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Abstract

We characterize the subgame perfect equilibriums of the dollar auction in its origi-

nal form, without the constructs that the literature has added to avoid bid escalation.

Contrary to Shubik’s (1971) conjecture, no equilibrium can generate higher expected

revenues than the value of the prize. There is a continuum of equilibriums supported by

subgames where competition between only two bidders escalates to complete dissipa-

tion of their surplus. These equilibriums are Pareto dominated, in a dynamic sense, by

equilibriums that always give rise to trilateral rivalry, with the lowest bidder leapfrog-

ging the top runners, and all three retaining some surplus. There are only finitely many

such trilateral-rivalry equilibriums, each corresponding to the lowest bidder’s farthest

lag from the current price before he quits the catchup efforts. Exactly one of such

equilibrium-feasible farthest lag is undominated dynamically.
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1 Introduction

Hailed as “a paradigm for escalation” (Shubik [16]), and a favored classroom experiment

(Teger [18], Haupert [4], Murnighan [12], etc.), the dollar auction is a simple setup, com-

pelling in intuition but seemingly paradoxical in theory, to demonstrate how conflict may

arise and escalate over time. Although basic game-theoretic considerations of the original

game—a dollar bill being auctioned to the highest bidder through ascending bids in five-cent

increments, with every bidder, winning or not, having to pay his own highest bid—would

not predict expected revenues above a dollar, empirical and anecdotal evidence, consistent

with Shubik’s conjecture, suggests that the bidding competition does tend to escalate be-

yond individual rationality, profiting the auctioneer handsomely, with social psychology and

behavioral dynamics such as the “sunk cost fallacy” suggested as driving forces.

At the source of the disconnect are two dynamic issues.1 First, bidders face a time-

inconsistency problem. Even if a bidder has decided at the outset a price or time at which

he will drop out of the race, when that time arrives the bidder may change his mind, as

the efforts he has invested previously have been sunk and he can still up his winning status

with another small bid-increment just large enough to top the current frontrunner. Second,

different from the usual clock model of ascending auctions, where not raising one’s bid

means irrevocable dropout, the dollar auction with more than two players, like most real

world auctions and arms-race-like struggles, allows an underdog to leapfrog and catch up

with the frontrunner. The two issues together render theoretical analyses of the original

dollar auction, despite its simple rules, nontrivial and, to our knowledge, not yet available

in the literature.2 To fill the gap, this paper provides an analytical solution that captures

the dynamic issues of the original game and by doing so partially reconcile game-theoretic

considerations with the observed phenomena of conflict escalation.

While the dollar auction has been largely motivated by military and politico-economic

conflict settings such as arms- and R&D-races of the cold war3 without explicit seller or

1 Setting aside issues such as participants (students) misunderstanding or auctioneer (instructor) mis-

leading/vaguely explaining the auction rules, lack of credible payment enforcement, etc.
2 “There is no neat game theoretic solution to apply to the dynamics of the Dollar Auction,” prophesies

Shubik [16, p111].
3 For example, the “Concorde fallacy” where the United States, United Kingdoms, France and the former

Soviet Union raced to develop supersonic airplanes.
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mechanism designer benefiting from the sunk bids, the recent Web-2.0 development and

commercialization of internet-based technologies have renewed the relevance of the dollar

auction. Exemplary applications include online crowdsourcing and innovation challenges,

where the fundraiser or challenger benefits from all the efforts invested by all participants,

and participants may outdo one another in a dynamic process. For instance, the 2006 Net-

flix Prize offered one million dollars to anyone with a movie recommendation algorithm that

would beat Netflix’s Cinematch algorithm by at least 10% and outperform those from other

contenders.4 Two main features of these innovation-type challenges that auspiciously mimic

the dollar auction include: (1) firms retain exclusive rights to all submissions thereby becom-

ing the beneficiary of all contenders’ sunk efforts; and (2) submissions and their associated

performances (“bids”) are dynamically and openly updated so that contenders can up their

efforts and outperform the frontrunner.

Strangely enough, given the relevance and popularity of the dollar auction, the litera-

ture has not delivered an equilibrium analysis of the game in its original form. Mainly based

on its time-inconsistency aspect, Shubik [16] in introducing the dollar auction conjectures

that its subgame perfect equilibriums result in bid escalation generating higher revenues

than the commonly known value of the prize. Subsequent studies avoid such conjectured

escalation by changing the model of the game. O’Neill [14] and later Leininger [10] and

Demange [3] impose a common budget constraint on all bidders so that bidding escalation

is eliminated by backward induction. Leininger also considers another variant that removes

the minimum requirement of bid increments so that price ascension can slow down to a halt

even though bidders still keep topping each other. With the assumed budget constraint do-

ing away with bidding escalation, Demange [3] introduces asymmetric information to explain

why rivalry may arise and get escalated to a moderate degree.

Another favoured approach in the literature is to regard the dollar auction as a war

of attrition. Standard treatments of wars of attrition, such as Krishna and Morgan [9],

calculate a Nash equilibrium where each player decides on a stopping time at the outset.

More specialized treatments include: dynamic multiplayer stopping games where players are

just choosing whether to continue or irrevocably quit (Kapur [8]); removal of restrictions

4 Details available at: http://www.netflixprize.com. In May 2017 the online real estate valuation

and brokerage firm Zillow initiated a very similar challenge (focusing on home sales price predictions):

https://www.kaggle.com/c/zillow-prize-1; accessed 2017-05-24.
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that price ascends in exogenous increments, thereby allowing a player to start the bidding

process with a sufficiently high jump bid that renders any rival’s entry unprofitable (Hörner

and Sahuguet [6]); or the dynamic war of attrition versions as motivated by biology settings

where conflict escalation is avoided through a correlated equilibrium (Smith [17]). However, a

war of attrition type of analysis tends to capture only one, but not both, of the two important

dynamic issues of the dollar auction: the time-inconsistency problem for a bidder, and an

underdog’s possibility to leapfrog the frontrunner by bidding one increment above the current

highest bid. Furthermore, much of the war of attrition literature tends to focus on two-player

games. While interesting in its own right, two-player dynamics and bidding incentives do

not immediately generalize to multi-player games. For one, with only two players, one’s bid

necessarily next to the other’s by just one increment, there is no possibility of leapfrogs or

catchups from a third rival. Second, two-player games cannot capture the free-rider issue

among lower bidders, as the game ends once the single lower bidder decides not to counter-

bid or escalate the conflict. With more than two players, by contrast, there is an incentive

for a player to take an observational role for a while and let the escalation continue in the

hope that the dueling opponents exhaust their resources.

By contrast, this paper characterizes the equilibriums of the dollar auction in its original

form, with complete information, exogenous increments for price ascension and no budget

constraint. The resulting equilibriums exhibit surprising patterns. Some equilibriums give

rise to only bilateral rivalry, which may escalate to a level that dissipates the players’ surplus

completely, or deescalate to a level where a fortunate player receives the good essentially at

marginal cost of bidding. The other equilibriums, in a three-player game that this paper

focuses mainly on, give rise to trilateral rivalry, which escalates over time, and the lowest

bidder tries to leapfrog to the top unless the lag between him and the frontrunner has reached

a threshold, in which case the bidding escalation ends.

Contrary to Shubik’s conjecture, none of the equilibriums can generate an expected

revenue above the worth of the prize. In particular, the equilibrium that maximizes the bid-

ders’ surplus is a no-conflict equilibrium, where competition stops immediately after someone

becomes the frontrunner by bidding the minimum increment; none others would top him

by bidding two increments, expecting that should she enter the competition the subgame

equilibrium would become a surplus-dissipating bilateral rivalry.5 But then why is bidding

5 Morone, Nuzzo and Caferra [11] have noted the on-path action of this no-conflict equilibrium as a Nash

4



escalation so often observed in the dollar auction? The answer is that the bidders face a

tremendous coordination problem, as there is a continuum of bilateral-rivalry equilibriums,

each corresponding to a probability with which a follower bids after the frontrunner has bid

the initial, say, five cents. This probability can be as small as zero, corresponding to the

no-conflict equilibrium, but can also be large enough to dissipate the surplus entirely. Fur-

thermore, should someone deviate from any such bilateral-rivalry equilibrium, its punishing

subgame play is Pareto dominated by another equilibrium where trilateral rivalry arises and

escalates, and if the players switch to the latter equilibrium conditional on the deviation,

the deviator would find the deviation profitable when he is just considering it.

Equilibriums that give rise to trilateral rivalry are compelling to consider not only for

the above reason but also because real world conflicts often involve more than two parties.

Thus much of the analysis of this paper is devoted to characterizing the set of trilateral-rivalry

equilibriums subject to three conditions for the equilibrium strategy to be name-independent

and Markov perfect. We find that there are only finitely many of such equilibriums, each

corresponding to an even number s∗, called dropout state, such that the underdog (lowest

bidder) tries to catch up if his lag to the frontrunner is shorter than s∗ times the price

increment; else he bids no longer and the rivalry collapses to a bilateral one, between the

top two players, which also stops immediately. Among all equilibriums, bilateral and tri-

lateral rivalries included, we find that exactly one equilibrium-feasible dropout state is, in

a dynamic sense, not Pareto dominated by any other equilibrium-feasible ones. Specifically,

the dynamically undominated equilibriums (if plural then there are at most two of such)

are characterized as the ones with the highest dropout state, i.e., the trilateral rivalry that

continues with the largest gap between the frontrunner and the underdog.

In finding such trilateral-rivalry equilibriums with catchups and leapfrogs, this paper

contributes to auction theory an explicit analysis of an ascending auction outside the main-

stream clock model, so that reentry and leapfrogging are captured. The time-inconsistency

problem is incorporated by subgame perfection. Our findings about the emergence of mul-

tilateral rivalry is relevant to real-world situations where the circle of conflict includes more

than two adversaries, such as the aforementioned Netflix Prize and Concorde fallacy (Foot-

notes 3 and 4), or may expand over time, such as the two world wars.

Empirical investigations of the “dollar auction paradox” include experiment and be-

equilibrium, though vague about whether it can also constitute a subgame perfect equilibrium.
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havioral observations (Teger [18], Haupert [4], Murnighan [12], and Morone, Nuzzo and

Caferra [11]), where bid escalation is attributed to psychological factors (e.g., “spiteful bid-

ding” in Waniek, Nieścieruk, Michalak and Rahwan [21]). Our characterization of the set

of equilibriums provides a theoretical basis for sharper comparisons between the theory and

the lab observations. The multiplicity of equilibriums found here, especially the continuum

of bilateral-rivalry ones, suggests that the observed escalation might be symptoms of just

coordination failure among the bidders, consistent to the rational choice paradigm rather

than requiring behavior or psychological explanations.

The dollar auction is also relevant to the recent proliferation of online pay-to-bid or

penny auctions; studied by Augenblick [1], Hinnosaar [5], Kakhbod [7], Ødegaard and An-

derson [13], Platt, Price and Tappen [15] and Wang and Xu [20]; see also Thaler [19]. The

general online penny auction format is as follows: bidders pay a fixed amount to bid and

nominally raise the price (e.g., bidders pay 75 cents to raise the price by one cent); the

bidder who places the last bid wins the item and in addition to any sunk bidding cost has

to pay the final price of the good.6 Like the dollar auction, bidders in a penny auction incur

a sunk cost for each bid increment they submit. The difference, however, is that the sunk

cost in the dollar auction is counted as part of a bidder’s eventual payment but not so in a

penny auction, where the sunk bidding cost is merely a fee and a winner still needs to pay

the entire price for the good. Hence the time-inconsistency problem and bidding incentives

are different in penny auctions.

After defining the game in Section 2 we shall start with an intuitive presentation of the

bilateral-rivalry equilibriums in Section 3, also motivating the trilateral-rivalry equilibriums.

Formal characterization of the latter equilibriums, the main result of the paper, is presented

in Section 4 based on three symmetric and recursive conditions that allow us to exploit the

recursive structure of the game. Section 5 introduces a mild condition of Pareto perfection

and shows that exactly one of the equilibriums characterized here satisfies the condition.

Proofs are in the appendix in order of the appearance of the corresponding claims.

6 The underlying premise is that the final price will be an order of magnitude less than the value of the

good, while the total sunk bidding cost, from all bidders collectively, far exceeds the value.
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2 The Dollar Auction

There is one indivisible good and n risk-neutral players, with n ≥ 2. The value of the

good, commonly known, is equal to v for every player. The good is to be auctioned off

via an ascending-bid procedure with bid increment fixed at a positive constant δ such that

2δ < v. In the initial round, all players simultaneously choose whether to bid or stay put;

if all stay put then the game ends with the good not sold, else one among those who bid is

chosen randomly, with equal probability, to be the frontrunner , whose committed payment

becomes δ, with everyone else’s committed payment being zero, and the current price of the

good becomes δ. Suppose that the game continues to any subsequent round, with p being

the current price and bi player i’s committed payment (bi ≤ p and strictly so unless i is

the frontrunner), all players but the frontrunner simultaneously choose whether to bid or

stay put. If all stay put then the game ends, the good is sold to the frontrunner, who pays

the price p, and every other player i pays bi; else the current price becomes p + δ and one

among those who bid in this round is chosen randomly, with equal probability, to be the

frontrunner, whose committed payment becomes p + δ, with the committed payments of

others unchanged. Then the game continues to the next round. If the game never ends,

then each bidder pays the supremum of his committed payment, and the good is randomly

assigned to one of those whose supremum committed payments equal infinity.

The payment rule in our model stipulates that every bidder pays his highest bid. A

variant would be to have only the first and second highest bidders pay. Both versions have

been used in actual dollar auctions such as Haupert [4], using the former, and Murnighan [12],

the latter. We opt for the former because in multilateral rivalries such as arms race, political

lobbying and R&D race, not only the top two runners have to pay for their investments.

Further extensions are discussed in the Conclusion.

3 Coordination Failure of Bilateral Rivalry

3.1 Surplus-Dissipating Subgame of Two Bidders

We start with an observation that, within any subgame where the price p has risen to at

least 2δ, with the top bidder, the frontrunner, having committed a payment p, the second-

place bidder, the follower , having committed p−δ, and all others having committed at most
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p − 2δ, there is a subgame perfect equilibrium where the two rivals outbid each other in

alternate rounds with a probability

y := 1− 2δ/v, (1)

and all others choosing to stay put. This subgame perfect equilibrium results in an expected

surplus of zero for every player and hence is called zero-surplus subgame equilibrium.

To explain this subgame equilibrium, for each round denote α for the current frontrun-

ner, and β the current follower. The strategy profile prescribes actions that depend only on

a player’s current position rather than his identity: β bids with probability y and every other

player i /∈ {α, β} chooses to not bid at all (α cannot bid by the rule of the game). In the

event that player β ends up bidding, the current price p is incremented by δ, players α and β

switch roles, and the strategy profile repeats itself with the roles exchanged. In the off-path

event that any other player i /∈ {α, β} bids and becomes the new α, the player who was the α

in the previous round, now the new β, bids with probability y as if it were the on-path event

where he was topped by the previous β; whereas the previous β, now 2δ below the current

price, chooses to not bid at all, leaving the previous α and the deviating player competing

against each other in alternate roles of α and β. Any further off-path event caused by such

a unilateral deviation is responded likewise.

We verify this equilibrium in three steps. First, denote V∗ for a bidder’s continuation

value of being the current α player, andM∗ that of being the current β. Given the expectation

that only the current β player bids at all,

V∗ = (1− y)v + yM∗
(1)
=

(
1− 1 +

2δ

v

)
v + y ·M∗ = 2δ + y ·M∗. (2)

In bidding and becoming the next round α, the current β increases his committed payment

by 2δ, hence M∗ = y(−2δ+V∗). This coupled with (2) implies M∗ = y (−2δ + 2δ + y ·M∗) =

y2M∗, hence M∗ = 0, and so (2) implies V∗ = 2δ.

Second, it is a best response for the current β player to bid with probability y, and

a best response for every other player i /∈ {α, β} to not bid at all: For β, if he bids then

he becomes the new α and bears a sunk cost 2δ, hence his expected payoff from bidding

is equal to V∗ − 2δ = 0; if he does not bid then his payoff is zero as the current α wins.

Hence β is indifferent, so bidding with probability y is a best response. For any i /∈ {α, β},
with committed payment bi ≤ p− 2δ, the cost p+ δ− bi that i needs to incur to assume the

role of α is larger than 2δ, hence the best response is not to bid at all.
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Third, consider an off-path event where a player i other than the α and β in the

previous round bids and gets selected to be the current α. In this event, the price committed

by the β in the previous round remains to be p− 2δ, with p the current price committed by

the new α, and the price committed by the α in the previous round is equal to p− δ. This

previous α becoming the current β, the reasoning in the previous paragraph applies and

hence he finds it a best response to act as the current β according to the strategy proposed

above for this event. The reasoning in the paragraph regarding i /∈ {α, β} now applies to

the β in the previous round, as his committed price is 2δ below the current price. Hence his

best response is to not bid at all, as in the proposed equilibrium.

Although conflict is escalated to the complete dissipation of surplus in the subgame

equilibrium verified above, it does not render more expected revenue than the prize’s worth v,

contrary to the paradox conjectured by Shubik [16].

3.2 Continuum of Bilateral Equilibriums

With the zero-surplus subgame equilibrium acting as a penal code to deter conflict escalation,

we observe that there is a continuum of subgame perfect equilibriums, each indexed by an

x ∈
[
0, 1− (δ/v)1/(n−1)

]
, such that the equilibrium expected revenue R can be as small as δ,

when x = 0, or as large as v, when x = 1− (δ/v)1/(n−1). At any such an equilibrium, every

player bids for sure in the initial round, so one of them is selected the frontrunner, incurring

a sunk cost δ and raising the price to δ. In the second round, every player other than the

frontrunner bids with probability equal to x; in the event that some of them ends up bidding,

the new frontrunner selected thereof commits a sunk cost 2δ, with the previous frontrunner

becoming the follower; hence we enter the subgame described in the previous subsection.

From this point on the zero-surplus subgame equilibrium is played, where everyone else,

except the frontrunner and follower, stays put while competition between the two escalates

with a probability, with the follower topping the frontrunner with probability 1−2δ/v in any

round. Thus, in the second round, anyone other than the frontrunner finds it a best response

to bid with only probability x, anticipating the zero-surplus subgame equilibrium should he

outbid the frontrunner. In the initial round, where the current price equals zero and no

frontrunner has emerged, if player i ∈ {1, . . . , n} bids and gets selected the frontrunner, his
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expected payoff is equal to

−δ + (1− x)n−1v +
(
1− (1− x)n−1

)
M∗ = −δ + (1− x)n−1v,

which is nonnegative because x ≤ 1 − (δ/v)1/(n−1). Hence bidding is a best response for

everyone at the initial round. The equilibrium thus verified generates an expected revenue

R = δ +
(
1− (1− x)n−1

)
v,

which, depending on x, ranges from δ to v.

3.3 Emergence of Trilateral Rivalry

The above family of equilibriums with endogenously bilateral rivalry has two immediate

implications. First, different from Demange [3] and Hörner and Sahuguet [6], where the

difference between surplus dissipation and retention relies on the introduction of asymmetric

information or jump bids, here the degree to which the bidders may retain the surplus

depends purely on which equilibrium they happen to play. Second, with the multiplicity of

a continuum, such equilibriums present a severe coordination problem to the contestants in

trying to retain surplus via playing one in the continuum.

Another problem of the bilateral-rivalry equilibriums observed above is that they can

be eliminated by a weak requirement of Pareto perfection. To illustrate this, suppose that

one of such equilibriums with x > 0 is being played and the game has continued to the

third round, where the price has risen to 2δ and a bilateral rivalry has emerged between two

players, the frontrunner having committed 2δ and the follower having committed δ, with all

other players supposed to stay put from now on. Suppose to the contrary one of these other

players decides to deviate by bidding. If he gets selected the new frontrunner, the deviator

commits 3δ and a trilateral rivalry is formed between him and the previous frontrunner and

follower. Furthermore, the rivalry is manifested by a consecutive configuration where the

distance of committed payments between the current frontrunner and the follower, and that

between the follower and the third-place bidder, are each equal to δ. Should the players stick

to the status quo, the bilateral-rivalry equilibrium, such a deviation would be unprofitable.

However, the deviation could be taken as a call for switching to another equilibrium which,

as we will demonstrate later, makes all three rivals better-off and none others worse-off;

moreover, if the other players follow suit and switch to the new equilibrium conditional
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on the deviation, the deviator strictly prefers the deviation from the standpoint where he

considers it. Hence the bilateral-rivalry equilibrium is not Pareto perfect: on its path there

is a point where it is Pareto dominated by another equilibrium that gives rise to trilateral

rivalry , and the “renegotiation” can be done tacitly through merely a unilateral deviation.

We will formalize the above claim in subsequent sections. Here let us illustrate it with

a numerical example. It should be intuitive that bidders’ expected payoff depends on the

relative values of v and δ, and so for this example we focus on the case when v/δ ≥ 35/2

and a trilateral-rivalry equilibrium generating 4δ in expected payoff for any frontrunner

in the consecutive configuration described above. At this configuration, all other players

who have not bid choose to stay put (as being the next frontrunner yields at most 4δ and

requires committing to pay at least 4δ), while both the follower and the third-place bidder

bid for sure. If the third-place bidder gets selected the new frontrunner then the consecutive

configuration repeats itself, otherwise the gap between the current price and the third-place

bidder’s committed payment widens by δ. In any subsequent round the current follower

and the third-place player bid for sure unless the aforementioned gap widens to 3δ. In

that event, the follower stays put and the third-place player bids with a probability, strictly

between zero and one, which is pinned down by the condition that the frontrunner in the

consecutive configuration has surplus 4δ; if the third-place player ends up not bidding then

the current frontrunner wins, else the third-place bidder becomes the frontrunner and the

trilateral rivalry is back to its consecutive configuration.

The equilibrium in this example generates a surplus of 4δ for the frontrunner, more

than δ for the follower, and δ/2 for the third-place player, when they are in the consecutive

configuration. Whereas, at this point, any bilateral-rivalry equilibrium gives only 2δ to the

frontrunner and zero to the other two. Hence it is Pareto superior for them to switch to the

trilateral equilibrium conditional on the deviation. Furthermore, the switch induces a profit

4δ − 3δ = δ for the unilateral deviator from the viewpoint of the previous round.

4 The Integral Spectrum of Equilibriums

The previous observation leads to an investigation of trilateral-rivalry equilibriums. Do they

also present the bidders a similar coordination problem? To answer this question we need

to characterize the set of equilibriums. To exploit the recursive structure of the game we
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restrict the equilibrium concept by three name-independent, Markov perfect conditions. The

structure of such equilibriums turns out to be remarkably clean; there are only finitely many

of them, each corresponding to an even number.

4.1 The State of the Game and the Equilibrium Concept

The state of the game, in any round, consists of the vector (bi)
n
i=1 of the payments committed

by the players so far, with maxi=1,...,n bi being the current price, and arg maxi=1,...,n bi (single-

ton by the rule of the game) the current frontrunner. For any subgame perfect equilibrium

E of the game and any state (bi)
n
i=1, denote E |(bi)ni=1 for the continuation play of E in any

subgame that starts with the state (bi)
n
i=1. By equilibrium we mean any subgame perfect

equilibrium E of the game that satisfies three conditions:

Symmetry For any two states (bi)
n
i=1 and (b′i)

n
i=1 such that bi = b′ψ(i) for all i ∈ {1, . . . , n}

for some permutation ψ on {1, . . . , n}, E |(bi)ni=1 is isomorphic to E |(b′i)ni=1 given the

permutation ψ.

Recursion E |(bi)ni=1 is equal to E |(b′i)ni=1 such that b′i = bi − minj=1,...,n bj for all i ∈
{1, . . . , n}.

Independence of irrelevant players For any state (bi)
n
i=1, if, for some k ∈ {1, . . . , n}

and constant c, at every state (b′i)
n
i=1 generated on the path of E |(bi)ni=1 we have b′k =

c < maxi b
′
i, then E |(bi)ni=1 satisfies the previous two conditions such that {1, . . . , n} is

replaced by {1, . . . , n} \ {k}.

The symmetry condition requires that the strategy profile in an equilibrium be inde-

pendent of players’ names. The recursion condition says that a player’s equilibrium strategy

depends not on the amount of payments he has committed so far but rather on the distances

between his and others’ committed payments, i.e., past bids constitute a sunk cost. The

independence condition of irrelevant players says that, if a player k drops out of the race for

good according to an equilibrium, then the equilibrium strategy conditional on this subgame

should not vary with the position of this player from this point on.

For tractability we specialize to the case where n = 3. Consequently, by the symmetry

and recursion conditions, we need only to identify the three players by the relative positions

of their committed payments, hence denote α for the frontrunner, whose committed payment
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is the current price p (bα = p), β the follower, whose committed payment is always just δ

below the frontrunner’s (bβ = p− δ), and γ the underdog, whose committed payment is the

lowest. The discrete state of the game can be represented by the frontrunner-underdog lag

s := (p− bγ) /δ,

i.e. bγ = p − sδ. Note that s ≥ 2, and thus we extend the notation such that the state in

the initial round equals zero (s = 0), with everyone treated as underdog, and in the second

round the state equals one (s = 1), with all but the frontrunner being underdog. Then any

equilibrium is of the form (
π0, π1, (πβ,s, πγ,s)

∞
s=2

)
,

with π0 being every bidder’s probability of bidding at the initial round, π1 the probability

of bidding at the second round for everyone but the current α player, and, for every s ≥ 2

and each i ∈ {β, γ}, πi,s being the probability with which the current i player bids.

4.2 The Value Functions

Let any equilibrium
(
π0, π1, (πβ,s, πγ,s)

∞
s=2

)
be given. For every s ≥ 2 and each i ∈ {β, γ},

denote qi,s for the probability with which the current i player becomes the α player in the

next round. Note, from the uniform-probability tie-breaking rule, that at any s ≥ 2

qi,s = πi,s (1− π−i,s/2) , (3)

with −i being the element of {β, γ} \ {i}. Given this equilibrium and any state s, denote Vs

for the expected payoff for the current α player, Ms the expected payoff for the current β,

and Ls that for the current γ (with M1 = L1 for every non-α player at the second round).

The law of motion is described below:

V1 −→

 v prob. (1− π1)2

M2 prob. 1− (1− π1)2,
(4)

M1 −→


0 prob. (1− π1)2

V2 − 2δ prob. π1 (1− π1/2)

L2 prob. π1 (1− π1/2);

(5)
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and, for each s ≥ 2:

Vs −→


v prob. 1− qβ,s − qγ,s
Ms+1 prob. qβ,s

M2 prob. qγ,s;

(6)

Ms −→


0 prob. 1− qβ,M∗s − qγ,s
Vs+1 − 2δ prob. qβ,s

L2 prob. qγ,s;

(7)

Ls −→


0 prob. 1− qβ,s − qγ,s
Ls+1 prob. qβ,s

V2 − (s+ 1)δ prob. qγ,s.

(8)

4.3 The Dropout State

Since v is finite, at any equilibrium V2 is finite and hence V2 < sδ for all sufficiently large s.

Thus, for any equilibrium

s∗ := max {s ∈ {1, 2, 3, . . .} : V2 ≥ sδ}

exists and is unique. Call s∗ the dropout state of the equilibrium. The next lemma, which

follows from (8) coupled with the definition of s∗, justifies the appellation.

Lemma 1 At any equilibrium with dropout state s∗, an underdog (γ player) (i) stays put

for sure at state s if and only if s ≥ s∗, and (ii) bids for sure at state s if 2 ≤ s < s∗ − 1.

For example, in any bilateral-rivalry equilibrium, if the state becomes s = 2 then

it is already in the zero-surplus subgame equilibrium, where V2 = V∗ = 2δ (Section 3.1),

hence s∗ = 2. For the illustrative trilateral-rivalry equilibrium sketched previously, V2 = 4δ

(Section 3.3) and so s∗ = 4, hence an underdog bids with positive probability as long as his

lag from the frontrunner is below 4.

By Lemma 1, once the game enters the dropout state or beyond, the player currently

in the underdog role will never bid to catch up and only the frontrunner and follower may

remain active. A subgame equilibrium henceforth is the zero-surplus one constructed in

Section 3.1. By the independence condition of irrelevant players, which deems the position

of the underdog irrelevant to any equilibrium projected onto any such subgames, the zero-

surplus subgame equilibrium is the only on-path outcome thereafter:
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Lemma 2 At any equilibrium with dropout state s∗ ≥ 2, if s ≥ s∗ then Vs = 2δ and

Ms = Ls = 0.

Thus, the dropout state of an equilibrium can be viewed as the endogenous terminal node

of the game, giving an expected payoff 2δ to the frontrunner, and zero expected payoff to

the follower and the underdog.

Reasoning backward from the dropout state s∗, we see that the game does not end if

it is in any state s ≤ s∗ − 2, because according to Lemma 1.ii the current underdog bids for

sure trying to catch up with the frontrunner. Thus the minimum state at which the game

need not continue to the next round is the state s∗ − 1, at which the underdog need not

bid for sure. Furthermore, combining (7), Lemma 2 and the definition of s∗ one can show

that the follower at the critical state s∗− 1 would rather be the underdog in the next round,

should the game continue, than outbid the frontrunner right now thereby getting into the

zero-surplus subgame equilibrium thereupon. Thus, at the critical state s∗−1, the underdog

solely determines whether the competition should continue or cease, asserted by the next

lemma, which also implies that the frontrunner’s equilibrium surplus V2 in the consecutive

configuration is necessarily an integer multiple of the bid increment δ.

Lemma 3 At any equilibrium with dropout state s∗ ≥ 3: (i) at the critical state s∗ − 1 the

β player stays put while the γ player bids with a probability in (0, 1); and (ii) V2 = s∗δ.

4.4 Dropout States Can Only Be Even

Lemma 3 implies that on the path of any equilibrium the game ends only when the state

is s∗ − 1, at which only the underdog γ may bid. If he bids (thereby becoming the next α)

then the state returns to s = 2, else the game ends and the current α wins the good. Thus,

in order to win, a player needs to be the α player at the critical state s∗ − 1. Consequently,

if the dropout state s∗ is an odd number, then on the path to winning a bidder must in the

previous rounds have been the β player for all odd states s < s∗− 1, and the α player for all

even states s ≤ s∗ − 1. An illustration for s∗ = 7 is shown in Figure 1. Solid lines represent

possible transitions if one bids, and dashed lines if he does not bid. The extra thick gray

states and arrows indicate the winning path.

Thus, when s∗ is odd, a player who happens to be in the β position at any even state

s < s∗ − 1 would in order to reach the winning path rather become the γ player in state
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Figure 1: The law of motions and equilibrium winning path if s∗ = 7.

s = 2 (through not bidding at all) than become the superfluous α player in the odd state

s + 1 at the cost of 2δ (through bidding). In particular, in state s = 2, the β player would

never bid while the γ player would always bid; hence the state s = 2 repeats itself, with the

players switching roles according to γ → α → β → γ, thereby trapping them in an infinite

bidding loop. This contradiction, after being formalized, implies the first main finding—

Theorem 1 There does not exist any equilibrium whose dropout state s∗ is an odd number

bigger than 2.

When the dropout state s∗ is an even number, by contrast, a β player is not in the

predicament as in the previous case. First, in any even state s < s∗−1 the β player wants to

bid in order to stay on the winning path and become the α in the odd state s+ 1. Second,

in any odd state s < s∗ − 1 the β player would rather bid and become the α in the even

state s+ 1 than stay put thereby becoming the γ player in state 2. With the former option,

it takes a cost of 2δ (to become α in s + 1) and two rounds for the player to have a chance

to become the β player in state s = 2 thereby landing on the winning path. With the latter

option, it takes a cost of 3δ and three rounds for him to have such a chance of reaching the

winning path. In Figure 2, with s∗ = 6, the situation of this odd-state β player is illustrated

by the node M3, from which the former option (becoming the next α) reaches the winning

path state M2 via M3 → V4 →M2, while the latter option (being the next γ) reaches M2 via

the more roundabout route M3 → L2 → V2 →M2.
7 Formalizing this intuition we obtain—

7 In the more roundabout route, the last step, from V2 to M2, is preferable to a player because of a
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Lemma 4 At any equilibrium with dropout state s∗ being an even number and s∗ ≥ 4, at

any state s ∈ {1, 2, . . . , s∗ − 2} the β player bids for sure.

4.5 Characterization of the Equilibriums

Lemmas 1–4 together have mostly pinned down the strategy profile for any equilibrium with

dropout state s∗ above three:

(∗) s∗ is an even number; at each state s ∈ {1, 2, . . . , s∗ − 2} every non-α player bids for

sure; at state s∗ − 1 the β player does not bid and the γ bids with probability πγ,s∗−1;

at any state s ≥ s∗, the γ player does not bid and the β bids with probability 1−2δ/v.

By Condition (∗), Eq. (3) and the equal-probability tie-breaking rule,

2 ≤ s ≤ s∗ − 2 =⇒ qβ,s = qγ,s = 1/2. (9)

Given any πγ,s∗−1 ∈ [0, 1], the value functions (Vs,Ms, Ls)s associated to any strategy profile

satisfying Condition (∗) can be calculated based on Eq. (9) and the law of motion, (6)–(8).

The question is whether such a strategy profile constitutes an equilibrium. The crucial step

in answering this question is to verify that, given Condition (∗), bidding is a best response

nontrivial Lemma 11, saying that in the consecutive configuration it is better-off to be the follower than the

frontrunner.
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for the β player at every state below s∗ − 1. Verification for all such states might sound

cumbersome, but it turns out that we need only to check two inequalities:

Lemma 5 For any even number s∗ ≥ 4 and any strategy profile satisfying Condition (∗),

bidding is a best response for the β player at state s ∈ {1, 2, . . . , s∗−2} if either (i) s is even

and V3 − 2δ ≥ L2, or (ii) s is odd and Vs∗−2 − 2δ ≥ L2.

These two sufficient conditions, one can show, are also necessary for any equilibrium.

Thus Lemma 5, combined with the previous ones, implies a necessary and sufficient condi-

tion for any equilibrium with even-number dropout state s∗ ≥ 4: that the bidding probabil-

ity πγ,s∗−1 at the critical state is determined by the equation V2 = s∗δ (Lemma 3.ii), with V2

as well as other value functions derived from the law of motion (6)–(8) and Condition (∗),
such that both V3 − 2δ ≥ L2 and Vs∗−2 − 2δ ≥ L2 are satisfied. From this necessary and

sufficient condition we obtain a complete characterization of trilateral-rivalry equilibriums,

equilibriums with dropout states larger than two:

Theorem 2 Any s∗ ≥ 3 constitutes an equilibrium if and only if s∗ is an even number and—

i. either s∗ ≤ 6 and the equation

3µ∗v

δ
(1− x)(2− µ∗) + (2− µ∗)2(s∗ − 6 + µ∗)

= (2(1 + µ∗)− 3µ∗x) (3s∗ + 2(1− 2µ∗)− (s∗ − 4 + µ∗)(1− 2µ∗ + 3µ∗x)) , (10)

where µ∗ := 2−s∗+3, admits a solution for x ∈ [0, 1];

ii. or s∗ ≥ 8 and Eq. (10) admits a solution for x ∈ [0, 1] such that

x ≥ 1− 3(2− µ∗)
2(1− 2µ∗)(s∗ − 4 + µ∗)

. (11)

The solution x to equation (10) corresponds to the γ player’s bidding probability πγ,s∗−1 in

the critical state s∗−1. The bifurcated characterization in Theorem 2 is due to a fact, proved

in the appendix, that at the solution for V2 = s∗δ, neither V3− 2δ ≥ L2 nor Vs∗−2− 2δ ≥ L2

are binding when s∗ ≤ 6, and only one of the inequalities is binding when s∗ ≥ 8.

Contrary to the case of odd-number dropout states, equilibriums with even-number

dropout states exist provided that the parameter v/δ is sufficiently large:
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Theorem 3 (i) An equilibrium with s∗ = 4 exists if and only if v/δ > 35/2, and that with

s∗ = 6 exists if and only if v/δ > 6801/120. (ii) For any even number s∗ ≥ 8, if

v

δ
≥
(

1

3
s2∗ +

5

3
s∗ − 8

)
2s∗−3 (12)

then s∗ constitutes an equilibrium with dropout state equal to s∗.

As s∗ increases from 8, the right-hand side of Ineq. (12) increases at a rate in the order

of 2s∗ . Thus, to suffice the equilibrium feasibility of a higher dropout state s∗, Ineq. (12)

requires that the parameter v/δ be higher by a magnitude in the order of 2s∗ .

Contrary to the bilateral-rivalry equilibriums, which constitute a continuum, there

are only finitely many trilateral-rivalry ones, as the next theorem asserts. That is because

the parameter v/δ, through the facts v ≥ V2 and V2 = s∗δ, implies an upper bound for

equilibrium-feasible dropout states, which can only be integers, and given each dropout

state Eq. (10) admits at most two solutions for x (i.e., πγ,s∗−1), which in turn determines the

equilibrium strategy profile uniquely.

Theorem 4 There are at most finitely many equilibriums with dropout states s∗ ≥ 3.

4.6 Numerical Illustration

To illustrate the formal results in Theorems 2 and 3, we fix δ = $1, vary v from $0 to

$1,000 and consider the cases s∗ = 4, 6, 8, 10. Figure 3 shows the γ player’s (underdog)

equilibrium bidding probability in the critical state s∗ − 1 as a function of the underlying

value v. The vertical lines indicate the point at which additional equilibriums for s∗ > 4

are admitted. For instance, starting at v = $57 (≈ 6801/102) the equilibrium corresponding

to the dropout state s∗ = 6 is permissible. We observe that within each equilibrium the

bidding probability is increasing in the underlying value v (or v/δ as δ is fixed at one in

this example). On the other hand, and a bit surprisingly, when a new equilibrium with a

higher dropout state becomes permissible the corresponding equilibrium bidding probability

drastically reduces. Furthermore, each additional equilibrium requires an order of magnitude

increase in v, somewhat confirming our previous remark on the right-hand side of Ineq. (12).
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Figure 3: Equilibrium bidding probability for the underdog in the critical state s∗−1; δ = 1.

5 The Unique Pareto Perfect Dropout State

The previous sections have characterized the set of equilibriums in the dollar auction. It

consists of a no-conflict equilibrium, where the bidding war stops for sure after the initial

round; a continuum of equilibriums with only bilateral rivalry, which occurs with a proba-

bility ranging from arbitrarily close to zero to 1 − δ/v, all corresponding to dropout state

s∗ = 2; and a finite number of equilibriums where trilateral rivalry arises and continues until

the critical state s∗− 1 is reached, with s∗ an even number below a parametric upper bound

determined by v/δ.

We reduce such multiplicity of equilibriums by introducing a mild condition of Pareto

perfection to the solution concept. For any equilibriums E and Ē of the dollar auction game,

equilibrium E is said compellingly Pareto dominated by equilibrium Ē if and only if there

exists a state s ∈ {0, 1, 2, . . .} such that—

a. s is off the path of E and on the path of Ē ;
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b. starting from state s, each player has higher expected payoff from Ē |s than from E |s;

c. at E , the state s is reached by a player’s unilateral deviation from a state t that is on

the path of E , and the unilateral deviation, from the standpoint of t, is profitable for

the deviating player provided that Ē |s is the subgame play starting from s.

An equilibrium is said weakly Pareto perfect if and only if it is not compellingly Pareto

dominated by another equilibrium.

This notion of Pareto perfection is less restrictive than the one initiated by Berheim,

Peleg and Whinston [2], because we require Pareto optimality not at every node but only at

a commonly known immediate deviation from the path. To switch away from a compellingly

Pareto dominated equilibrium, interpretation-wise, the players do not need pre-play com-

munication at the outset or “renegotiation” after a deviation. Rather, the choice of one

equilibrium over the other can be instigated by a single player’s unilateral deviation from

the status quo.

Theorem 5 If v/δ > 35/2 then the weakly Pareto perfect equilibriums are exactly the

trilateral-rivalry ones with a unique dropout state equal to the maximum among the even

numbers s∗ that satisfy condition (i) or (ii) in Theorem 2.

In other words, among the spectrum of equilibriums, not only are the bilateral-rivalry

equilibriums compellingly Pareto dominated by the trilateral-rivalry ones (which exist by

the hypothesis v/δ > 35/2 and Theorem 3), but also are the trilateral-rivalry equilibriums

except the one(s) with the maximum dropout state. Section 3.3 has sketched how any

bilateral-rivalry equilibrium with dropout state s∗ = 2 is dominated by a trilateral-rivalry

one. Here we sketch how the no-conflict equilibrium, with everyone refraining from topping

the frontrunner in the second round, is dominated. The no-conflict equilibrium is dominated

at the second round, when a non-frontrunner, who is supposed to not bid, deviates by

committing to pay 2δ thereby topping the frontrunner. Conditional on the deviation, one

can show that any trilateral-rivalry equilibrium yields positive surplus for all three players,

with a surplus larger than 4δ for the deviator specifically, while the original equilibrium, now

running according to the zero-surplus subgame equilibrium, yields only 2δ for the deviator-

turned frontrunner and zero surplus for the other two. Provided that the equilibrium switch

is made conditional on the deviation, it generates a profit at least 4δ − 2δ for the deviator

from the standpoint before he deviates.
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For any trilateral-rivalry equilibrium whose dropout state s∗ is not the maximum one,

it is dominated by another trilateral-rivalry one with a higher dropout state say s′∗. At

state s∗−1, when the β player is supposed to stay put and receive zero surplus at the former

equilibrium, β can deviate by bidding. In the event that he deviates and becomes the next

frontrunner, if the former equilibrium is played then the deviator-turned frontrunner gets 2δ

and the other two get zero surplus, with the deviator and the previous-round frontrunner

engaged in the surplus-dissipating bilateral rivalry, and the underdog dropping out; if they

switch to the latter equilibrium, by contrast, the trilateral rivalry is prolonged since the

larger dropout state has not been reached, and one can show that each gets positive surplus,

which for the one who has just deviated is at least s′∗δ, larger than the 2δ that he would get

from the former equilibrium conditional on his deviation, and also larger than the additional

payment 2δ that he commits in making the deviation.8

6 Conclusion and Extensions

Ever since its introduction to the literature in 1971, the dollar auction has for decades

provided an intuitive illustration, yet seemingly paradoxical, of conflict escalation. Much

theoretical research of the game has relied on ad hoc adjustments of the original game, in-

cluding budget constraints and jump bids, to sidestep the seeming arbitrage paradox that

the generated revenue exceeds the value of the good. In this paper, we return to the original

form and analyze equilibrium bidding behaviors. Our results show that while some equilib-

rium may give rise to severe conflict escalation generating marginal or even zero (expected)

bidder surplus, none generate an expected revenue greater than the value of the good. By

contrast, there exist equilibriums in which bidders can extract positive surplus, including

one that reduces the expected revenue to the marginal amount of one bid increment. The

bidding escalation often observed in the dollar auction experiments is attributed to the bid-

ders’ coordination failure, as we have found a continuum of such equilibriums of the game.

8 Another interpretation of this weak notion of Pareto perfection is to iteratively eliminate equilibriums by

forward induction, starting from the equilibrium with the second-highest dropout state. For any equilibrium

with non-maximum dropout state say s∗, conditional on a deviation at critical state s∗ − 1, the equilibrium

with the maximum dropout state s̄∗ is the only one that Pareto dominates the one with s∗, since either

s̄∗ = s∗ + 2 or any equilibrium with dropout states between s∗ and s̄∗ have been eliminated in this manner.

Hence the deviation can be taken as a signal that the deviator is to play the equilibrium with s̄∗.
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Furthermore, and more surprisingly, we show that if the conflict escalation is expanded to

more players, specifically from bilateral to trilateral rivalries, bidders can extract surplus in a

“renegotiation-proof” manner, with their coordination problem resolved tacitly via a single

player’s unilateral deviation.

In the discourse to characterize the trilateral rivalry we have shown that the permissi-

ble equilibriums have a particular form regarding the lag between the frontrunner and the

underdog, the lowest participating bidder. We also show that at these equilibriums it is the

underdog who ultimately decides whether the bidding escalation shall continue, and that

this decision is made when and only when his distance to the frontrunner reaches a specific

integer multiple of the bid increment. An interesting feature of these equilibriums is that at

the onset of the trilateral rivalry, the ideal position is to be the follower, wedged in between

the frontrunner and the underdog, rather than the frontrunner (Footnote 7).

In this paper we have mainly focused on bilateral and trilateral rivalries. Immediately

one may ask: Are there also quadrilateral or pentalateral rivalry equilibriums? And if so how

are they characterized? While the state of bilateral and trilateral games can be represented

by a unidimensional variable, for quadrilateral and pentalateral games the state needs to

be represented by a bidimensional and tridimensional vector, summarizing the lags to the

frontrunner of the multiple lower bidders. Thus even just formalizing the state of the game

would require further considerations.

Other interesting extensions include considering different tie-breaking and payment

rules. This paper stays in line with Shubik’s original model formulation. Motivated by

lobbying and R&D races, however, one could consider alternative forms where in each round

all active bidders simultaneously submit a sunk bid, and the game ends once no more bids

are submitted. Then there could be multiple frontrunners, who may happen to drop out

simultaneously thereby giving rise to ties in the end. Finally, one may also want to further

enhance Shubik’s framework by considering asymmetric information. We leave these and

other extensions for future work with the hope that this paper may stimulate yet another

fruitful research stream on the dollar auction and conflict escalation.
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A Proofs

A.1 Lemmas 1 and 2

Lemma 1 By definition of Ls, the equilibrium expected payoff for an underdog whose lag

from the frontrunner is s, we know that Ls = 0 for all s ≥ v/δ. Starting from any such s

and use backward induction towards smaller s, together with the law of motion (8) and the

fact V2 − (s + 1)δ < 0 for all s ≥ s∗ due to the definition of s∗, we observe that Ls = 0 for

all s ≥ s∗. At any state s ≥ s∗, by (8), an underdog gets zero expected payoff if he does not

bid; if he bids then by Eq. (3) there is a positive probability with which he gets a negative

payoff V2 − (s+ 1)δ; hence his best response is uniquely to not bid at all. Hence

s ≥ s∗ =⇒ Ls = 0 and πγ,s = qγ,s = 0, (13)

which proves Claim (i) of the lemma. Apply backward induction to (8) starting from s = s∗

and we obtain

2 ≤ s ≤ s∗ − 1 =⇒ V2 − (s+ 1)δ ≥ Ls ≥ Ls+1 ≥ 0, (14)

with the inequality Ls ≥ Ls+1 being strict whenever s < s∗ − 1. Thus, for any s < s∗ − 1,

Vs − (s + 1)δ > Ls+1 ≥ 0; hence Eqs. (3) and (8) together imply that an underdog’s best

response is uniquely to bid for sure:

2 ≤ s < s∗ − 1 =⇒ Ls > 0 and πγ,s = 1, (15)

which proves Claim (ii) of the lemma. �

Lemma 2 Take any equilibrium, with dropout state s∗ and value functions Vs, Ms and Ls.

By Lemma 1.i, at any state s ≥ s∗ the player who is the current underdog stays put for all

future rounds, and hence the independence condition of irrelevant players implies that in any

subgame give s the equilibrium strategy profile for the remaining two players, the current

frontrunner α and the follower β, satisfies the symmetry and recursion conditions as if the

two constitute the entire set of players. The two conditions together imply that in any such

subgame a remaining player’s strategy depends only on his current role as either the α or

the β, regardless of his name or the amount of his committed payment. Thus, there exist

constants (V∗,M∗, y) ∈ R2 × [0, 1] such that V∗ = Vs, M∗ = Ms and y = πβ,s for all s ≥ s∗.
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Then the Bellman equations are

V∗ = (1− y)v + yM∗,

M∗ = y(−2δ + V∗).

Note that y > 0, otherwise V∗ = v and M∗ = 0; with v > 2δ by assumption, the current β

player would bid for sure, so the two players are trapped in an infinite bidding loop and

each get zero payoff. Also note y < 1, otherwise V∗ = 0 and M∗ = −2δ, violating individual

rationality. Now that 0 < y < 1, the β player is indifferent about bidding, hence M∗ = 0.

This combined with the Bellman equations uniquely pins down the subgame equilibrium as

V∗ = 2δ, M∗ = 0 and y = 1 − 2δ/v, which is exactly the zero-surplus subgame equilibrium.

Hence Vs = V∗ = 2δ and Ms = M∗ = 0. Since (13) implies Ls = 0, the lemma is proved. �

A.2 Lemma 3 and Theorem 1

To prove Lemma 3 we make several observations first. By (8) and (14), L2 is a convex

combination between L3 and V2 − 3δ, with V2 − 3δ ≥ L3 when s∗ ≥ 3. Thus,

s∗ ≥ 3 =⇒ L2 ≤ V2 − 3δ. (16)

Lemma 2, combined with (7) and (8), implies

Ms∗−1 = qγ,s∗−1L2

(16)

≤ (V2 − 3δ)+ . (17)

Lemma 6 There does not exist an equilibrium with dropout state s∗ = 3

Proof Suppose, to the contrary, that s∗ = 3. Hence 0 ≤ V2 − 3δ < δ. Thus, by Eq. (17),

M2 < δ. Then (4) requires that π1 < 1, otherwise V1 = M2 < δ, implying a contradiction that

no one would bear the sunk cost δ to become the initial α player. Now consider the decision

of any non-α player at the state s = 1, as depicted by (5). Since V2 − 2δ > V2 − 3δ ≥ L2,

with the second inequality due to (16), each non-α player at s = 1 would maximize the

probability of becoming the α in the next round, i.e., π1 = 1, contradiction.

Lemma 7 At any equilibrium with dropout state s∗ ≥ 4, V3 − 2δ ≥M2 ≥ L2 > 0.

Proof Suppose that V3− 2δ < L2. Then, by the fact πγ,2 = 1 (Lemma 1.ii and s∗ ≥ 4) and

Eq. (3), the β player at state s = 2 would rather stay put than bid, hence πβ,2 = 0. This,
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combined with (6) in the case s = 2 and the fact πγ,2 = 1, implies that V2 = M2. Since

V3− 2δ < L2 coupled with (7) implies M2 ≤ L2, we have a contradiction V2 ≤ L2 < V2, with

the last inequality due to (8). Thus we have proved V3 − 2δ ≥ L2. Therefore, with M2 a

convex combination between V3 − 2δ and L2 (since πγ,2 = 1), V3 − 2δ ≥ M2 ≥ L2. Finally,

to show L2 > 0, note from the hypothesis s∗ ≥ 4 and definition of s∗ that V2 − 3δ > 0. This

positive payoff the underdog at state s = 2 can secure with a positive probability through

bidding. Hence L2 > 0 follows from (8).

Lemma 8 At any equilibrium with dropout state s∗ ≥ 4, πγ,s∗−1 > 0.

Proof Suppose, to the contrary, that πγ,s∗−1 = 0 at equilibrium. Then Ms∗−1 = 0 according

to (7), with s = s∗− 1, and the fact Vs∗ − 2δ = 0 by Lemma 2. Consequently, (6) applied to

the case s = s∗− 2, coupled with the fact πγ,s∗−2 = 1 (Lemma 1.i), implies that Vs∗−2 ≤M2,

which in turn implies, by (7) in the case s = s∗ − 3 and the fact πγ,s∗−3 = 1, that Ms∗−3 ≤
max{M2 − 2δ, L2} ≤ M2, with the last inequality due to Lemma 7. That in turn implies

Vs∗−4 ≤M2 by (6) and the fact πγ,s∗−4 = 1. Thus Vs∗−2 ≤M2, Vs∗−4 ≤M2 and Ms∗−3 ≤M2.

The supposition πγ,s∗−1 = 0, coupled with the fact that πγ,s = 0 at all s > s∗ − 1

(Lemma 1.ii), also implies that α drops out of the race starting from the state s∗− 1. Thus,

by the independence condition of irrelevant players, Vs∗−1 = Vs∗ , hence Lemma 2 implies

Vs∗−1 = 2δ. Then (7) applied to the case s = s∗−2, coupled with the fact πγ,s∗−2 = 1, implies

Ms∗−2 ≤ L2. Thus, by (6) and the fact πγ,s∗−3 = 1, we have Vs∗−3 ≤ max{L2,M2} ≤M2, the

last inequality again due to Lemma 7. With Vs∗−3 ≤ M2, (7) implies Ms∗−4 ≤ max{M2 −
2δ, L2} ≤M2. Thus Vs∗−1 = 2δ, Vs∗−3 ≤M2, Ms∗−2 ≤ L2 ≤M2 and Ms∗−4 ≤M2.

Repeat the above reasoning on (6) and (7) for smaller and smaller s and we obtain the

fact that Vs∗−1 = 2δ, Vs ≤ M2 and Ms ≤ M2 for all s ≤ s∗ − 2. Thus, V3 ≤ max{M2, 2δ},
which contradicts Lemma 7.

Proof of Lemma 3 Since s∗ ≥ 4 by Lemma 6, L2 > 0 by Lemma 7. Thus, for the β

player at s = s∗ − 1, depicted by (7), given the fact Vs∗ − 2δ = 0 by Lemma 2 and the fact

that L2 > 0 and πγ,s∗−1 > 0 (Lemma 8), it is the unique best response to not bid at all, i.e.,

πβ,s∗−1 = 0. Thus, the β player stays put for sure at state s∗ − 1, as the lemma asserts.

Next we show that 0 < πγ,s∗−1 < 1. The first inequality is implied by Lemma 8 since

s∗ ≥ 4. To prove πγ,s∗−1 < 1, suppose to the contrary that πγ,s∗−1 = 1. Then by the fact
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πβ,s∗−1 = 0 and (6) applied to the case s = s∗−1, we have Vs∗−1 = M2. Consequently, by (7)

applied to the case s = s∗−2, Ms∗−2 ≤ max{M2−2δ, L2} ≤M2, with the last inequality due

to Lemma 7. The supposition πγ,s∗−1 = 1 also implies Ms∗−1 = L2, which in turn implies,

via (6) in the case s = s∗ − 2, that Vs∗−2 ≤ max{L2,M2} ≤ M2, the last inequality again

due to Lemma 7. Then (7) for the case s = s∗− 3 implies Ms∗−3 ≤ max{M2− 2δ, L2} ≤M2,

and (6) implies Vs∗−3 ≤ max{Ms∗−2,M2} ≤ M2. Repeat the above reasoning on smaller s

and we prove that Vs ≤M2 for all s ≤ s∗ − 1. Hence V3 ≤M2, which contradicts Lemma 7.

Thus we have proved that πγ,s∗−1 < 1.

With πγ,s∗−1 < 1, bidding is not the unique best response for the γ player at state

s∗ − 1, hence V2 ≤ s∗δ (otherwise the bottom branch of (8) in the case s = s∗ − 1 is strictly

positive and, by (13), is strictly larger than the middle branch, so the γ player would strictly

prefer to bid). By definition of s∗, V2 ≥ s∗δ. Thus V2 = s∗δ. �

Proof of Theorem 1 Suppose, to the contrary, that there is an equilibrium with dropout

state s∗ an odd number. Since s∗ = 3 is impossible by Lemma 6 and s∗ = 1 meaningless in

our model, s∗ ≥ 5. By Lemma 7, L2 ≤ M2 ≤ V3 − 2δ. Consider (6) in the case s = s∗ − 2

together with the facts that πγ,s∗−2 = 1 (thereby ruling out Vs∗−2 → v) due to Lemma 1.ii and

s∗ ≥ 5, that Ms∗−1 ≤ L2 due to (17), and that M2 ≤ V3− 2δ. Thus we have Vs∗−2 ≤ V3− 2δ.

Then consider the decision of the β player at state s = s∗ − 3, depicted by (7), to observe

that Ms∗−3 is between L2 and V3− 4δ. Thus, by (6) applied to the case s = s∗− 4, together

with the facts πγ,s∗−4 = 1 and M2 ≤ V3 − 2δ, we have Vs∗−4 ≤ V3 − 2δ. Since s∗ is an

odd number and s∗ ≥ 5, this procedure of backward reasoning eventually reaches V3, i.e.,

3 = s∗− 2m for some positive integer m. Hence we obtain the contradiction V3 ≤ V3− 2δ. �

A.3 Lemma 4

Lemma 4 follows from Lemmas 10 and 12, the former showing that bidding is a follower’s

unique best response to an equilibrium at even-number states, and the latter, odd-number

states. We start with—

Lemma 9 At any equilibrium with dropout state an even number s∗ ≥ 4, L2 < V2 ≤ V3−2δ.

Proof Since πβ,s∗−1 = 0 (Lemma 3), Ms∗−1 ≤ L2. Thus, since πγ,s∗−2 = 1 (Lemma 1.ii),

Vs∗−2 is a convex combination between Ms∗−1, which is less than L2, and M2, which is a
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convex combination between V3 − 2δ and L2, as πγ,2 = 1. Thus Vs∗−2 is between L2 and

V3 − 2δ. Consequently, Ms∗−3, a convex combination between L2 and Vs∗−2 − 2δ (since

πγ,s∗−3 = 1), is between L2 and V3 − 2δ. Repeating this reasoning, with s∗ being an even

number, we eventually reach 2 = s∗ − 2m for some integer m ≥ 1, and obtain the fact that

V2 is a number between L2 and V3 − 2δ. Thus, L2 < V3 − 2δ, otherwise the fact L2 < V2

by (8) would be contradicted. Hence L2 < V2 ≤ V3 − 2δ.

A.3.1 Bidding at Even States

Lemma 10 At any equilibrium with any even number dropout state s∗ ≥ 4, πβ,s = 1 if

2 ≤ s ≤ s∗ − 2 such that s is an even number.

Proof First, by Lemma 9, L2 < V3 − 2δ. Thus at state s = 2 the β player strictly prefers

to bid, i.e., πβ,2 = 1. Second, pick any even number s such that 4 ≤ s ≤ s∗− 2 and suppose,

to the contrary of the lemma, that πβ,s < 1, which means that the β player at state s does

not strictly prefer to bid. Thus Ms ≤ L2 (as the transition Ms → 0 is ruled out by the

fact πγ,s = 1). Consequently, Vs−1, a convex combination between Ms and M2, is weakly

less than M2, as L2 ≤M2 by Lemma 7. Furthermore, Ms−2, a convex combination between

Vs−1 − 2δ and L2, is less than M2, and that in turns implies Vs−3 ≤ M2. Repeating this

reasoning, with s an even number, we eventually obtain the conclusion that V3 ≤M2, which

contradicts Lemma 7. Thus, πβ,s = 1.

At any equilibrium with any even number dropout state s∗ ≥ 4, since πγ,s = 1 for all

s ≤ s∗ − 2 (Lemma 1.ii), Eq. (3) and the equal-probability tie-breaking rule together imply

∀s ∈ {2, 3, 4, . . . , s∗ − 2} : [πβ,s = 1 =⇒ qβ,s = qγ,s = 1/2] . (18)

By Lemma 10,

2 ≤ s ≤ s∗ − 2 and s is even =⇒ qβ,s = qγ,s = 1/2. (19)

A.3.2 Bidding at Odd States

In the following, we extend the summation notation by defining, for any sequence (ak)
∞
k=1,

i > j =⇒
j∑
k=i

ak := 0. (20)

In particular,
∑0

k=1 ak = 0 according to this notation.
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Lemma 11 At any equilibrium with any even number dropout state s∗ ≥ 4, M2 > V2 + δ/2.

Proof Let m := min{k ∈ {0, 1, 2 . . .} : V2k+4 − 2δ ≤ L2}. Note that m is well-defined

because s∗/2 − 2 belongs to the set, as Vs∗ − 2δ = 0 ≤ L2 (Lemma 2). At any odd state

2k+ 1 ≤ 2m+ 1 (hence k− 1 < m) we have V2k+2− 2δ = V2(k−1)+4)− 2δ > L2, with the last

inequality due to the definition of m; hence by (6) in the state s = 2k + 1 the β player bids

for sure, i.e. πβ,2k+1 = 1. Thus, (18) implies that qβ,s = qγ,s = 1/2 at any such odd state.

Coupled with (19), that means the transition at every state s from 2 to 2m + 2 is that the

current β and γ players each have probability 1/2 to become the next α player. Thus,

V2 = M2

m∑
k=0

2−2k−1 + L2

(
m∑
k=0

2−2k−2 + 2−2m−2zm

)
− 2δ

m∑
k=1

2−2k, (21)

where zm := 1 if 2m+2 < s∗−2, and zm := 2πγ,s∗−1−1 if 2m+2 = s∗−2; and the last series∑m
k=1 on the right-hand side uses the summation notation defined in (20) when m = 0.

To understand the term for M2 on the right-hand side, note that M2 enters the calcu-

lation of V2 at the even states s = 2, 4, 6, . . . , 2m− 2, and upon entry at state s and in every

round transversing from states s to 2, the M2 is discounted by the transition probability 1/2.

The term for L2 is similar, except that L2 enters at the odd states s = 3, 5, 7, . . . , 2m − 1,

and that the transition probability for the L2 at the last state 2m − 1 is equal to one if

2m − 1 < s∗ − 1, and equal to πγ,s∗−1 if 2m − 1 = s∗ − 1. That is why the last two terms

within the bracket for L2 are

2−2m−2+2−2m−2zm =

 2−2m−2 + 2−2m−2 = 2−2m−1 if zm = 1

2−2m−2 + 2−2m−2 (2πγ,s∗−1 − 1) = 2−2m−1πγ,s∗−1 if zm = 2πγ,s∗−1 − 1.

The term for −2δ is analogous to that for M2.

With s∗ ≥ 4, V2 − 4δ ≥ 0. Thus, by the above-calculated transition probabilities,

L2 =
1

2
(L3 + V2 − 3δ) ≤ 1

2
(V2 − 4δ + V2 − 3δ) = V2 −

7

2
δ.

This, combined with Eq. (21) and the fact zm ≤ 1 due to its definition, implies that

V2 ≤ M2

m∑
k=0

2−2k−1 +

(
V2 −

7

2
δ

)( m∑
k=0

2−2k−2 + 2−2m−2

)
− 2δ

m∑
k=1

2−2k

< M2

m∑
k=0

2−2k−1 + V2

(
m∑
k=0

2−2k−2 + 2−2m−2

)
− 7

8
δ.
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Thus, the lemma is proved if

1−

(
m∑
k=0

2−2k−2 + 2−2m−2

)
=

m∑
k=0

2−2k−1, (22)

as the left-hand side of this equation is clearly strictly between zero and one. To prove (22),

we use induction on m. When m = 0, (22) becomes 1 − 2−2 − 2−2 = 2−1, which is true.

For any m = 0, 1, 2, . . ., suppose that (22) is true. We shall prove that the equation is true

when m is replaced by m+ 1, i.e.,

1−

(
m+1∑
k=0

2−2k−2 + 2−2(m+1)−2

)
=

m+1∑
k=0

2−2k−1. (23)

The left-hand side of (23) is equal to

1−

(
m∑
k=0

2−2k−2 + 2−2m−2

)
+ 2−2m−2 − 2−2(m+1)−2 − 2−2(m+1)−2

=
m∑
k=0

2−2k−1 + 2−2m−2 − 2−2(m+1)−1 (the induction hypothesis)

=
m∑
k=0

2−2k−1 + 2−2m−3,

which is equal to the right-hand side of (23). Thus (22) is true in general, as desired.

Lemma 12 At any equilibrium with any even number dropout state s∗ ≥ 4 and at any state

1 ≤ s ≤ s∗ − 2 such that s is an odd number, πβ,s = 1.

Proof Pick any odd number s such that s ≤ s∗−2. It suffices to prove that Vs+1−2δ > L2.

Since s+ 1 is even, it follows from (19) that

Vs+1 =
1

2
(M2 +Ms+2) ≥

1

2
(M2 + L2) ,

with the inequality due to the fact Ms+2 ≥ L2, which in turn is due to the fact that the β

player at state s+ 2 can always secure the payoff L2 through not bidding at all. Thus,

Vs+1 − 2δ − L2 ≥
1

2
(M2 + L2)− 2δ − L2

=
1

2
M2 −

1

2
L2 − 2δ

=
1

2
M2 −

1

2

(
1

2
L3 +

1

2
(V2 − 3δ)

)
− 2δ

≥ 1

2
M2 −

1

2

(
1

2
(V2 − 4δ) +

1

2
(V2 − 3δ)

)
− 2δ

=
1

2
M2 −

1

2
V2 −

1

4
δ,
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with the second inequality due to the definition of Ls and the fact V2 − 4δ ≥ 0 (s∗ ≥ 4).

Since 1
2
M2 − 1

2
V2 − 1

4
δ > 0 by Lemma 11, Vs+1 − 2δ − L2 > 0, as desired.

A.4 Lemma 5

All lemmas in this subsection assume the hypotheses in Lemma 5, that s∗ ≥ 4 is an even

number and a strategy profile
(
π0, π1, (πβ,s, πγ,s)

∞
s=2

)
satisfying Condition (∗) is given, with

the associated value functions (Vs,Ms, Ls)s derived from (6)–(8) and Eq. (9).

Lemma 13 For any positive integer m such that 2m+ 1 ≤ s∗ − 1, if V2m+1 − 2δ ≤ L2 then

V3 − 2δ < L2.

Proof Pick any m specified by the hypothesis such that V2m+1 − 2δ ≤ L2. Suppose, to the

contrary of the lemma, that V3 − 2δ ≥ L2. Thus, the law of motion (6) in the case s = 2,

with πγ,2 = 1, implies that M2 is between L2 and V3− 2δ, hence V3− 2δ ≥M2 ≥ L2. By the

law of motion (7) in the case s = 2m, M2m is a convex combination among zero, V2m+1− 2δ

and L2. Thus the hypothesis implies that M2m ≤ L2. Consequently, the law of motion (6)

in the case s = 2m − 1, together with πγ,2m−1 = 1 and M2 ≥ L2, implies that V2m−1 ≤ M2

and hence V2m−1 − 2δ ≤ M2 − 2δ. Then (7) in the case s = 2m − 2 implies M2m−2 ≤ L2.

Repeating this reasoning backward, with 3 being odd, we eventually reach state s = 3 and

obtain V3 ≤M2. But since V3 − 2δ ≥M2, we have a contradiction V3 − 2δ ≥M2 ≥ V3.

Lemma 14 Denote x := πγ,s∗−1. For any integer m such that 1 ≤ m ≤ s∗/2− 1,

Ms∗−(2m−1) = −δ
m−1∑
k=1

2−2k+2 +M2

m−1∑
k=1

2−2k + L2

(
m−1∑
k=1

2−2k+1 + 2−2(m−1)x

)
, (24)

Vs∗−2m = −δ
m−1∑
k=1

2−2k+1 +M2

m∑
k=1

2−2k+1 + L2

(
m−1∑
k=1

2−2k + 2−2m+1x

)
, (25)

Vs∗−(2m−1) = −δ
m−1∑
k=1

2−2k+1 + 2−2(m−1)(1− x)v + L2

m−1∑
k=1

2−2k (26)

+M2

(
m−1∑
k=1

2−2k+1 + 2−2(m−1)x

)
,

Ms∗−2m = −δ
m−1∑
k=0

2−2k + 2−2m+1(1− x)v + L2

m∑
k=1

2−2k+1 (27)

+M2

(
m−1∑
k=1

2−2k + 2−2m+1x

)
,
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L2 = δ
(
s∗ − 4 + 2−s∗+3

)
. (28)

Proof First, we prove Eqs. (24) and (25). When m = 1, Eq. (24), coupled with the

summation notation defined in (20), becomes Ms∗−1 = xL2 = πγ,s∗−1L2, which follows

from (7) and the fact that Vs = 2δ and Ms = 0 for all s ≥ s∗, due to Condition (∗). This

coupled with Eq. (9) implies that

Vs∗−2 = (Ms∗−1 +M2)/2 = M2/2 + xL2/2,

which is Eq. (25) when m = 1 (using again the summation notation in (20)). Suppose, for

any integer m′ with 1 ≤ m′ ≤ s∗/2 − 2, that Eqs. (24) and (25) are true with m = m′. By

the induction hypothesis of (25) and Eq. (9),

Ms∗−(2m′+1) =
1

2
(Vs∗−2m′ − 2δ + L2)

= −δ

(
1 +

1

2

m′−1∑
k=1

2−2k+1

)
+
M2

2

m′∑
k=1

2−2k+1 +
L2

2

(
1 +

m′−1∑
k=1

2−2k + 2−2m
′+1x

)
,

which is Eq. (24) when m = m′ + 1. By the above calculation of Ms∗−(2m′+1) and Eq. (9),

Vs∗−(2m′+2) =
1

2

(
Ms∗−(2m′+1) +M2

)
= −δ

2

(
1 +

1

2

m′−1∑
k=1

2−2k+1

)
+
M2

2

(
1 +

m′∑
k=1

2−2k+1

)

+
L2

4

(
1 +

m′−1∑
k=1

2−2k + 2−2m
′+1x

)
,

which is Eq. (25) in the case m = m′ + 1. Thus Eqs. (24) and (25) are proved.

Next we prove Eqs. (26) and (27). When m = 1, Eq. (26), coupled with the notation∑0
k=1 ak = 0, becomes Vs∗−1 = (1− x)v + xM2, which is true by definition of x and the fact

πβ,s∗−1 = 0 (Condition (∗)). Then by Eq. (9)

Ms∗−2 = (Vs∗−1 − 2δ + L2) /2 = ((1− x)v + xM2 − 2δ + L2) /2,

which is Eq. (27) when m = 1 (again using the notation
∑0

k=1 ak = 0). Suppose, for any

integer m′ with 1 ≤ m′ ≤ s∗/2 − 2, that Eqs. (26) and (27) are true with m = m′. By the
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induction hypothesis and Eq. (9),

Vs∗−(2m′+1) =
1

2
(Ms∗−2m′ +M2)

= −δ
2

m′−1∑
k=0

2−2k + 2−12−2m
′+1(1− x)v +

L2

2

m′∑
k=1

2−2k+1

+M2

(
2−1 + 2−1

m′−1∑
k=1

2−2k + 2−12−2m
′+1x

)
,

which is Eq. (26) in the case m = m′ + 1. By the above calculation and Eq. (9),

Ms∗−(2m′+2) =
1

2

(
Vs∗−(2m′+1) − 2δ + L2

)
= −δ

(
1 +

1

2

m′∑
k=1

2−2k+1

)
+ 2−12−2m

′
(1− x)v

+L2

(
1

2
+ 2−1

m′∑
k=1

2−2k

)
+
M2

2

(
m′∑
k=1

2−2k+1 + 2−2m
′
x

)
,

which is Eq. (27) in the case m = m′ + 1. Hence Eqs. (26) and (27) are proved.

Finally we prove Eq. (28). Applying Eq. (9) to (8) recursively we obtain, for any integer

s∗ ≥ 4, that

L2 =
1

2

(
V2 − 3δ +

1

2

(
V2 − 4δ +

1

2

(
· · ·+ 1

2
(V2 − (s∗ − 1)δ)

)))
=

δ

2

(
s∗ − 3 +

1

2

(
s∗ − 4 +

1

2

(
· · ·+ 1

2
· 1
)))

= δ

(
1

2
(s∗ − 3) +

1

22
(s∗ − 4) +

1

23
(s∗ − 5) + · · ·+ 1

2s∗−3

)
,

which is equal to the right-hand side of (28). In the above multiline calculation, the first

and second lines are due to V2 = s∗δ (Lemma 3.ii).

Lemma 15 Vs∗−2 − 2δ ≥ L2 =⇒ ∀m ∈ {1, . . . , s∗/2− 1} : Vs∗−2m − 2δ ≥ L2.

Proof By the law of motion and Eq. (9), Eqs. (24), (25), (26), (27) and (28) hold. Denote

µ(m) := 2−2m+1,

µ∗ := 2−s∗+3.

With the fact
∑m−1

k=1 2−2k = (1− 2−2m+2)/3, Eq. (25) becomes

Vs∗−2m = −δ · 2

3
(1− 2µ(m)) +M2

(
2

3
(1− 2µ(m)) + µ(m)

)
+ L2

(
1

3
(1− 2µ(m)) + µ(m)x

)
.
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Hence

Vs∗−2m − 2δ − L2 = −δ
(

2

3
(1− 2µ(m)) + 2

)
+M2

(
2

3
(1− 2µ(m)) + µ(m)

)
−L2

(
1− 1

3
(1− 2µ(m))− µ(m)x

)
= −4

3
(2− µ(m))δ +

1

3
(2− µ(m))M2

− (s∗ − 4 + µ∗) δ

(
2

3
(1 + µ(m))− µ(m)x

)
,

with the second equality due to (28). Thus, Vs∗−2m − 2δ ≥ L2 is equivalent to

1

3
(2− µ(m))M2 ≥ δ

(
4

3
(2− µ(m)) + (s∗ − 4 + µ∗)

(
2

3
(1 + µ(m))− µ(m)x

))
,

i.e.,
M2

δ
≥ 4 +

2(1 + µ(m))− 3µ(m)x

2− µ(m)
(s∗ − 4 + µ∗). (29)

Since s∗ − 4 ≥ 0 by hypothesis, and

d

dµ(m)

(
2(1 + µ(m))− 3µ(m)x

2− µ(m)

)
=

(2− µ(m))(2− 3x) + 2(1 + µ(m))− 3µ(m)x

(2− µ(m))2

=
6(1− x)

(2− µ(m))2
≥ 0,

the right-hand side of (29) is weakly increasing in µ(m), which in turn is strictly decreasing

in m. Thus the right-hand side of (29) is weakly decreasing in m. Consequently, Vs∗−2m −
2δ − L2 ≥ 0 is satisfied for all m if the inequality holds at the minimum m = 1, i.e., if

Vs∗−2 − 2δ − L2 ≥ 0, as claimed.

Proof of Lemma 5 Let s ∈ {1, 2, . . . , s∗−2}. If s is even and V3−2δ ≥ L2, then Lemma 13

implies Vs+1 − 2δ > L2; thus, by (7) and by the fact that πγ,s = 1 due to Condition (∗),
the β player at s gets L2 if he does not bid, and 1

2
(Vs+1−2δ)+ 1

2
L2 if he does. Hence bidding

is the unique best response for β at s. If s is odd and Vs∗−2 − 2δ ≥ L2, then Lemma 15

implies that Vs+1 − 2δ ≥ L2; thus, by the same token as in the previous case, the β player

at s weakly prefers to bid. �

A.5 Theorem 2

Lemma 16 For any even s∗ ≥ 4, if Eqs. (9) and (28) hold and M2 ≥ V2 = s∗δ, then at the

initial and second rounds each player strictly prefers to bid.
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Proof First, consider the second round, which means s = 1. For each non-α player,

becoming the next α player gives him an expected payoff V2−2δ = (s∗−2)δ by the hypothesis

V2 = s∗δ, whereas staying put gives payoff L2, which is less than (s∗−3)δ by Eq. (28). Thus,

each non-α player strictly prefers to bid at state one, hence s = 2 occurs for sure given s = 1.

Second, consider the initial state. Based on the analysis of the previous step (from s = 1 to

s = 2), becoming the first α yields the expected payoff −δ +M2, whereas staying put yields

1
2
(V2 − 2δ + L2). Since M2 ≥ V2 by hypothesis and V2 − 2δ > L2 by the previous analysis,

each player strictly prefers to become the first α player.

Lemma 17 Any integer s∗ ≥ 3 constitutes an equilibrium if and only if s∗ is an even number

and there exists (M2, x, L2) ∈ R3
+ such that—

a. (M2, x, L2) ∈ R+ × [0, 1] × R+ and it solves simultaneously Eq. (25) in the case m =

s∗/2− 1, Eq. (27) in the case m = s∗/2− 1 such that V2 = s∗δ, and Eq. (28);

b. M2 ≥ s∗δ;

c. Ineq. (29) is satisfied in the case m = 1.

Proof The necessity that s∗ is even for an equilibrium follows from Theorem 1. In Con-

dition (a), the necessity of V2 = s∗δ follows from Lemma 3, and the rest from Lemma 14,

which in turn follows from Condition (∗), necessary due to Lemmas 1–4. With V2 = s∗δ, the

condition M2 ≥ s∗δ is equivalent to M2 ≥ V2; hence the necessity of Condition (b) follows

from Lemma 11. The necessity of Condition (c) follows from Lemma 4, which implies the

necessity of Vs∗−2m− 2δ ≥ L2, which as shown in the proof of Lemma 15 requires Ineq. (29).

To prove that these conditions together suffice an equilibrium, pick any even number

s∗ ≥ 4 and assume Conditions (a)–(c). Consider the strategy profile such that everyone

bids in the initial round, each non-α player bids in the second round and, in any future

round, acts according to Condition (∗). This strategy profile implies Eq. (9), which allows

calculation of the value functions (Vs,Ms, Ls)
s∗
s=2 via the law of motions. By Conditions (a)

and (b), M2 ≥ V2 = s∗δ, hence Lemma 16 implies that bidding at the initial round is a best

response for each player, and bidding at second rounds a best response for each non-α player.

The incentive for each player to abide by the strategy profile at any state s ≥ s∗ is the same

as in the two-bidder equilibrium. At the state s∗ − 1, bidding with probability x is a best

response for the γ player because he is indifferent about bidding, since V2 − s∗δ = 0 = Ls∗ ,
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and not bidding at all is the best response for the β player because Vs∗ − 2δ = 0 < L2.

At any state s with 2 ≤ s ≤ s∗ − 2, bidding is the best response for the γ player because

V2 − (s+ 1)δ > Ls+1 (by Eq. (8)); Condition (c) by Lemma 15 suffices the incentive for the

β player at every odd state to bid. To incentivize the β player at every even state s ≤ s∗− 2

to bid, Lemma 13 says that it suffices to have V3− 2δ ≥ L2, which is equivalent to M2 ≥ L2

since, by the law of motion and Eq. (9), M2 is the midpoint between V3 − 2δ and L2. Since

L2 < s∗δ by Eq. (28), the condition M2 ≥ L2 is guaranteed by Condition (b), M2 ≥ s∗δ.

Lemma 18 For any s∗ ≥ 4, Condition (c) in Lemma 17 implies Condition (b) in Lemma 17.

Proof Condition (c) in Lemma 17 is Ineq. (29) in the case m = 1, i.e., when µ(m) =

2−2m+1 = 1/2. Hence the condition is equivalent to

M2

δ
≥ 4 + (2− x)(s∗ − 4 + µ∗). (30)

To prove that this inequality implies Condition (b), i.e., M2/δ ≥ s∗, it suffices to show

4 + (2− x)(s∗ − 4 + µ∗) > s∗,

i.e.,

(1− x)(s∗ − 4) + µ∗(2− x) > 0,

which is true because s∗ ≥ 4, µ∗ = 2−s∗+3 > 0 and x ≤ 1.

Lemma 19 Condition (a) in Lemma 17 is equivalent to the existence of an x ∈ [0, 1] that

solves Eq. (10).

Proof Condition (a) requires existence of (M2, x, L2) ∈ R+ × [0, 1] × R+ that satisfies

Eqs. (25), (27) and (28) in the case of m = s∗/2− 1 and V2 = s∗δ. Combine (25) with (28)

and use the notation µ∗ := 2−s∗+3 and the fact
∑m−1

k=1 2−2k = (1− 2−2m+2)/3 to obtain

s∗δ = V2 = −δ · 2

3
(1− 2µ∗) +M2

(
2

3
(1− 2µ∗) + µ∗

)
+ δ(s∗ − 4 + µ∗)︸ ︷︷ ︸

L2

(
1

3
(1− 2µ∗) + µ∗x

)
,

i.e.,
M2

δ
=

1

2− µ∗
(3s∗ + 2(1− 2µ∗)− (s∗ − 4 + µ∗)(1− 2µ∗ + 3µ∗x)) . (31)

By the same token, (27) coupled with (28) is equivalent to

M2

(
1− 1

3
(1− 2µ∗)− µ∗x

)
= −δ

(
1 +

1

3
(1− 2µ∗)

)
+(1−x)µ∗v+δ(s∗−4+µ∗)

(
2

3
(1− 2µ∗) + µ∗

)
,
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i.e.,
M2

δ
(2(1 + µ∗)− 3µ∗x) =

3µ∗v

δ
(1− x) + (2− µ∗)(s∗ − 6 + µ∗). (32)

Plug (31) into (32) and we obtain Eq. (10).

Lemma 20 For any even number s∗ ≥ 4, suppose that Eq. (31) holds. Then Condition (c)

in Lemma 17 is equivalent to Ineq. (11), which is implied by x ≥ 0 if and only if s∗ ≤ 6.

Proof Condition (c) in Lemma 17 has been shown to be equivalent to Ineq. (30). Provided

that Eq. (31) is satisfied, Ineq. (30) is equivalent to

4 + (2− x)(s∗ − 4 + µ∗) ≤
1

2− µ∗
(3s∗ + 2(1− 2µ∗)− (s∗ − 4 + µ∗)(1− 2µ∗ + 3µ∗x)) .

This inequality, given the fact 1− 2µ∗ ≥ 0, is equivalent to

x ≥ 1

2(1− 2µ∗)

(
5− 4µ∗ −

3(s∗ − 2)

s∗ − 4 + µ∗

)
,

i.e., Ineq (11). Given Condition (a) in Lemma 17, which implies x ≥ 0, Ineq. (11) is

redundant if and only if the right-hand side of (11) is nonpositive, i.e.,

3(2− µ∗)
2(1− 2µ∗)(s∗ − 4 + µ∗)

≥ 1,

i.e.,

s∗ ≤ 4− 2−s∗+3 +
3 (2− 2−s∗+3)

2 (1− 2−s∗+4)
.

This inequality is satisfied when s∗ ∈ {4, 6}, as its right-hand side is equal to∞ when s∗ = 4,

and 61/8 when s∗ = 6. The inequality does not hold, by contrast, when s∗ ≥ 8, as

s∗ ≥ 8 ⇒ 2−s∗+2 ≤ 2−6 ⇒ 1− 2−s∗+2

1/4− 2−s∗+2
≤ 1− 2−6

1/4− 2−6
=

63

15

⇒ 4− 2−s∗+3 +
3 (2− 2−s∗+3)

2 (1− 2−s∗+4)
< 4 +

3

2
· 2

4
· 63

15
< 8 ≤ s∗.

Thus, for all even numbers s∗ ≥ 4, Ineq. (30) follows if and only if s∗ ≤ 6.

Proof of Theorem 2 The theorem follows from Lemma 17, where Condition (a) has

been characterized by Lemma 19, Condition (b) by Lemmas 18 can be dispensed with, and

Condition (c), by Lemma 20, can be dispensed with when s∗ ≤ 6 (hence Claim (i) of the

theorem) and is equivalent to Ineq (11) when s∗ > 6 (hence Claim (ii) of the theorem). �
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A.6 Theorem 3

Lemma 21 If x = 1, the left-hand side of (10) is less than the right-hand side of (10).

Proof When x = 1, the left-hand side of (10) is equal to (2 − µ∗)2(s∗ − 6 + µ∗), and the

right-hand side equal to

(2(1 + µ∗)− 3µ∗) (3s∗ + 2(1− 2µ∗)− (s∗ − 4 + µ∗)(1− 2µ∗ + 3µ∗))

= (2− µ∗)
(
2s∗ + 6− µ∗ − µ∗s∗ − µ2

∗
)
.

Thus, the lemma follows if

(2− µ∗)(s∗ − 6 + µ∗) < 2s∗ + 6− µ∗ − µ∗s∗ − µ2
∗,

i.e., 9µ∗ < 18, which is true because µ∗ = 2−s∗+3.

Lemma 22 s∗ = 4 constitutes an equilibrium if and only if v/δ > 35/2, and s∗ = 6 consti-

tutes an equilibrium if and only if v/δ > 6801/120 (= 56.675).

Proof By Theorem 2, with s∗ ≤ 6 the necessary and sufficient condition for equilibrium

is that Eq. (10) admits a solution for x ∈ [0, 1]. By Lemma 21, the left-hand side of that

equation is less than its right-hand side when x = 1. Thus, it suffices to show that the

left-hand side is greater than the right-hand side when x = 0, i.e.,

3µ∗v

δ
(2−µ∗)+(2−µ∗)2(s∗−6+µ∗) > 2(1+µ∗) (3s∗ + 2(1− 2µ∗)− (s∗ − 4 + µ∗)(1− 2µ∗)) ,

which is equivalent to

v

δ
(2− µ∗) > s∗(4 + µ∗) + (6− µ∗)(2/µ∗ − 2− µ∗).

Since µ∗ is equal to 1/2 when s∗ = 4, and equal to 1/8 when s∗ = 6, the above inequality is

equivalent to v/δ > 35/2 when s∗ = 4, and v/δ > 6801/120 when s∗ = 6.

Proof of Theorem 3 Claim (i) of the theorem is just Lemma 22. To prove Claim (ii),

pick any even number s∗ ∈ {8, 10, 12, . . .}. By Theorem 2.ii, s∗ constitutes an equilibrium if

Eq. (10) admits a solution for x ∈ [0, 1] that satisfies Ineq. (11). By Lemma 21, the left-hand

side of (10) is less than its right-hand side when x = 1. Thus, it suffices to show that the

left-hand side is greater than the right-hand side when x is equal to some number greater
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than or equal to the right-hand side of Ineq. (11). To that end, note from s∗ ≥ 8 that

µ∗ = 2−s∗+3 ≤ 1/32, hence 2 − µ∗ ≥ 63/32 and 1 + µ∗ < 33/32. Thus, the left-hand side

of (10) is greater than

3µ∗v

δ
(1− x)

63

32
+

(
63

32

)2

(s∗ − 6),

and the right-hand side of Ineq. (11)

1− 3(2− µ∗)
2(1− 2µ∗)(s∗ − 4 + µ∗)

< 1− 3× 63/32

2× 1× (s∗ − 3)
.

Therefore, it suffices, for s∗ to constitute an equilibrium, to have

3µ∗v

δ
(1− x)

63

32
+

(
63

32

)2

(s∗ − 6)

greater than or equal to the right-hand side of (10) when

x = x∗ := 1− 3× 63

64(s∗ − 3)
.

To that end, denote φ(s∗, x) for the right-hand side of (10), i.e.,

φ(s∗, x) := (2(1 + µ∗)− 3µ∗x) (3s∗ + 2(1− 2µ∗)− (s∗ − 4 + µ∗)(1− 2µ∗ + 3µ∗x))

(recall that µ∗ = 2−s∗+3). Note, from 0 < x < 1, that −1/32 < µ∗(2− 3x) < 1/16. Hence

63

32
= 2− 1

32
< 2(1 + µ∗)− 3µ∗x < 2 +

1

16
=

33

16
,

15

16
= 1− 1

16
< 1− 2µ∗ + 3µ∗x < 1 +

1

32
=

33

32
.

Thus, the first factor 2(1 + µ∗)− 3µ∗x of φ(s∗, x) is positive for all x ∈ (0, 1). If the second

factor of φ(s∗, x) is nonpositive when x = x∗ then φ(s∗, x∗) ≤ 0 and we are done, as the

left-hand side of (10) is positive. Hence we may assume, without loss of generality, that

3s∗ + 2(1− 2µ∗)− (s∗ − 4 + µ∗)(1− 2µ∗ + 3µ∗x∗) > 0.

Consequently, φ(s∗, x∗) can only get bigger if we replace its first factor by the upper bound

33/16, and the term 1−2µ∗+3µ∗x in the second factor by its lower bound 15/16 (note that,

in the second factor, s∗ − 4 + µ∗ > 0 because s∗ ≥ 8). I.e., φ(s∗, x∗) is less than

33

16

(
3s∗ + 2(1− 2µ∗)−

15

16
(s∗ − 4 + µ∗)

)
=

33

16

(
33

16
s∗ +

23

4
− 79

16
µ∗

)
<

33

16

(
33

16
s∗ +

23

4

)
< 5s∗ + 12.
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Therefore, the above observations put together, we are done if

3µ∗v

δ
(1− x∗)

63

32
+

(
63

32

)2

(s∗ − 6) ≥ 5s∗ + 12

In other words, it suffices to have

3µ∗v

δ
· 3× 63

64(s∗ − 3)
· 63

32
+

(
63

32

)2

(s∗ − 6) ≥ 5s∗ + 12,

i.e.,
32µ∗v

δ
≥ −2(s∗ − 6)(s∗ − 3) +

32× 64

632
(5s∗ + 12) (s∗ − 3).

With 32×64
632
≈ 0.516, the above inequality holds if

32µ∗v

δ
≥ −2(s∗ − 6)(s∗ − 3) + (5s∗ + 12)(s∗ − 3),

i.e.,
9µ∗v

δ
≥ 3s2∗ + 15s∗ − 72,

which is equivalent to Ineq. (12). Thus the theorem is proved. �

A.7 Theorem 4

Since v/δ ≥ s∗ for any dropout state of any equilibrium, there are only finitely many

equilibrium-feasible dropout states. Given any dropout state of any equilibrium, each player’s

action at every state is uniquely determined, according to Lemmas 1–4 and 16, except the

γ player’s bidding probability πγ,s∗−1 at the critical state. Thus, it suffices to prove that for

each dropout state s∗ there are only finitely many compatible πγ,s∗−1 at the equilibrium. To

that end, since πγ,s∗−1 is determined by Eq. (10) given s∗, we need only to show that for

each s∗ Eq. (10) admits at most two solutions for x, the shorthand for πγ,s∗−1. To show that,

note that the left-hand side of Eq. (10) is a linear function of x, whereas the right-hand side

is strictly convex in x: The derivative of the right-hand side with respect to x is equal to

−3µ∗ (3s∗ + 2(1− 2µ∗)− (s∗ − 4 + µ∗)(1− 2µ∗ + 3µ∗x))

+ (2(1 + µ∗)− 3µ∗x) (−(s∗ − 4 + µ∗)3µ∗) ,

whose derivative with respect to x is equal to

3µ∗(s∗ − 4 + µ∗)3µ∗ + 3µ∗(s∗ − 4 + µ∗)3µ∗ = 18µ∗(s∗ − 4 + µ∗) > 0,

with the inequality due to the fact that s∗ − 4 + µ∗ = s∗ − 4 + 2−s∗+4 > 0 as s∗ ≥ 4

(Theorem 1). Thus, Eq. (10) admits at most two solutions for x, as desired. �
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A.8 Theorem 5

By the hypothesis v/δ > 35/2 and Theorem 3, a trilateral-rivalry equilibrium exists. Hence

bilateral-rivalry equilibriums are compellingly dominated by a trilateral-rivalry one, as is

explained around the statement of the theorem. We need only to prove that, for any two

trilateral-rivalry equilibriums with dropout states s′∗ and s′′∗ such that s′∗ < s′′∗, the one with

s′∗ is compellingly Pareto dominated by the one with s′′∗, while the converse is not true. (If

there are multiple trilateral-rivalry equilibriums of the same dropout state, none of them is

compellingly dominated by the other, because they reach exactly the same set of states.)

Hence pick any two trilateral-rivalry equilibriums with dropout states s′∗ < s′′∗. As

both s′∗ and s′′∗ are even numbers, s′∗ ≤ s′′∗ − 2. Label the value functions in the equilib-

rium with dropout state s′∗ by (V ′1 ,M
′
1, (V

′
s ,M

′
s, L

′
s))
∞
s=2, and those in the equilibrium s′′∗ by

(V ′′1 ,M
′′
1 , (V

′′
s ,M

′′
s , L

′′
s))
∞
s=2. First note that s′′∗ is not compellingly Pareto dominated by s′∗.

That is because s′′∗ > s′∗, hence Condition (a) of compelling Pareto dominance is not satisfied,

as any state that can be reached on the path of s′∗, i.e., any integer s ∈ {1, 2, . . . , s′∗ − 1} by

Condition (∗), can also be reached on the path of s′′∗, includes any integer up to s′′∗ − 1.

Second, we show that s′∗ is compellingly Pareto dominated by s′′∗. To that end, consider

the state s′∗. Since s′∗ ≤ s′′∗ − 1, it can be reached on path of the equilibrium s′′∗, but cannot

be reached on the path of equilibrium s′∗ (since the game according to the latter equilibrium

either ends or collapses back to state 2 at the critical state s′∗− 1; c.f. Condition (∗)). Hence

Condition (a) is met. To verify Condition (b), let us compare the players’ expected payoffs

from the two equilibriums conditional on state s′∗ being reached.

i. For the current α player (who was the previous β and deviated at state s′∗ − 1),

the status quo equilibrium s′∗ gives him a payoff equal to V ′s′∗ , which is equal to 2δ

(Lemma 2). Whereas the new equilibrium s′′∗ would give him V ′′s′∗ ; since s′∗ ≤ s′′∗ − 2,

the incentive condition in equilibrium s′′∗ implies that V ′′s′∗−2δ ≥ L′′2 > 0 (Condition (∗)
and Lemma 7) and hence V ′′s′∗ > 2δ = V ′s′∗ .

ii. For the current β player at state s′∗, the status quo equilibrium s′∗ yields a payoff M ′
s′∗

,

which equals zero (Lemma 2); while the new equilibrium s′′∗ yields M ′′
s′∗

, which by (7)

and (9) is equal to the average between V ′′s′∗+1−2δ and L′′2, each strictly positive. Hence

M ′′
s′∗
> M ′

s′∗
.
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iii. For the current γ player, the status quo equilibrium s′∗ gives L′s′∗ = 0 (Lemma 2); while

the new equilibrium s′′∗ gives him L′′s′∗ > 0 because s′∗ ≤ s′′∗ − 2 (c.f. (15)).

Thus Condition (b) is satisfied. To verify Condition (c), note that in the status quo equilib-

rium s′∗, the state s′∗ is reached by the unilateral deviation of the β player at state s′∗ − 1,

without whose bid the game would either end (when the γ player at state s′∗ − 1 does not

bid) or collapse back to state 2 (when γ bids). We still need to check the deviation incentive

for this β player. His deviation is pivotal only when he becomes the next α player, at the

state s′∗. Hence it suffices to compare his payoffs when he becomes the next α players versus

otherwise. When he gets to become the next α player, his expected payoff becomes V ′′s′∗ − 2δ

provided that the other two players abides by the new equilibrium s′′∗ from now on. When

he does not get to be the next α player, the game does not reach the off-path state s′∗ and

hence the status quo equilibrium remains at place, which gives him a payoff π′γ,s′∗−1L
′
2. As

explained previously, V ′′s′∗ − 2δ ≥ L′′2, and

L′′2
(28)
=

(
s′′∗ − 4 + 2−s

′′
∗+3
)
δ ≥

(
s′∗ + 2− 4 + 2−s

′′
∗+3
)
δ

=
((
s′∗ − 4 + 2−s

′
∗+3
)

+ (2− 2−s
′
∗+3 + 2−s

′′
∗+3)

)
δ

(28)
= L′2 +

(
2− 2−s

′
∗+3 + 2−s

′′
∗+3
)
δ

> L′2 + δ,

with the first inequality due to s′′∗ ≥ s′∗ + 2, and the last due to the fact 2−s
′
∗+3 ≤ 1/2. Thus

V ′′s′∗ − 2δ ≥ L′′2 > π′γ,s′∗−1L
′
2, and Condition (c) is met. �
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