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Abstract
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1 Introduction

Multivariate continuous time models received considerable interest in macro-econometrics over the

period from 1960s to 1980s, and featured in theoretical contributions such as in Bergstrom (1966,

1984), Phillips (1972) as well as in applications such as Bergstrom andWymer (1976) and Knight and

Wymer (1978). Over the last two decades, they are once again at the forefront in the econometrics

literature. The main fuel for the resurgence is the usefulness of these models in the development

of modern asset pricing theory. Given the complicated interplay among economic and financial

variables, it is not surprising that multivariate continuous time models, which allow for interactions

among variables, are receiving more attention in the recent literature on asset pricing in the hope

of capturing more realistic dynamic interactions. Prominent examples include stochastic volatility

models for equity and exchange rate series (Duffi e, Pan and Singleton, 2000) and term structure

models of interest rates (Duffi e and Kan, 1996).

Continuous time models used in macroeconomics often take a linear form. Under Gaussianity,

this assumption implies a diffusion model with a linear drift function and a constant diffusion

function. The effi cient estimation of system parameters, based on discrete observations, is achieved

by the mean of maximum likelihood (ML) or least squares (LS); see, for example, Phillips (1972). In

finance, many successful models allow the diffusion function to be time varying but maintain linearity

for the drift function. To match the development of these complicated multivariate continuous time

models in the theoretical finance literature, various econometric techniques have been developed

for estimating system parameters from discrete data. Examples include the effi cient method of

moments (EMM) (Gallant and Tauchen, 1996), Bayesian MCMC methods (Eraker, 2001), the

empirical characteristic function method (Singleton, 2001; Knight and Yu, 2002), and in-fill ML

(Pedersen, 1995; Durham and Gallant, 2002), as well as approximate ML methods based on closed-

form expansions (Aït-Sahalia, 2008).

For multivariate continuous time models with a linear drift function, an exact discrete time

vector autoregressive (VAR) model can be obtained. When the diffusion function is constant, the

VAR model is Gaussian and hence can be estimated by LS or ML. When the diffusion function has

the level effect, the VAR model becomes non-Gaussian but can be estimated by generalized least

squares. The asymptotic theory for VAR models is standard; see, for example, Mann and Wald

(1943) for the stationary case, Phillips and Durlauf (1986) for the unit root case, and Ahn and

Reinsel (1990), Park and Phillips (1988, 1989), Sims, Stock and Watson (1990) for the partially

nonstationary case.

It is known that the parameter matrix in the continuous time model which measures the mean

reversion speed of the continuous process in stationary case is the logarithmic transformation of the

autoregressive (AR) coeffi cient matrix. In this paper, for notational simplicity, the matrix is referred

to as the “mean reversion matrix” even if the system is not stationary. To ensure the relation to
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be bijective, some identification conditions must be imposed. Various identification conditions have

been proposed (see, e.g., Phillips, 1973; Hansen and Sargent, 1983; McCrorie, 2003), but the simplest

one which is applicable to all the cases is a condition that limits the mean reversion matrix on the

principal logarithm of the AR coeffi cient matrix. Subsection 3.1 gives the formula of calculating

matrix’s principal logarithm, which is commonly used to derive an explicit relationship between

the mean reversion matrix and the AR coeffi cient matrix. Based on this explicit relationship, the

traditional expression of ML estimator of the mean reversion matrix is established.

However, this traditional expression suffers from three drawbacks. First, it is an infinite polyno-

mial series of the estimated VAR coeffi cient matrix. Consequently, when the delta method is used

to find the limit distribution of the estimated mean reversion matrix, another infinite polynomial

series appears in the expression of the asymptotic covariance matrix. Both of these two infinite se-

ries need to be truncated in practice. Unfortunately, there is no clear guideline as to how to do the

truncations. Obviously, the truncation rule should depend on the estimated value of VAR coeffi cient

matrix. In addition, the two infinite series have different rates of convergence. Naturally, different

number of terms in the truncation may be needed. Second, the domain of convergence for the two

infinite series is not wide enough and excludes some practically interesting cases, including the case

where the VAR coeffi cient matrix has a pure imaginary eigenvalue. More importantly, even if the

true value of the VAR coeffi cient matrix is inside the domain of convergence, it is possible that the

estimated value lies outside the domain of convergence. In the light of this concern, the expression

with a wider domain of convergence is preferred. Third, it is not easy to impose prior knowledge

of the model in the traditional expression of the ML estimator. Take a cointegrated system as an

example. Although cointegrating tests can help us determine the cointegrating rank, it is not clear

how to incorporate the knowledge of cointegration relationships in the traditional expression.

The paper proposes a new representation of the ML estimator of the mean reversion matrix.

It can overcome the aforementioned drawbacks of the traditional representation. Firstly, the new

representation is a finite polynomial series of the estimated VAR coeffi cient matrix. Hence, the

asymptotic covariance matrix also only involves finite polynomial series. Consequently, no trun-

cation is needed to compute the estimator and the covariance. Secondly, the new representation

possesses a larger domain of convergence than the traditional method. Thirdly, prior knowledge

such as cointegrating rank can be utilized straightforwardly by the new representation to simplify

the estimation procedure.

Based on the new representation of the ML estimator of the mean reversion matrix, the paper

establishes the long time span asymptotic theory for the cases covering stationary, pure unit root and

partially nonstationary models. Special attention is paid to get explicit expression of the asymptotic

covariance matrix for low dimensional cases.

The theory in the paper is established in the context of the multivariate diffusion model of an

arbitrary dimension but with a linear drift and a constant diffusion. We focus on this model simply
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because the asymptotic theory is well developed for the exact discrete time model. For continuous

time models with a complicated diffusion function, an approximate discrete time model may be

derived from the continuous time model. One way to get an approximate discrete time model

was proposed by Nowman (1997). The ML estimator of the mean reversion matrix based on the

approximate discrete time model of Nowman is also the principal logarithm of the estimated VAR

coeffi cient matrix. Therefore, the new representation of the ML estimator proposed in the paper is

applicable in this context.

Phillips (1972) used least squares to estimate a 3-dimensional structural continuous time model

where the mean reversion matrix depends on a set of structural parameters. He also established the

asymptotic normality and derived the analytical expression for the asymptotic variance based on

the assumption that the derivative of the mean reversion matrix with respect to the VAR coeffi cient

matrix is known. The setup of Phillips (1972) is simpler than what we consider here in the sense

that we estimate the full mean reversion matrix. Also, we do not assume that the derivative

of the mean reversion matrix with respect to the VAR coeffi cient matrix is known. Moreover,

Phillips (1972) imposed the assumption of stationarity, while we allow the model to be potentially

nonstationary. In the context of univariate diffusion, Aït-Sahalia (2002) developed the asymptotic

theory for his approximate ML method under the long span asymptotics whereas Jeong and Park

(2009) established the asymptotic theory for a wide range of estimators in the cases of stationarity

and unit root with a expanding time span and a shrinking sampling interval. The results obtained

in our paper may be regarded as a multivariate generalization to those in the univariate diffusion

although our model specification only allow a linear drift function.

The rest of the paper is organized as follows. Section 2 introduces the model considered in the

paper and some preliminaries. Section 3 describes how to obtain the ML estimator of the mean

reversion matrix in the continuous time model. Both the traditional representation and the new

proposed representation are studied and compared. The properties of the new representation are

also provided in this section. Based on the new representation, Section 4 derives the limit theory of

the ML estimator of the mean reversion matrix. In Section 5, an empirical study based on an affi ne

term structure model is conducted to illustrate the implementation and the advantage of the new

representation. Section 6 concludes. Proofs of the propositions and theorems are collected in the

Appendix.

2 The Model and Some Preliminaries

The paper considers an m-dimensional multivariate diffusion process of the form:

dX (t) = (AX (t) + b) dt+ Σ1/2dW (t) , (2.1)
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where X(t) = (X1(t), · · · , Xm(t))′ is an m-dimensional continuous time process, A and b are m×m
andm×1matrices, whose elements need to be estimated, Σ1/2 is a matrix of the diffusion coeffi cients,

and W (t) is an m-dimensional standard Brownian motion. It is assumed that the matrix Σ =[
Σ1/2

] [
Σ1/2

]′
is positive definite. This process has been widely used to model interest rates in the

term structure literature, following the univariate version that was first proposed in Vasicek (1977).

Although the process follows a continuous time stochastic differential equation system, observa-

tions are available only at discrete time points, say at T equally spaced points {th}Tt=0, where h is
the sampling interval and is taken to be fixed. In practice, h may be very small, corresponding to

high-frequency data. The sample size T can also be written as T = N/h by letting N denote the

time span of data. In this paper, we use X(t) to represent a continuous time process and Xth to

represent a discrete time process. When there is no confusion, we simply write Xth as Xt.

Bergstrom (1990) provided arguments as to why it is useful for macro-economists and policy

makers to formulate models in continuous time even when discrete observations only are available. In

finance, early fundamental work by Black and Scholes (1973) and much of the ensuing literature such

as Duffi e and Kan (1996) successfully demonstrated the usefulness of both scalar and multivariate

diffusion models in the development of asset pricing theory.

The exact discrete time representation of (2.1) is

Xt = FXt−1 + g + εt, (2.2)

where F = eAh with the matrix exponential definition eAh =
∑∞

j=0
1
j! (Ah)j , g =

∫ h
0 e

Asbds, and

εt = (ε1t, · · · , εmt)′ is a Gaussian martingale difference sequence (MDS) with respect to the natural
filtration with

E
(
εtε
′
t

)
=

∫ h

0
eAsΣeA

′sds := Ω.

This is just a first order VAR model with MDS(0,Ω) innovations.

To simulate data from exact discrete time model (2.2), replacing the integration representations

of g and Ω by more explicit expressions is quite necessary. As it will be clear later, as the rank of A

varies, the matrices F , g and Ω can be expressed explicitly in different ways. Moreover, the explicit

expressions facilitate the study of the process Xt, especially when 0 < rank(A) < m.

In the case where matrix A is nonsingular, i.e., rank(A) = m, the discrete model (2.2) can be

rewritten as

Xt = eAhXt−1 +A−1
[
eAh − Im

]
b+ εt, (2.3)

where Im denotes m×m identity matrix. Phillips (1973) deduced the relationships

eAhΣeA
′h − Σ = AΩ + ΩA′,

and

V ec (Ω) = {A⊗ Im + Im ⊗A}−1
{
eAh ⊗ eAh − Im ⊗ Im

}
V ec (Σ) ,
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where V ec (·) represents the vector formed by taking the direct sum of the rows of a matrix, and ⊗
denotes the right hand Kronecker product.

One special case in which A is nonsingular is obtained by assuming that all the eigenvalues of A

have negative real parts. This assumption is commonly used to ensure the discrete time model (2.2)

to be covariance stationary, because all the eigenvalues of F = exp (Ah) would have modulus less

than 1. In this case, A is known as the mean reversion matrix for the reason that the magnitude of

its eigenvalues measures the reverting speed of the process Xt to the long run mean −A−1b.
For the case where rank(A) = 0, i.e., A = 0m×m, the discrete model (2.2) is equivalent to

Xt = Xt−1 + bh+ εt, (2.4)

with Ω = Σh. Therefore, we get a pure unit root process without cointegration.

An interesting case corresponds to 0 < rank (A) < m. Let A has a reduced rank τ and can be

decomposed as

A = αβ′,

where both α and β are full rank matrices of dimension m×τ . Since we wish to estimate A, not α or
β, there is no need to do any normalization on α or β to ensure the uniqueness of the decomposition.

Let α⊥ and β⊥ be the orthogonal complementary matrices of α and β. Hence, α⊥ and β⊥ are full

rank matrices of dimension m× (m− τ) with the properties of α′α⊥ = 0 and β′β⊥ = 0. Applying

Ito’s lemma to model (2.1), we get

d
(
α′⊥X (t)

)
=
(
α′⊥b

)
dt+ α′⊥Σ1/2dW (t) . (2.5)

Obviously, α′⊥X (t) is an (m− τ)×1 dimensional unit root process with no cointegration. Together

with the restriction of 0 < rank (A) < m, another assumption is always made in the literature that

all the eigenvalues of β′α have negative real parts. As a result, the τ×1 dimensional process β′X (t)

follows

d
(
β′X (t)

)
=
[(
β′α
)
β′X (t) + β′b

]
dt+ β′Σ1/2dW (t) , (2.6)

which is stationary. Moreover, the non-singularity of β′α leads to

eAh = e(αβ
′)h = Im + α

[
e(β
′α)h − Iτ

] (
β′α
)−1

β′ = Im + αβ′,

where α = α
[
e(β
′α)h − Iτ

] (
β′α
)−1 is an m × τ matrix with full rank, and Iτ is the τ × τ identity

matrix. Consequently, the discrete time model (2.2) can be represented as

∆Xt = αβ′Xt−1 + g + εt, (2.7)

where ∆Xt = Xt − Xt−1. It takes the form of an error correction model (ECM). If each element

of Xt is the first order unit root process, the ECM (2.7) represents a cointegrated system, and
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the rows of β′ make up a basis for the space of cointegrating relations. Granger (1981, 1983),

Granger and Weiss (1983), Engle and Granger (1987) provided the early contributions to establish

the relationship between cointegrated systems and ECMs. Studies on cointegration system are

extensive; see for example, Stock (1987), Johansen (1988), Phillips and Ouliaris (1990), Sims, Stock

and Watson (1990), Ahn and Reinsel (1990). Most studies focus on discrete time. Phillips (1991)

formulated ECMs and cointegrated systems in continuous time models. His research uncovered

the fact that the long-run information could be embedded in a continuous time model and for a

given discrete time model the property of cointegration should be manifest itself in the same way

if economic variables are sampled equidistantly, regardless of the rate at which they sampled (see

also, Stock, 1987; Franchi, 2007; McCrorie, 2009).

In this paper, the multivariate diffusion process (2.1) with reduced rank matrix A = αβ′ is

referred to as the partially nonstationary continuous time model. This is not a nonstationary process

with cointegration, because neither the continuous time model nor its corresponding discrete time

model (2.7) contains more than just the cointegrated system. For example, in the model with matrix

A =

[
−0.1 0

0 0

]
=

[
−0.1

0

] [
1 0

]
= αβ′ and β′α = −0.1 < 0,

the first element of Xt is stationary while the second element is nonstationary.

By using an approach similar to Phillips (1973), we provide the following explicit expressions of

g and Ω when A has a reduced rank:

g =
{
α
(
β′α
)−1

β′ − α
(
β′α
)−1

β′h+ Imh
}
b = ϑ (h) b, (2.8)

and

Ω = αΞα′ − αΥα′ − αΥα′ + αΥα′h+ ϑ (h) Σ + Σ [ϑ (h)]′ − Σh, (2.9)

where Υ =
(
β′α
)−1

β′Σβ (α′β)−1 and Ξ satisfies

V ec (Ξ) =
{(
β′α
)
⊗ Iτ + Iτ ⊗

(
β′α
)}−1 {

e(β
′α)h ⊗ e(β′α)h − Iτ ⊗ Iτ

}
V ec (Υ) .

One equality deserves special attention (see the Appendix for the proof 1), that is,

α
(
β′α
)−1

β′ + β⊥
(
α′⊥β⊥

)−1
α′⊥ = Im. (2.10)

Based on (2.10), the process Xt can be decomposed into an ergodic part and a Brownian motion,

dX (t) = α
(
β′α
)−1

d
[
β′X (t)

]
+ β⊥

(
α′⊥β⊥

)−1
d
[
α′⊥X (t)

]
(2.11)

and

Xt = αe(β
′α)h

(
β′α
)−1 [

β′Xt−1
]

+ β⊥
(
α′⊥β⊥

)−1 [
α′⊥Xt−1

]
+ g + εt, (2.12)

1The author learned this proof from Peter Phillips in his class "Advanced Research Topics in Time Series Econo-
metrics" at Singapore Management University in 2011.
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where β′Xt−1 is stationary and α′⊥Xt−1 is a pure unit root process with no cointegration. Similar

results can be found in Comte (1999), and Kessler and Anders (2004). As if will become clear later,

this decomposition is essential to the development of an asymptotic theory for the estimation of A

when it comes to the partially nonstationary continuous time model.

3 Estimating The Mean Reversion Matrix

Despite the fact that expressions of g and Ω varies according to different rank conditions of A, a

common form of the discrete time model corresponding to the diffusion process (2.1) is given by

Xt = FXt−1 + g + εt,

where εt follows a Gaussian MDS(0,Ω).

Setting Zt =
[
X
′
t , 1
]′
, the LS estimator of [F, g] is

[
F̂ , ĝ

]
=

[
T∑
t=1

XtZ
′
t−1

]
×
[

T∑
t=1

Zt−1Z
′
t−1

]−1
. (3.1)

If we have a prior knowledge that b = 0 and hence g = 0, the LS estimator changes to be

F̂ =

[
T∑
t=1

XtX
′
t−1

]
×
[

T∑
t=1

Xt−1X
′
t−1

]−1
. (3.2)

For the model considered in the paper, the simplest LS estimation is equivalent to the maximum

likelihood (ML) estimation and the generalized least square (GLS) estimation (see, e.g., Zellner and

Theil, 1962).

The well-known aliasing problem gives rise to the first diffi culty in estimating A from F̂ . The

basic idea of the aliasing problem is that the pair (A,Σ) is unidentifiable in (F,Ω), because the

correspondence between them is not bijective. In the literature, many researchers tend to place

additional restrictions on models under different settings to achieve identification. For the stationary

diffusion model in which A has distinct characteristic roots, Phillips (1973) showed that (A,Σ) is

identifiable if and only if the matrix A is identifiable in F = exp{Ah}. However, many different
matrices share the same exponential F . In particular, if some of the eigenvalues of A are complex,

then by adding to each pair of conjugate complex eigenvalues the imaginary numbers 2ikπ/h and

−2ikπ/h for any integer k, another matrix A1 satisfying exp{A1h} = F is obtained. To get a

unique solution for A, Phillips (1973) gave a rank condition for the case of linear homogeneous

relations between the elements of a row of A. A special case is when A is triangular. Hansen

and Sargent (1983) extended this result by showing that the reduced form covariance structure Ω

provides extra identifying information about A, reducing the number of potential aliases. McCrorie
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(2003), Kessler and Rahbek (2004) studied the identification problem for nonstationary continuous

diffusion processes with cointegration.

We use a simple restriction which works well to achieve identification in all cases. Assumption 1

provides a desirable restriction by concentrating Ah on the unique principal logarithm of F in any

possible situation, and the support implied by the assumption is typically quite wide and covers

empirically relevant cases especially when h is small.

Assumption 1: The eigenvalues of A lie in the open strip {η ∈ C,−π/h < Im(η) < π/h} of the
complex plane, where Im(η) denotes the imaginary part of η ∈ C.

Proposition 3.1 Under Assumption 1, F has no eigenvalue on closed negative real axis, namely,

spec{F} ∩ R−0 = ∅,

where spec{F}, the spectrum of F , is the set consisting of all the distinct eigenvalues of F .

When F has no eigenvalue on the closed negative real axis, F has a unique logarithm with

eigenvalues in the open strip {z ∈ C,−π < Im(z) < π} of the complex plane. This is a well-known
result in the linear algebra literature (see, e.g., Bernstein, 2009, p.721). The unique logarithm,

denoted by ln(F ), is called the principal logarithm. Under Assumption 1, Ah is the principal

logarithm of F , namely, A = 1
h ln(F ), which naturally leads to the estimation of

Â =
1

h
ln(F̂ ). (3.3)

3.1 Traditional Estimator and Its Shortcomings

When all the eigenvalues of (I − F ) have modulus less than 1, there is a widely known relationship

between matrix F and its principal logarithm which takes the form of

Ah = lnF = −
∞∑
j=1

1

j
(I − F )j . (3.4)

Given F̂ , the above representation leads to a frequently used estimator of A as in

Ã =
1

h
ln F̂ = −1

h

∞∑
j=1

1

j

(
I − F̂

)j
, (3.5)

and

V ec
(
Ã−A

)
=

1

h


∞∑
j=1

1

j

[
j−1∑
s=0

(I − F )s ⊗
(
I − F̂ ′

)j−1−s]V ec
(
F̂ − F

)
. (3.6)
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As Ã is a measurable transformation of F̂ , (3.5) and (3.6) suggest that one can apply standard

results, such as the delta method, to obtain the limit theory of Ã once the limit theory of F̂ is

known, and the matrix

K =

∞∑
j=1

1

j

[
j−1∑
s=0

(I − F )s ⊗
(
I − F ′

)j−1−s] (3.7)

can be uses in the sandwich form to obtain the asymptotic covariance of Ã − A. The estimator of
K, denoted by K̂, is constructed by replacing F with F̂ , ie,

K̂ =
∞∑
j=1

1

j

[
j−1∑
s=0

(
I − F̂

)s
⊗
(
I − F̂ ′

)j−1−s]

Although the traditional estimator works well sometimes, it suffers from three drawbacks.

Firstly, an infinite summation is involved in Ã as well as in K̂. Hence, the calculation of Ã and its

asymptotic covariance matrix requires the truncation of infinite sequences in practice. Not surpris-

ingly, the number of terms in truncation for Ã and K̂ could be different since they have different

rates of convergence. In general, the truncation rule should depend on the eigenvalues of F̂ as they

determine the rate of convergence in Ã and K̂. Unfortunately, it is not clear how to truncate Ã

and K̂. If too few terms are used, the estimation error caused by truncation would be large. If two

many terms are used, not only the computational cost increases, but also, the estimation can get

worse, as indicated in Table 1 and Table 2. The reason is that the infinite series may not converge.

Another important aspect that is worth pointing out is that once the truncation is done, Ã becomes

inconsistent. The same argument applies to K̂.

Secondly, the condition that all the eigenvalues of I − F have modulus less than 1 determines

the domain of convergence of A in (3.4) as well as K in (3.7). When the condition is violated, the

power series representations of A and K are undefined. This condition excludes many interesting

cases in practice, such as the case in which F has purely imaginary eigenvalues. Moreover, even if

the true value of F satisfies the condition, I − F̂ may have eigenvalues whose modulus are bigger

than 1. As a result, the power series representations of Ã and K̂ are undefined. When this happens,

not surprisingly, the Ã and K̂ obtained from truncating the power series could be far away from

the true value.

To support the arguments above, we examine two simple cases and report the results in Table

1 and Table 2. Table 1 compares the estimates of A using the traditional estimator (3.5) with

different truncation numbers, and estimates using the proposed estimator (3.13). Table 2 shows

the comparison of the estimates of K from K̂ with different truncation numbers, and that from

the proposed estimator (3.15). Several features are apparent. Firstly, truncation rules for Ã and K̂

clearly depend on the value of F̂ . When F̂ = F , the case in which F is perfectly estimated with

no error, 500 is a good truncation number for Ã to make an accurate estimation of A. While, for

F̂ = F̂1, even 1000 does not seem good enough. Similar phenomenon appears in K̂. Secondly, the
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truncation rules for Ã and K̂ are quite different. To get accurate estimation of K, much larger

truncation number is needed comparing with what is required in estimation of A. Thirdly, when

the fitted value F̂2 is used, for which the eigenvalues of I − F̂2 have modulus 1.0311, the estimates
from Ã and K̂ are far away from the true values. The larger the truncation taken, the worse the

estimates are. Fourthly, both for A and K, the proposed estimator in the paper works very well

in all cases. The accuracy of the estimates from the proposed estimator trumps that from the

traditional estimator even with truncation number 1000.

In practice, it is always able to test how many cointegrating relations a cointegrated system

has. Based on the introduction of partially nonstationary model in Section 2, the knowledge of

cointegrating rank can easily translate into the information about the rank of A. Then, knowledge

like rank (A) = τ where 0 < τ < m could be revealed. The third drawback of the traditional

approach lies in the fact that it can not utilize the prior knowledge of rank (A) to simplify the

estimating procedure of A and the corresponding asymptotic covariance matrix. However, the

proposed estimator in this paper can take advantage of the prior knowledge of rank (A). Details

are discussed in Section 3.3.

3.2 New Estimator

A new explicit formula for the principal logarithm was recently proposed in the linear algebra

literature. For any matrix F , the new formula represents the principal logarithm as a polynomial in

the matrix I − F of finite order with integral formulae for the coeffi cients involving the coeffi cients

of the characteristic polynomial of I−F . The proposed estimator of A is based on the new formula.

Lemma 3.1 (Cardoso, 2005) Let F ∈ Rm×m, = = {ι ∈ R| spec{I − (I − F )ι} ∩R−0 = ∅}. For all
ι ∈ =, we have

ln [I − (I − F )ι] = f1(ι)I + f2(ι) (I − F ) + · · ·+ fm(ι) (I − F )m−1 ,

where f1, · · · , fm are differentiable functions in =, given by

f1(ι) =

∫ ι

0

CmS
m−1

1 + C1S + · · ·+ CmSm
dS,

fj(ι) =

∫ ι

0

−Sj−2 − C1Sj−1 − · · · − Cm−jSm−2
1 + C1S + · · ·+ CmSm

dS, for j = 2, · · · ,m− 1,

fm(ι) =

∫ ι

0

−Sm−2
1 + C1S + · · ·+ CmSm

dS,

and Cj, j = 1, · · · ,m, are the real coeffi cients of the characteristic polynomial of I − F .

Remark 3.2 The characteristic polynomial of I − F takes the form

P (z) = det[zI − (I − F )] = zm + C1z
m−1 + · · ·+ Cm−1z + Cm. (3.8)
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Table 1: Traditional Estimator vs. New Estimator of Â

A11 A12 A21 A22
A’s true value 0 +12.3604i 0 0 0 -12.3604i

[ln(F )]/h_10 0.9567 +12.3617i 0 0 0.9567 -12.3617i
[ln(F )]/h_100 0.0175 +12.3408i 0 0 0.0175 -12.3408i
[ln(F )]/h_500 -0.0000 +12.3604i 0 0 -0.0000 -12.3604i
[ln(F )]/h_1000 -0.0000 +12.3604i 0 0 -0.0000 -12.3604i
[ln(F )]/h_new -0.0000 +12.3604i 0 0 -0.0000 -12.3604i

[ln(F̂1)]/h_10 1.1226 +12.6501i 0 0 1.1226 -12.6501i
[ln(F̂1)]/h_100 0.1158 +12.5612i 0 0 0.1158 -12.5612i
[ln(F̂1)]/h_500 -0.0087 +12.5808i 0 0 -0.0087 -12.5808i
[ln(F̂1)]/h_1000 0.0087 +12.5607i 0 0 0.0087 -12.5607i
[ln(F̂1)]/h_new -0.0000 +12.5622i 0 0 -0.0000 -12.5622i

[ln(F̂2)]/h_10 1.5392 +13.3835i 0 0 1.5392 -13.3835i
[ln(F̂2)]/h_100 -0.5891 +15.5681i 0 0 -0.5891 -15.5681i
[ln(F̂2)]/h_500 105×(0.1219 - 1.1026i) 0 0 105×(0.1219 + 1.1026i)
[ln(F̂2)]/h_1000 1011×(1.7144 - 1.8067i) 0 0 1011×(1.7144 +1.8067i)
[ln(F̂2)]/h_new -0.0000 +12.9997i 0 0 -0.0000 -12.9997i

Note: Assume monthly data is used, i.e., h=1/12, and i is the imaginary unit. The true

value of F=exp{Ah} is Vec(F)= (0.5148+0.8573i, 0, 0, 0.5148-0.8573i)′. Two reasonable estimates are

Vec(F̂1)=(0.5003+0.8659i, 0, 0, 0.5003-0.8659i)′ and Vec(F̂2)= (0.4684+0.8835i, 0, 0, 0.4684-0.8835i)′, respectively.
The eigenvalues of (I-F), (I-F̂1) and (I-F̂2) have modulus 0.9851, 0.9997 and 1.0311, respectively. [ln (·)]/h_s,
s=10,100,500,1000, are estimations of A by using formula (3.5) with truncation number 10, 100, 500, 1000, respec-

tively. [ln (·)]/h_new denotes the estimation of A from the proposed estimator (3.13).
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Table 2: Traditional Estimator vs. New Estimator of AsyV ar(Â)

K11 K22 K33 K44

true value 0.5148 - 0.8573i 1.2015 1.2015 0.5148 + 0.8573i

K̂ (F )_10 0.0344 - 1.5713i 1.2016 1.2016 0.0344 + 1.5713i
K̂ (F )_100 0.2967 - 0.9029i 1.1996 1.1996 0.2967 + 0.9029i
K̂ (F )_500 0.5146 - 0.8568i 1.2015 1.2015 0.5146 + 0.8568i
K̂ (F )_1000 0.5148 - 0.8573i 1.2015 1.2015 0.5148 + 0.8573i
K̂ (F )_new 0.5148 - 0.8573i 1.2015 1.2015 0.5148 + 0.8573i

K̂(F̂1)_10 0.0006 - 1.7286i 1.2175 1.2175 0.0006 + 1.7286i
K̂(F̂1)_100 0.0009 - 1.6977i 1.2089 1.2089 0.0009 + 1.6977i
K̂(F̂1)_500 1.3568 - 0.9405i 1.2108 1.2108 1.3568 + 0.9405i
K̂(F̂1)_1000 0.0254 - 1.4323i 1.2089 1.2089 0.0254 + 1.4323i
K̂(F̂1)_new 0.5003 - 0.8659i 1.2090 1.2090 0.5003 + 0.8659i

K̂(F̂2)_10 -0.0344 - 2.1455i 1.2623 1.2623 -0.0344 + 2.1455i
K̂(F̂2)_100 20.7477 - 7.7164i 1.4684 1.4684 20.7477 + 7.7164i
K̂(F̂2)_500 106×(-4.0729 + 1.8843i) O

(
104
)

O
(
104
)

106×(-4.0729 - 1.8843i)
K̂(F̂2)_1000 1013×(-1.9668 - 0.4329i) O

(
1011

)
O
(
1011

)
1013×(-1.9668 + 0.4329i)

K̂(F̂2)_new 0.4684 - 0.8835i 1.2261 1.2261 0.4684 + 0.8835i

Note:

1. Let AsyVar(Â) denotes the asymptotic variance of Â−A.
2. The asymptotic variance of the traditional estimator in (3.5) and the proposed estimator in (3.13) are KVar(F̂)K′

and ΓVar(F̂)Γ′, respectively. Therefore, the accuracy of the estimations of K and Γ determines how accurate the

estimations of KVar(F̂)K′ and ΓVar(F̂)Γ′ could be, once the estimation of the common term Var(F̂) is obtained.

When the traditional estimator is applicable, i.e., each eigenvalue of I-F has modulus less than 1, it is easy to see

that K=Γ. Therefore, Γ̂ as in (3.15) can be used to estimate K. K̂(·)_s,s= 10,100,500,1000, are estimations of K

by using K̂ with truncation number 10, 100, 500, 1000, respectively. K̂(·)_new denotes the estimation of K from the

proposed estimator (3.15).

3. Assume monthly data is used, i.e., h=1/12, and i is the imaginary unit. The true

value of F=exp{Ah} is Vec(F)= (0.5148+0.8573i, 0, 0, 0.5148-0.8573i)′. Two reasonable estimates are

Vec(F̂1)= (0.5003+0.8659i, 0, 0, 0.5003-0.8659i)′and Vec(F̂2)= (0.4684+0.8835i, 0, 0, 0.4684-0.8835i)′, respectively.
The eigenvalues of (I-F), (I-F̂1) and (I-F̂2) have modulus 0.9851, 0.9997 and 1.0311, respectively.

4. Let Kjj , for j = 1,2,3,4, denote diagonal elements of matrix K. For the particular form of F, F̂1 and F̂2 here, both
the true value and the estimation values of other elements of matrix K are zero. Therefore, this table only reports the

estimation results of Kjj , for j = 1,2,3,4.
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The coeffi cients {Cj}mj=1, which can be obtained by calculating the determinant of the matrix zI −
(I − F ), are given by

C1 = (−1)
m∑
s=1

(1− λs) = −tr(I − F ),

C2 = (−1)2
∑

1≤s<k≤m
(1− λs) (1− λk) =

1

2

{
[tr (I − F )]2 − tr

[
(I − F )2

]}
,

...

Cm = (−1)m
m∏
s=1

(1− λs) = (−1)m det (I − F ) ,

where {λs}ms=1 are the eigenvalues of F .

Remark 3.3 The condition ι ∈ = is critical. If ι /∈ =, it is possible that 1 +C1S+ · · ·+CmS
m = 0

for some S ∈ [0, ι] which makes fj(ι), for j = 1, · · · ,m, undefined.

Based on Proposition 3.1, Assumption 1 ensures that 1 belongs to =. Letting ι = 1, from Lemma

(3.1) we have

Ah = ln (F ) = f1I + f2 (I − F ) + · · ·+ fm (I − F )m−1 , (3.9)

where

f1 =

∫ 1

0

CmS
m−1

1 + C1S + · · ·+ CmSm
dS, (3.10)

fj =

∫ 1

0

−Sj−2 − C1Sj−1 − · · · − Cm−jSm−2
1 + C1S + · · ·+ CmSm

dS, for j = 2, · · · ,m− 1, (3.11)

fm =

∫ 1

0

−Sm−2
1 + C1S + · · ·+ CmSm

dS. (3.12)

The proposed estimator of A takes the form of

Â =
1

h
ln
(
F̂
)

=
1

h

{
f̂1I + f̂2

(
I − F̂

)
+ · · ·+ f̂m

(
I − F̂

)m−1}
, (3.13)

where

f̂1 =

∫ 1

0

ĈmS
m−1

1 + Ĉ1S + · · ·+ ĈmSm
dS,

f̂j =

∫ 1

0

−Sj−2 − Ĉ1Sj−1 − · · · − Ĉm−jSm−2

1 + Ĉ1S + · · ·+ ĈmSm
dS, for j = 2, · · · ,m− 1,

f̂m =

∫ 1

0

−Sm−2

1 + Ĉ1S + · · ·+ ĈmSm
dS,{

λ̂s

}m
s=1

are the eigenvalues of F̂ , and for j = 1, · · · ,m,

Ĉj = (−1)j
∑

1≤s1<s2...<sj≤m

(
1− λ̂s1

)
· · ·
(

1− λ̂sj
)
. (3.14)
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Note that the formulae (3.4) and (3.9) are two different expressions of the principal logarithm of

F , whose domains of definition are {F : eigenvalues of (I − F ) have modulus less than unity} and{
F : spec{F} ∩ R−0 = ∅

}
, respectively. The fact that{

F : spec{F} ∩ R−0 = ∅
}
⊃ {F : eigenvalues of (I − F ) have modulus less than unity}

indicates that formulae (3.9) is more generally applicable than formulae (3.4). When (3.4) holds,

formulae (3.9) is equivalent to formulae (3.4). Replacing F by F̂ , the same argument applies to Ã

given in formula (3.5) and Â given in formula (3.13).

The consistency of the proposed estimator in (3.13) is easy to establish under the condition of

F̂
p−→ F . Note that eigenvalues under ordering (with any ordering rule) are continuous functions

of the elements of a matrix. Hence, the eigenvalues of F̂ ,
{
λs

(
F̂
)}m

s=1
, converge to those of F ,

{λs (F )}ms=1, in probability, as long as F̂
p−→ F . Since, for j = 1, · · · ,m, Ĉj are continuous in{

λs

(
F̂
)}m

s=1
and f̂j are continuous in

{
Ĉj

}m
j=1
, the consistency of Â is established immediately.

We collect these results in the following theorem.

Theorem 3.4 Let Â be defined in (3.13), that Assumption 1 holds, h is fixed and T → ∞. If
F̂

p−→ F , then

Â
p−→ A

In order to draw a clear link between the limiting distribution of Â − A and that of F̂ − F ,
a simplified relationship between Â − A and F̂ − F is presented in the next corollary. Some new

notations appear. For any matrix Ψ, (Ψ)kj denotes the matrix formed by deleting row k and column

j from Ψ. Let adj (Ψ) denote the adjoint of Ψ, whose ijth element is given by (−1)k+j
∣∣∣(Ψ)kj

∣∣∣, where∣∣∣(Ψ)kj

∣∣∣ is determinant of the matrix.
Corollary 3.5 Suppose Assumption 1 holds, h is fixed and T →∞. If F̂ p−→ F , we have

(a)

hV ec
(
Â−A

)
= Γ̃V ec

(
F̂ − F

)
+ op

(
V ec

(
F̂ − F

))
with

Γ̃ =
m∑
j=1

V ec

[(
I − F̂

)j−1]
z′jL−1H −

m∑
j=2

j−2∑
s=0

fj

{
(I − F )s ⊗

[
I − F̂ ′

]j−2−s}
,

(b) Γ̃ converges in probability to a nonsingular matrix Γ as

Γ̃
p−→ Γ =

m∑
j=1

V ec
[
(I − F )j−1

]
z′jL−1H −

m∑
j=2

j−2∑
s=0

fj

{
(I − F )s ⊗

[
I − F ′

]j−2−s}
,
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where, for j = 1, · · · ,m, z′j =
[
∂fj
∂Cm

∂fj
∂Cm−1

· · · ∂fj
∂C1

]
with fj taking the forms given in for-

mulae (3.10), (3.11) and (3.12), L =


1 1 · · · 1

1 2 · · · 2m−1

...
...

. . .
...

1 m · · · mm−1

 is a nonsingular matrix, and H =


[V ec(H1)]

′

...

[V ec(Hm)]′

 with Hz = [adj (zI − (I − F ))]′ for z = 1, · · · ,m.

Remark 3.6 Clearly, Γ is the matrix which is typically used in the sandwich form to get the asymp-

totic covariance matrix of Â− A from that of F̂ − F . The consistency of F̂ and Ĉj, j = 1, · · · ,m,
ensures that

Γ̂ =
m∑
j=1

V ec

[(
I − F̂

)j−1]
ẑ′jL−1Ĥ −

m∑
j=2

j−2∑
s=0

f̂j

{(
I − F̂

)s
⊗
[
I − F̂ ′

]j−2−s}
(3.15)

is a consistent estimation of Γ, where ẑ′j, f̂j and Ĥ are obtained from z′j, fj and H by replacing

{Cj}mj=1 and F with
{
Ĉj

}m
j=1

and F̂ .

Remark 3.7 When all the eigenvalues of I − F̂ have modulus less than unity, Â in (3.13) is

equivalent to Ã given in (3.5). With the assumption that F̂
p−→ F , it is easy to see that Γ in

Corollary 3.5 is equivalent to K in formula (3.7), but involves a finite summation only.

To help understand Corollary 3.5, we examine the special case of m = 1, the univariate case.

When m = 1, the exact ML estimator of A is Â = 1
h ln

(
F̂
)
, and the first order Taylor expansion

h
(
Â−A

)
=

1

F

(
F̂ − F

)
+ op

(
F̂ − F

)
(3.16)

is usually used to derive the asymptotic properties. In the univariate set up, Assumption 1 is

satisfied when A is restricted to take real values. Hence, the new estimator in (3.13) is applicable

and takes the form

Â =
1

h
f̂1 =

1

h

∫ 1

0

Ĉ1

1 + Ĉ1S
dS,

where Ĉ1 = F̂ − 1. Straightforward calculation gives∫ 1

0

Ĉ1

1 + Ĉ1S
dS =

∫ 1

0

F̂ − 1

1 +
(
F̂ − 1

)
S
dS = ln

(
F̂
)
.

Therefore, as expected, the new estimator is just the commonly used ML estimator. To get the

leading term of h
(
Â−A

)
, we first take the first order Taylor expansion of f̂1 at the point Ĉ1 = C1,

which leads to

f̂1 − f1 =
1

1 + C1

(
Ĉ1 − C1

)
+ op

(
Ĉ1 − C1

)
,
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for the reason that ∂f̂1
∂Ĉ1

∣∣∣
Ĉ1=C1

=
∫ 1
0

1
(1+C1s)

2ds = 1
1+C1

. We then take the first order Taylor expan-

sion of Ĉ1 at the point of F̂ = F , which leads to

Ĉ1 − C1 = F̂ − F .

Putting the results together, we obtain 1
F

(
F̂ − F

)
as the leading term of h

(
Â−A

)
, as revealed

by (3.16). Applying the same idea to the m-dimensional case, we get the results in Theorem 3.5.

To calculate the asymptotic covariance matrix of h
(
Â−A

)
, we need to obtain a more explicit

expression of Γ. When m = 1, it is also easy to obtain that

Γ̃ = Γ = 1/F.

Low dimensional models, especially when m = 2, 3, are empirically very relevant. In the following

two corollaries, we provide a more explicit expression of Γ when m = 2, 3. The proofs are omitted,

because expanding the formulae of z′j , L and H given in Corollary 3.5 gives the results immediately.

Corollary 3.8 When m = 2,

Γ = V ec [ϕ1I + ϕ3 (I − F )] ∆1 + V ec [ϕ2I + ϕ4 (I − F )] ∆2 − f2I4,

where

ϕ1 =

∫ 1

0

−C2S2

(1 + C1S + C2S2)
2dS, ϕ2 =

∫ 1

0

S + C1S
2

(1 + C1S + C2S2)
2dS,

ϕ3 =

∫ 1

0

S

(1 + C1S + C2S2)
2dS, ϕ4 =

∫ 1

0

S2

(1 + C1S + C2S2)
2dS,

f2 =

∫ 1

0

−1

1 + C1S + C2S2
dS, C1 = −tr(I − F ), C2 = det(I − F ),

∆1 = ( 1 0 0 1 ), ∆2 = −
(

1− F(2,2) F(2,1) F(1,2) 1− F(1,1)
)
,

and I and I4 denote the 2× 2, 4× 4 identity matrix. F(k,j) denotes the kjth elements of F .

Corollary 3.9 When m = 3,

Γ = V ec
[
ξ1I + ξ4 (I − F ) + ξ7 (I − F )2

]
∆3 + V ec

[
ξ2I + ξ5 (I − F ) + ξ8 (I − F )2

]
∆4

+ V ec
[
ξ3I + ξ6 (I − F ) + ξ9 (I − F )2

]
∆8 − f2I9 − f3

[
1∑
s=0

{
(I − F )s ⊗

(
I − F ′

)1−s}]
,

where

ξ1 =

∫ 1

0

−C3S3

(1 + C1S + C2S2 + C3S3)
2dS, ξ2 =

∫ 1

0

−C3S4

(1 + C1S + C2S2 + C3S3)
2dS,
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ξ3 =

∫ 1

0

(1 + C1S + C2S
2)S2

(1 + C1S + C2S2 + C3S3)
2dS, ξ4 =

∫ 1

0

−(C2 + C3S)S3

(1 + C1S + C2S2 + C3S3)
2dS,

ξ5 =

∫ 1

0

(1 + C1S)S2

(1 + C1S + C2S2 + C3S3)
2dS, ξ6 =

∫ 1

0

(1 + C1S)S3

(1 + C1S + C2S2 + C3S3)
2dS,

ξ7 =

∫ 1

0

S2

(1 + C1S + C2S2 + C3S3)
2dS, ξ8 =

∫ 1

0

S3

(1 + C1S + C2S2 + C3S3)
2dS,

ξ9 =

∫ 1

0

S4

(1 + C1S + C2S2 + C3S3)
2dS,

C1 = −tr(I − F ), C2 =
1

2

{
[tr(I − F )]2 − tr

[
(I − F )2

]}
, C3 = −det(I − F ),

∆3 = ( 1 0 0 0 1 0 0 0 1 ), ∆4 = {−tr(I − F )∆3 + ∆3[(I − F )⊗ I]},

∆5 = ∆3

[
(I − F )2 ⊗ I

]
, ∆6 =

1

2

{
−tr (I − F )2 ∆3 − 2tr(I − F )∆3[(I − F )⊗ I]

}
,

∆7 =
1

2
[tr(I − F )]2 ∆3, ∆8 = ∆5 + ∆6 + ∆7,

f2 =

∫ 1

0

−1− C1S
1 + C1S + C2S2 + C3S3

dS, f3 =

∫ 1

0

−S
1 + C1S + C2S2 + C3S3

dS,

and I and I9 denote the 3× 3, 9× 9 identity matrix.

In empirical applications, sometimes extra restrictions on matrix A are available. One example

is that all the eigenvalues of A are known to be distinct. Consequently, F = eAh is diagonalizable

with distinct eigenvalues. It is diffi cult to incorporate this prior knowledge to the estimation of

A. However, as it is shown in the next corollary, the representation of matrix Γ becomes much

simpler under this extra restriction. Taking advantage of the new expression of Γ not only makes

the estimation of Γ easier, but also generate extra effi ciency in estimating the asymptotic covariance

of Â−A.
Before reporting Corollary 3.10, we first need to introduce a specific ordering rule of eigenvalues

and a specific normalization rule of eigenvectors, to make the eigen-decomposition unique. Firstly,

we let F’s eigenvalues {λ1, · · · , λm} be ordered according to

Re(λ1) ≥ · · · ≥ Re(λm).

Then, any complex eigenvalues with Re (λj) = Re (λj+1) will be ordered based on the absolute value

of their imaginary parts as

|Im(λj)| ≥ |Im(λj+1)| .

Finally, for complex conjugate pairs (λk, λk+1), we order them according to the sign of the imaginary

part, i.e., Im(λk) > 0 followed by Im(λk+1) < 0. This rule leads to a unique ordering of the
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eigenvalues. Let pj , for j = 1, ...,m, be the eigenvectors corresponding to the eigenvalue λj . The

normalization rule

p′jpj = 1

makes each corresponding eigenvector unique. As a result, F can be uniquely decomposed as

F = Pdiag {λ1, · · · , λm}Q,

where P =
[
p1 · · · pm

]
, Q = P−1. Then, the matrixA has the ordered eigenvalues as {η1, · · · , ηm} =

1
h {ln (λ1) , · · · , ln (λm)}, and the decomposition of A = Pdiag {η1, · · · , ηm}Q.

Corollary 3.10 Under Assumption 1, F̂
p−→ F when h is fixed and T →∞. If A is diagonalizable

with distinct eigenvalues, the matrix Γ can be expressed as

Γ =
(
P ⊗Q′

)
Λ−1

(
Q⊗ P ′

)
,

where Λ = diag {Λ1, · · · ,Λm}, and Λk, for k = 1, · · · ,m, is a m×m diagonal matrix whose (k, k)th

element is equal to eηkh, and (v, v)th element with v 6= k is equal to
(
eηvh − eηkh

)
/ [(ηv − ηk)h].

Remark 3.11 Note that the ordered eigenvalues and eigenvectors under normalization are contin-
uous functions of the elements of a matrix. Once F̂

p−→ F is established, a consistent estimate of

Γ is easy to get as

Γ̂ =
(
P̂ ⊗ Q̂′

)
Λ̂−1

(
Q̂⊗ P̂ ′

)
,

where Λ̂ is obtained by replacing ηk with η̂k = 1
h ln

(
λ̂k

)
for k = 1, · · · ,m,

{
λ̂1, · · · , λ̂m

}
are the or-

dered eigenvalues of F̂ , P̂ =
[
p̂1 · · · p̂m

]
with p̂j being the normalized eigenvectors associated with

the corresponding eigenvalues, and Q̂ = P̂−1. Comparing with the Γ̂ constructed in Remark (3.6),

Γ̂ here is easier to get. Therefore, some extra effi ciency in estimating the asymptotic covariance of

Â−A is expected.

Under the condition that all the eigenvalues of A are distinct and F̂ a.s.−→ F , F̂ can be decomposed

as F̂ = P̂ diag
{
λ̂1, · · · , λ̂m

}
Q̂ when the sample size T is large enough. By taking the principal

logarithm, Â in (3.13) has the eigenvalues, {η̂1, · · · , η̂m} = 1
h

{
ln
(
λ̂1

)
, · · · , ln

(
λ̂m

)}
, and can be

decomposed as Â = P̂ diag {η̂1, · · · , η̂m} Q̂. Corollary 3.12 below provides an explicit relationship
between {η̂1, · · · , η̂m} − {η1, · · · , ηm} and Â − A, facilitating the derivation of the joint limit dis-
tribution of eigenvalues. It can be shown that the elements of G reported in Corollary 3.12 are the

same as the coeffi cient of the partial derivatives of the eigenvalues of A with respect to the elements

of A as given in Phillips (1982).
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Corollary 3.12 Assume A is diagonalizable with distinct eigenvalues, and F̂ a.s.−→ F when h is fixed

and T →∞. We then have[
η̂1 − η1, · · · , η̂m − ηm

]′
= G · V ec

(
Â−A

)
+ op

(
V ec

(
Â−A

))
,

where G is a m ×m2 matrix whose jth row is
(
pj
)′ ⊗ p′j with (pj)′ and pj denoting the jth row of

P−1 and the jth column of P .

3.3 New Estimator under the Ranking Condition

In practice, it is possible to have some prior information regarding the rank of A. Sometimes,

economic theory suggests the rank; sometimes, econometric tests suggests the rank. Take a cointe-

grated system as an example. If a cointegrated system is characterized by 0 < τ < m cointegrating

relations and cointegration tests such as Johansen (1988, 1991) confirm it, then it is known that

I − F has rank τ . From the discussion in Section 2, it is easy to see that rank (A) = τ . While it is

diffi cult to incorporate this prior information into the traditional estimator, it is straightforward to

do so in the new estimator, as will be shown in this section. To facilitate the discussion, we focus

on a bivariate cointegrated system and then provide the results for the general case.

Example 3.13 Consider a bivariate diffusion process Xt = (x1t, x2t)
′ taking the form of (2.1). Its

exact discrete time representation is (2.2). Based on the formulae from (3.9) to (3.12), we get

Ah = ln (F ) = f1I + f2 (I − F ) ,

where

f1 =

∫ 1

0

C2S

1 + C1S + C2S2
dS, f2 =

∫ 1

0

−1

1 + C1S + C2S2
dS,

C1 = tr (F − I) and C2 = det (I − F ). Given F̂ , we have

Âh = ln
(
F̂
)

= f̂1I + f̂2

(
I − F̂

)
,

with

f̂1 =

∫ 1

0

Ĉ2S

1 + Ĉ1S + Ĉ2S2
dS, f̂2 =

∫ 1

0

−1

1 + Ĉ1S + Ĉ2S2
dS,

Ĉ1 = tr
(
F̂ − I

)
and Ĉ2 = det

(
I − F̂

)
. The matrix Γ, which is used in the sandwich form to get

the asymptotic covariance of (Â−A), is presented in Corollary (3.8).

If there exists the prior knowledge that both x1t and x2t are random walks but cointegrated, then

rank (A) = rank (I − F ) = 1. Hence, C2 = 0, f1 = 0, and,

Ah = ln (F ) = f2 (I − F ) ,
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where f2 =
∫ 1
0

−1
1+C1S

ds, and C1 = tr (F − I). With the simplified expression of A, the new

proposed estimator becomes

Â∗h = ln
(
F̂
)

= f̂∗2

(
I − F̂

)
where

f̂∗2 =

∫ 1

0

−1

1 + Ĉ1S
dS and Ĉ1 = tr

(
F̂ − I

)
.

Obviously, Â∗ is simpler than Â, which is embodied not only by missing the estimation of f1 but

also by the simplified formula of f2. When F̂
p−→ F , straightforward algebra gives that

hV ec
(
Â∗ −A

)
= Γ∗V ec

(
F̂ − F

)
+ op

(
V ec

(
F̂ − F

))
,

where

Γ∗ = V ec [ϕ3 (I − F )] ∆1 − f2I4,

and ϕ3, ∆1, f2, I4 are defined as in Corollary (3.8) with the condition that C2 = 0. Comparing

with Γ in Corollary (3.8), Γ∗ takes a simpler representation and is easier to calculate.

In general settings, prior ranking knowledge is assumed to be

rank (A) = τ , where 0 < τ < m.

What is revealed by the prior ranking condition is that A has at least m − τ zero eigenvalues 2.
Therefore, F = eAh has at least m− r eigenvalues equaling 1. Note that Cj , j = 1, · · · ,m, can be
expressed as

Cj = (−1)j
∑

1≤s1<s2...<sj≤m
(1− λs1) · · ·

(
1− λsj

)
,

where {λs}ms=1 is the eigenvalue of F and that Cj = 0 whenever j > τ . Based on the formulae from

(3.9) to (3.12), the principal logarithm of F can be rewritten as

Ah = ln (F ) = f2 (I − F ) + · · ·+ fm (I − F )m−1 ,

where

fj =

∫ 1

0

−Sj−2 − C1Sj−1 − · · · − CτSj−2+τ
1 + C1S + · · ·+ CτSτ

dS, for 2 ≤ j < m− τ ,

fj =

∫ 1

0

−Sj−2 − C1Sj−1 − · · · − Cm−jSm−2
1 + C1S + · · ·+ CτSτ

dS, for m− τ ≤ j ≤ m− 1,

fm =

∫ 1

0

−Sm−2
1 + C1S + · · ·+ CτSτ

dS.

2Having m − τ zero eigenvalues is the most that can be guaranteed by rank (A) = τ . But, the number of zero

eigenvalues could be larger than m− τ . For example, A =
[
0 1

0 0

]
, whose rank equals 1, possesses 2 zero eigenvalues.

Note that A =

[
0 1

0 0

]
=

[
1

0

] [
0 1

]
= αβ′ makes x1t be a I (2) process which is stationary after differencing two

times. This case is not of much practical interest, and is always excluded from partially nonstationary continuous

model by the restriction that all eigenvalues of β′α should have negative real parts.
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Consequently, the new proposed estimator under prior ranking knowledge is defined as

Â∗ =
1

h
ln
(
F̂
)

=
1

h

{
f̂∗2

(
I − F̂

)
+ · · ·+ f̂∗m

(
I − F̂

)m−1}
, (3.17)

where

f̂∗j =

∫ 1

0

−Sj−2 − Ĉ1Sj−1 − · · · − ĈτSj−2+τ

1 + Ĉ1S + · · ·+ ĈτSτ
dS, for 2 ≤ j < m− τ ,

f̂∗j =

∫ 1

0

−Sj−2 − Ĉ1Sj−1 − · · · − Ĉm−jSm−2

1 + Ĉ1S + · · ·+ ĈτSτ
dS, for m− τ ≤ j ≤ m− 1,

f̂∗m =

∫ 1

0

−Sm−2

1 + Ĉ1S + · · ·+ ĈτSτ
dS,

and Ĉj , for j = 1, · · · , τ , are defined as in formula (3.14). Clearly, Â∗ is simpler than Â given in

formula (3.13) in which no prior ranking knowledge is incorporated. Missing estimates of f1 and

simplified estimating formula of fj , for j = 1, · · · ,m, work together to fulfill the simplification of
Â∗.

In the next corollary, a simplified relationship between Â∗−A and F̂−F is derived to connect the
limiting distribution of Â∗−A to that of F̂ −F . Comparison between Γ∗ in the next corollary and

Γ in Corollary 3.5 indicates clearly that Â∗ has a simpler expression of the asymptotic covariance

matrix.

Corollary 3.14 Assume (1) the prior knowledge rank (A) = τ with 0 < τ < m is given; (2)

Assumption 1 holds; (3) h is fixed and T →∞. If F̂ p−→ F , then

(a)

hV ec
(
Â∗ −A

)
= Γ̃∗V ec

(
F̂ − F

)
+ op

(
V ec

(
F̂ − F

))
,

with

Γ̃∗ =
m∑
j=2

V ec

[(
I − F̂

)j−1]
z∗′j ΘL−1H −

m∑
j=2

j−2∑
s=0

fj

{
(I − F )s ⊗

[
I − F̂ ′

]j−2−s}
;

(b) Γ̃∗ converges in probability to a nonsingular matrix Γ∗ as

Γ̃∗
p−→ Γ∗ =

m∑
j=2

V ec
[
(I − F )j−1

]
z∗′j ΘL−1H −

m∑
j=2

j−2∑
s=0

fj

{
(I − F )s ⊗

[
I − F ′

]j−2−s}
,

where Θ =
[
0τ×(m−τ), Iτ

]
τ×m, z

∗′
j =

[
∂fj
∂Cτ

∂fj
∂Cτ−1

· · · ∂fj
∂C1

]
, for j = 2, · · · ,m, fj take the forms

of formulae (3.10), (3.11) and (3.12) with condition that Cj = 0 whenever j > τ , L and H are

defined as in Corollary 3.5.
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Remark 3.15 Two differences between Γ in Corollary 3.5 and Γ∗ in Corollary 3.14 deserve to be

highlighted. Firstly, V ec
[
(I − F )j−1

]
z′jL−1H in Γ disappears in Γ∗. The second difference is that

z′j in Γ is replaced by z∗′j Θ in Γ∗. As a result, there is no further need to calculate ∂fj/∂Cs, for

s = τ + 1, · · · ,m, j = 2, · · · ,m. These two differences allow Γ∗ to enjoy a simpler expression

relative to Γ, which in turn allows Â∗ to have a simpler expression of the asymptotic covariance

matrix than Â.

4 Asymptotics of New Estimator

4.1 Asymptotics for Stationary Model

This subsection develops the limit theory for Â defined in (3.13) when the diffusion process X (t) is

stationary.

Assumption 2: All eigenvalues of A have negative real parts.

This commonly used condition makes all the eigenvalues of F = exp (Ah) have modulus less

than 1, and consequently ensures the discrete time representation (2.2) of the diffusion process (2.1)

to be a covariance stationary VAR(1) model. Note that A has full rank here and the discrete time

model (2.2) can be rewritten as

Xt = eAhXt−1 +A−1
[
eAh − I

]
b+ εt = FXt−1 + g + εt,

where εt are MDS(0,Ω).

Under constant initial condition, the ML/LS estimator F̂ defined in (3.1) has the following

standard limit theory (see Hannan, 1970, p.329)3.

Lemma 4.1 If Assumption 2 holds, h is fixed and sample size T goes to infinity, then
(a) F̂

a.s−→ F ,

(b)
√
TV ec

(
F̂ − F

)
d−→ N (0, VF ),

where VF = Ω⊗ (VX)−1, VX = V ar (Xt) =
∑∞

i=0 F
iΩF

′i and Ω = E (εtε
′
t).

A direct application of the results in Corollary 3.5, Corollary 3.12 and Corollary 3.10 gives the

results in the next theorem.

Theorem 4.2 Let Assumption 1 and Assumption 2 hold, Â is defined by (3.13) and,
{
ηj
}m
j=1

and{
η̂j
}m
j=1

are the ordered eigenvalues of A and Â, respectively. If h is fixed and T →∞,

3 If b = 0 and hence g = 0 is prior knowledge, then F̂ defined by formula (3.2) not (3.1) is going to be used to

estimate F . It has the same asymptotics listed in Lemma 4.1. Therefore, the limit theory of Â given by Theorem 4.2

still be true even in the case where b = 0 is known a priori.
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(a) we have:

h
√
TV ec

(
Â−A

)
d−→ N

(
0,ΓVFΓ′

)
.

(b) If A is diagonalizable with distinct eigenvalues, we have

h
√
T
[
η̂1 − η1, · · · , η̂m − ηm

]′ d−→ N
(
0, GΓVFΓ′G′

)
.

where G and VF are defined in Corollary 3.12 and Corollary 4.1. In general, the matrix Γ takes

the form reported in Corollary 3.5. When A is diagonalizable with distinct eigenvalues, Γ can be

expressed by the simplified formula reported in Corollary 3.10.

4.2 Asymptotics for Pure Unit Roots Model

This subsection develops the limit theory of Â defined in (3.13) for the model in which the rank of

A is zero.

When rank (A) = 0, A = 0m×m. Consequently, the continuous time model (2.1) is

dX(t) = b · dt+ Σ1/2dW (t), (4.1)

whose exact discrete time representation is

Xt = Xt−1 + bh+ εt = FXt−1 + g + εt, (4.2)

where F = I, g = bh, εt = (ε1t, · · · , εmt)′ is a Gaussian MDS (0,Ω = Σh). Hence, Xt is a

nonstationary process with no cointegration. We also use the ML/LS estimator of [F, g] defined in

formula (3.1) to estimate the model.

From the functional central limit theory (FCLT), we get

T−1/2
bTrc∑
t=1

εt ⇒ B0 (r) ,

where r ∈ [0, 1], B0 (r) is the m-vector Brownian motion with covariance Σh, bTrc denotes the
integer part of Tr, the symbol “⇒”signifies weak convergence of associated probability measures
and the limit is taken as the sample size T →∞ with fixed h. For notational convenience, we often

eliminate function arguments and write, for example, B0 in place of B0 (r) and
∫ 1
0 B0 in place of∫ 1

0 B0 (r) dr.

To facilitate the representation of the limit theory of
[
F̂ , ĝ

]
, Park and Phillips (1988) introduced

the functional

f (B,M,R) =

(∫ 1

0
dBM ′ +R′

)(∫ 1

0
MM ′

)−1
,

where B is the vector Brownian motion, M is a process with continuous sample paths such that∫ 1
0 MM ′ > 0 a.s., and R is a (possibly random) matrix of conformable dimension.
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When g = bh = 0, it is known that (e.g., Theorem 3.2 of Park and Phillips (1988))

T
(
F̂ − F

)
⇒ f (B0, B

∗
0 ,∆20) , (4.3)

where B∗0 = B0 −
∫ 1
0 B0 and ∆20 = 0m×m.

When g = bh 6= 0, we define µ1 = g/ (g′g)1/2 = b/ (b′b)1/2 and let U = [µ1, U2] be an m ×m
orthogonal matrix. We further define B0 = U ′2B0 and ∆20 = U ′2∆20 = 0m×m. From Theorem 3.6 of

Park and Phillips (1988) we get

T
(
F̂ − F

)
⇒ f (B0, B

∗∗
0 ,∆20)U

′
2, (4.4)

T 3/2
(
F̂ − F

)
µ1 ⇒

(
g′g
)−1/2

f (B0, P , δ) , (4.5)

where B∗∗0 = B0−4
(∫ 1
0 B0 − (3/2)

∫ 1
0 sB0

)
+ 6r

(∫ 1
0 B0 − 2

∫ 1
0 sB0

)
, δ = 01×m, and P = r−1/2−(∫ 1

0 sB
′
0 − (1/2)

∫ 1
0 B

′
0

)(∫ 1
0 B0B

′
0 −

∫ 1
0 B0

∫ 1
0 B

′
0

)−1 (
B0 −

∫ 1
0 B0

)
.

By using the limit theory of the discrete time model reported above, the asymptotic distribution

of Â is obtained and reported in the following theorem.

Theorem 4.3 Assume that X (t) follows Model (4.1), and that Â is defined as in (3.13) in which

F̂ is defined by (3.1). If h is fixed and T →∞, we have:
(a) when b = 0,

Th
(
Â−A

)
d−→ f (B0, B

∗
0 ,∆20) ,

(b) when b 6= 0,

Th
(
Â−A

)
d−→ f (B0, B

∗∗
0 ,∆20)U

′
2,

and

T 3/2h
(
Â−A

)
µ1

d−→
(
g′g
)−1/2

f (B0, P , δ) ,

where f (B0, B
∗
0 ,∆20) , f (B0, B

∗∗
0 ,∆20)U

′
2 and (g′g)−1/2 f (B0, P , δ) are defined as in (4.3), (4.4)

and (4.5), respectively, g = bh and µ1 = g/ (g′g)1/2 = b/ (b′b)1/2.

Remark 4.4 Consider the case where b 6= 0. Although Th
(
Â−A

)
d−→ f (B0, B

∗∗
0 ,∆20)U

′
2 charac-

terizes the asymptotic theory for each element of the matrix h
(
Â−A

)
, some particular column lin-

ear combinations like h
(
Â−A

)
µ1 may possess higher convergence rates, such as T

3/2h
(
Â−A

)
µ1

d−→

(g′g)−1/2 f (B0, P , δ) .

Remark 4.5 For the case in which m = 1, the results in Theorem 4.3 turn out to be:

T
(
Â−A

)
d−→
∫ 1
0 W (r)dW (r)−W (1)

∫ 1
0 W (r)dr∫ 1

0 [W (r)]2 dr −
{∫ 1

0 W (r)dr
}2 , when b = 0,
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T 3/2h
(
Â−A

)
d−→ N

(
0,

12

b2h
Σ

)
, when b 6= 0,

where W (r) is the 1-dimensional standard Brownian motion.

Remark 4.6 If A = 0m×m and F = Im, but cointegrating tests suggest that rank (Im − F ) =

rank (A) = τ with 0 < τ < m, the estimator Â∗ defined in (3.17) is used. The same idea used to

prove Theorem 4.3 can be applied to show that Â∗−A and Â−A share the same limit theory when
A = 0m×m.

Theorem 4.7 Assume that X (t) follows the model (4.1), that Â is defined as (3.13) in which F̂

is defined by (3.1), and that
{
η̂j
}m
j=1

are eigenvalues of Â. Let h is fixed and T →∞,
(a) when b = 0,

Th

m∑
j=1

η̂j
d−→ ∆ · V ec [f (B0, B

∗
0 ,∆20)] ,

(b) when b 6= 0,

Th
m∑
j=1

η̂j
d−→ ∆ · V ec

[
f (B0, B

∗∗
0 ,∆20)U

′
2

]
,

where ∆ is a 1 ×m2 row vector whose 1st, [m + 2]th, · · · , [(m − 1)m + m]th elements are 1, and 0

elsewhere, f (B0, B
∗
0 ,∆20) , f (B0, B

∗∗
0 ,∆20)U

′
2 are defined as in Theorem 4.3.

When b = 0 is known a priori, the discrete representation of the diffusion process (4.1) changes

to an AR(1) model without drift. As a result, the estimator of

F̂ =

[
n∑
t=1

XtX
′
t−1

]
×
[

n∑
t=1

Xt−1X
′
t−1

]−1
is used to estimate F . From Park and Phillips (1988), we have

T
(
F̂ − F

)
d−→ f (B0, B0,∆20) .

The approach used in this subsection can be easily applied to this simple case, and results similar

to those reported in Theorem 4.3 and Theorem 4.7 can be obtained.

4.3 Asymptotics for Partially Non-stationary Model

In this subsection, we study the limit theory of Â defined in (3.13) for the model where A has

reduced rank τ and can be decomposed as A = αβ′, where α and β are m × τ matrices with full
column rank. Throughout the subsection, the following assumption is made.

Assumption 3: All the eigenvalues of
(
β′α
)
have negative real parts.
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Under Assumption 3 and the condition of rank(A) = τ , the process X (t) defined in (2.1) is

partially nonstationary and has two equivalent representations, namely, the exact discrete time

representation

Xt = FXt−1 + g + εt,

and an error correction representation

∆Xt = αβ′Xt−1 + g + εt,

where F = exp{Ah}, εt = (ε1t, · · · , εmt)′ is a Gaussian MDS (0,Ω). The explicit expressions for α,

g and Ω are also given in Section 2.

Let Zt =
[
X
′
t , 1
]′
, the ML/LS estimator of [F, g] defined in formula (3.1) as

[
F̂ , ĝ

]
=

[
T∑
t=1

XtZ
′
t−1

]
×
[

T∑
t=1

Zt−1Z
′
t−1

]−1
,

is used to estimate the model. However, for the reasons that will be clear, it is diffi cult to establish

the limit theory based on this expression.

From Section 2, Xt can be decomposed into an ergodic part and a Brownian motion

Xt = Φ1Y1(t−1) + Φ2Y2(t−1) + g + εt, (4.6)

where Y1t = β′Xt, Y2t = α′⊥Xt, Φ1 = αe(β
′α)h

(
β′α
)−1 and Φ2 = β⊥ (α′⊥β⊥)−1 which satisfies the

equation of Φ1β
′+Φ2α

′
⊥ = F , and α⊥ and β⊥ are the orthogonal complementary matrices of α and

β, respectively. The exact discrete time representations of the diffusions (2.6) and (2.5) will give

the dynamic functions of Y1t and Y2t as

Y1t = e(β
′α)hY1(t−1) + g1 + ν1t, (4.7)

with g1 =
[
e(β
′α)h − Iτ

] (
β′α
)−1

β′b, ν1t =
∫ th
(t−1)h e

(β′α)(th−s)β′Σ1/2dW (s), and

Y2t = Y2(t−1) + g2 + ν2t, (4.8)

with g2 = α′⊥bh, ν2t =
∫ th
(t−1)h α

′
⊥Σ1/2dW (s). The LS estimator of [Φ1,Φ2, g] is

[
Φ̂1, Φ̂2, ĝ

]
=

[
T∑
t=1

XtZ̃
′
t−1

]
×
[

T∑
t=1

Z̃t−1Z̃
′
t−1

]−1
,

where

Z̃t =

Y1tY2t
1

 =

[ β′α′⊥
]

1

[Xt

1

]
= ΠZt.
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From the non-singularity of the matrix [β, α⊥] we get[
F̂ − F, ĝ − g

]
=
[
Φ̂1 − Φ1, Φ̂2 − Φ2, ĝ − g

]
Π,

and as a result,

F̂ − F =
(

Φ̂1 − Φ1

)
β′ +

(
Φ̂2 − Φ2

)
α′⊥,

from which the limit theory of F̂ −F can be derived using the limit theory of Φ̂1−Φ1 and Φ̂2−Φ2.

It is known that Φ̂1−Φ1 and Φ̂2−Φ2 have different rates of convergence, and that their asymptotics

depend on whether the intercept terms g1 and g2 appear in the processes of Y1t and Y2t. Therefore,

not surprisingly, the limit theory of
[
F̂ , ĝ

]
, and consequently the corresponding limit theory of Â,

vary across different cases.

• Case 1: b = 0m×1 which implies Xt, Y1t and Y2t have no intercept term;

—Case 1.1: b = 0m×1 is known a priori;

—Case 1.2: b = 0m×1 is not a prior knowledge;

• Case 2: b 6= 0m×1, α′⊥b = 0(m−τ)×1, β
′b 6= 0τ×1 which only implies Y2t have no intercept term;

• Case 3: b 6= 0m×1, α′⊥b 6= 0(m−τ)×1, β
′b = 0τ×1 which only implies Y1t have no intercept term;

—Case 3.1: m− τ = 1;

—Case 3.2: m− τ > 1;

• Case 4: b 6= 0m×1, α′⊥b 6= 0(m−τ)×1, β
′b 6= 0τ×1 which implies each of Xt, Y1t, and Y2t includes

an intercept term;

—Case 4.1: m− τ = 1;

—Case 4.2: m− τ > 1.

The condition m − τ = 1 corresponds to a cointegrated system with τ = m − 1 cointegrating

relationships. The classification of situations above is complete by noticing the fact that the non-

singularity of the matrix [β, α⊥] ensures b = 0m×1 is the unique condition to make neither Y1t nor

Y2t have an intercept term.

To derive the limit theory of
[
F̂ , ĝ

]
for Case 3.2 and Case 4.2 in which the pure unit root process

Y2t has dimension greater than 1 and a nonzero intercept term, the decomposition as in (4.6) is

not good enough any more. Another decomposition on Y2t is necessary. Let d1 = (g′2g2)
−1/2 g2 and

D2 be the orthogonal complementary matrix of d1. Then, D = [d1, D2] be an (m− τ) × (m− τ)

orthogonal matrix. From formula (4.6), we get

Xt = Φ1Y1(t−1) + Φ2dY2d(t−1) + Φ2DY2D(t−1) + g + εt, (4.9)
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where [Φ2d,Φ2D] = Φ2 (D′)−1, Y2dt = d′1Y2t and Y2Dt = D′2Y2t. The LS estimator takes the form of

[
Φ̂1, Φ̂2d, Φ̂2D, ĝ

]
=

[
T∑
t=1

XtZ
†′
t−1

]
×
[

T∑
t=1

Z†t−1Z
†′
t−1

]−1
,

where

Z†t =


Y1t
Y2dt
Y2Dt

1

 =

Iτ D′

1

 Z̃t =

Iτ D′

1

ΠZt.

The nonsingularity of D and Π leads to

[
F̂ − F, ĝ − g

]
=
[
Φ̂1 − Φ1, Φ̂2d − Φ2d, Φ̂2D − Φ2D, ĝ − g

]Iτ D′

1

Π.

Consequently, we have

F̂ − F =
(

Φ̂1 − Φ1

)
β′ +

(
Φ̂2d − Φ2d

)
d′1α

′
⊥ +

(
Φ̂2D − Φ2D

)
D′2α

′
⊥.

The limit theory of F̂ − F and the column linear combinations could be obtained based on the

relationship above and the fact that
(
F̂ − F

)
α(

F̂ − F
)
β⊥ (α′⊥β⊥)−1 d1(

F̂ − F
)
β⊥ (α′⊥β⊥)−1D2

 =


(

Φ̂1 − Φ1

)
β′α(

Φ̂2d − Φ2d

)
d′1d1(

Φ̂2D − Φ2D

)
D′2D2

 .
Lemma 4.8 provides the limit theory of

[
Φ̂1, Φ̂2d, Φ̂2D, ĝ

]
which plays an essential role in getting

the limit theory of F̂ −F in the most general case (case 4.2). In the remarks following it, we explain
how the asymptotics of F̂ −F for other cases can be derived as special cases of the results in Lemma
4.8.

Lemma 4.8 Consider the diffusion process (2.1) in which the conditions in Case 4.2 are satisfied.
When h is fixed and T →∞, the LS estimator of the regression function (4.9) has the limit theory
as [√

T
(

Φ̂1 − Φ1

)
, T 3/2

(
Φ̂2d − Φ2d

)
, T

(
Φ̂2D − Φ2D

)
,
√
T (ĝ − g)

]
⇒

[
N
(

0,Ω⊗
[
µY1µ

′
Y1

+ VY 01

])
, (g′2g2)

1/2 ∫ 1
0 rdB0,

∫ 1
0 dB0B

′
2,

∫ 1
0 dB0

]

×


µY1µ

′
Y1

+ VY 01
1
2 (g′2g2)

−1/2 µY1 µY1
∫ 1
0 B

′
2 µY1

1
2 (g′2g2)

−1/2 µ′Y1
1
3g
′
2g2 (g′2g2)

1/2 ∫ 1
0 rB

′
2

1
2 (g′2g2)

1/2∫ 1
0 B2µ

′
Y1

∫ 1
0 rB2 (g′2g2)

1/2 ∫ 1
0 B2B

′
2

∫ 1
0 B2

µ′Y1
1
2 (g′2g2)

1/2 ∫ 1
0 B

′
2 1


−1

,
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where Ω = E (εtε
′
t), µY1 = −

(
β′α
)−1

β′b which is the long run mean of the process Y1t, VY 01 =

V ar (Y1t) =
∑∞

j=0 e
(β′α)hjΩν1e

(α′β)hj with Ων1 = E (ν1tν
′
1t), and, for any r ∈ [0, 1], T−1/2

∑bTrc
t=1 ν2t ⇒

B2 (r), B2 = D′2B2, T
−1/2∑bTrc

t=1 εt ⇒ B0 (r).

Remark 4.9 It is clear that, by letting µY1 = 0τ×1, the results in Lemma 4.8 translate into the

limit theory for the Case 3.2 immediately.

Remark 4.10 In Case 4.1, m− τ = 1 makes Y2t be a scalar unit root process with drift. Then, d1
is a nonzero scalar who has no orthogonal complementary matrix. Hence, D2 does not exist. The

decomposition (4.9) degenerates to

Xt = Φ1Y1(t−1) + Φ2dY2d(t−1) + g + εt.

The LS estimator of this regression model and F̂ − F is connected by

F̂ − F =
(

Φ̂1 − Φ1

)
β′ +

(
Φ̂2d − Φ2d

)
d′1α

′
⊥.

Deleting the corresponding columns and rows in the results given in Lemma 4.8, the limit theory for

Case 4.1 can be derived as[√
T
(

Φ̂1 − Φ1

)
, T 3/2

(
Φ̂2d − Φ2d

)
,
√
T (ĝ − g)

]
⇒

[
N
(

0,Ω⊗
[
µY1µ

′
Y1

+ VY 01

])
, (g′2g2)

1/2 ∫ 1
0 rdB0,

∫ 1
0 dB0

]

×

 µY1µ
′
Y1

+ VY 01
1
2 (g′2g2)

−1/2 µY1 µY1
1
2 (g′2g2)

−1/2 µ′Y1
1
3g
′
2g2

1
2 (g′2g2)

1/2

µ′Y1
1
2 (g′2g2)

1/2 1


−1

.

Letting µY1 = 0τ×1, the results above translate into the limit theory for Case 3.1, which can be

expressed more explicitly as

V ec
[√

T
(

Φ̂1 − Φ1

)]
⇒ N

(
0,Ω⊗ V −1

Y 01

)
,

and

T 3/2
(

Φ̂2d − Φ2d

)
⇒ N

(
0,Ω · 12

(g2)
2

)
.

Remark 4.11 In Case 2, g2 = α′⊥bh = 0(m−τ)×1, and Y2t is nonstationary process with no drift.

Then, Im−τ is orthogonal complementary matrix of d1 = 0(m−τ)×1. Hence, D = D2 = Im−τ ,

Y2Dt = D′2Y2t = Y2t and Φ2D = Φ2. The decomposition (4.9) degenerates to decomposition (4.6) as

Xt = Φ1Y1(t−1) + Φ2DY2D(t−1) + g + εt = Φ1Y1(t−1) + Φ2Y2(t−1) + g + εt.

The LS estimator of this regression model and F̂ − F is connected by

F̂ − F =
(

Φ̂1 − Φ1

)
β′ +

(
Φ̂2D − Φ2D

)
D′2α

′
⊥.
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Note that B2 = D′2B2 = B2. Then, deleting the corresponding columns and rows in the results given

in Lemma 4.8, the limit theory for Case 2 can be derived as[√
T
(

Φ̂1 − Φ1

)
, T

(
Φ̂2D − Φ2D

)
,
√
T (ĝ − g)

]
⇒

[
N
(

0,Ω⊗
[
µY1µ

′
Y1

+ VY 01

])
,
∫ 1
0 dB0B

′
2,

∫ 1
0 dB0

]

×

µY1µ
′
Y1

+ VY 01 µY1
∫ 1
0 B

′
2 µY1∫ 1

0 B2µ
′
Y1

∫ 1
0 B2B

′
2

∫ 1
0 B2

µ′Y1
∫ 1
0 B

′
2 1


−1

.

Letting µY1 = 0τ×1, the results above translate into the limit theory for Case 1.2, which can be

expressed separately as

V ec
[√

T
(

Φ̂1 − Φ1

)]
⇒ N

(
0,Ω⊗ V −1

Y 01

)
,

and

T
(

Φ̂2D − Φ2D

)
⇒ f (B0, B

∗
2 ,∆20) ,

where B∗2 = B2 −
∫ 1
0 B2 and ∆20 = 0(m−τ)×m.

Remark 4.12 In Case 1.1, the regression model has no drift and takes the form of

Xt = FXt−1 + εt,

with the LS estimator of

F̂ =

[
T∑
t=1

XtX
′
t−1

]
×
[

T∑
t=1

Xt−1X
′
t−1

]−1
.

We continue to have the decomposition such as

Xt = Φ1Y1(t−1) + Φ2DY2D(t−1) + εt = Φ1Y1(t−1) + Φ2Y2(t−1) + εt,

and the relationship such as

F̂ − F =
(

Φ̂1 − Φ1

)
β′ +

(
Φ̂2D − Φ2D

)
D′2α

′
⊥.

with D = D2 = Im−τ . Deleting the corresponding columns and rows in the results given in Lemma

4.8, we have

[√
T
(

Φ̂1 − Φ1

)
, T

(
Φ̂2D − Φ2D

)]
⇒
[
N
(

0,Ω⊗ VY 01
)
,
∫ 1
0 dB0B

′
2,
]
×
[
VY 01 ∫ 1

0 B2B
′
2

]−1
.

The results for Case 1.1 and Case 1.2 coincide with whose reported in Theorems 3.1 and 3.2 in

Park and Phillips (1989).
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Theorem 4.13 Consider the diffusion process (2.1) in which the conditions in Case 4.2 are satis-
fied. When h is fixed and T →∞, Â defined in (3.13) has the limit theory

(a)

h
√
TΓ−1V ec

(
Â−A

)
d∼
√
T (Im ⊗ β)V ec

(
Φ̂1 − Φ1

)
;

(b)

h
√
T
(
Im ⊗ α′

)
Γ−1V ec

(
Â−A

)
d∼
√
T
(
Im ⊗

[
α′β
])
V ec

(
Φ̂1 − Φ1

)
;

(c)

hT

(
Im ⊗

[
β⊥
(
α′⊥β⊥

)−1
D2

]′)
Γ−1V ec

(
Â−A

)
d∼ T

(
Im ⊗

[
D′2D2

])
V ec

(
Φ̂2D − Φ2D

)
;

(d)

hT

(
Im ⊗

[
β⊥
(
α′⊥β⊥

)−1
d1

]′)
Γ−1V ec

(
Â−A

)
d∼ T 3/2

(
Im ⊗

[
d′1d1

])
V ec

(
Φ̂2d − Φ2d

)
,

where d∼ denotes asymptotic equivalence in distribution, Γ is defined as in Theorem 3.5. The limit

theory of Φ̂1 − Φ1, Φ̂2d − Φ2d and Φ̂2D − Φ2D are reported in Lemma 4.8.

Remark 4.14 Note that β is anm×τ matrix whose rows are linearly dependent. Hence, h
√
TΓ−1V ec

(
Â−A

)
has a singular asymptotic covariance matrix. However, the fact that the τ × τ matrix α′β has the
full rank ensures that the asymptotic covariance matrix of h

√
T (Im ⊗ α′) Γ−1V ec

(
Â−A

)
is non-

singular.

Remark 4.15 The remarks behind the Lemma 4.8 have demonstrated clearly how the limit theory
of Φ̂1 − Φ1, Φ̂2d − Φ2d and Φ̂2D − Φ2D for the cases from Case 1.1 to Case4.1 can be derived

and what they look like. Taking those asymptotic results to replace their counterparts in Theorem

4.13, the corresponding limit theory of Â for the cases from Case 1.1 to Case 4.1 would be obtained

straightforwardly. For example in Case 1.2, d1 = 0(m−τ)×1 and D2 = Im−τ , Â possesses the limit

theory

h
√
TΓ−1V ec

(
Â−A

)
⇒ N

(
0,Ω⊗

[
βV −1

Y 01
β′
])
,

h
√
T
(
Im ⊗ α′

)
Γ−1V ec

(
Â−A

)
⇒ N

(
0,Ω⊗

[(
α′β
)
V −1
Y 01

(
β′α
)])

and

hT

(
Im ⊗

[
β⊥
(
α′⊥β⊥

)−1]′)
Γ−1V ec

(
Â−A

)
⇒ V ec [f (B0, B

∗
2 ,∆20)] .

Remark 4.16 The limit theory of the estimator Â∗ defined in (3.17) could be obtained immediately
from the results in Theorem 4.13 by substituting Γ∗ defined in Theorem 3.14 for Γ.
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Figure 1: Time series plot of 1-month, 3-month and 6-month interest rates of U.S. Government

Treasuries from July, 2009 to September, 2012.

5 An Empirical Illustration

To illustrate the implementation and the advantage of the proposed method, we estimate an affi ne

term structure model of interest rates using the traditional method and the proposed method. The

affi ne term structure model was introduced in Duffi e and Kan (1996).

The observed data, Xt = (X1t, X2t, X3t)
′, represent 1-month, 3-month and 6-month interest

rates of U.S. Government Treasuries sampled monthly from July 2001 to September 2012 (i.e.,

h = 1/12 and T = 135). The time series plots of the interest rates data are given in Figure 1. The

unit root test of Phillips and Perron (1988) suggests that the unit root hypothesis for each process

Xst, for s = 1, 2, 3, cannot be rejected. The cointegrating rank tests of Johansen (1988) suggests

that there is only one cointegrating relationship among the three interest rate series.

In this paper, we describe the dynamics of the process Xt by using a three factor Gaussian affi ne

term structure model which takes the form of

dX (t) = [AX (t) + b] dt+ Σ1/2dW (t) , (5.1)

where A, b are 3× 3 and 3× 1 matrices. The exact discrete time representation is

Xt = FXt−1 + g + εt with F = eA/12. (5.2)
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Table 3: Estimates of A in Affi ne Term Structure Model of Interest Rates

Â11 Â12 Â13 Â21 Â22 Â23 Â31 Â32 Â33
Ã(F̂ )_10 -55.741 84.413 -29.194 -21.691 29.658 -8.307 -17.788 26.231 -8.675

Ã(F̂ )_100 -73.011 113.192 -40.790 -28.563 41.132 -12.921 -23.340 35.484 -12.403

Ã(F̂ )_1000 -73.205 113.515 -40.920 -28.640 41.266 -12.973 -23.403 35.587 -12.445

Â(F̂ )_new -73.205 113.515 -40.920 -28.640 41.266 -12.973 -23.403 35.587 -12.445

Note:

1. F̂ is the ML/LS estimates of F in the regression model (5.2), which is the exact discrete time representation of the

affi ne term structure model (5.1). The observed data, Xt=(X1t,X2t,X3t)
′, represent 1-month, 3-month and 6-month

interest rates of U.S. Government Treasuries sampled monthly from July 2001 to September 2012.

2. Ã(F̂)_j, j = 10,100,1000, denote the estimates of A by using Ã in (3.5) with truncation number 10,100,1000,

respectively. Â(F̂)_new indicates the estimate of A from the proposed estimator (3.13).

The ML/LS estimates of F is given by

F̂ =

 −0.6540 2.1349 −0.5078

−0.6221 1.5632 0.0401

−0.5218 0.6200 0.8880

 .
The eigenvalues of I − F̂ are (0.0062, 0.2290, 0.9677), all have modulus less than unity. In this case,

as discussed in Subsection 3.1 and 3.2, the new proposed representation of ML estimator, Â, given

in formula (3.13) and the traditional expression of ML estimator, Ã, given in formula (3.5) are

equivalent but take significantly different forms.

Table 3 reports Â and Ã with different truncation numbers, 10, 100, 1000. It can be seen clearly

that the truncation number affects the estimation results of Ã in (3.5) significantly. If the truncation

number picked is too small, say 10, the estimates could be far away from the true value. The new

proposed representation of ML estimator Â as in (3.13) needs no truncation and provides the exact

value of 1h ln(F̂ ). Comparing the estimates from Ã and Â, 1000 is a good truncation number to

chose for Ã in this case. However, as argued in Subsection 3.1, the truncation number depends on

the value of F̂ , hence 1000 may not be good in other cases.

Assuming that all eigenvalues of (I − F ) have modulus less than unity, Ã− A and Â− A have
the same limit theory. However, the procedures to estimate the asymptotic covariance matrices of

Ã− A and Â− A are different. For Ã− A, the estimate of asymptotic covariance matrix depends
on the estimation of K as in (3.4) which involves an infinite summation. For Â−A, it depends on
the estimation of Γ whose formula is given in Corollary 3.9 which only includes a finite summation.

Before comparing the estimates of the asymptotic covariance matrices of Ã−A and Â−A, we
first run the regression

X1t = β2X2t + β3X3t + ν1t
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Figure 2: Time series plot of X1t − β̂2X2t − β̂3X3t where X1t, X2t and X3t are 1-month, 3-month
and 6-month interest rates of U.S. Government Treasuries from July, 2009 to September, 2012,

respectively.

to obtain a consistent estimation of the cointegrating relationship as

β̂ = (1,−β̂2,−β̂3) = (1,−1.5189, 0.5222). (5.3)

The usual t-test for the sample mean of X1t − β̂2X2t − β̂3X3t shows that no drift term appears in

this cointegrated process, as suggested in Figure 2.

Then, from Theorem 4.8 and Theorem 4.13, it is obtained that the asymptotic distribution of

the proposed estimator Â given in (3.13) is

h
√
TV ec

(
Â−A

)
⇒ N

(
0,Γ

[
Ω⊗

(
βV −1

Y 01
β′
)]

Γ′
)
,

where Ω = E (εtε
′
t), VY 01 = V ar

(
β′Xt

)
, β is the cointegrating vector. From the formula (3.6) and

Theorem 4.8, it is easy to see that

h
√
TV ec

(
Ã−A

)
⇒ N

(
0,K

[
Ω⊗

(
βV −1

Y 01
β′
)]
K ′
)
,

where K takes the formula given in (3.7). As argued above, Â−A and Ã−A share the same limit
theory

K
[
Ω⊗

(
βV −1

Y 01
β′
)]
K ′ = Γ

[
Ω⊗

(
βV −1

Y 01
β′
)]

Γ′,

where K and Γ are equivalent but with different expressions.
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We estimate the asymptotic covariance matrix as

K̂
[
Ω̂⊗

(
β̂V̂ −1

Y 01
β̂
′)]

K̂ ′ = Γ̂
[
Ω̂⊗

(
β̂V̂ −1

Y 01
β̂
′)]

Γ̂′,

where K̂, Γ̂ are obtained by letting F̂ replace F in the formulae of K and Γ, respectively, β̂ is given

in (5.3),

Ω̂ =
1

T − 1

T∑
t=2

ε̂tε̂
′
t with ε̂t = Xt − F̂Xt−1 − ĝ, (5.4)

and V̂Y 01 =
1

T

T∑
t=1

β̂
′
Xt

(
β̂
′
Xt

)′
. (5.5)

Table 4 reports the estimates of the asymptotic covariance matrix using two approaches. One

is based on K̂ with different truncation numbers, 10, 100, 1000. The other is based on Γ̂. It can be

seen clearly that the estimation results of the asymptotic covariance matrix using K̂ depends heavily

on the truncation number. If the truncation number is picked too small, say 10, the estimates could

be far away from the true value. The new proposed representation of ML estimator Â as in (3.13)

enables us to estimate the asymptotic covariance matrix through Γ̂, the estimation of Γ given in

Corollary 3.9. The new estimation procedure needs no truncation, hence gives an accurate estimate

of Γ = K, and consequently, an accurate estimate of asymptotic covariance matrix. In Table 4, we

find that, for some elements, the accuracy of the proposed estimator is superior to the traditional

one even with truncation number 1000. The errors introduced in the traditional one with truncation

number 10 and 100 are generally very large and should not be used.

6 Conclusion and Further Remarks

This paper provides a new representation of the ML/LS estimator of the “mean reversion matrix”

in a multivariate diffusion model with a linear drift and a constant diffusion when only discretely

sampled data are available. Comparing with the traditional representation of the ML/LS estimator,

the new representation enjoys three major advantages. First, while the traditional matrix logarith-

mic representation involves an infinite polynomial series, the new representation involves only finite

polynomial series whose degree is the same as the dimension of the multivariate process, facilitating

the use of the delta method and the calculation of the covariance matrix in the limit distribution.

Second, the new representation has a larger domain of convergence than the traditional method.

Third, the new representation can use prior knowledge about the model such as the cointegrating

rank to simplify the estimation procedure, whereas it is hard to do so in the traditional method.

For all the cases in which the multivariate diffusion process is stationary, pure unit root or

partially nonstationary, the limit theory of the ML/LS estimator of the “mean reversion matrix”with

the new representation is established by using the limit distribution of the estimated VAR coeffi cient
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Table 4: Estimated Variance-Covariance matrix of h
√
TV ec(Â−A)

dA11 dA12 dA13 dA21 dA22 dA23 dA31 dA32 dA33

dA11

·_10
·_100
·_1000
·_new

149.33

2200.7

2396.3

2395.7

dA12

·_10
·_100
·_1000
·_new

-240.86

-3628.4

-3952.7

-3952.2

388.48

5982.4

6519.9

6519.9

dA13

·_10
·_100
·_1000
·_new

92.21

1438.4

1568.0

1567.8

-148.73

-2371.7

-2586.5

-2586.5

56.94

940.3

1026.1

1026.1

dA21

·_10
·_100
·_1000
·_new

57.97

738.3

807.4

807.4

-93.20

-1215.7

-1330.2

-1330.2

35.50

481.0

526.7

526.7

47.18

281.7

306.0

306.0

dA22

·_10
·_100
·_1000
·_new

-93.52

-1221.1

-1336.0

-1336.2

150.36

2010.8

2201.2

2201.7

-57.26

-795.6

-871.6

-871.8

-75.82

-464.2

-504.6

-504.6

121.84

765.0

832.0

832.2

dA23

·_10
·_100
·_1000
·_new

35.81

486.5

532.6

532.5

-57.58

-801.1

-877.5

-877.5

21.93

317.0

347.5

347.5

28.85

183.8

200.0

200.0

-46.37

-303.0

-329.9

-329.9

17.65

120.0

130.8

130.8

dA31

·_10
·_100
·_1000
·_new

42.75

587.0

642.8

642.7

-68.70

-966.7

-1059.0

-1059.0

26.14

382.5

419.4

419.4

39.50

228.5

248.1

248.1

-63.44

-376.4

-409.0

-409.0

24.12

149.0

162.1

162.1

40.77

198.9

214.8

214.8

dA32

·_10
·_100
·_1000
·_new

-69.00

-971.3

-1063.9

-1063.9

110.88

1599.6

1753.1

1753.1

-42.19

-633.0

-694.3

-694.3

-63.47

-376.5

-409.1

-409.1

101.94

620.3

674.3

674.4

-38.76

-245.6

-267.3

-267.3

-65.48

-327.3

-353.7

-353.7

105.18

538.6

582.4

582.4

dA33

·_10
·_100
·_1000
·_new

26.44

387.2

424.4

424.0

-42.49

-637.7

-699.2

-698.7

16.17

252.4

277.0

276.8

24.15

149.1

162.2

162.1

-38.79

-245.7

-267.4

-267.3

14.75

97.3

106.0

105.9

24.90

129.3

139.9

139.9

-39.99

-212.9

-230.4

-230.4

15.20

84.2

91.2

91.2

Note: dAij denotes the ij
th element of the matrix h

√
T(Â-A). The results in the rows with ·_10, ·_100 and ·_1000

are the estimates of asymptotic covariance matrix based on the estimation of K as in (3.7) with truncation number

10,100,1000, respectively. The estimating results based on the estimation of Γ given in Corollary 3.9 are reported in

the rows with ·_new.
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matrix only. Special attention has been paid on the expression of the asymptotic covariance matrix.

Different situations have been discussed to get an explicit expression of the covariance matrix in the

limit theory.

The limit theory for explosive continuous time model is not covered in the paper, but, it should

be feasible once the limiting distribution of the estimated VAR coeffi cient matrix is known (see,

Phillips and Magdalinos, 2008, 2011). The method proposed in this paper can also help us extend

the limit theory of the ML estimator to the continuous time models which are driven by Lévy

process as long as the estimated VAR coeffi cient matrix is available. If it is assumed that the mean

and the variance of the Lévy process are finite, the error term in the discrete time model would be

an independent sequence with a finite mean and a finite variance and the limit theory given in the

paper is still be applied.

The new representation is illustrated in an empirical application to an affi ne term structure

model of 1-month, 3-month and 6-month U.S. interest rates. It has been shown that the estimates

of the “mean reversion matrix” and its asymptotic covariance matrix based on the traditional

representation of ML/LS estimator highly depends on the choice of the truncation number. When

small truncation numbers are used, the estimates and the elements in the estimated covariance

matrix could be far away from the correct values. Although it is clear that a large truncation

numbers are required to make the estimates accurate, there are no guidelines for making such

choices. However, the new representation is free from this diffi culty.

Although the paper focuses on multivariate Ornstein-Uhlenbeck process, our method is applica-

ble to continuous time models with a linear drift and with more flexible diffusion functions, i.e.,

dX (t) = (AX (t) + b) dt+ Σ1/2q (X (t) ;φ) dW (t) ,

where Σ1/2q (X (t) ;φ) is a general diffusion function with parameter vector φ. The Nowman ap-

proximation (Nowman, 1997), which approximates the diffusion function within each unit interval

[(j − 1)h, jh) by its left end point value, lead to the approximate model

dX (t) = (AX (t) + b) dt+ Σ1/2q
(
X(j−1)h;φ

)
dW (t) for t ∈ [(j − 1)h, jh).

The correspondingly approximate discrete time model is

Xt = FXt−1 + g + εt,

where F = eAh, g =
∫ h
0 e

Asbds and εt =
∫ th
(t−1)h e

AsΣ1/2q (Xt−1;φ) ds. Based on this approximate

discrete time model, one can first estimate F , then estimate A from F̂ through a nonlinear matrix

logarithmic mapping. At this point, the new representation proposed in this paper can be applied

to obtain improved estimates.
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APPENDIX

A Proofs in Section 2

Proof of formula (2.8). With the non-singularity of β′α, it is easy to get that

g =

∫ h

0
eAsbds =

{∫ h

0

(
eAs − Im

)
ds+ Imh

}
b

=

{∫ h

0
α
[
e(β
′α)s − Iτ

] (
β′α
)−1

β′ds+ Imh

}
b

=

{
α

(∫ h

0
e(β
′α)sds

)(
β′α
)−1

β′ − α
(
β′α
)−1

β′h+ Imh

}
b

=
{
α
(
β′α
)−1 [

e(β
′α)h − Iτ

] (
β′α
)−1

β′ − α
(
β′α
)−1

β′h+ Imh
}
b = ϑ (h) b.

Proof of formula (2.9). Let Υ =
(
β′α
)−1

β′Σβ (α′β)−1, we could have

Ω =

∫ h

0
eAsΣeA

′sds =

∫ h

0

(
eAs − Im

)
Σ
(
eA
′s − Im

)
ds+

∫ h

0

(
eAsΣ + ΣeA

′s − Σ
)
ds

=

∫ h

0
α
[
e(β
′α)s − Iτ

]
Υ
[
e(α
′β)s − Iτ

]
α′ds+ ϑ (h) Σ + Σ [ϑ (h)]′ − Σh

= α

(∫ h

0
e(β
′α)sΥe(α

′β)sds

)
α′ − α

(∫ h

0
e(β
′α)sds

)
Υα′ − αΥ

(∫ h

0
e(β
′α)sds

)′
α′

+αΥα′h+ ϑ (h) Σ + Σ [ϑ (h)]′ − Σh

= α

(∫ h

0
e(β
′α)sΥe(α

′β)sds

)
α′ − αΥα′ − αΥα′ + αΥα′h+ ϑ (h) Σ + Σ [ϑ (h)]′ − Σh,

where the final equality comes from

α

(∫ h

0
e(β
′α)sds

)
Υα′ = α

[
e(β
′α)h − Iτ

] (
β′α
)−1

Υα′ = αΥα′.

Noting that β′α is non-singular, it is easy to find out that(
β′α
)

Ξ + Ξ
(
β′α
)′

= e(β
′α)hΥe(α

′β)h −Υ

where Ξ =
∫ h
0 e

(β′α)sΥe(α
′β)sds (Phillips, 1973, derived a similar expression for

∫ h
0 e

AsΣeA
′sds when

A is non-singular). The fact that

V ec (Ξ) =
{(
β′α
)
⊗ Iτ + Iτ ⊗

(
β′α
)}−1 {

e(β
′α)h ⊗ e(β′α)h − Iτ ⊗ Iτ

}
V ec (Υ) .

completes the proof immediately.
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Proof of formula (2.10). Under the condition that all the eigenvalues of
(
β′α
)
have negative

real parts, it is not hard to show that
[
α β⊥

]
and

[
β α⊥

]
are nonsingular matrices. Therefore,

[
α β⊥

] [
α β⊥

]−1
= Im =

[
β′

α′⊥

]−1 [
β′

α′⊥

]
.

Hence,

Im =
[
α β⊥

] [
α β⊥

]−1 [ β′
α′⊥

]−1 [
β′

α′⊥

]
=
[
α β⊥

]([ β′
α′⊥

] [
α β⊥

])−1 [ β′
α′⊥

]
=

[
α β⊥

] [ β′α 0τ×(m−τ)
0(m−τ)×τ α′⊥β⊥

]−1 [
β′

α′⊥

]
= α

(
β′α
)−1

β′ + β⊥
(
α′⊥β⊥

)−1
α′⊥,

where the third equality comes from the fact that α′α⊥ = 0τ×(m−τ) and β
′β⊥ = 0τ×(m−τ).

B proofs in Section 3

Proof of Theorem 3.5. (a) Based on the formulae (3.9) and (3.13), straightforward calculations

allow us to show

h
(
Â−A

)
=
(
f̂1 − f1

)
I +

m∑
j=2

(
f̂j − fj

)(
I − F̂

)j−1
+

m∑
j=2

fj

{(
I − F̂

)j−1
− (I − F )j−1

}

=
m∑
j=1

(
f̂j − fj

)(
I − F̂

)j−1
−

m∑
j=2

fj

{
j−2∑
s=0

(I − F )s
(
F̂ − F

)(
I − F̂

)j−2−s}
,

which leads to

hV ec
(
Â−A

)
=

m∑
j=1

{
V ec

[(
I − F̂

)j−1](
f̂j − fj

)}

−
m∑
j=2

j−2∑
s=0

fj

{
(I − F )s ⊗

[(
I − F̂

)′]j−2−s}
V ec

(
F̂ − F

)
. (B.1)

Note the fact that {fj}mj=1 defined as in (3.10), (3.11) and (3.12), are differentiable functions on

{Cj}mj=1, and {Cj}
m
j=1 are continuous functions of elements of F . Letzj =

[
∂fj
∂Cm

∂fj
∂Cm−1

· · · ∂fj
∂C1

]′
,

for j = 1, 2, · · · ,m, the first order Taylor expansion provides us

f̂j − fj = z′j

Ĉm − Cm...
Ĉ1 − C1

+ op

(
V ec

(
F̂ − F

))
, for j = 1, 2, · · · ,m.

40



Let |·| denotes determinant of a matrix, ψ̂z = zI −
(
I − F̂

)
, ψz = zI − (I − F ) are matrix

polynomials with z ∈ R. Then, we have

[
1 z z2 · · · zm−1

] Ĉm − Cm...
Ĉ1 − C1


= det

[
zI −

(
I − F̂

)]
− det [zI − (I − F )] =

∣∣∣ψ̂z∣∣∣− |ψz|
=

∂
∣∣∣ψ̂z∣∣∣

∂
[
V ec

(
ψ̂z

)]′
∣∣∣∣∣∣∣
ψ̂z=ψz

V ec
(
ψ̂z − ψz

)
+ op

(
V ec

(
ψ̂z − ψz

))

=
∂
∣∣∣ψ̂z∣∣∣

∂
[
V ec

(
ψ̂z

)]′
∣∣∣∣∣∣∣
ψ̂z=ψz

V ec
(
F̂ − F

)
+ op

(
V ec

(
F̂ − F

))

= [V ec (Hz)]
′ V ec

(
F̂ − F

)
+ op

(
V ec

(
F̂ − F

))
where Hz = [adj (ψz)]

′. The first equation comes from the representation of characteristic polyno-

mial in (3.8). The third equation can be obtained by simply using the first order Taylor expansion.

The last equation is a standard result on matrix derivatives.

Let

L =


1 1 · · · 1

1 2 · · · 2m−1

...
... · · ·

...
1 m · · · mm−1

 ,
whose k row, k = 1, 2, · · · ,m, is equivalent to the raw vector

[
1 z z2 · · · zm−1

]
with z = k. And

L is a nonsingular matrix as det (L) =
∏

1≤j<s≤m
(s− j) 6= 0. Let H =

[
V ec (H1) · · · V ec (Hm)

]′
.

Therefore, we could get

L

Ĉm − Cm...
Ĉ1 − C1

 = HV ec
(
F̂ − F

)
+ op

(
V ec

(
F̂ − F

))
.

Together with the above representation of f̂j − fj , we could get

f̂j − fj = z′jL−1HV ec
(
F̂ − F

)
+ op

(
V ec

(
F̂ − F

))
.

Taking this result into formula (B.1) will finally complete the proof.

(b) Under the condition that F̂
p−→ F , the result Γ̃

p−→ Γ is straightforward. What needs

to be proved is the nonsingularity of Γ. Note that F̂
p−→ F is equivalent to the statement that

every subsequence of F̂ , denoted by
{
F̂Tk

}
, has subsequence of its own as

{
F̂Tk′

}
, which satisfies
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F̂Tk′
a.s.−→ F when Tk′ −→∞. Consequently, the corresponding sequence

{
Γ̃Tk′

}
satisfies Γ̃Tk′

a.s.−→ Γ.

Therefore, if we could show the nonsingularity of Γ under the condition of F̂ a.s.−→ F , the conclusion

should still be true automatically in the situation where F̂
p−→ F . As a result, in the later context,

we complete our proof under the condition of F̂ a.s.−→ F .

As eigenvalues are continuous functions of elements of a matrix, when F̂ a.s.−→ F , we have

λ̂j

(
F̂
)

a.s−→ λj (F ) , for j = 1, 2, · · · ,m.

Under Assumption 1, spec {F}∩R−0 = ∅. Hence, when sample size T is large enough, we could get

spec
{
F̂
}
∩R−0 = ∅.

Therefore, based on Lemma 3.1, Â represented in (3.13) is the principal logarithm of F̂ . We could

rewrite the relationship between Â and F̂ as F̂ = exp
{
Âh
}

=
∑∞

j=0

(
Âh
)j
/j!. As a result,

F̂ − F =
(
Â−A

)
h+

∞∑
j=2

(
Âh
)j
− (Ah)j

j!
=
(
Â−A

)
h+

∞∑
j=2

(h)j

j!

{
j−1∑
s=0

As
(
Â−A

)(
Â
)j−1−s}

,

which leads to

V ec
(
F̂ − F

)
=

Im2 +
∞∑
j=2

j−1∑
s=0

(h)j−1

j!

[
As ⊗

(
Â′
)j−1−s]︸ ︷︷ ︸

Ẽ

hV ec
(
Â−A

)
. (B.2)

From F̂
a.s−→ F , it is easy to get Â a.s−→ A. Letting ‖·‖ denote the Frobenius norm of a matrix, and

E = Im2 +

∞∑
j=2

j−1∑
s=0

(h)j−1

j!

[
As ⊗

(
A′
)j−1−s]

,

we have ∥∥∥Ẽ − E∥∥∥ =

∥∥∥∥∥∥
∞∑
j=2

j−2∑
s=0

(h)j−1

j!

{
As ⊗

[(
Â′
)j−1−s

−
(
A′
)j−1−s]}∥∥∥∥∥∥

=

∥∥∥∥∥∥
∞∑
j=2

j−2∑
s=0

j−2−s∑
τ=0

(h)j−1

j!

{
As ⊗

[(
A′
)τ (

Â′ −A′
)(

Â′
)j−2−s−τ]}∥∥∥∥∥∥

≤
∞∑
j=2

j−2∑
s=0

j−2−s∑
τ=0

∥∥∥∥∥(h)j−1

j!

{
As ⊗

[(
A′
)τ (

Â′ −A′
)(

Â′
)j−2−s−τ]}∥∥∥∥∥

≤
∞∑
j=2

j−2∑
s=0

j−2−s∑
τ=0

(h)j−1

j!
‖As‖

∥∥∥∥(A′)τ (Â′ −A′)(Â′)j−2−s−τ∥∥∥∥
≤


∞∑
j=2

j−2∑
s=0

j−2−s∑
τ=0

(h)j−1

j!
‖A‖s ‖A‖τ

∥∥∥Â∥∥∥j−2−s−τ
∥∥∥Â−A∥∥∥ −→ 0,
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for
∥∥∥Â−A∥∥∥ −→ 0 and

∞∑
j=2

j−2∑
s=0

j−2−s∑
τ=0

(h)j−1

j!
‖A‖s ‖A‖τ

∥∥∥Â∥∥∥j−2−s−τ
=

∞∑
j=2

j−2∑
s=0

j−2−s∑
τ=0

(h)j−1

j!
‖A‖s ‖A‖τ ‖A‖j−2−s−τ + o(1)

=
∞∑
j=2

j−2∑
s=0

(j − 1− s) (h)j−1

j!
‖A‖s ‖A‖j−2−s + o(1)

≤
∞∑
j=2

(h)j−1

(j − 2)!
‖A‖j−2 + o(1) = h exp {‖A‖h}+ o(1) is bounded.

Therefore, Ẽ a.s−→ E. Based on formulae (B.2) and (B.1), we have

V ec
(
F̂ − F

)
= Ẽ

{
hV ec

(
Â−A

)}
= E

{
hV ec

(
Â−A

)}
+ op

(
V ec

(
Â−A

))
= E

{
Γ̃V ec

(
F̂ − F

)
+ op

(
V ec

(
F̂ − F

))}
+ op

(
V ec

(
Â−A

))
= EΓV ec

(
F̂ − F

)
+ op

(
V ec

(
F̂ − F

))
.

As V ec
(
F̂ − F

)
is a random vector whose elements can take any value, it must be true that EΓ = I.

Therefore, Γ is nonsingular.

Proof of Theorem 3.10. The proof is only given under the condition of F̂ a.s−→ F , but can

be applied to the case where F̂
p−→ F because of the reason argued in the proof of (b) in Theorem

3.5.

As A has the Jordan decomposition form of

A = Pdiag {η1, · · · , ηm}Q = PV Q,

the coeffi cient matrix E mentioned in the proof of (b) in Theorem 3.5 can be rewritten as

E = Im2 +
∞∑
j=2

j−1∑
s=0

(h)j−1

j!

[
As ⊗

(
A′
)j−1−s]

= Im2 +
∞∑
j=2

j−1∑
s=0

(h)j−1

j!

[
(PV sQ)⊗

(
Q′V j−1−sP ′

)]
= Im2 +

∞∑
j=2

j−1∑
s=0

(h)j−1

j!

[(
P ⊗Q′

) (
V s ⊗ V j−1−s) (Q⊗ P ′)]

=
(
P ⊗Q′

)Im2 +
∞∑
j=2

j−1∑
s=0

(h)j−1

j!

[(
V s ⊗ V j−1−s)](Q⊗ P ′)

=
(
P ⊗Q′

)
diag {Λ1, · · · ,Λm}

(
Q⊗ P ′

)
,
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where, for k = 1, · · · ,m,

Λk = diag

1 +
∞∑
j=2

j−1∑
s=0

(h)j−1

j!
ηskη

j−1−s
v


m

v=1

 .

When k = v, it is easy to get

1 +

∞∑
j=2

j−1∑
s=0

(h)j−1

j!
ηskη

j−1−s
v = 1 +

∞∑
j=2

j−1∑
s=0

(h)j−1

j!
ηj−1k = 1 +

∞∑
j=2

(h)j−1

(j − 1)!
ηj−1k = eηkh.

When k 6= v, as all the eigenvalues are distinct, we assume |ηk| < |ηv| (the same result is easy to
get when |ηk| > |ηv|). Then

1 +
∞∑
j=2

j−1∑
s=0

(h)j−1

j!
ηskη

j−1−s
v = 1 +

∞∑
j=2

j−1∑
s=0

(h)j−1

j!

(
ηk
ηv

)s
ηj−1v = 1 +

∞∑
j=2

(h)j−1 ηj−1v

j!

1− (ηk/ηv)
j

1− (ηk/ηv)

= 1 +
∞∑
j=2

(h)j−1

j!

ηjv − ηjk
ηv − ηk

= 1 +
1

(ηv − ηk)h

∞∑
j=2

(h)j

j!

(
ηjv − η

j
k

)
= 1 +

1

(ηv − ηk)h
{(exp {ηvh} − 1− ηvh)− (exp {ηkh} − 1− ηkh)}

=
eηvh − eηkh
(ηv − ηk)h

.

The fact that EΓ = I obtained in the proof of (b) in Theorem 3.5 completes the proof.

Proof of Theorem 3.12. Letting {η1, · · · , ηm} = V and {η̂1, · · · , η̂m} = V̂ , when T is large

enough, we have

Â−A = dA = P̂ V̂ P̂−1 − PV P−1

=
(
P̂ − P

)
V̂ P̂−1 + P

(
V̂ − V

)
P̂−1 + PV

(
P̂−1 − P−1

)
=
(
P̂ − P

)
V̂ P̂−1 + P

(
V̂ − V

)
P̂−1 − PV P−1

(
P̂ − P

)
P̂−1

= (dP ) V̂ P̂−1 + P (dV ) P̂−1 − PV P−1 (dP ) P̂−1,

and

P−1 (dA) P̂ = P−1 (dP ) V̂ + dV − V P−1 (dP )

= dV + P−1 (dP )
(
V̂ − V

)
+ P−1 (dP )V − V P−1 (dP )

Noting that the diagonal elements of P−1 (dP )V and V P−1 (dP ) are identical (c.f., Phillips, 1982),

it is true that (
P−1 (dA) P̂

)
(j,j)

=
(
η̂j − ηj

)
+
(
P−1 (dP )

)
(j,j)

(
η̂j − ηj

)
.
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Let
(
pj
)′ and p̂j denote the jth row of P−1 and the jth column of P̂ , respectively, we have{

1 +
[
P−1 (dP )

]
(j,j)

}(
η̂j − ηj

)
=
(
pj
)′

(dA) p̂j =
[(
pj
)′ ⊗ p̂′j]V ec (dA) .

As ordered eigenvalues and eigenvectors under normalization are continuous functions of elements

of the matrix, it is achieved that

η̂j − ηj =
[(
pj
)′ ⊗ p′j]V ec(Â−A)+ op

(
V ec

(
Â−A

))
.

Proof of Theorem 3.14. The proof can be completed by taking the same steps in the proof

of the Theorem 3.5 after changing a few notations. Hence, it is omitted.

C proofs in Section 4

Proof of Theorem 4.3. We only give the proof of

T 3/2h
(
Â−A

)
µ1

d−→
(
g′g
)−1/2

f (B0, P , δ) .

Other results in the Theorem can be proved immediately in a similar way.

Firstly, we give the proof for the case in which m > 1. As A = 0m×m and F = I, simple

calculation can give the results that Cj = 0, for j = 1, · · · ,m, and f1 = 0, fs = −1/ (s− 1) , for

s = 2, · · · ,m. Hence, it is obtained that

h
(
Â−A

)
= hÂ = ln

(
F̂
)

= f̂1I + f̂2

(
I − F̂

)
+ · · ·+ f̂m

(
I − F̂

)m−1
.

Note that

T 3/2
(
F̂ − I

)
µ1 = T 3/2

(
F̂ − F

)
µ1 ⇒

(
g′g
)−1/2

f (B0, P , δ) .

Hence

T 3/2
(
F̂ − I

)j
µ1

p−→ 0 for j > 1.

From the consistency of f̂j , j = 1, · · · ,m, the following expression is obtained

T 3/2h
(
Â−A

)
µ1 = T 3/2f̂1I · µ1 − f̂2T 3/2

(
F̂ − I

)
µ1 + op(1).

Note that

f̂1 =

∫ 1

0

ĈmS
m−1

1 + Ĉ1S + · · ·+ ĈmSm
dS,

with

Ĉm = (−1)m det
(
I − F̂

)
= (−1)m

m!∑
j=1

ζj .
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where ζj , for each j, is a multiplication in terms of elements in matrix
(
I − F̂

)
with the number of

m. Because of

T
(
F̂ − I

)
= T

(
F̂ − F

)
⇒ f (B0, B

∗∗
0 ,∆21)U

′
2,

it it easy to get ζj ∼ Op (T−m). Therefore, Ĉm ∼ Op (T−m) and T 3/2Ĉm
p−→ 0 when m > 1. Based

on the consistency of Ĉj , j = 1, · · · ,m, it is easy to get T 3/2f̂1
p−→ 0. Consequently,

T 3/2h
(
Â−A

)
µ1 = −f̂2T 3/2

(
F̂ − I

)
µ1 + op(1)

d−→ −f2 ·
(
g′g
)−1/2

f (B0, P , δ) =
(
g′g
)−1/2

f (B0, P , δ) .

For the case m = 1, the proposed estimator possesses the form of

hÂ = f̂1,

and

f̂1 = Ĉ1

∫ 1

0

1

1 + Ĉ1S
dS, with Ĉ1 = (−1)

(
1− F̂

)
p−→ C1 = 0.

As
∫ 1
0

1
1+Ĉ1S

dS
p−→
∫ 1
0

1
1+C1S

dS = 1, we can have

T 3/2h
(
Â−A

)
µ1 = T 3/2hÂµ1 = T 3/2Ĉ1µ1

∫ 1

0

1

1 + Ĉ1S
dS

= T 3/2
(
F̂ − 1

)
µ1 + op (1)

d−→
(
g′g
)−1/2

f (B0, P , δ) .

Proof of Theorem 4.7. When b = 0, it is known from the Theorem 4.3 that Th
(
Â−A

)
d−→

f (B0, B
∗
0 ,∆21). Then, it is easy to get

Th

m∑
j=1

η̂j = Th× tr
(
Â
)

= Th∆V ec
(
Â
)

d−→ ∆ · V ec [f (B0, B
∗
0 ,∆21)] ,

where ∆ is a 1 ×m2 row vector whose 1st, [m + 2]th, · · · , [(m − 1)m + m]th elements are 1 and 0

elsewhere. The other parts of the theorem can be easily proved by using the same method.

Proof of Lemma 4.8. It is easy to get

[
Φ̂1 − Φ1, Φ̂2d − Φ2d, Φ̂2D − Φ2D, ĝ − g

]
=

[
T∑
t=1

εtZ
†′
t−1

]
×
[

T∑
t=1

Z†t−1Z
†′
t−1

]−1
,

where Z†t =
[
Y1t, Y2dt, Y2Dt, 1

]
, Y2dt = d′1Y2t and Y2Dt = D′2Y2t. The processes Xt, Y1t and

Y2t possess error terms as εt =
∫ th
(t−1)h e

(αβ′)(th−s)Σ1/2dW (s), ν1t =
∫ th
(t−1)h e

(β′α)(th−s)β′Σ1/2dW (s)

and ν2t =
∫ th
(t−1)h α

′
⊥Σ1/2dW (s), respectively. Note the important fact that {εt}∞t=1, {ν1t}

∞
t=1 and

{ν2t}∞t=1 have no correlations across time index t with each other. Then, simply using FCLT could
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completes the proof. (The asymptotics for some of the elements in
∑T

t=1 εtZ
†′
t−1 and

∑T
t=1 Z

†
t−1Z

†′
t−1

are well-known (see, for example, Park and Phillips, 1988, 1989).)

Proof of Theorem 4.13. The findings listed in Theorem 3.5 can be rewritten as

hV ec
(
Â−A

)
= ΓV ec

(
F̂ − F

)
+ op

(
V ec

(
F̂ − F

))
.

Then, based on the Theorem 4.8 and the relationship of

F̂ − F =
(

Φ̂1 − Φ1

)
β′ +

(
Φ̂2d − Φ2d

)
d′1α

′
⊥ +

(
Φ̂2D − Φ2D

)
D′2α

′
⊥,

the results in (a) and (b) are proved immediately.

However, the appearance of the term as op
(
V ec

(
F̂ − F

))
puts some diffi culty on deriving the

results in (c) and (d). For example, it is not easy to prove the condition as

T

(
Im ⊗

[
β⊥
(
α′⊥β⊥

)−1
D2

]′)
Γ−1op

(
V ec

(
F̂ − F

))
= op (1) ,

which is a quite necessary condition for getting the result in (c). In the following, a method is

applied which manages to avoid this sort of diffi culty.

Let ΨT (·) denote the cumulative distribution function (cdf) of

hT

(
Im ⊗

[
β⊥
(
α′⊥β⊥

)−1
D2

]′)
Γ−1V ec

(
Â−A

)
.

And, let Ψ (·) be the asymptotic cdf of

T
(
Im ⊗

[
D′2D2

])
V ec

(
Φ̂2D − Φ2D

)
= T

(
Im ⊗

[
β⊥
(
α′⊥β⊥

)−1
D2

]′)
V ec

(
F̂ − F

)
.

The result in (c) would be obtained immediately if, at any right continuous point of Ψ (·), say, ð0,
we have ΨT (ð0) → Ψ (ð0) as T → ∞. Let {ΨTk (ð0)} be ANY subsequence of {ΨT (ð0)}. Then,
to get ΨT (ð0) → Ψ (ð0) as T → ∞, the only thing needed to do is to prove that there EXIST a
sequence like {ΨTks (ð0)}, which is a subsequence of {ΨTk (ð0)}, satisfying ΨTks (ð0)→ {Ψ (ð0)}.

Note that, for ANY subsequence of F̂ denoting by
{
F̂Tk

}
, there always EXIST a sequence like{

F̂Tks

}
, which is a subsequence of

{
F̂Tk

}
, satisfying

F̂Tks
a.s.−→ F .

From the proof of Theorem 3.5, when Tks is large enough, we have

V ec
(
F̂Tks − F

)
=

Im2 +

∞∑
j=2

j−1∑
s=0

(h)j−1

j!

[
As ⊗

(
Â′Tks

)j−1−s]︸ ︷︷ ︸
ẼTks

hV ec
(
ÂTks −A

)
,

47



and

ẼTks
a.s.−→ Γ−1,

where
{
ÂTks

}
is a sequence of Â corresponding to

{
F̂Tks

}
. Therefore,

T

(
Im ⊗

[
β⊥
(
α′⊥β⊥

)−1
D2

]′)
V ec

(
F̂Tks − F

)
d∼ hT

(
Im ⊗

[
β⊥
(
α′⊥β⊥

)−1
D2

]′)
Γ−1V ec

(
ÂTks −A

)
.

Note that {ΨTks (·)} can be regarded as the cdf of hT
(
Im ⊗

[
β⊥ (α′⊥β⊥)−1D2

]′)
Γ−1V ec

(
ÂTks −A

)
.

While, Ψ (·) is the asymptotic cdf of T
(
Im ⊗

[
β⊥ (α′⊥β⊥)−1D2

]′)
V ec

(
F̂Tks − F

)
. As a result,

ΨTks (ð0)→ {Ψ (ð0)} is obtained immediately.
The results in (d) can be proved straightforwardly by using the same approach to prove (c).
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