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Abstract

Based on the Girsanov theorem, this paper first obtains the exact distribution
of the maximum likelihood estimator of structural break point in a continuous
time model. The exact distribution is asymmetric and tri-modal, indicating that
the estimator is seriously biased. These two properties are also found in the finite
sample distribution of the least squares estimator of structural break point in the
discrete time model. The paper then builds a continuous time approximation
to the discrete time model and develops an in-fill asymptotic theory for the least
squares estimator. The obtained in-fill asymptotic distribution is asymmetric and
tri-modal and delivers good approximations to the finite sample distribution. In
order to reduce the bias in the estimation of both the continuous time model and
the discrete time model, a simulation-based method based on the indirect estima-
tion approach is proposed. Monte Carlo studies show that the indirect estimation
method achieves substantial bias reductions. However, since the binding function
has a slope less than one, the variance of the indirect estimator is larger than
that of the original estimator.
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1 Introduction

Statistical inference of structural breaks has received a great deal of attention both in the

econometrics and in the statistics literature over the last several decades. Bhattacharya

(1994) provides a review of the statistics literature on the problem while Perron (2006)

gives a review of the econometrics literature on the same problem. There are also

several books devoted to this topic of research, including Csörgő and Horváth (1997),

Chen and Gupta (2011). Both strands of the literature have addressed the problem

in many aspects, from estimation, testing to computation, from frequentist’s methods

to Bayesian methods, from one structural break to multiple structural breaks, from

univariate settings to multivariate settings. In addition to its statistical implications,

the economic and financial implications of structural break problem have also been

extensively studied; see, for example, Hansen (2001) and Andreou and Ghysels (2009)

for excellent reviews.

The literature has developed the asymptotic theory for the estimation of the frac-

tional structural break point (the absolute structural break point divided by the total

sample size), including the consistency, the rate of convergence, and the limiting dis-

tribution; see, for example, Yao (1987) and Bai (1994). The asymptotic theory has

been obtained by assuming that the time span of data goes to infinity. This long-span

asymptotic distribution is the distribution of the location of the extremum of a two-

sided Brownian motion with triangular drift over the interval (−∞,+∞), and has an
analytical expression for the probability density function (pdf). It is symmetric with

the origin being the unique mode, indicating that the estimators have no asymptotic

bias. Interestingly and rather surprisingly, how well the asymptotic distribution works

in finite sample is largely unknown. Is the lack of study on the quality of approximation

of the asymptotic distribution to the finite sample distribution due to the good perfor-

mance of the asymptotic distribution? Or is the lack of attention due to the diffi culty

in studying the finite sample theory? Is there any substantial bias in the commonly

used estimators of the structural break point in finite sample?

This paper systematically investigates the exact distributional properties and the

bias problem in the estimation of structural break points. To the best of our knowledge,

our study is the first systematic analysis of the exact distribution theory in the literature.

We first develop the exact distribution of the maximum likelihood (ML) estimator of

structural break point in a continuous time model, assuming that a continuous record

over a finite time span is available. We document the asymmetry and the trimodality

in the exact distribution. As a result, the exact distribution suggests that the ML
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estimator is biased whenever the true break point is not in the middle of the sample.

Aiming to retain the properties of asymmetry and trimodality in the discrete time

model, we study the exact discretization of a continuous time model with an unknown

structural break point and develop an in-fill asymptotic theory for the least squares

(LS) estimator of break point. To reduce the bias in the estimation of break point both

in the continuous time model and in the discrete time model, an indirect estimation

procedure is proposed.

Our study makes several contributions to the literature. First, we develop a novel

approach to obtain the exact distribution of the ML estimator of break point. Since

the likelihood function and the sum of squared residuals are not differentiable with

respect to the break point in discrete time models, the traditional approaches to obtain

the exact distribution are not feasible. By using the Girsanov theorem, we obtain the

likelihood function in a continuous time model with a structural break and then the

exact distribution of the ML estimator.

Second, we show that the exact distribution is asymmetric when the true break point

is not in the middle of the sample. Moreover, the exact distribution has trimodality

when the signal-to-noise ratio (the break size over the standard deviation of the error

term) is not very large, regardless of the location of the true break point. Asymmetry

together with trimodality makes the ML estimator seriously biased. It is also found

that the further the fractional structural break point away from 50%, the larger the

bias. When the fractional structural break point is smaller (larger) than 50%, the bias

is positive (negative).

Third, we find that the properties of asymmetry and trimodality are shared by the

finite sample distribution of the LS estimator of break point in the discrete time model,

suggesting substantial bias in the LS estimation especially when the signal-to-noise

ratio is not very large. To better approximate the finite sample distribution in the

discrete time model, we consider a continuous time approximation to the discrete time

model with a structural break in mean and develop an in-fill asymptotic theory for the

LS estimator. The in-fill asymptotic distribution retains the properties of asymmetry

and trimodality found in the finite sample distribution, and, hence, provides better

approximations than the long-span asymptotic distribution.

Finally, we propose to do bias reduction by using the indirect estimation procedure.

One standard method for bias reduction is to obtain an analytical form to approximate

the bias and then bias-correct the original estimator via the analytical approach as in

Kendall (1954), Nickell (1981), Tang and Chen (2009), Yu (2012) for various types of

autoregressive models. However, it is diffi cult to use the analytical approach in this
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context as the bias formula is diffi cult to obtain analytically. The primary advantage

of the indirect estimation procedure lies in its merit in calibrating the binding function

via simulations and avoiding the need to obtain an analytical expression for the bias

function. It is shown that the indirect estimation procedure, without knowing the

analytical form of the bias, achieves substantial bias reduction. Since it is easy to

simulate the model and estimate the break point parameter, the indirect estimation is

a convenient method for reducing the bias in the estimation of structural break points.

However, since the binding function has a slope less than one, the variance of the

indirect estimator is larger than that of the original estimator.

Our in-fill asymptotic treatment has a spirit similar to Phillips (1987), Perron (1991),

and Barndorff-Nielsen and Shephard (2004). The comparison of the in-fill asymptotic

distribution and the long-span asymptotic distribution in the autoregressive process

was recently considered in Yu (2014) and Zhou and Yu (2015). It was also found that

the in-fill asymptotic distribution provides better approximations to the finite sample

distribution than the long-span asymptotic distribution when the process is highly

persistent.

The rest of the paper is organized as follows. Section 2 gives a brief review of

the literature and provides the motivations of the paper. Section 3 develops the exact

distribution of the ML estimator of the structural break point in a continuous time

model. Section 4 establishes a continuous time approximation to the discrete time

model previously considered in the literature and develops the in-fill asymptotic theory

for the LS estimators under different settings. The indirect estimation procedure and its

applications in the continuous time model and the discrete time model with structural

break are introduced in Section 5. In Section 6, we provide simulation results and

compare the finite sample performance of the indirect estimation method with that

of the traditional estimation methods and other simulation-based methods. Section 7

concludes. All proofs are contained in the Appendix.

2 Literature Review and Motivations

The literature on estimating structural break points is too extensive to review. A partial

list of contributions in statistics include Hinkley (1970), Ibragimov and Has’minskii

(1981), Hawkins et al. (1986), and Yao (1987). In econometrics, Jushan Bai and Pierre

Perron have made many contributions to the literature through their individual works

as well as their collaborative works; see, for example, Perron (1989), Bai (1994, 1995,

1997a, 1997b, 2010), Bai and Perron (1998) and Bai et al. (1998). In these studies, large
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sample theories for different estimators under various model settings are established.

A simplified model considered in Hinkley (1970) is

Yt =

{
µ+ εt if t ≤ k0

(µ+ δ) + εt if t > k0

, (1)

where t = 1, . . . , T with T being the number of observations of Yt, εt is a sequence of

independent and identically distributed (i.i.d.) random variables with E (εt) = 0 and

V ar (εt) = σ2, and k denotes the break point with true value k0. The condition of

1 ≤ k0 < T is assumed to ensure that one break happens. The fractional break point

is defined as τ = k/T with true value τ 0 = k0/T . Constant µ measures the mean of

Yt before break and δ is the break size. Let the pdf of Yt be f(Yt, µ) for t ≤ k0 and

f(Yt, µ + δ) for t > k0. Under the assumption that the functional form of f (·, ·) and
the parameters µ and δ are all known, the ML estimator of k is defined as

k̂ML,T = arg max
k=1,...,T−1

{
k∑
t=1

log f(Yt, µ) +
T∑

t=k+1

log f(Yt, µ+ δ)

}
. (2)

The corresponding estimator of τ is τ̂ML,T = k̂ML,T/T . Hinkley (1970) showed that

k̂ML,T − k0 converges in distribution as the sample sizes before and after the break

point tend to infinity. He also pointed out that the distribution of k̂ML,∞ − k0, where

k̂ML,∞ denotes k̂ML,T when T → ∞, has no closed-form expression, and suggested

a numerical method to compute the distribution. However, the suggested numerical

scheme is diffi cult to use for small δ since the distribution becomes rather dispersive

when δ is small. This diffi culty motivates Yao (1987) to develop a limit theory as δ → 0.

Letting δ → 0, Yao (1987) derived a long-span limiting distribution as

δ2I (µ)
(
k̂ML,∞ − k0

)
d−→ arg max

u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
, (3)

where I (µ) is the Fisher information of the density function f(y, µ), W (u) is a two-

sided Brownian motion which will be defined below, and d−→ denotes convergence in

distribution. So the limiting distribution is the location of the extremum of a two-
sided Brownian motion with triangular drift over the interval (−∞,∞). Given that

I (µ) depends on the error distribution, there is no invariance principle in the limit

theory. Yao (1987) also derived the pdf of the long-span limiting distribution as

g(x) = 1.5e|x|Φ
(
−1.5|x|0.5

)
− 0.5Φ

(
−0.5|x|0.5

)
,

and the cumulative distribution function (cdf) as

G (x) = 1 +
√
x/2πe−x/8 − (x+ 5) Φ

(
−0.5

√
x
)
/2 + 1.5exΦ

(
−1.5

√
x
)
for x > 0,
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and G (x) = 1−G (−x) for x ≤ 0, where Φ(x) is the cdf of a standard normal distrib-

ution.

For the same model as in Equation (1) with unknown parameters µ and δ, Hawkins

et al. (1986) and Bai (1994) studied the long-span asymptotic behavior of the LS

estimator of the unknown break point. The LS estimator of the break point k takes the

form of

k̂LS,T = arg min
k=1,...,T−1

{
S2
k

}
= arg max

k=1,...,T−1

{
[Vk (Yt)]

2} , (4)

where S2
k =

k∑
t=1

(
Yt − Y k

)2
+

T∑
t=k+1

(
Yt − Y

∗
k

)2

with Y k (Y
∗
k) being the sample mean

of the first k (last T − k) observations and [Vk (Yt)]
2 = T (T−k)

T 2

(
Y
∗
k − Y k

)2

. The cor-

responding estimator of τ is τ̂LS,T = k̂LS,T/T . Hawkins et al. (1986) showed that

Tα (τ̂LS,T − τ 0)
p−→ 0 for any α < 1/2, where

p−→ denotes convergence in probability.

Bai (1994) improved the rate of convergence by showing that τ̂LS,T − τ 0 = Op

(
1
Tδ2

)
.

In addition, by letting the break size depend on T , denoted by δT , and assuming that

δT → 0 with
√
TδT√
log T
→∞ as T →∞, Bai (1994) derived an asymptotic distribution as

T (δT/σ)2 (τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
. (5)

which is the same as in (3). This long-span asymptotic distribution in (5) is widely used

as an approximation to the finite sample distribution for models with a small break.

Note that when εt is normally distributed, the Fisher information I (µ) in Equation (3)

is σ−2. In this case, the asymptotic theory for τ̂ML,T in Yao (1987) is exactly the same

as that for τ̂LS,T in Bai (1994). However, in Bai (1994) no assumption is made about

the error distribution, and, hence, an invariance principle applies.
When the error term in model (1) becomes a weakly stationary process with a

long-run variance [a (1)]2, Bai (1994) showed that

T (δT/a (1))2 (τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
.

A continuous time model with a structural break in the drift function was studied

in Ibragimov and Has’minskii (1981, hereafter IH). The model takes the form of

dX(t) =
1

ε
S(t− τ 0)dt+ dB(t), (6)

where t ∈ [0, 1], S(t − τ 0) is a non-stochastic drift term with discontinuity at time τ 0

and limx→0+ S(x) − limx→0− S(x) = δ∗, ε is a small parameter and B(t) represents a
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Figure 1: The pdfs of arg max
u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
and a standard normal distribution.

standard Brownian motion. An important feature in (6) is that the break size in the

drift function is δ∗/ε, which goes to infinity as ε → 0. IH assumed that a continuous

record is available. Following the development of the local asymptotic theory of Le

Cam (1960), IH examined the behavior of the normalized likelihood ratio in the small

neighborhood of the true break point τ 0 such that τ = τ 0 + ε2u with u = Op (1), and

showed that as ε→ 0,(
δ∗

ε

)2

(τ̂ML − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
. (7)

The limiting distributions obtained in Yao (1987), Bai (1994) and IH listed in (3),

(5) and (7), respectively, are exactly the same, which is the distribution of the location

of the extremum of a two-sided Brownian motion with triangular drift over the interval

(−∞,∞). Figure 1 plots the pdf of it. For the purpose of comparison, the pdf of
a standard normal distribution is also plotted. It can be seen that, relative to the

standard normal distribution, the limiting distribution obtained in the literature has

much fatter tails and a much higher peak. More importantly, the limiting distribution

has an unique mode at the origin and is symmetric about it, suggesting that all the

estimators studied in the literature have no bias in the limiting distribution no matter

what the true value of the structural break point is.

Unfortunately, the asymptotic distribution of the ML estimator and the LS estima-
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Figure 2: The pdf of the finite sample distribution of T
(
δT
σ

)2
(τ̂LS,T − τ 0) when T = 100,

δT = 0.2, σ = 1 and τ 0 = 0.3 in Model (1) and the pdf of arg max
u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
.

tor derived in the literature does not perform well in many empirically relevant cases.

To see this problem, in Figure 2 we plot the pdf of the limiting distribution in (5)

and the finite sample distribution of T
(
δ
σ

)2
(τ̂LS,T − τ 0) with τ̂LS,T defined in (4) when

T = 100, δ = 0.2, σ = 1 and τ 0 = 0.3 in Model (1). The finite sample distribution is

obtained from simulated data. It is clear that the two distributions are very different

from each other. There are three striking distinctions between the two distributions.

First, the finite sample distribution is asymmetric, whereas the asymptotic distribu-

tion is symmetric. Second, the finite sample distribution displays trimodality while

the asymptotic distribution has a unique mode. Third, the finite sample distribution

indicates that the LS estimator τ̂LS,T is seriously biased. The bias is 0.1704, which is

about 57% of the true value. In contrast, there is no bias suggested by the asymptotic

distribution. It is this inadequacy of the asymptotic distribution for approximating

the finite sample distribution that motivates us to develop an alternative distribution

theory for the estimation of structural break point.
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3 A Continuous Time Model

In this section we focus our attention on a continuous time model with a structural

break in the drift function. The model considered here is

dX(t) = S̃(t− τ 0)dt+ σdB(t), (8)

where t ∈ [0, 1],

S̃(t− τ 0) =

{
µ if t ≤ τ 0

µ+ δ∗/ε if t > τ 0

,

µ, δ∗, ε and τ 0 are all constants, σ is another constant capturing the noise level, andB(t)

denotes a standard Brownian motion. The condition of τ 0 ∈ [α, β] with 0 < α < β < 1

is assumed to make sure that one break happens during the time interval (0, 1). δ∗/ε is

the break size. The continuous time model is a natural choice for capturing the different

amount of sample information before and after the break point. As long as τ 0 6= 1/2, the

amount of sample information contained by observations over the time interval [0, τ 0]

is different from that over the time interval [τ 0, 1].1 An alternative representation of

Model (8) is

dX(t) =

[(
µ+

(
δ∗

ε

)
1[t>τ0]

)]
dt+ σdB(t), (9)

where 1[t>τ0] is an indicator function. We assume that a continuous record is available

and all parameters are known except for τ . With a continuous record, assuming a

more complex structure for σ such as a time varying diffusion will not change the

analysis because the diffusion function can be estimated by quadratic variation without

estimation error.

Following IH, for any τ ∈ (0, 1) we obtain the exact log-likelihood ratio of Model

(9) via the Girsanov Theorem2

log

(
dPτ
dPτ0

)
=

∫ 1

0

δ∗

σε

(
1[t>τ ] − 1[t>τ0]

)
dB(t)− 1

2

∫ 1

0

(
δ∗

σε

)2 (
1[t>τ ] − 1[t>τ0]

)2
dt,

which leads to the ML estimator of τ as

τ̂ML = arg max
τ∈(0,1)

log

(
dPτ
dPτ0

)
. (10)

1In IH’s continuous time model stated in (6), a symmetric distribution as (7) was obtained because
they assumed that the break size goes to infinity and applied the local asymptotic approach developed
in Le Cam (1960).

2See also Phillips and Yu (2009b) for a recent usage of the Girsanov Theorem in estimating contin-
uous time models.
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Following the literature, we now define a two-sided Brownian motion as

W (u) =

{
W1 (−u) = B(τ 0)−B(τ 0 − (−u)) if u ≤ 0

W2 (u) = B(τ 0)−B(τ 0 + u) if u > 0
, (11)

whereW1 (s) = B(τ 0)−B(τ 0− s) andW2 (s) = B(τ 0)−B(τ 0 + s) are two independent

Brownian motions composed by increments of the standard Brownian motion B(·)
before and after τ 0, respectively.

It can be seen that, when µ = 0, Model (8) becomes the one studied in IH with

the signal-to-noise ratio δ∗/ε being replaced by δ∗/ (σε). Therefore, when ε → 0, the

asymptotic distribution of τ̂ML defined in (10) is the same as the one given in IH

with δ∗/ε being replaced by δ∗/ (σε). Since τ̂ML is independent of µ, the asymptotic

distribution of τ̂ML applies to any value of µ. However, when ε is fixed, we will show

that the distribution of τ̂ML is asymmetric when τ 0 6= 1/2 and has trimodality. We

report these results in the following theorem.

Theorem 3.1 Consider Model (8) with a continuous record being available. For the
ML estimator τ̂ML defined in (10),

(a) when ε is a constant, we have the exact distribution as(
δ∗

σε

)2

(τ̂ML − τ 0)
d
= arg max

u∈
(
−τ0( δ

∗
σε)

2
,(1−τ0)( δ∗σε)

2
)
{
W (u)− |u|

2

}
; (12)

(b) when ε→ 0, the break size δ∗/ε→∞, we have the small-ε distribution as(
δ∗

σε

)2

(τ̂ML − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)− |u|

2

}
,

where W (u) is the two-sided Brownian motion defined in (11), and d
= denotes equiva-

lence in distribution.

The distribution in (12) is exact. It is different from the limiting distribution de-

veloped in the literature as given in (5) in two obvious aspects. First, the limiting

distribution in (5) corresponds to the location of the extremum of W (u) − 1
2
|u| over

the interval of (−∞,∞). Since the interval is symmetric about zero, the limiting dis-

tribution is symmetric. However, the exact distribution in (12) corresponds to the

interval of
(
−τ 0

(
δ∗

σε

)2
, (1− τ 0)

(
δ∗

σε

)2
)
, which depends on the true value of the frac-

tional break point τ 0. Only when τ 0 is 1/2, which means that the true break point is

exactly in the middle of the sample, the interval
(
−τ 0

(
δ∗

σε

)2
, (1− τ 0)

(
δ∗

σε

)2
)
becomes
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(
−
(
δ∗

σε

)2
/2,
(
δ∗

σε

)2
/2
)
which is symmetric about the origin. In this case the exact dis-

tribution is symmetric. However, if τ 0 is not 1/2 (either smaller or larger than 1/2),

the interval and hence the exact distribution will be asymmetric, indicating that τ̂ML is

biased. It is easy to see that the exact distribution in (12) suggests upward bias when

τ 0 < 1/2 and downward bias when τ 0 > 1/2, and the further τ 0 away from 1/2, the

larger the bias. Second, the interval over which to find the extremum of W (u)− 1
2
|u| is

unbounded for the limiting distribution in (5). Whereas, the interval is always bounded

for the exact distribution. Such a difference has an implication for the modality of the

distribution, as explained below.

Because of this change in the interval to locate the extremum, we cannot obtain the

pdf or cdf of the exact distribution in closed-form. As a result, we obtain the pdf by

simulations as for the case of the Dickey-Fuller distribution. Figure 3 plots the density

of τ̂ML− τ 0 when τ 0 = 0.4, 0.5, 0.6 (the left, middle and right panel respectively) when

ε = 1 and the signal-to-noise ratio ( δ
∗

σε
) is 1. Figures 4-7 plot the density of τ̂ML − τ 0

when the signal-to-noise ratio is 2, 4, 6 and 8, respectively. There are several interesting

observations from these plots. First and most importantly, when τ 0 = 50%, the density

of τ̂ML − τ 0 is symmetric about the origin, no matter what the signal-to-noise ratio

is. As a result, there is no bias in τ̂ML. However, when τ 0 is not 50%, the density

is not symmetric any more. In particular, if τ 0 is less (more) than 50%, the density

is positively (negatively) skewed, indicating an upward (downward) bias in τ̂ML. The

smaller the signal-to-noise ratio, the larger the bias. The further τ 0 away from 50%, the

larger the bias, a feature that becomes more apparent in our simulation study reported

later.3

Second, the exact distribution displays trimodality, a feature being more apparent

when the signal-to-noise ratio is smaller. One mode is at the origin. The other two

modes are at the two boundary points, −τ 0

(
δ∗

σε

)2
and (1− τ 0)

(
δ∗

σε

)2
. The closer the

boundary point to the origin, the bigger the mode at the boundary point.

That the origin is a mode is well expected because the drift term in W (u)− 1
2
|u| is

−1
2
|u| which is negative and the random term is W (u) ∼ (0, |u|) = Op(

√
|u|). When

|u| is large, the negative drift term dominates the random term in W (u) − 1
2
|u|. As

a result, when there is no bound in the interval, the probability for W (u) − 1
2
|u| to

reach the maximum at a large value of |u| is small, and decreases as |u| becomes larger.
However, because of the randomness in W (u), it is possible for W (u) − 1

2
|u| to reach

the maximum at a large value of |u|. This also gives a reasonable explanation for the
3Detailed results about the bias will be reported in Section 6.
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shape of the long-span limiting distribution in (5) as apparent in Figure 1.

When δ∗

σε
gets smaller, 1

2
|u| only takes smaller values at the boundary points. This

mean that the negative drift become less dominant, and, hence, it is more likely for

W (u)− 1
2
|u| to reach the maximum at the neighborhoods of the two boundary points.

To explain why the other two modes are at the two boundary points, take the right

boundary point (1− τ 0)
(
δ∗

σε

)2
as an example. Being a mode at this boundary point

means that it is more likely for W (u) − 1
2
|u| to reach the maximum at (1− τ 0)

(
δ∗

σε

)2

than at any point arbitrarily close to but strictly less than (1− τ 0)
(
δ∗

σε

)2
. Given the

randomness of W (u), the probability for W (u) − 1
2
|u| to reach the maximum in any

small left neighborhood of (1− τ 0)
(
δ∗

σε

)2
is nonzero. Conditional on the event that

W (u)− 1
2
|u| reaches the maximum in this small left neighborhood, the reason why it is

more likely for (1− τ 0)
(
δ∗

σε

)2
to be the arg max of W (u)− 1

2
|u| than any interior point

is that, for (1− τ 0)
(
δ∗

σε

)2
(1− τ 0)

(
δ∗

σε

)2
to be the arg max, the value of W (u)− 1

2
|u| at

(1− τ 0)
(
δ∗

σε

)2
has to larger than the value of W (u) − 1

2
|u| at the points smaller than

(1− τ 0)
(
δ∗

σε

)2
. However, for any interior point to be the arg max, we have to compare

the value of W (u) − 1
2
|u| at this interior point with that at both sides of this interior

point. Similar arguments apply to the other boundary point, −τ 0

(
δ∗

σε

)2
.

The arguments in the above two paragraphs help explain why the two modes at

the boundary points become more pronounced when δ∗

σε
decreases. Moreover, When δ∗

σε

is very small, the length of the interval over which W (u) − 1
2
|u| is maximized is very

small. In this case, the negative drift term is stochastically dominated by the random

term in W (u)− 1
2
|u|. This explains why the origin may not the highest mode when the

signal-to-noise ratio is very small, as apparent in Figures 3.

To explain why the mode on the left boundary point is larger (smaller) than that

on the right boundary point when τ 0 is less (greater) than 50%, note that 1
2
|u| takes

a smaller (larger) value at −τ 0

(
δ∗

σε

)2
((1− τ 0)

(
δ∗

σε

)2
). Hence, it is more (less) likely

for W (u)− 1
2
|u| to reach the maximum in the neighborhood of −τ 0

(
δ∗

σε

)2
than that of

(1− τ 0)
(
δ∗

σε

)2
.

4 Continuous Time Approximation to Discrete Time
Models

Motivated by the findings in the exact distribution in the continuous time model, in

this section we build a continuous-time approximation to the discrete time structural

break model widely studied in the literature, aiming to obtain a better approximation to

the finite sample distribution of the break point estimation in the discrete time model.
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Figure 3: The density of τ̂ML − τ 0 given in Equation (12) when τ 0 = 0.4, 0.5, 0.6 (the
left, middle and right panel respectively) and the signal-to-noise ratio ( δ

∗

σε
) is 1.
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Figure 4: The density of τ̂ML − τ 0 given in Equation (12) when τ 0 = 0.4, 0.5, 0.6 (the
left, middle and right panel respectively) and the signal-to-noise ratio δ∗

σε
is 2.
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Figure 5: The density of τ̂ML − τ 0 given in Equation (12) when τ 0 = 0.4, 0.5, 0.6 (the
left, middle and right panel respectively) and the signal-to-noise ratio δ∗

σε
is 4.
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Figure 6: The density of τ̂ML − τ 0 given in Equation (12) when τ 0 = 0.4, 0.5, 0.6 (the
left, middle and right panel respectively) and the signal-to-noise ratio δ∗

σε
is 6.

1 0 1
0

5

10

15

D
en

si
ty

1 0 1
0

5

10

15

D
en

si
ty

1 0 1
0

5

10

15

D
en

si
ty

Figure 7: The density of τ̂ML − τ 0 given in Equation (12) when τ 0 = 0.4, 0.5, 0.6 (the
left, middle and right panel respectively) and the signal-to-noise ratio δ∗

σε
is 8.
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In particular, we approximate the discrete time model studied in Hinkley (1970), Yao

(1987) and Bai (1994) by using the exact discretization of a continuous time model.

Based on the continuous time approximation, we then develop the in-fill asymptotic

theory for the LS estimator of the break point under two settings.

Assume observations are available at discrete time points, say at T equally spaced

points {th}Tt=1, where h is the sampling interval and T = 1/h is the sample size. The

in-fill asymptotics correspond to the case when h→ 0. It is assumed that Th is fixed,

say at 1. Clearly, if h→ 0, the sample size T →∞. In the limit of h→ 0, a continuous

record is available. For simplicity, we let τ 0/h be an integer, denoted by k0. The

notation Xth is used to represent a discrete time process. The exact discretization of

the continuous time process X (·) defined in (9) takes the form of

Xth −X(t−1)h =

{
µh+

√
hεth for t = 1, · · · , k0,

(µ+ δ∗/ε)h+
√
hεth for t = k0 + 1, · · · , T,

where εth ∼ i.i.d.N(0, σ2). As εth is independent of h, we simply write it as εt. Letting
Zt =

(
Xth −X(t−1)h

)
/
√
h, we have

Zt =

{
µ
√
h+ εt if t ≤ k0,

(µ+ δ∗/ε)
√
h+ εt if t > k0.

(13)

Whenever h is fixed, the discrete time model in Equation (13) is the same as the

one studied in Hinkley (1970), Yao (1987) and Bai (1994) given in Equation (1) with

εt being normally distributed and the shift in mean being δ = (δ∗/ε)
√
h.

With a fixed ε, the in-fill asymptotic scheme implies that the break size (δ∗/ε)
√
h

goes to zero at the rate of 1/
√
T . This is different from the asymptotic schemes employed

in the literature. For example, Bai (1994) allowed the break size shrinks to zero but

at a rate slower than
√

log T/
√
T as T → ∞. The slower convergence rate of the

break size may explain why the limiting distribution in (5) cannot approximate well

the finite sample distribution for the model with a small break, as demonstrated below

in simulations.

We now develop the in-fill asymptotic theory for the LS estimator of τ with ε fixed.

When µ and δ∗/ε are known, the in-fill asymptotic distribution is shown to be the same

as the exact distribution of the ML estimator when a continuous record is available, as

given in Part (a) of Theorem 3.1. When µ and δ∗/ε are unknown, we derive an in-fill

asymptotic distribution which is asymmetric when τ 0 6= 1/2, and has trimodality. In

both cases, the in-fill asymptotic distribution provides better approximations to the

finite sample distribution than the long-span limiting distribution developed in the

15



literature as given in (5). The superiority of the in-fill asymptotic distribution over the

long-span asymptotic distribution was recently documented in Yu (2014) and Zhou and

Yu (2015) in the context of autoregressive processes.

We also consider the in-fill asymptotic scheme with ε → 0 and (δ∗/ε)
√
h → 0. In

this case the break size goes to zero but at a rate slower than 1/
√
T . We show that the

in-fill asymptotic distribution is the same as the limiting distribution obtained in Yao

(1987) and Bai (1994). Hence, our setup and results generalize and connect naturally

with those in the literature.

4.1 In-fill asymptotics when only τ is unknown

When µ and δ∗/ε are known, the LS estimator of the break point is defined as

k̂LS,T = arg min
k=1,...,T−1

{
k∑
t=1

(
Zt − µ

√
h
)2

+
T∑

t=k+1

(
Zt − (µ+ δ∗/ε)

√
h
)2
}

= arg min
k=1,...,T−1

{
2(δ∗/ε)

√
h

k∑
t=1

(
Zt − µ

√
h
)
− (δ∗/ε)2 hk

}

= arg max
k=1,...,T−1

{
−(δ∗/ε)

√
h

k∑
t=1

(
Zt − µ

√
h
)

+ (δ∗/ε)2 hk/2

}
. (14)

The corresponding estimator of the fractional break point is τ̂LS,T = k̂LS,T/T . When

the error distribution in Model (13) is Gaussian, the LS estimators of k and τ are also

the ML estimators, as defined in Yao (1987). Comparing to Yao’s long-span asymptotic

distribution, the in-fill asymptotic distribution given in Part (a) of the following theorem

provides an alternative asymptotic approximation to the finite sample distribution of

τ̂LS,T . Part (b) of the following theorem connects our in-fill asymptotics to Yao’s long-

span asymptotics.

Theorem 4.1 Consider Model (13) with known µ and δ∗/ε. Denote the LS estimator
τ̂LS,T = k̂LS,T/T with k̂LS,T defined in (14). Then,

(a) when h→ 0 with a fixed ε, we have the in-fill asymptotic distribution as

T

(
δ∗

σε

√
h

)2

(τ̂LS,T − τ 0)
d−→ arg max

u∈
(
−τ0( δ

∗
σε)

2
,(1−τ0)( δ∗σε)

2
)
{
W (u)− |u|

2

}
;

(b) when h → 0 and ε → 0 simultaneously with (δ∗/ε)
√
h → 0, we have the small-ε

in-fill asymptotic distribution as

T

(
δ∗

σε

√
h

)2

(τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)− |u|

2

}
,
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Table 1: The bias in finite sample obtained from the simulated data, the bias calculated
from the in-fill asymptotic distribution, and the bias calculated from the long-span
asymptotic distribution in Yao (1987). The number of replications is set at 100,000.

Case Bias
δ∗

σε
τ 0 Finite sample In-fill asymptotics Long-span asymptotics

2 0.3 0.0909 0.0911 0
2 0.7 -0.0921 -0.0903 0
4 0.3 0.0307 0.0299 0
4 0.7 -0.0305 -0.0302 0
6 0.3 0.0078 0.0073 0
6 0.7 -0.0080 -0.0072 0

where W (u) is the two-sided Brownian motion defined in (11).

Remark 4.1 Note that T = 1/h implies T
(
δ∗

σε

√
h
)2

= (δ∗/ (σε))2. Hence, the in-fill

asymptotic distribution of τ̂LS,T in Theorem 4.1 is the same as the exact distribution of

τ̂ML obtained in Theorem 3.1.

Remark 4.2 When h → 0 with a fixed ε, T
(
δ∗

σε

√
h
)2

= (δ∗/ (σε))2 is a constant. In

this case, according to Part (a) of Theorem 4.1, τ̂LS,T is inconsistent and k̂LS,T − k0

diverges at the rate of T . When h→ 0 and ε→ 0 simultaneously with (δ∗/ε)
√
h→ 0,

the break size shrinks to zero but at a rate slower than 1/
√
T . In this case, according

to Part (b) of Theorem 4.1, τ̂LS,T is consistent but k̂LS,T − k0 diverges at a rate slower

than T .

Remark 4.3 The proof of Theorem 4.1 does not depend on the assumption of Gaussian
errors. Therefore, an invariance principle applies to the in-fill asymptotics. The proof

of Theorem 4.1 can be easily extended to the case where the errors in Model (13) follow

a weakly stationary process with a long-run variance [a (1)]2. In this case, the results in

Theorem 4.1 still hold but with σ2 being replaced by [a (1)]2.

Figure 8 plots the finite sample distribution of T
(
δ∗

σε

√
h
)2

(τ̂LS,T − τ 0) when τ 0 =

0.3, 0.5, 0.7 (the left, middle and right panel respectively) obtained from simulations,

the density of the in-fill asymptotic distribution given in Part (a) of Theorem 4.1 and

the density of the long-span limiting distribution given in Yao (1987). The data are

simulated from Model (13) with µ = 0, δ∗ = 2, ε = 1, σ = 1 and h = 1/100. So

the break size is
(
δ∗

ε

)√
h = 0.2. The experiment is replicated 100,000 times to obtain

the density. Table 1 reports the finite sample bias of the LS estimator τ̂LS,T , the bias
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Figure 8: The pdf of T
(
δ∗

σε

√
h
)2

(τ̂LS,T − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle

and right panel respectively) and δ∗

σε
= 2. The blue solid line is the finite sample

distribution when T = 100; the black broken line is the density given in Part (a) of
Theorem 4.1; and the red dotted line is the long-span limiting distribution in Yao
(1987).

implied by the in-fill asymptotic distribution, and the bias implied by the long-span

limiting distribution.

Several features are apparent in Figure 8 and Table 1. First, the finite sample

distribution is not symmetric about 0 when τ 0 6= 1/2. In particular, if τ 0 is smaller

(larger) than 1/2, the density is positively (negatively) skewed, indicating an upward

(downward) bias in τ̂LS,T . The bias is 30% above the true value when τ 0 = 0.3 which

is substantial. Second, the finite sample distribution has trimodality. The origin is

one of the three modes and the two boundary points, −τ 0

(
δ∗

σε

)2
and (1− τ 0)

(
δ∗

σε

)2
,

are the other two. Third and most importantly, the in-fill asymptotic distribution

given in Part (a) of Theorem 4.1 shares the two important features of the finite sample

distribution, namely, asymmetry and trimodality. Not surprisingly, it provides much

better approximations to the finite sample distribution than the long-span asymptotic

distribution. Fourth, the in-fill asymptotic distribution captures the finite sample bias

very well.

Figures 9-10 plot the finite sample density of T
(
δ∗

σε

√
h
)2

(τ̂LS,T − τ 0) when the

break size is 0.4 and 0.6, respectively, as well as the corresponding density of the in-fill

asymptotic distribution given in Part (a) of Theorem 4.1 and the density of the long-
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Figure 9: The pdf of T
(
δ∗

σε

√
h
)2

(τ̂LS,T − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle

and right panel respectively) and δ∗

σε
= 4. The blue solid line is the finite sample

distribution when T = 100; the black broken line is the density given in Part (a) of
Theorem 4.1; and the red dotted line is the long-span limiting distribution in Yao
(1987).

span limiting distribution given in Yao (1987). Qualitatively, similar conclusions can be

drawn from Figures 9-10 to those from Figure 8. Comparing Figures 9-10 with Figure

8, we can see that, as the break size increases, the trimodality becomes less pronounced

and the degree of asymmetry reduces. As a result, the magnitude of bias becomes

smaller. Moreover, as the break size gets larger, the long-span asymptotic distribution

given in Yao (1987) can better approximate the finite sample distribution. However,

the finite sample distribution is less concentrated around zero and less peaked than the

long-span asymptotic distribution. In all cases, the in-fill asymptotic distribution given

in Part (a) of Theorem 4.1 always provides better approximations to the finite sample

distribution than the long-span asymptotic distribution.

4.2 In-fill asymptotics with more unknown parameters

When µ and δ∗/ε are unknown, the means before and after the break point have to be

estimated. In this case, following Bai (1994), the LS estimator of the break point takes

19



20 0 20
0

0.1

0.2

0.3

0.4

0.5
D

en
si

ty

20 0 20
0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

20 0 20
0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Figure 10: The pdf of T
(
δ∗

σε

√
h
)2

(τ̂LS,T − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle

and right panel respectively) and δ∗

σε
= 6. The blue solid line is the finite sample

distribution when T = 100; the black broken line is the density given in Part (a) of
Theorem 4.1; and the red dotted line is the long-span limiting distribution in Yao
(1987).

the form of

k̂LS,T = arg min
k=1,...,T−1

{
k∑
t=1

(
Zt − Zk

)2
+

T∑
t=k+1

(
Zt − Z

∗
k

)2
}

= arg max
k=1,...,T−1

{
[Vk (Zt)]

2} , (15)

where Zk (Z
∗
k) is the sample mean of the first k (last T−k) observations and [Vk (Zt)]

2 =
T (T−k)
T 2

(
Z
∗
k − Zk

)2

. Similarly, τ̂LS,T = k̂LS,T/T .

Theorem 4.2 Consider Model (13) with unknown parameters of µ and δ∗/ε. For the
LS estimator τ̂LS,T = k̂LS,T/T with k̂LS,T defined in (15),

(a) when h→ 0 with a fixed ε, we have the following in-fill asymptotic distribution

T

(
δ∗

σε

√
h

)2

(τ̂LS,T − τ 0)
d−→
(
δ∗

σε

)2

arg max
u∈(−τ0,1−τ0)

[
B̃ (µ)

]2

, (16)

with

B̃ (µ) =

{
B1 (1− τ 0 − µ)−B2 (τ 0 + µ)− (1−τ0)

√
τ0+µ√

1−τ0−µ
δ∗

σε
for µ ≤ 0

B1 (1− τ 0 − µ)−B2 (τ 0 + µ)− τ0
√

1−τ0−µ√
τ0+µ

δ∗

σε
for µ > 0

,
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B1 (·) and B2 (·) being two independent standard Brownian motions;
(b) when h → 0 and ε → 0 simultaneously with (δ∗/ε)

√
h → 0, we have the following

small-ε in-fill asymptotic distribution

T

(
δ∗

σε

√
h

)2

(τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)− |u|

2

}
,

where W (u) is the two-sided Brownian motion defined in (11).

Remark 4.4 The in-fill asymptotic distribution reported in Part (a) of Theorem 4.2 is
new to the literature. When τ 0 6= 1/2, the interval (−τ 0, 1− τ 0) is asymmetric about

zero and, not surprisingly, the in-fill asymptotic distribution in Part (a) of Theorem 4.2

is asymmetric. When τ 0 = 1/2, the interval becomes symmetric, and we have

B̃ (µ) =

{B1 (1/2− µ)−B2 (1/2 + µ)−
√

1/2+µ

2
√

1/2−µ
δ∗

σε
for µ ≤ 0

B1 (1/2− µ)−B2 (1/2 + µ)−
√

1/2−µ
2
√

1/2+µ

δ∗

σε
for µ > 0

which becomes symmetrically distributed about zero. As a result, the distribution in Part

(a) of Theorem 4.2 is symmetric about zero when τ 0 = 1/2.

Remark 4.5 By using the Beveridge-Nelson decomposition and the functional central
limit theory for serially dependent processes, Theorem 4.2 can be extended to the case

where the errors in Model (13) follow a weakly stationary process with a long-run vari-

ance [a (1)]2. In this case, the results in Theorem 4.2 still applies with σ2 being replaced

by [a (1)]2.

Figure 11 plots the finite sample distribution of T
(
δ∗

σε

√
h
)2

(τ̂LS,T − τ 0), obtained

from simulated data, when τ 0 = 0.3, 0.5, 0.7 (the left, middle and right panel respec-

tively), the density of the in-fill asymptotic distribution given in Part (a) of Theorem

4.1 and the density of the long-span limiting distribution given in Bai (1994). The data

are simulated from Model (13) with µ = 0, δ∗ = 2, ε = 1, σ = 1 and h = 1/100.

So the break size is
(
δ∗

ε

)√
h = 0.2. The experiment is replicated 100,000 times. The

finite sample bias of the LS estimator τ̂LS,T , the bias implied by the in-fill asymptotic

distribution, and the bias implied by the long-span limiting distribution are reported

in Table 2.

Several features are apparent in Figure 11 and Table 2. First, the finite sample

distribution is asymmetric about 0 when τ 0 6= 1/2, and, hence, τ̂LS,T is biased. In

particular, if τ 0 is less (greater) than 1/2, the density is positively (negatively) skewed,
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leading to an upward (downward) bias in τ̂LS,T . The bias is more than 50% of the true

value if τ 0 = 0.3, which is very substantial. Second, the finite sample distribution is

not as concentrated around zero as suggested by the long-span limiting distribution.

The finite sample distribution has trimodality. The origin is one of the three modes

and the two boundary points, −
(
δ∗

σε

)2
τ 0 and

(
δ∗

σε

)2
(1− τ 0), are the other two. The

peak at the origin can be smaller than those at the boundary points when δ∗

σε
is small.

Third and most importantly, the in-fill asymptotic distribution given in Part (a) of

Theorem 4.2 has trimodality, and is asymmetric about zero when τ 0 6= 1/2. It provides

better approximations to the finite sample distribution than the long-span limiting

distribution. Comparing Table 2 to Table 1, it can be seen that when the means are

unknown and have to be estimated, the bias in τ̂LS,T increases. In spite of a larger bias

in τ̂LS,T , it can be seen from Table 2 that the in-fill asymptotic distribution captures

the finite sample bias reasonably well.

Figures 12-14 plot the finite sample density of T
(
δ∗

σε

√
h
)2

(τ̂LS,T − τ 0) when the

break size is 0.4, 0.6 and 0.8, respectively, as well as the corresponding density of the in-

fill asymptotic distribution given in Part (a) of Theorem 4.1 and the density of the long-

span limiting distribution given in Bai (1994). Qualitatively, similar conclusions can be

drawn from Figures 12-14 to those from Figure 11. Comparing Figures 12-14 with Figure

11, we can see that, as the break size increases, the trimodality becomes less pronounced

and the degree of asymmetry reduces. As a result, the magnitude of bias becomes

smaller. Moreover, as the break size gets larger, the long-span asymptotic distribution

given in Bai (1994) can better approximate the finite sample distribution. However,

the finite sample distribution is less concentrated around zero and less peaked than the

long-span asymptotic distribution. In all cases, the in-fill asymptotic distribution given

in Part (a) of Theorem 4.1 always provides better approximations to the finite sample

distribution than the long-span asymptotic distribution.

5 Bias Correction via Indirect Estimation

The indirect estimation is a simulation-based method, first introduced by Smith (1993),

Gouriéroux, et al. (1993), and Gallant and Tauchen (1996). This method is particularly

useful for estimating parameters of a model where the moments and likelihood function

of the model are diffi cult to calculate but the model is easy to simulate. It uses an

auxiliary model to capture aspects of the data upon which to base the estimation. The

parameters of the auxiliary model can be estimated using either the observed data or

data simulated from the true model. Indirect inference chooses the parameters of the

22



Table 2: The bias in finite sample obtained from simulated data, the bias calculated
from the in-fill asymptotic distribution, and the bias calculated from the long-span
asymptotic distribution in Bai (1994). The number of replications is set at 100,000.

Case Bias
δ∗

σε
τ 0 Finite sample In-fill asymptotics Long-span asymptotics

2 0.3 0.1704 0.1619 0
2 0.7 -0.1717 -0.1611 0
4 0.3 0.1068 0.0885 0
4 0.7 -0.1062 -0.0874 0
6 0.3 0.0511 0.0363 0
6 0.7 -0.0495 -0.0362 0
8 0.3 0.0202 0.0123 0
8 0.7 -0.0199 -0.0122 0
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Figure 11: The pdf of T
(
δ∗

σε

√
h
)2

(τ̂LS − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and

right panel respectively) and δ∗

σε
= 2. The blue solid line is the finite sample distribution

when T = 100; the black broken line is the density given in Part (a) of Theorem 4.2;
and the red dotted line is the long-span limiting distribution in Bai (1994).
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Figure 12: The pdf of T
(
δ∗

σε

√
h
)2

(τ̂LS − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and

right panel respectively) and δ∗

σε
= 4. The blue solid line is the finite sample distribution

when T = 100; the black broken line is the density given in Part (a) of Theorem 4.2;
and the red dotted line is the long-span limiting distribution in Bai (1994).
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Figure 13: The pdf of T
(
δ∗

σε

√
h
)2

(τ̂LS − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and

right panel respectively) and δ∗

σε
= 6. The blue solid line is the finite sample distribution

when T = 100; the black broken line is the density given in Part (a) of Theorem 4.2;
and the red dotted line is the long-span limiting distribution in Bai (1994).
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Figure 14: The pdf of T
(
δ∗

σε

√
h
)2

(τ̂LS − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and

right panel respectively) and δ∗

σε
= 8. The blue solid line is the finite sample distribution

when T = 100; the black broken line is the density given in Part (a) of Theorem 4.2;
and the red dotted line is the long-span limiting distribution in Bai (1994).

true model so that these two sets of parameter estimates of the auxiliary model are

as close as possible. Typically, one chooses the auxiliary model that is amenable to

estimate and approximate the true model well at the same time.

Gouriéroux et al. (1993) and Gallant and Tauchen (1996) established the asymptotic

properties of the indirect estimator, including consistency, asymptotic normality, and

asymptotic effi ciency. McKinnon and Smith (1998) and Gouriéroux et al. (2000) devel-

oped a particular indirect estimation procedure, where the auxiliary model is chosen to

be the true model in order to improve finite sample properties of the original estima-

tor. Arvanitis and Demos (2014) established suffi cient conditions for second order bias

correction of the general indirect estimator. Moreover, they give primitive conditions

for finite sample properties of the general indirect estimator and also introduced an

iterative procedure to further improve the performance of the indirect estimator.

When the auxiliary model is identical to the true model, the indirect estimation

obtains the bias function by simulating from the true model and hence also the auxiliary

model. In this section, we apply this indirect estimation procedure to do bias correction

in estimating τ and k, the fractional and the absolute structural break point. It is

important to obtain the bias function via simulations because, from Equations (12),
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we know that the bias formula and the bias expansion are too diffi cult to deal with

explicitly. The same idea was also used to estimate continuous time models in Phillips

and Yu (2009a,c) and dynamic panel models in Gouriéroux et al. (2010).

The application of the indirect estimation procedure for estimating structural break

proceeds as follows. Given a parameter θ (say τ), we simulate data ỹ(θ) = {ỹh0 , ỹh1 , . . . , ỹhT}
from the true model, such as, Equation (9) or (13), where h = 1, ..., H, with H being

the number of simulated paths. Note that T in ỹ(θ) should be chosen as the same

number of the actual data under analysis so that the bias of the original estimator from

the actual observations can be calibrated by simulated data.

The indirect estimation method matches the estimator from the actual observations

with the one estimated from the simulated data to obtain the indirect estimator. To

be specific, let QT (θ;y) be the objective function of the original (biased) estimation

method applied to actual data (y) for estimating the parameter θ. The corresponding

extremum estimator θ̂ obtained is then denoted as

θ̂T = arg max
θ∈Θ

QT (θ;y),

and the corresponding estimator based on the hth simulated path for some fixed θ is

θ̃
h

T (θ) = arg max
θ∈Θ

QT (θ;y(θ)),

where Θ is a compact parameter space.

The indirect estimator is then defined as

θ̂IE,T,H = arg min
θ∈Θ

∥∥∥∥∥θ̂T − 1

H

H∑
h=1

θ̃
h

T (θ)

∥∥∥∥∥ , (17)

for some distance measure ‖·‖. WhenH goes to infinity, it is expected that 1
H

∑H
h=1 θ̃

h

T (θ)
p→

E(θ̃
h

T (θ)). Then the indirect estimator becomes

θ̂IE,T = arg min
θ∈Θ

∥∥∥θ̂T − bT (θ)
∥∥∥

where bT (θ) = E(θ̃
h

T (θ)) is the binding (or bias) function.

To apply the indirect estimation to the observed data, we assume that the true

model is given either by the continuous time model given by (9) or the discrete time

model given by (13). At first, we employ the ML method and the LS method to the

actual data in order to obtain τ̂ML and τ̂LS,T . Then the corresponding estimator for

the hth simulated path is τ̃hT (τ) and the indirect estimator is

τ̂ IE,T = arg min
k∈Θ
‖τ̂T − bT (τ)‖ , (18)
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where τ̂T is the original ML estimator or LS estimator of τ from the actual data, bT (τ)

is the binding function with the form

bT (τ) = E(τ̃hT (τ)),

which, in practice, can be effectively replaced by 1
H

∑H
h=1 τ̃

h
T (τ) since H can be chosen

arbitrarily large.

Based on τ̂ IE,T , we can define the indirect estimator of the absolute break point

as k̂IE,T = τ̂ IE,T × T . Let the corresponding binding function be bT (k) = bT (τ) × T .
If the binding function is invertible, then “bT -mean-unbiasedness” can be defined as

b−1
T (E (bT (τ̂ IE,T ))) = τ 0. Gouriéroux et al (2000) gives the conditions under which the

indirect estimator is bT -mean-unbiased for τ . By the same reason, k̂IE,T is “bT -mean-

unbiased”if b−1
T

(
E
(
bT

(
k̂IE,T

)))
= k0. Moreover, Gouriéroux et al (2000) shows that

if bT (·) is an affi ne function, the indirect estimator is exactly mean unbiased. One may
deduce that when the binding function is close to be affi ne, the indirect estimator is close

to be exactly mean-unbiased. Gouriéroux et al (2000) gives conditions for the second

order bias correction by the indirect estimator when the auxiliary model is identical

to the true model and τ̂T is consistent. Arvanitis and Demos (2014) gives suffi cient

conditions for the second order bias correction by the general indirect estimator. In

particular, they show that the indirect estimator is second order unbiased if the binding

function bT (·) is asymptotically linear.
Since τ̂ML and τ̂LS,T are consistent when ε→ 0, we can establish the second order

bias correction by the indirect estimator. To derive the asymptotic distribution of

the indirect estimator, one needs to verify that the binding function is asymptotically

locally relatively equicontinuous (Phillips, 2012). If the binding function is indeed

asymptotically locally relatively equicontinuous and limT→∞E(τ̂T ) = τ 0 where τ̂T is

either τ̂ML or τ̂LS,T , the Delta method can be applied to the original estimator τ̂ML

and τ̂LS,T when ε → 0 and the asymptotic theory (including the rate of convergence

and the limiting distribution) should be the same as the original estimator.

When ε is fixed, if the binding function is invertible, that is, τ̂ IE,T = b−1(τ̂T ), one

may informally apply the Delta method to study the effi ciency of the indirect estimator

as

Var(τ̂ IE,T ) ≈
(
∂bT (τ 0)

∂τ

)−2

Var(τ̂T ). (19)

Hence, the effi ciency loss (or gain) is measured by ∂bT (τ0)
∂τ

. If
∣∣∣∂bT (τ0)

∂τ

∣∣∣ < 1, τ̂ IE,T has

a bigger variance than τ̂T . However, if
∣∣∣∂bT (τ0)

∂τ

∣∣∣ > 1, τ̂ IET will have a smaller variance
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than τ̂T . If the finite sample distribution developed in Section 3 suggests that τ is over

estimated when τ 0 < 50% and is under estimated when τ 0 > 50%, the binding function

is expected to be flatter than the 45 degrees line. As a result, we expect some effi ciency

loss from the indirect estimation as the variance of the indirect estimator will be larger

than that of the original estimator.

Alternative bias correction methods may be applied to correct the bias in the original

estimator. For example, if the median is chosen to be the binding function, then the

median unbiased estimator of Andrews (1993) has the form of

τ̂MU,T = arg min
k∈Θ

∥∥τ̂T − ρ̂0.5

(
τ̃ 1
T (τ), ..., τ̃HT (τ)

)∥∥ , (20)

where ρ̂0.5 is the median obtained from
{
τ̃hT (τ)

}H
h=1
. If limH→∞ ρ̂0.5

(
τ̃ 1
T (τ), ..., τ̃HT (τ)

)
exists and is invertible and monotonic, then τ̂MU,T is exactly median unbiased. The

motivation for using the median to capture the location is because the finite sample

distribution of τ̂T is asymmetric in which case the median is a better measure of the

location than the mean.

For another example, one may use the bootstrap method of Efron (1979) to reduce

the bias. The parametric bootstrap was shown to be an effective method for bias

correction (Hall 1992). The performance of the parametric bootstrap was recently

illustrated in the parameter estimation in the context of continuous time models in

Tang and Chen (2009). The idea of parametric bootstrap is to generate many bootstrap

sample paths, each of which having the same structure as the estimated path from the

initial estimation, and then to obtain a new estimator from each bootstrap sample

path by applying the same estimation procedure (call them τh∗T (τ̂T ), h = 1, ..., H).

Let τ ∗T (τ̂T ) = 1
H

∑H
h=1 τ

h
∗T (τ̂T ). The bootstrap estimator of the bias is τh∗T (τ̂T ) −

τ̂T and, hence, the bootstrap bias-corrected estimator of τ is τ̂T − (τ ∗T (τ̂T )− τ̂T ) =

2τ̂T − τ ∗T (τ̂T ). Gouriéroux et al. (2000) compares the higher order properties of the

indirect estimator and the bootstrap method based on the Edgeworth expansions. More

simulation based methods can be used. Forneron and Ng (2015) discusses a variety of

simulation based methods.

6 Monte Carlo Results

In this section, we design two Monte Carlo experiments to examine the bias of ML

estimator of τ in the continuous time model (9) and in the LS estimator of k in the

discrete time model (1). We also compare the finite sample performance of the indirect
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estimator with that of the original estimator, the median unbaised estimator and the

parametric bootstrap estimator. Following the suggestions from a referee, we do not

invert the binding function to obtain the indirect estimator as the inversion may lead

to an estimate outside of the interval [0, 1]. Instead we obtain the indirect estimator

based on the definition (17).

In the first experiment, data are generated from Model (9), with σ = 1, ε = 1,

δ∗ = 2, 4, 6, τ 0 = 30%, 50%, 70%, dB(t) ∼i.i.d.N(0, h), where h = 1
10000

. For each

combination of δ∗ and τ 0, we obtain the ML estimate of τ from Equation (12) and

the indirect estimator with H = 10, 000.4 Our focus is to examine the finite sample

properties of τ̂ , so it is assumed that the structural break size δ∗/ε and the standard

deviation σ are known during the simulation.

Table 3 reports the bias, the standard error, and the root mean squared errors

(RMSE) of ML estimate and the indirect estimate of τ , obtained from 100,000 replica-

tions. Some observations can be obtained from the table. Firstly, when τ 0 = 50%, the

ML estimate does not have any noticeable bias in all cases. However, when τ 0 6= 50%,

ML suffers from a bias problem. For example, when τ 0 = 30% and δ∗

σε
= 2, the bias is

0.0912 and about 30% of the true value. This is very substantial. In general, the bias

becomes larger when τ 0 is further away from 50%, or when the signal-to-noise ratio

gets smaller. To the best of our knowledge, such a bias has not been discussed in the

literature. Secondly, in all cases when τ 0 6= 50%, the indirect estimate substantially

reduces the bias. For example, when δ∗

σε
= 2 and τ 0 = 70%, the indirect estimation

method removes about two thirds of the bias in ML. Finally, the bias reduction by the

indirect estimation method comes with a cost of a higher variance, which causes the

RMSE of the indirect estimate slightly higher than its ML counterpart.

Table 3 also reports the statistics of the median unbiased estimator and the boot-

strap estimator of τ , also obtained from 100,000 replications. Compared with the indi-

rect estimation, the median unbiased estimation is less effective than for bias reduction

but is more effi cient in terms of variance. In terms of RMSE, the median unbiased esti-

mation performs better. This finding is consistent with what was reported in Tables 7-8

of Phillips and Yu (2009a) in the continuous time model. However, compared with the

indirect estimation, the bootstrap method performs similarly in terms of bias reduction

but increases the variance more than the indirect estimation in almost all cases.

In the second experiment, data are generated from Model (1), with σ = 1, ε =

1, δ∗ = 0.2, 0.4 and 0.6, τ 0 = 0.3, 0.5, 0.7, εt ∼i.i.d.N(0, 1), where we choose T =

4We also try other values for H, such as H = 1, 000 and 5, 000. The results are almost unchanged.
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Figure 15: Binding function of ML for the continuous time model when h = 0.0001.

80, 100, 120. For each combination of δ∗, τ 0 and T , we obtain the LS estimate of k based

on Equation (4) and the indirect estimate for each replication. As in the continuous time

model, it is assumed that the structural break size δ∗/ε and the standard deviation σ are

known. The reason why we focus on k is that k is a practically important parameter.
Table 4 reports the bias, the standard error, and the RMSE of the LS estimator

and the indirect estimator of k, obtained from 100,000 replications. We may draw the

following conclusions from Table 4. Firstly, when τ 0 = 50%, the LS estimate does not

have any noticeable bias in all cases. However, when τ 0 6= 50%, LS suffers from a

bias problem. For example, when T = 80, τ 0 = 30% and δ∗

σε
= 0.2, the bias is 8.1045

while the true value of k is 24. The bias is about 34% of the true value, which is very

substantial. In general, the bias becomes larger when τ 0 is further away from 0.5 or

when the signal-to-noise ratio gets smaller. To the best of our knowledge, such a bias

has not been discussed in the literature. Secondly, in all cases when τ 0 6= 50%, the

indirect estimate substantially reduces the bias. For example, when T = 100, δ
∗

σε
= 0.2

and τ 0 = 30%, the indirect estimation method removes more than half of the bias in

LS. Finally, the bias reduction by the indirect estimation method comes with a cost of

a higher variance, which causes the RMSE of the indirect estimate slightly higher than

its LS counterpart.
Table 4 also reports the bias, the standard error, and the RMSE of the median

unbiased estimator and the bootstrap estimator of k, also obtained from 100,000 repli-
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Figure 16: Binding function of LS for the discrete time model when T = 100

cations. Compared with the indirect estimation, the median unbiased estimation is

less effective for bias reduction but is more effi cient in terms of variance. In terms

of RMSE, the median unbiased estimation performs better than the indirect estima-

tion. However, compared with the indirect estimation, the bootstrap method performs

similarly in terms of bias reduction but increases the variance more than the indirect

estimation. So the bootstrap method is dominated by the indirect estimation method

in terms of the finite sample property.

To understand why the indirect estimation increases the variance relative to the

original estimator, we plot the binding functions in these two models in Figure 15 and

Figure 16, where we also plot the 45 degrees line for the purpose of comparison. Figure

15 corresponds to the continuous time model with δ∗

σε
= 2, 4, 6 and Figure 16 to the

discrete time model with T = 100, δ∗

σε
= 0.2, 0.4 and 0.6. Several conclusions can be

made. First, the binding functions always pass through the 45 degrees line at the middle

point of τ , suggesting no bias when τ = 50% and that the bias becomes smaller when

the true break point gets close to the middle. Second, the binding functions are flatter

than the 45 degrees line in all cases, explaining why the variance of the indirect estimate

is larger than that of ML estimate. The smaller the signal-to-noise ratio, the flatter the

binding function and hence the bigger loss in effi ciency. Third, the binding function

is not exactly a straight line. It is easy to see the nonlinearity near the two boundary

points. This explains why the indirect estimator is not exactly mean unbiased.
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7 Conclusions

This paper is concerned about the large sample approximation to the exact distribution

in the estimation of structural break point in mean. We find that the exact distributions

of the traditional estimators of structural break point are often asymmetric and have

trimodality both in the continuous time model and in the discrete time model. It is

also found that the traditional estimators are biased. Unfortunately, the literature on

structural breaks has always focused the attention on developing asymptotic theory

with a time span being assumed to go to infinity. The developed long-span limiting

distribution is the distribution of the location of the extremum of a two-sided Brownian

motion with triangular drift over the interval (−∞,+∞), which is symmetric and has

the origin as the unique mode. As a result, it provides poor approximations to the

exact distribution in many empirically relevant cases.

In this paper we address the finite sample problem in several aspects. First, we

derive the exact distribution of the ML estimator of the structural break point in a

continuous time model when a continuous record is available. The exact distribution is

the distribution of the location of the extremum of a two-sided Brownian motion with

triangular drift over a finite interval, the two boundary points of which depend on the

location of the true break point. It is shown that the exact distribution has trimodality,

regardless of the location of the break. When the true break point is in the middle of

the sample, the exact distribution is symmetric. However, when the true break point

occurs earlier (later) than the middle of the sample, the exact distribution is skewed to

the right (left), leading to a positive (negative) bias in the ML estimator.

In a discrete time model with a break in mean, we continue to find the trimodality

and asymmetry in the finite sample distribution of the LS estimator of the structural

break point. To better approximate the finite sample distribution, we deviate from

the literature by considering a continuous time approximation to the discrete time

model and developing an in-fill asymptotic theory. For the discrete time model with

the break point being the only unknown parameter, the in-fill asymptotic distribution

is the same as the exact distribution in the continuous time model. For the discrete

time model with more unknown parameters, the in-fill asymptotic distribution is new

to the literature. We show that this distribution has trimodality and is asymmetric

when the true break point is not in the middle of the sample. In all cases, the in-

fill asymptotic distribution approximates the finite sample distribution better than the

long-span limiting distribution developed in the literature.

Given that the exact distribution suggests a substantial bias in the ML/LS estima-
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tors, to reduce the bias, we propose to use the indirect estimation technique to estimate

the break point. Indirect estimation inherits the asymptotic properties of the original

estimator but reduces the finite sample bias. Monte Carlo results show that the indirect

estimation procedure is effective in reducing the bias in the commonly used break point

estimators while the variance of the estimation is increased.

The models considered in this paper are very simple in nature. Also, the estimators

considered are based on the full sample. Real time (and hence subsample) estimators

tend to have more serious finite sample problems. Further studies on developing better

approximations to the finite sample distribution for more realistic models and real time

estimators are needed. How to extend the indirect estimation technique to a multiple

parameters setting is also wide-open.

Appendix

Proof of Theorem 3.1: (a) When τ ≤ τ 0, we have

log

(
dPτ
dPτ0

)
=

δ∗

σε

∫ 1

0

1[τ<t≤τ0]dB(t)− 1

2

(
δ∗

σε

)2 ∫ 1

0

1[τ<t≤τ0]dt

=
δ∗

σε

∫ τ0

τ

dB(t)− 1

2

(
δ∗

σε

)2 ∫ τ0

τ

dt

=
δ∗

σε
(B(τ 0)−B(τ))− 1

2

(
δ∗

σε

)2

(τ 0 − τ).

When τ > τ 0, we have

log

(
dPτ
dPτ0

)
= − δ

∗

σε

∫ 1

0

1[τ0<t≤τ ]dB(t)− 1

2

(
δ∗

σε

)2 ∫ 1

0

1[τ0<t≤τ ]dt

= − δ
∗

σε

∫ τ

τ0

dB(t)− 1

2

(
δ∗

σε

)2 ∫ τ

τ0

dt

=
δ∗

σε
(B(τ 0)−B(τ))− 1

2

(
δ∗

σε

)2

(τ − τ 0).

Therefore, the exact log-likelihood ratio can be written as

log

(
dPτ
dPτ0

)
=
δ∗

σε
(B(τ 0)−B(τ))− 1

2

(
δ∗

σε

)2

|τ − τ 0|.

This implies that the ML estimator of break point is

τ̂ML = arg max
τ∈(0,1)

{
δ∗

σε
(B(τ 0)−B(τ))− 1

2

(
δ∗

σε

)2

|τ − τ 0|
}
,
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which leads to

τ̂ML − τ 0 = arg max
s∈(−τ0,1−τ0)

{
δ∗

σε
(B(τ 0)−B(τ 0 + s))− 1

2

(
δ∗

σε

)2

|s|
}
.

Let W (·) be the two-sided Brownian motion defined in (11). We then have

τ̂ML − τ 0 = arg max
s∈(−τ0,1−τ0)

{
δ∗

σε
W (s)− 1

2

(
δ∗

σε

)2

|s|
}

d
= arg max

s∈(−τ0,1−τ0)

{
W

(
s

(
δ∗

σε

)2
)
− 1

2

∣∣∣∣∣s
(
δ∗

σε

)2
∣∣∣∣∣
}

d
=

(
δ∗

σε

)−2

arg max
u∈
(
−τ0( δ

∗
σε)

2
,(1−τ0)( δ∗σε)

2
)
{
W (u)− |u|

2

}
,

which gives the result in Theorem 3.1 immediately.

(b) It is a straightforward result of Part (a). A formal proof for a general model can

be found in IH (1981), Theorem 2.2.

Proof of Theorem 4.1: (a) Let Γ (k) = −( δ
∗

ε
)
√
h

k∑
t=1

(
Zt − µ

√
h
)

+
(
δ∗

ε

)2
hk/2. Then,

the LS estimator k̂LS,T defined in (14) can be expressed as

k̂LS,T = arg max
k=1,...,T−1

{Γ (k)} = arg max
k=1,...,T−1

{Γ (k)− Γ (k0)} .

As T = 1/h,
(
δ∗

ε

√
h
)2 (

k̂LS,T − k0

)
= (δ∗/ε)2 (τ̂LS,T − τ 0) = Op (1) takes values in

the interval of
(
−τ 0 (δ∗/ε)2 , (1− τ 0) (δ∗/ε)2). Therefore, to study the in-fill asymp-

totic distribution of k̂LS,T we only need to examine the behavior of Γ (k) − Γ (k0)

for those k in the neighborhood of k0 such that k =

⌊
k0 + s

(
δ∗

ε

√
h
)−2
⌋
with s ∈(

−τ 0 (δ∗/ε)2 , (1− τ 0) (δ∗/ε)2), where b·c is the integer-valued function.
When k ≤ k0, h→ 0 with a fixed ε, we have, for any s ∈

(
−τ 0 (δ∗/ε)2 , 0

]
,

Γ (k)− Γ (k0)

= (δ∗/ε)
√
h

k0∑
t=k+1

(
Zt − µ

√
h
)
− (δ∗/ε)2 k0 − k

2
h

= (
δ∗

ε
)
√
h

k0∑
t=
⌊
k0+s( δ∗ε

√
h)

−2⌋
+1

εt −
(
δ∗

ε

)2

(
k0 −

⌊
k0 + s

(
δ∗

ε

√
h
)−2
⌋)

2
h

⇒ σW1 (−s)− |s|
2
,
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where W1 (·) is a standard Brownian motion, the second equation is from the fact that

Zt − µ
√
h = εt ∼ i.i.d.(0, σ2) for t ≤ k0, and the last convergence result comes from a

straightforward application of the functional central limit theory (FCLT) for the i.i.d.

sequence.

When k > k0, for any s ∈
(
0, (1− τ 0) (δ∗/ε)2), we have

Γ (k)− Γ (k0)

= −(δ∗/ε)
√
h

k∑
t=k0+1

(
Zt − µ

√
h
)

+ (δ∗/ε)2 k − k0

2
h

= −(δ∗/ε)
√
h

k∑
t=k0+1

(
Zt − µ

√
h− (δ∗/ε)

√
h
)
− (δ∗/ε)2 k − k0

2
h

= −(
δ∗

ε
)
√
h

⌊
k0+s( δ

∗
ε

√
h)

−2⌋∑
t=k0+1

εt −
(
δ∗

ε

)2

(⌊
k0 + s

(
δ∗

ε

√
h
)−2
⌋
− k0

)
2

h

⇒ −σW2 (s)− |s|
2

d
= σW2 (s)− |s|

2
,

where W2 (·) is a standard Brownian motion, and the third equation comes from the

fact that Zt − µ
√
h− (δ∗/ε)

√
h = εt ∼ i.i.d.(0, σ2) for t > k0.

It can be seen that W1 (·) and W2 (·) are determined by εt before and after k0

respectively. Therefore, they are two independent Brownian motions. Let W (·) be the
two-sided Brownian motion defined in (11). We then have

Γ (k)− Γ (k0) = Γ

(⌊
k0 + s

(
δ∗

ε

√
h

)−2
⌋)
− Γ (k0)⇒ σW (s)− |s|

2
.

Applying the continuous mapping theorem to the arg max function leads to

T

(
δ∗

ε

√
h

)2

(τ̂LS,T − τ 0)
d−→ arg max

s∈(−τ0(δ∗/ε)2,(1−τ0)(δ∗/ε)2)

{
σW (s)− |s|

2

}
= arg max

s∈(−τ0(δ∗/ε)2,(1−τ0)(δ∗/ε)2)

{
W
(
s/σ2

)
− |s|

2σ2

}
d
= σ2 arg max

u∈
(
−τ0( δ

∗
σε)

2
,(1−τ0)( δ∗σε)

2
)
{
W (u)− |u|

2

}
,

which gives the final result in Part (a) of Theorem 4.1 immediately. For a rigorous

treatment of the continuous mapping theorem for the arg max function, see Kim and

Pollard (1990).
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(b) It takes three steps to derive the in-fill asymptotic distribution under the scheme

that h → 0 and ε → 0 simultaneously and (δ∗/ε)
√
h → 0. The first step is to prove

that τ̂LS,T
p−→ τ 0.

Note that when k ≤ k0,

E (Γ (k)) = −(
δ∗

ε
)
√
h

k∑
t=1

E
(
Zt − µ

√
h
)

+

(
δ∗

ε

)2
k

2
h =

(
δ∗

ε

)2
k

2
h,

and when k > k0,

E (Γ (k)) = −(
δ∗

ε
)
√
h

k∑
t=1

E
(
Zt − µ

√
h
)

+

(
δ∗

ε

)2
k

2
h

= −(
δ∗

ε
)
√
h

k∑
t=k0+1

E
(
Zt − µ

√
h
)

+

(
δ∗

ε

)2
k

2
h

= −(
δ∗

ε
)2 (k − k0)h+

(
δ∗

ε

)2
k

2
h

=

(
δ∗

ε

)2
(2k0 − k)

2
h.

We then have,

E (Γ (k0))− E (Γ (k)) =

{
(δ∗/ε)2 (k0 − k)h/2 = (δ∗/ε)2 (τ 0 − τ) /2 if k ≤ k0

(δ∗/ε)2 (k − k0)h/2 = (δ∗/ε)2 (τ − τ 0) /2 if k > k0

which leads to E (Γ (k0))− E (Γ (k)) = (δ∗/ε)2 |τ − τ 0| /2 for any 1 ≤ k < T .

It is easy to see that for any k

Γ (k)− Γ (k0) = Γ (k)− E (Γ (k)) + E (Γ (k))− E (Γ (k0))− Γ (k0) + E (Γ (k0))

≤ |Γ (k)− E (Γ (k))|+ |Γ (k0)− E (Γ (k0))|+ E (Γ (k))− E (Γ (k0)) .

As a result, E (Γ (k0))−E (Γ (k)) ≤ |Γ (k)− E (Γ (k))|+|Γ (k0)− E (Γ (k0))|−{Γ (k)− Γ (k0)}.
Given that k̂LS,T = arg max {Γ (k)}, we then have,

(δ∗/ε)2 |τ̂LS,T − τ 0| /2 ≤
∣∣∣Γ(k̂LS,T)− E (Γ

(
k̂LS,T

))∣∣∣+ |Γ (k0)− E (Γ (k0))| .

Note that, for any 1 ≤ k < T , Γ (k)−E (Γ (k)) = −( δ
∗

ε

√
h)

k∑
t=1

εt where εt ∼i.i.d.(0, σ2).

Because V ar

(
−( δ

∗

ε

√
h)

k∑
t=1

εt

)
= ( δ

∗

ε

√
h)2kσ2 = (δ∗/ε)2τσ2 with τ = k/T ∈ (0, 1), we
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have Γ (k)− E (Γ (k)) = Op (δ∗/ε) as ε→ 0. Therefore,

|τ̂LS,T − τ 0| ≤ 2 (δ∗/ε)−2
{∣∣∣Γ(k̂LS,T)− E (Γ

(
k̂LS,T

))∣∣∣+ |Γ (k0)− E (Γ (k0))|
}

= 2 (δ∗/ε)−2 {Op (δ∗/ε) +Op (δ∗/ε)}
= Op (ε/δ∗)

p−→ 0 as ε→ 0.

The first step is done.

The second step is to prove that τ̂LS,T − τ 0 = Op

((√
T δ∗

ε

√
h
)−2
)
. Choose a γ > 0

such that τ 0 ∈ (γ, 1− γ). Since τ̂LS,T is consistent, for every∆ > 0, Pr {τ̂LS,T /∈ (γ, 1− γ)} <
∆ when h→ 0 and ε→ 0 simultaneously with (δ∗/ε)

√
h→ 0. Thus, we now only need

to examine the behavior of Γ (k) over those k for which Tγ < k < T (1− γ). To prove

τ̂LS,T−τ 0 = Op

((√
T δ∗

ε

√
h
)−2
)
, we shall prove Pr

{
|τ̂LS,T − τ 0| ≥M

(√
T δ∗

ε

√
h
)−2
}
→

0 when M →∞, h→ 0 and ε→ 0 simultaneously with (δ∗/ε)
√
h→ 0.

For everyM > 0, defineDT,M =

{
k | Tγ < k < T (1− γ) , |k − k0| ≥M

(
δ∗

ε

√
h
)−2
}
.

We then have

Pr

{
|τ̂LS,T − τ 0| ≥M

(√
T
δ∗

ε

√
h

)−2
}

≤ Pr {τ̂LS,T /∈ (γ, 1− γ)}+ Pr

{
τ̂LS,T ∈ (γ, 1− γ) , |τ̂LS,T − τ 0| ≥M

(√
T
δ∗

ε

√
h

)−2
}

< ∆ + Pr

{
sup

k∈DT,M
{Γ (k)} ≥ Γ (k0)

}

= ∆ + P1 with P1 = Pr

{
sup

k∈DT,M
{Γ (k)− Γ (k0)} ≥ 0

}
.

The event Γ (k)− Γ (k0) ≥ 0 implies

Γ (k)− E (Γ (k))− {Γ (k0)− E (Γ (k0))} ≥ E (Γ (k0))− E (Γ (k))

=

(
δ∗

ε

)2 |τ − τ 0|
2

=

(
δ∗

ε

)2 |k − k0|
2T

.

Note that

Γ (k)− E (Γ (k))− {Γ (k0)− E (Γ (k0))}

= −(
δ∗

ε

√
h)

k∑
t=1

εt + (
δ∗

ε

√
h)

k0∑
t=1

εt =

{ ( δ
∗

ε

√
h)

k0∑
t=k+1

εt when k < k0

−( δ
∗

ε

√
h)

k∑
t=k0+1

εt when k > k0

.
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Then

P1 ≤ Pr

{
sup

k∈DT,M

1

|k − k0|

(
−(
δ∗

ε

√
h)

k∑
t=1

εt + (
δ∗

ε

√
h)

k0∑
t=1

εt

)
≥
(
δ∗

ε

)2
1

2T

}
≤ P1 (k < k0) + P1 (k > k0)

where P1 (k < k0) = Pr

{
sup{k<k0 and k∈DT,M}

1
|k−k0|

(
( δ

∗

ε

√
h)

k0∑
t=k+1

εt

)
≥
(
δ∗

ε

)2
/2T

}
and

P1 (k > k0) = Pr

{
sup{k>k0 and k∈DT,M}

1
|k−k0|

(
−( δ

∗

ε

√
h)

k∑
t=k0+1

εt

)
≥
(
δ∗

ε

)2
/2T

}
.

For the case of k < k0 and k ∈ DT,M , we have Tγ < k < Tτ 0−M
(
δ∗

ε

√
h
)−2

. Then

P1 (k < k0) = Pr

 sup
Tγ<k<Tτ0−M( δ∗ε

√
h)

−2

1

|k − k0|

(
δ∗

ε

√
h

k0∑
t=k+1

εt

)
≥
(
δ∗

ε

)2
1

2T


= Pr


(
δ∗

ε

√
h

)−1

sup
Tγ<k<Tτ0−M( δ∗ε

√
h)

−2

(
1

|k − k0|

k0∑
t=k+1

εt

)
≥ 1

2


≤ Pr


(
δ∗

ε

√
h

)−1

sup
|k−k0|>M( δ∗ε

√
h)

−2

(
1

|k − k0|

k0∑
t=k+1

εt

)
≥ 1

2

 .
From the Hájek and Rényi inequality as in Hájek and Rényi (1955), it is easy to get

that, when M →∞ and (δ∗/ε)
√
h→ 0,

sup{
|k−k0|>M( δ∗ε

√
h)

−2}
(

1

|k − k0|

k0∑
t=k+1

εt

)
= Op

((
δ∗

ε

√
h

)
/
√
M

)
,

which leads to(
δ∗

ε

√
h

)−1

sup{
|k−k0|>M( δ∗ε

√
h)

−2}
(

1

|k − k0|

k0∑
t=k+1

εt

)
= Op

(
1/
√
M
)
→ 0.

Therefore, P1 (k < k0)→ 0.

Similar method can be used to prove P2 (k < k0) → 0. Then we get P1 → 0, and,

therefore, τ̂LS,T − τ 0 = Op

((√
T δ∗

ε

√
h
)−2
)
when h → 0 and ε → 0 simultaneously

with (δ∗/ε)
√
h→ 0. The second step in done.

Given τ̂LS,T − τ 0 = Op

((√
T δ∗

ε

√
h
)−2
)
, we have k̂LS,T − k0 = Op

((
δ∗

ε

√
h
)−2
)
.

Therefore, to derive the in-fill asymptotic distribution of k̂LS,T , we only need to examine
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the behavior of Γ (k) − Γ (k0) for those k in the neighborhood of k0 such that k =⌊
k0 + s

(
δ∗

ε

√
h
)−2
⌋
, where s varies in an arbitrary bounded interval. Then, for any

M > 0 and s = uσ2 ∈ (−M,M), repeating the procedure in the proof of (a), which is

counted as the third step of this proof, gives

T

(
δ∗

ε

√
h

)2

(τ̂LS,T − τ 0)
d−→ arg max

s∈(−M,M)

{
σW (s)− |s|

2

}
d
= σ2 arg max

u∈(−M/σ2,M/σ2)

{
W (u)− |u|

2

}
.

As M can be chosen arbitrarily, the result in part (b) of Theorem 4.1 is proved.

Proof of Theorem 4.2: (a) From Model (13) we have Zt − µ
√
h = εt ∼ i.i.d.(0, σ2)

for t ≤ k0 and Zt − µ
√
h− (δ∗/ε)

√
h = εt ∼ i.i.d.(0, σ2) for t > k0. Then, for k ≤ k0,

Zk − Z
∗
k

=
1

k

k∑
t=1

Zt −
1

T − k

T∑
t=k+1

Zt =
1

k

k∑
t=1

Zt −
1

T − k

(
k0∑

t=k+1

Zt +
T∑

t=k0+1

Zt

)

=
1

k

k∑
t=1

εt + µ
√
h− 1

T − k

(
(k0 − k)µ

√
h+ (T − k0)

(
µ+

δ∗

ε

)√
h+

T∑
t=k+1

εt

)

=
1

k

k∑
t=1

εt −
1

T − k

T∑
t=k+1

εt −
T − k0

T − k
δ∗

ε

√
h.

Similarly, for k > k0 we have

Zk − Z
∗
k =

1

k

k∑
t=1

εt −
1

T − k

T∑
t=k+1

εt −
k0

k

δ∗

ε

√
h.

The LS estimator defined in (15) can be identically expressed as

k̂LS,T = arg max
k=1,...,T−1

{[√
TVk (Zt)

]2
}

with [Vk (Zt)]
2 =

k (T − k)

T 2

(
Zk − Z

∗
k

)2

.

When h → 0 with a fixed ε, we have
(
δ∗

ε

√
h
)2 (

k̂LS,T − k0

)
= (δ∗/ε)2 (τ̂LS,T − τ 0) =

Op (1) taking values in the interval of
(
−τ 0 (δ∗/ε)2 , (1− τ 0) (δ∗/ε)2). Therefore, to

study the in-fill asymptotic distribution of k̂LS,T we only need to examine the behavior

of
[√

TVk (Zt)
]2

for those k in the neighborhood of k0 such that k =

⌊
k0 + s

(
δ∗

ε

√
h
)−2
⌋

with s ∈
(
−τ 0 (δ∗/ε)2 , (1− τ 0) (δ∗/ε)2). Then, for any fixed s, when h → 0, it has
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k → ∞ with k/T → τ 0 + s
(
δ∗

ε

)−2
= τ 0 + u and T − k → ∞ with (T − k) /T →

1− τ 0− s
(
δ∗

ε

)−2
= 1− τ 0−u, where u = s

(
δ∗

ε

)−2 ∈ (−τ 0, 1− τ 0). Applying the FCLT

to partial sums of the i.i.d. sequence of εt gives

√
T

k

k∑
t=1

εt =
T

k

1√
T

k∑
t=1

εt ⇒
σ

τ 0 + u
B1 (τ 0 + u) ,

and √
T

T − k

T∑
t=k+1

εt =
T

T − k
1√
T

T∑
t=k+1

εt ⇒
σ

1− τ 0 − u
B2 (1− τ 0 − u) ,

where B1 (·) and B2 (·) are two independent standard Brownian motions determined by
the errors before and after k respectively. As a result, for k ≤ k0,[√

TVk (Zt)
]2

=
k (T − k)

T 2

[√
T
(
Zk − Z

∗
k

)]2

=
k (T − k)

T 2

(√
T

k

k∑
t=1

εt −
√
T

T − k

T∑
t=k+1

εt −
T − k0

T − k
δ∗

ε

)2

⇒
(
σB1 (1− τ 0 − u)− σB2 (τ 0 + u)− (1− τ 0)

√
τ 0 + u√

1− τ 0 − u
δ∗

ε

)2

.

Similarly, for k > k0,[√
TVk (Zt)

]2

⇒
(
σB1 (1− τ 0 − u)− σB2 (τ 0 + u)− τ 0

√
1− τ 0 − u√
τ 0 + u

δ∗

ε

)2

.

Therefore, with B̃ (·) defined as in Part (a) of Theorem 4.2, we have,

T

(
δ∗

ε

√
h

)2

(τ̂LS,T − τ 0)
d−→

(
δ∗

ε

)2

arg max
u∈(−τ0,1−τ0)

[
σB̃ (u)

]2

=

(
δ∗

ε

)2

arg max
u∈(−τ0,1−τ0)

[
B̃ (u)

]2

,

which leads to the result in Part (a) of Theorem 4.2 immediately.

(b) We first prove that, when ε→ 0, τ̂LS,T
p−→ τ 0. Let

Vk (Zt) =

√
k (T − k)

T 2

(
Z
∗
k − Zk

)
=

√
k (T − k)

T 2

(
1

T − k

T∑
t=k+1

Zt −
1

k

k∑
t=1

Zt

)
.

In the following we only consider the case k ≤ k0 because of the symmetry. We assume

without loss of generality that δ∗/ε > 0 (otherwise consider the series −Zt). We then
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have

E [Vk (Zt)] =
√
τ (1− τ)

(
T − k0

T − k

(
µ+

δ∗

ε

)√
h+

k0 − k
T − k µ

√
h− µ

√
h

)
=

√
τ (1− τ)

T − k0

T − k
δ∗

ε

√
h =

√
τ (1− τ)

1− τ 0

1− τ
δ∗

ε

√
h > 0,

where τ = k/T . Hence,

E [Vk0 (Zt)]− E [Vk (Zt)]

=
√
τ 0 (1− τ 0)

δ∗

ε

√
h−

√
τ (1− τ)

1− τ 0

1− τ
δ∗

ε

√
h

= (1− τ 0)
δ∗

ε

√
h

( √
τ 0√

1− τ 0

−
√
τ√

1− τ

)
= (1− τ 0)

δ∗

ε

√
h

(
τ 0

1− τ 0

− τ

1− τ

)( √
τ 0√

1− τ 0

+

√
τ√

1− τ

)−1

=
τ 0 − τ
1− τ

δ∗

ε

√
h

( √
τ 0√

1− τ 0

+

√
τ√

1− τ

)−1

≥ |τ − τ 0|
δ∗

ε

√
h

(
2

√
τ 0√

1− τ 0

)−1

,

where the last inequality comes from the fact that 1 − τ < 1, and τ/ (1− τ) is an

increasing function over the interval of (0, τ 0). Note that

|Vk (Zt)| − |Vk0 (Zt)|
= |Vk (Zt)− E [Vk (Zt)] + E [Vk (Zt)]| − |Vk0 (Zt)− E [Vk0 (Zt)] + E [Vk0 (Zt)]|
≤ |Vk (Zt)− E [Vk (Zt)]|+ |E [Vk (Zt)]| − {|Vk0 (Zt)− E [Vk0 (Zt)]| − |E [Vk0 (Zt)]|}
= |Vk (Zt)− E [Vk (Zt)]| − |Vk0 (Zt)− E [Vk0 (Zt)]|+ E [Vk (Zt)]− E [Vk0 (Zt)] .

We then have

|τ̂LS,T − τ 0|
δ∗

ε

√
h

(
2

√
τ 0√

1− τ 0

)−1

≤
∣∣∣Vk̂LS,T (Zt)− E

[
Vk̂LS,T (Zt)

]∣∣∣− |Vk0 (Zt)− E [Vk0 (Zt)]| −
{∣∣∣Vk̂LS,T (Zt)

∣∣∣− |Vk0 (Zt)|
}

≤
∣∣∣Vk̂LS,T (Zt)− E

[
Vk̂LS,T (Zt)

]∣∣∣− |Vk0 (Zt)− E [Vk0 (Zt)]|

= Op

(
1/
√
T
)
,

where the second inequality is due to k̂LS,T = arg max
{

[Vk (Zt)]
2}, and the third equal-
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ity comes from the fact that for any 1 ≤ k < T,

Vk (Zt)− E [Vk (Zt)] =

√
k (T − k)

T 2

(
1

T − k

T∑
t=k+1

εt −
1

k

k∑
t=1

εt

)

=
1√
T

(√
k

T

1√
T − k

T∑
t=k+1

εt −
√
T − k
T

1√
k

k∑
t=1

εt

)

=
1√
T
Op (1) .

Therefore, when ε→ 0,

|τ̂LS,T − τ 0| ≤ 2

√
τ 0√

1− τ 0

(
δ∗

ε

√
h

)−1

Op

(
1√
T

)
= 2

√
τ 0√

1− τ 0

ε

δ∗
Op (1)→ 0.

Then, following the procedure in the proof of Proposition 3 in Bai (1994), it can

be proved that τ̂LS,T − τ 0 = Op

(√
T δ∗

ε

√
h
)−2

, when h→ 0 and ε→ 0 simultaneously

with the condition of (δ∗/ε)
√
h → 0. Finally, following the procedure in the proof

of Theorem 1 in Bai (1994), the limiting distribution in Part (b) of Theorem 4.2 is

obtained. The details of these two steps are omitted for simplicity.
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