambiguity to define M(p) as the set of messages available
to player i conditional on p.
Figure 2 shows the graph of an improper institution.
Given C1-C4, an improper institution induces a well-defined dynamic game
in which players sequentially take actions and send messages where the set
of available messages might be perception-dependent. The concepts of value
and dominance are naturally extended to improper institutions. Proposition
3 extends to improper institutions as well.

6Two message profiles with the same parent are also cousins by this definition.
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Figure 2

Proposition 4. Improper institution (T ′, P ′,M ′) dominates another improper
institution (T, P,M) if and only if C(T, P,M) ⊂ C(T ′, P ′,M ′).

For the rest of the section we will stop distinguishing between improper in-
stitutions and (proper) institutions, as all results apply to improper institu-
tions and thus to proper institutions as special cases. The word “institution”
will be used to refer to either.

Expanding

Expanding is the operation of creating a new institution (T ′, P ′,M ′) by adding
more messages to an existing institution (T, P,M), while maintaining the
perceptibility of the existing message profiles, that is, for any two message
profiles h and g in T , they are in the same perception under P ′ if and only if
they are in the same perception under P . The operation is defined formally
as follows.
Definition. (T ′, P ′,M ′) is obtained from (T, P,M) by expanding if:

E1 T ⊂ T ′.
E2 For any h, g ∈ T , P (h) = P (g) if and only if P ′(h) = P ′(g).

We say that (T, P,M) is a sub-institution of (T ′, P ′,M ′) if the latter is ob-
tained from the former by expanding. For example, the institution depicted
in Figure 4 is obtained from that depicted in Figure 3 by expanding, in par-
ticular, by making the additional message I available to Player 2.

The following lemma states that expansion creates a better institution.
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Figure 3 Figure 4

Lemma 2. If (T ′, P ′,M ′) is obtained from (T, P,M) by expanding then (T ′, P ′,M ′)
dominates (T, P,M).

Refining

Refining is the operation that improves the players’ observation of received
messages. Refining is formally defined as follows.

Definition. (T ′, P ′,M ′) is obtained from (T, P,M) by refining if T ′ = T ,
M ′ = M , and P ′i is a weak refinement of Pi for each i ∈ N .

Thus under (T ′, P ′,M ′) a player perceives received messages (weakly) more
accurately than he does under (T, P,M). For example, the institution de-
picted in Figure 6 is obtained from that depicted in Figure 5 by refining, in
particular Player 2’s observation of received messages is strictly improved.

It is plain to see that any strategy profile of (T, P,M) can be “replicated”
in (T ′, P ′,M ′) to produce the same outcome. Therefore (T ′, P ′,M ′) domi-
nates (T, P,M) by Proposition 4. This observation is formally asserted in
the following lemma. The proof is omitted.

Lemma 3. If (T ′, P ′,M ′) is obtained from (T, P,M) by refining then (T ′, P ′,M ′)
dominates (T, P,M).

Trimming

In real life, two words have the same communicative function if they are
synonymous. Therefore one of the synonymous words may be viewed as
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Figure 5 Figure 6

functionally redundant. Excluding the redundant word from the vocabulary
does not compromise communication. Trimming is the analogous operation
of excluding a redundant message from an institution.

Before elaborating on trimming, it is helpful to first understand synonymity
and redundancy within an institution. Whether two words in real life are
synonymous or not often depends on the context. In one context they are
synonymous; in another they have different meanings. Within an institution
(T, P,M), whether two messages available to player i are synonymous or not
also depends on the context, and the context is the message profile h ∈ Ti
that player i has received. Given h ∈ Ti, messagesmi ∈M(h) andm′i ∈M(h)
are considered to be synonymous if:

• Player i+ 1 cannot distinguish between h×mi and h×m′i.
• Regardless of what message mi+1 that player i+ 1 sends, player i+ 2

cannot distinguish between h×mi ×mi+1 and h×m′i ×mi+1.
• Regardless of what message mi+2 that player i+ 2 sends, player i+ 3

cannot distinguish between h×mi×mi+1×mi+2 and h×m′i×mi+1×
mi+2.

• And so on for every player who moves after.
Therefore, keeping the messages from everyone else fixed, if player i unilat-
erally deviates from sending mi to sending m′i, no other player would per-
ceive the difference. The formal definition is given as follows.
Definition. Fix institution (T, P,M). For any h ∈ Ti where i < N , messages
mi ∈ M(h) and m′i ∈ M(h) are synonymous given h within (T, P,M) if
P (g) = P (g′) for any h−cousins g and g′ where g, g′ ∈ T , gi = mi and g′i = m′i.
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Within the institution depicted in Figure 7, Player 2’s messages G and I are
synonymous given message profile (G), because Player 3 cannot distinguish
between (G,G) and (G, I). SimilarlyG and I are synonymous given message
profile (L) as well.
If mi and m′i are synonymous given every h ∈ p within (T, P,M) for some
p ∈ Pi then we say mi and m′i are synonymous given p within (T, P,M).
Message mi may be considered as redundant given p. Trimming is the op-
eration that excludes the redundant message mi from the set of available
messages given p. The formal definition is as follows.
Definition. (T ′, P ′,M ′) is obtained from (T, P,M) by trimming if there
exist i < N , p ∈ Pi and mi ∈M(p) such that:

T1 (T ′, P ′,M ′) is a sub-institution of (T, P,M). Moreover h ∈ T\T ′ implies
h(i− 1) ∈ p and hi = mi.

T2 mi is synonymous to some m′i ∈M(p) given p within (T, P,M).

By T1, (T ′, P ′,M ′) is the institution corresponding to player i not provided
with message mi given perception p. T2 emphasizes that mi is indeed re-
dundant given p.

The institution depicted in Figure 8 is obtained from that depicted in Figure
7 by trimming off message I, which is synonymous to G and is therefore
redundant given Player 2’s only perception.

Figure 7 Figure 8

The following lemma asserts that trimming does not change an institution
functionally.

Lemma 4. If (T ′, P ′,M ′) is obtained from (T, P,M) by trimming then (T ′, P ′,M ′)
and (T, P,M) dominate each other.
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The proof is based on the observation that given perception p, player i cannot
use synonymous messages mi and m′i to effectively communicate different
pieces of information, because if i unilaterally changes from sending mi to
sendingm′i other players cannot perceive the change and hence will not react
differently. Therefore, excluding the redundant message mi from M(p) does
not compromise communication.

Relabeling

Relabeling is the operation of changing the message labels of an institution
without changing its essential structure. Intuitively, as along as distinct
messages have distinct labels, what those labels are should not matter to
the use of the messages. In the jury voting case, for example, changing the
vote labels from Guilty and Innocent toG and I only changes the institution
superficially.

For an institution, the operation of relabeling changes message labels on
a perception-by-perception basis. The operation can be thought of as the
following process: First relabel the messages available to Player 1 given his
only perception. Then relabel the messages available to Player 2 given each
of his perceptions. The process continues until Player N − 1’s messages are
relabeled. The following is a formal definition.

Definition. (T ′, P ′,M ′) is obtained from (T, P,M) by relabeling if there is
a relabeling function γ : T → T ′ such that:

R1 γ is a bijection.
R2 γ preserves parent-child relation.

R3 P (h) = P (g) if and only if P ′(γ(h)) = P ′(γ(g)).

R4 For any i < N , p ∈ Pi and mi ∈ M(p) there is a message κ(mi, p) such
that γ(h×mi) = γ(h)× κ(mi, p) for any h ∈ p.

The definition is given in terms of the final product instead of the construc-
tion. To link the definition to the construction, note that R1, R2 and R3 imply
that the graphs of (T, P,M) and (T ′, P ′,M ′) are isomorphic if the edges are
label-less. h ∈ T and γ(h) ∈ T ′ are “essentially the same” message profile
except that the labels of the messages they contain are different. R2 implies
that if after relabeling the message profile (m1, ...,mi) becomes (m′1, ...,m

′
i),

then for any message profile h whose first i components are (m1, ...,mi), the
first i components of the relabeled counterpart γ(h) are (m′1, ...,m

′
i). R4 is re-

lated to the perception-by-perception basis on which relabeling is conducted:
Every edge with label mi issued from perception p is given the same new la-
bel κ(mi, p).
Intuitively, relabeling should be invertible, that is, we should be able to re-
trieve (T, P,M) from (T ′, P ′,M ′) by “labelling back”, where “labelling back”
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itself an operation of relabeling. The following lemma confirms this intu-
ition.

Lemma 5. If (T ′, P ′,M ′) is obtained from (T, P,M) by relabeling with re-
labeling function γ then (T, P,M) is obtained from (T ′, P ′,M ′) by relabeling
with relabeling function γ−1.

Figure 9 shows an example of relabeling. The institution depicted in Panel
(c) is obtained from that depicted in Panel (a) by relabeling, where Panel (b)
shows the implied κ described in R4. Note that both edges with the label
H issuing from the only perception of Player 2 are relabeled to L, and both
edges with label L issuing from the same perception are relabeled to H, as
R4 requires that edges with the same label issuing from the same perception
are relabeled identically.

(a) (b) (c)

Figure 9

The following lemma asserts that relabeling does not change an institution
functionally.

Lemma 6. If (T ′, P ′,M ′) is obtained from (T, P,M) by relabeling then (T ′, P ′,M ′)
and (T, P,M) dominate each other.

Merging

Given institution (T, P,M), the purpose of merging is to produce a new insti-
tution in which two perceptions p ∈ Pi and q ∈ Pi of some player i < N where
|Ai| = 1 are combined into one perception p ∪ q, where the new institution
is functionally equivalent to the old institution.
It is useful to first motivate the idea of merging. Suppose a speaker wishes
to convey his private information x to a listener using one of the two mes-
sages L and R. There are two possible contexts, A and B, which are rele-
vant to the listener’s decision problem. If the speaker knows the context, he
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can use a communication strategy that depends on the context and x. Sup-
pose instead the speaker cannot observe the context but has four available
messages {m1,m2,m3,m4}. In this situation, by using the following com-
munication strategy the speaker can convey x as precisely as if he knew the
context but only had two available messages:

1. Send m1 if given x he would send L in context A and L in context B.
2. Send m2 if given x he would send R in context A and R in context B.
3. Send m3 if given x he would send L in context A and R in context B.
4. Send m4 if given x he would send R in context A and L in context B.

Merging is based on the same idea. On one hand we make the observation of
player i less accurate by combining his perceptions p and q into one percep-
tion p∪q. On the other hand we compensate the possible loss of communica-
tive capacity by providing player i with more messages given the combined
perception p ∪ q.

In practice, merging involves the following four steps:
Step 1 If |M(p)| < |M(q)| then the institution is expanded by making more

messages available to player i given p, so that the new sets of available
messages M̂(p) and M̂(q) are equal in size. Each of the new messages
is set to be synonymous to some existing message given p.

Step 2 Relabel the messages in M̂(p) and M̂(q) so that the new sets of mes-
sages M̃(p) and M̃(q) are the same, not only in terms of size but also
in terms of labels.

Step 3 For each pair of distinct messages (mi,m
′
i) ∈ M̃(p)× M̃(p), expand the

institution by making a new message n(mi,m
′
i) available to player i

given both p and q. n(mi,m
′
i) is set to be synonymous to mi given p,

and to m′i given q.

Step 4 Combine p and q into one perception p ∪ q.

Steps 1 and 2 make the technical preparation so that after combining p and
q the resulting structure is an institution. Step 3 introduces redundant mes-
sages. However, some of the redundant messages will no longer be redun-
dant after the merge of p and q. Given the less accurate perception p ∪ q,
player i can use message n(mi,m

′
i) to convey the private information that

he would use mi to convey if he knew the perception was p and would use
m′i to convey if he knew the perception was q.
The formal definition of merging is complicated, and is thus relegated to
Section A.9 in the Appendices.
Figure 10 shows merging in those steps. Panel (a) depicts the original in-
stitution. The two perceptions {H} and {L} of Player 2 are to be merged.
Panel (b) depicts the end product of Step 1, that is, an additional message
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A, set to be synonymous to B given perception {L}, is introduced so that
the number of messages available to Player 2 given both perceptions are the
same. Panel (c) depicts the end product of Step 2, that is, after relabeling,
messages available to Player 2 given both perceptions have the same labels.
Panel (d) depicts the end product of Step 3, that is, introducing additional
redundant messages to both perceptions, where, for example, n(H,L) is set
to be synonymous toH given perception {H}, and to L given perception {L}.
Panel (d) depicts the end product of Step 4, that is, combining the two per-
ceptions.

(a) (b) (c)

(d) (e)

Figure 10

Steps 1, 2 and 3 involve either relabeling or introducing redundant mes-
sages (the inverse operation of trimming), and therefore by Lemmas 6 and 4
do not change the institution functionally. Following the intuition of the ear-
lier example, going from Step 3 to Step 4 should not change the institution
functionally either. The following lemma confirms the intuition.

Lemma 7. If (T ′, P ′,M ′) is obtained from (T, P,M) by merging then (T ′, P ′,M ′)
and (T, P,M) dominate each other.

Now we are ready to state the structural characterization of dominance.

Theorem 1. Given two institutions (T, P,M) and (T ′, P ′,M ′):
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1. (T ′, P ′,M ′) dominates (T, P,M) if (T ′, P ′,M ′) is obtained from (T, P,M)
by a sequence of operations of expanding, refining, trimming, relabel-
ing or merging.

2. For any i ∈ N there is ti ∈ N such that if |Xi| ≥ ti then (T ′, P ′,M ′)
dominates (T, P,M) only if (T ′, P ′,M ′) can be obtained from (T, P,M)
by a sequence of operations of expanding, refining, trimming, relabeling
or merging.

Part 1, the “if” direction, of the theorem is an immediate consequence of
Lemmas 2, 3, 4, 6 and 7.
The proof of Part 2, the “only if” direction, can be broken into the following
steps. First, it is clear that after applying merging operations to (T, P,M)
for finitely many times we can obtain some (T̂ , P̂ , M̂) such that |T̂i| = 1 for
any i < N where |Ai| = 1. If |Xi| is sufficiently large for each i, there is
a strategy profile ŝ ∈ S(T̂ , P̂ , M̂) such that every non-redundant message
in (T̂ , P̂ , M̂) is utilized. Moreover, any institution (T ′, P ′,M ′) that can in-
duceααα(·|ŝ) in pure strategies must embed the relabeled version of (T̂ , P̂ , M̂)’s
non-redundant backbone (T ∗, P ∗,M∗) as its sub-institution. (T ∗, P ∗,M∗) is
shown to be obtained from (T̂ , P̂ , M̂) by refining and trimming. Since the re-
labeled version of (T ∗, P ∗,M∗) is embedded in (T ′, P ′,M ′), (T ′, P ′,M ′) can
be obtained from (T ∗, P ∗,M∗) by relabeling and expanding.
If the state space is not rich enough, that is, if |Xi| < ti for some i ∈ N , then
Part 2 of Theorem 1 need not be true. Indeed, if |Xi| is sufficiently small for
every i ∈ N then (T, P,M) and (T ′, P ′,M ′) may both accommodate precise
communication, despite that one may not be obtainable from the other by a
sequence of the five types of operations. It is worth noting that the value of
ti depends on the dominated institution (T, P,M) only.

6 Applications

6.1 Voting Revisited

In Example 1 of Section 4 we have described how to model voting system
(r, d, t) in terms of an institution. Because voting systems are finite mecha-
nisms for a common objective, the definition of value extends to them, and
the dominance order can also be extended to compare them. Let CV (r, d, t)
denote the set of all mappings from X1 × ... × X|J| to Y inducible in pure
strategies under voting system (r, d, t). A result analogous to Proposition 3
holds for voting systems.

Lemma 8. Voting system (r′, d′, t′) dominates another voting system (r, d, t)
if and only if CV (r, d, t) ⊂ CV (r′, d′, t′).
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Like Proposition 3, Lemma 8 is also a corollary of Proposition 8, because
Proposition 8 applies to any pair of finite mechanisms.
Let (T, P,M) be the institution representing (r, d, t). Recall that player |J |+1
represents the rule and P (z) = P (z′) if and only if d(z) = d(z′) for any z, z′ ∈
T|J|+1, where T|J|+1 is the set of all complete vote profiles. Let S(T, P,M |d)
denote the set of pure strategy profiles of (T, P,M) satisfying the following
condition:

V1 For any z ∈ T|J|+1, player |J |+1 chooses the action d(z) given perception
P (z).

V1 requires player |J |+ 1 to exactly follow the choice rule determined by d.
It is straightforward to see that for any pure strategy profile s under voting
system (r, d, t) there is a corresponding strategy profile s′ ∈ S(T, P,M |d)
under institution (T, P,M) such that s and s′ lead to the same choice of y ∈ Y
given any vector of private signals (x1, ..., x|J|), and vice versa, because, as
discussed in Example 1 in Section 4, the game induced by (r, d, t) and the
game induced by (T, P,M) are essentially the same if player |J | + 1 has to
choose according to d.

Let C(T, P,M |d) denote the set of all social choice functions inducible by
any s ∈ S(T, P,M |d). The following lemma results immediately from the
observation in the previous paragraph. The proof is omitted.

Lemma 9. Voting system (r′, d′, t′) dominates another voting system (r, d, t)
if and only if C(T, P,M |d) ⊂ C(T ′, P ′,M ′|d′) where (T, P,M) and (T ′, P ′,M ′)
are institutions respectively representing (r, d, t) and (r′, d′, t′).

It is possible to compare voting systems by analyzing the institutions repre-
senting them. However, it should be noted that one institution dominating
another institution is usually not sufficient for the voting system that one
represents to dominate the voting system that the other represents, due to
the additional constraint imposed on the strategy of player |J |+ 1. Despite
this caveat, the machinery developed in Section 5 still provides tools for us
to conclude the following results.

Proposition 5. For any voting system (r, d, t):

1. (r, d, t) is dominated by voting system (r, d, t′) where t′ is the full disclo-
sure policy.

2. If t is the full disclosure policy, then (r, d, t) is dominated by voting sys-
tem (r′, d, t) where r′ is a sequential procedure.

3. If t is the full disclosure policy, then (r, d, t) is dominated by voting sys-
tem (r, d′, t) where d′ is a rule under which the collective choice is not
determined before voting in the last stage (according to r) has taken
place.
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Parts 1 and 2 are based on the observation that allowing full disclosure
or making the procedure sequential corresponds to refining the institution
that represents the voting system. Moreover, since these modifications do
not change player |J |+1’s perception, player |J |+1 can still choose according
to the rule d.
Part 3 is based on the observation that, if the collective choice is determined
before voting in the last stage has taken place, then votes in the last stage be-
come redundant, because they cannot effectively carry private information
from those who vote in the last stage to affect the collective choice. Chang-
ing the rule to one that allows consideration of those last stage votes renders
them useful and thus leads to improvement.
An immediate implication of Proposition 5 is that, to find the optimal voting
system for any collective choice problem, it is sufficient to focus on ones that
have a sequential procedure, full disclosure policy, and a rule under which
the last voter is always pivotal.

It should be noted, however, that the last voter being always pivotal does
not mean that the rule depends entirely on his vote. For example, earlier
votes may effectively determine the set of candidates that the last voter can
choose from.

6.2 The Benefit of Complexity

An institution offers two kinds of instruments that facilitate communica-
tion: messages and perceptions. A more complex institution has more mes-
sages and perceptions. Lemmas 2 and 3 imply that complex institutions
weakly outperform less complex ones. In this section we investigate whether
the benefit of additional complexity is always strictly positive.

The complexity of institution (T, P,M) has two dimensions, one that con-
cerns the messages and the other the perceptions. The message-complexity
of (T, P,M) is measured by the vector (|M1|, ..., |MN−1|). The perception-
complexity of (T, P,M) is measured by the vector (|P1|, ..., |PN |).
We ask two questions:

1. Whether increasing the perception-complexity of an institution while
keeping the message-complexity fixed leads to a strictly better institu-
tion in terms of dominance.

2. Whether increasing the message-complexity of an institution while
keeping the perception-complexity fixed leads to a strictly better in-
stitution in terms of dominance.

The first question can be thought of as concerning the situation in which
messages are costly to provide, whereas perceptions are relatively cheap,
so that it is worthwhile to increase the number of perceptions as long as it
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strictly improves the institution. The second question can be thought of as
concerning the situation in which perceptions are costly but messages are
cheap.
For the rest of the subsection we assume that |Xi| is very large for each i ∈
N , that is, it is arbitrarily close to∞, so that the lower bound requirement
on |Xi| in Part 2 of Theorem 1 is satisfied for any institution we are going
to consider. Moreover, assume that every player has a non-singleton action
set. The assumptions are important to the results of the present subsection.
The answer to the first question is affirmative.

Proposition 6. Any institution (T, P,M) where |Pi| < |Ti| for some i ∈ N
is strictly dominated by some institution (T ′, P ′,M ′) where

1. |M ′j | = |Mj | for any j < N .

2. |P ′j | ≥ |Pj | for any j ∈ N .

The proof is based on the observation that if |P ′i | > |Pi| for some i then
(T, P ′,M) is not dominated by (T, P,M), because no operation of expanding,
refining, trimming, relabeling or merging can decrease the number of per-
ceptions of i (merging does not, because it only merges perceptions of players
with singleton action sets). If player i’s observation of received message pro-
files is not perfect under Pi (implied by |Pi| < |Ti|), then refining (T, P,M)
by strictly refining Pi strictly improves the institution.
The answer to the second question is also affirmative if the institution is
“mildly” complex.

Proposition 7. Suppose N ≥ 3. Any institution (T, P,M) where |Pi+1| ≥ 2
for some i ≥ 2 is strictly dominated by some institution (T ′, P ′,M ′) where

1. |P ′j | = |Pj | for any j ∈ N .

2. |M ′j | ≥ |Mj | for any j < N .

The result may not seem surprising at first sight, but let us illustrate a
concern which would suggest that additional messages might be of no ad-
ditional value at all. Suppose there are only two players: the speaker and
the listener. The listener has two perceptions. Clearly, if there are already
two messages available to the speaker, any additional message is going to
be redundant because it will be synonymous to one of the existing messages.
This example, which shows that the decision maker (the listener) is not able
to make use of more data (messages) because of the constraints on his data-
processing capacity (the number of perceptions), reflects a prominent phe-
nomenon, termed as data overload, in many real life situations.
Since an institution may face stringent message-processing constraints due
to limited perceptions, it is natural to expect that data overload will even-
tually occur, in particular when the existing message-complexity is already
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very high. However, Proposition 7 implies that even if there is only one
player that has multiple perceptions, data overload can still be avoided re-
gardless of the message-complexity of the existing institution. That there
are more than two players within the institution is crucial for this result.
Indeed, if there are only two players then data overload will eventually oc-
cur, as in the speaker-listener example. However, if there are more than
two players, it is possible to simultaneously enlarge the message sets for
multiple players and carefully arrange how other players perceive message
profiles containing these newly introduced messages, so that no additional
redundancy is created by the modification.

7 Concluding Remarks

This paper proposes a framework for modeling a general class of information-
aggregating institutions, introduces a robust Pareto order on institutions
thus modeled, and derives two characterizations of this order.

It is not difficult to extend the model to capture more complex institutions,
for example, those in which the players engage in conversation-like interac-
tive communication, those in which actions are observable to certain degree,
or those in which the players take actions after the communication phase
is over. In fact, any mechanism that tackles a common objective by infor-
mation aggregation can be captured by a straightforward extension of the
present model, because the essential part of the model is no more than a
partial structure of the extensive form game induced by the corresponding
mechanism. As a generalization of Proposition 3, Proposition 8 in the Ap-
pendices provides a characterization of the dominance order on all finite
mechanisms. It is natural to ask if Theorem 1 can also be generalized so
that other mechanisms can be compared structurally in a similar way. As
a first step in this direction, it is worthwhile investigating whether institu-
tions that only differ in the order in which players move may be compared
structurally.
To extend the analysis in a different direction, we can consider mildly re-
laxing the common interest assumption to the extent that institutions can
still be Pareto-ordered in a non-trivial way. One possibility, for example, is
that every player’s payoff only depends on his own action. Along with some
extension to the model, we may compare pure information sharing systems,
for example social networks, in which there is no need to coordinate actions.
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A Appendices

A.1 Proof of Proposition 1

Proof. Choose any voting system (r, d) and s ∈ ΣV (r). There is a sequen-
tial procedure r∗ such that r∗(i) > r∗(j) for any i, j ∈ J such that r(i) ≥
r(j). Thus if j’s vote is observable to i under r then it is also observable
to i under r∗. Let si(xi, (zj)r(j)<r(i)) denote i’s strategy given past votes
(zj)r(j)<r(i) and signal xi. Construct s′ ∈ ΣV (r∗) such that for every i ∈
J , s′i(xi, (z′j)r∗(j)<r∗(i)) = si(xi, (zj)r(j)<r(i)) if z′j = zj for any j such that
r(j) < r(i). Obviously s and s′ are outcome equivalent, implying u(s|r, d) =
u(s′|r∗, d). Thus maxσ∈ΣV (r) u(σ|r, d) ≤ maxσ∈ΣV (r∗) u(σ|r∗, d).

Let k be the last voter according to r∗. Construct d∗ such that d∗(z1, ..., zn) =
zk. Choose any ŝ ∈ ΣV (r∗). Construct s̃ ∈ ΣV (r∗) such that s̃ and ŝ agree for
every player i 6= k, and for any signal xk and past votes z−k,

s̃k(xk, z−k) =

{
d(z−k, G) if d(z−k, G) = d(z−k, I)

ŝk(xi, z−k) if d(z−k, G) 6= d(z−k, I) .

It is straightforward to verify that s̃ and ŝ are outcome equivalent, implying
u(ŝ|r∗, d) = u(s̃|r∗, d∗). Thus maxσ∈ΣV (r∗) u(σ|r∗, d) ≤ maxσ∈ΣV (r∗) u(σ|r∗, d∗).
It follows that maxσ∈ΣV (r) u(σ|r, d) ≤ maxσ∈ΣV (r∗) u(σ|r∗, d∗), implyingU(r, d) ≤
U(r∗, d∗) by Lemma 1. �

A.2 Proof of Proposition 2

For any procedure r and s ∈ ΣV (r), let Pr(G|z, s) denote the probability that
ω = G conditional on the jurors following s and the realized votes are z. The
proof is assisted by the following lemma.

Lemma 10. For any procedure r, if d∗ ∈ argmaxdU(r, d) then for any s∗ ∈
ΣV (r) such that u(s∗|r, d∗) = U(r, d∗) and vote profile z ∈ {G, I}n,

d∗(z) =

{
G if Pr(G|z, s∗) > 0.5,

I if Pr(G|z, s∗) < 0.5.

Proof. Fix procedure r. Suppose there is d∗ ∈ argmaxdU(r, d) and s∗ ∈ ΣV (r)
where u(s∗|r, d∗) = U(r, d∗) such that d∗ does not satisfy the condition in
the lemma. Define K =

{
z ∈ {G, I}n : d∗(z) = I and Pr(G|z, s∗) > 0.5

}
and L =

{
z ∈ {G, I}n : d∗(z) = G and Pr(G|z, s∗) < 0.5

}
. By assumption

K ∪ L 6= ø. Let qω(z) be the probability that the realized vote profile is z
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conditional on ω and the jurors following s∗. Construct rule d′ such that for
any z ∈ {G, I}n,

d′(z) =


G if Pr(G|z, s∗) > 0.5,

I if Pr(G|z, s∗) < 0.5,

d∗(z) if Pr(G|z, s∗) = 0.5.

It follows that d′(z) = d∗(z) if z /∈ K ∪ L. We have

u(s∗|r, d′)− u(s∗|r, d∗) =
∑
z∈K

(
πqG(z)− (1− π)qI(z)

)
+
∑
z∈L

(
(1− π)qI(z)− πqG(z)

)
.

If z ∈ K then Pr(G|z, s∗) = πqG(z)
πqG(z)+(1−π)qI(z) > 0.5, implying πqG(z) − (1 −

π)qI(z) > 0. Similarly if z ∈ L then (1− π)qI(z)− πqG(z) > 0. It follows that
u(s∗|r, d′) − u(s∗|r, d∗) > 0 because K ∪ L 6= ø. Therefore U(r, d′) > U(r, d∗),
contradicting the assumption that d∗ ∈ argmaxdU(r, d). �

Proof of Proposition 2

Fix the simultaneous procedure r. Choose any d′ ∈ argmaxdU(r, d) and
s′ ∈ ΣV (r) such that u(s′|r, d′) = U(r, d′). Lemma 10 implies that for any
vote profile z ∈ {G, I}n,

d′(z) =

{
G if Pr(G|z, s′) > 0.5,

I if Pr(G|z, s′) < 0.5.

For each i ∈ J let piω denote the probability that juror i votes G conditional
on ω and s′. Note that since f iω(xi) > 0 for any i ∈ J , xi ∈ Xi and ω ∈ {G, I},
piI = 0 if and only if piG = 0. Construct s∗ that satisfies the following for any
i ∈ J :

• If piG /∈ {0, 1}:

– If piG/piI ≥ 1 then s∗ prescribes the same strategy for i as s′.
– If piG/piI < 1 then given any signal xi, i votes G with the same

probability that he votes I given xi under s′.
• If piG ∈ {0, 1} then i votes G with probability 0.5 regardless of xi.

Construct d∗ such that d∗(z) = G if and only if Pr(G|z, s∗) ≥ 0.5. It is
straightforward to verify that u(s′|r, d′) = u(s∗|r, d∗). Let tiω denote the prob-
ability that juror i votes G conditional on ω and s∗. Clearly 0 < tiω < 1 for
ω ∈ {G, I}. Moreover tiG/tiI = piG/p

i
I if piG/piI ≥ 1, tiG/tiI = (1 − piG)/(1 − piI)

if piG/piI < 1, and tiG/t
i
I = 1 if piG ∈ {0, 1}. Consequently tiG/tiI ≥ 1 for any

i ∈ J . Recall that for any vote profile z = (z1, ..., zn), 1(zi) = 1 if zi = G or 0
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otherwise. We have

Pr(G|z, s∗) = 1
/[

1 +
(1− π)

π

∏
i∈J,1(zi)=1

tiI
tiG

∏
i∈J,1(zi)=0

1− tiI
1− tiG

]
.

Pr(G|z, s∗) ≥ 0.5 if and only if

(1− π)

π

∏
i∈J,1(zi)=1

tiI
tiG

∏
i∈J,1(zi)=0

1− tiI
1− tiG

≤ 1,

or equivalently

log
1− π
π

+
∑

i∈J,1(zi)=1

log
tiI
tiG

+
∑

i∈J,1(zi)=0

log
1− tiI
1− tiG

≤ 0

=⇒ log
1− π
π

+
∑
i∈J

1(zi) log
tiI
tiG

+
∑
i∈J

(1− 1(zi)) log
1− tiI
1− tiG

≤ 0

=⇒
∑
i∈J

1(zi) log
1− tiI
1− tiG

tiG
tiI
≥ log

1− π
π

+
∑
i∈J

log
1− tiI
1− tiG

.

Let wi = log
1−tiI
1−tiG

tiG
tiI

and k = log 1−π
π +

∑
i∈J log

1−tiI
1−tiG

. wi ≥ 0 because
1−tiI
1−tiG

tiG
tiI
≥ 1. Thus d∗(z) = G if and only if

∑
i∈J wi1(zi) ≥ k. �

A.3 Notation for Proofs of Results in Section 5

Introduce the following notation for the game induced by (T, P,M), where
(T, P,M) can either be an institution or an improper institution. The no-
tation will be used throughout the Appendices for the proofs of results in
Section 5.
• S(T, P,M): the set of all pure strategy profiles of the game induced by

(T, P,M).
• (xi, p): a typical information set of player i, where xi is to his private

information about the state, and p is his perception that contains the
message he has received.

• For s ∈ S(T, P,M), i ∈ N and x = (x1, ..., xN ) ∈ X,
ai(xi, p|s): i’s choice of action under s given (xi, p).
mi(xi, p|s): (if i < N ) i’s choice of message under s given (xi, p).
ρi(x|s) : the message profile i receives conditional on x and s.
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αi(x|s) : the action i takes conditional on x and s.
µi(x|s) : the message i sends conditional on x and s.
ρj(x|s, i, h,mi): the message profile that player j > i receives con-
ditional on (1) every player after i follows s, (2) player i receives
h ∈ Ti, (3) player i sends message mi ∈M(h).

The following equalities hold by definition:

αi(x|s) = ai(xi, P t(ρi(x|s))|s),
µi(x|s) = mi(xi, P (ρi(x|s))|s),
ρi+1(x|s) = ρi(x|s)× µi(x|s).

A.4 Proof of Proposition 3

We will prove a more general result which implies Proposition 3 as a corol-
lary.

It is straightforward to extend the definition of value to any mechanism Γ
whose set of outcomes is a subset ofA. Then we can also extend the definition
of dominance: Mechanism Γ′ dominates mechanism Γ if the value of Γ′ is
weakly higher than the value of Γ for any common objective.
Fix a mechanism Γ. Let S(Γ) denote the set of all pure strategy profiles of Γ.
LetC(Γ) denote the set of all social choice functions inducible by a pure strat-
egy profile of Γ. For s ∈ S(Γ) let v(s|Γ, φ, F ) denote the common expected
payoff achieved by s in the game induced by Γ and (φ, F ). Let V (Γ, φ, F )
denote the value of Γ for (φ, F ).

First we show a lemma.

Lemma 11. V (Γ, φ, F ) = maxs∈S(Γ) v(s|Γ, φ, F ) for any finite mechanism Γ
and common objective (φ, F ).

Proof: Fix Γ and (φ, F ). Let Σ(Γ) denote the set of all strategy profiles of
Γ. For ε ∈ (0, ε) where ε is sufficiently small let Γ(ε) denote the perturbed
version of Γ such whenever a player chooses a generic action (to be distin-
guished from the action ai that player i contributes to the common objective)
as a realization of a possibly mixed strategy, his chosen action will realize
with probability 1− (n− 1)ε where n is the total number of generic actions
available at this point, and each of the other n−1 generic actions will realize
with probability ε.
For any σ ∈ Σ(Γ) letw(σ, ε) denote the common expected payoff achieved by σ
in Γ(ε). Fix ε ∈ (0, ε). argmaxσ∈Σ(Γ)w(σ, ε) is nonempty because Σ(Γ) is com-
pact andw(·, ε) is continuous in its first argument. Choose σ̂ ∈ argmaxσ∈Σw(σ, ε).
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Let β̂ denote the belief system derived from σ̂ using Bayes’ rule in Γ(ε). Sup-
pose there is an information set K of player i such that under σ̂ player i is
not best responding. Thus i would find it profitable to deviate to some strat-
egy σ′i in K. Let σ′ denote the strategy profile under which i unilaterally
deviates to σ′i in K. Clearly i’s expected payoff under σ′ in Γ(ε) is strictly
higher than that under σ̂ because K is reached with strictly positive prob-
ability, implying w(σ′, ε) > w(σ̂, ε), contradicting the choice of σ̂. We have
thus established that (σ̂, β̂) is a perfect Bayesian equilibrium of Γ(ε).
Construct pure strategy profile ŝ such that for each player i, ŝ prescribes a
pure strategy that is in the support of the (possibly mixed) strategy taken
by i under σ̂. That σ̂ being a perfect Bayesian equilibrium of Γ(ε) implies
w(ŝ, ε) = w(σ̂, ε). Thusw(ŝ, ε) = maxσ∈Σ(Γ) w(σ, ε), implying maxs∈S(Γ) w(s, ε) =
maxσ∈Σ(Γ) w(σ, ε).
Note that, for any fixed σ, w(σ, ε) is a polynomial function of ε of finite de-
grees. Since S(Γ) is finite, for some η > 0 there is s∗ ∈ S(Γ) such that
w(s∗, ε) = maxs∈S(Γ) w(s, ε) for any ε < η. It follows that s∗ ∈ argmaxσ∈Σ(Γ)w(σ, ε)
if ε < η. Let β∗(ε) be the belief system derived from s∗ using Bayes’ rule
in Γ(ε). s∗ ∈ argmaxσ∈Σ(Γ)w(σ, ε) implies (s∗, β∗(ε)) is a perfect Bayesian
equilibrium of Γ(ε) by the argument in the second paragraph of the proof.
Note that β∗(ε) is continuous in ε and thus β∗ = limε→0 β

∗(ε) exists. Clearly
(s∗, β∗) is a perfect Bayesian equilibrium of the unperturbed game. Suppose
there is σ̃ ∈ Σ(Γ) such that v(σ̃|Γ, φ, F ) > v(s∗|Γ, φ, F ). Since limε→0 w(σ, ε) =
v(σ|Γ, φ, F ) for any σ, there is some η̃ > 0 such that w(σ̃, ε) > w(s∗, ε) for any
ε < η̃, contradicting that s∗ ∈ argmaxσ∈Σ(Γ)w(σ, ε) for any ε < η. Hence
s∗ ∈ argmaxs∈Σ(Γ)v(s|Γ, φ, F ). It follows that V (Γ, φ, F ) = v(s∗|Γ, φ, F ) =
maxs∈S(Γ) v(s|Γ, φ, F ). �

Proposition 8. If Γ′ and Γ are finite mechanisms then Γ′ dominates Γ if and
only if C(Γ) ⊂ C(Γ′).

Proof: (The “if” direction.) Suppose C(Γ) ⊂ C(Γ′). Fix (φ, F ) and choose
s ∈ argmaxS(Γ)v(s|Γ, φ, F ). By assumption there is s′ ∈ S(Γ′) such that
ααα(·|s′) = ααα(·|s). It follows that

v(s′|Γ′, φ, F ) =
∑
x∈X

F (x)φ(ααα(x|s′),x)

=
∑
x∈X

F (x)φ(ααα(x|s),x) = v(s|Γ, φ, F ).

By Lemma 11, V (Γ′, φ, F ) ≥ v(s′|Γ′, φ, F ) = v(s|Γ, φ, F ) = V (Γ, φ, F ), imply-
ing that Γ′ dominates Γ because (φ, F ) is arbitrarily chosen.
(The “only if” direction.) Suppose Γ′ dominates Γ. Choose any s ∈ S(Γ).
Construct φ such that φ(a,x) = 1 if a = ααα(x|s) and φ(a,x) = 0 otherwise.
Choose F that is strictly positive on X. Clearly v(s|Γ, φ, F ) = 1. By Lemma
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11, that Γ′ dominates Γ implies

max
s∈S(Γ′)

v(s|Γ′, φ, F ) ≥ max
s∈S(Γ)

v(s|Γ, φ, F ) = 1,

which in turn implies there is s′ ∈ S(Γ′) such that v(s′|Γ′, φ, F ) ≥ 1. If
ααα(y|s′) 6= ααα(y|s) for some y ∈ X then

v(s′|Γ′, φ, F ) =
∑
x∈X

F (x)φ(ααα(x|s′),x) ≤ 1− F (y) < 1,

a contradiction. Thus ααα(x|s′) = ααα(x|s) for any x ∈ X, implying C(Γ) ⊂ C(Γ′)
because s is arbitrarily chosen. �

A.5 Proof of Lemma 2

Proof. Suppose (T ′, P ′,M ′) is obtained from (T, P,M) by expanding. E2
implies that for any p ∈ P ′ where p ∩ T 6= ø there is τ(p) ∈ P such that
τ(p) = p∩T . E1 impliesM(τ(p)) ⊂M ′(p). Choose s ∈ S(T, P,M). Construct
s′ ∈ S(T ′, P ′,M ′) such that for any i ∈ N , xi ∈ Xi and p ∈ P ′i where p∩T 6= ø,

ai(xi, p|s′) = ai(xi, τ(p)|s),
(if i < N ) mi(xi, p|s′) = mi(xi, τ(p)|s).

To verify that s′ is properly defined, observe that for any p ∈ P ′i where p ∩
T 6= ø we have mi(xi, p|s′) = mi(xi, τ(p)|s) ∈ M(τ(p)) ⊂ M ′(p). Choose any
x = (x1, ..., xN ) ∈ X. Clearly ρ1(x|s′) = ρ1(x|s). Suppose ρi(x|s′) = ρi(x|s)
for any i ≤ k for some k ≥ 1. Thus

µk(x|s′) = mk(xk, P
′(ρk(x|s′))|s′) = mk(xk, τ(P ′(ρk(x|s′)))|s)

= mk(xk, P (ρk(x|s′))|s) = mk(xk, P (ρk(x|s))|s) = µk(x|s).

It follows that

ρk+1(x|s′) = ρk(x|s′)× µk(x|s′) = ρk(x|s)× µk(x|s) = ρk+1(x|s).

Thus ρi(x|s′) = ρi(x|s) for any i ∈ N , implying

αi(x|s′) = ai(xi, P
′(ρi(x|s′))|s′) = ai(xi, τ(P ′(ρi(x|s′)))|s)

= ai(xi, P (ρi(x|s′))|s) = ai(xi, P (ρi(x|s))|s) = αi(x|s).

Thus ααα(·|s′) = ααα(·|s), implying C(T, P,M) ⊂ C(T ′, P ′,M ′) since s is arbitrar-
ily chosen. The lemma then follows immediately from Proposition 4. �
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A.6 Proof of Lemma 4

Two lemmas are used to assist the proof.

Lemma 12. Fix (T, P,M). For any i < N and h ∈ Ti, if mi,m
′
i ∈ M(h) are

synonymous given hwithin (T, P,M) thenP (ρj(x|s, i, h,mi)) = P (ρj(x|s, i, h,m′i))
for any j > i, x ∈ X and s ∈ S(T, P,M).

Proof. Choose any x = (x1, ..., xN ) ∈ X, s ∈ S(T, P,M), i < N , h ∈ Ti and
mi,m

′
i ∈M(h) such thatmi andm′i are synonymous given hwithin (T, P,M).

For any j > i denote gj = ρj(x|s, i, h,mi) and f j = ρj(x|s, i, h,m′i).
Clearly gi+1 = h ×mi and f i+1 = h ×m′i. Thus gi+1 and f i+1 are h-cousins
where gi+1

i = mi and f i+1
i = m′i. It follows by synonymity that P (gi+1) =

P (f i+1). Suppose gj and f j are h-cousins, where gji = mi and f ji = m′i, for
any j ≤ k for some k ≥ i+ 1.
P (gk) = P (fk) by synonymity. Note that gk+1 = gk × mk(xk, P (gk)|s) and
fk+1 = fk ×mk(xk, P (fk)|s). P (gk) = P (fk) implies the last components of
gk+1 and fk+1 are identical, and hence gk+1 and fk+1 are h-cousins where
gk+1
i = mi and fk+1

i = m′i by the inductive hypothesis. Hence P (gk+1) =
P (fk+1) by synonymity. The present lemma follows by the principle of induction.�

Lemma 13. If (T ′, P ′,M ′) is obtained from (T, P,M) by trimming such that
there exist i < N , p ∈ Pi and mi,m

′
i ∈ M(p) satisfying T1 and T2, then for

any j < N and p′ ∈ P ′j :

1. There is ζ(p′) ∈ Pj such that p′ ⊂ ζ(p′).

2. If ζ(p′) 6= p then M ′(p′) = M(ζ(p′)).

3. If ζ(p′) = p then M ′(p′) = M(p)\{mi}.

Moreover, |P ′j | = |Pj | for any j ∈ N .

Proof. Part 1 follows from T1 immediately.

To show Parts 2 and 3, choose any j < N and p′ ∈ P ′j . Note that M ′(p′) ⊂
M(ζ(p′)) by T1. If ζ(p′) 6= p then for any h ∈ p′ and m̂j ∈ M(h) we have
h × m̂j ∈ T ′ by T1, implying Part 2. If ζ(p′) = p then j = i. Note that for
any h ∈ p′ and m̂i ∈M(h) we have h× m̂i ∈ T ′ if and only if m̂i 6= mi by T1,
implying Part 3.
Pick any j ∈ N . If j ≤ i then Tj = T ′j and thus P ′j = Pj by T1. If j > i then
|P ′j | ≤ |Pj | by T1. If |P ′j | < |Pj | then there is some p̂ ∈ Pj such that h /∈ T ′ for
any h ∈ p̂. Choose any h ∈ p̂. It follows by T1 that h(i− 1) ∈ p and hi = mi.
It then follows by T2 that there exists some h′ ∈ p̂ such that h′(i−1) ∈ p and
h′i = m′i. Hence h′ ∈ T ′ by T1, a contradiction. Therefore |P ′j | = |Pj | for any
j ∈ N .
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Proof of Lemma 4. Suppose (T ′, P ′,M ′) is obtained from (T, P,M) by trim-
ming such that there exist i < N , p ∈ Pi and mi,m

′
i ∈ M(p) satisfying T1

and T2. Since (T ′, P ′,M ′) is a sub-institution of (T, P,M), Lemma 2 implies
(T, P,M) dominates (T ′, P ′,M ′).
Now show that (T ′, P ′,M ′) dominates (T, P,M). By assumption there are
i < N , h ∈ Ti, p ∈ Pi and mi,m

′
i ∈ M(p) such that mi and m′i are syn-

onymous given p within (T, P,M). Choose any s ∈ S(T, P,M). Construct
ŝ ∈ S(T, P,M) that agrees with s except in the following: mi(xi, p|ŝ) = m′i
for any xi ∈ Xi such that mi(xi, p|s) = mi.
Choose any x = (x1, ..., xN ) ∈ X. If ρi(x|s) /∈ p ormi(xi, p|s) 6= mi then clearly
ρj(x|ŝ) = ρj(x|s) for any j ∈ N . Suppose ρi(x|s) ∈ p and mi(xi, p|s) = mi.
Obviously ρj(x|ŝ) = ρj(x|s) for any j ≤ i. Denote h = ρi(x|s). For any j > i
we have

P (ρj(x|ŝ)) = P (ρj(x|ŝ, i, h,m′i))
= P (ρj(x|ŝ, i, h,mi))

= P (ρj(x|s, i, h,mi))

= P (ρj(x|s))

where the first line is due to h = ρi(x|ŝ) and mi(xi, p|ŝ) = m′i, the second
line is due to Lemma 12 because mi and m′i are synonymous given h within
(T, P,M), the third line is due to the fact that ŝ and s agree for every player
after i, and the fourth line is due to ρi(x|s) = h and mi(xi, p|s) = mi. By
induction P (ρj(x|ŝ)) = P (ρj(x|s)) for any j ∈ N . Therefore

αj(x|ŝ) = aj(xj , P (ρj(x|ŝ))|ŝ) = aj(xj , P (ρj(x|s))|ŝ) = aj(xj , P (ρj(x|s))|s)

for any j ∈ N . Hence ααα(·|ŝ) = ααα(·|s).

By Part 1 of Lemma 13, for each j ∈ N and p′ ∈ P ′j there is ζ(p′) ∈ Pj such
that p′ ⊂ ζ(p′). Construct s′ ∈ S(T ′, P ′,M ′) such that for any j ∈ N , xj ∈ Xj

and p′ ∈ P ′j ,

aj(xj , p
′|s′) = aj(xj , ζ(p′)|ŝ),

(if j < N ) mj(xj , p
′|s′) = mj(xj , ζ(p′)|ŝ).

s′ is properly defined if and only if mj(xj , p
′|s′) ∈ M ′(p′) for any j < N ,

xj ∈ Xj and p′ ∈ P ′j . To verify it, observe that if ζ(p′) 6= p thenmj(xj , p
′|s′) =

mj(xj , ζ(p′)|ŝ) ∈M(ζ(p′)) = M ′(p′) by Part 2 of Lemma 13; whereas if ζ(p′) =
p then we have j = i and moreover mi(xi, p

′|s′) = mi(xi, p|ŝ) ∈M(p)\{mi} =
M ′(p′) by Part 3 of Lemma 13 because by construction mi(xi, p|ŝ) 6= mi.
Choose any x = (x1, ..., xN ) ∈ X. Clearly ρ1(x|s′) = ρ1(x|ŝ). Suppose
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ρj(x|s′) = ρj(x|ŝ) for any j ≤ k for some k ≥ 1. Thus

µk(x|s′) = mk(xk, P
′(ρk(x|s′))|s′) = mk(xk, ζ(P ′(ρk(x|s′)))|ŝ)

= mk(xk, P (ρk(x|s′))|ŝ) = mk(xk, P (ρk(x|ŝ))|ŝ) = µk(x|ŝ).

It follows that

ρk+1(x|s′) = ρk(x|s′)× µk(x|s′) = ρk(x|ŝ)× µk(x|ŝ) = ρk+1(x|ŝ).

Thus ρj(x|s′) = ρi(x|ŝ) for any j ∈ N , implying

αj(x|s′) = aj(xi, P
′(ρj(x|s′))|s′) = aj(xj , ζ(P ′(ρj(x|s′)))|ŝ)

= aj(xj , P (ρj(x|s′))|ŝ) = aj(xj , P (ρj(x|ŝ))|ŝ) = αj(x|ŝ).

It follows that ααα(·|s′) = ααα(·|ŝ), implying ααα(·|s′) = ααα(·|s). Thus C(T, P,M) ⊂
C(T ′, P ′,M ′) because s is arbitrarily chosen from S(T, P,M). The present
lemma then follows from Proposition 4. �

A.7 Proof of Lemma 5

Proof. Suppose (T ′, P ′,M ′) is obtained from (T, P,M) by relabeling with
relabeling function γ satisfying R1-R4. R3 implies that for any p ∈ P ′ there
is τ(p) ∈ P such that h ∈ τ(p) if and only if γ(h) ∈ p. Let γ−1 be the inverse
mapping of γ. Clearly γ−1 satisfies R1-R3.

Now show that γ−1 satisfies R4. Define κ′(mi, p) where p ∈ P ′i and mi ∈
M ′(p) such that κ′(mi, p) ∈ M(τ(p)) and κ(κ′(mi, p), τ(p)) = mi. First verify
that κ′ is defined for every p ∈ P ′i and mi ∈ M ′(p). Choose any p ∈ P ′i , mi ∈
M ′(p) and h ∈ τ(p). That γ−1 satisfies R1 and R3 implies γ−1(γ(h)×mi) =
h × m̂i for some m̂i ∈ M(τ(p)). By definition of κ we have κ(m̂i, τ(p)) = mi,
confirming that indeed κ′(mi, p) exists.

Choose any p ∈ P ′i , mi ∈M ′(p) and h ∈ p. γ−1(h) ∈ τ(p) by R3. By construc-
tion h×mi = h× κ(κ′(mi, p), τ(p)). Also note that

γ
(
γ−1(h)× κ′(mi, p)

)
= γ(γ−1(h))× κ(κ′(mi, p), τ(p))

= h× κ(κ′(mi, p), τ(p)) = h×mi.

Applying γ−1 to both sides we have γ−1(h) × κ′(mi, p) = γ−1(h ×mi). Thus
γ−1 satisfies R4. It follows that (T, P,M) is obtained from (T ′, P ′,M ′) by
relabeling with relabeling function γ−1. �
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A.8 Proof of Lemma 6

Proof. Suppose (T ′, P ′,M ′) is obtained from (T, P,M) by relabeling with
relabeling function γ satisfying R1-R4. R3 implies that for any p ∈ P ′ there
is τ(p) ∈ P such that h ∈ τ(p) if and only if γ(h) ∈ p.
Choose any s ∈ S(T, P,M). Construct s′ ∈ S(T ′, P ′,M ′) such that for any
i ∈ N , xi ∈ Xi and p ∈ P ′i ,

ai(xi, p|s′) = ai(xi, τ(p)|s),
(if i < N ) mi(xi, p|s′) = κ(mi(xi, τ(p)|s), τ(p)),

where κ is defined in R4. To verify that s′ is properly defined, choose any
h ∈ τ(p) where p ∈ P ′i for some i < N . Thus γ(h) ∈ p. R4 and R1 implies

γ(h×mi(xi, τ(p)|s)) = γ(h)× κ(mi(xi, τ(p)|s), τ(p)) = γ(h)×mi(xi, p|s′) ∈ T ′.

Since γ(h) ∈ p, it follows that mi(xi, p|s′) ∈M ′(γ(h)), implying mi(xi, p|s′) ∈
M ′(p) because γ(h) ∈ p.

Choose any x = (x1, ..., xN ) ∈ X. Clearly ρ1(x|s′) = γ(ρ1(x|s)). Suppose
ρi(x|s′) = γ(ρi(x|s)) for any i ≤ k for some k ≥ 1. Denote h = ρk(x|s),
h′ = ρk(x|s′), p = P (h) and p′ = P ′(h′). By the inductive hypothesis h′ = γ(h)
and thus p = τ(p′). We have

ρk+1(x|s′) = h′ ×mk(xk, p
′|s′) = γ(h)× κ(mk(xk, τ(p′)|s), τ(p′))

= γ(h)× κ(mk(xk, p|s), p) = γ(h×mk(xk, p|s)) = γ(ρk+1(x|s)).

Thus ρi(x|s′) = γ(ρi(x|s)) for any i ∈ N , implyingP (ρi(x|s)) = τ(P ′(ρi(x|s′))).
Therefore

αi(x|s′) = ai(xi, P
′(ρi(x|s′))|s′) = ai(xi, τ(P ′(ρi(x|s′)))|s)

= ai(xi, P (ρi(x|s))|s) = αi(x|s).

Thus ααα(·|s′) = ααα(·|s), implying C(T, P,M) ⊂ C(T ′, P ′,M ′) since s is arbitrar-
ily chosen from S(T, P,M).

Lemma 5 implies (T, P,M) is obtained from (T ′, P ′,M ′) by relabeling. Thus
by an analogous argument as above we haveC(T ′, P ′,M ′) ⊂ C(T, P,M). The
present lemma then follows by Proposition 4.
�

A.9 The Formal Definition of Merging

To introduce merging formally, it is useful to first define a special kind of
expanding. Fix institution (T, P,M). Consider the following construction:
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Pick any i < N , p ∈ Pi and mi ∈ M(p). Let Tmi denote the set of all h ∈ T
such that h(i − 1) ∈ p and hi = mi. Let Tm′i denote the set of all message
profiles derived from changing the ith component of some h ∈ Tmi from mi

to m′i /∈ M(p). Thus for each h ∈ Tm
′
i there is fh ∈ Tmi such that h and

fh differ only at the ith component. Observe that T and Tm
′
i are disjoint,

for if h ∈ T ∩ Tm′i then h(i − 1) ∈ p and hi = m′i, implying m′i ∈ M(p), a
contradiction. Let T ′ = T ∪ Tm′i . Let P ′ be a partition of T ′ such that

D1 P ′(h) = P ′(g) if and only if P (h) = P (g) for any h, g ∈ T .
D2 P ′(h) = P ′(fh) for any h ∈ Tm′i .

It is plain to see that T ′ equipped with partitionP ′ is derived from T equipped
with P by putting each additional h ∈ Tm′i in the same partition cell as fh.
Define M ′ such that

D3 M ′(h) = M(h) if h ∈ T\p.

D4 M ′(h) = M(h) ∪ {m′i} if h ∈ p.

D5 M ′(h) = M(fh) if h ∈ Tm′i .

Observe that (T ′, P ′,M ′) is an improper institution. To verify it, the only
non-obvious part is to show that M ′(h) = M ′(g) for any h, g ∈ T ′ such that
P ′(h) = P ′(g). If h, g ∈ T then P ′(h) = P ′(g) implies P (h) = P (g) and
consequently M ′(h) = M(h) = M(g) = M ′(g) if h, g /∈ p, or M ′(h) = M(h) ∪
{m′i} = M(g) ∪ {m′i} = M ′(g) if h, g ∈ p. If h ∈ T and g ∈ Tm′i then P ′(h) =
P ′(g) implies by D2 that P ′(h) = P ′(fg), and it follows from fg ∈ T and
D5 that M ′(h) = M ′(fg) = M ′(g). If h ∈ Tm

′
i and g ∈ Tm

′
i then P ′(h) =

P ′(g) implies P ′(fh) = P ′(fg) and it follows by D5 that M ′(h) = M ′(fh) =
M ′(fg) = M ′(g). Thus (T ′, P ′,M ′) is indeed an improper institution. We say
that (T ′, P ′,M ′) is obtained from (T, P,M) by (i, p,mi,m

′
i)−duplication.

The following lemma suggests that (i, p,mi,m
′
i)−duplication does no more

than expanding (T, P,M) by duplicating message mi for p and giving the
cloned message the label m′i.

Lemma 14. If (T ′, P ′,M ′) is obtained from (T, P,M) by (i, p,mi,m
′
i)−duplication

then:

1. T ′j = Tj and P ′j = Pj for any j ≤ i.

2. mi and m′i are synonymous given p within (T ′, P ′,M ′).

3. (T, P,M) can be obtained from (T ′, P ′,M ′) by trimming.

4. (T, P,M) and (T ′, P ′,M ′) dominate each other.

Proof. Inherit the notation Tm′i and fh from the introduction of duplication.
Tj = T ′j for any j ≤ i because Tm′i only contains message profiles of length
at least i. Thus D1 implies P ′j = Pj , establishing Part 1.
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Now show Part 2. Choose any h ∈ p. D4 implies mi,m
′
i ∈ M ′(h). Part 1

implies P ′(h) = p. Thus mi,m
′
i ∈ M ′(p). Let g, g′ ∈ T ′ be h−cousins such

that gi = mi and g′i = m′i. Clearly g = fg
′ . It follows from D2 that P ′(g) =

P ′(g′), implyingmi andm′i are synonymous given h within (T ′, P ′,M ′). Part
2 follows immediately because h is arbitrarily chosen from p.
Now show Part 3. Clearly (T, P,M) is a sub-institution of (T ′, P ′,M ′). If h ∈
T ′\T then h ∈ Tm′i and it follows by the construction of Tm′i that h(i− 1) ∈ p
and hi = m′i, establishing T1. T2 follows from Part 2.
Part 4 follows from Part 3 by Lemma 4. �
Now we introduce merging. The definition is given in terms of the construc-
tion. Each step is explained by the accompanying remark.

Definition. (T ′, P ′,M ′) is obtained from (T, P,M) by merging if there is
i < N where |Ai| = 1 , p ∈ Pi and q ∈ Pi (without loss of generality as-
sume |M(p)| < |M(q)|) such that (T ′, P,M ′) is the product of the following
algorithm:

Step 1 Fix mi ∈ M(p). Set (T 0, P 0,M0) = (T, P,M). Produce (T k, P k,Mk)
from (T k−1, P k−1,Mk−1) by (i, p,mi,m

k
i )−duplication 7 wheremk

i is an
arbitrary message not in Mk−1(p). Stop if |Mk(p)| = |Mk(q)| = |M(q)|.
8 Denote the terminal product of this step as (T̃ , P̃ , M̃).

Remark: This step equalizes the number of messages available to player
i given p and that given q.

Step 2 Choose any bijections λ : M̃(p) → M̃(q). Construct mapping γ on T̂
such that

(a) If g is not a descendant of some h ∈ p then γ(h) = h.

(b) If g is a descendant of some h ∈ p then γ(g) = eg where eg is
derived from g by replacing the ith component of g from gi to λ(gi).

Denote the end product of this step as (T̂ , P̂ , M̂).
Remark: It is easy to verify that γ is a relabeling function satisfying
R1-R4. This step relabels the messages available to player i given p,
so that now M̂(p) = M̂(q).

Step 3 Arbitrarily index messages in M̂(p) as m1, ...,mK where K = |M̂(p)|.
For each j 6= k, abritrarily choose a unique message nj,k where nj,k /∈
M̂(p). Let nj,j = mj .
Set (T̂ 1,1, P̂ 1,1, M̂1,1) = (T̂ , P̂ , M̂). Iterate through k = 1 : K as fol-
lows: For each j and k 6= j − 1 produce (T j,k+1, P j,k+1,M j,k+1) from
(T j,k, P j,k,M j,k) by the following two substeps:

7Part 1 of Lemma 14 implies p ∈ Pk−1.
8Part 1 of Lemma 14 implies q ∈ Pk−1. D3 implies Mk(q) = M(q).
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(a) Produce (T j,k+1
p , P j,k+1

p ,M j,k+1
p ) from (T j,k, P j,k,M j,k) by (i, p,mj , nj,k)-

duplication.
(b) Produce (T j,k+1, P j,k+1,M j,k+1) from (T j,k+1

p , P j,k+1
p ,M j,k+1

p ) by (i, q,mk, nj,k+1)-
duplication.

In the case that k = j−1, set (T j,j , P j,j ,M j,j) = (T j,j−1, P j,j−1,M j,j−1).
When (T j,K , P j,K ,M j,K) is reached, produce (T j+1,1, P j+1,1,M j+1,1)
from (T j,K , P j,K ,M j,K) by the following two substeps:
(a) Produce (T j+1,1

p , P j+1,1
p ,M j+1,1

p ) from (T j,K , P j,K ,M j,K) by (i, p,mj+1, nj+1,1)-
duplication.

(b) Produce (T j+1,1, P j+1,1,M j+1,1) from (T j+1,1
p , P j+1,1

p ,M j+1,1
p ) by (i, q,m1, nj+1,1)-

duplication.

Stop when (TK,K , PK,K ,MK,K) is reached. Denote (TK,K , PK,K ,MK,K)
as (T ∗, P ∗,M∗).

Remark: It is straightforward to verify that M∗(p) = M∗(q) = {nj,k :
(j, k) ∈ {1, ...,K}2}. This step expands (T̂ , P̂ , M̂) in a particular way,
so that for each pair j, k where j 6= k, the message nj,k is introduced to
p and q, where it is synonymous to mj given p, and to mk given q.

Step 4 Produce (T ′, P ′,M ′) from (T ∗, P ∗,M∗) such that T ′ = T ∗ and P ∗ satis-
fies

(a) P ′(h) = P ′(g) if and only if P ∗(h) = P ∗(g) for any h, g /∈ p ∪ q.

(b) P ′(h) = P ′(g) for any h, g ∈ p ∪ q.

Remark: This step combines separate perceptions p and q into one sin-
gle perception p ∪ q.

A.10 Proof of Lemma 7

Proof. Inherit the notation introduced the formal definition of merging in
Section A.9. (T ∗, P ∗,M∗) is obtained from (T, P,M) by a sequence of dupli-
cation and relabeling operations. Thus (T ∗, P ∗,M∗) and (T, P,M) dominate
each other by Lemmas 6 and 14. Clearly (T ∗, P ∗,M∗) can be obtained from
(T ′, P ′,M ′) by refining. Thus (T ∗,M∗, P ∗) dominates (T ′, P ′,M ′) by Lemma
3 and hence (T, P,M) dominates (T ′, P ′,M ′).
To establish that (T ′, P ′,M ′) dominates (T, P,M) it suffices to show that
(T ′, P ′,M ′) dominates (T ∗,M∗, P ∗). It is straightforward to verify thatM∗(p) =
M∗(q) = {nj,k : (j, k) ∈ {1, ...,K}2}. Recall that nj,j = mj . Choose any nj,k
where j 6= k. Since (T j,kp , P j,kp ,M j,k

p ) is obtained from (T j,k−1, P j,k−1,M j,k−1)

(or (T j−1,K , P j−1,K ,M j−1,K) in the case k = 1) by (i, p,mj , nj,k)-duplication,
it follows by Lemma 14 that mj and nj,k are synonymous given p within
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(T j,kp , P j,kp ,M j,k
p ). Choose any h ∈ p and h−cousins g, g′ ∈ T ∗ such that

gi = mj and g′i = nj,k. Clearly g, g′ ∈ (T j,k, P j,k,M j,k). It follows that
P j,k(g) = P j,k(g′) by synonymity. Since (T j,kp , P j,kp ,M j,k

p ) is a sub-institution
of (T ∗,M∗, P ∗), we have P ∗(g) = P ∗(g′). Moreover since for any l > iwe have
P ′l = P ∗l , it follows that P ′(g) = P ′(g′). Therefore mj and nj,k are synony-
mous given any h ∈ p within (T ∗, P ∗,M∗) and within (T ′, P ′,M ′). Similarly
mk and nj,k are synonymous given any h ∈ q within (T ∗, P ∗,M∗) and within
(T ′, P ′,M ′).
Choose any s ∈ S(T ∗, P ∗,M∗). Construct ŝ such that ŝ agrees with s except
in the following:

mi(xi, p|ŝ) = mj for any xi such that mi(xi, p|s) = nj,k,

mi(xi, q|ŝ) = mk for any xi such that mi(xi, q|s) = nj,k.
Clearly ρl(x|ŝ) = ρl(x|s) for any l ∈ N if ρi(x|s) /∈ p∪q. Fix x = (x1, ..., xN ) ∈
X such that ρi(x|s) ∈ p. P ∗(ρl(x|ŝ)) = P ∗(ρl(x|s)) for any l ≤ i because
ρl(x|ŝ) = ρl(x|s)). Denote h = ρi(x|ŝ). Note that mi(xi, p|ŝ) = mj and
mi(xi, p|s) = nj,k for some (j, k) ∈ {1, ...,K}2. For any l > i observe that

P ∗(ρl(x|ŝ)) = P ∗(ρl(x|ŝ, i, h,mj))

= P ∗(ρl(x|ŝ, i, h, nj,k))

= P ∗(ρl(x|s, i, h, nj,k))

= P ∗(ρl(x|s)).

The first line is due to h = ρi(x|ŝ) and mi(xi, p|ŝ) = mj . The second line
is due to Lemma 12 because mj and nj,k are synonymous given h within
(T ∗, P ∗,M∗) if j 6= k, or mj = nj,k if j = k. The third line is due to the
fact that ŝ and s agree for every player after i, and the fourth line is due to
ρi(x|s) = h andmi(xi, p|s) = nj,k. Similarly P ∗(ρl(x|ŝ)) = P ∗(ρl(x|s)) for any
x such that ρi(x|s) ∈ q. By induction P ∗(ρl(x|ŝ)) = P ∗(ρl(x|s)) for any l ∈ N
and x ∈ X.

Note that P ′ = (P ∗\{p, q}) ∪ {p ∪ q}. Choose s′ ∈ S(T ′, P ′,M ′) such that
• For any l 6= i, xl ∈ Xl and r ∈ P ′l :

al(xl, r|s′) = al(xl, r|ŝ).

• For any l < N , xl ∈ Xl and r ∈ P ′l where r 6= p ∪ q:

ml(xl, r|s′) = ml(xl, r|ŝ).

• For any xi ∈ Xi such that mi(xi, p|ŝ) = mj and mi(xi, p|ŝ) = mk:

mi(xi, p ∪ q|s′) = nj,k.
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We have ρl(x|s′) = ρl(x|ŝ) for any x such that ρi(x|s′) /∈ p ∪ q. Fix x =
(x1, ..., xN ) such that ρi(x|s′) ∈ p. Obviously ρi(x|s′) = ρi(x|ŝ). Denote h =
ρi(x|s′). By construction of ŝ we have mi(xi, p|ŝ) = mj and mi(xi, q|ŝ) = mk

for some (j, k) ∈ {1, ...,K}2. Thus for any l > i,

P ′(ρl(x|s′)) = P ′(ρl(x|s′, i, h, nj,k))

= P ′(ρl(x|s′, i, h,mj))

= P ∗(ρl(x|ŝ, i, h,mj))

= P ∗(ρl(x|ŝ)).

Similarly for any x such that ρi(x|s′) ∈ q we have P ′(ρl(x|s′)) = P ∗(ρl(x|ŝ))
for any l > i. Thus P ′(ρl(x|s′)) = P ∗(ρl(x|ŝ)) for any l 6= i and x ∈ X by
induction. For any l ∈ N where |Al| > 1 (and hence l 6= i because |Ai| = 1)
and x = (x1, ..., xN ) ∈ X we have

αl(x|s′) = al(xl, P
′(ρl(x|s′))|s′) = al(xl, P

∗(ρl(x|ŝ))|s′) = al(xl, P
∗(ρl(x|s))|s′)

= al(xl, P
∗(ρl(x|s))|ŝ) = αl(xl, P

∗(ρl(x|s))|s) = αl(x|s).

It follows that ααα(·|s′) = ααα(·|s), implying C(T ∗, P ∗,M∗) ⊂ C(T ′, P ′,M ′) be-
cause s is arbitrarily chosen from S(T ∗, P ∗,M∗). Thus (T ′, P ′,M ′) domi-
nates (T ∗, P ∗,M∗) by Proposition 4, establishing the present lemma. �

A.11 Proof of Theorem 1

Proof. Part 1 is an immediate consequence of Lemmas 2, 3, 4, 6 and 7.

Now we prove Part 2, the “only if” direction. Suppose (T ′, P ′,M ′) dominates
(T, P,M). The proofs is broken into several steps.

(Step 1. “Merging”.) It is plain to see that an institution (T̂ , P̂ , M̂), where
|P̂i| = 1 for every player i whose action set is a singleton, can be obtained
from (T, P,M) by a sequence of merging operations. It follows from Lemma
7 that (T, P,M) dominates (T̂ , P̂ , M̂). Thus (T ′, P ′,M ′) dominates (T̂ , P̂ , M̂).

(Step 2. “Refining”.) For any i < N define ti = max{maxp∈P̂i
M̂(p), log |P̂i|

log |Ai|}.
Suppose |Xi| ≥ ti. Since |Xi| ≥ maxp∈P̂i

M̂(p), there is a mapping yi :

P̂i × ∪p∈P̂i
M̂(p) → Xi such that yi(p,mi) 6= yi(p,m

′
i) for any mi,m

′
i ∈ M̂(p)

where mi 6= m′i. If |Ai| > 1 then for each p ∈ P̂i there is a mapping
sp : Xi → Ai such that sp 6= sp′ if p 6= p′. To see that, first observe
that the total number of mappings from Xi to Ai is |Ai||Xi|. By assump-
tion |Xi| ≥ log |P̂i|

log |Ai| or equivalently |Ai||Xi| ≥ |P̂i|. Thus each p ∈ P̂i can be
assigned with a unique sp.

Note that for each p, p′ ∈ P̂i where p 6= p′ there is zi(p, p′) ∈ Xi such that
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sp(zi(p, p
′)) 6= sp′(zi(p, p

′)). Choose any s ∈ S(T̂ , P̂ , M̂) such that

• For any i ∈ N where |Ai| > 1, xi ∈ Xi and p ∈ P̂i:

ai(xi, p|s) = sp(xi).

• For any i < N , p ∈ P̂i and mi ∈ M̂(p):

mi(yi(p,mi), p|s) = mi.

By Proposition 4 there is s′ ∈ S(T ′, P ′,M ′) such that ααα(·|s′) = ααα(·|s). For
each h ∈ T̂ construct xh = (xh1 , ..., x

h
N ) ∈ X such that xhi = yi(P̂ (h(i− 1)), hi)

for any i ≤ |h|. It is straightforward to verify that h = ρ|h|+1(xh|s). Define
the following objects:

• γ(h) = ρ|h|+1(xh|s′) for any h ∈ T̂ .

• τ(p) = {h ∈ P̂i : γ(h) ∈ p} for any p ∈ P ′i .

• P̃i = {τ(p) : p ∈ P ′i and τ(p) 6= ø} for any i ∈ N .

P̃i is a partition of T̂i because: (1) for any h ∈ T̂i, γ(h) ∈ p for some p ∈ P ′i ,
and (2) if h ∈ τ(p) and h ∈ τ(p′) then p = P ′(γ(h)) = p′.

Note that for any iwhere |Ai| = 1, we have |P̂i| = 1 by construction and hence
P̃i is a refinement of P̂i. Fix any i where |Ai| > 1. Suppose there exist h, g ∈
T̂i such that P̂ (h) 6= P̂ (g) yet P̃ (h) = P̃ (g). Denote h′ = γ(h) and g′ = γ(g).
P̃ (h) = P̃ (g) implies P ′(h′) = P ′(g′). Choose x = (x1, ..., xN ) ∈ X such that
xj = xhj for any j < i and xi = zi(P̂ (h), P̂ (g)). Choose x̂ = (x̂1, ..., x̂N ) ∈ X
such that x̂j = xgj for any j < i and x̂i = zi(P̂ (h), P̂ (g)). Obviously ρi(x|s) =

ρi(x
h|s) = h. Similarly ρi(x̂|s) = g. Therefore we have

αi(x|s) = ai(zi(P̂ (h), P̂ (g)), P̂ (h)|s) = sP̂ (h)(zi(P̂ (h), P̂ (g)))

6= sP̂ (g)(zi(P̂ (h), P̂ (g))) = ai(zi(P̂ (h), P̂ (g)), P̂ (g)|s) = αi(x̂|s).

It follows from h′ = ρi(x
h|s′) that h′ = ρi(x|s′) because xh and x agree for

the first i− 1 components. Similarly g′ = ρi(x̂|s′). Thus

αi(x|s′) = ai(zi(P̂ (h), P̂ (g)), P ′(h′)|s′) = ai(zi(P̂ (h), P̂ (g)), P ′(g′)|s′) = αi(x̂|s′)

because P ′(h′) = P ′(g′). It follows that

αi(x|s′) = αi(x|s) 6= αi(x̂|s) = αi(x̂|s′) = αi(x|s′),

a contradiction. Thus P̂ (h) 6= P̂ (g) implies P̃ (h) 6= P̃ (g), in turn implying
P̃i is a refinement of P̂i. Let P̃ = ∪i∈N P̃i. It then follows that (T̂ , P̃ , M̂) is
obtained from (T̂ , P̂ , M̂) by refining.
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(Step 3. “Trimming”.) Apply a sequence of trimming operations to (T̂ , P̃ , M̂)
to obtain (T ∗, P ∗,M∗) such that for any i < N and p ∈ P ∗i there do not exist
mi,m

′
i ∈M∗(p) that are synonymous given p within (T ∗, P ∗,M∗).

(Step 4. “Relabeling”.) Clearly (T ∗, P ∗,M∗) is a sub-institution of (T̂ , P̃ , M̂).
Therefore P ∗(h) = P ∗(g) if and only if P̃ (h) = P̃ (g) for any h, g ∈ T ∗. Let
T ′′ denote the range of γ with domain restricted to T ∗. Let P ′′ denote P ′
restricted to T ′′, that is, P ′′(h) = P ′′(g) if and only if P ′(h) = P ′(g) for any
h, g ∈ T ′′. For any i < N and h ∈ T ′′i define M ′′(h) = {mi : h×mi ∈ T ′′}. We
want to show that (T ′′, P ′′,M ′′) is obtained from (T ∗, P ∗,M∗) by relabeling
with relabeling function γ. This will be achieved below by establishing that
γ with domain restricted to T ∗ satisfies R1-R4.9

Observe that for any h, g ∈ T ∗, if h is the parent of g then the first |h| compo-
nents of xh and xg are the same. It follows that ρ|h|+1(xg|s′) = ρ|h|+1(xh|s′),
implying γ(h) is the parent of γ(g). Thus γ satisfies R2.

Observe that for any h, g ∈ T ∗, P ∗(h) = P ∗(g) if and only if P̃ (h) = P̃ (g) if
and only if P ′(h) = P ′(g) if and only if P ′′(h) = P ′′(g). Thus γ satisfies R3.

To establish that γ is a bijection between T ∗ and T ′′ it is sufficient to verify
that γ restricted to T ∗ is one-to-one. Suppose γ is not one-to-one, then there
are g, g′ ∈ T ∗ such that γ(g) = γ(g′). Let i denote the largest index such that
g(i − 1) = g′(i − 1). Denote f = g(i − 1), h = g(i), h′ = g′(i), mi = gi and
m′i = g′i. Thus h = f ×mi and h′ = f ×m′i. Since f is the parent of h and
h′ it follows that γ(f) is the parent of γ(h) and γ(h′). That γ(g) = γ(g′) then
implies γ(h) = γ(h′). Denote p = P̂ (f) and p′ = P ′(γ(f)). By construction of
γ, γ(h) = γ(h′) implies ρi(xh|s′) = ρi(x

h′ |s′) and µi(xh|s′) = µi(x
h′ |s′). Since

ρi(x
h|s′) = ρi(x

h′ |s′) = γ(f), it follows that

mi(x
h
i , p
′|s′) = µi(x

h|s′) = µi(x
h′ |s′) = mi(x

h′

i , p
′|s′).

Thusmi(yi(p,mi), p
′|s′) = mi(yi(p,m

′
i), p

′|s′) because by construction we have
xhi = yi(p,mi) and xh

′

i = yi(p,m
′
i). Choose any l ∈ P ∗(f) and l−cousins

u, u′ ∈ T ∗ where ui = mi and u′i = m′i. P ∗(f) = P ∗(l) implies P̃ (f) =

P̃ (l) = p. Thus xui = yi(p,mi) and xu
′

i = yi(p,m
′
i). Also P ∗(f) = P ∗(l)

implies P ′(γ(f)) = P ′(γ(l)) = p′. Since γ satisfies R2, l being the ances-
tor of u and u′ implies γ(l) is the ancestor of γ(u) and γ(u′), then implying
γ(l) = ρi(x

u|s′) = ρi(x
u′ |s′). Moreover we have

ρi+1(xu|s′) = ρi(x
u|s′)×mi(x

u
i , P

′(ρi(x
u|s′))|s′)

= γ(l)×mi(yi(p,mi), p
′|s′) = γ(l)×mi(yi(p,m

′
i), p

′|s′)

= ρi(x
u′ |s′)×mi(x

u′

i , P
′(ρi(x

u′ |s′))|s′) = ρi+1(xu
′
|s′)

where mi(yi(p,mi), p
′|s′) = mi(yi(p,m

′
i), p

′|s′) has been established above.
Suppose ρj(xu|s′) = ρj(x

u′ |s′) for any j ≤ k for some k ≥ i+ 1. The inductive
9(T ′′,M ′′, P ′′) will be shown to be an improper institution shortly.
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hypothesis implies P ′(ρk(xu|s′)) = P ′(ρk(xu
′ |s′)). Since xu(k−1) agrees with

xu for the first k−1 components, it follows that γ(u(k−1)) = ρk(xu(k−1)|s′) =
ρk(xu|s′). Similary γ(u′(k−1)) = ρk(xu

′ |s′). ThusP ′(ρk(xu|s′)) = P ′(ρk(xu
′ |s′))

implies P ′(γ(u(k − 1))) = P ′(γ(u′(k − 1))). It follows that P̃ (u(k − 1)) =
P̃ (u′(k − 1)) by construction of P̃ , which in turn implies P̂ (u(k − 1)) =
P̂ (u′(k− 1)) because P̃k is a refinement of P̂k. Since u and u′ are cousins, we
have uk = u′k. Thus yk(P̂ (u(k − 1)), uk) = yk(P̂ (u′(k − 1)), u′k). Hence

ρk+1(xu|s′) = ρk(xu|s′)×mk

(
yk(P̂ (u(k − 1), uk)), P ′(ρk(xu))|s′

)
= ρk(xu

′
|s′)×mk

(
yk(P̂ (u′(k − 1), u′k)), P ′(ρk(xu

′
))|s′

)
= ρk+1(xu

′
|s′)

where the first line is due to xuk = yk(P̂ (u(k−1)), uk). Therefore ρ|u|+1(xu|s′) =

ρ|u|+1(xu
′ |s′) by induction, or equivalently γ(u) = γ(u′). It follows from

P ′(γ(u)) = P ′(γ(u′)) that P̃ (u) = P̃ (u′), in turn implying P ∗(u) = P ∗(u′).
Hence mi and m′i are synonymous given l within (T ∗, P ∗,M∗). Since l is
arbitrarily chosen from P ∗(f), it follows that mi and m′i are synonymous
given P ∗(f) within (T ∗, P ∗,M∗), a contradiction, because by construction
(T ∗, P ∗,M∗) admits no synonymous messages given any perception in P ∗.
Therefore γ restricted to T ∗ is one-to-one, establishing R1.

Now show that γ satisfies R4. Choose any i < N , p ∈ P ∗i and mi ∈ M∗(p).
There exists p̂ ∈ P̂ such that p ⊂ p̂. There also exists p′ ∈ P ′ such that
γ(h) ∈ p′ for any h ∈ p. For any h ∈ p we have

γ(h×mi) = ρi+1(xh×mi |s′)

= ρi(x
h×mi |s′)×mi

(
yi(p̂,mi), P

′(ρi(x
h×mi |s′))|s′

)
= γ(h)×mi(yi(p̂,mi), p

′|s′)

where the second line is due to xh×mi
i = yi(p̂,mi) since P̂ (h) = p̂. Note that

mi(yi(p̂,mi), p
′|s′) does not depend on the choice of h, thus implying R4.

Now we show that (T ′′, P ′′,M ′′) is indeed an improper institution. The only
non-obvious part is that M ′′(h) = M ′′(g) if P ′′(h) = P ′′(g). Suppose P ′′(h) =
P ′′(g) yet M ′′(h) 6= M ′′(g) for some h, g ∈ T ′′. Without loss of generality
suppose for some i < N there is mi ∈ M ′′(h) such that mi /∈ M ′′(g). R2
implies γ−1(h × mi) = γ−1(h) × m̂i for some m̂i ∈ M∗(γ−1(h)). R3 im-
plies P ∗(γ−1(h)) = P ∗(γ−1(g)). Thus m̂i ∈ M∗(γ−1(g)). R4 then implies
γ(γ−1(g) × m̂i) = γ(γ−1(g)) ×mi = g ×mi since P ∗(γ−1(h)) = P ∗(γ−1(g)),
contradicting the supposition that mi /∈ M ′′(g). Therefore (T ′′, P ′′,M ′′) is
indeed an improper institution and is obtained from (T ∗, P ∗,M∗) by rela-
beling with relabeling function γ.

(Step 5. Expanding) Since (T ′′, P ′′,M ′′) is a sub-institution of (T ′, P ′,M ′),
(T ′, P ′,M ′) is obtained from (T ′′, P ′′,M ′′) by expanding. �
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A.12 Proof of Proposition 5

The proof is assisted with the following lemma.

Lemma 15. For institutions (T, P,M) and (T, P ′,M) respectively represent-
ing voting systems (r, d, t) and (r′, d, t′), if P ′i is a refinement of Pi for every
i ≤ |J | and P ′|J|+1 = P|J|+1 then (r′, d, t′) dominates (r, d, t) for any rule d.

Proof: Suppose P ′i is a refinement of Pi for every i ≤ |J |, and P ′|J|+1 = P|J|+1.
For every i ≤ |J | and p ∈ P ′i there is τ(p) ∈ Pi such that p ⊂ τ(p). Choose
any s ∈ S(T, P,M |d). Construct s′ ∈ S(T, P ′,M |d) such that mi(xi, p|s′) =
mi(xi, τ(p)|s) for every i ≤ |J |, xi ∈ Xi and p ∈ P ′i . Clearly ρ1(x|s′) = ρ1(x|s)
for any x = (x1, ..., x|J|, x) ∈ X. Suppose ρi(x|s′) = ρi(x|s) for every i ≤ k for
some k ≥ 1. Thus τ(P ′(ρk(x|s′))) = P (ρk(x|s′)) = P (ρk(x|s)). Therefore

ρk+1(x|s′) = ρk(x|s′)×mk(xk, P
′(ρk(x|s′))|s′)

= ρk(x|s)×mk(xk, P (ρk(x|s))|s) = ρk+1(x|s).

Hence α|J|+1(x|s′) = d(ρ|J|+1(x|s′)) = d(ρ|J|+1(x|s)) = α|J|+1(x|s). It follows
that ααα(·|s′) = ααα(·|s), implying C(T, P,M |d) ⊂ C(T, P ′,M |d). The lemma
follows from Lemma 9. �
Proof of Proposition 5. (Proof of Part 1.) Let (T, P,M) be the institution
representing (r, d, t). Let t′ be the full disclosure policy. Let (T, P ′,M) be
the institution representing (r, d, t′). Therefore P ′i is a refinement of Pi for
every i ≤ |J |, and P ′|J|+1 = P|J|+1. Thus (r, d, t′) dominates (r, d, t) by Lemma
15. Part 1 is established.

(Proof of Part 2.) Suppose t is the full disclosure policy, let r′ be the se-
quential procedure such that r′(i) > r′(j) is r(i) > r(j). Using the same
argument as in the previous paragraph we conclude that (r′, d, t) dominates
(r, d, t), establishing Part 2.

(Proof of Part 3.) Suppose t is the full disclosure policy. Let i denote the
player with the largest index among those who vote before the last stage
(according to r). It follows that each p ∈ P|J| can be uniquely identified as
p(z1,...,zi) such that P (h) = P (h′) = p if and only if h(i) = h′(i) = (z1, ..., zi).
Let Ẑ denote the set of vote profiles (z1, ..., zi) from voters voting before the
last stage such that d(z1, ..., zi, zi+1, ..., z|J|) = d(z1, ..., zi, z

′
i+1, ..., z

′
|J|) for any

vote profiles (zi+1, ..., z|J|) and (z′i+1, ..., z
′
|J|) from voters voting in the last

stage. The collective choice is not determined before voting in the last stage
takes place if and only if Ẑ is empty. It follows that for any (z1, ..., zi) ∈
Ẑ, every pair of votes (messages) z, z′ ∈ Z are synonymous given p(z1,...,zi)

within (T, P,M).
Choose any s ∈ S(T, P,M |d). Construct ŝ ∈ S(T, P,M |d) such that

1. For any i < |J |, xi ∈ Xi and p ∈ Pi: mi(xi, p|ŝ) = mi(xi, p|s) .
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2. For any x|J| ∈ X|J| and (z1, ..., zi) /∈ Ẑ:

m|J|(x|J|, p
(z1,...,zi)|ŝ) = m|J|(x|J|, p

(z1,...,zi)|s).

3. For any x|J| ∈ X|J| and (z1, ..., zi) ∈ Ẑ:

m|J|(x|J|, p
(z1,...,zi)|ŝ) = z

for some fixed z ∈ Z.
Fix any x = (x1, ..., x|J|, x) ∈ X. Clearly ρ|J|(x|ŝ) = ρ|J|(x|s). Denote h =

ρ|J|(x|ŝ). If P (h) = p(z1,...,zi) where (z1, ..., zi) /∈ Ẑ then µ|J|(x|ŝ) = µ|J|(x|s)
and it follows that ρ|J|+1(x|ŝ) = ρ|J|+1(x|s). IfP (h) = p(z1,...,zi) where (z1, ..., zi) ∈
Ẑ then µ|J|(x|ŝ) is synonymous to µ|J|(x|s) given h within (T, P,M) and
hence

P (ρ|J|+1(x|ŝ)) = P (h× µ|J|(x|ŝ)) = P (h× µ|J|(x|s)) = P (ρ|J|+1(x|s)).

We have established that P (ρ|J|+1(x|ŝ)) = P (ρ|J|+1(x|s)) for any x ∈ X,
implying α|J|+1(x|ŝ) = α|J|+1(x|s) because s, s′ ∈ S(T, P,M |d).

For any (z1, ..., zi) ∈ Ẑ choose y(z1,...,zi) ∈ Y where y(z1,...,zi) is different from
the candidate that is elected given any vote profile that contains (z1, ..., zi).
Construct d′ such that

d′(z1, ..., z|J|) =

{
y(z1,...,zi) if (z1, ..., zi) ∈ Ẑ and z|J| 6= z

d(z1, ..., z|J|) otherwise.

It is straightforward to verify that under d′ the collective choice is not de-
termined before voting in the last stage takes place. Let (T, P ′,M) be the
institution representing (r, d′, t). Clearly P ′i = Pi for every i ≤ |J |. Choose
any s′ ∈ S(T, P ′,M |d′) such that mi(xi, p|s′) = mi(xi, p|ŝ) for any i ≤ |J |,
xi ∈ Xi and p ∈ P ′i .

Arbitrarily choose x ∈ X. Denote g = ρ|J|(x|s′). Clearly ρ|J|+1(x|s′) =

ρ|J|+1(x|ŝ) for any x. If g(i) /∈ Ẑ thenα|J|+1(x|s′) = d′(ρ|J|+1(x|s′)) = d(ρ|J|+1(x|ŝ)) =

α|J|+1(x|ŝ) = α|J|+1(x|s). If g(i) ∈ Ẑ then µ(x|s′) = z, and following a simi-
lar sequence of equalities we have α|J|+1(x|s′) = α|J|+1(x|s). Thus ααα(·|s′) =
ααα(·|s), implying C(T, P,M |d) ⊂ C(T, P ′,M |d′). It follows from Lemma 9 that
(r, d′, t) dominates (r, d, t). �

A.13 Proof of Proposition 6

Proof. Fix institution (T, P,M) where there is some i such that |Pi| < |Ti|.
Let P ′ be a partition of T such that P ′j = Pj for every j 6= i and P ′i is a strict
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refinement of Pi. That |Pi| < |Ti| implies such P ′i exists. Both complex-
ity conditions in the proposition are satisfied by the institution (T, P ′,M).
(T, P ′,M) dominates (T, P,M) by Lemma 3 because the former is obtained
from the latter by refining. If (T, P,M) dominates (T, P ′,M) then by Theo-
rem 1 (T, P,M) can be obtained from (T, P ′,M) by a sequence of operations
of expanding, refining, trimming or relabeling. Note that merging does not
apply because none of the player has a singleton action set. Since none of
the operations decrease the number of perceptions of i, 10 it follows that
|Pi| ≥ |P ′i |, a contradiction. Thus (T, P,M) does not dominate (T, P ′,M). �

A.14 Proof of Proposition 7

Proof. Fix institution (T, P,M) where |Pi+1| ≥ 2 for some i ≥ 2. Let (T ′, P ′,M ′)
be obtained from (T, P,M) by expanding, such that

1. M ′j = Mj for any j < N and j /∈ {i− 1, i}.

2. Mi−1 ⊂M ′i−1.

3. M ′i = Mi ∪ {mi} for some mi /∈Mi.

4. |P ′j | = |Pj | for any j ∈ N .
5. There is some p′ ∈ P ′i such that h ∈ p′ for any h ∈ T ′i\Ti.

6. For any mi,m
′
i ∈ M ′i there is some h ∈ p′ such that mi and m′i are not

synonymous given h within (T ′, P ′,M ′).

An institution satisfying Properties 1−5 can be easily constructed by making
new messages available to players i− 1 and i, and put message profiles con-
taining the newly introduced messages to existing perceptions as prescribed
by Property 5. If the institution (T ′, P ′,M ′) expanded from (T, P,M) satisfy-
ing Properties 1-5 does not satisfy Property 6, that is, there are mi,m

′
i ∈M ′i

that are synonymous given any h ∈ p′ within (T ′, P ′,M ′), then we can ex-
pand (T ′, P ′,M ′) by making an additional message mi−1 available to player
i− 1, and moreover:
• Put g ×mi−1 in p′ for every g ∈ T ′i−1.
• Put (g × mi−1) × mi and (g × mi−1) × m′i in different perceptions of

player i+ 1 for every g ∈ T ′i−1.
• Put any message profiles of length j − 1 containing mi−1 arbitrarily to

existing perceptions of player j for any j > i+ 1.
Let (T ′′, P ′′,M ′′) be the consequent institution. (T ′′, P ′′,M ′′) satisfies Prop-
erties 1-5. Let p′′ ∈ P ′′i be the consequent perception enlarged from p′. It
follows that mi and m′i are not synonymous given g ×mi−1 for any g ∈ T ′′i−1

10By Lemma 13, trimming does not decrease the number of perceptions of any player.
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and hence they are not synonymous given p′′ within (T ′′, P ′′,M ′′). We can
keep applying this particular type of expanding until Property 6 is satisfied,
without violating Properties 1-5.
Let (T ′, P ′,M ′) be expanded from (T, P,M) that satisfies Properties 1-6.
(T ′, P ′,M ′) dominates (T, P,M) by Lemma 2. If (T, P,M) dominates (T ′, P ′,M ′)
then the proof of Theorem 1 implies there are institutions (T 1, P 1,M1),
(T 2, P 2,M2), (T 3, P 3,M3) and (T 4, P 4,M4) such that

1. (T 1, P 1,M1) is obtained from (T ′, P ′,M ′) by merging.
2. (T 2, P 2,M2) is obtained from (T 1, P 1,M1) by refining.
3. (T 3, P 3,M3) is obtained from (T 2, P 2,M2) by a sequence of trimming

operations.

4. (T 4, P 4,M4) is obtained from (T 3, P 3,M3) by relabeling.
5. (T, P,M) is obtained from (T 4, P 4,M4) by expanding.

(T 1, P 1,M1) = (T ′, P ′,M ′) because everyone’s action set is non-singleton.
That |P ′j | = |Pj | for every j implies (T 2, P 2,M2) = (T 1, P 1,M1) because strict
refining increases the number of perceptions for some player, which will not
be decreased by trimming, relabeling or expanding. Thus (T 2, P 2,M2) =
(T ′, P ′,M ′). p′ ∩ T 3

i ∈ P 3
i because trimming does not decrease the number

of perceptions by Lemma 13. Since there do not exist mi,m
′
i ∈ M ′i which

are synonymous given p′ within (T ′, P ′,M ′), M3(p∩ T 3) = M ′i . Thus for any
h′ ∈ p′ ∩T 3 we have |M3(h′)| = |M ′i | = |Mi|+ 1, implying there is h ∈ Ti such
that |M(h)| = |Mi| + 1 because relabeling and expanding do not decrease
the number of children of any message profile. This leads to a contradiction
because |M(h)| = |Mi| for any h ∈ Ti. Hence (T, P,M) does not dominate
(T ′, P ′,M ′). �
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