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Abstract

This paper obtains the exact distribution of the maximum likelihood esti-
mator of the structural break point in the Ornstein—Uhlenbeck process when a
continuous record is available. The exact distribution is asymmetric and tri-
modal, regardless of the location of the true break point. These two properties
are also found in the finite sample distribution of the least squares (LS) estimator
of structural break point in autoregression (AR). The paper then develops an
in-fill asymptotic theory for the LS estimator of the structural break point in AR.
The in-fill asymptotic distribution is asymmetric and tri-modal and depends on
the initial condition. It delivers good approximations to the finite sample distri-
bution. Unlike the long-span asymptotic theory where the limiting distribution
and sometimes even the rate of convergence depend on the underlying AR roots,
the in-fill asymptotic theory is continuous in the underlying roots and, hence,
offers a unified theory for making inference about the break point. Monte Carlo
studies show that the in-fill asymptotic theory performs better than the existing
tailor-made asymptotic theory in all cases considered.
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1 Introduction

Autoregressive (AR) models with a structural break have been used extensively to

describe economic time series; see for example Mankiw and Miron (1986), Mankiw,

Miron and Weil (1987), Phillips, Wu, and Yu (2011) and Phillips and Yu (2011). The

structural point is often linked to a significant economic event or an important economic

policy. Not surprisingly, making statistical inference of the structural break point in

the AR(1) model has received a great deal of attentions from both econometricians

and empirical economists when they are confronted with economic time series. The

asymptotic theory widely used in applications was developed by assuming that the

numbers of the discrete time observations before and after the structural break point

both go to infinite. The resulting long-span asymptotic distribution is discontinuous

in the underlying AR(1) parameters. In particular, the asymptotic distribution and,

sometimes even, the rate of convergence are different when the two underlying AR(1)

parameters before and after the break point are in the range of being less than one,

from that being equal to one, and further different from that being greater than one;

see Chong (2001), Pang, Zhang, and Chong (2014) and Liang, et al (2014) for the

development of these asymptotic distributions. Moreover, the long-span asymptotic

distribution does not depend on the initial condition.

However, the finite sample distribution of the structural break point estimator is

always continuous in the underlying AR parameters. That is, keeping one of the AR

parameters fixed, changing the value of the other AR parameter by a small amount

only leads to a small change in the finite sample distribution of the structural break

point estimator. Furthermore, we expect the finite sample distribution of the structural

break point estimator to depend on the initial condition. These two facts suggest that

the long-span asymptotic distributions cannot always perform well in finite sample.

Simulations that have been reported in the literature together with those that will be

reported in Section 5 in the present paper strongly suggest that in many empirically

relevant cases the long-span asymptotic distributions are inadequate.

The discontinuity in the long-span limiting distributions is also found in the AR(1)

model without a structural break. This feature motivated Sims (1988) and Sims and

Uhlig (1991) to use the Bayesian posterior distribution to make statistical inference

about the AR parameter although Phillips (1991) showed that ignorance priors lead

to the Bayesian posterior distributions which are much closer to the long-span limiting

distributions. In a recent attempt, Phillips and Magdalinos (2007) developed the long-

span limiting distributions for AR time series with a root which is moderately deviated
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from unity. They show that the rate of convergence in the new asymptotic theory

provides a link between stationary and local-to-unit-root autoregressions. However, the

limiting distribution itself remains discontinuous as the root passes through the unity.

Interestingly, when a continuous record of observations is available, continuous time

models can provide the exact distribution of the “mean reversion”parameter, as shown

in Phillips (1987a, 1987b). The exact distribution is continuous in the “mean reversion”

parameter, regardless of its sign. This feature has motivated Phillips (1987a) and Perron

(1991) to establish the in-fill asymptotic distribution for the AR(1) parameter in the

discrete time model. It also motivates Yu (2014) and Zhou and Yu (2016) to establish

the in-fill asymptotic distribution for the “mean reversion”parameter in the continuous

time model. Not surprisingly, the in-fill asymptotic distribution inherits the property

of continuity. Moreover, the in-fill asymptotic distribution depends explicitly on the

initial condition.

In this paper, we develop an in-fill asymptotic distribution for the break point

estimator in the AR(1) model with a break in the AR coeffi cient. The in-fill asymptotic

distribution is continuous in the underlying AR parameters no matter what range of

the AR parameters are in. Hence, it offers a unified framework for making statistical

inference about the break point. It also depends explicitly on the initial condition. We

make several contributions to the literature on structural breaks.

First, we show that when there is a continuous record of observations for the

Ornstein—Uhlenbeck (OU) process with an unknown break point, we can derive the

exact distribution of the maximum likelihood (ML) estimator of the break point via

the Girsanov theorem. The exact distribution is continuous in the two “mean reversion”

parameters, regardless of their signs and rates.

Second, we show that the exact distribution is always asymmetric about the true

break point, regardless of the location of the true break point. Moreover, the distribu-

tion in general has three modes, one at the true value, two at the boundary points. The

asymmetry and the trimodality have also been reported in Jiang, Wang and Yu (2016,

JWY hereafter) in a model with a break in mean. However, our exact distribution

remains asymmetric even when the break is in the middle of the sample. This feature

is not shared by the exact distribution of JWY.

Third, motivated by the exact distributional theory, we derive the in-fill asymptotic

distribution for the AR(1) model with a break, when the break point is the only un-

known parameter. This AR(1) model with a break corresponds to the OU process with

a break as the sampling interval shrinks. While our AR(1) model has the same model

structure as those considered in the literature, we do not need to restrict the range of
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the AR coeffi cients to be less than one, or equal to one, or greater than one. That is,

we allow the AR(1) model to switch from a stationary/unit root/explosive model to an-

other stationary/unit root/explosive model. Hence, our in-fill asymptotic theory covers

all the possible combinations of switches. Furthermore, our AR(1) model enables us to

compare the break size and the magnitude of the initial condition with those assumed

in the literature. The break size in our model has a smaller order of magnitude than

those in the literature while the initial condition has a larger order than those in the

literature. It is this smaller break size that allows us to develop a new and unified

asymptotic theory. It is this larger initial condition that brings the prominence of the

initial condition into the asymptotic distribution.

Fourth, we carry out extensive simulation studies, checking the performance of the

in-fill asymptotic distribution against the long-span asymptotic distributions developed

in the literature under different combinations of AR(1) coeffi cients. Our results show

that the unified in-fill asymptotic distribution always performs better than the long-

span asymptotic distributions although the later were developed to handle different

kinds of regime shifts and hence were tailor-made.

The rest of the paper is organized as follows. Section 2 reviews the literature on AR

models with a break. Special focus is paid on the assumptions about the AR coeffi cients

before and after the break as well as the assumptions about the break size. Section

3 develops the exact distribution of the ML estimator of structural break point in the

OU process model with a break. Section 4 develops the in-fill asymptotic theory for

the LS estimator of the break point in the AR(1) model with a break. In Section 5,

we provide simulation results and compare the finite sample performance of the in-fill

theory with that of the long-span theory. Section 6 concludes. All proofs are contained

in the Appendix.

2 A Literature Review and Motivations

The literature on estimating structural break point is too extensive to review. Among

the contributions in the literature, Chong (2001), Pang, Zhang and Chong (2014) and

Liang et al (2014) focused on the AR(1) model with a break. Under various assumptions

on the AR(1) coeffi cients, the long-span asymptotic theory has been developed in these

papers for the least squares (LS) estimator of the structural break point.

The model considered in these papers is

yt =

{
β1yt−1 + εt if t ≤ k0

β2yt−1 + εt if t > k0
, t = 1, 2, . . . , T, (1)
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where T denotes the sample size, εt is a sequence of independent and identically (i.i.d.)

random variables. Let k denote the break point parameter with true value k0. The

condition 1 ≤ k0 < T is assumed to ensure that one and only one break happens. The

fractional break point parameter is defined as τ = k/T with true value τ 0 = k0/T . The

break size is captured by β2− β1. The order of the initial condition y0 will be assumed
later.

The LS estimator of k takes the form of

k̂LS,T = arg min
k=1,...,T−1

{
S2k
}
, (2)

where

S2k =
k∑
t=1

(
yt − β̂1(k)yt−1

)2
+

T∑
t=k+1

(
yt − β̂2(k)yt−1

)2
,

with β̂1(k) =
∑k

t=1 ytyt−1/
∑k

t=1 y
2
t−1 and β̂2(k) =

∑T
t=k+1 ytyt−1/

∑T
t=k+1 y

2
t−1 being the

LS estimators of parameters β1 and β2 for any given k. The corresponding estimator

of τ is τ̂LS,T = k̂LS,T/T.

Let the break size depend on T (so either β1 = β1T or β2 = β2T or both). Under

various settings on β1 and β2 (e.g. β1, β2 are smaller than 1, equal to 1 or greater than 1),

Chong (2001), Pang, Zhang and Chong (2014) and Liang, et al (2014,) established the

consistency of τ̂LS,T and derived its long-span asymptotic distributions under different

shrinking rate of β2 − β1 as T → ∞. In the following, we review the main results on
the asymptotic distributions of the break point estimator in the literature.

2.1 The long-span asymptotics when |β1| < 1 and |β2| < 1

Chong (2001) studied the model in (1) with |β1| < 1 and |β2| < 1. In this case, the

AR(1) model switches from a stationary root to another stationary root. Under the

regularity conditions that εt
i.i.d.∼ (0, σ2), E(ε4t ) < ∞, E(y0) = 0, and E(y20) < ∞,

assuming β2T −β1 → 0 with
√
T |β2T − β1| → ∞ as T →∞, he derived an asymptotic

distribution of τ̂LS,T as

T (β2T − β1)2

1− β21
(τ̂LS,T − τ 0)

d−→ arg max
u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
,

where W (u) is a two-sided Brownian motion, defined as W (u) = W1(−u) if u ≤ 0 and

W (u) = W2(u) if u > 0, with W1 and W2 being two independent Brownian motions.

The probability density function (pdf) and the cumulative distribution function for this

limiting distribution were obtained in Yao (1987).
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2.2 The long-span asymptotics when |β1| < 1 and β2 = 1

Chong (2001) studied the model in (1) with |β1| < 1 and β2 = 1. In this case, the

AR(1) model switches from a stationary root to a unit root. Under the same regularity

conditions as in Section 2.1, assuming 1− β1T → 0 with T (1− β1T )→∞ as T →∞,
he derived an asymptotic distribution of τ̂LS,T as

T (1− β1T )(τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W ∗
a (u)

R1
− 1

2
|u|
}
,

where W ∗
a (u) = W1(−u) if u ≤ 0 and

W ∗
a (u) = −W2(u)−

∫ u

0

W2(s)

R1
dW2(s)−

∫ u

0

(
W2(s)

2R1
+ 1

)
W2(s)ds,

if u > 0 with W1(·) and W2(·) being two independent Brownian motions and R1 =∫∞
0

exp(−s)dW1(s),

2.3 The long-span asymptotics when β1 = 1 and |β2| < 1

Chong (2001) studied the model in (1) with β1 = 1 and |β2| < 1. In this case the

AR(1) model switches from a unit root to a stationary root. Under the same regularity

conditions as in Section 2.1, assuming
√
T (1− β2T ) → 0 with T 3/4 (1− β2T ) → ∞ as

T →∞ , he derived an asymptotic distribution of τ̂LS,T as

T 2(β2T − 1)2(τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)

W3(τ 0)
− 1

2
|u|
}
,

whereW (u) is a two-sided Brownian motion andW3 is an independent standard Brown-

ian motion.

2.4 The long-span asymptotics when |β1| < 1 and β2T = 1− c/T

Pang, et al (2014) studied the model in (1) with |β1| < 1 and β2T = 1 − c/T where c
being a fixed constant. In this case an AR(1) model switches from a stationary root

to a local-to-unit-root. Under the regularity conditions that y0 = op(
√
T ), assuming

|β2T − β1T | → 0 with T (β2T − β1T ) → ∞, they derived an asymptotic distribution of
τ̂LS,T as

T (β2T − β1)(τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W ∗
b (u)

R1
− 1

2
|u|
}
,

where W ∗
b (u) = W1(−u) if u ≤ 0 and
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W ∗
b (u) = −I(W2, c, τ 0, u)−

∫ u

0

I(W2, c, τ 0, s)

R1
dI(W2, c, τ 0, s)

−
∫ u

0

(
I(W2, c, τ 0, s)

2R1
+ 1

)
I(W2, c, τ 0, s)ds,

if u > 0 with

I(W2, c, τ 0, s) = W2(τ 0 + s)−W2(τ 0)− c
∫ τ0+s

τ0

e−c(τ0+s−r) (W2(r)−W2(τ 0)) ds,

andW1 andW2 being two independent Brownian motions andR1 =
∫∞
0

exp(−s)dW1(s).

2.5 The long-span asymptotics when β1T = 1− c/T and |β2| < 1

Pang, et al (2014) also studied the model in (1) with β1T = 1− c/T and β2 = 1 where

c being a fixed constant. In this case an AR(1) model switches from a local-to-unit-

root to a stationary root. Under the regularity conditions as in Section 2.4, assuming√
T (β2T − β1T ) → 0 with T 3/4(β2T − β1T ) → ∞, they derived τ̂LS,T an asymptotic

distribution as

T 2(β2 − β1T )2(τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)

exp (c(1− τ 0))G(W1, c, τ 0)
− 1

2
|u|
}
,

where W (u) is a two-sided Brownian motion defined in Section 2.1, and

G(W1, c, τ 0) = exp (−c(1− τ 0))W1(τ 0)− c
∫ τ0

0

exp (−c(1− s))W1(s)ds.

2.6 The long-span asymptotics when β1T = 1− c/kT and β2 = 1
with kT/T → 0

Liang, et al (2014) studied the model in (1) with β1T = 1 − c/kT and β2 = 1 with c

being a fixed positive constant. In this case an AR(1) model switches from a mildly

stationary one to a unit root. Under the regularity conditions that y0 = op(
√
kT ),

assuming kT →∞ and kT/T → 0 as T →∞,1 they derived an asymptotic distribution
of τ̂LS,T as

cT

kT
(τ̂LS,T − τ 0)

d−→ arg max
u∈(−∞,∞)

{
W ∗
c (u)

Rc

− 1

2
|u|
}
,

where W ∗
c (u) = W1(−u) if u ≤ 0 and

1It may be easier to understand kT = Tα, with α ∈ (0, 1).
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Table 1: The table shows the long-span asymptotic distributions of τ̂LS,T under different
model settings on the AR(1) coeffi cients before and after the break point.

β1 β2 |β2 − β1| y0 rate long-span asymptotic

|β1| < 1 |β2| < 1 (T−0.5, T−ε) Op(1)
T (β2−β1)2
1−β21

arg max
u∈(−∞,∞)

{
W (u)− 1

2 |u|
}

|β1| < 1 1 (T−1, T−ε) Op(1) T (1− β1) arg max
u∈(−∞,∞)

{
W∗
a (u)
R1

− 1
2 |u|

}
1 |β2| < 1

(
T−0.75, T−0.5

)
Op(1) T 2(β2 − 1)2 arg max

u∈(−∞,∞)

{
W (u)
W3(τ0)

− 1
2 |u|

}
|β1| < 1 1− c/T (T−1, T−ε) op(

√
T ) T (β2T − β1) arg max

u∈(−∞,∞)

{
W∗
b (u)
R1

− 1
2 |u|

}
1− c/T |β2| < 1

(
T−0.75, T−0.5

)
op(
√
T ) T 2(β2 − β1T )2 arg max

u∈(−∞,∞)

{
e−c(1−τ0)W (u)
G(W1,c,τ0)

− 1
2 |u|

}
1− c/kT 1 (T−1, T−ε) op(T

α/2) cT
kT

arg max
u∈(−∞,∞)

{
W∗
c (u)
Rc

− 1
2 |u|

}
1 1− c/kT

(
T−0.75, T−0.5

)
op(T

α/2) c2T 2

k2T
arg max

u∈(−∞,∞)

{
W (u)
W1(τ0)

− 1
2 |u|

}

W ∗
c (u) = −W2(u)−

∫ u

0

W2(s)

Rc

dW2(s)−
∫ u

0

(
W2(s)

2Rc

+ 1

)
W2(s)ds,

if u > 0 withW1 andW2 being two independent Brownian motions andRc =
√
c
∫∞
0

exp(−cs)dW1(s).

2.7 The long-span asymptotics when β1 = 1 and β2T = 1− c/kT
with kT/T → 0

Liang, et al (2014) also studied the model in (1) with β1 = 1 and β2T = 1− c/kT , with
c being a fixed positive constant. In this case an AR(1) model switches from a unit root

to a mildly stationary root. Under the regularity conditions as in section 2.7, assuming

kT → ∞ and
√
T/kT → 0 with T 3/4/kT → ∞ as T → ∞, they derived an asymptotic

distribution of τ̂LS,T as

c2T 2

k2T
(τ̂LS,T − τ 0)

d−→ arg max
u∈(−∞,∞)

{
W (u)

W1(τ 0)
− 1

2
|u|
}
,

where W (u) is a two-sided Brownian motion.

We summarize all the long-span asymptotic theory derived in the literature in Table

1 where we report the range of the two AR coeffi cients, the order of the break size, the

order of the initial condition, the rate of convergence of the LS break point estimator,

and the long-span asymptotic distribution. Both the break size and the initial condition

are expressed in the power order to facilitate the comparison and discussion, where ε is

an arbitrarily small postive number.

Several observations can be made from Table 1. First, the long-span asymptotic

distribution is discontinuous in the underlying AR(1) parameters. The asymptotic dis-
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tributions and, sometimes even, the rates of convergence are different when the AR(1)

parameters are in different ranges. This feature causes a great deal of diffi culties in

making statistical inference about the break point in practice because users typically

do not know ex ante whether the underlying AR(1) model has a root that is station-

ary/unity/explosive before and after the break point. Moreover, even if users know the

range of the underlying AR(1) parameters before and after the break point, it is not

easy to decide which long-span asymptotic distribution to use. For example, if we know

the AR(1) parameter changes from 0.9 to 1, should we use the model that switches

from a stationary root to a unit root, or from a mildly stationary root to a unit root?

For another example, if we know the underlying AR(1) parameter changes from 0.9 to

0.95, should we use the model that switches from a stationary root to another station-

ary root, or from a stationary root to a local-to-unit-root? This choice is important as

a different choice leads to a different long-span asymptotic distribution although the

finite sample distribution is the same.

Second, none of the long-span asymptotic distributions depends on the initial con-

dition. The initial condition is assumed to be either Op(1) or op(
√
T ) or op(Tα/2) for

α ∈ (0, 1). These initial conditions are imposed so that they disappeared asymptoti-

cally. It is always smaller than Op(
√
T ).

Third, while the order of the break size varies across different models, it is always

larger than O(T−1). The order of the break size shown in Table 1 is critical to deriving

the consistency and corresponding limiting distribution of τ̂LS,T in each case.

Fourth, the interval to find the argmax in all cases is always (−∞,∞). It is compu-

tationally expensive to obtain the limiting distribution except for the AR model that

switches from a stationary root to another stationary root, for which the closed-form

expression for the pdf was given by Yao (1987). To obtain the long-run asymptotic

distributions in all other cases, we need to numerically obtain the argmax over an in-

terval that is suffi ciently wide. Since the grid must be fine enough to well approximate

the true argmax, the number of grid points is inevitably very large, leading to a high

computational cost.

Despite that these long-span asymptotic distributions are tailor-developed, catering

for different persistency in AR, they do not perform well in many empirically relevant

cases. To see this problem, we plot the density of the limiting distribution of τ̂LS,T
obtained from 200 observations with τ 0 = 0.3, when the AR coeffi cient switches from a

stationary root to another stationary root in Figure 1, when the AR coeffi cient switches

from a stationary root to the unit root in Figure 2, when the AR coeffi cient switches

from a local-unit-root to a stationary root in Figure 3. In the same graphs we plot the
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Figure 1: The pdf of the finite sample distribution of T (β2−β1)2
1−β21

(τ̂LS,T − τ 0) when
T = 200, β1 = 0.5, β2 = 0.38, σ = 1 and τ 0 = 0.3 in Model (1) and the pdf of
arg max

u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
.

corresponding finite sample distributions of τ̂LS,T .2 The finite sample distributions are

obtained from simulated data with 100,000 replications. It is clear that the long-span

asymptotic distributions are distinctively different from the finite sample distributions

in all cases. First, the support of the finite sample distributions is bounded, whereas

the support of the long-span asymptotic distributions is infinite. Second, the finite

sample distributions are asymmetric in all cases, whereas the long-span asymptotic

distributions are symmetric in some cases. Third, the finite sample distributions display

trimodality while the long-span asymptotic distributions has a unique mode. The big

discrepancy between the two densities suggests that the long-span asymptotic theory is

inadequate in many practically relevant cases and that there is a need to develop the

exact distribution theory or an alternative asymptotic theory to better approximate the

finite sample distribution for the break point.

2The complete comparisions with different combination of β1 and β2, covering all the cases in Table
1, are in Section 5.
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Figure 2: The pdf of the finite sample distribution of T (β2 − β1)(τ̂LS,T − τ 0) when
T = 200, β1 = 0.73, β2 = 1, σ = 1 and τ 0 = 0.3 in Model (1) and the pdf of

arg max
u∈(−∞,∞)

{
W ∗
a (u)
R1
− 1

2
|u|
}
.
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Figure 3: The pdf of the finite sample distribution of T (β2 − β1)(τ̂LS,T − τ 0) when
T = 200, β1 = 0.995, β2 = 0.97, σ = 1 and τ 0 = 0.3 in Model (1) and the pdf of

arg max
u∈(−∞,∞)

{
W (u)

exp(c(1−τ0))G(W1,c,τ0)
− 1

2
|u|
}
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3 A Continuous Time Model and Exact Distribu-
tion

In this section we consider the following Ornstein-Uhlenbeck (OU) process over a finite

time interval [0, 1],3

dy(t) = −
(
κ+ δ1[t>τ0]

)
y(t)dt+ σdB(t), (3)

where t ∈ [0, 1], y(0) is the initial condition, 1[t>τ0] is an indicator function, κ, δ and

τ 0 are constants with τ 0 being the break point and δ being the break size, σ is another

constant capturing the noise level, and B(t) denotes a standard Brownian motion.

Clearly δ/σ is the signal-to-noise ratio. We impose the assumption τ 0 ∈ [α, β] with

0 < α < β < 1 so that a break indeed occurs.

We assume that a continuous record of observations, {y(t)} for t ∈ [0, 1], is available

and that all parameters are known except for τ 0. Once a continuous record is available,

one can make more complicated assumption about the diffusion function, such as σ =

σ(y(t)) without changing the analysis developed below. This is because the diffusion

function can be estimated by the quadratic variation [y]t without estimation error for

all t.

3.1 J̃κ,δ,τ(r) process

The y(t) process defined by Model (3) is closely related to the following Gaussian

process,

J̃κ,δ,τ (r) =

{∫ r
0
e−(r−s)κdB(s) if r ≤ τ∫ τ

0
e−(r−s)(κ+δ)+(τ−s)δdB(s) +

∫ r
τ
e−(r−s)(κ+δ)dB(s) if r > τ,

, (4)

which plays a central role in our theory.

The following lemma gives the distributional properties of J̃κ,δ,τ (r).

Lemma 3.1 Let J̃κ,δ,τ (r) be a process generated by (4), then

(a) for fixed r > 0, J̃κ,δ,τ (r) has the distribution

J̃κ,δ,τ (r)
d
= N(0, σ2J(r)),

with

σ2J(r) =

{
1−e−2rκ
2κ

if r ≤ τ
δe−2(r−τ)(κ+δ)

2κ(κ+δ)
− e−2κ−2(r−τ)δ

2κ
+ 1

2(κ+δ)
if r > τ.

3A different length of time interval, such as [0, N ], may be assumed without qualitatively changing
the results derived in the present paper.
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where d
= denotes equivalence in distribution.

(b) J̃κ,δ,τ (r) is a process generated by the stochastic differential equation (SDE)

dJ̃κ,δ,τ (r) = −(κ+ δ1[r>τ ])J̃κ,δ,τ (r)dr + dB(r), (5)

with initial condition J̃κ,δ,τ (0) = 0.

Remark 3.1 J̃κ,δ,τ (r) is related to the following OU process widely used in the literature

(for example, see Phillips, 1987b):

dJc(r) = cJcdr + dB(r),

with the initial condition Jc(0) = 0. When r ≤ τ , J̃κ,δ,τ= J−κ(r). When r > τ ,

J̃κ,δ,τ= exp(−(r − τ)(κ + δ))J−κ(τ)+J−(κ+δ)(r) − J−(κ+δ)(τ), which follows from the

proof of Lemma 3.1 and the fact Jc(r) =
∫ r
0
e(r−s)cdB(s).

Remark 3.2 It is clear that an alternative representation for J̃κ,δ,τ (r) in (4) is

J̃κ,δ,τ (r) =

{∫ r
0
e−(r−s)κdB(s) if r ≤ τ

e−(r−τ)(κ+δ)J̃κ,δ,τ (τ) +
∫ r
τ
e−(r−s)(κ+δ)dB(s) if r > τ

. (6)

The following lemma establishes the connection between y(t) in Model (3) with

J̃κ,δ,τ0(t).

Lemma 3.2 If y(t) is a process generated by (3), we have

y(t) = σJ̃κ,δ,τ0(t) + exp
(
−tκ− (t− τ 0)δ1[t>τ0]

)
y(0),

where J̃κ,δ,τ (t) is defined in (4) over the finite time interval [0, 1].

The following lemma gives us a useful relationship for the development of our

distribution theory.

Lemma 3.3 If y(t) is a process generated by (3), we have

2σ

∫ r

0

y(s)dB(s) = y2(r)− y2(0) + 2

∫ r

0

(κ+ δ1[s>τ0])y
2(s)ds− rσ2.

Remark 3.3 By directly applying the result in Lemma 3.2, we can write Lemma 3.3
in terms of J̃κ,δ,τ0(t).
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3.2 The exact distribution

For any τ ∈ (0, 1), we can obtain the exact log-likelihood of Model (3) via the Girsanov

Theorem as

logL(τ) = log
dPτ
dPB

=
1

σ2

{∫ 1

0

(
−(κ+ δ1[t>τ ])

)
y(t)dy(t)− 1

2

∫ 1

0

(
κ+ δ1[t>τ ]

)2
y2(t)dt

}
,

where Pτ is the probability measure corresponding to Model (3) with τ 0 replaced by τ

for any τ ∈ (0, 1) and PB is the probability measure corresponding to B(t). This leads

to the ML estimator of τ 0 as

τ̂ML = arg max
τ∈(0,1)

logL(τ). (7)

and Theorem 3.1 reports the exact distribution of τ̂ML.

Theorem 3.1 Consider Model (3) with a continuous record being available. For the

ML estimator τ̂ML defined in (7), we have the exact distribution as

τ̂ML
d
= arg max

τ∈(0,1)

{(
δ

σ

)∫ τ

τ0

y(t)dB(t)− 1

2

∣∣∣∣∣
∫ τ

τ0

(
δ

σ

)2
y2(t)dt

∣∣∣∣∣
}
. (8)

where y(t) is the process defined in (3) and we use the notation
∫ τ
τ0

(·)dB(s) to denote[∫ τ
0

(·)dB(s)−
∫ τ0
0

(·)dB(s)
]
.

Remark 3.4 Since y(t) is continuous in κ, the exact distribution given in (8) is con-

tinuous in κ. Moreover, it is continuous in δ.

Remark 3.5 One may write the exact distribution as the argmax of two pieces as
follow:

τ̂ML
d
= arg max

τ∈(0,1)

{− ∫ τ0
τ

y(r)
δσ
dB (r)− 1

2

∫ τ0
τ

(
y(r)
σ

)2
dr for τ ≤ τ 0∫ τ

τ0

y(r)
δσ
dB (r)− 1

2

∫ τ
τ0

(
y(r)
σ

)2
dr for τ > τ 0

.

Since neither y (r) nor y2 (r) is symmetric about τ 0 over the interval (0, 1) even when

τ 0 = 50%, the distribution of τ̂ML is asymmetric for all τ 0, including τ 0 = 50%.

Theorem 3.1 gives the exact distribution of τ̂ML when a continuous record over a

finite time span is available. The following Lemma 3.2 gives an alternative expression

for the exact distribution using J̃κ,δ,τ (t) defined in (4).
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Corollary 3.1 Consider Model (3) with a continuous record being available. For the
ML estimator τ̂ML defined in (7), we have the exact distribution as

τ̂ML
d
= arg max

τ∈(0,1)

{∫ τ

τ0

1

δ

(
J̃κ,δ,τ0(s) + e−sκ−(s−τ0)δ1[s>τ0]

y(0)

σ

)
dB(s) (9)

−1

2

∣∣∣∣∣
∫ τ

τ0

(
J̃κ,δ,τ0(s) + e−sκ−(s−τ0)δ1[s>τ0]

y(0)

σ

)2
ds

∣∣∣∣∣
}
,

where B(s) is the standard Brownian motion corresponding to J̃κ,δ,τ0(s) and we use the

notation
∫ τ
τ0

(·)dB(s) to denote
[∫ τ
0

(·)dB(s)−
∫ τ0
0

(·)dB(s)
]
.

Remark 3.6 An advantage of using this alternative expression is that it depends on the
Gaussian process J̃κ,δ,τ0. explicitly. Another advantage is that the distribution depends

explicitly on the initial condition y(0), or more precisely on y(0)/σ.

The exact distribution in (8) and (9) corresponds to the extreme value of stochastic

integrals over a finite interval. Unfortunately, we cannot obtain the pdf or cdf in closed-

form. As a result, we obtain the pdf by simulated data with 100,000 replications as in

JWY (2016).

Figures 4-8 plot the densities of τ̂ML−τ 0 given in Equation (8) with different values
of κ and δ, when τ 0 = 0.3, 0.5, 0.7 (the left, middle and right panel respectively) and σ

is 1. These cover several interesting cases of switches, from a stationary OU process to

another stationary OU process, from a stationary OU process to a nearly nonstationary

OU process, from a nearly nonstationary OU process to a stationary OU process, from

a stationary OU process to a nonstationary OU process, and from a nonstationary OU

process to a stationary OU process.

There are several interesting observations from these plots. First, the density is

always asymmetric, even when τ 0 = 50%. This feature is different from that in the

estimation of break point in the mean derived in JWY (2016), where the density of

τ̂ML − τ 0 is symmetric about zero when τ 0 = 50%. Second, there are trimodality in

the finite sample distribution. The true value is one of the three modes while the two

boundary points are the other two modes. The highest mode may not even be the true

value τ 0. This feature is shared by the density derived in JWY. Third, when τ 0 = 0.3,

the distribution of τ̂ML − τ 0 is not a mirror image of that when τ 0 = 0.7. This feature

is different from that of JWY.
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Figure 4: The density of τ̂ML − τ 0 given in Equation (8) when τ 0 = 0.3, 0.5, 0.7 (the
left, middle and right panel respectively) and κ = 138, δ = −20, σ = 1 .
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Figure 5: The density of τ̂ML − τ 0 given in Equation (8) when τ 0 = 0.3, 0.5, 0.7 (the
left, middle and right panel respectively) and κ = 10, δ = −9, σ = 1.
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Figure 6: The density of τ̂ML − τ 0 given in Equation (8) when τ 0 = 0.3, 0.5, 0.7 (the
left, middle and right panel respectively) and κ = 1, δ = 5, σ = 1 .
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Figure 7: The density of τ̂ML − τ 0 given in Equation (8) when τ 0 = 0.3, 0.5, 0.7 (the
left, middle and right panel respectively) and κ = 10, δ = −10, σ = 1.
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Figure 8: The density of τ̂ML − τ 0 given in Equation (8) when τ 0 = 0.3, 0.5, 0.7 (the
left, middle and right panel respectively) and κ = 0, δ = 1, σ = 1, y(0) = 0.

4 A Discrete Time Model and In-fill Asymptotic
Distribution

Applying the Euler discretization scheme to Model (3) at the equi-spaced intervals over

the time span [0, 1], we get the following discrete time model:

yth − y(t−1)h = −
(
κ+ δ1[t>k0]

)
y(t−1)hh+ σ

√
hεth, εth ∼ N(0, 1), y0 = Op(1), (10)

where h is the sampling interval, t = 1, ..., T, with T = 1/h. For simplicity, we assume

τ 0/h to be an integer, denoted by k0. As h → 0, Model (10) converges to Model (3)

and T →∞. However, due to the difference in the order of the error term, Model (10)
is not directly comparable to the models in Chong (2001), Pang, et al (2014) and Jiang,

et al (2014). To facilitate such a comparison, we divide both sides of Model (10) by
√
h

and denote Yt = yth/
√
h, et = εth. Then, we have, for t = 1, ..., T ,

Yt =
(
1− (κ+ δ1[t>k0])h

)
Yt−1 + σet, et ∼ N(0, 1), Y0 = y0/

√
h = Op

(
1/
√
h
)
. (11)

To obtain the invariance principle, we remove the assumption of Gaussian errors in

the development of the in-fill asymptotic theory and get

Yt =
(
1− (κ+ δ1[t>k0])h

)
Yt−1 + σet, et

iid∼ (0, 1) , Y0 =Op

(√
T
)
. (12)

Comparing Model (12) to the models in Chong (2001), Pang, Zhang and Chong (2014)

and Jiang, et al (2014), we see two main differences. First, the break size is δh in our
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discrete time model, which is of the order O(T−1). This break size is smaller than those

considered in the literature; see Table 1 in Section 2. It is also smaller than that in

Elliott and Müller (2007) where the break size is assumed to be O(T−1/2). Second, the

initial condition in Model (12) is Op(T
−1/2) in our discrete time model. This initial

condition is larger than all the initial conditions assumed in the literature; also see

Table 1 in Section 2.

Following Phillips (1987b), we construct

XT (r) = T−
1
2σ−1

bTrc∑
t=1

σet = T−
1
2σ−1

j−1∑
t=1

σet, (j − 1)/T ≤ r < j/T (j = 1, . . . , T ),

where b·c is the integer-valued function. We start from the asymptotic theory for the

sample moments generated by (12). As given in the following lemma, J̃κ,δ,τ (r) plays a

central role in the asymptotic theory.

Lemma 4.1 If {Yt} is a time series generated by (12), then, as T →∞:
(a) T−

1
2YbTrc ⇒ σJ̃κ,δ,τ0(r) + e−rκ−(r−τ0)δ1[r>τ0]y0;

(b) T−
3
2

∑bTrc
t=1 Yt ⇒

∫ r
0

[
σJ̃κ,δ,τ0(s) + e−sκ−(s−τ0)δ1[s>τ0]y0

]
ds;

(c) T−2
∑bTrc

t=1 Y
2
t ⇒

∫ r
0

[
σJ̃κ,δ,τ0(s) + e−sκ−(s−τ0)δ1[s>τ0]y0

]2
ds;

(d) T−1
∑bTrc

t=1 Yt−1et ⇒
∫ r
0

[
σJ̃κ,δ,τ0(s) + e−sκ−(s−τ0)δ1[s>τ0]y0

]
dB(s);

with ⇒ denoting the weak convergence of probability measures.

We now develop the asymptotic theorem of the LS estimator of τ 0 = k0/T in Model

(12) under the in-fill asymptotic scheme where h→ 0 with a fixed time span Th = 1.

When κ and δ are known, the LS estimator of k in Model (12) is defined as

k̂LS,T = arg min
k=1,...,T−1

S(k) (13)

with

S(k) =
k∑
t=1

(Yt − (1− κh)Yt−1)
2 +

T∑
t=k+1

(Yt − (1− (κ+ δ)h)Yt−1)
2

=

k∑
t=1

(Yt − (1− κh)Yt−1)
2 +

T∑
t=k+1

(Yt − (1− κh)Yt−1 + δhYt−1)
2

=

T∑
t=1

(Yt − (1− κh)Yt−1)
2 + 2

T∑
t=k+1

(Yt − (1− κh)Yt−1) δhYt−1 +

T∑
t=k+1

(δhYt−1)
2
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Since
∑T

t=1 (Yt − (1− κh)Yt−1)
2 does not depend on k, we have

k̂LS,T = arg min
k=1,...,T−1

{
2

T∑
t=k+1

(Yt − (1− κh)Yt−1) δhYt−1 +
T∑

t=k+1

(δhYt−1)
2

}

= arg min
k=1,...,T−1

{
−2

k∑
t=1

(Yt − (1− κh)Yt−1) δhYt−1 −
k∑
t=1

(δhYt−1)
2

}

= arg max
k=1,...,T−1

{
k∑
t=1

1

σ2
(Yt − (1− κh)Yt−1) δhYt−1 +

1

2

k∑
t=1

(
δ

σ
hYt−1

)2}
. (14)

Theorem 4.1 Consider Model (12) with known κ and δ. Denote the LS estimator

τ̂LS,T = k̂LS,T/T with k̂LS,T defined in (14). Then, when h → 0, we have the in-fill

asymptotic distribution as

τ̂ML
d→ arg max

τ∈(0,1)

{∫ τ

τ0

1

δ

[
J̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])

y(0)

σ

]
dB(s)

−1

2

∣∣∣∣∣
∫ τ

τ0

[
J̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])

y(0)

σ

]2
ds

∣∣∣∣∣
}
.

where B(s) is the standard Brownian motion corresponding to J̃κ,δ,τ (s) and we use the

notation
∫ τ
τ0

(·)dB(s) to denote
[∫ τ
0

(·)dB(s)−
∫ τ0
0

(·)dB(s)
]
.

Remark 4.1 The in-fill asymptotic distribution is the same as the exact distribution
derived in the continuous time model when a continuous record is available. This is

expected as the in-fill limit of our discrete time AR model with a break converges to the

continuous time model with a break. Not surprisingly, the in-fill asymptotic distribution

has trimodality and asymmetric for all values of τ 0, even when τ 0 = 50%.

5 Monte Carlo Results

In this section, we design seven Monte Carlo experiments to compare the performance

of our in-fill asymptotic distributions with their corresponding long-span asymptotic

distributions developed in the literature. In each experiment, we draw densities of the

long-span asymptotic distribution and our in-fill asymptotic distribution together and

compare them with their corresponding finite sample distribution. The seven experi-

ments are selected to ensure that all the available long-span asymptotic distributions

are covered.
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In each experiment, data are generated from Model (12) with τ 0 = 0.3, 0.5, 0.7,

σ = 1, et
iid∼ N(0, 1), T = 200 (ie h = 1/200) and different combination of κ and δ. In

the cases where the first regime is unit root, we set y0 = 0. Otherwise, we randomly

draw y0 from N(0, σ2/2κ). All the pdfs are obtained by simulated data with 100,000

replications. When we calculate the in-fill asymptotic distribution and the long-span

asymptotic distribution, the stochastic integrals are approximated over very small grid

size (0.0001). Let β1 and β1 be the corresponding AR(1) coeffi cients before and after

the break.

In the first experiment, we first set κ = 138 and δ = 55, which implies β1 = 0.5 and

β2 = 0.38. Then we set κ = 138 and δ = −20, which implies β1 = 0.5 and β2 = 0.55

and leads to a small break size. For both cases in this experiment, we assume the AR(1)

model switches from a stationary root to another stationary root. In this experiment

the long-span asymptotic distribution is given in Section 2.1. The three densities are

plotted in Figures 9-10.

In the second experiment, we first set κ = 138 and δ = −138, implying β1 = 0.5 and

β2 = 1.Then we set κ = 61 and δ = −61, implying β1 = 0.73 and β2 = 1. Finally, we set

κ = 10 and δ = −10, implying β1 = 0.95 and β2 = 1. For all cases in this experiment,

we assume the AR(1) model switches from a stationary root to a unit root, but the

break size gets smaller. In this experiment the long-span asymptotic distribution is

given in Section 2.2. The three densities are plotted in Figures 11-13.

In the third experiment, we set κ = 0 and δ = 1, implying β1 = 1 and β2 = 0.995.

We assume the AR(1) model switches from a unit root to a stationary root, and hence,

the long-span asymptotic distribution is given in Section 2.3. The three densities are

plotted in Figures 14.

In the fourth experiment, we first set κ = 138 and δ = −137, implying β1 = 0.5

and β2 = 0.995. Then we set κ = 10 and δ = −9, implying β1 = 0.95 and β2 = 0.995.

The second case has a smaller break size than the first case. For both cases in this

experiment, we assume the AR(1) model switches from a stationary root to a local-

to-unit-root, and hence, the long-span asymptotic distribution is given in Section 2.4

where we set c = 1 in the long-span asymptotic distribution. The three densities are

plotted in Figures 15-16.

In the fifth experiment, we set κ = 1 and δ = 5, implying β1 = 0.995 and β2 = 0.97.

In this experiment, we assume the AR(1) model switches from a local-to-unit-root to

a stationary root, and hence, the long-span asymptotic distribution is given in Section

2.5 where we set c = 1 in the long-span asymptotic distribution. The three densities

are plotted in Figure 17.
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In the sixth experiment, we set κ = 10 and δ = −10, implying β1 = 0.95 and β2 =

1.In this experiment, we assume the AR(1) model switches from a mildly stationary

root to a unit root, and hence, the long-span asymptotic distribution is given in Section

2.6 where we set c = 1 and kT = 20 in the long-span asymptotic distribution. The three

densities are plotted in Figure 18.

In the seventh experiment, we first set κ = 0 and δ = 7, implying β1 = 1 and

β2 = 0.96. Then we set κ = 0 and δ = 1, implying β1 = 1 and β2 = 0.995. For both

cases in this experiment, we assume the AR(1) model switches a unit root to a mildly

stationary root. Hence, the long-span asymptotic distribution is given in Section 2.7

where we set kT = 30 in the long-span asymptotic distribution, so that c = 1.2 in the

former case and c = 0.15 in the latter case. The three densities are plotted in Figures

19-20.

Several features are apparent in these figures. First, the finite sample distribution

is asymmetric about 0 even when τ 0 = 50%. This feature is different from that in

the estimation of break point in the mean discussed in JWY (2016), where the finite

sample distribution is symmetric about zero when τ 0 = 50%. Second, the finite sample

distribution has trimodality. The origin is one of the three modes and the two boundary

points are the other two. Third and most importantly, the in-fill asymptotic distribution

given in Theorem 4.1 has trimodality and is asymmetric about zero, just like the finite

sample distribution. It always provides better approximations to the finite sample

distribution than the long-span limiting distribution, despite that the sample size is

reasonably large (T = 200). When the signal-to-noise ratio is small, such as in case 3 in

Experiment 2 where β1 = 0.95 and β2 = 1, the long-span limiting distribution is so far

away from the finite sample distribution that any meaningful statistical inference should

not be based on the long-span limiting distribution. Arguably, the switch from β1 = 0.95

to β2 = 1 is empirically interesting and relevant. When the signal-to-noise ratio gets

larger, the trimodality becomes less pronounced and the degree of asymmetry reduces.

However, the in-fill asymptotic distribution continues to provide better approximations

to the finite sample distribution than the long-span asymptotic distribution.

6 Conclusions

This paper is concerned about the large sample approximation to the exact distribution

in the estimation of structural break point in autoregressive models. Based on the

Girsanov theorem, we obtain the exact distribution of the ML estimator of structural

break point in the OU process when a continuous record is available. We find that the
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Figure 9: The pdf of T (β2−β1)
2

1−β21
(τ̂LS,T − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and

right panel respectively) and β1 = 0.5, β2 = 0.38. The blue solid line is the finite sample
distribution when T = 200; the black broken line is the density given in Theorem 4.1;
and the red dotted line is the long-span limiting distribution in given Section 2.1.
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Figure 10: The pdf of T (β2−β1)
2

1−β21
(τ̂LS,T − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and

right panel respectively) and β1 = 0.5, β2 = 0.55. The blue solid line is the finite sample
distribution when T = 200; the black broken line is the density given in Theorem 4.1;
and the red dotted line is the long-span limiting distribution in given Section 2.1.

23



­50 0 50
0

0.05

0.1

0.15

0.2

0.25
D

en
si

ty

­50 0 50
0

0.05

0.1

0.15

0.2

0.25

D
en

si
ty

­50 0 50
0

0.05

0.1

0.15

0.2

0.25

D
en

si
ty

Figure 11: The pdf of T (1−β1)(τ̂LS,T −τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and
right panel respectively) and β1 = 0.5, β2 = 1. The blue solid line is the finite sample
distribution when T = 200; the black broken line is the density given in Theorem 4.1;
and the red dotted line is the long-span limiting distribution in given Section 2.2.
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Figure 12: The pdf of T (1−β1)(τ̂LS,T −τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and
right panel respectively) and β1 = 0.73, β2 = 1. The blue solid line is the finite sample
distribution when T = 200; the black broken line is the density given in Theorem 4.1;
and the red dotted line is the long-span limiting distribution in given Section 2.2.
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Figure 13: The pdf of T (1−β1)(τ̂LS,T −τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and
right panel respectively) and β1 = 0.95, β2 = 1. The blue solid line is the finite sample
distribution when T = 200; the black broken line is the density given in Theorem 4.1;
and the red dotted line is the long-span limiting distribution in given Section 2.2.
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Figure 14: The pdf of T 2(β2 − 1)2(τ̂LS,T − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle
and right panel respectively) and β1 = 1, β2 = 0.995. The blue solid line is the finite
sample distribution when T = 200; the black broken line is the density given in Theorem
4.1; and the red dotted line is the long-span limiting distribution in given Section 2.3.
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Figure 15: The pdf of T (β2 − β1)(τ̂LS,T − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle
and right panel respectively) and β1 = 0.5, β2 = 0.995. The blue solid line is the
finite sample distribution when T = 200; the black broken line is the density given in
Theorem 4.1; and the red dotted line is the long-span limiting distribution in given
Section 2.4.
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Figure 16: The pdf of T (β2 − β1)(τ̂LS,T − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle
and right panel respectively) and β1 = 0.95, β2 = 0.995. The blue solid line is the
finite sample distribution when T = 200; the black broken line is the density given in
Theorem 4.1; and the red dotted line is the long-span limiting distribution in given
Section 2.4.
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Figure 17: The pdf of T 2(β2− β1)2(τ̂LS,T − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle
and right panel respectively) and β1 = 0.995, β2 = 0.97. The blue solid line is the
finite sample distribution when T = 200; the black broken line is the density given in
Theorem 4.1; and the red dotted line is the long-span limiting distribution in given
Section 2.5.

­10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
en

si
ty

­10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

­10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en

si
ty

Figure 18: The pdf of cT
kT

(τ̂LS,T − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and right
panel respectively) and β1 = 0.95, β2 = 1, c = 1, kT = 20. The blue solid line is the
finite sample distribution when T = 200; the black broken line is the density given in
Theorem 4.1; and the red dotted line is the long-span limiting distribution in given
Section 2.6.
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Figure 19: The pdf of c2T 2

k2T
(τ̂LS,T − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and

right panel respectively) and β1 = 1, β2 = 0.96, c = 1.2, kT = 30. The blue solid line is
the finite sample distribution when T = 200; the black broken line is the density given
in Theorem 4.1; and the red dotted line is the long-span limiting distribution in given
Section 2.7.
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Figure 20: The pdf of c
2T 2

k2T
(τ̂LS,T −τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and right

panel respectively) and β1 = 1, β2 = 0.995, c = 0.15, kT = 30. The blue solid line is
the finite sample distribution when T = 200; the black broken line is the density given
in Theorem 4.1; and the red dotted line is the long-span limiting distribution in given
Section 2.7.
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exact distribution is asymmetric and has trimodality. These two properties are also

found in the finite sample distribution of the LS estimator of structural break point in

the AR model.

Unfortunately, the literature on the estimation of structural break point in AR(1)

models has always focused on developing asymptotic theory with the time spans before

and after the break being assumed to go to infinity, which has been shown in this paper

to provide poor approximations to the finite sample distribution in many empirically

relevant cases. Moreover, the long-span asymptotics developed in the literature are

different whether the underlying AR(1) coeffi cient is less than, equal to or greater than

one. This discontinuity in the long-span asymptotic distributions makes the limiting

distributions developed in the literature diffi cult to use in practice.

This paper provides a unified limiting theory for estimating the break point in AR(1)

models when nusiance parameters κ and δ are known. It considers a continuous time

approximation to the discrete time AR model and develops an in-fill asymptotic theory

for the LS estimator of structural break point. The developed in-fill asymptotic theory

is continuous in the underlying roots and, hence, offers a unified theory for making

inference about the break point. We also show that this distribution has trimodality

and is asymmetric, and approximates the finite sample distribution better than the

long-span limiting distribution developed in the literature in all cases.

The same method can be used to provide a unified limiting theory for estimating

the break point in AR(1) models when all the nuisance parameters are unknown. As

shown in LWY (2016) for the model with a break in mean, the presence of unknown

nuisance parameters has implications for the in-fill asymptotic theory. The same kind

of implications will be applicable in AR(1) models with a break. The results will be

reported in another paper.

Appendix
Proof of Lemma 3.1: (a) It is obvious that E

(
J̃κ,δ,τ (r)

)
= 0.

For any fixed r > 0, when r ≤ τ , it is straightforward that σ2J(r) = 1
2
(1 −

exp(−2κr))/κ.
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When r > τ , from (4), we have

J̃κ,δ,τ (r) =

∫ τ

0

exp(−(κ+ δ)(r − s) + δ(τ − s))dB(s) +

∫ r

τ

exp(−(κ+ δ)(r − s))dB(s)

=

∫ τ

0

exp(−(κ+ δ)r + δτ + κs)dB(s) +

∫ r

τ

exp(−(κ+ δ)(r − s))dB(s)

=

∫ τ

0

exp(−(κ+ δ)r + (κ+ δ)τ − κτ + κs)dB(s) +

∫ r

τ

exp(−(κ+ δ)(r − s))dB(s)

=

∫ τ

0

exp(−(κ+ δ)(r − τ)− κ(τ − s))dB(s) +

∫ r

τ

exp(−(κ+ δ)(r − s))dB(s)

= exp(−(κ+ δ)(r − τ))

∫ τ

0

exp(−κ(τ − s))dB(s) +

∫ r

τ

exp(−(κ+ δ)(r − s))dB(s).

σ2J(r) = exp (−2(κ+ δ)(r − τ))

(
1

2κ
(1− exp(−2κτ))

)
+

∫ r

τ

exp (−2(κ+ δ)(r − s)) ds.

=
1

2κ
{exp (−2(κ+ δ)(r − τ))− exp (−2(κ+ δ)r + 2δτ)}

+
1

2(κ+ δ)
(1− exp(−2(κ+ δ)(r − τ)))

=

(
1

2κ
− 1

2(κ+ δ)

)
exp(−2(κ+ δ)(r − τ))− 1

2κ
exp (−2(κ+ δ)r + 2δτ) +

1

2(κ+ δ)

=
δ

2κ(κ+ δ)
exp(−2(κ+ δ)(r − τ))− 1

2κ
exp (−2(κ+ δ)r + 2δτ) +

1

2(κ+ δ)
,

which gives the result in Lemma 3.1 (a).

(b) When r ≤ τ ,

dJ̃κ,δ,τ (r) = −κJ̃κ,δ,τ (r) + dB(r),

with J̃(0) = 0.

Following Phillips (1987b), we have

J̃κ,δ,τ (r) =

∫ r

0

exp(−(r − s)κ)dB(s).

When r > τ ,

dJ̃κ,δ,τ (r) = −(κ+ δ)J̃κ,δ,τ (r) + dB(r),

with J̃κ,δ,τ (τ) =
∫ τ
0

exp(−(τ − s)κ)dB(s).

Define the integration factor v(s) = exp((κ+ δ)s). By definition, we have

dv(s) = (κ+ δ)v(s)ds.
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When s > τ,we have

d
(
v(s)J̃κ,δ,τ (s)

)
= v(s)dJ̃κ,δ,τ (s) + J̃κ,δ,τ (s)dv(s)

= v(s)
(
−(κ+ δ)J̃κ,δ,τ (s)ds+ dB(s)

)
+ J̃κ,δ,τ (s)(κ+ δ)v(s)ds

= v(s)dB(s)

= exp((κ+ δ)s)dB(s),

which leads to ∫ r

τ

d
(
v(s)J̃κ,δ,τ (s)

)
=

∫ r

τ

exp((κ+ δ)s)dB(s).

Therefore, we have

v(r)J̃κ,δ,τ (r) = v(τ)J̃κ,δ,τ (τ) +

∫ r

τ

exp((κ+ δ)s)dB(s)

= exp((κ+ δ)τ)

∫ τ

0

exp(−κ(τ − s))dB(s) +

∫ r

τ

exp((κ+ δ)s)dB(s).

(15)

So

J̃κ,δ,τ (r) = exp(−(κ+ δ)(r − τ))

∫ τ

0

exp(−κ(τ − s))dB(s) +

∫ r

τ

exp(−(κ+ δ)(r − s))dB(s)

=

∫ τ

0

exp(−(r − s)(κ+ δ) + (τ − s)δ)dB(s) +

∫ r

τ

exp(−(r − s)(κ+ δ))dB(s),

where the first equality is obtained by dividing equation (15) by v(r). The proof of

Lemma 3.1 (b) is completed.

Proof of Lemma 3.2: When t ≤ τ 0,

dy(t) = −κy(t)dt+ σdB(t),

with the initial condition y(0). Following Phillips (1987), we know that

y(t) = σJ̃κ,δ,τ0(t) + exp(−κt)y(0). (16)

When t > τ 0,

dy(t) = −(κ+ δ)y(t)dt+ σdB(t)

with y(τ 0) = σJ̃κ,δ,τ0(τ 0) + exp(−κτ 0)y(0).
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By methods similar to those in the proof of Lemma 3.1 (b), we have

y(t) = exp(−(κ+ δ)(t− τ 0))y(τ 0) + σ

∫ t

τ0

exp(−(κ+ δ)(t− s))dB(s)

= exp(−(κ+ δ)(t− τ 0))
(
σJ̃κ,δ,τ0(τ 0) + exp(−κτ 0)y(0)

)
+ σ

∫ t

τ0

exp(−(κ+ δ)(t− s))dB(s)

= σ

(
exp(−(κ+ δ)(t− τ 0))J̃κ,δ,τ0(τ 0) +

∫ t

τ0

exp(−(κ+ δ)(t− s))dB(s)

)
+ exp(−(κ+ δ)(t− τ 0)− κτ 0)y(0)

= σJ̃κ,δ,τ0(t) + exp(−tκ− (t− τ 0)δ)y(0). (17)

where the last equation is from (6).

Alternatively, we can write (16) and (17) as

y(t) = σJ̃κ,δ,τ0(t) + exp
(
−tκ− (t− τ 0)δ1[t>τ0]

)
y(0),

which gives the result in Lemma 3.2.

Proof of Lemma 3.3: First write g(y(s)) = y2(s). Since g function is twice contin-

uously differentiable, by Ito’s Lemma, we have

dg(y(s)) =
dg

dy
(y(s))dy(s) +

1

2

d2g

dy2
(y(s))(dy(s))2,

which implies

dy2(s) = 2y(s)dy(s) + (dy(s))2

= 2y(s)
[
−(κ+ δ1[s>τ0])y(s)ds+ σdB(s)

]
+ σ2ds

= −2(κ+ δ1[s>τ0])y
2(s)ds+ 2σy(s)dB(s) + σ2ds

from which we obtain the result in Lemma 3.3 by taking the integral over [0, r] at both

sides

2σ

∫ r

0

y(s)dB(s) = y2(r)− y2(0) + 2

∫ r

0

(κ+ δ1[s>τ0])y
2(s)ds− rσ2.

Proof of Theorem 3.1: Note that

32



τ̂ML = arg max
τ∈(0,1)

{logL(τ)} = arg max
τ∈(0,1)

log

(
dPτ
dBt

)
= arg max

τ∈(0,1)

[
log

(
dPτ
dBt

)
− log

(
dPτ0
dBt

)]
= arg max

τ∈(0,1)
log

(
dPτ
dPτ0

)
,

where log
(
dPτ
dPτ0

)
is the log-likelihood ratio with the expression

log

(
dPτ
dPτ0

)
=

1

σ2

{∫ 1

0

(
−(κ+ δ1[t>τ ]) + (κ+ δ1[t>τ0])

)
y(t)dy(t)

−1

2

∫ 1

0

(
(κ+ δ1[t>τ ])

2 − (κ+ δ1[t>τ0])
2
)
y2(t)dt

}
=

∫ 1

0

δ

σ
(1[t>τ0] − 1[t>τ ])y(t)dB(t)− 1

2

∫ 1

0

(
δ

σ

)2
(1[t>τ0] − 1[t>τ ])

2y2(t)dt

When τ ≤ τ 0, we have

log

(
dPτ
dPτ0

)
= − δ

σ

∫ 1

0

1[τ<t≤τ0]y(t)dB(t)− 1

2

(
δ

σ

)2 ∫ 1

0

1[τ<t≤τ0]y
2(t)dt

= − δ
σ

∫ τ0

τ

y(t)dB(t)− 1

2

(
δ

σ

)2 ∫ τ0

τ

y2(t)dt

= − δ
σ

[∫ τ0

0

y(t)dB(t)−
∫ τ

0

y(t)dB(t)

]
− 1

2

(
δ

σ

)2 ∫ τ0

τ

y2(t)dt

=
δ

σ

[∫ τ

0

y(t)dB(t)−
∫ τ0

0

y(t)dB(t)

]
− 1

2

(
δ

σ

)2 ∫ τ0

τ

y2(t)dt

When τ > τ 0, we have

log

(
dPτ
dPτ0

)
=
δ

σ

∫ 1

0

1[τ0<t≤τ ]y(t)dB(t)− 1

2

(
δ

σ

)2 ∫ 1

0

1[τ0<t≤τ ]y
2(t)dt

=
δ

σ

∫ τ

τ0

y(t)dB(t)− 1

2

(
δ

σ

)2 ∫ τ

τ0

y2(t)dt

=
δ

σ

[∫ τ

0

y(t)dB(t)−
∫ τ0

0

y(t)dB(t)

]
− 1

2

(
δ

σ

)2 ∫ τ

τ0

y2(t)dt

Therefore, the exact log-likelihood ratio can be written as

log

(
dPτ
dPτ0

)
=
δ

σ

[∫ τ

0

y(t)dB(t)−
∫ τ0

0

y(t)dB(t)

]
− 1

2

∣∣∣∣∣
∫ τ

τ0

(
δ

σ

)2
y2(t)dt

∣∣∣∣∣ .
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This implies that the ML estimator of break point is

τ̂ML
d
= arg max

τ∈(0,1)

{
δ

σ

[∫ τ

0

y(t)dB(t)−
∫ τ0

0

y(t)dB(t)

]
− 1

2

∣∣∣∣∣
∫ τ

τ0

(
δ

σ

)2
y2(t)dt

∣∣∣∣∣
}

= arg max
τ∈(0,1)

{
1

δ

[∫ τ

0

y(t)

σ
dB(t)−

∫ τ0

0

y(t)

σ
dB(t)

]
− 1

2

∣∣∣∣∣
∫ τ

τ0

(
y(t)

σ

)2
dt

∣∣∣∣∣
}
,

which gives the result in Theorem 3.1.

Proof of Lemma 4.1 (a): Following Phillips (1987b), first note that

Yt = exp(−(κ+ δ1[t>k0])/T )Yt−1 + σet +Op(T
−2), (18)

where Op(T
−2) term is the approximation error.

When t ≤ k0, from (18) we have

Yt = exp(−κ/T )Yt−1 + σet +Op(T
−2)

= σ
t∑

j=1

exp(−(t− j)κ/T )ej + exp(−tκ/T )Y0 +Op(T
−1),

and thus when r ≤ τ 0, we have

T−
1
2YbTrc = σ

bTrc∑
j=1

exp(−(bTrc − j)κ/T )

∫ j/T

(j−1)/T
dXT (s) + exp(−bTrcκ/T )

Y0√
T

+Op(T
− 3
2 )

= σ

bTrc∑
j=1

∫ j/T

(j−1)/T
exp(−(r − s)κ)dXT (s) + exp(−rκ)

Y0√
T

+Op(T
− 3
2 )

= σ

∫ r

0

exp(−(r − s)κ)dXT (s) + exp(−rκ)
Y0√
T

+Op(T
− 3
2 )

⇒ σ

∫ r

0

exp(−(r − s)κ)dB(s) + exp(−rκ)y0

= σJ̃κ,δ,τ0(r) + exp(−rκ)y0, (19)

where σ
∫ r
0

exp(−(r− s)κ)dXT (s)⇒ σ
∫ r
0

exp(−(r− s)κ)dB(s) is from Phillips (1987b)

and the last equation comes from the definition of J̃κ,δ,τ (r) in (4).

Similarly, when t > k0, we have

Yt = exp(−(κ+ δ)/T )Yt−1 + σet +Op(T
−2)

= σ
t∑

j=k0+1

exp(−(t− j)(κ+ δ)/T )ej + exp(−(t− k0)(κ+ δ)/T )Yk0 +Op(T
−1),
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and thus when r > τ 0, we have

T−
1
2YbTrc = σ

bTrc∑
j=bTτ0c+1

exp(−(bTrc − j)(κ+ δ)/T )

∫ j/T

(j−1)/T
dXT (s)

+ exp(−(bTrc − bTτ 0c)(κ+ δ)/T )
YbTτ0c√

T
+Op(T

− 3
2 )

= σ

bTrc∑
j=bTτ0c+1

∫ j/T

(j−1)/T
exp(−(r − s)(κ+ δ))dXT (s)

+ exp(−(r − τ 0)(κ+ δ))
YbTτ0c√

T
+Op(T

− 3
2 )

= σ

∫ r

τ0

exp(−(r − s)(κ+ δ))dXT (s) + exp(−(r − τ 0)(κ+ δ))
YbTτ0c√

T
+Op(T

− 3
2 )

⇒ σ

∫ r

τ0

exp(−(r − s)(κ+ δ))dB(s) + exp(−(r − τ 0)(κ+ δ))
(
σJ̃κ,δ,τ0(τ 0) + exp(−τ 0κ)y0

)
= σ

{
exp(−(r − τ 0)(κ+ δ))J̃κ,δ,τ0(τ 0) +

∫ r

τ0

exp(−(r − s)(κ+ δ))dB(s)

}
+ exp(−(r − τ 0)(κ+ δ)− τ 0κ)y0,

= σJ̃κ,δ,τ0(r) + exp(−(r − τ 0)κ− (r − τ 0)δ − τ 0κ)y0

= σJ̃κ,δ,τ0(r) + exp(−rκ− (r − τ 0)δ)y0. (20)

where the the second last equation is from (6).

The combination of (19) and (20) leads to the result in Lemma 4.1 (a).

The proofs of Lemma 4.1 (b) and (c) are entirely similar to the proof of Lemma

4.1 (a). We skip them for simplicity.

The proof of Lemma 4.1 (d): We first square (12) to obtain

Y 2
t =

[
(1− (κ+ δ1[t>k0])h)Yt−1 + σet

]2
= (1− (κ+ δ1[t>k0])h)2Y 2

t−1 + 2σ(1− (κ+ δ1[t>k0])h)Yt−1et + σ2e2t

= (1− 2(κ+ δ1[t>k0])h)Y 2
t−1 + 2σ(1− (κ+ δ1[t>k0])h)Yt−1et + σ2e2t +Op(T

−2)

=

[
1−

2(κ+ δ1[t>k0])

T

]
Y 2
t−1 + 2σYt−1et + σ2e2t − 2σ(κ+ δ1[t>k0])

Yt−1et
T

+Op(T
−2),

and we have

Y 2
t − Y 2

t−1 = −
2(κ+ δ1[t>k0])

T
Y 2
t−1 + 2σYt−1et + σ2e2t − 2σ(κ+ δ1[t>k0])

Yt−1et
T

+Op(T
−2),
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where by first summing over t from t = 1 to t = bTrc and then dividing T at both

sides, we obtain

Y 2
bTrc

T
− Y 2

0

T
= − 2

T 2

bTrc∑
t=1

(κ+ δ1[t>k0])Y
2
t−1 +

2σ

T

bTrc∑
t=1

Yt−1et +
1

T

bTrc∑
t=1

σ2e2t

− 2σ

T 2

bTrc∑
t=1

(κ+ δ1[t>k0])Yt−1et +Op(T
−2)

= − 2

T 2

bTrc∑
t=1

(κ+ δ1[t>k0])Y
2
t−1 +

2σ

T

bTrc∑
t=1

Yt−1et +
1

T

bTrc∑
t=1

σ2e2t +Op(T
− 1
2 ).

(21)

To obtain (21), we have claimed 2σ
T 2

∑bTrc
t=1 (κ+ δ1[t>k0])Yt−1et= Op(T

− 1
2 ) since∣∣∣∣∣∣2σT 2

bTrc∑
t=1

(κ+ δ1[t>k0])Yt−1et

∣∣∣∣∣∣ ≤ 2σC

T 2

bTrc∑
t=1

|Yt−1et|

≤ 2σC√
T

max
t=1,...,bTrc

∣∣∣T− 1
2Yt−1

∣∣∣ 1

T

bTrc∑
t=1

|et|

= Op(T
− 1
2 ),

where C is a positive constant, the last equation comes from Lemma 4.1 (a) for T−
1
2Yt−1

and the law of large number for the i.i.d sequence {|et|}.
So when r ≤ τ 0, from (21) we have

Y 2
bTrc

T
− Y 2

0

T
= −2κ

T 2

bTrc∑
t=1

Y 2
t−1 +

2σ

T

bTrc∑
t=1

Yt−1et +
1

T

bTrc∑
t=1

σ2e2t +Op(T
− 1
2 ),

and after some rearrangement, we have

2σ

T

bTrc∑
t=1

Yt−1et =
Y 2
bTrc

T
− Y 2

0

T
+

2κ

T 2

bTrc∑
t=1

Y 2
t−1 −

1

T

bTrc∑
t=1

σ2e2t +Op(T
− 1
2 )

⇒
[
σJ̃κ,δ,τ0(r) + exp(−rκ)y0

]2
− y20 + 2κ

∫ r

0

[
σJ̃κ,δ,τ0(s) + exp(−sκ)y0

]2
ds− σ2r

= 2σ

∫ r

0

[
σJ̃κ,δ,τ0(s) + exp(−sκ)y0

]
dB(s), (22)

where the convergence result comes from Lemma 4.1 (a), (c) and the law of large number

for the i.i.d sequence {e2t}, and the last equation comes from Lemma 3.2 and 3.3.
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Similarly, when r > τ 0, we have

2σ

T

bTrc∑
t=1

Yt−1et =
Y 2
bTrc

T
− Y 2

0

T
+

2

T 2

bTrc∑
t=1

(κ+ δ1[t>k0])Y
2
t−1 −

1

T

bTrc∑
t=1

σ2e2t +Op(T
− 1
2 )

⇒
[
σJ̃κ,δ,τ0(r) + exp(−rκ− (r − τ 0)δ)y0

]2
− y20

+ 2

∫ r

0

(κ+ δ1[s>τ0])
[
σJ̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])y0

]2
ds− σ2r

= 2σ

∫ r

0

[
σJ̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])y0

]
dB(s), (23)

where the last equation comes from Lemma 3.2 and 3.3.

The combination of (22) and (23) leads to

T−1
bTrc∑
t=1

Yt−1et ⇒
∫ r

0

[
σJ̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])y(0)

]
dB(s),

the result in Lemma 4.1 (d).

Proof of Theorem 4.1: From (14), we have

k̂LS,T = arg max
k=1,...,T−1

{
k∑
t=1

1

σ2
(Yt − (1− κh)Yt−1) δhYt−1 +

1

2

k∑
t=1

(
δ

σ
hYt−1

)2}
.

Let Γ(k) =
∑k

t=1
1
σ2

(Yt − (1− κh)Yt−1) δhYt−1 + 1
2

∑k
t=1

(
δ
σ
hYt−1

)2
. Then, the LS

estimator k̂LS,T defined in (13) can be expressed as

k̂LS,T = arg max
k=1,...,T−1

{Γ(k)} = arg max
k=1,...,T−1

{Γ(k)− Γ(k0)} .
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When k ≤ k0, h→ 0, we have

Γ(k)− Γ(k0) = −
k0∑

t=k+1

1

σ2
(Yt − (1− κh)Yt−1) δhYt−1 −

1

2

k0∑
t=k+1

(
δ

σ
hYt−1

)2

= − δ
σ

1

T

k0∑
t=k+1

Yt−1et −
1

2

(
δ

σ

)2
1

T 2

k0∑
t=k+1

Y 2
t−1

⇒
(
− δ
σ

)∫ τ0

τ

[
σJ̃κ,δ,τ0(s) + exp(−sκ)y0

]
dB(s)

−1

2

(
δ

σ

)2 ∫ τ0

τ

[
σJ̃κ,δ,τ0(s) + exp(−sκ)y0

]2
dr

=

(
− δ
σ

){∫ τ0

0

[
σJ̃κ,δ,τ0(s) + exp(−sκ)y0

]
dB(s)

−
∫ τ

0

[
σJ̃κ,δ,τ0(s) + exp(−sκ)y0

]
dB(s)

}
−1

2

(
δ

σ

)2 ∫ τ0

τ

[
σJ̃κ,δ,τ0(s) + exp(−sκ)y0

]2
dr

=

(
δ

σ

){∫ τ

0

[
σJ̃κ,δ,τ0(s) + exp(−sκ)y0

]
dB(s)

−
∫ τ0

0

[
σJ̃κ,δ,τ0(s) + exp(−sκ)y0

]
dB(s)

}
−1

2

(
δ

σ

)2 ∣∣∣∣∫ τ

τ0

[
σJ̃κ,δ,τ0(s) + exp(−sκ)y0

]2
dr

∣∣∣∣ ,
where B(·) is a standard Brownian motion, J̃κ,δ,τ0(s) is a OU process defined in (4) and
the convergence result comes from Lemma 4.1.
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When k > k0, h→ 0, we have

Γ(k)− Γ(k0) =

k∑
t=k0+1

1

σ2
(Yt − (1− κh)Yt−1) δhYt−1 +

1

2

k∑
t=k0+1

(
δ

σ
hYt−1

)2

=
1

T

k∑
t=k0+1

1

σ2
(
−δhY(t−1) + σet

)
δYt−1 +

1

2

1

T 2

k∑
t=k0+1

(
δ

σ

)2
Y 2
(t−1)

=
δ

σ

1

T

k∑
t=k0+1

Y(t−1)et −
1

2

(
δ

σ

)2
1

T 2

k∑
t=k0+1

Y 2
(t−1)

⇒
(
δ

σ

)∫ τ

τ0

[
σJ̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])y0

]
dB(s)

−1

2

(
δ

σ

)2 ∫ τ

τ0

[
σJ̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])y0

]2
dr

=

(
δ

σ

){∫ τ

0

[
σJ̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])y0

]
dB(s)

−
∫ τ0

0

[
σJ̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])y0

]
dB(s)

}
−1

2

(
δ

σ

)2 ∣∣∣∣∫ τ

τ0

[
σJ̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])y(0)

]2
ds

∣∣∣∣ ,
where the second equation comes from the fact that Yt = (1− (κ+ δ)h)Yt−1 + σet for

t > k0 and and the convergence result comes from Lemma 4.1.

Applying the continuous mapping theorem to the argmax function leads to

τ̂LS,T
d→ arg max

τ∈(0,1)

{∫ τ

τ0

(
δ

σ

)[
σJ̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])y(0)

]
dB(s)

−1

2

∣∣∣∣∣
∫ τ

τ0

(
δ

σ

)2 [
σJ̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])y(0)

]2
ds

∣∣∣∣∣
}

= arg max
τ∈(0,1)

{∫ τ

τ0

1

δ

[
J̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])

y(0)

σ

]
dB(s)

−1

2

∣∣∣∣∣
∫ τ

τ0

[
J̃κ,δ,τ0(s) + exp(−sκ− (s− τ 0)δ1[s>τ0])

y(0)

σ

]2
ds

∣∣∣∣∣
}
.

where we use the notation
∫ τ
τ0

(·)dB(s) to denote
[∫ τ
0

(·)dB(s)−
∫ τ0
0

(·)dB(s)
]
.This gives

the result in Theorem 4.1 immediately. For a rigorous treatment of the continuous

mapping theorem for the argmax function, see Kim and Pollard (1990).
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