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Abstract

This paper considers mechanism design environments where a prin-

cipal can disclose some information relevant to agents. As opposed to

the standard “informed principal” approach with no commitment as

to the principal’s information disclosure, we consider fully commit-

ted (public) information disclosure by the principal, implying more

tractability and hence wider applicability. In linear environments with

no restriction on monetary transfers (e.g., auction of Myerson (1981)),

we show that the principal finds it optimal to fully disclose his informa-

tion. With a budget-balance restriction on monetary transfers (e.g.,

bilateral trading of Myerson and Satterthwaite (1983)), full disclosure

may be suboptimal. In a bilateral-trading environment with uniformly

distributed types, I characterize the second-best information disclo-

sure policy, which is a simple censoring policy. The technique devel-

oped for this second-best characterization may be useful to tractably
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analyze general Bayesian persuasion problems with continuous state

spaces.

1 Introduction

This paper considers mechanism design environments where a principal has

some information relevant to agents. For example, a monopoly seller, who

designs a nonlinear pricing contract, may be able to disclose some informa-

tion about the quality of his good. As another example, a government, who

regulates financial transactions, may be able to disclose some information

about the future economic situations. In these cases, there are many impor-

tant questions such as (i) what kind of information the principal would reveal

to the agents, and (ii) how the optimal mechanism and optimal information

disclosure interact with each other.

The key assumptions of the paper are (i) the principal commits to his

disclosure rule at the ex ante stage, (ii) only public disclosure is allowed, and

(iii) his mechanism (e.g., the monopoly price he charges) can be contingent

on the disclosed information. One instance where these assumptions may

be reasonable is when the principal himself does not have a technology to

generate any hard evidence about his information, but before he observes his

information, he can ask a third-party certifier to generate hard evidence.1

Another possibility is that the principal himself cannot observe it, while he

knows that a certifier can know it.

Our main questions include how much information the principal volun-

tarily discloses, and how the disclosed information and optimal mechanism

interact with each other.

The basic economic intuitions that determine the optimal disclosure are as

follows. First, more disclosure implies more flexibility in the mechanism. For

example, the monopoly seller can charge di↵erent prices for di↵erent quality

1See Dranove and Jin (2010) for the literature review regarding (mainly third-party)

economics of certification.
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levels under full disclosure, while the price must be constant under no disclo-

sure. This first e↵ect makes the principal favor more disclosure. Second, on

the other hand, more disclosure implies (at least weakly) more information

rent to the agents. In its extremes, incentive compatibility must be satisfied

given every possible realization of the quality parameters under full disclo-

sure, while it must be satisfied only “in expectation” under no disclosure.

Therefore, this second e↵ect makes the principal favor less disclosure.2

Which e↵ect dominates the other is not trivial, and depends on the en-

vironments. First, in linear environments with no restriction on monetary

transfers (e.g., auction of Myerson (1981)), we show that the principal finds

it optimal to fully disclose his information (Section 4.1). This is because the

second “information-rent” e↵ect is null in this environment. Because every-

one is risk neutral, each agent’s (ex ante) expected information rent (or as its

mirror image, his expected virtual value) does not vary with the disclosure

policy, for any fixed mechanism.

Second, in a bilateral-trading environment (Myerson and Satterthwaite

(1983)) with a budget-balance restriction on monetary transfers, we show

that full disclosure is suboptimal (Section 4.2). Even though everyone is risk

neutral, and hence the agents’ expected information rents do not vary with

the disclosure policy, more disclosure means more dispersion in realization of

information rents, compared to less or no disclosure case, which means that

budget balance is most likely violated under full disclosure. Then, a natural

next question is characterization of the second-best information disclosure

policy. In Section 4.3, we characterize the second-best information disclosure

policy with uniformly distributed types, which is a simple censorship policy

(Kolotilin et al. (2015)).

The paper is related to the broad literature of information disclosure in

mechanism design as follows. The classical “informed principal” literature

assumes that the principal does not have a commitment power in terms of

2This second e↵ect has been observed in Myerson (1983) and Skreta (2011) in mecha-

nism design with an informed principal.
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information disclosure. For example, see Myerson (1983), Maskin and Tirole

(1990, 1992), and Mylovanov and Tröger (forthcoming). In this literature,

as in standard signaling games, di↵erent types of the principal compete with

each other through their design of mechanisms in a nontrivial manner. This

is particularly challenging in mechanism design, where the sender’s (princi-

pal’s) action space is the set of mechanisms, highly multidimensional and

complicated mathematical objects. This signaling issue makes the equilib-

rium characterization much less tractable. The commitment assumption in

our paper makes the problems more tractable, and hence implies wider ap-

plicability. In reality, the principal’s commitment ability may vary with

contexts, ranging from full commitment (as in our paper) to no commitment

at all (as in the informed-principal approach). In this sense, ex ante com-

mitment approach can be complementary to the standard informed-principal

approach.

Also, in the informed-principal approach, there are two elements that

can potentially a↵ect the principal’s disclosure decision. One is the signaling

e↵ect, and the other is the allocation or information-rent e↵ect. By assuming

commitment, we can purely focus on the analysis of the allocation/rent e↵ect.

In this sense, even in situations where the principal’s actual commitment

ability is more limited, identifying the allocation/rent e↵ect separately from

the signaling e↵ect would be useful.

Because of the commitment assumption, our methodology of analysing

the information disclosure problem is based on the Bayesian persuasion lit-

erature. See Rayo and Segal (2010) and Kamenica and Gentzkow (2011), for

example. Among those, as we discuss later, a recent paper by Kolotilin et al.

(2015) would be most relevant to ours.

Some more recent papers, including some of the sequential-screening lit-

erature, consider committed information disclosure by a principal. For ex-

ample, see Eső and Szentes (2007) and Bergemann and Pesendorfer (2007).3

3See also Bergemann and Wambach (2015), Li and Shi (2015), and Ganuza and Penalva

(2014).
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The key di↵erence from those papers is that, in our setting, the mechanism

can be contingent on the disclosed information (because it is public infor-

mation disclosed by a third party), while in those papers, the principal does

not observe disclosed information (only each agent observes a relevant infor-

mation), and hence, the mechanism cannot be contingent on it. This means

that our first “flexibility” e↵ect does not exist in those papers, which (at least

weakly) makes the principal favor less information disclosure. In fact, in an

auction environment where we find full disclosure optimal, Bergemann and

Pesendorfer (2007) find full disclosure suboptimal. On the other hand, Eső

and Szentes (2007) find that, if the principal can charge a price for disclosure

(as opposed to Bergemann and Pesendorfer (2007)), then the principal can

essentially know such disclosed information for free, and therefore, we can

treat the principal as if he knows such disclosed information as in our setting

(and hence the “flexibility” e↵ect revives). Indeed, our Theorem 1 in Section

4.1 can be seen as a generalization of their Proposition 1, showing optimality

of full disclosure. One di↵erence of our paper from those papers is that we

consider general mechanism design problems, not only revenue maximization

in auction. Moreover, we show that full disclosure may not be optimal in

other environments than auction such as in bilateral trading of Myerson and

Satterthwaite (1983), and characterize the optimal disclosure in a certain

case. It would be an interesting question whether the same disclosure rule

is optimal even when the mechanism cannot be contingent on the disclosed

information.

The public nature of information disclosure also means that the principal

cannot make the mechanism contingent on his information without disclosing

it to the agents. In this respect, our paper is di↵erent from Skreta (2011),

who allows for such a possibility, and in that case, the “flexibility” e↵ect of

information disclosure again disappears, because the mechanism can always

be fully flexible, regardless of the disclosure level to the agents. Then Skreta

(2011) shows that, in a quasi-linear auction setting, the principal is indi↵er-

ent among any disclosure policy. Similarly, we do not allow for a possibility
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that di↵erent amount information disclosure are enjoyed by di↵erent agents

or di↵erent types of the same agent. I believe that, given that we consider a

third-party disclosure, it is a reasonable restriction to focus on public infor-

mation disclosure. However, it would be interesting to study such “private”

disclosure or “type-contingent” disclosure.4

Finally, our paper is related with the literature of more general informa-

tion disclosure in game theory. (Committed) information disclosure problems

have been studied in many games. For example, Ganuza and Penalva (2010,

2014) consider auction (with or without reserve price), and show that the

seller does not want to reveal all the information relevant to the bidders.

Morris and Shin (2002) and Angeletos and Pavan (2007) consider coordi-

nation games, and show that too much public information may hurt the

players. Milgrom and Weber (1982) consider a�liated common-value auc-

tion, and show that disclosing a�liated signals increases the seller’s expected

revenue (called the “linkage principle”).5 Kamenica and Gentzkow (2011)

study a general persuasion environment, and characterize the sender’s opti-

mal disclosure strategy. Often in those games, full information disclosure is

suboptimal for the sender (i) because of misaligned preferences of the sender

and receiver, or (ii) even if the sender is benevolent, because of some frictions

in underlying games. Our results say that, if the principal can design the

underlying game so that misalignment or friction is mitigated, then he some-

times finds it optimal to disclose all the relevant information (even though

his preference and the agents’ are not fully aligned), while in other cases, he

still finds full disclosure suboptimal (even though he may be a benevolent

mediator).

The paper is structured as follows. Section 2 introduces a mechanism

design environment, and Section 3 introduces the principal’s problem, mech-

anism design and information disclosure. Section 4 gathers the main results

4See Bergemann and Wambach (2015), Li and Shi (2015), Bergemann et al. (2015) and

and Kolotilin et al. (2015).
5Information is correlated in some of these papers, while independent in our case.

Therefore, direct comparison may be di�cult.
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of the paper. First, in linear environments with no restriction on mone-

tary transfers (e.g., auction of Myerson (1981)), we show that the principal

finds it optimal to fully disclose his information (Section 4.1). However, in

a bilateral-trading environment (Myerson and Satterthwaite (1983)) with a

budget-balance restriction on monetary transfers, full disclosure is subopti-

mal (Section 4.2). Then, a natural next question is characterization of the

second-best information disclosure policy. In Section 4.3, we characterize the

second-best information disclosure policy with uniformly distributed types,

which is a simple censorship policy (Kolotilin et al. (2015)). Section 5 con-

cludes the paper.

2 Mechanism Design with information dis-

closure

There is a set I = {1, . . . , N} of agents. A principal assigns an allocation x 2
X. We can incorporate feasibility constraints on X. For example, in auction

of Myerson (1981), an allocation comprises a probability of giving a good to

each agent i, qi 2 [0, 1], and his payment, pi 2 R. Hence, X = {(qi, pi)Ni=1 2
([0, 1]⇥ R)N |

Pn
i=1 qi  1}. In bilateral trade of Myerson and Satterthwaite

(1983), there are two agents (N = 2), a seller and a buyer, and an allocation

comprises a trade probability between a buyer and a seller as well as the

trading price. Hence, X = {(qi, pi)2i=1 2 ([0, 1] ⇥ R)2|q1 = q2, p1 + p2 = 0}.
In public-good provision of Mailath and Postlewaite (1990), an allocation

comprises a probability that the public good is provided and each agent’s

payment, where the total payment must exceed the cost of the public good

c. Hence, X = {(qi, pi)Ni=1 2 ([0, 1]⇥ R)N |q1 = . . . = qN ,
PN

i=1 pi � c}.
Each agent i 2 I has private information, called his type, denoted by

vi 2 Vi ✓ R. A type profile is denoted by v = (vi)Ni=1. The information the

principal can control its disclosure level is denoted by ✓ 2 ⇥ ✓ Rd. At the ex

ante stage, the principal and agents share a common prior for the variables

(v, ✓) 2 V ⇥ ⇥. We assume that (v1 . . . , vN , ✓) are mutually independently
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distributed,6 denote by Fi the prior distribution of vi, and by F0 the prior

distribution of ✓. Let FV denote the joint prior distribution of v 2 V .

Given an allocation x and realization of random variables (v, ✓), the utility

of each agent i is denoted by ui(x, v, ✓), and the principal’s utility is denoted

by u0(x, v, ✓). Later, we impose more assumptions on their utility functions

when we study optimal mechanism and disclosure policy.

The timing of the game is as follows. First, the principal sends a public

message m 2 M to all the agents, which we call her information disclo-

sure, where M denotes the principal’s (exogenously given) message space.

We assume that M is a su�ciently large7 measurable space. The principal’s

information disclosure strategy is defined as a distributional strategy of Mil-

grom and Weber (1982), i.e., a joint distribution � 2 �(⇥ ⇥ M) such that

the marginal of � over ⇥ coincides with F0.8

Second, after m is publicly observed, the principal designs a direct mech-

anism xm : V ! X. The implicit assumption in this formulation is that the

principal does not have more information about ✓ than the agents (i.e., than

what the public message m reveals).9

Finally, each agent sends a message to the mechanism, and the allocation

is realized.
6Note that we allow for dependence within ✓, if d � 2.
7For example, any M ◆ �(⇥) will do.
8An alternative way is to define a disclosure strategy as a mapping ⇠ : ⇥ ! �(M)

(called a behavioral strategy). Obviously, together with F0 2 �(⇥), ⇠ induces a distribu-

tional strategy. See Milgrom and Weber (1982).
9As we discuss in the introduction, one instance where this assumption may be rea-

sonable is when the principal himself does not have a technology to generate any hard

information about ✓, but there exists a third-party certifier that can generate hard infor-

mation. It should be admitted that we make several simplifying assumptions. Of course,

if a certifier charges a price (or perhaps di↵erent prices for di↵erent certification policies)

then the analysis would be more complicated, which is left as an open question.
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3 Principal’s problem

Because the principal makes a sequential decision of information disclosure

and mechanism design, we first consider the mechanism-design problem.

Because arbitrary posterior may be induced by some information disclo-

sure, we define, for each posterior  2 �(⇥), the optimal mechanism �⇤( )

and the principal’s expected utility under the optimal mechanism, S⇤( ).

Specifically, define

S⇤( ) = sup
x

Z

✓

Z

v

u0(x(v), v, ✓)dFV d 

sub. to

Z

✓

Z

v�i

ui(x(v), v, ✓)dF�i(v�i)d (✓)

�
Z

✓

Z

v�i

ui(x(v
0
i, v�i), v, ✓)dF�i(v�i)d (✓), 8i, vi, v0i, v�i,

Z

✓

Z

v�i

ui(x(v), v, ✓)dF�i(v�i)d (✓) � 0, 8i, vi, v�i,

and define �⇤( ) as a maximizer of this problem (if it exists).

The first constraint corresponds to each agent’s Bayesian incentive com-

patibility condition, and the second constraint is each agent’s interim indi-

vidual rationality or participation condition. Because each agent observes

a public message by the principal, the agent’s expected utility is computed

using his posterior  over ✓.

Next, we consider the information disclosure problem. As is clear in the

previous paragraphs, the posterior distribution induced by the information

disclosure is crucial to determine the agents’ incentives and the optimal mech-

anism. In this respect, the following well-known result in probability theory

is useful in connecting the principal’s distributional strategy and the system

of posteriors.10

Proposition 1. ((Product-)regular-conditional-probability property) Each

� 2 �(⇥⇥M) induces a pair (µ, ( m)m2M) such that (i) µ 2 �(M), (ii)  m 2
10For the proof, see Faden (1985), for example.
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�(⇥) for each m, and (iii)
R
m2B  m(A)dµ = �(A ⇥ B) for each measurable

A ✓ ⇥ and B ✓ M .

µ is the marginal distribution over the public message space M , and for

each realization m 2 M ,  m is the posterior over ⇥. The last condition

implies (by taking B = M)
R
m
 m(A)dµ = F0(A) for each A, i.e., the system

of posterior distributions ( m)m2M must satisfy a martingale property.11

Conversely, given a pair (µ, ( m)m2M) 2 �(M) ⇥ (�(⇥))M such thatR
m
 m(A)dµ = F0(A) for each measurable A ✓ ⇥, there exists a distribu-

tional strategy � that induces (µ, ( m)m2M).12 Therefore, choosing � and

choosing (µ, ( m)m2M) are essentially equivalent. In what follows, we treat

(µ, ( m)m2M) as the principal’s information disclosure strategy because it is

directly related to the system of the posteriors.

The optimal information disclosure problem can be written as follows.

sup
µ,( 

m

)
m2M

Z

m

S⇤( m)dµ(m)

sub. to

Z

m

 m(·)dµ = F0(·).

4 Optimal information disclosure in linear en-

vironments

Applying Jensen’s inequality, optimality of full (no) disclosure is obtained

when S⇤ is convex (concave) and continuous.13 However, those character-

ization results based directly on the shape of S⇤ are not fully satisfactory

11This is called Bayesian plausibility by Kamenica and Gentzkow (2011).
12The proof idea is as follows. For each measurable A ✓ ⇥ and B ✓ M , define �(A ⇥

B) =
R
m2B

 m(A)dµ. Then we can show that � is a probability distribution on ⇥ ⇥M ,

and moreover, its marginal on ⇥ is F0. This means that � is a distributional strategy.
13If �(⇥) is finite-dimensional (e.g, ⇥ is finite), then convexity (concavity) of S⇤ implies

its continuity. However, if �(⇥) is infinite-dimensional, it is no longer the case, and for a

convex but discontinuous S⇤, Jensen’s inequality may not hold. See, for example, Perlman

(1974).
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in our environment where S⇤ is an endogenous variable. To obtain fuller

characterization of the optimal information disclosure strategy based on the

conditions on the mechanism design environment, in this section, we consider

the following simple class of environments.

An allocation is x = (qi, pi)i2N 2 X ✓ R2N , where qi 2 R is a decision

variable that is payo↵-relevant to agent i, and pi 2 R is a monetary transfer

from agent i.

Each agent i’s utility is ui(x, v, ✓) = qiyi(vi, ✓) � pi, and the principal’s

utility is u0(q, v, ✓) = y0(q, v, ✓) +
PN

i=1 pi, where y0, yi are continuous in

all their arguments, and @y
i

@v
i

> 0. Hence, we assume (i) quasilinearity in

monetary transfer for every party, (ii) linearity in the decision variable qi for

each agent i, (iii) private values for each i, and (iv) increasing di↵erence in

(qi, vi) for each i.

We believe that many economically important environments are in this

class. For example, the auction, bilateral trade, and public good environ-

ments briefly discussed in the previous section are all in this class, by restrict-

ing X appropriately. Later, we also discuss to what extent these assumptions

could be weakened.

4.1 Optimality of full disclosure

Throughout this section, we assume that monetary transfers are not re-

stricted, i.e., the feasible allocation set satisfies

X = {(qi, pi)Ni=1|q = (qi)
N
i=1 2 Q, pi 2 R, 8i},

for some Q ✓ [0, 1]N . For example, auction environments as in Myerson

(1981) satisfy this condition, but a balanced-budget bilateral trade as in

Myerson and Satterthwaite (1983) or a public-good provision as in Mailath

and Postlewaite (1990) do not.

We further assume that each Fj, j = 0, 1, . . . , N has a continuous and

full-support density fj.

We show that full disclosure of ✓ is optimal for the principal.

11



Definition 1. An information-disclosure strategy (µ, ( m)m2M) exhibits full

disclosure if, for each m 2 M ,  m is degenerated, i.e.,  m({✓}) = 1 for some

✓ 2 ⇥.

Theorem 1. An optimal information-disclosure strategy exhibits full disclo-

sure.

Proof. It su�ces to show that S⇤( ) is convex and continuous in  , because

then, given any information disclosure strategy (µ, ( m)m2M), Jensen’s in-

equality implies S⇤( m) 
R
✓
S⇤(�✓)d m where �✓ is a Dirac distribution on

✓ (i.e., �✓({✓}) = 1), which further implies
Z

m

S⇤( m)dµ(m) 
Z

m

Z

✓

S⇤(�✓)d mdµ(m)

=

Z

✓

S⇤(�✓)dF0.

We first show S⇤ is convex. By the standard procedure in mechanism

design (e.g., see Myerson (1981)), the maximization problem for S⇤( ) can

be expressed as a virtual-surplus maximization problem subject to certain

monotonicity constraints.

Lemma 1.

S⇤( ) = sup
q

Z

✓

Z

v

NX

j=0

�j(q(v), v, ✓)dFV d 

sub. to Ev�i

[qi(vi, v�i)]  Ev�i

[qi(v
0
i, v�i)], 8i, v�i, vi < v0i,

where �0(q, v, ✓) = y0(q, v, ✓), �i(q, v, ✓) = qi[yi(vi, ✓) � @y
i

@v
i

(vi, ✓)
1�F

i

(v
i

)
f
i

(v
i

) ] for

each i = 1, . . . , N , are the principal’s and each agent’s virtual value, respec-

tively.

We omit the proof of this standard result.

For each q : [0, 1]N ! Q that satisfies the monotonicity constraints above,

let

S(q, ) =

Z

✓

Z

v

NX

j=0

�j(q(v), v, ✓)dFV d 
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denote the objective of the problem. Recall that S⇤( ) = S(�⇤( ), ).

Fix arbitrary  , 0 2 �(⇥) and ↵ 2 (0, 1). Let  00 = ↵ + (1 � ↵) 0.

Because �⇤( 00) satisfies the monotonicity constraints above, we have

↵S(�⇤( ), ) � ↵S(�⇤( 00), ),

(1� ↵)S(�⇤( 0), 0) � (1� ↵)S(�⇤( 00), 0),

and therefore,

↵S⇤( ) + (1� ↵)S⇤( 0) � ↵S(�⇤( 00), ) + (1� ↵)S(�⇤( 00), 0)

= S(�⇤( 00), 00)

= S⇤( 00),

where the first equality is because of linearity of S(q, ) in  . Therefore,

S⇤( ) is convex in  .

Next, we show S⇤ is continuous. Let  denote the set of all finite signed

measures on ⇥. Endowed with a total variation norm and its induced topol-

ogy,  is a topological vector space. Let  1 ✓  denote the set of all signed

measures with norm 1. Then, �(⇥) ✓  1.

For each  2  , define S(q, ) the same way as above. For each given q,

S(q, ) is homogeneous of degree one with respect to  . Hence, for  6= 0,

we have S(q, ) = k kS(q,  
k k), which implies �⇤( ) = �⇤(  

k k) (if it exists)

and S⇤( ) = k kS⇤(  
k k).

Obviously, S⇤(  
k k) is finite, and therefore, S⇤( ) is finite too. Also, S⇤( )

is convex, as explained in the previous paragraph. Those imply that S⇤( )

is continuous on  (and hence on �(⇥)).14

The proof exploits the simple property that a value function (S⇤( )) is

convex in a parameter ( ) if the feasible set (the set of all monotonic q) does

not vary with this parameter.

To provide some economic intuition for the result, observe that there are

two channels where information disclosure a↵ects implementable allocation

14See Aliprantis and Border (2006) (p.188, Theorem 5.42).
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rules. First, more disclosure implies more flexibility in the mechanism. In

its extreme, q can vary with ✓ under full disclosure, while q must be con-

stant in ✓ under no disclosure. This first e↵ect makes the principal favor

more disclosure. Second, more disclosure implies (weakly) tighter incentive

constraints. Again in its extreme, truth-telling must be optimal given every

possible realization ✓ under full disclosure, while truth-telling needs to be

optimal only “in expectation” under no disclosure. Because of this, either

expected information rent may be higher or implementable allocation rules

may be smaller under full disclosure (than under less disclosure). Hence, this

second e↵ect makes the principal favor less disclosure.

However, in the current environment, the second e↵ect is null. Because

every player (in particular, the principal) has a quasilinear payo↵, the ex-

pected information rent is linear in  , and in this sense, more disclosure

does not imply strictly tighter incentive constraints. Therefore, only the first

e↵ect exists, leading to optimality of full disclosure.

Remark 1. The assumptions of linearity and private values can be weakened

to some extent (though not completely dispensable). We briefly see that

the same result is obtained if either (i) ui(x, v, ✓) = xi(q, v�i)yi(vi, ✓), (ii)

ui(x, v, ✓) = xi(q, v�i, ✓)yi(vi), or (iii) ui(x, v, ✓) = xi(q, v)yi(✓). Case (i) is a

direct generalization of the one used in this section, allowing for externalities

in q and interdependence, as long as those are multiplicably separated from

yi(vi, ✓). Either vi or ✓ (but not both) can be moved into xi instead of yi,

leading to Case (ii) or (iii).

For (i), agent i’s incentive compatibility is equivalent to combination of

(a) (interim) monotonocity:

Ev�i

[xi(q(vi, v�i), v�i)] is nondecreasing in vi,
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and (b) envelope formula:

Ev�i

,✓[xi(q(v), v�i)yi(vi, ✓)� pi(v)]

= Ev�i

,✓[xi(q(0, v�i), v�i)yi(vi, ✓)� pi(0, v�i)]

+

Z v
i

0

Ev�i

[xi(q(0, v�i), v�i)
@yi
@vi

(ṽi, ✓)]dṽi,

where expectation with respect to ✓ is based on a posterior  .

Therefore, the set of implementable q does not vary with  and the in-

formation rent is linear in  , which implies optimality of full disclosure. We

omit the other cases (ii) and (iii).

Remark 2. Although this paper only considers Bayesian incentive compat-

ibility, the same sort of exercise is possible for other solution concepts, and

the optimal disclosure strategy naturally varies with the underlying solution

concept. For example, we may consider ex post incentive compatibility with

respect to the agents’ types, i.e., each agent i finds truth-telling optimal re-

gardless of the other agents’ type realization, v�i. On the other hand, we

still keep the assumption that the principal has a full control over disclosure

of ✓ and can design the agents’ posterior about ✓.

To provide a more concrete idea, consider an interdependent-value auction

environment where each i’s utility is qiyi(v, ✓) � pi with
@y

i

@v
i

> 0. Then, ex

post incentive compatibility (with respect to v) means, for each i, vi, v
0
i, v�i,

qi(vi, v�i)E✓[yi(vi, v�i, ✓)]� pi(vi, v�i) � qi(v
0
i, v�i)E✓[yi(vi, v�i, ✓)]� pi(v

0
i, v�i),

where expectation with respect to ✓ is based on a posterior  .

Again, this is equivalent to combination of (a) ex post monotonicity:

qi(vi, v�i) is nondecreasing in vi,

and (b) envelope formula:

qi(v)E✓[yi(v, ✓)]� pi(v)

= qi(0, v�i)E✓[yi(0, v�i, ✓)]� pi(0, v�i)

+

Z v
i

0

qi(ṽi, v�i)E✓[
@yi(ṽi, v�i, ✓)

@vi
]dṽi.
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Therefore, the set of implementable q does not vary with  and the in-

formation rent is linear in  , which implies optimality of full disclosure.

4.2 Suboptimality of full disclosure

As discussed in the last section, the property that the set of implementable

q does not vary with  is crucial for the convexity of S⇤ (and hence for

optimaility of full disclosure).

In this section, we observe that the feasible set varies with  in balanced-

budget bilateral trading. This is because the budget balance condition con-

strains the agents’ total expected information rents, an expression that varies

with  . In this environment, we show that full disclosure is suboptimal. More

specifically, there exists a subset of ⇥ where the principal prefers not to reveal

its realization.

Following Myerson and Satterthwaite (1983), we assume that there are

two agents, a seller (i = 1) and a buyer (i = 2). For each i = 1, 2, Fi

has a density fi such that fi(vi) 2 [d1, d2] for some 0 < d1  d2 < 1.

For ✓, we assume that F0 has a full-support density f0 on ⇥ = (a, b) ✓ R
with a < 1 < b. The seller’s payo↵ is �v1q1 � p1 and the buyer’s payo↵ is

(v2 + ✓)q2 � p2, where q1 = q2 2 [0, 1] is the trade probability and pi 2 R is

the monetary transfer from i. Hence, higher ✓ means that trade between the

seller and buyer is more socially desirable.15 The budget balance condition

requires that p1 + p2 � 0.16 Therefore, the feasible allocation set is given by

X = {(qi, pi)2i=1 2 [0, 1]2 ⇥ R2|q1 = q2, p1 + p2 � 0}.

The principal’s objective is the trade surplus, (v2+✓�v1)q, as in Myerson

and Satterthwaite (1983). Then, the value function for the principal given

15Although ✓ only enters into the buyer’s payo↵ here, we obtain the same result as long

as the total surplus is (v2+✓�v1)q, i.e., it does not matter whose payo↵ function ✓ appears

in.
16This is also called a “no-deficit” condition. In the optimal mechanism, the constraint

binds with equality anyway.
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any posterior  is S⇤( ), where

S⇤( ) = sup
(q,p1,p2):[0,1]2!X

Z

✓

Z

v

(v2 + ✓ � v1)q(v)dFV d 

sub. to

Z

✓

Z

v2

�v1q(v)� p1(v)dF2(v2)d (✓)

� max

⇢
0,

Z

✓

Z

v2

�v1q(v
0
1, v2)� p1(v

0
1, v2)dF2(v2)d (✓)

�
, 8v1, v01, v2,

Z

✓

Z

v1

v2q(v)� p2(v)dF1(v1)d (✓)

� max

⇢
0,

Z

✓

Z

v1

v2q(v1, v
0
2)� p2(v1, v

0
2)dF1(v1)d (✓)

�
, 8v1, v2, v02,

p1(v) + p2(v) � 0, 8v.

Again, with the standard machinery based on an envelope theorem and

integration by parts, we obtain

S⇤( )  sup
q:[0,1]2![0,1]

Z

v

(v2 + E ✓ � v1)q(v)dFV

sub. to

Z

v

(v2 + E (✓)� v1 �
1� F2(v2)

f2(v2)
� F1(v1)

f1(v1)
)q(v)dFV � 0,

where E (✓) =
R
✓
✓d . We denote the value of the right hand side by

S⇤⇤(E (✓)), to make it explicit that the value varies with E (✓) (but not

with the other moments of  ). The inequality is because (i) the ex post

budget balance condition is replaced by the interim one, and (ii) the mono-

tonicity condition is ignored. However, as in the standard argument, this

holds with equality as long as each Fi has a monotone hazard rate: through-

out this section, we assume that 1�F2(v2)
f2(v2)

is decreasing in v2, and
F1(v1)
f1(v1)

is

increasing in v1.

The key di↵erence of this problem from the one in the previous subsection

is that the constraint now varies with  . Therefore, the proof in the previous

section does not apply. Indeed, we show that the principal’s value function

S⇤( ) is not convex, implying that the principal rather prefers to hide some

realization of ✓.
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Theorem 2. Full disclosure is suboptimal.

Proof. First, consider any  such that E (✓) � 1. In this case, regardless

of the agents’ values v, making them trade is always e�cient (with p2(v) =

1 = �p1(v) so that both participation and budget-balance constraints are

satisfied). Therefore, we obtain

S⇤⇤(E (✓)) = S⇤( ) = E(v2 � v1) + E (✓).

Similarly, for any  such that E (✓) < �1, regardless of the agents’ values

v, making them trade is always ine�cient. Therefore, we obtain

S⇤⇤(E (✓)) = 0.

Next, fix arbitrary x 2 (�1, 1). The following lemma is crucial, whose

proof is in the appendix.

Lemma 2. There exist " > 0 and a continuous function z : (0, ") ! R++

such that, for " 2 (0, "), S⇤⇤(1� ")  E(v2 + 1� "� v1)� z(1� ").

Because F0 has a support around ✓ = 1, there exists "̃ > 0 such that

EF0(✓|✓ 2 (1� ", 1+ "̃)) = 1. Consider the following disclosure strategy: the

principal announces m = ✓ if ✓ /2 (1 � "2, 1 + "3), and announces m = 1 if

✓ 2 (1 � "2, 1 + "3). Conditional on ✓ 2 (1 � "2, 1 + "3) (which occurs with

a positive probability since F0 has a full-support), this disclosure strategy

achieves expected surplus E(v2 + 1� v1), which is strictly higher than

EF0(S
⇤⇤(✓)|✓ 2 (1� "2, 1 + "3)) =

Z 1+"̃

1�"

E(v2 + 1� v1)� z(✓)

F0(✓ 2 (1� ", 1 + "̃)
dF0

= E(v2 + 1� v1)�
Z 1+"̃

1�"

z(✓)

F0(✓ 2 (1� ", 1 + "̃)
dF0

< E(v2 + 1� v1).

Therefore, full disclosure is suboptimal.
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4.3 Second-best disclosure strategy

Given the previous result, a natural next step is characterization of the

second-best disclosure strategy. It is out of the scope of the paper to pro-

vide such characterization in a general setting. Instead, in this section, we

provide the optimal disclosure strategy when each Fi is a uniform distribu-

tions on [0, 1]. As in the previous section, we assume ⇥ = (a, b) ✓ R with

a < 1 < b, and F0 2 �(⇥) admits a full-support density f0. Because the

support is around ✓ = 1, as we show in the previous section, full disclosure

is suboptimal. We first examine the shape of S⇤⇤ more fully.

Lemma 3. dS⇤⇤

dx
exists and continuous for all x. d2S⇤⇤

dx2 exists and continuous

for all x 6= 1. More specifically, there exists x̂ 2 (13 , 1) such that

d2S⇤⇤

dx2

8
><

>:

� 0 if x < x̂,

< 0 if x 2 (x̂, 1),

= 0 if x > 1,

The last part of the lemma says that S⇤⇤ is convex on (�1, x̂) and concave

on (x̂,1). The proof is in the appendix.

With this simple cuto↵ structure, we obtain the following simple optimal

disclosure policy.

Proposition 2. There exists x⇤ 2 [a, x̂] such that the following disclosure

strategy is optimal: fully disclose the realized ✓ if ✓  x⇤, and not (at all)

disclose it if ✓ > x⇤.

This strategy is sometimes called (upper) censoring (Kolotilin et al. (2015)).

Given this disclosure strategy, if ✓  x⇤, then the conditional expected value

of ✓ is ✓ itself, while if ✓ > x⇤, then it is always x⇤⇤ ⌘
R
b

x

⇤ ✓dF0

1�F0(x⇤) . Hence, letting

G⇤(x) =

8
>>>><

>>>>:

0 if x < a,

F0(x) if x 2 [a, x⇤),

F0(x⇤) if x 2 [x⇤,
R
b

x

⇤ ✓dF0

1�F0(x⇤)),

1 if x �
R
b

x

⇤ ✓dF0

1�F0(x⇤) ,
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be the cdf of the agents’ posterior mean of ✓, the (ex ante) expected surplus

is
R
x
S⇤⇤(x)dG⇤(x).

Within this class of upper-censoring disclosure strategies, it is straightfor-

ward to find the optimal one because each policy in this class is identified by

a single parameter x⇤. We now show that, in fact, the upper-censoring disclo-

sure strategy with optimally chosen x⇤ is optimal among all (not necessarily

upper-censoring) disclosure strategies.

In what follows, we provide the main idea of the proof. The formal proof

is in the appendix. Fix an arbitrary disclosure strategy (µ, ( m)m2M). Given

each message m, ✓’s posterior mean is given by x = E(✓|m) =
R
✓
✓d m. Let

G denote the (ex ante) cdf of this x. Observing m with E(✓|m) = x, it is

possible that realized ✓ is di↵erent from x, but it must be (conditionally on

x) distributed with mean x. In other words, F0, the (ex ante) distribution of

✓, is second-order stochastically dominated by G, while they have the same

(ex ante) expected value.

Thus, we consider the following problem to identify the second-best policy.

sup
G

V =

Z b

a

S⇤⇤(x)dG(x)

sub. to G is non-decreasing, right-continuous,

G(a) = 0, G(b) = 1,
Z b

a

xdG(x) =

Z b

a

xdF0(x) (,
Z b

a

G(y)dy 
Z b

a

F0(y)dy),
Z x

a

G(y)dy 
Z x

a

F0(y)dy, 8x,

where the constraints in the first line say that G is a cdf on (a, b), the con-

straint in the second line says that G and F0 have the same (ex ante) expected

value, and the last constraint says that G second-order stochastically domi-

nates F0.

Let H(x) =
R x

a
G(y)dy and H0(x) =

R x

a
F0(y)dy. Then H is convex

and continuously di↵erentiable, and H0 is strictly convex and continuously
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di↵erentiable. By integration by parts,17

V = S⇤⇤(b)�
Z b

a

dS⇤⇤(x)

dx
dH(x),

and hence, the same problem can be rewritten as follows.

sup
H

V = S⇤⇤(b)�
Z b

a

dS⇤⇤(x)

dx
dH(x)

sub. to H is convex, continuously di↵erentiable,

H 0(a) = 0, H 0(b) = 1,

H(a) = 0, H(b) = H0(b),

H(x)  H0(x), 8x.

In what follows, we assume that S⇤⇤ is twice continuously di↵erentiable

so that we can further rewrite

V = S⇤⇤(b)� dS⇤⇤(b)

dx
H0(b) +

Z b

a

d2S⇤⇤(x)

dx2
H(x)dx.

In fact, in the current case, dS⇤⇤(b)
dx

is not continuously di↵erentiable at

x = 1, and hence the following argument is not valid. However, the main

idea can still be delivered. See the appendix for the formal proof.

Fix ĥ 2 R, and we characterize H such that H(x̂) = ĥ and maximize
d2S⇤⇤(x)

dx2 H(x)dx. By the constraints on feasibleH, we must have (i) ĥ  H0(x̂)

because H(x̂)  H0(x̂), (ii) ĥ � 0 because H(x̂) � H(a) +H 0(a)(x̂� a) = 0

by convexity, and (iii) ĥ � H0(b)� b+ x̂ because H(x) � H(b)�H 0(b)(b� x̂)

again by convexity. Thus, we fix an arbitrary ĥ 2 [max{H0(0, H0(b) � b +

x̂}, H0(x̂)].18

We now introduce x⇤ and x⇤⇤.
17Integration by parts can be applied here because S⇤⇤(x) and G(x) are non-decreasing

and bounded.
18The interval is nonempty because H0(x̂) � 0 and H0(x̂) � (H0(b) � b + x̂) = (b �

x̂)
⇣
1� H0(b)�H0(x̂)

b�x̂

⌘
� 0 by convexity of H0.
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Let x⇤ 2 [a, x̂] be the point such that the line that takes ĥ at x = x̂ and

takes H0(x⇤) at x = x⇤ supports H0 from below. Formally, define x⇤ so that,

if ĥ = H0(x̂), then x⇤ = x̂; otherwise, x⇤ = argmaxx2[a,x̂)
ĥ�H0(x)

x̂�x
.19

The slope of this tangent line is H 0
0(x

⇤) < 1, and thus, it crosses with

another tangent line that takes H0(b) at x = b and has slope one. Let

x⇤⇤ 2 [x̂, b) be this cross point. Formally, define x⇤⇤ as the solution x of the

following equation:

ĥ+ (x� x̂)H 0
0(x

⇤) = H0(b) + (x� b) · 1,

or equivalently,

x⇤⇤ =
ĥ�H0(b) + b� x̂H 0

0(x
⇤)

1�H 0
0(x

⇤)
=

R b

x⇤ ydF0(y)

1� F0(x⇤)
,

where the second equality is because ĥ = H0(x⇤) + (x̂� x⇤)H 0
0(x

⇤).

Consider maximization of
R b

a
d2S⇤⇤(x)

dx2 H(x)dx subject to (i) H(x)  H0(x)

for x 2 [a, x⇤], (ii) H(x)  ĥ + (x � x̂)H 0
0(x

⇤) for x 2 (x⇤, x̂), (iii) H(x) �
ĥ+(x�x̂)H 0

0(x
⇤) for x 2 (x̂, x⇤⇤], and (iv)H(x) � H0(b)+x�b for x 2 (x⇤⇤, b].

This is a relaxed problem of the original one in the sense that every feasible

H must satisfy all the constraints (i)-(iv).20

Because d2S⇤⇤(x)
dx2 � 0 for x 2 [a, x̂) and d2S⇤⇤(x)

dx2  0 for x 2 (x̂, b], we can

maximize
R b

a
d2S⇤⇤(x)

dx2 H(x)dx by making all the constraints (i)-(iv) binding.

Therefore, the solution H⇤ satisfies

H⇤(x) =

8
><

>:

H0(x) if x 2 [a, x⇤],

ĥ+ (x� x̂)H 0
0(x

⇤) if x 2 (x⇤, x⇤⇤),

H0(b) + x� b if x 2 (x⇤⇤, b].

By di↵erentiating H⇤, we obtain the cdf of x, G⇤(x), as defined right after

the statement of the proposition.

19If ĥ < H0(x̂), then ĥ�H0(x)
x̂�x ! �1 as x " x̂, and thus, maxx2[a,hatx)

ĥ�H0(x)
x̂�x is

well-defined. The uniqueness of the maximizer is because H0 is strictly convex.
20(i) is trivial. (ii) and (iii) are implied by convexity of H and H(x̂) = ĥ. (iv) is implied

by convexity of H, H(b) = H0(b) and H 0(b) = 1.
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Remark 3. Although our formal result focuses on the case where S⇤⇤ has a

unique inflection point x̂, as suggested by the argument above, it is conceptu-

ally straightforward to extend our result to arbitrary S⇤⇤ which are twice con-

tinuously di↵erentiable and have finitely many inflection points (e.g., when

S⇤⇤ is a polynomial function). In such a case, we first fix H(x̂k) for each

inflection point x̂k, apply the argument above to reduce the original infinite-

dimensional problem to a finite-dimensional one, and then apply standard

techniques such as first-order conditions.

5 Conclusion

This paper considers mechanism design environments where a principal has

some information relevant to agents. As opposed to the standard “informed

principal” approach with no commitment as to the principal’s information

disclosure, we consider fully committed public information disclosure by the

principal, implying more tractability and hence wider applicability. In linear

environments with no restriction on monetary transfers (e.g., auction of My-

erson (1981)), we show that the principal finds it optimal to fully disclose his

information. With a budget-balance restriction on monetary transfers (e.g.,

bilateral trading of Myerson and Satterthwaite (1983)), full disclosure may

be suboptimal. In a bilateral-trading environment with uniformly distributed

types, I characterize the second-best information disclosure policy, which is a

simple censoring policy. The technique developed for this second-best char-

acterization may be useful to tractably analyze general Bayesian persuasion

problems with continuous state spaces.
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A Proof of Lemma 2

The Lagrangian of the problem of S⇤⇤(x) is

Z

v

(v2 + x� v1 + �[v2 + x� v1 �
1� F2(v2)

f2(v2)
� F1(v1)

f1(v1)
])q(v)dFV .

Given any � � 0, the pointwise maximization of the Lagrangian yields

q(v) = 1 if

(v2 + x� v1)(1 + �) � (
1� F2(v2)

f2(v2)
+

F1(v1)

f1(v1)
)�,

and q(v) = 0 otherwise.

Note that such q satisfies the monotonicity (i.e., nonincreasing in v1

and nondecreasing in v2) because of the monotone hazard rate assumption.

Therefore, the optimal q is determined by identifying the smallest � such

that the constraint is satisfied, which we denote by �(x). As shown by My-

erson and Satterthwaite (1983), �(x) > 0 for x 2 (�1, 1). Obviously, � is

decreasing in x.

Lemma 4. limx"1 �(x) = 0.

Proof. (of the lemma) Suppose not, and let �⇤ = limx"1 �(x) > 0. Then

limx"1 S
⇤⇤(x) < S⇤⇤(1).

Consider a (monotone) trading rule such that q(v) = 1 if and only if

(v2 + x� v1)(1 + �) � (
1� F2(v2)

f2(v2)
+

F1(v1)

f1(v1)
)�,

for � = �⇤

2 . By continuity of the budget surplus, v2+x�v1� 1�F2(v2)
f2(v2)

� F1(v1)
f1(v1)

,

there exists x < 1 such that this trading rule (with x = x) does not violate

the budget-balance constraint. Because �(x) � �⇤ > �⇤

2 , S
⇤⇤(x) is strictly

less than the expected surplus given this trading rule (with x = x), which is

a contradiction.
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Let �(x) be the supremum value of v1 such that q(v1, 0) = 1 given �(x),

and �(x) be the supremum value of v1 such that q(v1, 1) = 1 given �(x). The

lemma implies that there exists "1 > 0 such that �(x) > 0 and �(x) = 1 for

any x 2 (1� "1, 1). In the following, x is always taken in this range.

For each v1, let ↵(v1, x) be the infimum value of v2 such that q(v1, v2) = 1.

By setting

↵(v1, x) = v1 � x+
�(x)

1 + �(x)

F1(�(1� "1))

d2
,

↵(v1, x) = v1 � x+
�(x)

1 + �(x)

2

d1
,

we have

↵(v1, x) = v1 � x+
�(x)

1 + �(x)
(
F1(v1)

f1(v1)
+

1� F2(↵(v1, x))

f2(↵(v1, x))
)

2 [↵(v1, x),↵(v1, x)].

Similarly, by setting

�(x) = x� �(x)

1 + �(x)

2

d1
,

�(x) = x� �(x)

1 + �(x)

F1(�(1� "1))

d2
,

we have

�(x) = x� �(x)

1 + �(x)
(
F1(�(x))

f1(�(x))
+

1

f2(0)
)

2 [�(x), �(x)].

For the constraint, let B(v, x) = v2 + x� v1 � F1(v1)
f1(v1)

� 1�F2(v2)
f2(v2)

. Let x be

su�ciently small so that B(v, x) < 0 at v = (�(x),↵(1, x)). This is possible
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because B is continuous in (v, x) and B((0, 1), 1) < 0. Then,

0 
Z 1

�(x)

Z 1

↵(v1,x)

B(v, x)dF +

Z �(x)

0

Z 1

0

B(v, x)dF

= x� 1 +

Z 1

�(x)

Z ↵(v1,x)

0

(�B(v, x))dF

 x� 1 +

Z 1

�(x)

Z ↵(v1,x)

0

(�B((1, 0), x))dF

 x� 1 +

Z 1

�(x)

Z ↵(v1,x)

0

(�x+ 1 +
2

d1
))d22dv

 x� 1 + (1� x+
�(x)

1 + �(x)

2

d1
)2(1� x+

2

d1
))d22,

where the equality is because
R 1

0

R 1

0 B(v, 1)dF = 0, the second inequality is

because �B is increasing in (v1,�v2), and the last inequality is because B

is negative for all v � (�(x),↵(1, x)).

Let y =
p
1� x 2 (0,

p
"1). The inequality above implies that

�(x)

1 + �(x)
� d1y

2d2

s
d1

2 + d1y2
� d1y

2

2
,

which further implies that

�  1� y2 � F1(�(1� "1))

d2
(
d1y

2d2

s
d1

2 + d1y2
� d1y

2

2
)

 1� F1(�(1� "1))d1
2d22

r
d1

2 + d1"1
y

= 1� �y,

↵(v1, x) � v1 � 1 + �y

where � ⌘ F1(�(1�"1))d1
2d22

q
d1

2+d1"1
. In the following, y is taken so that y  �

(which is satisfied if x is taken su�ciently close to one), or equivalently,

1� �y  1� y2 = x.
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Now,

E(v2 + x� v1)� S⇤⇤(x) �
Z 1

�(x)

Z ↵(v1,x)

0

(v2 + 1� y2 � v1)dF

�
Z 1

1��y

Z v1�1+�y

0

(v2 + 1� y2 � v1)dF,

where we denote the last term (on RHS) by h(y). It is strictly positive if y

is su�ciently close to but greater than 0 (or equivalently, if x is su�ciently

close to but smaller than 1), because by Taylor expansion,

h(y) = h(0) + h0(0)y +
1

2
h00(0)y2 +

1

6
h000(0)y3 + o(y3)

=
1

6
�3f1(1)f2(0)y

3 + o(y3).

By continuity of h, there exists y > 0 such that, for any y 2 (0, y), h(y) >

0. Therefore, we complete the proof by letting " = y2 and z(x) = h(1�y2)
2 .

B Proof of Lemma 3

Given that v follows an independent uniform distribution on [0, 1], the second-

best trading rule satisfies q(v) = 1 if

(v2 + x� v1)(1 + �(x)) � (1� v2 + v1)�(x)

, v2 + x� v1 �
(1 + x)�(x)

1 + 2�(x)
⌘ ⌘(x),

where �(x) is the Lagrange multiplier of the problem of S⇤⇤(x), and q(v) = 0

otherwise. The first-best e�ciency is achieved if and only if ⌘(x) = 0, and

the size of ⌘(x) represents ine�ciency of the second-best trading.

We first characterize ⌘(x) for each x 2 R. By Myerson and Satterthwaite

(1983), ⌘(x) = 0 if and only if x  �1 or x � 1 (called the “gap” cases),

where the first-best e�ciency is achieved by a simple posted-price mechanism,

implying S⇤⇤(x) = 0 for x  �1 and S⇤⇤(x) = E[v2 + x� v1] = x for x � 1.
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Thus, in the following, we consider the other case with x 2 (�1, 1), where

⌘(x) must be strictly positive.

Recall that �(x) (and hence ⌘(x)) is determined to satisfy the budget-

balance constraint with equality. Given arbitrarily given ⌘ > 0, consider a

trading rule such that q(v) = 1 if v2 + x � v1 � ⌘, and q(v) = 0 otherwise.

The budget surplus is then

B(x, ⌘) =

Z

v

(2v2 � 2v1 + x� 1)q(v)dF (v)

=

8
><

>:

0 if ⌘ � 1 + x,

(1 + x� ⌘)2(1+x�⌘
3 � 1+x�2⌘

2 ) if ⌘ 2 [x, 1 + x),

x� 1 + (1�x+⌘)2(5+x�4⌘)
6 if ⌘ 2 (0, x).

With respect to ⌘, B is continuously di↵erentiable and single-crossing.

We have

⌘(x) R x , B(x, x) Q 0 , x Q 1

3
.

Case (I): x 2 (�1, 13).

In this case, we have

(1 + x� ⌘(x))2(
1 + x� ⌘(x)

3
� 1 + x� 2⌘(x)

2
) = 0,

and hence, ⌘(x) = 1+x
4 .

We obtain S⇤⇤(x) = 9(1+x)3

64 , and therefore, S⇤⇤(x) is convex in this re-

gion. dS⇤⇤(x)
dx

and d2S⇤⇤(x)
dx2 exist and continuous in this region, and moreover,

limx#�1
dS⇤⇤(x)

dx
= limx#�1

d2S⇤⇤(x)
dx2 = 0, and hence, dS⇤⇤(x)

dx
and d2S⇤⇤(x)

dx2 are con-

tinuous at x = 0 too. At the other extreme point, limx" 1
3

dS⇤⇤(x)
dx

= 3
4 and

limx" 1
3

d2S⇤⇤(x)
dx2 = 9

8 .

Case (II): x 2 (13 , 1).

In this case, we have

x� 1 +
(1� x+ ⌘(x))2(5 + x� 4⌘(x))

6
= 0,

and hence, we do not have a closed-form expression for ⌘(x).
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To simplify the expression, let z(x) = 1 � x + ⌘(x) 2 (0, 1). Then the

budget-balance condition becomes

x =
9z(x)2 � 4z(x)3 � 6

3z(x)2 � 6
.

By the implicit function theorem, we have

z0(x) =
�3(2� z(x)2)2

4(z(x)4 � 6z(x)2 + 6z(x))
< 0,

z00(x) =
�9(2� z(x)2)3

8(z(x)4 � 6z(x)2 + 6z(x))3
(�2z(x)3 + 9z(x)2 � 12z(x) + 6) < 0,

z000(x) =
�27(2� z(x)2)4

32(z(x)4 � 6z(x)2 + 6z(x))5
6(1� z(x))2(z(x)4(2� z(x))2 + 24(1� z(x))2 + 12) < 0.

The expected social surplus is

S⇤⇤(x) =

Z 1

v1=0

Z 1

v2=0

v2 + x� v1dv �
Z 1

v1=1�z(x)

Z v1�(1�z(x))

v2=0

v2 + x� v1dv

= x� z(x)2(z(x) + x� 1)

2
+

z(x)3

6
,

and thus, under the budget-balance condition,

S⇤⇤(x) =
9z(x)2 � 4z(x)3 � 6

3z(x)2 � 6
� z(x)2(z(x) + x� 1)

2
+

z(x)3

6

=
z(x)3

6
� z(x)2 + 1.

To examine the shape of S⇤⇤, let T (z) = z3

6 � z2 + 1 for z 2 (0, 1). Then,

T 0(z) = z2 � 2z, T 00(z) = 2z � 2, T 000(z) = 2, and

dS⇤⇤(x)

dx
= T 0(z(x))z0(x),

d2S⇤⇤(x)

dx2
= T 00(z(x))(z0(x))2 + T 0(z(x))z00(x),

d3S⇤⇤(x)

dx3
= T 000(z(x))(z0(x))3 + 3T 00(z(x))z0(x)z00(x) + T 0(z(x))z000(x).
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Hence, limx# 1
3

dS⇤⇤(x)
dx

= 3
4 , limx"1

dS⇤⇤(x)
dx

= 1, limx# 1
3

d2S⇤⇤(x)
dx2 = 9

8 , and

limx"1
d2S⇤⇤(x)

dx2 = �1. Therefore, dS⇤⇤(x)
dx

exists and continuous for x 2 [13 , 1].
dS⇤⇤(x)

dx
exists and continuous for x 2 [13 , 1), but d2S⇤⇤(1�0)

dx2 = �1 6= 0 =
d2S⇤⇤(1+0)

dx2 .

Finally, observe that

d3S⇤⇤(x)

dx3
= T 000(z(x))(z0(x))3 + 3T 00(z(x))z0(x)z00(x) + T 0(z(x))z000(x)

=
�27(2� z(x)2)4z(x)2

32(z(x)4 � 6z(x)2 + 6z(x))5
[1 +

(1� z(x))(71(1� 2z(x))2 + 67z(x) + 579z(x)2(1� z(x))2

+z(x)3(401� 217z(x)2 � 9z(x)3 � z(x)5 � z(x)6) + 44z(x)4 + 21z(x)7)]

< 0,

which means that there exists a unique x̂ 2 (13 , 1) such that

d2S⇤⇤(x)

dx2
Q 0 , x R x̂.

C Proof of Proposition 2

As discussed before, if dS⇤⇤(x)
dx

is continuously di↵erentiable, then we can apply

integration by parts one more time and then prove the proposition. However,
dS⇤⇤(x)

dx
is not continuously di↵erentiable at x = 1. Therefore, we first consider

a function that is twice continuously di↵erentiable and approximate S⇤⇤.

Fix arbitrary " 2 (0, 1� x̂). By definition of x̂, d2S⇤⇤(x)
dx2 < 0 for x 2 (x̂, 1)

and hence dS⇤⇤(x)
dx

is decreasing for x 2 (x̂, 1). Let v" : (a, b) ! R be a twice-

continuously-di↵erentiable function such that its second derivative v00" (x) is

continuous and satisfies

v00"

(
= d2S⇤⇤(x)

dx2 if x /2 (1� ", 1),

2 (d
2S⇤⇤(x)
dx2 , 0] if x 2 (1� ", 1),
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which is possible by Tietze extension theorem. The first derivative satisfies

v0"(x) =
dS⇤⇤(1� ")

dx
+

Z x

1�"
v00" (y)dy

 dS⇤⇤(1� ")

dx
,

and therefore, v0"(x) �
dS⇤⇤(x)

dx
2 [0, dS

⇤⇤(1�")
dx

� dS⇤⇤(0)
dx

] and this di↵erence is

nondecreasing.

Then we have21

V = S⇤⇤(b) +

Z b

a

(v0"(x)�
dS⇤⇤(x)

dx
)dH(x)�

Z b

a

v0"(x)dH(x)

= S⇤⇤(b) +

Z b

a

(v0"(x)�
dS⇤⇤(x)

dx
)dH(x)� v0"(b)H(b) +

Z b

a

v00" (x)H(x)dx.

Although H appears both in the second and fourth terms in the last ex-

pression, we first considerH that maximizes the fourth term,
R b

a
v00" (x)H(x)dx,

and then verify later that the same H maximizes the second term.

Fix ĥ 2 R, and we characterize the optimalH such thatH(x̂) = ĥ. By the

constraints on feasibleH, we must have (i) ĥ  H0(x̂) becauseH(x̂)  H0(x̂),

(ii) ĥ � 0 because H(x̂) � H(a) + H 0(a)(x̂ � a) = 0 by convexity, and (iii)

ĥ � H0(b) � b + x̂ because H(x) � H(b) �H 0(b)(b � x̂) again by convexity.

Thus, we fix an arbitrary ĥ 2 [max{H0(0, H0(b)� b+ x̂}, H0(x̂)].22

We now introduce x⇤ and x⇤⇤.

Let x⇤ 2 [a, x̂] be the point such that the line that takes ĥ at x = x̂ and

takes H0(x⇤) at x = x⇤ supports H0 from below. Formally, define x⇤ so that,

if ĥ = H0(x̂), then x⇤ = x̂; otherwise, x⇤ = argmaxx2[a,x̂)
ĥ�H0(x)

x̂�x
.23

The slope of this tangent line is H 0
0(x

⇤) < 1, and thus, it crosses with

another tangent line that takes H0(b) at x = b and has slope one. Let

21Integration by parts can be applied here because v0" and H are continuously di↵eren-

tiable.
22The interval is nonempty because H0(x̂) � 0 and H0(x̂) � (H0(b) � b + x̂) = (b �

x̂)
⇣
1� H0(b)�H0(x̂)

b�x̂

⌘
� 0 by convexity of H0.

23If ĥ < H0(x̂), then ĥ�H0(x)
x̂�x ! �1 as x " x̂, and thus, maxx2[a,hatx)

ĥ�H0(x)
x̂�x is

well-defined. The uniqueness of the maximizer is because H0 is strictly convex.
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x⇤⇤ 2 [x̂, b) be this cross point. Formally, define x⇤⇤ as the solution x of the

following equation:

ĥ+ (x� x̂)H 0
0(x

⇤) = H0(b) + (x� b) · 1,

or equivalently,

x⇤⇤ =
ĥ�H0(b) + b� x̂H 0

0(x
⇤)

1�H 0
0(x

⇤)
=

R b

x⇤ ydF0(y)

1� F0(x⇤)
,

where the second equality is because ĥ = H0(x⇤) + (x̂� x⇤)H 0
0(x

⇤).

Consider the “relaxed” problem where we maximize the fourth term of

V ,
R b

a
v00" (x)H(x)dx, subject to (i) H(x)  H0(x) for x 2 [a, x⇤], (ii) H(x) 

ĥ+(x�x̂)H 0
0(x

⇤) for x 2 (x⇤, x̂), (iii)H(x) � ĥ+(x�x̂)H 0
0(x

⇤) for x 2 (x̂, x⇤⇤],

and (iv) H(x) � H0(b) + x� b for x 2 (x⇤⇤, b]. This is a relaxed problem in

the sense that every feasible H must satisfy all the constraints (i)-(iv). (i) is

trivial. If (ii) is violated (with x⇤ < x̂), then, letting ↵ 2 (0, 1) be such that

x = ↵x⇤ + (1� ↵)x̂,

H(x) > ĥ+ (x� x̂)
ĥ�H0(x⇤)

x̂� x⇤

= (1� ↵)ĥ+ ↵H0(x
⇤)

� (1� ↵)ĥ+ ↵H(x⇤),

and hence H is not convex. If (iii) is violated, then, in case x⇤ < x̂,

H(x) < ĥ+ (x� x̂)
ĥ�H0(x⇤)

x̂� x⇤

, H(x)� ĥ

x� x̂
<

ĥ�H0(x⇤)

x̂� x⇤ ,

which violates convexity of H, and in case x⇤ = x̂ (which implies ĥ = H0(x̂)

and H 0(x̂) = H 0
0(x̂)),

H(x) < ĥ+ (x� x̂)H 0
0(x̂)

, H(x)� ĥ

x� x̂
< H 0(x̂),
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which again violates convexity of H. If (iv) is violated,

H(x) < H0(b) + x� b

, H(b)�H(x)

b� x
> 1 = H 0(b),

which violates convexity of H.

Because v00" (x) � 0 for x 2 [a, x̂) and v00" (x)  0 for x 2 (x̂, b], we can

maximize
R b

a
v00" (x)H(x)dx by making all the constraints (i)-(iv) binding:

H⇤(x) =

8
><

>:

H0(x) if x 2 [a, x⇤],

ĥ+ (x� x̂)H 0
0(x

⇤) if x 2 (x⇤, x⇤⇤),

H0(b) + x� b if x 2 (x⇤⇤, b].

By di↵erentiating H⇤, we obtain the cdf of x, G⇤(x), as in the statement

of the proposition (recall x⇤⇤ =
R
b

x

⇤ ✓dF0

1�F0(x⇤)):

G⇤(x) =

8
>>><

>>>:

0 if x < a,

F0(x) if x 2 [a, x⇤),

F0(x⇤) if x 2 [x⇤, x⇤⇤),

1 if x � x⇤⇤.

We complete the proof of the proposition by showing that H⇤ further

maximizes the second term of V ,
R b

a
(v0"(x)�

dS⇤⇤(x)
dx

)dH(x), among all feasible

H with H(x̂) = ĥ. Recall that v0"(x) �
dS⇤⇤(x)

dx
takes a strictly positive value

only for x 2 (1 � ", 1) ✓ (x̂, 1), and is nondecreasing. Therefore, it su�ces

to show that, for any feasible H with H(x̂) = ĥ, (i) H⇤(x)  H(x) for any

x 2 (x̂, 1), and (ii)
R b

x̂
dH⇤(x) =

R b

x̂
dH(x), i.e., H⇤ “first-order stochastically

dominates” H (treating H⇤ and H as finite measures of x over the interval

(x̂, b)). Indeed, (ii) is always satisfied because
R b

x̂
dH⇤(x) = H0(b) � ĥ =R b

x̂
dH(x). For (i), recall that any feasible H must satisfy

H(x) �
(

ĥ+ (x� x̂)H 0
0(x

⇤) if x 2 (x̂, x⇤⇤),

H0(b) + x� b if x 2 (x⇤⇤, b],

but all these inequalities are binding under H⇤. Therefore, H⇤(x)  H(x)

for any x 2 (x̂, 1).
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