
SIMPLE MECHANISMS

(PRELIMINARY DRAFT)

TILMAN BÖRGERS
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Abstract. In this paper we define and investigate a property of mech-

anisms that we call “simplicity,” and that is meant to capture the idea

that, in “simple” mechanisms, strategic choices are easy. We define a

mechanism to be “simple” if optimal strategy choices can be based on

first order beliefs alone, and there is no need for agents to form higher or-

der beliefs because such beliefs are irrelevant to agents’ optimal choices.

In mechanisms “first order beliefs” are beliefs about other agents’ ratio-

nality and their utility. “Higher order beliefs” are beliefs about beliefs,

beliefs about beliefs about beliefs, etc. In many mechanisms agents who

want to make an optimal choice cannot avoid having to form higher or-

der beliefs. But in some mechanisms there is no need for this. These are

the mechanisms that we investigate and characterize in this paper. All

dominant strategy mechanism are simple. But many more mechanisms

are simple. In particular, simple mechanisms may be more flexible than

dominant strategy mechanisms in examples such as the bilateral trade

problem and the voting problem.
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1. Introduction

In mechanism design it often seems desirable for the designer to offer a

mechanism in which agents face a straightforward choice problem, and need

not engage in complex strategic thinking to determine their best choice. It

seems more likely that agents make the choices that the designer expects

them to make if thinking through the strategic aspects of the mechanism

is simple than when it is complicated. Also, agents may be more willing

to participate in simple mechanisms. Finally, it may be desirable that the

outcomes of a mechanism don’t depend too much on the cognitive abilities

of agents. All these arguments provide potential reasons for constructing

mechanisms in which strategic choices are easy to make.

One class of mechanisms for which one might argue that it is easy to

choose a strategy are dominant strategy mechanisms. In such mechanisms,

agents need not think at all about the motivations of other players, or other

players’ rationality. This is because agents have at least one strategy that is

optimal regardless of what other players do, and they can just choose such a

strategy.1 Thus, one complication that may make strategy choices difficult

is not present. Of course, strategy choices may be complicated also for other

reasons. For example, players may not be able to recognize that they have

a dominant strategy. Li [9] has recently proposed the notion of “obviously

dominant” strategy mechanisms, which are mechanisms for which the task

of identifying dominant strategies is, in some sense, easy. Our concept of

“simplicity” ignores this potential difficulty of strategic decision making,

and for the purposes of this paper we shall regard the choice of a dominant

strategy as easy.

For many mechanism design problems the class of dominant strategy

mechanisms is quite small, and only includes mechanisms that are rather

unattractive for a mechanism designer who wants to maximize, say, revenue,

or welfare.2 The contribution of this paper is to formalize, and character-

ize, a notion of “simplicity” of mechanisms that has the property that all

dominant strategy mechanisms are “simple,” but also the class of “simple”

1Here, we use the phrase “dominant strategy” in the sense in which it is used in

mechanism design theory, that is, a strategy that is optimal regardless of what the other

agents choose. This is slightly different from a strategy that is “weakly dominant” or a

strategy that is “strictly dominant” as these terms are defined in game theory.
2See the examples in Chapter 4 of Börgers [4].
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mechanisms is strictly larger than the class of dominant strategy mecha-

nisms. We show that “simple mechanisms” include in applications mecha-

nisms that may be more attractive to a mechanism designer than dominant

strategy mechanisms.

To illustrate our idea it is best to consider an example. Suppose a mech-

anism designer wants to determine rules for trade between two agents, a

seller and a buyer. It is known from Hagerty and Rogerson [8] that, under

some conditions, the only dominant strategy mechanisms are mechanisms

in which the designer chooses the (possibly random) price, without taking

into account any of the agents’ private information, and then agents choose

whether to agree or not to agree to trade at this price. Trade comes about

only when both agents agree. Obviously, this is a rather unappealing mecha-

nism for a welfare maximizing mechanism designer who wants efficient trade

to take place whenever possible.

An alternative mechanism is that the mechanism designer sets a price cap,

but allows the seller to reduce the price. The buyer can then agree or not

agree to trade at this potentially reduced price. The seller clearly does not

have a dominant strategy. Whether or not to reduce the price, and how far

to reduce the price, depends on the seller’s beliefs about the buyer’s choices.

But, regardless of her beliefs, the seller will never reduce the price below her

reservation value, and the buyer agrees to trade only if the price is below his

reservation value. Thus, in comparison to the fixed price mechanism, the

price cap mechanism facilitates more efficient trade.3

The “price cap mechanism” is a simple mechanism for the buyer. The

buyer accepts the trade if and only if a price below her reservation price is

offered. But the seller’s problem is arguably not too complicated either. If

she believes that the buyer accepts the trade if and only if a price below her

reservation price is offered, then all that she has to do is to consider her belief

about the buyer’s reservation price, and then maximize her expected gain

from trade. This problem is equivalent to the standard monopoly problem

with a price ceiling as taught in undergraduate microeconomics. For given

beliefs, it is a straightforward optimization problem. Our formal definition

of “simplicity” will imply that the price cap mechanism is indeed simple.

On the other hand, suppose buyer and sellers were engaged in a double

auction as in Chatterjee and Samuelson [6]. The double auction will, in

3This mechanism was discussed in Börgers and Smith [5].
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our definition, not be “simple.” Suppose the seller’s reservation price is 5

Dollars. She might ask for more. Ideally, she would like to ask for a price

that is as close as possible to the price that is offered by the buyer. But the

buyer has the same incentive: he wants to offer a price as close as possible

to the seller’s ask price. Therefore, the seller has to think about which price

the buyer expects the seller to ask for. But then the buyer has to think

about the seller’s thoughts about which price the buyer expects the seller

to ask for, and from here onwards, an infinite hierarch of strategic thinking

becomes necessary. Note that this infinite hierarchy of thought was not

needed in the price cap mechanism.

In this paper we formally define and investigate a property of mechanisms

that we call “simplicity,” and that is meant to capture the idea that, in “sim-

ple” mechanisms, strategic choices are easy. We shall define a mechanism to

be “simple” if choices can be derived from first order beliefs alone, and there

is no need for agents to form higher order beliefs because such beliefs are

irrelevant to agents’ optimal choices. Intuitively, it seems plausible that the

need to form beliefs about beliefs, beliefs about beliefs about beliefs, beliefs

about beliefs about beliefs about beliefs, etc., is one key reason why making

optimal choices in games may often be difficult and require a lot of strategic

thinking.

We have to be more specific about which beliefs we are referring to. The

“first order beliefs” to which we are referring are every player i’s beliefs

about the other agents’ (j 6= i) utility functions, and about other agents’

rationality. “Higher order beliefs” are, for example, agent i’s beliefs about

agent j’s beliefs (j 6= i) about agent i’s utility function, and about agent

i’s rationality. Thus, we shall call a mechanism simple if player i’s beliefs

about the other agents’ (j 6= i) utility functions, and about other agents’

rationality, alone, imply which choices are optimal for player i.

To give this definition meaning, we have to say what is the range of first

order beliefs that we are willing to consider for agent i. We shall allow a

variety of choices for this range, each of which will imply a different concept

of “simplicity,” but what will be common is that we are assuming that agent

i is certain that all other agents are expected utility maximizers.4 Thus, we

4In fact, we shall replace this later by the assumption that agent i is “almost certain”

that all other agents are expected utility maximizers. But for the moment we ignore this

complication.
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can say that we call a mechanism simple if agent i’s beliefs about other

agents’ utility functions, combined with the probability 1 belief that the

other agents are rational, is sufficient to determine an optimal choice for

agent i.

The previous paragraph contained a very informal use of the language of

epistemic game theory. After defining our concept of simplicity precisely,

we shall return to its epistemic foundations. Our intuitive motivation of

the notion of simplicity presented in this Introduction also involves wording

that suggests that we view the choice of a strategy as a mental process that

involves “forming beliefs” and “determining optimal choices,” and where

these steps are potentially costly to the decision maker. This is language

not commonly used by game theorists. We shall also return to this aspect

of our motivation later in the paper.

We shall define simplicity formally in the next section, and we illustrate

the definition in Section 3 with examples. In Section 4 we provide the

discussion of the conceptual foundations of our definition promised in the

previous paragraph. In Section 5 we introduce “menu mechanisms” in which

one agent offers the other agent a set of options, and the other agent then

chooses one of these options. Menu mechanisms are a generalization of

the price cap mechanism mentioned earlier in this Introduction. All menu

mechanisms are simple. We show in Section 5 that with two agents and

one-sided uncertainty, all simple mechanisms are equivalent in some sense

to menu mechanisms. In Section 6 we turn to a special type of simplicity

called “universal simplicity.” This property combines simplicity with ro-

bustness, as it has been defined in the recent literature on robust mechanism

design. We provide necessary and sufficient conditions for a mechanism to

be “universally simple.” Section 6 also offers examples of universally simple

mechanisms. It turns out, that all menu mechanisms are universally simple,

but there are more universally simple mechanisms than just menu mecha-

nisms. Section 7 discusses an example in detail, and Section 8 concludes

with a list of some open questions.

2. Definitions

There are n agents: i ∈ I = {1, 2, . . . , n}, and a finite set A of outcomes. A

mechanism consists of finite strategy sets Si for each agent i, and a function

g : S1×S2× . . .×Sn → A that describes for each choice of strategies which
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outcome will result. We define S ≡
∏
i∈I Si, and, for every i ∈ I, we define

S−i to be the set
∏
j 6=i Sj .

Note that we do not assume that there is a one-to-one correspondence

between strategies and preferences, or perhaps, beliefs and preferences. In

other words, we allow indirect mechanisms and do not restrict attention to

direct mechanisms. In the final section of the paper we describe a version of

the revelation principle that applies to our model, and that implies that it

is without loss of generality to restrict attention to a certain class of direct

mechanisms. We explain there as well that for the analysis offered in this

paper, it does not seem to be particularly useful to rely on this revelation

principle. Two other reasons for not restriction attention to direct mecha-

nisms are as follows. First, mechanisms such as the price cap mechanism

in the Introduction are most naturally described as indirect mechanisms.

Second, below we allow infinite sets of possible preferences and beliefs for

each agent. We would therefore have to consider infinite mechanisms if we

wanted to use the revelation principle. This would prevent us from relying

on the simplest version of certain simple results in game theory that we

invoke below..

A utility function is a function u : A→ R. We interpret utility functions

as von Neumann Morgenstern utility functions. We define U to be the set

of all utility functions on A that are 0-1 normalized, that is, that satisfy:

mina∈A ui(a) = 0 and maxa∈A ui(a) = 1. By choosing this normalization

we rule out the uninteresting case that agents are indifferent between all

alternatives.

For every agent i there is a non-empty, Borel-measurable set Ui ⊂ U
of utility functions that are possible utility functions of agent i. We allow

for the possibility that Ui 6= U to be able to capture restrictions of the

sort that all agents have quasi-linear utility functions, a restriction that

sometimes plays an important role in the theory of mechanism design. We

define U ≡
∏
i∈I Ui, and, for every i ∈ I, we define U−i to be the set∏

j 6=i Uj .

A “utility belief” µi of agent i is a Borel probability measure on U−i. We

define ∆(U−i) to be the set of all Borel probability measures on U−i. The

set of all possible utility beliefs of agent i is some non-empty subset Mi of

∆(U−i). We allow that Mi 6= ∆(U−i) to be able to capture restrictions

of the sort that all agents believe that other agents’ utility functions are
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stochastically independent, a restriction that sometimes plays an important

role in the theory of mechanism design. We define M =
∏
i∈I Mi, and, for

every i ∈ I, we define M−i to be the set
∏
j 6=i Mj .

For any given ui ∈ Ui we denote by UDi(ui) the set of all strategies that

are not weakly dominated for agent i with utility function ui, where weak

dominance may be by a pure or by a mixed strategy. If u ∈ U, we define

UD(u) ≡
∏
i∈I UDi(ui), and, for every i ∈ I and every u−i ∈ U−i, we define

UD−i(u−i) ≡
∏
j 6=i UDj(uj).

Weak dominance will play an important role in the definitions below. We

shall discuss motivations and justifications for this in Section 4 below.

A “strategic belief” µ̂i of agent i is a probability measure on S−i. The

set of all such probability measures is denoted by ∆(S−i). Given a utility

function ui ∈ Ui of agent i, and a strategic belief µ̂i of agent i, we denote

by BRi(ui, µ̂i) the set of all strategies in UDi(ui) that maximize expected

utility in this set.

Definition 1. A strategic belief µ̂i on S−i is “compatible” with a utility

belief µi if there is a probability measure νi on∏
j 6=i
{(uj , sj) ∈ Uj × Sj |sj ∈ UDj(uj)}

that has marginal µi on U−i and marginal µ̂i on S−i.

Intuitively, a strategic belief is compatible with a utility belief if and only

if it can be constructed as follows: For each vector of utility functions in the

support of the utility belief of agent i distribute the probability assigned to

this utility function in some arbitrary way among the strategy combinations

of the of the other players that only include strategies that are not weakly

dominated for the given utility functions. Then add up for each strategy

combinations of the other players the probabilities that have been assigned

to that strategy. Thus, the strategic belief reflects the player’s utility belief

combined with the assumption that the player believes with probability 1

that the other players won’t choose weakly dominated strategies.

We denote the set of all strategic beliefs that are compatible with a given

utility belief µi by Mi(µi).
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Definition 2. A mechanism is “strategically simple for agent i with utility

function ui ∈ Ui and with utility belief µi ∈Mi” if⋂
µ̂i∈Mi(µi)

BRi(ui, µ̂i) 6= ∅.

A mechanism is “strategically simple for agent i given Ui and Mi” if it is

strategically simple for agent i for all utility functions ui ∈ Ui and utility

beliefs µi ∈Mi. A mechanism is “simple given U and M” if it is strategically

simple for all agents i given Ui and Mi.

Our definition of simplicity thus requires that there is at least one strategy

of agent i that is optimal for all strategic beliefs that are compatible with

a given utility belief. Intuitively, simplicity means that every agent i can

forgo the cost of forming higher order beliefs at no loss in expected utility.

Mechanisms implement social choice correspondences. Traditionally, so-

cial choice correspondences map agents’ preferences or utilities into selected

outcomes. In our setting, it seems natural to extend the domain of social

choice correspondences to also include agents’ first order beliefs about the

other agents’ utility functions.

Definition 3. A “social choice correspondence” is a correspondence:

F : U×M � A.

The social choice correspondence implemented by a mechanism is:

F (u, µ) = g

∏
i∈I

 ⋂
µ̂i∈Mi(µi)

BRi(ui, µ̂i)

 for all (u, µ) ∈ U×M.

Thus, a mechanism is simple if and only if it implements a non-empty

valued social choice correspondence.

3. An Example

To illustrate the precise meaning of our definition, it is perhaps best to

start with a simple example that, by itself, is not of particular interest in

the theory of mechanism design. In this example n = 2, S1 = {T,M,B},
S2 = {L,C,R}, and Ui = {ui, ûi} for i = 1, 2. Each of the four boxes in

Example 1 corresponds to one of the four possible vectors of utility functions.

Instead of indicating for each combination of strategies which outcome will

result, and then specifying utility functions by assigning a utility value to
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L C R

T 1, 1 0, 0 1, 0

M 0, 1 1, 0 0, 0

B 0, 0 0, 1 0, 0

L C R

T 1, 0 0, 0 1, 1

M 0, 0 1, 0 0, 1

B 0, 0 0, 0 0, 1

(u1, u2) (u1, û2)

L C R

T 0, 1 0, 0 0, 0

M 0, 1 0, 0 0, 0

B 1, 0 1, 1 1, 0

L C R

T 0, 0 0, 0 0, 1

M 0, 0 0, 0 0, 1

B 1, 0 1, 0 1, 1

(û1, u2) (û1, û2)

Example 1

each outcome, we have combined these two steps, and indicated for each

combination of strategies, for each possible vector of utility functions, the

utility of each agent from the outcome that results if agents choose that

combination of strategies. This allows us to suppress a specification of the

set of outcomes A. We indicate in Example 1 the utility of agent 1 first, and

then the utility of agent 2. Each agent’s set of possible utility beliefs, Mi,

consists of only one probability measure, namely for i = 1 the probability

measure µ1 that assigns probability 0.4 to u2, and for i = 2 the probability

measure µ2 that assigns probability 0.6 to u1.

We shall argue that this example represents a simple mechanism. First

observe that UD1(u1) = {T,M}, UD1(û1) = {B}, UD2(u2) = {L,C}
and UD2(û2) = {R}. The strategic beliefs of player 1 that are compat-

ible with the given utility belief of agent 1 are all beliefs of the form:

µ̂1(L) = x, µ̂1(C) = 0.4 − x, µ̂1(R) = 0.6, where x ∈ [0, 0.4]. This is be-

cause, if agent 2 has utility function u2, which according to the utility belief

occurs with probability 0.4, agent 2 may either play L or C, so that agent 1

may divide the probability 0.4 in arbitrary ways among L or C when forming

his strategic belief, but when agent 2 has utility function û2, which occurs

with probability 0.6, player 2 will play R. Similarly, agent 2’s strategic be-

liefs that are compatible with the given utility belief are all beliefs µ̂2 of the

form µ̂2(T ) = y, µ̂2(M) = 0.6− y, and µ̂2(B) = 0.4, where y ∈ [0, 0.6].

Now suppose player 1 has utility function u1. Then the expected utility

from strategy T under any strategic belief compatible with the given utility
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belief is x · 1 + (0.4− x) · 0 + 0.6 · 1, and the expected utility from strategy

M is x · 0 + 0.4−x · 1 + 0.6 · 0. Thus, the set of best responses, BR1(u1, µ̂1),

equals {T} for all strategic beliefs compatible with the given utility belief, i.e.

regardless of the value of x. Trivially, the intersection of the best response

sets for all possible µ̂1 is non-empty. Intuitively, even though expected

utilities are affected by how much of the probability 0.4 player 1 allocates to

L, and how much he allocates to C, the optimal choice is unaffected by this,

because player 1 has to allocate the large probability 0.6 to the case that

player 2 chooses R, and in that case T is optimal. We conclude that the

mechanism is strategically simple for agent 1 with utility function u1 and

utility belief µ1. We also have trivially: BR1(û1, µ̂1) = {B} for all µ̂1 that

are compatible with the given utility belief, so that the mechanism is also

trivially strategically simple for agent 1 with utility function û1 and utility

belief µ1.

Next consider player 2’s perspective. If player 2 has utility function u2,

then his expected utility from L is y · 1 + (0.6− y) · 1 + 0.4 · 0 = 0.6, whereas

it is y · 0 + (0.6− y) · 0 + 0.4 · 1 = 0.4 from strategy C. Thus, the set of best

responses, BR1(u2, µ̂2) is {L}, for all strategic beliefs compatible with the

given utility belief, i.e. regardless of what y is, and the simplicity criterion is

again satisfied. Indeed, y does not enter player 2’s expected payoff because

the expected payoff difference between L and C is the same regardless of

which of his two undominated strategies player 1 plays when he has utility

function u1. We conclude that the mechanism is thus strategically simple

for player 2 with utility function u2 and belief µ2, and it is obvious that it is

also strategically simple for player 2 with utility function û2 and belief µ2.

Thus, the mechanism is indeed simple.

Consider now the case in which for each agent the sets Ui have only a

single element, and therefore also the sets Mi are singletons. These games

resemble complete information games as commonly defined in game theory,

except that, unlike the theory of complete information games, our theory

does not assume any common knowledge. Therefore, we shall refer to these

games as “certainty games.” Lemma 1 applies to all such games. It says that

such games are simple only if after eliminating for each agent the weakly

dominated strategies then, in the remaining game, each agent has an always

best response. This condition is obviously also sufficient. Thus, simple

“certainty games” can be solved in two steps.
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Example 1 is not of particular interest as an example in mechanism de-

sign because the sets of possible utility functions of the two agents are very

small, having only two elements. Our definitions even allows the case that

the sets Ui are singletons. Then, of course, also the sets Mi are singletons.

In this case, mechanisms resemble complete information games as commonly

defined in game theory, except that, unlike the theory of complete informa-

tion games, our theory does not assume any common knowledge. In this

case mechanisms are simple if and only if, after deleting weakly dominated

strategies for each player, in the remaining game each player has a dominant

strategy where we use the expression “dominant strategy” as in mechanism

design, i.e. it refers to a strategy that is always optimal, regardless of what

the other players do. Loosely speaking, when all sets Ui are singletons,

simplicity is equivalent to dominance solvability in two steps.

4. Discussion

Our intuitive discussion of the notion of simplicity studied in the Intro-

duction invoked the concepts of first and higher order beliefs about other

players’ utility functions and about their rationality. This suggests that our

approach to simplicity should be describable in the language of epistemic

game theory. To a certain extent it is.

Consider the universal type space of epistemic game theory, assuming that

for each agent i the space of uncertainty is U−i×A−i. Suppose we consider

in the universal type space all states in which the following are true: (i)

agent i is an expected utility maximizer; (ii) agent i has utility function ui;

(iii) agent i’s beliefs about other agents’ utility functions is given by µi, and

(iv) agent i believes with certainty that all other agents are expected utility

maximizers. Note that (iii) and (iv) pin down agent i’s first order beliefs,

and that there are no conditions for agent i’s higher order beliefs. Thus, if in

all states in which (i)-(iv) hold, player i were to make the same choice, then

player i’s first order beliefs, together with knowledge of his utility function

and knowledge that he is rational, would allow us to predict player i’s choice.

Had we defined simplicity in this way, then it would be straightforward

to show that a game is strategically simple for player i with utility function

ui and utility belief µi if and only if the set

arg max
ai∈Ai

∑
a−i∈A−i

ui(ai, a−i)µ̂i(a−i)
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has the same, single element for all strategic beliefs µ̂i for which there is a

probability measure νi on∏
j 6=i
{(uj , sj) ∈ Uj × Sj |sj ∈ RATj(uj)}

that has marginal µi on U−i and marginal µ̂i on S−i. Here, we define

RATj(uj) =
⋃

µ̂i∈∆(Un−1)

arg max
ai∈Ai

∑
a−i∈A−i

ui(ai, a−i)µ̂i(a−i).

The condition in our definition differs in two ways from the condition that

what we have just described. The first is that in our definition “rationality”

means not only expected utility maximization, but also as not playing a

weakly dominated strategy. This first point lead us to consider the sets

BRi(ui, µ̂i) for µ̂i ∈ Mi(µi) rather than the sets described above. The

second is that, rather than requiring these sets to always have the same,

single element for all beliefs that we consider, we have required that the sets

have at least one element in common.

The first point is primarily for practical reasons, but it can be seen . Some

of our examples are most naturally interpreted as the normal forms of exten-

sive form games, and by ruling out weakly dominated strategies we rule out

some strategies that violate the most basic versions of sequential rationality.

Note that the primary objection against the use of weakly dominated strate-

gies, that the order of elimination of weakly dominated strategies matters,

does not arise in our setting, because we do not iterate the elimination of

weakly dominated strategies. We could provide an epistemic interpretation

of our use of weak dominance. For this, we would replace point (iv) above by

two conditions: every agent’s strategic beliefs have full support on the prod-

uct of the other players’ strategy sets, and every agent attaches probability

p to the hypothesis that all other players are expected utility maximizers

with strategic beliefs that have full support. We would then consider the

limit for p tending to 1. We do not elaborate this argument.5 Note that the

second of the two new assumptions does involve a condition on second order

beliefs: every agent believes that every agent has full support beliefs. One

might thus argue that implicitly our construction does include a (perhaps

mild) restriction for second order beliefs.

5A related argument, but concerning common p-belief of rationality with full support

beliefs in games, has been formalized by Frick and Romm [7].
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The second difference between our definition of simplicity in this paper,

and the definition outlined above, allows us to apply our definition even

in cases in which an agents’ beliefs and preferences are, in knife-edge cases,

such that the agent is indifferent between several optimal actions, so that the

set of best responses cannot be a singleton, and is also perhaps non-robust

under belief perturbations.

Intuitively, one might also motivate our requirement in Definition 2 that

the intersection of the best response sets be non-empty by the argument

that the formation of beliefs, and the determination of best responses, as a

costly intellectual process. Thus, once an agent discovers that there is one

strategy that is optimal regardless of the agent’s higher order beliefs, the

agent may stop forming beliefs and determining best responses, and simply

choose that strategy. The idea that belief formation is a costly process has

been advocated, for example, by Binmore [2, pp. 129-132], who argues that

achieving the consistency that is necessary for having a well-defined prior

requires many costly iterations of attempted belief formation.6

5. Menu Games

Our first and straightforward result describes a necessary condition for a

mechanism to be simple.

Lemma 1. Consider a mechanism that is strategically simple given U and

M. Suppose for some agent i ∈ I the set Mi contains for some u−i ∈ U−i

the probability measure µi that places probability 1 on u−i. Then for every

ui ∈ Ui there is a strategy si ∈ Si such that

ui(g(si, s−i)) ≥ ui(g(s′i, s−i))

for all s−i ∈
∏
j 6=i UDj(uj) and all s′i ∈ Si.

Proof. For every u−i ∈ U−i let µi be the probability measure that places

probability 1 on u−i. Let s−i ∈
∏
j 6=i UDj(uj). Then µ̂i, the probabil-

ity measure that places probability 1 on s−i is compatible with µi, and is

therefore contained in Mi(µi). This implies that every strategy in⋂
µ̂i∈Mi(µi)

BRi(ui, µ̂i)

6Binmore asserts that in many circumstances, including games, it is actually impossible

to carry out this process.
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L C1 C2 R

U a a b b

D b c b c

Example 2

has the property described in Lemma 1. For simple mechanisms there is at

least one such strategy. �

We shall describe the property of the strategy si in Lemma 1 as being

an “always best response to strategies in
∏
j 6=i UDj(uj).” Note that the

strategy si in Lemma 1 may depend on
∏
j 6=i UDj(uj).

An interesting class of games to which Lemma 1 applies are two agent

games with one-sided incomplete information, that is, games in which n = 2,

#U1 = 1, and #U2 > 1. Lemma 1 implies that if such a game is to be

simple, after agent 1’s weakly dominated strategies are eliminated, for every

utility function u2 ∈ U2 agent 2 has to have an always best reply. We now

demonstrate that in certain cases all simple mechanisms are in a certain

sense equivalent to the normal form of a game in which agent 1 offers agent

2 a menu of alternatives to choose from, and then agent 2 chooses one of

these alternatives.

Definition 4. Let n = 2. A mechanism is a “menu mechanism” if for

some subset A of the set of all non-empty subsets of A, the mechanism is

the normal form of the following perfect information game: First, agent 1

chooses some element A1 (a “menu”) of A. Then agent 2 picks an element

of A1.

Example 2 is an example of a menu-mechanism. It is the normal form

of the following mechanism: first agent 1 chooses either the set {a, b}, or

{b, c}, and then agent 2 picks an alternative from the set chosen by agent

1. Agent 2’s column choices in Example 2 correspond to contingent plans,

specifying both what to choose from {a, b} and what to choose from {b, c}.

Proposition 1. Suppose n = 2, #U1 = 1 and for all u2 ∈ U2: u2(a) 6=
u2(a′) for all a, a′ ∈ A with a 6= a′. Then for every simple mechanism there is

a menu mechanism that implements the same social choice correspondence.

Proof. Consider any simple mechanism. Define a corresponding menu mech-

anism as follows: The “menus” agent 1 can choose from are all sets A1 ⊆ A
for which there is some s1 ∈ S1 such that: A1 = {a ∈ A|g(s1, s2) =
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a for some s2 ∈ S2}. Agent 2’s strategies are all possible functions that

assign to each menu A1 a choice a ∈ A1 from that menu. We claim that

this menu mechanism implements the same social choice correspondence as

the given simple mechanism. To see this note that, in the menu game, for

each utility function u2 ∈ U2, agent 2 will choose a strategy that assigns

to each menu A1 the alternative that maximizes u2 in A1. By assumption

there is a unique such alternative. Therefore, agent 1’s expected utility for

every choice s2 in the original mechanism is the same as agent 1’s expected

utility for the corresponding menu in the menu mechanism. This implies

the Proposition. �

Let us consider an application of Proposition 1. Suppose a monopolist

faces a single buyer with utility v−p if the buyer buys an indivisible product

from the monopolist and pays price p, and utility 0 otherwise. We also

assume that when v = p, the buyer strictly prefers to trade. The monopolist

does not know v. All values of v between 0 and 1 are possible, and all

probability distributions on [0, 1] are possible beliefs of the seller. The buyer

knows that the monopolist does not attach any value to the object, and that

the seller maximizes expected revenue. Suppose we are interested in simple

mechanisms that seller and buyer can use to determine whether, and, if so,

at which price they trade. Proposition 1 implies that it is without loss of

generality to menu mechanisms.

Let us assume that we only consider mechanisms such that for every

strategy of the seller there exists at least one strategy of the buyer such that

the outcome is no trade, and the buyer does not make any payment to the

seller. Thus, in a menu mechanism, every menu that the seller might offer

must include this outcome. In any menu there only two alternatives that

might potentially maximize the buyer’s utility: the outcome of no trade, and

the outcome at which the object changes hands at the lowest possible price

in that menu. This means that we can think of menu mechanisms as price

setting games: The seller proposes a price from some given set of admissible

prices. The buyer chooses a function f : R+ → {Y,N} indicating for each

possible price whether he wants to say “yes” or “no” to that price. Trade

comes about at the price proposed by the seller if the buyer says “yes” to

the price proposed by the seller, and otherwise no trade comes about. After

weakly dominated strategies are eliminated, in this game the buyer has an

always optimal strategy for every possible value of v: accept the trade if

p ≥ v, and reject it otherwise. The seller’s optimal choice does not rely on
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second order beliefs about the buyer. It only depends on her beliefs about

v.

6. Universal Simplicity

A class of mechanisms of particular interest is the class of all mecha-

nisms that are simple when all conceivable utility functions and beliefs are

considered. We call such mechanisms “universally simple.” For universally

simple games the mechanism designer’s analysis of the mechanism is robust

to changes in agents’ belief hierarchies, and is thus robust in the sense of

Bergemann and Morris [1].

Definition 5. A mechanism is “universally simple” if it is strategically

simple for all agents i given Ui = U and M = ∆(Un−1).

In this section we give a characterization of universally simple mecha-

nisms. We first need some additional terminology and notation.

Definition 6. Let Ri be a linear, that is, total, transitive, and anti-reflexive,

order on A. A strategy si ∈ Si of agent i is called “weakly dominated given

Ri” if there is another strategy ŝi ∈ Si such that for all s−i ∈ S−i

g(ŝi, s−i)Rig(si, s−i),

and, for some s−i ∈ S−i

g(ŝi, s−i)Rig(si, s−i) and g(ŝi, s−i) 6= g(si, s−i).

We denote by UDi(Ri) ⊆ Si the set of all strategies of agent i that are not

weakly dominated given Ri.

When a list of linear orders (R1, R2, . . . , Rn) is given, we denote, for every

i ∈ I, by UD−i(R−i) the set
∏
j 6=i UDj(Rj).

Theorem 1. A mechanism is universally simple if and only if the following

condition is satisfied: If for every i ∈ I Ri is a linear order on A, then there

is some agent i∗ such that for every strategy si∗ ∈ UDi∗(Ri∗) there is an

alternative a ∈ A such that

g(si∗ , s−i∗) = a for all s−i∗ ∈ UD−i∗(R−i∗).
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In words the condition that is necessary and sufficient for universal sim-

plicity says the following. Whenever we fix a vector of preferences (R1, R2,

. . . , Rn), if we consider the mechanism restricted to the strategy sets UDi(Ri)

for all i ∈ I, then, in the restricted mechanism, some agent i∗ is a dictator,

that is, for each of the alternatives that are possible when agents choose

their strategies from UDi(Ri) agent i∗ has an action that enforces that al-

ternative if all other agents choose from UDi(Ri), and each of agent i∗’s

actions enforces some alternative.

Proof. Sufficiency is obvious. We only prove necessity. We proceed by es-

tablishing a sequence of claims.

Claim 1: Let ui ∈ Ui, u−i ∈ U−i, and let µi be a utility belief such

that µi({u−i}) > 0. Suppose si, s
′
i ∈

⋂
µ̂i∈Mi(µi)

BRi(ui, µ̂i). Then for all

s−i, s
′
−i ∈ UD−i(u−i):

ui(g(si, s−i))− ui(g(s′i, s−i)) = ui(g(si, s
′
−i))− ui(g(s′i, s

′
−i)).

Proof of Claim 1: Suppose the assertion were not true. Then there

are s−i, s
′
−i ∈ UD−i(u−i) such that:

ui(g(si, s−i))− ui(g(s′i, s−i)) > ui(g(si, s
′
−i))− ui(g(s′i, s

′
−i)).

Pick any µ̂i ∈ Mi(µi) that places strictly positive probability on s−i and

s′−i. Because si and s′i are both in BRi(ui, µ̂i) both strategies must yield the

same expected utility under µ̂i. Now suppose we vary µ̂i such that it places

ε probability more than µ̂i on s−i and ε probability less than µ̂i on s′−i,

leaving all other probabilities unchanged. If we choose ε > 0 and sufficiently

small, we can vary µ̂i in this way so that it remains an element of Mi(µi),

and so that for the modified belief si is a strictly better response than s′i.

This contradicts s′i ∈
⋂
µ̂i∈Mi(µi)

BRi(ui, µ̂i). �

Claim 2: Let ui ∈ Ui, u−i ∈ U−i, and let µi, µ
′
i be any two util-

ity beliefs such that µi({u−i}) > 0 and µ′i({u−i}) > 0. Suppose si ∈⋂
µ̂i∈Mi(µi)

BRi(ui, µ̂i) and s′i ∈
⋂
µ̂′i∈Mi(µ′i)

BRi(ui, µ̂
′
i). Then for all s−i, s

′
−i ∈

UD−i(u−i):

ui(g(si, s−i))− ui(g(s′i, s−i)) = ui(g(si, s
′
−i))− ui(g(s′i, s

′
−i)).

Proof of Claim 2: Claim 2 follows from repeated application of Claim

1 if we can find a sequence of utility beliefs of agent i, µki (k = 2, . . . ,K),

and strategies of agent i, ski (k = 1, 2, . . . ,K), where K ≥ 2, such that
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s1
i = si, s

K
i = s′i, for every k ∈ {2, . . . ,K} the utility belief µki places

positive probability on ui, and for every k ∈ {2, . . . ,K} both sk−1
i and ski

are elements of
⋂
µ̂ki ∈Mi(µki )BRi(ui, µ̂

k
i ). We shall construct such a sequence.

We set s1
i = si. For every α ∈ [0, 1] define µi(α) ≡ αµi + (1 − α)µ′i.

Define α2 ≡ sup{α ∈ [0, 1]|si ∈
⋂
µ̂i∈Mi(µi(α))BRi(ui, µ̂i)}. Define s2

i to

be any strategy in Si that is an element of
⋂
µ̂i∈Mi(µi(α2+ε))BRi(ui, µ̂i)}

for a sequence of ε > 0 tending to zero. Then, by upper hemicontinuity

of the correspondence of best responses, s1
i and s2

i are both contained in⋂
µ̂i∈Mi(µi(α2))BRi(ui, µ̂i)}. We define µ2

i to be µi(α2). Note that, because

µi and µ′i attach strictly positive probability to u−i, and because µ2
i is a

convex combination of µi and µ′i, also µ2
i places strictly positive probability

on u−i.

Now suppose for k ≥ 2 we had already constructed strategy ski and a

corresponding utility belief µki and suppose µki = µi(α
k). Define αk+1 ≡

sup{α ∈ (αk, 1]|ski ∈
⋂
µ̂i∈Mi(µi(α))BRi(ui, µ̂i)}. Define sk+1

i to be any

strategy in Si that is an element of
⋂
µ̂i∈Mi(µi(αk+1+ε))BRi(ui, µ̂i)} for a

sequence of ε > 0 tending to zero. Then, by upper hemicontinuity of

the correspondence of best responses, ski and sk+1
i are both contained in⋂

µ̂i∈Mi(µi(αk+1))BRi(ui, µ̂i)}. We define µk+1
i to be µi(αk+1). Note that

µk+1
i places strictly positive probability on u−i.

Note that by construction, in the sequence of strategies no strategy is ever

repeated. Moreover, the sequence αk is strictly increasing and will reach 1

in a finite number of steps. If at some point while αk < 1 we can choose

ski = s′i, then we stop the construction, and set k = K. Alternatively, the

construction ends when αk = 1. At that point we defineK = k+1, αk+1 = 1,

and sk+1 = s′i. Our sequence will then have the required properties. �

Claim 3: For every agent i, for every linear order Ri on A, there exists

a utility function u∗i that represents Ri, such that for every si ∈ UD(Ri)

and for every u−i there exists a strategic belief µ̂i that is compatible with a

utility belief µi with µi(u−i) > 0 and such that:

BRi(u
∗
i , µ̂i) = {si}.

Moreover, the utility functions u∗i can be chosen such that u∗i (a)− u∗i (b) 6=
u∗i (c)− u∗i (d) for all (a, b), (c, d) ∈ A2 with (a, b) 6= (c, d).
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Proof of Claim 3: By the Lemma and the remark in the first paragraph

of the proof of that Lemma, in Börgers [3], for every strategy si ∈ UDi(Ri)

there exist a utility function usi that represents Ri (that is, ui(a) ≥ ui(b)⇔
aRib), and a full support strategic belief µi, such that si is the unique

maximizer of expected utility given that belief. We can construct a utility

belief with which µ is compatible, and, because µi has full support, and

therefore gives strictly positive probability to a combination of strategies

that are not weakly dominated given u−i, we can find a utility belief with

which µi is compatible, and that assigns strictly positive probability to u−i.

It remains to be shown that the utility functions usi can be chosen to

be the same for all strategies si ∈ UDi(Ri). This follows directly from the

argument in the proof of Proposition 1 in Weinstein [11] if we can show that

there are a regular utility function u∗i and, for every si ∈ UDi(Ri), a concave

function fsi : R → R, such that u∗i = fsi(usi) for all si ∈ UDi(Ri). This

assertion is sufficient because, by Weinstein’s argument, if we subject utility

to a concave transformation, then the set of not weakly dominated strategies

cannot shrink. We shall therefore now proceed to prove this assertion.

We first construct u∗i . Enumerate the elements of A as a1, a2, . . . , aL such

that aLRiaL−1RiaL−2Ri . . . Ria1. We pick u∗i to satisfy the following, where

the first two lines are a normalization:

u∗i (a1) = 0

u∗i (a2) = 1

. . .

u∗i (a`−1) < u∗i (a`) < u∗i (a`−1) + . . .

. . . (u∗i (a`−1)− u∗i (a`−2)) min
si∈U(Ri)

usi(a`)− usi(a`−1)

usi(a`−1)− usi(a`−2)
.

Note that the right most term in the inequality is strictly larger than the

left term, so that u∗i can be constructed, and will be monotonically increas-

ing, and thus compatible with Ri. Because u∗i is defined by inequalities, it

is also clear that we can choose u∗i so that it is regular.

We now turn to the construction of the functions fsi . For every si we

set fsi(usi(a`)) = u∗i (a`) for all ` = 1, 2, . . . , L. This defines fsi for a finite

number of elements of R only. However, it is clear that we can extend fsi to
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a concave piecewise linear function on R if it satisfies the following concavity

condition for the points in which it is defined:

fsi(usi(a`))− fsi(usi(a`−1))

usi(a`)− usi(a`−1)
≤ fsi(usi(a`−1))− fsi(usi(a`−2))

usi(a`−1)− usi(a`−2)

for all ` ≥ 2. By the definition of fsi , this inequality is equivalent to:

u∗i (a`)− u∗i (a`−1)

usi(a`)− usi(a`−1)
≤ u∗i (a`−1)− u∗i (a`−2)

usi(a`−1)− usi(a`−2)
⇔

u∗i (a`) ≤ u∗i (a`−1) + . . .

. . . (u∗i (a`−1)− u∗i (a`−2))
usi(a`)− usi(a`−1)

usi(a`−1)− usi(a`−2)

which holds by construction. �

Claim 4: For every agent i, for every linear order Ri on A, and for every

u−i ∈ U−i either

(i) there is for every strategy si ∈ UD(Ri) an alternative a such that

g(si, s−i) = a for all s−i ∈ UD−i(u−i),
or

(ii) there is for every strategy combination s−i ∈ UD−i(u−i) an alternative

a such that g(si, s−i) = a for all si ∈ UDi(Ri),

or both.

Proof of Claim 4: If we represent Ri by the utility function u∗i from

Claim 3. Pick any two si, s
′
i ∈ UD(Ri). By Claim 3 there are a strategic

belief µ̂i that is compatible with a utility belief µi with µi(u−i) > 0 such

that: BRi(u
∗
i , µ̂i) = {si}, and a strategic belief µ̂′i that is compatible with a

utility belief µ′i with µ′i(u−i) > 0 such that: BRi(u
∗
i , µ̂i) = {si}. Obviously,

this implies si ∈
⋂
µ̂i∈Mi(µi)

BRi(ui, µ̂i) and s′i ∈
⋂
µ̂′i∈Mi(µ′i)

BRi(ui, µ̂
′
i).

Therefore, by Claim 2 for all s−i, s
′
−i ∈ UD−i(u−i):

u∗i (g(si, s−i))− u∗i (g(s′i, s−i)) = u∗i (g(si, s
′
−i))− u∗i (g(s′i, s

′
−i)). (∗)

Suppose first that the two sides in (*) equal zero. Because Ri has no

indifferences, it follows that g(si, s−i) = g(s′i, s−i) for all s−i ∈ UD−i(u−i).
Suppose first that for some a ∈ A we have: g(si, s−i) = a for all s−i ∈
UD(u−i). Then g(s′i, s−i) = a for all s−i ∈ UD−i(u−i), and, moreover, for

any other strategy s̃i ∈ UDi(Ri) the equation (*) can hold only if there is

some alternative ã ∈ A such that g(s̃i, s−i) = ã for all s−i ∈ UD(u−i). This

is implied by: u∗i (a) − u∗i (b) 6= u∗i (c) − u∗i (d) for all (a, b), (c, d) ∈ A2 with

(a, b) 6= (c, d). Thus, we have obtained Case (i).
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Next suppose that the two sides in (*) equal zero, but that g(si, s−i) 6=
g(si, s

′
−i) for some s−i, s

′
−i ∈ UD−i(u−i). Then, if we replace s′i in (*) by

some other s̃i ∈ UD(Ri), (*) can only hold if for s̃i both sides are zero, and

thus g(si, s−i) = g(s̃i, s−i). Thus, we have obtained Case (ii).

Now suppose that the two sides in (*) do not equal zero. Using again the

regularity of u∗i , we can conclude that: g(si, s−i) = g(si, s
′
−i) and g(s′i, s−i) =

g(s′i, s
′
−i) for all s−i, s

′
−i ∈ UD(u−i). Another use of the regularity of u∗i

implies then that, if we replace in ∗ strategy s′i by some other strategy

s̃i ∈ UD(Ri), then (*) can only hold if g(s̃i, s−i) = g(s̃′i, s
′
−i) for all s−i, s

′
−i ∈

UD(u−i). Thus, we are in Case (i). �

Claim 5: Suppose for every agent j we have a linear order Rj on A.

Then, for every agent i, either

(i) there is for every strategy si ∈ UD(Ri) an alternative a such that

g(si, s−i) = a for all s−i ∈ UD−i(R−i),
or

(ii) there is for every strategy combination s−i ∈ UD−i(R−i) an alternative

a such that g(si, s−i) = a for all si ∈ UDi(Ri),

or both.

Proof of Claim 5: Claim 5 follows from Claim 4 if we represent for

each j with j 6= i the linear order Rj by the utility function u∗j referred to

in Claim 3. �

Completing the Proof of Theorem 1: The claim is obviously true

if there is an alternative a such that g(s) = a for all s ∈ UD(R). Therefore

from now on we restrict attention in this proof to the case that there are

two alternatives a 6= b such that g(s) = a for some s ∈ UD(R) and g(s′) = b

for some other s′ ∈ UD(R).

We shall say that agent i ∈ I “has no influence” if for every s−i ∈
UD−i(R−i) there is an a ∈ A such that g(si, s−i) = a for all si ∈ UDi(Ri),

and we shall say that agent i is a dictator if agent i has the property ascribed

to agent i∗ in Theorem 1. By Claim 5 every agent i either has no influence,

or is a dictator.

Next note that it cannot be that there is more than one dictator. A

dictator can enforce any of the alternatives contained in {g(s)|s ∈ UD(R)}.
We have assumed that there are at least two such alternatives, say a and
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L RL RRL RRR

L a a a a

RL a b b b

RRL a c b b

RRR a c c a

Example 3

b. Having two dictators leads to a contradiction if one of them chooses an

action that enforces a, and the other one chooses an action that enforces b.

Finally note that it cannot be that all agents have no influence. Recall

that we are considering the case in which there are two alternatives a 6= b

such that g(s) = a for some s ∈ UD(R) and g(s′) = b for some other

s′ ∈ UD(R). Consider the sequence of n strategy combinations sk obtained

by switching sequentially first agent 1, then agent 2, etc. from strategy

si to strategy s′i. Thus, s1 = (s′1, s2, . . . , sn), s2 = (s′1, s
′
2, s3 . . . , sn), etc.

Define s0 = s. Because g(s0) 6= g(sn), there must be some k such that

g(sk) 6= g(sk−1). But this means that by construction agent k has influence.

Hence agent k must be a dictator. �

7. An Example

Theorem 1 suggests the following classification of universally simple mech-

anisms. Suppose we denote by I∗(R1, R2 . . . , Rn) the set of agents to whom

the condition in Theorem 1 applies, that is, who are dictators, if the pref-

erence profile is (R1, R2, . . . , Rn). Then a first type of universally simple

mechanisms is the type for which there is some i∗ that is contained in

I∗(R1, R2 . . . , Rn) for all (R1, R2 . . . , Rn). The second type of universally

simple mechanisms in which no such single i∗ exists.

The menu mechanism in Example 2, which we discussed earlier, is a uni-

versally simple mechanism of the first type. Example 3 is an example of a

universally simple mechanism of the second type. There are two agents in

Example 3, i = 1, 2, and three alternatives, A = {a, b, c}.

To analyze Example 3 we first determine for each agent, for each ordinal

preferences of that agent, the set of weakly undominated strategies of that

agent. We begin with agent 1. If agent 1 ranks a highest, L is weakly

dominant. If agent 1 ranks b highest, RL is weakly dominant. If agent 1’s



22 TILMAN BÖRGERS AND JIANGTAO LI

preference is cab,7 then RRR is weakly dominant. If agent 1’s preference is

cba, then RRL and RRR are the not weakly dominated strategies.

If agent 2 ranks a highest, L is weakly dominant. If agent 2’s preference

is bac, then RRR is weakly dominant. If agent 2’s preference is bca, then

RRL is weakly dominant. If agent 2’s preference is cab, then L and RL are

the not weakly dominated. If agent 2’s preference is cba, then RL is weakly

dominant.

We now show that the mechanism in Example 3 satisfies the condition in

Theorem 1. Whenever one agent has a dominant strategy, then obviously the

other agent is a dictator. It remains to consider the case in which neither

agent has a dominant strategy, which is when agent 1 ranks alternatives

cba, and agent 2 ranks alternatives cab. Then the undominated strategies

are RRL and RRR, and L and LR. In this case agent 2 is a dictator, and

thus by Theorem 1 this is a universally simple mechanism.

But note that agent 2 is not in all cases the dictator. If agent 1 has two

undominated strategies, but agent 2 has a weakly dominant strategy, then

obviously only agent 1 is the dictator. Thus, Example 3 is a universally

simple mechanism of the second type.

We can also show directly that the mechanism in Example 3 is universally

simple. For this, we have to show that agents can determine their expected

utility maximizing strategies on the basis of first order beliefs about other

agents’ utility functions only. This is obvious if an agent has a weakly

dominant strategy. We have thus only two cases in which there are multiple

not weakly dominated strategies. The first is that agent 1’s preference is cba.

Then RRL and RRR are the not weakly dominated strategies. Without loss

of generality, suppose agent 1’s von Neumann Morgenstern utility function

is given by: u1(c) = 1, u1(b) = x and u1(a) = 0. Denote by p the probability

that agent 1 assigns to the event that agent 2’s preference is bac, and thus

that agent 2 chooses RRR, and denote by q the probability that agent 1

assigns to the event that agent 2’s preference is bca, and thus that agent 2

chooses RRL. Agent 1 will choose RRL if and only if: (p + q)x ≥ q. Note

that for given x agent 1’s optimal choice only depends on his first order

belief, as required by simplicity.

7Here, and in the following, this notation means that agent 1 ranks c above a above b.



SIMPLE MECHANISMS 23

The second case in which there are multiple undominated strategies is

that agent 2 has preferences cab. Without loss of generality assume agent

2’s utility function is: u2(c) = 1, u2(a) = y, u2(b) = 0, and assume that he

attaches probability p̃ ∈ [0, 1] to the event that player 1 ranks b highest,

and thus chooses RL, and probability r to the event that player 1 ranks

c highest, and hence plays RRL or RRR. Then player 2 will choose L if

and only if: (q + r)y ≥ r. Again, we see that agent 2’s optimal choice only

depends on his first order belief, as required by simplicity. This completes

the direct argument that Example 3 is a universally simple mechanism.

Example 3 is actually the reduced normal form of an extensive game

that we show in Figure 1. The extensive game in Figure 1 is a game of

perfect information. Strategy “L” of player 1 in Example 3 corresponds to

the strategy in which player 1 chooses “left” at his initial node. Strategy

“RL” of player 1 in Example 3 corresponds to the strategy in which player

1 chooses “right” at his initial node, but “left” at his second node. All other

strategies are labelled in the analogous way.

It is also interesting to show the social choice correspondence implemented

by Example 3. We show that correspondence in Figure 2. In Figure 2 rows

correspond to preferences of agent 1, columns correspond to preferences of

agent 2. Note that there are some Pareto inefficiencies. For example, when

both preferences have preferences cab, then agent 2 might stop the game at

her first move, thus opting for a, and this would be rational if she mistakenly

believes that agent 1 will choose b if given the chance. This would result in

outcome a, yet both agents prefer c over a.

When there is multiplicity in Figure 2, then it depends on players’ von

Neumann Morgenstern utility functions and their beliefs which alternative

is picked. For example, when player 1’s preferences are cba, and player 2’s

preferences are bac, then alternative b will be chosen if (p + q)x ≥ q, and

otherwise a will be chosen. This follows from the above calculations. Thus,

b wil be chosen if agent 1’s von Neumann Morgenstern utility from b is

sufficiently high, and if agent 1’s probability that player 2’s preference is

bac is high in comparison to his probability that agent 2’s preference is bca.

Otherwise, a will be chosen.

We can reinterpret Example 3 as a bilateral example. Suppose “a” stands

for “no trade,” “b” stands for “trade at a low price,” and “c” stands for

“trade at a high price.” Suppose agent 1 is the seller, and agent 2 is the
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1

2

1

2

1

2

a

a

b

c

b

c a

Figure 1: Extensive form for Example 3

buyer. Then it seems natural to consider the domain in which agent 1 always

prefers c over b, and agent 2 always prefers b over c. Then, the implemented

social choice correspondence is as shown in Figure 3.

The social choice correspondence implemented by Example 3 in the bilat-

eral trade example has the following interpretation: if at least one player is

unwilling to trade at any price, then no trade takes place. If the buyer only

wants to trade at the high price, and the seller only wants to trade at the

low price, then no trade takes place. If the buyer and the seller are willing

to trade at both prices, then trade at either price is possible. If the seller

is only willing to trade at the high price, but the buyer is willing to trade

at both prices, then the trade takes place at the high price. If the buyer is

only willing to trade at the low price, but the seller is willing to trade at
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abc acb bac bca cab cba

abc a a a a a a

acb a a a a a a

bac a a b b a, b b

bca a a b b a, b b

cab a a a c a, c c

cba a a a, b b, c a, c c

Figure 2: Social Choice Correspondence Implemented by Example 3

abc bac bca

acb a a a

cab a a c

cba a a, b b, c

Figure 3: Social Choice Correspondence Implemented by Example 3 in the

Bilateral Trade Example

both prices, then trade may take place at the low price, or it may not take

place at all. This last case is an inefficiency. Our earlier calculations showed

that this inefficiency occurs if the seller attaches a high probability to the

event that the buyer is willing to buy at the high as well as the low price in

comparison to the probability that the buyer is only willing to buy at the

low price (as is actually the case).

The bargaining protocol described by Figure 1 is this: First, both agents

are given the chance to quite the trade. Then the seller can accept the low

price. If he does, trade takes place at that price. Otherwise, the buyer

can accept the high price. If he does, then trade takes place at that price.

Otherwise, the seller is given another chance to accept the low price. If he

does, then trade takes place at that price. Otherwise, the buyer makes a

final choice: he can either accept the high price, or quit the trading game.

The strategies that agents choose are as follows: If the seller prefers no

trade to either the high or the low price, then the seller quits right away. If

the seller is only willing to trade at the high price, then the seller participates,

but continues to insist on the high price until the game ends either with the

buyer accepting the high price, or rejecting it. If the seller is willing to trade
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at both prices, then the seller accepts the low price at the third decision node

of the seller if the seller attaches a high probability to the event that the

buyer is willing to buy only at the low price in comparison to being willing

to trade at both prices. Otherwise, he again refuses the low price until the

end.

If the buyer prefers no trade to either the high or the low price, then the

buyer quits right away. If the buyer is only willing to trade at the low price,

then she waits for the seller to accept the low price, and if the seller does

not, then she refuses trade in the final round. If the buyer is willing to trade

at both prices, then she also waits for the final round, but accepts trade in

the final round.

Thus, an inefficient outcome arises if the seller is willing to accept either

the high or the low price, but insists on the high price, believing that the

buyer is likely willing to trade at the high price, and if, in fact, the buyer

is only willing to trade at the low price, but not at the high price. In this

case, no trade comes about, even though both sides would have preferred ex

post to trade at the low price.

In comparison to the menu game, in which the seller can lower the price,

in the extensive form game that corresponds to Example 3, the seller can

first try to keep the price high, see the buyer refuse, and then, in response,

lower the price. In the menu game, the seller has only one choice to lower

the price. Another interesting feature of the extensive form in Figure 1 is

that once both agents have chosen not to opt out at their initial nodes, the

seller will never be forced to trade at the low price, if he doesn’t want to,

but he cannot avoid trade at the high price, if the buyer agrees to such a

trade. Equally, the buyer can avoid trade at the high price, but he cannot

avoid trade at the low price is the seller is willing to make such a trade.

8. Conclusion

This paper has proposed a new class of mechanisms. These mechanisms

are “simple” to analyze for agents, and thus also for the mechanism designer.

In Section 4 we have introduced a “robust” analysis of such mechanisms. A

priority of our research agenda is to characterize in various settings the set

of all simple mechanisms. In this context, this paper leaves a couple of ques-

tions open. In particular, in Section 3, it would be useful to characterize all

simple mechanisms for the buyer-seller example with two-sided uncertainty.
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In Section 4 it would be good to obtain a characterization of all universally

simple mechanisms of the first type. Over the long run, our objective is

to introduce a concept of optimality of simple mechanisms, and to study

optimal simple mechanisms.
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