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Abstract

Treatment effect heterogeneity is frequently studied in regression discontinuity (RD)

applications. This paper is the first to propose tests for treatment effect heterogeneity

under the RD setup. The proposed tests study whether a policy treatment is 1) beneficial

for at least some subpopulations defined by covariate values, 2) has any impact on at

least some subpopulations, and 3) has a heterogeneous impact across subpopulations.

Compared with other methods currently adopted in applied RD studies, such as the sub-

sample regression method and the interaction term method, our tests have the advantage

of being fully nonparametric, robust to weak inference and powerful. Monte Carlo sim-

ulations show that our tests perform very well in small samples. We apply the tests to

study the impact of attending a better high school and discover interesting patterns of

treatment effect heterogeneity that were neglected by classic mean RD analyses.

JEL classification: C21, C31

Keywords: Sharp regression discontinuity, fuzzy regression discontinuity, treatment

effect heterogeneity.
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1 Introduction

Regression discontinuity (RD) has gained increasing popularity in the field of applied

economics in the past two decades for providing credible and straightforward identifica-

tion of the causal effect of policies.1 The identification strategy uses the fact that the

probability of an individual receiving a policy treatment changes discontinuously with an

underlying variable, often referred to as the running variable. Researchers compare the

response outcome above and below the point of the underlying variable where the dis-

continuity occurs and identify the average treatment effect of individuals at the margin

of policy treatment. If researchers are only interested in the average effect, controlling

for additional covariates other than the running variable is not necessary under the RD

setup. However, when researchers are further interested in treatment effect heterogeneity,

or the variation of the policy impact among individuals, it is important to extract infor-

mation from additional controls and to consider the conditional average policy effects for

individuals with different observed characteristics.

This paper considers the inference of conditional average policy effects under the RD

setup. Specifically, we propose (uniform) tests for treatment effect heterogeneity that

test whether a policy treatment is 1) beneficial to at least some subpopulations defined

by covariate values, 2) has any impact on at least some subpopulations, and 3) has

heterogeneous impact across all subpopulations. Both sharp and fuzzy RD designs are

considered.

The tests we propose are useful because applied researchers are often interested in

treatment effect heterogeneity under the RD setup. A survey of recent publications in

top general interest journals in economics finds that 15 out of 17 papers that adopted

the RD framework analyze treatment effect heterogeneity.2 The common practice is to

1Pioneering work and early applications in RD include van der Klaauw (2002), Angrist and Lavy

(1999), and Black (1999), among others. Imbens and Lemieux (2008) and Lee and Lemieux (2010)

provide excellent reviews of the topic.
2The survey includes all 2015 issues of Quarterly Journal of Economics, Journal of Political Econ-

omy, Review of Econommic Studies, American Economic Review, American Economic Journal: Applied

Economics and American Economic Journal: Economic Policy as well as 2016 issues of these Journals

published before April. A total of 17 papers (0 in QJE, 1 in JPE, 0 in RESTUD, 5 in AER, 5 in AEJ: AE,

and 6 in AEJ: EP) use the RD method, among which 15 address the issue of treatment effect heterogene-
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build linear regression models with interaction terms between the indicator of whether a

running variable exceeds the threshold and additional controls of interest or to accompany

the primary RD regression with subsample regressions.

The interaction term method, as we will show, is parametric and severely over-rejects

under model misspecification, even if researchers use data only close to the cut-off of the

running variable for estimation. This is in sharp contrast with the classic RD regression

method which is nonparametric and robust to misspecification as long as the estimation

window, or bandwidth, is properly chosen.

The subsample regression method, on the other hand, is nonparametric. To imple-

ment the method correctly it is essential to adjust all inference results for multiple testing

(see, for example, Romano and Shaikh, 2010; Anderson, 2008). However, all papers in

our survey using the subsample regression method ignore the issue of multiple testing.

Moreover, even if multiple testing is correctly accounted for, the subsample regression

method is suboptimal. First, it can produce over-rejected tests and under-covered con-

fidence intervals under the fuzzy RD design if the sample size and the proportion of

compliers are small for some subsamples (Feir et al., 2015). The main reason is that

the subsample regression method relies on subsample local average treatment effect esti-

mators that can have non-classical inference with non-normal distributions under weak

first stage (classic articles on weak inference includes Stock and Yogo, 2005; Staiger and

Stock, 1997; Moreira, 2003, among others). Second, the subsample regression method

often requires categorizing continuous covariates into discrete groups. If the groups are

coarsely defined, important information on treatment effect heterogeneity can be lost.

If the groups are finely discretized, the subsample regression method can lose power for

having subsamples of small sizes.

We characterize the hypotheses of interest using nonparametric conditional moment

equalities/inequalities conditional on both the running variable of the RD model and

other additional covariates of interest, and then use the idea of the instrument function

method developed in Andrews and Shi (2013, 2015) to transform the hypotheses to (an

ity. 2 of the 15 papers carry out the heterogeneity analysis using linear regressions with interaction terms.

All of the other 13 papers use subsample RD regressions. None of the 13 papers using the subsample

regression method correct for multiple testing.
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infinite number of) instrumented conditional moment equalities/inequalities conditional

only on the running variable. This transformation of hypotheses is without loss of in-

formation, and each of the transformed moments can be estimated by nonparametric

local linear estimator at the boundary. The tests we propose have statistics of order

(nh)−1/2, which means that although we are looking at conditional average policy effects

conditional on multiple control variables, the statistic has the same rate of convergence

as the classic mean RD estimators that do not control covariates other than the running

variable. Moreover, the proposed tests do not rely on plug-in estimators of conditional

average treatment effects, meaning that the proposed tests are robust to the weak in-

ference problem discussed above. As we demonstrate in the Monte Carlo simulation

section, the proposed tests have very good small sample performance compared to both

the interaction term method and the subsample regression method currently adopted in

the applied literature.

The tests proposed in this paper are related to Andrews and Shi (2013, 2015), and

other conditional moment equality/inequality tests that apply the instrument function

method (e.g. Hsu, 2015; Bugni et al., 2015). Since estimation of the nonparametric RD

model involves boundary estimators in the local polynomial class, and such estimators

have not been previously used in conjunction with the instrument function method, our

paper contributes to the literature in developing a new testing method for conditional

moment equality/inequalities that requires nonparametric estimation on the boundary.

In addition, we propose a new multiplier bootstrap method for simulating critical values

in proposed testing approaches.

We apply the proposed tests to study the impact of attending a better high school in

Romania following Pop-Eleches and Urquiola (2013). Mean RD analysis in Pop-Eleches

and Urquiola (2013) find that going to a more selective high school significantly improves

the average Baccalaureate exam grade among marginal students but does not seem to

affect the probability of a student taking the Baccalaureate exam. Pop-Eleches and

Urquiola (2013) carry out an analysis of the heterogeneity of the estimated effect using

the subsample regression method and again find little evidence supporting the effect

of going to a better school on the exam-taking rate. In contrast, our proposed tests

detect a clear signal that attending a more selective school has a significant effect on the
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exam-taking rate for at least some subpopulations. Our tests also find strong evidence

supporting treatment effect heterogeneity. A closer look at the testing results suggests

that the insignificant mean effect found in Pop-Eleches and Urquiola (2013) results from

the cancellation of opposite-signed effects among different subpopulations.

The paper is organized as follows. Section 2 sets up the model and identifies the

conditional treatment effects of interest under sharp and fuzzy RD designs. Section

3 proposes three uniform tests for treatment effect heterogeneity under the sharp RD

design. Section 4 extends the tests to the fuzzy RD design. Section 5 examines the small

sample performance of the proposed tests and compares the performance with other naive

tests currently adopted in the applied literature. Section 6 applies the proposed tests to

study the heterogeneous effect of going to a better school using the Romanian dataset

published by Pop-Eleches and Urquiola (2013). Proofs and technical assumptions are

provided in the appendix.

2 Model Framework

Let Yi denote the outcome of interest and Ti the dummy variable indicating treatment of

individual i if Ti = 1. Use Yi(0) and Yi(1) to denote potential outcomes when Ti = 0 and

Ti = 1, respectively. Whether individual i receives treatment depends at least partially

on the running variable Zi. A policy intervention encourages an individual i to receive

treatment if the running variable Zi is larger than or equal to c. Let Ti(1) and Ti(0) be the

potential treatment decisions of individual i depending on whether he/she is encouraged

(i.e. Zi ≥ c) or not (i.e. Zi < c). Let Xi denote a set of covariates with compact support

X ⊂ Rdx . Without loss of generality, assume that X = ×dxj=1[0, 1] and use Xc ⊂ X to

denote the support of Xi conditional on Zi = c. For notational simplicity, we assume

that Xi includes only continuous variables. In the next section, we will discuss how to

implement our test when Xi contains discrete variables.

Assumption 2.1 For a running variable Zi continuously distributed in a neighborhood

of the threshold value c, assume that

(i) E[Yi(t)|Xi = x, Zi = z] is continuous with respect to z in the neighborhood of c for

both t = 0, 1 and x ∈ Xc.
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(ii) The distribution function of Xi|Zi = z is continuous with respect to z in a neigh-

borhood of c.

Assumption 2.1(i) requires that the conditional means of the potential outcomes and

the conditional distribution of the additional controls are continuous with respect to

the running variable in a neighborhood of c. At first appearance, Assumption 2.1(i)

is stronger than the standard continuity assumption of E[Yi(t)|Zi = z] required in the

literature (c.f. Imbens and Lemieux, 2008). However, as we will illustrate, both parts

of the assumption are simply direct consequences of having “no precise control over the

running variable”, a rule for identification introduced by Lee and Lemieux (2010) and

well-accepted in the RD literature. To be specific, suppose without loss of generality that

the potential outcomes Yi(t) = gt(Xi, Zi, Vi) are a function of predetermined observed

and unobserved characteristics Xi and Vi, as well as the running variable Zi, for both

t = 0, 1. Following Lee and Lemieux (2010), an individual is said to have imprecise

control over the running variable if the conditional density Zi = z|(Xi, Vi) is continuous

in z around c. As shown by Lee and Lemieux (2010), this no perfect control requirement

implies that the density of (Xi, Vi)|Zi = z is continuous in z around c, which further

implies continuity of the density Xi|Zi = z around z = c, the condition imposed in

Assumption 2.1(ii). Further, the conditional mean

E[Yi(t)|Xi = x, Zi = z] =

∫
gt(x, z, V )

f(x, V |z)
f(x|z)

dV

is continuous in z around c because both conditional densities in the formula are contin-

uous in z around c.

When the treatment decision Ti is a deterministic function of the running variable

Zi such that Ti = 1(Zi ≥ c), the model follows a sharp RD design. Under Assumption

2.1, the conditional average policy effect (ATE) conditional on Zi = c is defined and

identified as

ATE = E[Yi(1)|Zi = c]− E[Yi(0)|Zi = c] = lim
z↘c

E[Yi|Zi = z]− lim
z↗c

E[Yi|Zi = z],

while the conditional average policy effect conditional on Zi = c and Xi = x, CATE(x),
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is defined and identified as

CATE(x) = E[Yi(1)|Xi = x, Zi = c]− E[Yi(0)|Xi = x, Zi = c]

= lim
z↘c

E[Yi|Xi = x, Zi = z]− lim
z↗c

E[Yi|Xi = x, Zi = z].

More generally, when the treatment status Ti is a probabilistic function of Zi, the

RD model follows a fuzzy design. For identification in this general case we require the

following additional assumption.

Assumption 2.2 Assume that

(i) E[Ti(1)|Xi = x, Zi = z] and E[Ti(0)|Xi = x, Zi = z] are continuous with respect to

z in a neighborhood of c for all x ∈ Xc;

(ii) Ti(1) ≥ Ti(0);

(iii) E[Ti(1)|Xi = x, Zi = c]− E[Ti(0)|Xi = x, Zi = c] > 0 for all x ∈ Xc.

Assumption 2.2(i) requires the continuity of compliance. It is stronger than the stan-

dard continuity of compliance assumption in the literature (c.f. Imbens and Lemieux,

2008) but is again implied by the well-accepted “no perfect control assumption”. As-

sumption 2.2(ii) assumes away the presence of defiers and is a common identifying re-

striction in models with fuzzy RD designs. Assumption 2.2(iii) requires the non-trivial

presence of compliers. It is stronger than the standard assumption that only requires the

existence of compliers unconditional on Xi. This stronger condition is required for the

identification of a conditional local average treatment effect that conditions on the value

of Xi.

Under fuzzy RD design, the local average treatment effect (LATE) and the condi-

tional local average treatment effect (CLATE) for compliers are defined and identified
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respectively as

LATE =E[Yi(1)− Yi(0)|Zi = c, Ti(1)− Ti(0) = 1]

=
E[(Yi(1)− Yi(0)) (Ti(1)− Ti(0)) |Zi = c]

E[Ti(1)− Ti(0)|Zi = c]

=
limz↘cE[Yi|Zi = z]− limz↗cE[Yi|Zi = z]

limz↘cE[Ti|Zi = z]− limz↗cE[Ti|Zi = z]
, and

CLATE(x) = E[Yi(1)− Yi(0)|Xi = x, Zi = c, Ti(1)− Ti(0) = 1]

=
E[(Yi(1)− Yi(0)) (Ti(1)− Ti(0)) |Xi = x, Zi = z]

E[Ti(1)− Ti(0)|Xi = x, Zi = c]

=
limz↘cE[Yi|Xi = x, Zi = z]− limz↗cE[Yi|Xi = x, Zi = z]

limz↘cE[Ti|Xi = x, Zi = z]− limz↗cE[Ti|Xi = x, Zi = z]
. (2.1)

The identification of LATE is standard. The identification of CLATE(x) follows from

Assumptions 2.1 and 2.2 and is given in appendix. The numerators of the LATE and

CLATE(x) are the average reduced-form effect and the conditional average reduced-form

effect of the treatment. All identified treatment effects, including ATE, LATE, CATE,

and CLATE, can be estimated by standard local linear estimation methods.

When the support of Xi at Zi = c, or Xc is large, it is possible that the proportion

of compliers, E[Ti(1)− Ti(0)|Xi = x, Zi = c], is small for some subset of x values. Since

the estimation of CLATE(x) relies on the estimation of proportion of compliers in the

denominator, it can have poor finite sample performance analogous to the concerns raised

in the weak IV literature. Therefore, testing procedures relying on plug-in estimators of

CLATE(x) such as the subsample regression method are suboptimal. We avoid using

plug-in estimators of CLATE(x), as well as LATE, in all proposed tests in Section 4.

As we demonstrate in the Monte Carlo simulation section, our testing procedure is much

more robust than the subsample regression method, even if the latter correctly corrects

for multiple testing.

3 Testing Under the Sharp RD Design

Researchers are often interested in knowing 1) whether a policy treatment is beneficial to

at least some subpopulations defined by covariate values, 2) whether a policy treatment

has any impact on at least some subpopulations, and 3) whether its effect is heterogeneous
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across all subpopulations. In this section, we develop uniform tests for these purposes

under the sharp RD design. We extend the tests to the fuzzy RD design in the next

section.

3.1 Testing if the Treatment is Beneficial for At Least Some Subpopu-

lations

Hypotheses Formation

To test if a policy treatment is beneficial to at least some subpopulations defined by

covariate values or equivalently to test if the conditional average treatment effects is

strictly positive for some covariate values, the null and alternative hypotheses can be

formulated as

Hneg
0,ate : CATE(x) = E[Yi(1)− Yi(0)|Xi = x, Zi = c] ≤ 0, ∀ x ∈ Xc,

Hneg
1,ate : CATE(x) = E[Yi(1)− Yi(0)|Xi = x, Zi = c] > 0, for some x ∈ Xc. (3.1)

If Hneg
0,ate is rejected, then one can conclude that the policy is beneficial to at least some

subpopulations defined by covariate values, with some pre-specified confidence level. Note

that Hneg
0,ate and Hneg

1,ate are defined in a form of conditional moment inequality and we apply

the instrument function approach in Andrews and Shi (2013, 2015) to transform them

to an infinite number of instrumented conditional moment inequalities without loss of

information. We first introduce the set of instrument functions we will use. Let G be the

set of the indicator functions of countable hyper cubes C` such that

G = {g`(·) = 1(· ∈ C`) : ` ≡ (x, r) ∈ L} , where

C` =
(
×dxj=1[xj , xj + r]

)
∩ X and

L =
{

(x, q−1) : q · x ∈ {0, 1, 2, · · · , q − 1}dx , and q = 1, 2, · · ·
}
. (3.2)

For each ` ∈ L, we define the instrumented conditional moment condition ν(`) =

E[g`(Xi)CATE(Xi)|Zi = z] as in Andrews and Shi (2015). ν(`) is also the average

treatment effect for individuals with Xi ∈ C`. When ` = (0, 1), C` = ×dxj=1[0, 1], then

ν(`) reduces to ν(0, 1) = E[CATE(Xi)|Zi = z], the ATE under the sharp RD design

and the reduced-form effect in the fuzzy RD design. As in Andrews and Shi (2013, 2015),
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the hypotheses Hneg
0,ate and Hneg

1,ate in (3.1) are equivalent to

Hneg
0,ate : ν(`) = E[g`(Xi)CATE(Xi)|Zi = c] ≤ 0, ∀ ` ∈ L,

Hneg
1,ate : ν(`) = E[g`(Xi)CATE(Xi)|Zi = c] > 0, for some ` ∈ L. (3.3)

As a result, the hypotheses Hneg
0,ate and Hneg

1,ate can be characterized by infinitely many

instrumented conditional moment inequalities without loss of information. Furthermore,

in Appendix, we show that ν(`) is identified by

ν(`) =E[g`(Xi)CATE(Xi)|Zi = z]

= lim
z↘c

E[g`(Xi)Yi|Zi = z]− lim
z↗c

E[g`(Xi)Yi|Zi = z]. (3.4)

Test Statistic and Asymptotic Results

Based on the identification result in (3.4), for each ` ∈ L, ν(`) can be estimated by a differ-

ence between two local linear estimators. To be specific, letm+(`) = limz↘cE[g`(Xi)Yi|Zi =

z] and m−(`) = limz↗cE[g`(Xi)Yi|Zi = z]. The estimators m̂+(`) and m̂−(`) for m+(`)

and m−(`) are the constant terms in regressions of the form

min
m̂+(`),b̂+(`)

n∑
i=1

1(Zi ≥ c) ·K
(
Zi − c
h

)[
g`(Xi)Yi − m̂+(`)− b̂+(`)(Zi − c)

]2
,

min
m̂−(`),b̂−(`)

n∑
i=1

1(Zi < c) ·K
(
Zi − c
h

)[
g`(Xi)Yi − m̂−(`)− b̂−(`)(Zi − c)

]2
.

where K(·) is a symmetric kernel function and h is the bandwidth. In the Monte Carlo

simulation and the empirical application of this paper, we follow the RD literature and

use the triangular kernel for all local linear estimations.

Following Fan and Gijbels (1992), for j = 0, 1, 2, . . . , define

S+
n,j =

n∑
i=1

1(Zi ≥ c)K
(
Zi − c
h

)
(Zi − c)j , S−n,j =

n∑
i=1

1(Zi < c)K

(
Zi − c
h

)
(Zi − c)j ,

For all ` ∈ L, the local linear estimators can also be written as

m̂+(`) =

∑n
i=1 1(Zi ≥ c)K(Zi−ch )[S+

n,2 − S
+
n,1(Zi − c)]g`(Xi)Yi

S+
n,0S

+
n,2 − S

+
n,1S

+
n,1

≡
n∑
i=1

w+
ni · g`(Xi)Yi,

m̂−(`) =

∑n
i=1 1(Zi < c)K(Zi−ch )[S−n,2 − S

−
n,1(Zi − c)]g`(Xi)Yi

S−n,0S
−
n,2 − S

−
n,1S

−
n,1

≡
n∑
i=1

w−ni · g`(Xi)Yi,
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where w+
ni =

1(Zi≥c)K(
Zi−c
h

)[S+
n,2−S

+
n,1(Zi−c)]

S+
n,0S

+
n,2−S

+
n,1S

+
n,1

and w−ni =
1(Zi<c)K(

Zi−c
h

)[S+
n,2−S

+
n,1(Zi−c)]

S−n,0S
−
n,2−S

−
n,1S

−
n,1

.

An estimator for ν(`) is given by ν̂(`) = m̂+(`)− m̂−(`). For j = 0, 1, 2, . . . , let ϑj =∫∞
0 ujK(u)du. Let σ2

+(`1, `2) = limz↘cCov[g`1(X)Y, g`2(X)Y )|Z = z], and σ2
−(`1, `2) =

limz↗cCov[g`1(X)Y, g`2(X)Y )|Z = z]. We summarize the asymptotics of
√
nh(ν̂(`) −

ν(`)) in the following lemma.

Lemma 3.1 Under Assumption 2.1 and Assumptions A.1 and A.2 described in the ap-

pendix, we have∣∣∣√nh (ν̂(`)− ν(`))−
n∑
i=1

φν,ni(`)
∣∣∣ = op(1),

φν,ni(`) =
√
nh
(
w+
ni · (g`(Xi)Yi −m+(`))− w−ni · (g`(Xi)Yi −m−(`))

)
(3.5)

where the op(1) result holds uniformly over ` ∈ L. Also,

√
nh(ν̂(`)− ν(`))⇒ Φh2,ν (`),

where Φh2(`) denote a mean zero Gaussian process with covariance kernel

h2,ν(`1, `2) =

∫∞
0 (ϑ2 − uϑ1)2K2(u)du

(ϑ2ϑ0 − ϑ2
1)2

σ2
+(`1, `2) + σ2

−(`1, `2)

fz(c)

for `1, `2 ∈ L.

The proof is given in the appendix. Lemma 3.1 shows that
√
nh (ν̂(`)− ν(`)) weakly

converges to a mean zero Gaussian process. φν,ni(`) in (3.5) denotes the influence func-

tion for each observation that contributes to the the limiting distribution of Φ̂ν,n(`) =
√
nh (ν̂(`)− ν(`)).

The Kolmogorov-Smirnov (KS) type test statistic is then defined as

Ŝneg =
√
nh sup

`∈L
ν̂(`).

Decision Rule and Simulated Critical Value

Given the influence function representation in (3.5), we can use the multiplier bootstrap

method in Hsu (2016) to approximate the whole empirical process. To be specific, let U1,

U2,... be i.i.d. pseudo random variables with E[U ] = 0, E[U2] = 1 and E[U4] <∞ that are
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independent of the sample path. In the Monte Carlo simulation and empirical application

of the paper, the pseudo random variables are simulated following the standard normal

distribution. Let the simulated process Φ̂u
ν,n(`) be

Φ̂u
ν,n(`) =

n∑
i=1

Ui · φ̂ν,ni(`),

φ̂ν,ni(`) =
√
nh
(
w+
ni · (g`(Xi)Yi − m̂+(`))− w−ni · (g`(Xi)Yi − m̂−(`))

)
.

Call φ̂ν,ni(`) is the estimated influence function, where m+(`) and m−(`) in φν,ni(`) are

replaced by their nonparametric estimators. The next lemma shows that the process

Φ̂u
ν,n(`) can approximate the empirical process Φ̂ν,n(`) well. The regularity conditions

and the proof are given in Appendix B.

Lemma 3.2 Under Assumption 2.1 and Assumptions A.1, A.2 and A.3 described in the

appendix, Φ̂u
n(`)

p⇒ Φh2,ν (`).3

Let P u denote the multiplier probability measure. For significance level α < 1/2,

define the simulated critical value ĉnegn,ate(α) as

ĉnegn,ate(α) = sup

{
q
∣∣∣P u( sup

`∈L
Φ̂u
ν,n(`) ≤ q

)
≤ 1− α

}
,

i.e., ĉnegn,ate(α) is the (1− α)-th quantile of the simulated null distribution, sup`∈L Φ̂u
ν,n(`).

Finally, define the decision rule of the test as: “Reject Hneg
0,ate if Ŝnegate > ĉnegn,ate(α).”

Size and Power Properties

We summarize the size and power properties of our test in the following theorem. The

regularity conditions and the proof are given in the appendix.

3The conditional weak convergence is in the sense of Section 2.9 of van der Vaart and Wellner (1996)

and Chapter 2 of Kosorok (2008). To be more specific, Ψu
n

p⇒ Ψ in the metric space (D, d) if and only if

supf∈BL1
|Euf(Ψu

n)−Ef(Ψ)| p→ 0 and Euf(Ψu
n)∗−Euf(Ψu

n)∗
p→ 0, where the subscript u in Eu indicates

conditional expectation over the weights Ui’s given the remaining data, BL1 is the space of functions

f : D→ R with Lipschitz norm bounded by 1, and f(Ψu
n)∗ and f(Ψu

n)∗ denote measurable majorants and

minorants with respect to the joint data including the Ui’s. The notation Ψu
n
a.s.⇒ Ψ is defined similarly,

with all the
p→ requirements used in the definition for Ψu

n
p⇒ Ψ replaced by

a.s.→ . Note that by Lemma

1.9.2 (ii) of van der Vaart and Wellner (1996), it is true that Ψu
N

p⇒ Ψ if and only if every subsequence

kN of N has a further subsequence `N of kN such that Ψu
`N

a.s.⇒ Ψ.
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Theorem 3.1 Under Assumption 2.1 and Assumptions A.1, A.2 and A.3 described in

the appendix, if we reject Hneg
0,ate when Ŝnegate > ĉn,neg(α), then

(1) under Hneg
0,ate, limn→∞ P (Ŝnegate > ĉnegn,ate(α)) ≤ α, and

(2) under Hneg
1,ate, limn→∞ P (Ŝnegate > ĉnegn,ate(α)) = 1.

Theorem 3.1 shows that our test for Hneg
0,ate can control size well asymptotically and is

consistent. The asymptotic size is less than or equal to α as a result of adopting the least

favorable configuration case (LFC) in constructing the critical value. One can use the

moment selection or recentering method to avoid using LFC to improve the power of the

test as in Andrews and Shi (2013, 2015) and Donald and Hsu (2016). The implementation

of such a test and the result are standard in the literature, so we omit the details. In

addition, in this paper we focus on KS type tests, but all results can be extended to

Cramér-von Mises type tests fairly easily given the asymptotic results of ν̂(`) and the

simulated process Φ̂u
n(`).

Remarks: Lemmas 3.1 and 3.2 can be extended to other classes of functions that

satisfy the Pollard’s entropy condition defined in (4.2) of Andrews (1994). That is, let

{ft; t ∈ T } be a collection of functions with envelope function F such that the Pollard’s

entropy condition holds. Then under suitable conditions, Lemmas 3.1 and 3.2 would still

hold with g`(Xi)Yi’s being replaced with ft’s. Andrews (1994) gives examples of classes

of functions that satisfy the Pollard’s entropy condition and discuss how one can generate

classes of functions that satisfy Pollard’s entropy condition from sets of functions that

are known to satisfy Pollard’s entropy condition. See Andrews (1994) for details.

Also notice that the proposed test Hneg
0,ate can be trivially extended to study the

hypotheses

Hpos
0,ate : CATE(x) ≥ 0, ∀ x ∈ Xc,

Hpos
1,ate : CATE(x) < 0, for some x ∈ Xc.

We just need to replace Yi in the test for Hneg
0,ate with −Yi.
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Adding Discrete Covariates to the Control Set

Although in this section theXi variable is restricted to be continuous, the tests we propose

can be easily adapted to the case in which Xi includes discrete covariates. Without loss

of generality, we consider the case in which in addition to Xi, there is one binary variable,

Xdi, taking values in {0, 1} in the conditioning set. Let G be defined as before and let

G1 ≡ {1(Xd = 1) · g`(·) : ` ∈ L}. We define G0 similarly. Let G̃ = G1 ∪ G0. It is

straightforward to show that

Hneg
0,ate : CATE(x, xd) ≤ 0, ∀ x ∈ Xc and xd = 0, 1

Hneg
1,ate : CATE(x, xd) > 0, for some x ∈ Xc and xd = 0, 1.

are equivalent to

Hneg
0,ate : ν(g̃) = E[g̃(Xi, Xdi)CATE(Xi, Xdi)] ≤ 0, ∀ g̃ ∈ G̃,

Hneg
1,ate : ν(g̃) = E[g̃(Xi, Xdi)CATE(Xi, Xdi)] > 0, for some g̃ ∈ G̃.

Therefore, we can carry out the uniform sign test in the same way as is discussed in this

section replacing G with G̃, and all results of the test will remain valid.

3.2 Testing if the Treatment Has Any Impact

To test if a policy treatment has any impact on at least some subpopulations defined by

covariate values, the null and alternative hypotheses can be formulated as

Hzero
0,ate : CATE(x) = 0, ∀ x ∈ Xc,

Hzero
1,ate : CATE(x) 6= 0, for some x ∈ Xc. (3.6)

Similar to the previous subsection, we can transform the hypotheses in (3.6) to

Hzero
0,ate : ν(`) = 0, ∀ ` ∈ L,

Hzero
1,ate : ν(`) 6= 0, for some ` ∈ L. (3.7)

The KS type test statistic is then defined as

Ŝzeroate =
√
nh sup

`∈L

∣∣ν̂(`)
∣∣.
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and for significance level α < 1/2, define the simulated critical value ĉzeron,ate(α) as

ĉzeron,ate(α) = sup

{
q
∣∣∣P u( sup

`∈L

∣∣Φ̂u
ν,n(`)

∣∣ ≤ q) ≤ 1− α
}
,

i.e., ĉzeron,ate(α) is the (1−α)-th quantile of the simulated null distribution, sup`∈L
∣∣Φ̂u

ν,n(`)
∣∣.

Let the decision rule be: “Reject Hzero
0,ate if Ŝzeroate > ĉzeron,ate(α).” The following theorem

summarizes the size and power property of the proposed test.

Theorem 3.2 Under Assumption 2.1 and Assumptions A.1, A.2 and A.3, if we reject

Hzero
0,ate when Ŝzeroate > ĉzeron,ate(α), then

(1) under Hzero
0,ate, limn→∞ P (Ŝzeroate > ĉzeron,ate(α)) = α, and

(2) under Hzero
1,ate, limn→∞ P (Ŝzeroate > ĉzeron,ate(α)) = 1.

3.3 Testing if the Treatment Effect is Heterogenous

To test if the treatment effect is heterogenous over covariate values, we define the hy-

potheses as

Hhetero
0,ate : CATE(x) = γ, ∀ x ∈ Xc and some γ ∈ R,

Hhetero
1,ate : Hhetero

0,ate does not hold. (3.8)

If CATE(x) = γ for all x ∈ Xc for some γ ∈ R, then it would hold with γ = ATE =

ν((0, 1)) so that

ν(`) = E[g`(Xi)CATE(Xi)|Zi = c] = E[g`(Xi)ν((0, 1))|Zi = c] = p(`) · ν((0, 1))

where p(`) = E[g`(Xi)|Zi = c] is the conditional probability of Xi ∈ C`. Therefore, the

hypotheses in (3.8) are equivalent to

Hhetero
0,ate : νhetero,ate(`) = ν(`)− ν((0, 1)) · p(`) = 0, ∀ ` ∈ L,

Hhetero
1,ate : νhetero,ate(`) = ν(`)− ν((0, 1)) · p(`) 6= 0, for some ` ∈ L. (3.9)

Let the estimator for p(`) be p̂(`) such that

p̂(`) =

∑n
i=1K(Zi−ch )[Sn,2 − Sn,1(Zi − c)]g`(Xi)

Sn,0Sn,2 − S2
n,1

≡
n∑
i=1

wni · g`(Xi),
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where

wni =
K(Zi−ch )[Sn,2 − Sn,1(Zi − c)]

Sn,0Sn,2 − S2
n,1

, Sn,j =
∑
i

K

(
Zi − c
h

)
(Zi−c)j , for j = 0, 1, ...

Let ν̂hetero,ate(`) = ν̂(`) − ν̂((0, 1)) · p̂(`) be the estimator of νhetero,ate(`) and the test

statistic be

Ŝheteroate =
√
nh sup

`∈L

∣∣ν̂hetero,ate(`)∣∣.
Let φp,ni(`) =

√
nh
(
wni(g`(Xi)− p(`))

)
and φheteroate,ni (`) = φν,ni(`)− p(`)φν,ni((0, 1))−

ν((0, 1)) · φp,ni(`). Similar to Lemma 3.1, we can show that

∣∣∣√nh(p̂(`)− p(`))−
n∑
i=1

φp,ni(`)
∣∣∣ = op(1),

∣∣∣√nh(ν̂hetero,ate(`)− νhetero,ate(`))−
n∑
i=1

φheteroν,ni (`)
∣∣∣ = op(1). (3.10)

Proofs are given in the appendix. Let the simulated process Φ̂hetero,u
n,ate (`) be

Φ̂hetero,u
n,ate (`) =

n∑
i=1

Ui · φ̂heteroate,ni (`),

φ̂heteroate,ni (`) = φ̂ν,ni(`)− p̂(`)φ̂ν,ni((0, 1))− ν̂((0, 1)) · φ̂p,ni(`),

φ̂p,ni(`) =
√
nh
(
wni(g`(Xi)− p̂(`))

)
.

For significance level α < 1/2, define the simulated critical value ĉheteron,ate (α) as

ĉheteron,ate (α) = sup

{
q
∣∣∣P u( sup

`∈L

∣∣Φ̂hetero,u
n,ate (`)

∣∣ ≤ q) ≤ 1− α
}
.

Let the decision rule be: “Reject Hhetero
0,ate if Ŝheteroate > ĉheteron,ate (α).”

Theorem 3.3 Under Assumption 2.1 and Assumptions A.1, A.2 and A.3, if we reject

Hhetero
0,ate when Ŝheteroate > ĉheteron,ate (α), then

(1) under Hhetero
0,ate , limn→∞ P (Ŝheteroate > ĉheteron,ate (α)) = α, and

(2) under Hhetero
1,ate , limn→∞ P (Ŝheteroate > ĉheteron,ate (α)) = 1.
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Remarks: Notice that this test can also be directly applied to test first stage hetero-

geneity in a fuzzy RD model as the selection equation in any fuzzy RD model follows

a sharp RD design. This further implies that our proposed test could be used to check

the validity of two-sample RD regressions (see He, 2016, for an application), where the

outcome of interest is not included in the same dataset as the treatment assignment vari-

able. Identification in the two-sample RD regression relies on the assumption that the

proportion of compliers are the same across datasets, similar to the assumption on first

stage parameter in traditional two sample IV regression models (Angrist and Krueger,

1992, 1995). Since the first stage treatment decision is not observed in two-sample RD

regression models, this identifying assumption cannot be directly tested. One sufficient

testable assumption is that the fuzzy RD model has a homogeneous first stage, which

could be tested by the test proposed above.

4 Testing in Fuzzy RD Design

In this section, we extend the tests to the fuzzy RD design. All tests proposed in this

section do not rely on plug-in estimators of LATE or CLATE and are robust to weak

inference.

We are interested in testing the following three null hypotheses:

Hneg
0,late : CLATE(x) ≤ 0, ∀ x ∈ Xc, (4.1)

Hzero
0,late : CLATE(x) = 0, ∀ x ∈ Xc, (4.2)

Hhetero
0,late : CLATE(x) = τ, ∀ x ∈ Xc and some τ ∈ R. (4.3)

for testing whether the treatment is beneficial for some subpopulations, whether the

treatment has any impact on at least some subpopulations, and whether the treatment

effect is heterogeneous, respectively.

Recall that

CLATE(x) =
limz↘cE[Yi|Xi = x, Zi = z]− limz↗cE[Yi|Xi = x, Zi = z]

E[Ti(1)− Ti(0)|Xi = x, Zi = c]
.

Since Assumption 2.2(iii) requires that E[Ti(1)−Ti(0)|Xi = x, Zi = c] > 0 for all x ∈ Xc,

the first two hypotheses Hneg
0,late and Hzero

0,late hold if and only if limz↘cE[Yi|Xi = x, Zi =
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z] − limz↗cE[Yi|Xi = x, Zi = z], is uniformly negative or uniformly zero, respectively,

for all values of x. In other words, these two hypothesis can be tested by applying the

procedures developed for testing Hneg
0,ate and Hzero

0,ate in Section 3.

For the third hypotheses, the null hypothesis CLATE(x) = τ holds for all x ∈ Xc for

some τ ∈ R if and only if CLATE(x) = LATE for all x ∈ Xc. Let

µ(`) = E[g`(Xi)(Ti(1)− Ti(0))|Zi = c] = lim
z↘c

E[g`(Xi)Ti|Zi = z]− lim
z↗c

E[g`(Xi)Ti|Zi = z],

where the second equality holds under Assumption 2.2.1. It is then clear that LATE =

ν((0, 1))/µ((0, 1)) and ν(`)/µ(`) is the local average treatment effect for those people

with Xi ∈ C`. In the appendix, we show that the null hypothesis in (4.3) is equivalent to

Hhetero
0,late : νhetero,late(`) = ν(`) · µ((0, 1))− ν((0, 1)) · µ(`) = 0, ∀ ` ∈ L. (4.4)

Let µ̂(`) be the estimator for µ(`) that is defined in the same way as ν̂(`) except that

we replace the Yi’s with Ti’s. Let ν̂hetero,late(`) = ν̂(`) · µ̂((0, 1))− ν̂((0, 1)) · µ̂(`) be the

estimator for νhetero,late(`). Define the test statistic for Hhetero
0,late as

Ŝheterolate =
√
nh sup

`∈L

∣∣ν̂hetero,late(`)∣∣.
Let φ̂µ,ni(`) be the estimated influence function for

√
nh(µ̂(`) − µ(`)) that is defined in

the same way as φ̂µ,ni(`) except that we replace Yi’s with Ti’s. Let the simulated process

Φ̂hetero,u
n,late (`) be

Φ̂hetero,u
n,late (`) =

n∑
i=1

Ui · φ̂heterolate,ni(`),

φ̂heteroate,ni (`) = µ̂((0, 1)) · φ̂ν,ni(`) + ν̂(`) · φ̂µ,ni((0, 1))− ν̂((0, 1)) · φ̂µ,ni(`)− µ̂(`) · φ̂ν,ni((0, 1)).

For significance level α < 1/2, define the simulated critical value ĉheteron,late (α) as

ĉheteron,late (α) = sup

{
q
∣∣∣P u( sup

`∈L

∣∣Φ̂hetero,u
n,late (`)

∣∣ ≤ q) ≤ 1− α
}
.

Finally, the decision rule would be: “Reject Hhetero
0,late if Ŝheterolate > ĉheteron,late (α).” Again, the

proposed test for Hhetero
0,late controls size asymptotically and is consistent. We omit the

details of the size and power properties in the interest of space.
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5 Simulations

In this section we carry out Monte Carlo simulations. First, we use four data generating

processes (DGPs) to investigate the small sample size and power performance of the

proposed tests. Then we use another three DGPs to demonstrate the size distortion

of the two naive methods for heterogeneity analysis that are popular in applied RD

literature: the interaction term method and the subsample regression method. The first

four DGPs are described below.

DGP 1: Sharp RD, Homogeneous Zero Effect

Z ∼ 2Beta(2, 2)− 1; X ∼ U [0, 1]; T = 1(Z ≥ 0); u ∼ N(0, 1);

Y = −0.708 + 0.607X + 0.481Z + 0.441XZ + 0.038Z2 − 0.085X2 + 0.1u;

DGP 2: Sharp RD, Heterogeneous Treatment Effect

Z ∼ 2Beta(2, 2)− 1; X ∼ U [0, 1]; T = 1(Z ≥ 0); u ∼ N(0, 1);

Y =

 −0.753 + 0.905X + 0.506Z + 0.224XZ + 0.022Z2 − 0.225X2 + 0.1u if Z ≥ 0

−0.577 + 0.011X + 0.634Z + 0.131XZ + 0.233Z2 + 0.255X2 + 0.1u if Z < 0

DGP 3: Fuzzy RD, Homogeneous Zero Effect

Let DGP 3 be the same as DGP 1 except that

T =

 1(−0.140 + 1.307X + 0.957Z − 0.074XZ − 0.223Z2 − 0.611X2 + u > 0) if Z ≥ 0

0 if Z < 0

DGP 4: Fuzzy RD, Heterogeneous Treatment Effect

Let DGP 4 be the same as DGP 2 except that

T =

 1(−0.140 + 1.307X + 0.957Z − 0.074XZ − 0.223Z2 − 0.611X2 + u > 0) if Z ≥ 0

0 if Z < 0

We use these four DGPs to study the performance of the uniform sign test with the

null hypothesis H0 : CATE(x) ≤ 0, ∀x ∈ [0, 1] and the heterogeneity test with the

null hypothesis H0 : CATE(x) = ATE, ∀x ∈ [0, 1]. We also report the results for the

standard mean test H0 : ATE = 0 as a benchmark comparison. We omit the results from

the uniform significance test (i.e. H0 : CATE(x) = 0, ∀x ∈ [0, 1]) as they are similar to

those for the uniform sign test.
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Figure 1: The Data Generating Processes
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Note: The DGPs are estimated from the data of the empirical section. To get the model in DGP 1 (left

graph), we first rescale the running variable (i.e. transition score) in that dataset to [−1, 1] to match the

support of the generated X variable and then regress the outcome (i.e. score in Baccalaureate exam)

on the running variable, the additional control of interest (i.e. the admission score cut-off), as well as

their interaction term and second order polynomial terms. To get the model in DGP 2 (middle), we

fit the same regression model separately for the subsamples to the left and the right of the cutoff value

(i.e. 0). DGPs 3 and 4 share the same date generating processes for (X,Y, Z) with DGPs 1 and 2,

respectively, while modeling an additional layer of first stage treatment decision. To get the model

for the first stage (right graph), we run two separate probit regressions of the treatment status (i.e. a

dummy for attending a more selective high school) on the running variable, the additional control of

interest, their interaction term and second order polynomial terms with the subsamples to the left and

the right of zero, the threshold.
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DGPs 1 and 2 follow the sharp RD design. The functional forms are estimated from

the empirical example (details described in the footnote of Figure 1). Figure 1 visually

represents the data generating processes. Under DGPs 1 and 3, all three tests of interest

are under the null, and the uniform sign test is under the least favorable condition. Under

DGPs 2 and 4, all three tests are under the alternative with the treatment effect varying

with the additional control X.

Four different sample sizes (n = 1000, 2000, 4000 and 8000) are used and 1000 samples

are simulated for each DGP and sample size combination. With each simulated dataset,

tests are carried out with three different bandwidths while the bootstrap critical values

are calculated from 1000 bootstrap simulations each time. The three bandwidths are

selected according to the formula hIK × n1/5−1/c, where hIK is the optimal bandwidth

following Imbens and Kalyanaraman (2012) (IK), and c is the undersmoothing constant.

In Table 1, we report results with c = 4.5, 4.75 and 5. When c < 5, the bandwidth

undersmooths and satisfies the condition in Assumption A.2. When c = 5, the bandwidth

reduces to the IK bandwidth which is used for comparison purposes. The cubes defined

in Equation (3.2) have side-lengths 1/(2q) for q = 1, ..., Q. Simulations reported in Table

1 uses Q = 3, which includes a total of 12 overlapping intervals (since the dimension of

X is one). Among the 12 intervals, 2 have length 1/2, 4 have length 1/4, and 6 have

length 1/6). When n = 1000, the average bandwidth ranges from around 0.35 to 0.40,

which means that the average effective sample size (i.e. those with Xi ∈ C`) for each local

linear regression (on one-side of the RD cut-off) is around 30 when the smallest cubes

are used. Robustness checks with Q = 5 are reported in Table 2, where the average

effective sample size for each local linear regression is around 19 when the smallest cubes

are used and n = 1000. We see from the tables that our tests control size very well and

have good power performances. When the bandwidth is not undersmoothed and the IK

bandwidth (c = 5) is used, the tests have some very slight tendencies of overrejection. In

the empirical application, we use a benchmark bandwidth with c = 4.5 but also include

other bandwidth selection rules for robustness checks. The result is again very robust

to the bandwidth choice. Last but not least, the size and power performance of the

proposed tests are not sensitive to the variation in Q.

Next, we compare the proposed tests with the interaction term method and the sub-
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Table 1: Small Sample Performance of Proposed Tests, Q = 3

H0 : ATE = 0 H0 : CATE(x) ≤ 0 H0 : CATE(x) = ATE

c=4.5 c=4.75 c=5 c=4.5 c=4.75 c=5 c=4.5 c=4.75 c=5

DGP 1: Sharp RD, Homogeneous Zero Effect

n=1000 0.060 0.063 0.061 0.061 0.059 0.062 0.063 0.067 0.058

n=2000 0.059 0.063 0.059 0.064 0.064 0.065 0.053 0.053 0.052

n=4000 0.066 0.067 0.065 0.062 0.057 0.055 0.052 0.055 0.060

n=8000 0.055 0.058 0.059 0.056 0.062 0.065 0.050 0.056 0.057

DGP 2: Sharp RD, Heterogeneous Treatment Effect

n=1000 0.395 0.417 0.427 0.151 0.175 0.205 0.117 0.124 0.127

n=2000 0.633 0.662 0.688 0.428 0.500 0.554 0.190 0.205 0.221

n=4000 0.864 0.891 0.908 0.835 0.880 0.916 0.322 0.355 0.389

n=8000 0.972 0.979 0.985 0.995 0.998 1.000 0.589 0.632 0.677

DGP 3: Fuzzy RD, Homogeneous Zero Effect

n=1000 0.060 0.063 0.061 0.061 0.059 0.062 0.057 0.057 0.058

n=2000 0.059 0.063 0.059 0.064 0.064 0.065 0.055 0.055 0.049

n=4000 0.066 0.067 0.065 0.062 0.057 0.055 0.049 0.054 0.058

n=8000 0.055 0.058 0.059 0.056 0.062 0.065 0.050 0.057 0.062

DGP 4: Fuzzy RD, Heterogeneous Treatment Effect

n=1000 0.395 0.417 0.427 0.151 0.175 0.205 0.109 0.112 0.117

n=2000 0.633 0.662 0.688 0.428 0.500 0.554 0.156 0.163 0.182

n=4000 0.864 0.891 0.908 0.835 0.880 0.916 0.237 0.273 0.293

n=8000 0.972 0.979 0.985 0.995 0.998 1.000 0.448 0.489 0.523
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Table 2: Small Sample Performance of Proposed Tests, Q = 5

H0 : ATE = 0 H0 : CATE(x) ≤ 0 H0 : CATE(x) = ATE

c=4.5 c=4.75 c=5 c=4.5 c=4.75 c=5 c=4.5 c=4.75 c=5

DGP 1: Sharp RD, Homogeneous Zero Effect

n=1000 0.060 0.063 0.061 0.061 0.060 0.059 0.068 0.065 0.064

n=2000 0.059 0.063 0.059 0.066 0.062 0.066 0.052 0.054 0.055

n=4000 0.066 0.067 0.065 0.057 0.055 0.055 0.048 0.053 0.056

n=8000 0.055 0.058 0.059 0.058 0.062 0.061 0.051 0.047 0.054

DGP 2: Sharp RD, Heterogeneous Treatment Effect

n=1000 0.395 0.417 0.427 0.142 0.165 0.184 0.116 0.115 0.128

n=2000 0.633 0.662 0.688 0.401 0.471 0.518 0.186 0.194 0.213

n=4000 0.864 0.891 0.908 0.816 0.865 0.902 0.296 0.338 0.370

n=8000 0.972 0.979 0.985 0.994 0.998 1.000 0.570 0.617 0.661

DGP 3: Fuzzy RD, Homogenous Zero Effect

n=1000 0.060 0.063 0.061 0.061 0.060 0.059 0.063 0.058 0.058

n=2000 0.059 0.063 0.059 0.066 0.062 0.066 0.056 0.057 0.053

n=4000 0.066 0.067 0.065 0.057 0.055 0.055 0.044 0.053 0.053

n=8000 0.055 0.058 0.059 0.058 0.062 0.061 0.053 0.049 0.054

DGP 4: Fuzzy RD, Heterogeneous Treatment Effect

n=1000 0.395 0.417 0.427 0.142 0.165 0.184 0.110 0.113 0.117

n=2000 0.633 0.662 0.688 0.401 0.471 0.518 0.151 0.162 0.175

n=4000 0.864 0.891 0.908 0.816 0.865 0.902 0.227 0.263 0.277

n=8000 0.972 0.979 0.985 0.994 0.998 1.000 0.432 0.473 0.505
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sample regression method that are commonly used in the RD literature. We demonstrate

that when the model is misspecified, the interaction term method severely over rejects.

Further, when the sample size is small, the subsample regression method shows sizable

over-rejection due to weak inference.

We consider the following three DGPs with a control parameter η varying in the

interval [−1, 1]. With this set of DGPs we compare three tests for treatment effect

heterogeneity: 1) the proposed heterogeneity test (Hetero) that is also studied in DGP 1-

3, 2) a naive heterogeneity test based on an RD regression with interaction term (Hetero-

INT), and 3) a naive heterogeneity test based on subsample RD regressions (Hetero-SUB).

The Hetero-INT test is carried out by testing the slope coefficient on the interaction term

X1(Z > 0) in the linear regression of Y on X, Z, 1(Z > 0), X1(Z > 0), and Z1(Z > 0),

using data inside the estimation window determined by the bandwidth. The Hetero-SUB

test is carried out by testing whether the local linear regression of Y on Z for any of

the five subsamples with X = [0, 0.2], X = (0.2, 0.4], X = (0.4, 0.6], X = (0.6, 0.8], X =

(0.8, 1] is different from the true average treatment effect. The Hetero-SUB adjusts for

multiple testing using the Bonferroni method and plugs in the unknown true ATE for

computational simplicity.

DGP 5: Sharp RD, Homogeneous Zero Effect

Z ∼ 2Beta(2, 2)− 1; X ∼ U [0, 1]; u ∼ N(0, 1);

Y = −0.708 + 0.607X + 0.481Z + η(0.441XZ + 0.038Z2 − 0.085X2) + 0.1u;

DGP 6: Fuzzy RD, Homogeneous Zero Effect

Let DGP 6 be the same as DGP 5 except that

T =

 1(0.357 + 0.921Z − 0.240Z2 + u > 0) if Z ≥ 0

0 if Z > 0

DGP 7: Fuzzy RD, Homogeneous Effect

Z ∼ 2Beta(2, 2)− 1; X ∼ U [0, 1]; u ∼ N(0, 1);

Y =

 (−0.708 + η) + 0.607X + 0.481Z + 0.1u if Z ≥ 0

−0.708 + 0.607X0.481Z + u if Z < 0

T =

 1(0.357 + 0.921Z − 0.240Z2 + u > 0) if Z ≥ 0

0 if Z > 0
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Figure 2: Performance of Naive and Proposed Testing Methods, n = 1000
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In DGPs 5 and 6, the treatment effect is homogenous and zero, and the control

parameter η determines the degree of model misspecification. When η = 1, DGPs 5

and 6 reduce to DGPs 1 and 3. When η = 0, the linear regression model with the

additional interaction term is correctly specified. As η deviates from 0, the model becomes

increasingly misspecified. The left and middle graphs of Figure 2 summarize the size

control of all three tests. The Hetero-INT test is correctly specified and controls size at

5% only when η = 0. On the other hand, the proposed test Hetero and the subsample

test Hetero-SUB control size well irrespective of the value of η. Besides the three tests

for treatment effect heterogeneity, we also report in Figure 2 two tests for the standard

ATE/LATE estimates. Test Mean RD is the standard t-test following the classic local

linear estimation method. Test Mean RD-INT is the t-test for the slope coefficient of

1(Z > 0) in the linear regression with the interaction term. We see that Mean RD-INT

over-rejects as well when the model is misspecified. This raises a question about the

empirical strategy of adding interaction terms into RD regression models for analyses of

heterogeneity.

In DGP 7 the treatment effect is again homogeneous, but the control parameter η

now determines the size of the treatment effect. The mean tests Mean RD and Mean

RD-INT test the null hypothesis that the ATE is equal to the true value. The het-

erogeneity tests Hetero, Hetero-INT and Hetero-SUB again test the null hypothesis of
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homogeneous treatment effect. For DGP 7, Test Hetero-INT and Mean RD-INT have

good size properties because the linear regression model with interaction term is in fact

correctly specified. What is interesting is that the Hetero-SUB test starts to over-reject

when the true effect deviates from zero. This problem is due to weak inference. As is

discussed in Feir et al. (2015), when the proportion of compliers is small, the standard

t-test for LATE over-rejects unless the null hypothesis is imposed in the standard error

calculation. This explains why the infeasible Hetero-SUB test, after correcting for mul-

tiple testing, controls size properly when η = 0 but has sizable over-rejection when η

deviates away from zero. For these three DGPs, the bandwidth is selected following the

formula hIK × n1/5(n/5)−1/4.5, where hIK is the optimal IK bandwidth for the whole

sample and n/5 is used, since the subsample regression method involves five subsamples

with equal sample size. If the bandwidth is selected following the undersmoothed IK for-

mula for the full sample, or if the proportion of compliers in the first stage is lower (notice

it is around 55% in DGP 7 but can be substantially lower in empirical applications), the

over-rejection problem for the Hetero-SUB test is even worse.

Figure 3 repeats the simulation experiment reported in Figure 2 with n = 4000.

We see that the over-rejection problem is mitigated for the Hetero-SUB test. The main

reason is that when the proportion of compliers is fixed, the weak inference problem is a

small sample problem. However, the over-rejection problem of the Hetero-INT test does

not improve with sample size because the root of over-rejection for that test is model

misspecification.

6 The Heterogeneous Effect of Going to a Better High

School

In Romania, a typical elementary school student takes a nationwide test in the last year

of elementary school (8th grade) and applies to a list of high schools and tracks. The

admission decision is entirely dependent on the student’s transition score, an average of

the student’s performance on the nationwide test and grade point average, as well as

a student’s preference for schools. A student with a transition score above a school’s

cutoff is admitted to the most selective school for which he or she qualifies. Pop-Eleches
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Figure 3: Performance of Naive and Proposed Testing Methods, n = 4000
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and Urquiola (2013) use an administrative dataset from Romania to study the impact

of attending a more selective high school. They find that attending a better school

significantly improves a student’s performance on the Baccalaureate exam, although the

effect is not statistically significant if the more selective high school has a low admission

score cut-off. A marginal student attending a more selective high school is also more likely

to face negative peer interactions and perceive himself as weak. Shen and Zhang (2015)

conduct a distributional analysis using the same dataset and find that the insignificant

result among selective schools with a low admission score is due to a heterogeneous

distributional effect – a marginal student attending a selective school with lower admission

score cut-offs is more likely to have both relatively low scores and relatively high scores

on the Baccalaureate exam. In this section, we revisit Pop-Eleches and Urquiola (2013)

and investigate the treatment effect heterogeneity of attending a better high school based

on the admission score cut-off.

Following Pop-Eleches and Urquiola (2013), we use the RD approach to identify and

estimate the effect of attending a higher-ranked school. In this study, we restrict our

attention to two-school towns4 because we notice that score cutoffs within a town are

4Pop-Eleches and Urquiola (2013) also report results of all towns including towns with more than two

high schools. In such towns, there is more than one selective high school. For example, if a town has

three high schools, then there is one school that is not selective and two selective schools with different

admission cutoffs.
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often quite close and we are concerned about introducing estimation bias5 from having

more than one discontinuity within the estimation window. Figure 4 summarizes the the

RD regression with this dataset. In all three graphs, the x-axis represents the running

variable (i.e. Zi), which is a student’s standardized transition score subtracting the school

admission cut-off. The y-axis in the left graph represents the treatment dummy (i.e. Ti),

or whether a student attends a more selective school. The y-axis in the middle and right

graphs represent two different outcome variables (i.e. Yi), the demeaned probability of

a student taking the Baccalaureate exam and the demeaned Baccalaureate exam grade

among exam-takers, respectively. Both outcome variables are demeaned by subtracting

the school fixed effects following Pop-Eleches and Urquiola (2013). The left graph shows

that the proportion of compliers is around 65%. Since there are no always-takers in

this analysis, the reduced-form RD regressions reported in the middle and right graphs

represent the intent-to-treat effect of going to a better high school. The middle and the

right graphs both reveal a jump in the average outcome at the discontinuity point, with

the jump for the average exam taking rate being far noisier than that for the average

exam grade among exam takers.

Following Pop-Eleches and Urquiola (2013), we investigate the treatment effect het-

erogeneity among schools with different admission score cut-offs. But instead of grouping

schools by terciles of score cut-offs, we apply the our proposed (uniform) tests which do

not require arbitrary discretization of the continuous control variable. In contrast to the

results in Pop-Eleches and Urquiola (2013), we find a clear signal that attending a more

selective high school has a significant effect on the exam-taking rate for at least some

subpopulations, as well as strong evidence supporting treatment effect heterogeneity.

Figure 5 reports the testing results for the two fuzzy RD regressions. The test uses

the triangular kernel, the undersmoothed IK bandwidth defined in the simulation sec-

tion with undersmoothing constant c = 4.5 and the cubes defined in Equation 3.2 with

q = 1, ..., Q = 10, . Critical values are calculated using the multiplier bootstrap with

5In fact, it is easy to prove that if both potential outcomes monotonically increase with the running

variable and jumps positively at all discontinuity points (a proper assumption with this application),

having extra discontinuity points within the estimation window can severely downward bias the ATE

estimator.
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Figure 4: Pooled Regression Discontinuity Analysis
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Notes: Data are from Pop-Eleches and Urquiola (2013). Nonparametric local linear

estimations are conducted using a triangular kernel. The bar chart reports the his-

togram of the standardized running variable, while the circles and lines report the

average score outcome within each bin and the results of the local linear regression

conducted using a triangular kernel. The bandwidth is set to 0.5 for all three graphs

for the purpose of data illustration and cross-comparison.
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1000 bootstrap simulations. The top panel reports results for the exam-taking outcome.

The three graphs correspond to results for the uniform negative, uniform positive, and

heterogeneity tests, respectively. The lower panel reports results for the exam grade

outcome. For all graphs, the step function represents the distribution of the simulated

test statistics under the null, while the vertical line represents the test statistic obtained

from the data. The p-value of each test is reported underneath the x-axis.

The test results are interesting. As shown in Figure 4 and by the first two numbers

of Table 3, the average effect of attending a better school on the probability of a student

taking the Baccalaureate exam is noisy and, in fact, insignificant. However, the top

left graph shows that attending a better school certainly increases the probability of a

student taking the Baccalaureate exam for some subpopulations. The top middle graph

fails to reject the uniform nonnegative sign, but the p-value is very close to 10%. This

indicates that the insignificant LATE effect may come from the cancelation of negative

and positive effects among different groups of the population. Still for the effect on the

exam-taking rate, the top right graph clearly rejects the null hypothesis of treatment

effect homogeneity, leading to the conclusion that the effect depends on the admission

score cut-off, or how selective a school is. In conclusion, our proposed heterogeneity

tests reveal substantial heterogeneity in the effect of attending a better school on the

probability of a student taking the Baccalaureate exam that was not picked up by the

classic mean RD regression approach. On the other hand, the bottom panel of Figure 5

confirms the positive effect of attending a better school on the Baccalaureate exam grade

and there is not enough evidence to conclude that there is treatment effect heterogeneity.

Table 3 reports the above testing results, as well as testing results for the first stage.

Table 4 reports robustness checks of the above results with different bandwidth and

cube choices. Panel A again uses undersmoothed bandwidth based on Imbens and

Kalyanaraman (2012) while Panel B uses undersmoothed bandwidth with the formula

hCCT ×n1/5−1/c where hCCT is the robust bandwidth proposed in Calonico et al. (2014).

The empirical findings by the proposed tests are consistent irrespective of bandwidth and

cube choices.
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Figure 5: Testing For Treatment Effect Heterogeneity
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Notes: Data are from Pop-Eleches and Urquiola (2013). Nonparametric local lin-

ear estimations are conducted using a triangular kernel and the undersmoothed IK

bandwidth as is described in the simulation section.

Table 3: Benchmark Testing Results

H0 ATE = 0 CATE(x) ≤ 0 CATE(x) ≥ 0 CATE(x) = ATE

h c=4.5 c=4.75 c=4.5 c=4.75 c=4.5 c=4.75 c=4.5 c=4.75

Treatment Effect

Took Exam 0.195 0.158 0.002 0.002 0.106 0.117 0.000 0.001

Exam Grade 0.000 0.000 0.000 0.000 0.447 0.425 0.140 0.120

First Stage

Full Sample 0.000 0.000 0.000 0.000 1.000 1.000 0.064 0.036

Exam-takers 0.000 0.000 0.000 0.000 1.000 1.000 0.128 0.103
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Table 4: Robustness Checks

H0 ATE = 0 CATE(x) ≤ 0 CATE(x) ≥ 0 CATE(x) = ATE

h c=4.5 c=4.75 c=4.5 c=4.75 c=4.5 c=4.75 c=4.5 c=4.75

Panle A First Stage

Full Sample (Q=10) 0.000 0.000 0.000 0.000 1.000 1.000 0.064 0.036

Full Sample (Q=20) 0.000 0.000 0.000 0.000 1.000 1.000 0.064 0.036

Exam-takers (Q=10) 0.000 0.000 0.000 0.000 1.000 1.000 0.128 0.103

Exam-takers (Q=20) 0.000 0.000 0.000 0.000 1.000 1.000 0.129 0.103

Treatment Effect

Took Exam (Q=10) 0.195 0.158 0.002 0.002 0.106 0.117 0.000 0.001

Took Exam (Q=20) 0.195 0.158 0.002 0.002 0.106 0.117 0.000 0.001

Exam Grade (Q=10) 0.000 0.000 0.000 0.000 0.447 0.425 0.140 0.120

Exam Grade (Q=20) 0.000 0.000 0.000 0.000 0.469 0.446 0.141 0.121

Panel B First Stage

Full Sample (Q=10) 0.000 0.000 0.000 0.000 1.000 1.000 0.046 0.069

Full Sample (Q=20) 0.000 0.000 0.000 0.000 1.000 1.000 0.046 0.069

Exam-takers (Q=10) 0.000 0.000 0.000 0.000 1.000 1.000 0.202 0.172

Exam-takers (Q=20) 0.000 0.000 0.000 0.000 1.000 1.000 0.206 0.177

Treatment Effect

Took Exam (Q=10) 0.382 0.305 0.002 0.001 0.065 0.078 0.001 0.001

Took Exam (Q=20) 0.382 0.305 0.002 0.001 0.065 0.078 0.001 0.001

Exam Grade (Q=10) 0.000 0.000 0.001 0.000 0.598 0.540 0.080 0.143

Exam Grade (Q=20) 0.000 0.000 0.001 0.000 0.628 0.566 0.082 0.146
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7 Conclusion

In this paper, we propose (uniform) tests for treatment effect heterogeneity under both

sharp and fuzzy RD designs. Compared with other methods currently adopted in applied

RD studies, our tests have the advantage of being both fully nonparametric and robust

to weak inference. Monte Carlo simulations show that our tests have very good small

sample performance. We apply our methods to a dataset from Romania and discover

that the treatment effect of attending a better school on the probability of a student

taking the Baccalaurate exam is heterogenous, but that the effect on the Baccalaurate

exam grade is homogenous. One interesting question for future study is to extend the

proposed testing procedure to examine the heterogeneity in the distributional treatment

effect among subpopulations defined by covariate values, as researchers in the treatment

effect literature are often interested in analyzing treatment effect heterogeneity along

outcome distributions (Bitler et al., 2008; Hsu, 2015; Shen and Zhang, 2015; Bitler et al.,

2016, etc.).
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APPENDIX

In this appendix, we give Assumptions A.1, A.2 and A.3, and the proofs of Lemmas 3.1 and

3.2 in Appendix A. The proofs of Theorems 3.1, 3.2 and 3.3, and the proof of the equivalence of

Equations (3.1) and (3.3) are given in Appendix B.

A Regularity Conditions and Proofs of Lemmas

We introduce more notation. Let fz(z) denote the probability density function (pdf) of Z,

fxz(x, z) denote the conditional pdf of X and Z = z and µd(x, z) = E[Y (d)|X = x, Z = z]. Let

f ′ and f” denote the first and second derivatives of function f . Let for any δ > 0, Nδ,z(c) =

{z| |z−c| ≤ δ} denote a neighborhood of z around Z = c. Let σ2
d(x, z) = V ar(Y (d)|X = x, Z = z)

and Xz denote the support of X conditioning on Z = z. We make the following assumptions.

Assumption A.1 Assume that there exists δ > 0 such that

(i) Xz = Xc for all z ∈ Nδ,z(c),

(ii) fz(z) is twice continuously differentiable in z on Nδ,z(c),

(iii) fz(z) is bounded away from zero on Nδ,z(c),

(iv) for each x ∈ Xc, fxz(x, z) is twice continuously differentiable in z on Nδ,z(c),

(v) |∂2fxz(x, z)/∂z∂z| is uniformly bounded on x ∈ Xc and z ∈ Nδ,z(c),

(vi) for d = 0 and 1 and for each x ∈ Xc, µd(x, z) = E[Y (d)|X = x, Z = z] is twice continuously

differentiable in z on Nδ,z(c),

(vii) for d = 0 and 1, |∂2µd(x, z)/∂z∂z| is uniformly bounded on x ∈ Xc and z ∈ Nδ,z(c),

(viii) for d = 0 and 1, E[Y 4|Z = z] ≤M for some M > 0 for all z ∈ Nδ,z(c), and

(ix) for d = 0 and 1, σ2
d(x, z) is uniformly bounded on x ∈ Xc and z ∈ Nδ,z(c).

Assumption A.1(i) is assumed for notational simplicity. We can allow Xz to depend on z and

the theory will be the same, but it is more tedious in terms of notation. Assumption A.1(ii)-(vi)

are standard in nonparametric estimation. Assumptions A.1(vii) is needed to show that the bias

terms of the ν̂(`) are asymptotically negligible uniformly over ` ∈ L. Assumption A.1(viii) and

(ix) are assumed so the covariance kernel estimator of the limiting process is uniformly consistent

which is needed to show the validity of the multiplier bootstrap. Such conditions are also assumed

in Andrews and Shi (2015) and Hsu (2016).
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Assumption A.2 Assume that

(i) The K(·) is a non-negative symmetric bounded kernel with a compact support in R (say

[−1, 1]).

(ii)
∫
K(u)du = 1,

(iii) h→ 0, nh→∞ and nh5 → 0 as n→∞.

Assumption A.2 is standard for nonparametric estimation. Note that nh5 → 0 as n → ∞

implies undersmoothing so that the bias terms converge to zero even after we multiply it with
√
nh and that this condition is standard if one wants to obtain the asymptotic normality of the

estimators.

Assumption A.3 Let {Ui : 1 ≤ i ≤ n} be a sequence of i.i.d. random variables E[U ] = 0,

E[U2] = 1, and E[|U |4] < M for some δ > 0 and M > 0, and {Ui : 1 ≤ i ≤ n} is independent

of the sample path {(Yi, Xi, Zi, Ti) : 1 ≤ i ≤ n}.

Assumption A.3 is standard for the multiplier bootstrap as in Hsu (2016) and E[|U |4] < M

is needed for the multiplier bootstrap for nonparametric method.

Proof of Lemma 3.1: Define

h2,m+(`1, `2) =

∫∞
0

(ϑ2 − uϑ1)2K2(u)du

(ϑ2ϑ0 − ϑ21)2
σ2
+(`1, `2)

fz(c)

h2,m−(`1, `2) =

∫∞
0

(ϑ2 − uϑ1)2K2(u)du

(ϑ2ϑ0 − ϑ21)2
σ2
−(`1, `2)

fz(c)
,

then it is easy to see that h2,ν(`1, `2) = h2,m+(`1, `2) + h2,m−(`1, `2).

Recall that

m̂+(`) =

∑n
i=1 1(Zi ≥ c) ·K(Zi−ch )[S+

n,2 − S
+
n,1(Zi − c)]g`(Xi)Yi∑n

i=1 1(Zi ≥ c) ·K(Zi−ch )[S+
n,2 − S

+
n,1(Zi − c)]

=

n∑
i=1

w+
nig`(Xi)Yi,

and it is true that

√
nh(m̂+(`)−m+(`)) =

√
nh (m̂+(`)− EZ [m̂+(`)]) +

√
nh (EZ [m̂+(`)]−m+(`))

in which EZ denotes the conditional expectation conditional on sample path {Z1, Z2, . . .}. By

Theorem 4 of Fan and Gijbels (1992), we know that

EZ [m̂+(`)−m+(`)] = Op(
√
nh5) = op(1).

36



The first equality holds because the magnitude is proportional to m′′+(`) which is equal to

EZ [g`(X) · (∂2µ1(x, z)/∂z∂z)] and |∂2µ1(x, z)/∂z∂z| is assumed to be uniformly bounded on

x ∈ Xc and z ∈ Nδ,z(c). Therefore,

√
nh(m̂+(`)−m+(`)) ≡

√
nh (m̂+(`)− EZ [m̂+(`)]) + op(1),

=
√
nh

n∑
i=1

w+
ni

(
g`(Xi)Yi − EZ [g`(Xi)Yi]

)
+ op(1).

We use the functional central limit theorem, Theorem 10.6 of Pollard (1990), to show that

√
nh

n∑
i=1

w+
ni

(
g`(Xi)Yi − EZ [g`(Xi)Yi]

)
⇒ Φh2,m+(`).

Our arguments condition on the sample path of Zi’s and in other words, w+
ni can be treated

as constants. Define our triangular array as {fni(`) : ` ∈ L, i ≤ n, n ≥ 1} and fni(`) =
√
nhw+

ni

(
g`(Xi)Yi − EZ [g`(Xi) · Yi]

)
. Let the envelope functions be {Fni : i ≤ n, n ≥ 1} with

Fni =
√
nh|w+

ni| · (|Yi| + EZ [|Yi|]). Define our empirical process as Φ̂+
n (`) =

∑n
i=1 fni(`). First,

{g`(X) : ` ∈ L} is a Type I class of functions in Andrews (1994) and by Lemma E1 of Andrews

and Shi (2013), {fni(`) : ` ∈ L, i ≤ n, n ≥ 1} satisfies condition (i) of Theorem 10.2 of Pollard

(1990). To show condition (ii), note that

ĥ2,m+(`1, `2) = EZ [Φ̂+
n (`1)Φ̂+

n (`2)] = E[fni(`1)fni(`2)]

=nh

n∑
i=1

(w+
ni)

2
(
EZ [g`1(Xi)g`2(Xi)Y

2
i ]

− EZ [g`1(Xi) · Yi]EZ [g`2(Xi) · Yi]
)
→ h2,m+(`1, `2),

where the third equality holds because fni(`1) and fnj(`2) are mutually independent for i 6= j.

Then by the arguments of the second part of Theorem 4 of Fan and Gijbels (1992), we can show

that EZ [Φ̂n(`1)Φ̂n(`2)] converges to h2,m+(`1, `2). Furthermore, it is true that the convergence

result holds uniformly over `1, `2 ∈ L. Condition (iii) can be shown by the same arguments for

condition (ii). To show condition (iv), note that for any ε > 0,

n∑
i=1

EZ [F 2
ni · 1(Fni > ε)] ≤

n∑
i=1

EZ

[F 4
ni

ε2

]
=ε−2(nh)2

n∑
i=1

(w+
ni)

4EZ
[
(|Yi|+ EZ [|Yi|])4

]
.

The first inequality holds because 1(Fni > ε) ≤ (Fni/ε)
δ for any δ > 0 and we take δ = 2 here.

By the same arguments from the second part of Theorem 4 of Fan and Gijbels (1992), we can

show that

ε−2(nh)2
n∑
i=1

(w+
ni)

4EZ
[
(|Yi|+ EZ [|Yi|])4

]
= ε−2(nh)2Op((nh)−3) = Op((nh)−1) = op(1),
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and this implies that condition (iv) holds.

To show condition (v), note that

ρ̂n,m+(`1, `2) =

n∑
i=1

(fni(`1)− fni(`2))2

=

n∑
i=1

f2ni(`1)− 2

n∑
i=1

fni(`1)fni(`2) +

n∑
i=1

f2ni(`2)

=H1n(`1, `1)− 2H1n(`1, `2) +H1n(`2, `2)

→h2,m+(`1, `1)− 2h2,m+(`1, `2) + h2,m+(`2, `2) ≡ ρm+(`1, `2).

Note that similar to condition (ii), the convergence holds uniformly over `1, `2 ∈ L. Then this is

sufficient for condition (v). Then by FCLT of Pollard (1990), we can show that
√
nh(m̂+(`) −

m+(`)) ⇒ Φh2,m+
(`). By the same arguments, we can show that

√
nh(m̂−(`) − m−(`)) ⇒

Φh2,m−(`) and it follows that
√
nh(ν̂(`)−ν(`)) =

√
nh(m̂+(`)−m+(`))−

√
nh(m̂−(`)−m−(`))⇒

Φh2,ν (`). This completes the proof. 2

Proof of Lemma 3.2: We use the same arguments of proof in Hsu (2016). Recall that Φ̂un(`) =∑n
i=1 Ui · φ̂ν,ni(`) where

φ̂ν,ni(`) =
√
nh
(
w+
ni · (g`(Xi)Yi − m̂+(`))− w−ni · (g`(Xi)Yi − m̂−(`))

)
.

It is sufficient for us to show that Φ̂+,u
n (`) =

∑n
i=1 Ui · φ̂m+,ni(`)

p⇒ Φh2,m+
(`) where

φ̂m+,ni(`) =
√
nh
(
w+
ni(g`(Xi)Yi − m̂+(`))

)
.

First, it is straightforward to see that the triangular array {f̂ni(`) = Ui · φ̂m+,ni(`) : ` ∈

L, i ≤ n, n ≥ 1} is manageable with respective to envelope functions {F̂ni =
√
nh|Ui| ·

(
|w+
ni| ·

(|Yi| + |Y |
+

n )
)

: i ≤ n, n ≥ 1} in which |Y |
+

n ≡
∑n
i=1 |w

+
ni| · |Yi|. Define ĥ2,m+(`1, `2) =∑n

i=1 φ̂m+,ni(`1)φ̂m+,ni(`2). First, by the same argument in (12.24)-(12.26) of Andrews and Shi

(2015) and the same argument from the second part of Theorem 4 of Fan and Gijbels (1992), we

can show that

sup
`1,`2∈L

|ĥ2,m+(`1, `2)− h2,m+(`1, `2)| p→ 0.

Also, we can show that

nh

n∑
i=1

(
|w+
ni| · (|Yi|+ |Y |

+

n )
)2 p→M1 <∞,

n3h3
n∑
i=1

(
|w+
ni| · (|Yi|+ |Y |

+

n )
)4 p→M2 <∞,

for some positive M1 and M2.

Then by the same proof of Theorem 2.1 of Hsu (2016), we can show that Φ̂+,u
n (`)

p⇒ Φh2,m+(`).
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B Proofs of Main Results

Proof of Theorem 3.1: Given the results of Lemma 3.1 and Lemma 3.2 hold, then by the same

proof for Proposition 3 of Barrett and Donald (2003), Theorem 3.1 follows. We omit the details

for brevity. 2

Proofs of Theorem 3.2 and 3.3: Note that the process results and simulated process results

for Theorem 3.2 and 3.3 are similar to Lemma 3.1 and Lemma 3.2, so we omit the details for

brevity. Then, the proofs for Theorem 3.2 and 3.3 are similar to that for Theorem 3.1. 2

Proof of Equation (2.1):

lim
z↘c

E[Yi|Xi = x, Zi = z]− lim
z↗c

E[Yi|Xi = x, Zi = z]

= lim
z↘c

E[Yi(1)Ti + Yi(0)(1− Ti)|Xi = x, Zi = z]− lim
z↗c

E[Yi(1)Ti + Yi(0)(1− Ti)|Xi = x, Zi = z]

= lim
z↘c

E[Yi(1)Ti(1) + Yi(0)(1− Ti(1))|Xi = x, Zi = z]

− lim
z↗c

E[Yi(1)Ti(0) + Yi(0)(1− Ti(0))|Xi = x, Zi = z]

=E[Yi(1)Ti(1) + Yi(0)(1− Ti(1))|Xi = x, Zi = c]− E[Yi(1)Ti(0) + Yi(0)(1− Ti(0))|Xi = x, Zi = c]

=E[(Yi(1)− Yi(0)) (Ti(1)− Ti(0)) |Xi = x, Zi = c]

=E[Yi(1)− Yi(0)|Xi = x, Zi = c, Ti(1)− Ti(0) = 1]P [Ti(1)− Ti(0) = 1|Xi = x, Zi = c]

=E[Yi(1)− Yi(0)|Xi = x, Zi = c, Ti(1)− Ti(0) = 1]E[Ti(1)− Ti(0)|Xi = x, Zi = c].

The first equality holds by the definition of Yi. The second holds by the definition of Ti. The third

holds by the continuity assumption. The rest of the equalities hold from standard derivations.

Proof of Equation (3.4): Note that Andrews and Shi (2015) show that E[m(W )|X] ≤ 0 a.s.

in X conditional on Z = z iff E[m(W )g`(X)|Z = z] ≤ 0 for all ` ∈ L. Therefore, CATE(x) ≤

0, ∀ x ∈ Xc is equivalent to CATE(X) ≤ 0 a.s. in X conditional on Z = c and in turn, it is

equivalent to E[CATE(X)g`(X)|Z = z] ≤ 0 for all ` ∈ L. Hence, it is sufficient to show that

E[CATE(X)g`(X)|Z = z] = limz↘cE[g`(Xi)Yi|Zi = z]−limz↗cE[g`(Xi)Yi|Zi = z] for all ` ∈ L.

We show E[CATE(X)|Z = z] = limz↘cE[Yi|Zi = z] − limz↗cE[Yi|Zi = z] and the argument

for general g`(X) is similar.

Let µ1(x, z) = E[Y (1)|X = x, Z = z] and it is true that µ1(x, z) = E[Y |X = x, Z = z] when-

ever z ≥ c. Let µ1(x, c+) = limz↘cE[Y (1)|X = x, Z = z]. First, note that limz↘cEX|Z=z[µ1(X, c+)] =

EX|Z=c[µ1(X, c+)] because the distribution of X conditional on Z = z is continuous at Z = c.

Also, by the continuity of µ1(x, z), we have that EX|Z=c[µ1(X, c+)] = limz↘cEX|Z=z[µ1(X, c+)] =
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limz↘cEX|Z=z[µ1(X, z)]. Given that µ1(X, z) = E[Y |X,Z = c], we have that EX|Z=z[µ1(X, z)] =

EX|Z=z[E[Y |X,Z = z]] and by the law of iterated expectations, we have that EX|Z=z[E[Y |X,Z =

z]] = E[Y |Z = z] for z ≥ c. Last, we have that EX|Z=c[µ1(X, c+)] = limz↘cEX|Z=z[µ1(X, z)] =

limz↘cE[Y |Z = z]. Similarly, we have that EX|Z=c[µ0(X, c−)] = limz↗cE[Y |Z = z]. These

complete the proof. 2

Proof of Equation (3.10): Note that

√
nh(ν̂hetero,ate(`)− νhetero,ate(`))

=
√
nh(ν̂(`)− ν̂((0, 1)) · p̂(`)− ν(`) + ν((0, 1)) · p(`))

=
√
nh(ν̂(`)− ν(`))−

√
nh(ν̂((0, 1)) · p̂(`)− ν((0, 1)) · p(`))

=
√
nh(ν̂(`)− ν(`))− p̂(`) ·

√
nh(ν̂((0, 1))− ν((0, 1)))− ν((0, 1))

√
nh(p̂(`)− p(`))

=
√
nh(ν̂(`)− ν(`))− p(`) ·

√
nh(ν̂((0, 1))− ν((0, 1))) + op(1)− ν((0, 1))

√
nh(p̂(`)− p(`))

=
1√
nh

n∑
i=1

φν,ni(`)− p(`)φν,ni((0, 1))− ν((0, 1)) · φp,ni(`) + op(1).

This completes the proof. 2

Proof of the Equivalence of (4.3) and (4.4): Recall that Hhetero
0,late in (4.3) is equivalent to:

Hhetero
0,late : CLATE(x) = LATE for all x ∈ Xc in which

CLATE(x) =
limz↘cE[Yi|Xi = x, Zi = z]− limz↗cE[Yi|Xi = x, Zi = z]

E[Ti(1)− Ti(0)|Xi = x, Zi = c]

=
limz↘cE[Yi|Xi = x, Zi = z]− limz↗cE[Yi|Xi = x, Zi = z]

limz↘cE[Ti|Xi = x, Zi = z]− limz↗cE[Ti|Xi = x, Zi = z]

LATE = ν((0, 1))/µ((0, 1)).

Therefore, Hhetero
0,late is equivalent to

Hhetero
0,late : (lim

z↘c
E[Yi|Xi = x, Zi = z]− lim

z↗c
E[Yi|Xi = x, Zi = z]) · µ((0, 1))

− (lim
z↘c

E[Ti|Xi = x, Zi = z]− lim
z↗c

E[Ti|Xi = x, Zi = z]) · ν((0, 1)) = 0 for all x ∈ Xc.

Then by the instrument function method and the proof for (3.4), Hhetero
0,late is equivalent to

Hhetero
0,late : ν(`) · µ((0, 1))− µ(`) · ν((0, 1)) = 0 for all ` ∈ L.

This completes the proof. 2
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