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Abstract

We consider the problem of allocating sets of objects to agents and collecting pay-
ments. Each agent has a preference relation over the set of pairs consisting of a set of
objects and a payment. Preferences are not necessarily quasi-linear. Non-quasi-linear
preferences describe environments where the wealth effect is non-negligible: the payment
level changes agents’ willingness to pay for swapping sets. We investigate the existence
of efficient and strategy-proof rules. A preference relation is unit-demand if given a pay-
ment level, for each set of objects, the most preferred one in the set is at least as good as
the set itself; it is multi-demand if given a payment level, when an agent receives an ob-
ject, receiving some additional object(s) makes him better off. We show that if a domain
contains enough variety of unit-demand preferences and at least one multi-demand pref-
erence relation, and if there are more agents than objects, then no rule satisfies efficiency,
strategy-proofness, individual rationality, and no subsidy for losers on the domain.
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1 Introduction

We consider an object assignment problem with money. Each agent receives a (possibly empty)
set of objects and, possibly, pays money for the set. He has a preference relation over the set
of pairs consisting of a set of objects and a payment. An allocation specifies how the objects
are allocated and how much each agent pays. An (allocation) rule is a mapping from a class of
admissible preference profiles, which we call a “domain,” to the set of allocations. An allocation
is efficient if, without reducing the total payment, no other allocation makes all agents at least
as well off and at least one agent better off. A rule is efficient if it always selects an efficient
allocation. A rule is strategy-proof if, for each agent, it is a weakly dominant strategy to report
his true preferences. We investigate the existence of efficient and strategy-proof rules.

Our model can be viewed as a multi-object auction model. Much of the literature on
auction theory assumes preferences to be “quasi-linear.” This means that the valuations over
sets of objects are not affected by payment level. On the quasi-linear domain, the so-called
“VCG rules” (Vickrey, 1961; Clarke, 1971; Groves, 1973) are efficient and strategy-proof, and
they are the only rules satisfying these properties (Holmstöm, 1979).

As Marshall (1920) demonstrates, preferences are approximately quasi-linear if payments
are sufficiently low. However, in important applications of auction theory such as spectrum
license allocation, house allocation, etc., prices are often equal to or exceed agents’ annual rev-
enues. Excessive payments for objects may impair an agent’s ability to purchase complements
for an effective use of the objects, and thus may influence the benefit the agent derives from the
objects. Another reason why preferences may not be quasi-linear is that an agent may need a
loan to be able to pay high prices, and typically financial costs are nonlinear in borrowing.1,2

Another common assumption is the “unit-demand” property.3 It says that given a pay-
ment level, for each set of objects, the most preferred one in the set is at least as good as
the set itself. For unit-demand preferences, there exists the minimum Walrasian equilibrium
price, which is lower than any other Walrasian equilibrium price. Thus, on the “unit-demand
domain,” minimum price Walrasian (MPW) rules are well-defined. A minimum price Wal-
rasian (MPW ) rule always selects an allocation associated with the minimum price Walrasian
equilibria for each preference profile. The MPW rules are strategy-proof on the unit-demand
domain (Demange and Gale, 1985). It is straightforward to see that the MPW rules satisfy
the following additional two properties: One is individual rationality, which says that each
agent finds his assignment at least as desirable as getting no object and paying nothing. The
other is no subsidy for losers, which says that the payment of an agent who receives no object
is nonnegative. On the unit-demand domain, when there are more agents than objects, the
MPW rules are the only rules satisfying efficiency, strategy-proofness, individual rationality,
and no subsidy for losers (Morimoto and Serizawa, 2015).4

Although the unit-demand assumption is suitable in some important cases such as house
allocation, etc., in many other cases, some agents may well wish to receive more than one

1 See Saitoh and Serizawa (2008) for numerical examples.
2 Ausubel and Milgrom (2002) also discuss the importance of the analysis under non-quasi-linear preferences.

Also see Sakai (2008) and Baisa (2013) for more examples of non-quasi-linear preferences.
3 For example, see Andersson and Svensson (2014), Andersson et al. (2015), and Tierney (2015).
4Note that the unit-demand domain contains non-quasilinear preferences, and thus the Hölmstrom (1979)

result does not apply
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object, and indeed, many authors have analyzed such situations.5

Now, a natural question arises. On a domain that is neither quasi-linear nor unit-demand,
do efficient and strategy-proof rules exist? This is the question we address. To state our result,
we need an additional property of preferences. A preference relation satisfies the multi-demand
property if given a payment level, when an agent receives an object, receiving some additional
object(s) makes him better off. We show that when there are more agents than objects, on any
domain that contains enough variety of unit-demand preferences and at least one multi-demand
preference relation, no rule satisfies efficiency, strategy-proofness, individual rationality, and
no subsidy for losers. In most impossibility results in the literature on strategy-proofness, the
incompatibility of a list of properties of rules is established on the fixed domain.6 On the other
hand, our result is more general in the sense that the incompatibility of our properties holds
on any domain containing enough variety of unit-demand preferences and some multi-demand
preferences.

This article is organized as follows. In Section 2, we introduce the model and basic def-
initions. In Section 3, we introduce the unit-demand model and the richness condition. In
Section 4, we define the minimum price Walrasian rule. In Section 5, we state our result and
show the sketch of the proof. Section 6 concludes. All the proofs appear in the Appendix.

2 The model and definitions

There are n ≥ 2 agents and m ≥ 2 objects. We denote the set of agents by N ≡ {1, . . . , n} and
the set of objects by M ≡ {1, . . . ,m}. Let M be the power set of M . With abuse of notation,
for each a ∈ M , we may write a to mean {a}. Each agent receives a subset of M and pays
some amount of money. Thus, the agents’ common consumption set is M×R and a generic
(consumption) bundle for agent i is a pair zi = (Ai, ti) ∈ M× R. Let 0 ≡ (∅, 0).

Each agent i has a complete and transitive preference relation Ri over M×R. Let Pi and
Ii be the strict and indifference relations associated with Ri. A typical class of preferences is
denoted by R. We call Rn a domain. The following are standard conditions of preferences.

Money monotonicity: For each Ai ∈ M and each pair ti, t
′
i ∈ R with ti < t′i, (Ai, ti) Pi

(Ai, t
′
i).

First object monotonicity: For each ({a}, ti) ∈ M× R, ({a}, ti) Pi (∅, ti).
Possibility of compensation: For each (Ai, ti) ∈ M × R and each A′

i ∈ M, there are
t′i, t

′′
i ∈ R such that (Ai, ti) Ri (A

′
i, t

′
i) and (A′

i, t
′′
i ) Ri (Ai, ti).

Continuity: For each zi ∈ M× R, the upper contour set at zi, UCi(zi) ≡ {z′i ∈ M× R :
z′i Ri zi}, and the lower contour set at zi, LCi(zi) ≡ {z′i ∈ M × R : zi Ri z

′
i}, are both

closed.

Free disposal: For each (Ai, ti) ∈ M×R and each A′
i ∈ M with A′

i ⊆ Ai, (Ai, ti) Ri (A
′
i, ti).

Definition 1 A preference relation is classical if it satisfies money monotonicity, first object
monotonicity, possibility of compensation, and continuity.

5 For example, see Gul and Stacchetti (1999, 2000), Bikhchandani and Ostroy (2002), Papai (2003), Ausubel
(2004, 2006), Mishra and Parkes (2007), de Vries et al (2007), and Sun and Yang (2006, 2009, 2014).

6 For example, Gibbard (1973), Satterthwaite (1975), etc.
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Let RC be the class of classical preferences. We call (RC)n the classical domain. Let RC
+

be a class of classical preferences satisfying free disposal. Obviously, RC
+ ⊊ RC .

Lemma 1 holds for classical preferences. The proof is relegated to the Appendix.

Lemma 1 Let Ri ∈ RC, zi ∈ M× R, and A′
i ∈ M. There is t∗i ∈ R such that zi Ii (A

′
i, t

∗
i ).

For each Ri ∈ RC , each zi ∈ M × R, and each Ai ∈ M, let Vi(Ai; zi) ∈ R be such that
(Ai, Vi(Ai; zi)) Ii zi. Call Vi(Ai; zi) the valuation of Ai at zi for Ri. By continuity, for each
Ri ∈ RC , each (Ai, ti) ∈ M× R, and each A′

i ∈ M, Vi(Ai; (Ai, ti)) is continuous with respect
to ti. By money monotonicity, for each Ri ∈ RC and each pair (Ai, ti), (A

′
i, t

′
i) ∈ M × R,

(Ai, ti)Ri (A
′
i, t

′
i) if and only if Vi(A

′
i; (Ai, ti)) ≤ t′i.

Definition 2 A preference relation Ri ∈ RC is quasi-linear if for each pair (Ai, ti), (A
′
i, t

′
i) ∈

M× R and each t′′i ∈ R, (Ai, ti) Ii (A
′
i, t

′
i) implies (Ai, ti + t′′i ) Ii (A

′
i, t

′
i + t′′i ).

Let RQ be the class of quasi-linear preferences. We call (RQ)n the quasi-linear domain.
Obviously, RQ ⊊ RC .

Remark 1 Let Ri ∈ RQ. Then,
(i) there is a valuation function vi : M → R+ such that vi(∅) = 0, and for each pair
(Ai, ti), (A

′
i, t

′
i) ∈ M× R, (Ai, ti)Ri (A

′
i, t

′
i) if and only if vi(A

′
i)− t′i ≤ vi(Ai)− ti, and

(ii) for each (Ai, ti) ∈ M× R and each A′
i ∈ M, Vi(A

′
i; (Ai, ti))− ti = vi(A

′
i)− vi(Ai).

Now we define important classes of preferences. The following property formalizes the
notion that given a payment level, an agent desires to consume at most one object.

Definition 3 A preference relation Ri ∈ RC satisfies the unit-demand property if for each
(Ai, ti) ∈ M× R with |Ai| > 1, there is a ∈ Ai such that (a, ti) Ri (Ai, ti).

7,8

The condition means that given a payment level, for each set of objects, the most preferred
one in the set is at least as good as the set itself. Note that it is possible that when an agent
with a unit-demand preferences receives an object and his payment is fixed, an additional
object makes him better off. However, this occurs only when he prefers the additional object
to the original one. Figure 1 illustrates a unit-demand preference relation.

***** FIGURE 1 (Unit-demand preference relation) ENTERS HERE *****

LetRU be the class of unit-demand preferences. We call (RU)n the unit-demand domain.
Obviously, RU ⊊ RC .

We also consider a property that formalizes the notion that given a payment level, an agent
desires to consume several objects.

Definition 4 A preference relation Ri ∈ RC satisfies the multi-demand property if for each
({a}, ti) ∈ M× R, there is Ai ∈ M such that a ∈ Ai and (Ai, ti) Pi ({a}, ti).

7 Given a set X, |X| denotes the cardinality of X.
8 Gul and Stacchetti (1999) define the unit-demand property for quasi-linear preferences. In their model,

a preference relation Ri ∈ RQ satisfies the unit-demand property if for each Ai ∈ M with |Ai| > 1, vi(Ai) =
maxa∈Ai vi(a).
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The condition says that given a payment level, when an agent receives an object, receiving
some additional object(s) makes him better off. Note that given a payment level, even if an
agent with a multi-demand preferences receives a set consisting of several objects, he may find
it indifferent to each object in the set. Figure 2 illustrates a multi-demand preference relation.

***** FIGURE 2 (Multi-demand preference relation) ENTERS HERE *****

Let RM be the class of multi-demand preferences. We call (RM)n the multi-demand
domain. The following are examples of preferences satisfying the multi-demand property.

Example 1: k-object-demand preferences. Given k ∈ {1, . . . ,m}, a preference relation Ri ∈ RC

satisfies the k-object-demand property if (i) for each (Ai, ti) ∈ M × R with |Ai| < k, and
each a ∈ M \ Ai, (Ai ∪ {a}, ti) Pi (Ai, ti), and (ii) for each (Ai, ti) ∈ M × R with |Ai| ≥ k,
there is A′

i ⊆ Ai with |A′
i| = k such that (A′

i, ti) Ii (Ai, ti).
9 Clearly, for each k ∈ {2, . . . ,m},

preferences satisfying the k-object-demand property satisfy the multi-demand property.

Example 2: Substitutes and complements. Suppose that the set of objects are divided into two
non-empty sets K and L, and agent i with a preference relation Ri views objects a and b as
substitutes if both a and b are in the same set, and as complements if a and b are in different
sets. For example, objects in K can be pens and objects in L can be notebooks. Formally, Ri

satisfies the following property: For each Ai ∈ M with |Ai| > 1 and each ti ∈ R, if Ai ⊆ K
or Ai ⊆ L, then there is a ∈ Ai such that (Ai, ti) Ii (a, ti), and otherwise, for each a ∈ Ai,
(Ai, ti) Pi (a, ti). Clearly, this preference relation Ri satisfies the multi-demand property.

Example 3: Object monotonic preferences with capacity. Consider the following situation:
Cars are assigned to agents. Each agent owns a garage where he can park at most three cars,
and if he has more than three cars, he needs to park some of them at outside the garage
with some amount of fee. Then, an agent may have the following preferences Ri: for each
(Ai, ti) ∈ M×R and each a ∈ M \Ai, if |Ai| ≤ 2, then (Ai∪{a}, ti) Pi (Ai, ti), and otherwise,
(Ai, ti) Pi (Ai ∪ {a}, ti). This preference relation satisfies the multi-demand property.

Some preferences in RC violate both of the unit-demand property and the multi-demand
property.

Example 4: (Figure 3.) A preference relation violating the unit-demand property and the multi-
demand property. Let Ri ∈ RC be such that for each a ∈ M and each ti ∈ R, Vi(a; (∅, ti)) =
ti + 5, and for each Ai ∈ M with |Ai| > 1, and each ti ∈ R,

Vi(Ai; (∅, ti)) =

{
ti + 5 if ti ≥ −5,
1
2
(ti + 5) otherwise.

Then, for each pair a, b ∈ M and each ti ∈ R with ti < −5, Vi({a, b}; (∅, ti)) = 1
2
(ti + 5) >

ti + 5 = Vi(a; (∅, ti)) = Vi(b; (∅, ti)), and thus, we have ({a, b}, ti + 5) Pi (a, ti + 5) Ii (b, ti + 5).
Thus, Ri does not satisfy the unit-demand property. Moreover, for each a ∈ M , each Ai ∈ M
with a ∈ Ai, and each ti ∈ R with ti ≥ −5, Vi(Ai; (∅, ti)) = ti + 5 = Vi(a; (∅, ti)), and thus, we
have (Ai, ti + 5) Ii (a, ti + 5). Thus, Ri does not satisfy the multi-demand property.

9 In Gul and Stacchetti (1999), this notion is called k−satiation
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***** FIGURE 3 (Ri in Example 4) ENTERS HERE *****

An object allocation is an n-tuple A ≡ (A1, · · · , An) ∈ Mn such that Ai∩Aj = ∅ for each
i, j ∈ N with i ̸= j. We denote the set of object allocations by A. A (feasible) allocation is
an n-tuple z ≡ (z1, . . . , zn) ≡ ((A1, t1), . . . , (An, tn)) ∈ (M× R)n such that (A1, . . . , An) ∈ A.
We denote the set of feasible allocations by Z. Given z ∈ Z, we denote the object allocation
and the agents’ payments at z by A ≡ (A1, . . . , An) and t ≡ (t1 . . . , tn), respectively, and we
also write z = (A, t).

A preference profile is an n-tuple R ≡ (R1, · · ·Rn) ∈ Rn. Given R ∈ Rn and i ∈ N , let
R−i ≡ (Rj)j ̸=i.

An allocation rule, or simply a rule on Rn is a function f : Rn → Z. Given a rule f and
R ∈ Rn, we denote the bundle assigned to agent i by fi(R) and we write fi(R) = (Ai(R), ti(R)).

Now, we introduce standard properties of rules. The efficiency notion here takes the plan-
ner’s preferences into account and assume that he is only interested in his revenue. Formally,
an allocation z ≡ ((Ai, ti))i∈N ∈ Z is (Pareto-)efficient for R ∈ Rn if there is no feasi-
ble allocation z′ ≡ ((A′

i, t
′
i))i∈N ∈ Z such that (i) for each i ∈ N, z′iRi zi, (ii) for some j ∈

N, z′j Pi zj, and (iii)
∑

i∈N t′i ≥
∑

i∈N ti.
The first property states that for each preference profile, a rule chooses an efficient alloca-

tion.

Efficiency: For each R ∈ Rn, f(R) is efficient for R.

Remark 2 By money monotonicity and Lemma 1, the efficiency of allocation z is equivalent
to the property that there is no allocation z′ ≡ ((A′

i, t
′
i))i∈N ∈ Z such that

(i′) for each i ∈ N , z′i Ii zi, and (ii′)
∑

i∈N t′i >
∑

i∈N ti.

The second property states that no agent benefits from misrepresenting his preferences.

Strategy-proofness: For each R ∈ Rn, each i ∈ N , and each R′
i ∈ R, fi(R)Ri fi(R

′
i, R−i).

The third property states that an agent is never assigned a bundle that makes him worse
off than he would be if he had received no object and paid nothing.

Individual rationality: For each R ∈ Rn and each i ∈ N , fi(R) Ri 0.

The fourth property states that the payment of each agent is always nonnegative.

No subsidy: For each R ∈ Rn and each i ∈ N , ti(R) ≥ 0.

The final property is a weaker variant of the fourth: If an agent receives no object, his
payment is nonnegative.

No subsidy for losers: For each R ∈ Rn and each i ∈ N , if Ai(R) = ∅, ti(R) ≥ 0.

3 Unit-demand model and rich domains

In our model, potentially each agent can receive several objects. However, some authors study
a model in which no agent can receive more than one object owing to some reason, say by
regulations, or by physical reasons.10 We call this model the unit-demand model, and refer

10 For example, Alkan and Gale (1990), Demange and Gale (1985), etc.
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our model as the multi-demand model. Some important results are established in the unit-
demand model, and they are related to our main result. Some of such results continue to
hold in the multi-demand model when preferences are unit-demand, and others continue to
hold only when domains include enough variety of unit-demand preferences. In this section,
we introduce “richness” of domains in our model, which guarantees that a domain of the
multi-demand model includes enough variety of unit-demand preferences.

In the unit-demand model, preferences are defined over M ∪ {0} × R, where 0 means not
receiving any object in M and is called null object. To distinguish classes of preferences in
the multi-demand model and those in the unit-demand model, we denote a typical class of
preferences in the unit-demand model by R.

Money monotonicity, first object monotonicity, possibility of compensation, and continuity
are defined in the unit-demand model in the same manner as defined in our model. Thus, in
the unit-demand model, classical preferences are defined in the same manner.

Definition 5 A preference relation Ri over M ∪ {0} × R is classical if it satisfies money
monotonicity, first object monotonicity, possibility of compensation, and continuity.

Let RC be the class of classical preferences in the unit-demand model.
In the unit-demand model, a feasible allocation is an n-tuple z = ((xi, ti))i∈N ∈ (M ∪{0}×

R)n such that for each pair i, j ∈ N , xi = xj implies xi = xj = 0. As we mentioned, in the
unit-demand model, no agent can receive more than one object. Other notions such as rules,
properties of rules, etc., are defined in the same manner as defined in the multi-demand model.

To define the richness, we introduce the following notions, which connect preferences in the
multi-demand model to those in the unit-demand model.

Definition 6 A preference relation Ri in the multi-demand model induces a preference rela-
tion R′

i over M ∪ {0} × R if for each pair (a, ti), (b, t
′
i) ∈ M ∪ {0} × R, (a, ti) R′

i (b, t
′
i) if and

only if (Ai, ti) Ri (A
′
i, t

′
i), where

Ai =

{
{a} if a ∈ M,

∅ if a = 0,
and A′

i =

{
{b} if b ∈ M,

∅ if b = 0,

Definition 7 A class of preferences R in the multi-demand model induces a class of prefer-
ences R over M ∪ {0} ×R if (i) for each R′

i ∈ R, there is Ri ∈ R that induces R′
i, and (ii) for

each Ri ∈ R, there is R′
i ∈ R that is induced by Ri.

Remark 3 Each of RU , RU
+, and RU \ RU

+ indiduces RC .

Now, we introduce the richness of domain, which guarantees that a domain of the multi-
demand model includes enough variety of unit-demand preferences so that they induce the
class of classical preferences in the unit-demand model.

Definition 8 A class of preferences R is rich if R ∩ RU induces RC .

By Remark 3, RU , RU
+, and RU \ RU

+ are rich.
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4 Minimum price Walrasian rules

In this section we define the minimum price Walrasian rules and state several facts related to
them.

Let p ≡ (p1, . . . , pM) ∈ Rm
+ be a price vector. The budget set at p is defined as B(p) ≡

{(Ai, ti) ∈ M×R : ti =
∑

a∈Ai
pa}. Given Ri ∈ R, the demand set at p for Ri is defined as

D(Ri, p) ≡ {zi ∈ B(p) : for each z′i ∈ B(p), zi Ri z
′
i}.

Lemma 2 Let Ri ∈ RU and p ∈ Rm
+ . (i) Suppose p ∈ Rm

++. Then, for each (Ai, ti) ∈ D(Ri, p),
|Ai| ≤ 1. (ii) Let Ai ∈ M be such that (Ai,

∑
a∈Ai

pa) Ri (A
′
i,
∑

a∈A′
i
pa) for each A′

i ∈ M with

|A′
i| ≤ 1. Then, (Ai,

∑
a∈Ai

pa) ∈ D(Ri, p).

Definition 9 Let R ∈ Rn. A pair ((A, t), p) ∈ Z × Rm
+ is a Walrasian equilibrium (WE)

for R if

W-i: for each i ∈ N , (Ai, ti) ∈ D(Ri, p), and

W-ii: for each a ∈ M, if a /∈ Ai for each i ∈ N, then, pa = 0.

Condition W-i says that each agent receives a bundle that he demands. Condition W-ii
says that an object’s price is zero if it is not assigned to anyone. Given R ∈ Rn, let W (R) and
P (R) be the sets of Walrasian equilibria and prices for R, respectively.

Lemma 3 Let R ∈ (RU)n and p ∈ P (R). (i) If n > m, then pa > 0 for each a ∈ M . (ii)
There is ((A, t), p) ∈ W (R) such that |Ai| ≤ 1 for each i ∈ N .

Let R ∈ (RU)n and R′ be preference profiles of the multi-demand and unit-demand models
respectively such that for each i ∈ N , R′

i is induced by Ri. For each p ∈ P (R), by (ii) of
Lemma 3, there is an allocation (({ai}, ti))i∈N such that ((({ai}, ti))i∈N , p) ∈ W (R), and thus,
(((ai, ti))i∈N , p) is a WE for R′. On the other hand, for each p ∈ RM

+ , if p is a WE price vector
for R′, then there is an allocation ((ai, ti))i∈N such that (((ai, ti))i∈N , p) is a WE for R′, and
thus by (ii) of Lemma 2, ((({ai}, ti))i∈N , p) ∈ W (R). Therefore, the set of WE price vectors
for R coincides with the set of WE price vectors for R′.

In the unit-demand model, several results on Walrasian equilibrium are established. By the
preceding argument, the same results continue to hold in our model for preferences satisfying
the unit-demand property.

Fact 1 (Alkan and Gale, 1990) 11, 12 For each R ∈ (RU)n, a Walrasian equilibrium for R
exists.

Fact 2 (Demange and Gale, 1985) For each R ∈ (RU)n, there is a unique minimum Wal-
rasian equilibrium price vector, i.e., a vector p ∈ P (R) such that for each p′ ∈ P (R), p ≤ p′.13

11 Precisely, Alkan and Gale (1990) show the non-emptiness of the core in a two-sided matching model.
However, the two-sided model includes the unit-demand model, and in the unit-demand model, non-emptiness
of the core is equivalent to the existence of a Walrasian equilibrium.

12 Fact 1 is also shown by other authors. See, for example, Quinzi (1984), Gale (1984).
13 For each p, p′ ∈ Rm, p ≤ p′ if and only if for each i ∈ {1, . . . ,m}, pi ≤ p′i.
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A minimum price Walrasian equilibrium (MPWE) is a Walrasian equilibrium whose
price is minimum. Given R ∈ Rn, let pmin(R) be the minimum Walrasian equilibrium
price for R, and ZW

min(R) be the set of Walrasian equilibrium allocations associated
with pmin(R). Although there might be several minimum price Walrasian equilibria, they are
indifferent for each agent, i.e., for each R ∈ Rn, each pair z, z′ ∈ ZW

min(R), and each i ∈ N ,
zi Ii z

′
i.

Definition 10 A rule f on Rn is a minimum price Walrasian (MPW) rule if for each
R ∈ Rn, f(R) ∈ ZW

min(R).

It is easy to show that the MPW rules on (RU)n satisfy efficiency, individual rationality,
and no subsidy. Demange and Gale (1985) show that the MPW rules are strategy-proof on the
classical domain in the unit-demand model. Our arguments above allow us to convert each
MPWE allocation in the unit-demand model into an MPWE for a unit-demand profile in the
multi-demand model. Moreover, all the minimum price Walrasian equilibria are indifferent for
each agent. Thus, the result by Demange and Gale (1985) implies that for each rich class of
preferences R ⊆ RU , the MPW rules on Rn also satisfy strategy-proofness in multi-demand
model.

Morimoto and Serizawa (2015) shows that in the unit-demand model, when n > m , only
the MPW rules satisfy efficiency, strategy-proofness, individual rationality, and no subsidy for
losers on (RC)n. The following lemma states that in the multi-demand model, when n > m,
efficient rules never assign more than one object to agents whose preferences satisfy the unit-
demand property.

Lemma 4 (Single object assignment) Let n > m. Let R ⊆ RC and f be an efficient rule
on Rn. Let R ∈ Rn and i ∈ N . If Ri ∈ RU , |Ai(R)| ≤ 1.

By Lemma 4, when n > m, for each rich class of preferences R ⊆ RU , and each rule on
Rn satisfying efficiency, it always assigns each agent at most one object. Thus, when n > m,
for each R ⊆ RU that is rich, and each rule on Rn satisfying efficiency, strategy-proofness,
individual rationality, and no subsidy for losers, there is a corresponding rule in the unit-
demand model, and moreover, it is easy to see that the corresponding rule also satisfies the
four properties. Thus, the result by Morimoto and Serizawa (2016) continues to hold in our
model.

Fact 3 (Demange and Gale, 1985 for (i); Morimoto and Serizawa, 2015 for (ii)) Let
R ⊆ RU . (i) The minimum price Walrasian rules on Rn satisfy efficiency, strategy-proofness,
individual rationality and no subsidy. (ii) Let n > m, and R be rich. Then, the minimum price
Walrasian rules are the only rules on Rn satisfying efficiency, strategy-proofness, individual
rationality and no subsidy for losers.

5 Main result

In this section, first we state the main theorem. Next, we explain how we prove the theorem.
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5.1 Impossibility result

We consider rich domains containing some multi-demand preferences and we investigate whether
efficient and strategy-proof rules still exist on such domains. In marked contrast to Fact 3 in
Section 3, the results are negative. Namely, if there are more agents than objects, and if the
domain is rich and contains even a single multi-demand preference relation, then no rule on the
domain satisfies efficiency, strategy-proofness, individual rationality and no subsidy for losers.

Theorem Let n > m. Let R0 ∈ RM and R be a rich class of preferences such that R0 ∈ R.
Then, no rule on Rn satisfies efficiency, strategy-proofness, individual rationality and no sub-
sidy for losers.

Corollary 1 Let n > m. Let R = RU ∪ RM . Then, no rule on Rn satisfies efficiency,
strategy-proofness, individual rationality and no subsidy for losers.

Remark 4 The Corollary 1 is a standard form of impossibility results on strategy-proofness
in that since Gibbard (1973) and Satterthwaite (1975), many impossibility results on strategy-
proofness in this form are established. In such results, the domain is fixed and incompatibility
of some properties of rules is established on this domain. The results of this form cannot be
applied unless all the preferences in the fixed domain are deemed plausible. For example, the
Corollary 1 cannot be applied unless all the preferences in RM in addition to RU are deemed
plausible. On the other hand, our Theorem can be applied as soon as in addition to a rich
domain R, just one preference relation R0 arbitrarily chosen from RM is deemed plausible.
Accordingly our Theorem can be applied to more variety of environments than Corollary 1. For
example, consider an environment where n = 40 , m = 20 and there are only the preferences
satisfying k-object-demand property for k ∈ {1, 2, 3, 4, 5}. The Theorem can be applied to this
environment, but the Corollary 1 cannot be.

By Remark 3, we also have the following corollaries. These corollaries demonstrate the
wide applicability of our results even more. In this paper, we do not maintain free disposal.
However, it is a standard assumption for preferences. Corollary 2 states that our conclusion
holds even if free disposal is assumed.

Corollary 2 Let n > m. Let R0 ∈ RM and R be such that R = RU
+ ∪ {R0}. Then, no rule

on Rn satisfies efficiency, strategy-proofness, individual rationality and no subsidy for losers.

As Example 3 illustrates, free disposal is not a suitable assumption in some environment.
Corollary 3 states that our conclusion holds even in such environment.

Corollary 3 Let n > m. Let R0 ∈ RM and R be such that R = (RU \ RU
+) ∪ {R0}. Then,

no rule on Rn satisfies efficiency, strategy-proofness, individual rationality and no subsidy for
losers.

Remark 5 In this paper, we assume that preferences are drawn from a common class of R.
If the preferences of each agent are drawn from a class Ri that depends on the identity of the
agent, our theorem can be strengthened as follows: Suppose that, for each i ∈ N , Ri is rich,
and there are j ∈ N and Rj ∈ RM such that Rj ∈ Rj. Then, when n > m, no rule on

∏
i∈N Ri

satisfies efficiency, strategy-proofness, individual rationality and no subsidy for losers.
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5.2 Sketch of the proof

5.2.1 Preliminary results

We state seven lemmas which we use in the sketch of the proof and in the formal proof. The
proof of each lemma is relegated to the Appendix, or is omitted if it is straightforward.

Let R ⊆ RC be rich. Let f be a rule on Rn satisfying efficiency, strategy-proofness,
individual rationality and no subsidy for losers. Lemma 5 states that if an agent receives no
object, then his payment is zero. This is immediate from individual rationality and no subsidy
for losers. Thus we omit the proof.

Lemma 5 (Zero payment for losers) Let R ∈ Rn and i ∈ N . If Ai(R) = ∅, ti(R) = 0.

Lemma 6 states that for each agent, his payment is at most the valuation, at 0, of the set
of objects that he receives. This is immediate from individual rationality. Thus, we omit the
proof.

Lemma 6 For each R ∈ Rn and each i ∈ N , ti(R) ≤ Vi(Ai(R);0).

Lemma 7 states that each object is assigned to some agent. This follows from efficiency,
n > m, and first object monotonicity. We omit the proof.

Lemma 7 (Full object assignment) Let n > m. For each R ∈ Rn and each a ∈ M , there
is i ∈ N such that a ∈ Ai(R).

Lemma 8 is a necessary condition for efficiency.

Lemma 8 (Necessary condition for efficiency) Let R ∈ Rn and i, j ∈ N with i ̸= j. Let
Ai, Aj ∈ M be such that Ai ∩ Aj = ∅ and Ai ∪ Aj ⊆ Ai(R) ∪ Aj(R). Then, Vi(Ai; fi(R)) +
Vj(Aj; fj(R)) ≤ ti(R) + tj(R).

Although no subsidy for losers itself tells us nothing about payment levels for non-empty
sets of objects, Lemma 9 states that for each non-empty set of object, there is a lower bound
of the payment level for the set.

Lemma 9 (Payment lower bound) Let n > m. Let R ∈ Rn and i ∈ N . Let R′
i ∈ R ∩RU

be such that for each a ∈ M and each ti ∈ R, V ′
i (a; (∅, ti))− ti < minj∈N\{i} Vj(a;0).

14 Then,
ti(R) ≥ V ′

i (Ai(R);0).

By first object monotonicity, Lemma 9 implies that for each R ∈ Rn and each i ∈ N , if
|Ai(R)| = 1, then ti(R) ≥ 0.

Lemma 10 states that f coincides with an MPW rule on (R ∩ RU)n. This is immediate
from Fact 3 (ii). Thus we omit the proof.

Lemma 10 Let n > m. For each R ∈ (R∩RU)n, f(R) ∈ ZW
min(R).

14 Notice that in each class of preferences satisfying the richness, there exists such a preference relation.
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Given i ∈ N and R−i ∈ Rn−1, we define the option set of agent i for R−i by

oi(R−i) ≡ {zi ∈ M× R : ∃Ri ∈ R s.t. fi(Ri, R−i) = zi}.

Lemma 11 states that (i) the option set does not contain more than one bundle with the same
set of objects, and (ii) each agent receives one of the most preferred bundles in his option set.
This is straightforward from strategy-proofness. Thus, we omit the proof.

Lemma 11 Let i ∈ N and R−i ∈ Rn. (i) For each pair (Ai, ti), (A
′
i, t

′
i) ∈ oi(R−i), if Ai = A′

i,
then ti = t′i. (ii) For each Ri ∈ R and each zi ∈ oi(R−i), fi(Ri, R−i) Ri zi.

5.2.2 Two-agent and three-object example

Since the proof of the Theorem is very complicated, we relegate it to the Appendix. Here we
demonstrate the ideas and techniques of the proof by applying them to a particular example in
a three-agent and two-object setting. Let M = {a, b} and N = {1, 2, 3}. In the formal proof,
the preference relation R0 is an arbitrary element of RM , but here we pick R0 from RQ ∩RM .
For concreteness, let

v0(a) = 20, v0(a) = 18 and v0({a, b}) = 40.

However, the idea of our proof does not depend on R0 ∈ RQ. We assume R0 ∈ RQ only for
simplicity of expression.

Let R ⊆ RC satisfy the richness and contain R0. For example, let R ⊇ RU ∪ {R0}.
We suppose that there is a rule f on R3 satisfying efficiency, strategy-proofness, individual
rationality and no subsidy for losers, and derive a contradiction.

Step A: Constructing a preference profile.

Let R1 = R0. We construct R2 ∈ RU and R3 ∈ RU depending on R1 so that a contradiction
is derived. We define R2 satisfying V2(a;0) > v1({a, b}) and

V2(b;0)− V2(∅; (b, 0)) < min{v1({a, b})− v1(a), v1({a, b})− v1(b)}.15

15 In this sketch, we assume that M = {a, b} and R0 ∈ RQ for the simplicity of expression. For a general
multi-demand preference relation R0, the RHS of the first inequality is set as the maximal difference between
various t1 in [0, V1({a, b};0)] and the valuation of empty set at ({a, b}, t1) for R1, i.e.,

max
t1∈[0,V1({a,b};0)]

{t1 − V1(∅; ({a, b}, t1))}.

For a general set M , the RHS is defined as t1 in the Appendix.
For a general multi-demand preference relation R0, the RHS of the second inequality is set as the minimum

value of the marginal valuations of the second object, i.e.,

min{ min
t1∈[0,V1({a};0)]

V1({a, b}; (a, t1))− t1, min
t1∈[0,V1({b};0)]

V1({a, b}; (b, t1))− t1}.

For a general set M of objects, the RHS of the second inequality is defined as t1 in the Appendix.
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For example, let R2 ∈ RU be such that for each A2 ∈ M \ {∅},

V2(A2;0) =


41 if A2 = {a},
12 if A2 = {b},
41 if A2 = {a, b},

V2(A2; (∅,−1)) =


9 if A2 = {a},
10 if A2 = {b},
10 if A2 = {a, b},

V2(A2, (∅,−2)) =


−1 if A2 = {a},
9 if A2 = {b},
9 if A2 = {a, b},

V2(A2; (∅,−3)) =


−2 if A2 = {a},
0 if A2 = {b},
0 if A2 = {a, b}.

We define R3 satisfying R3 ∈ RU ∩RQ, and

v3(a) = v3(b) <
3

5
min{v1({a, b})− v1(a), v1({a, b})− v1(b)}.

For example, let v3(a) = v3(b) = 9. Note that V2(a;0) > v3({a, b}). Let R ≡ (R1, R2, R3).
Figure 4 illustrates R.

***** FIGURE 4 (R = (R1, R2, R3)) ENTERS HERE *****

■
Step B: A2(R) ̸= ∅.

Suppose by contradiction that A2(R) = ∅. By Lemma 5, f2(R) = 0. By Lemma 7, there is
i ̸= 2 such that a ∈ Ai(R).

Let Ai = ∅ and A2 = {a}. Note that Ai ∩ A2 = ∅ and Ai ∪ A2 ⊆ Ai(R) ∪ A2(R). If
i = 1, then V1(∅; f1(R)) ≥ t1(R) − 40. If i = 3, then V3(∅; f3(R)) = t3(R) − 9. Thus,
Vi(∅; fi(R)) ≥ ti(R)− 40. Since V2(a;0) = 41,

Vi(Ai; fi(R)) + V2(A2; f2(R)) = Vi(∅; fi(R)) + V2(a;0) (by f2(R) = 0)

≥ ti(R)− 40 + 41

> ti(R) + t2(R). (by t2(R) = 0)

Thus, by Lemma 8, efficiency is violated, a contradiction. ■
Step C: A1(R) = a.

Substep C-1: (a, 9) ∈ o1(R−1).

Let R′
1 ∈ RU be such that

V ′
1(a;0) > max{V2(a;0), V3(a;0)} and V ′

1(b;0) < min{V2(b;0), V2(b;0)}.

For example, let R′
1 ∈ RU be such that

V ′
1(a;0) = 50, V ′

1(b;0) = 1 and V ′
1({a, b};0) = 50.

Since (R′
1, R−1) ∈ (RU)3, by Lemma 10, f(R′

1, R−1) ∈ ZW
min(R

′
1, R−1). Let z ∈ Z be such that

z1 = (a, 9), z2 = (b, 9) and z3 = 0.
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Figure 5 illustrates (R′
1, R−1) and z.

***** FIGURE 5 ((R′
1, R−1) and z in Step C) ENTERS HERE *****

Let p ≡ (9, 9). Then, D(R′
1, p) = {{a}}, D(R2, p) = {{b}}, and D(R3, p) = {∅, {a}, {b}}.

Thus (z, p) ∈ W (R′
1, R−1), implying pmin(R

′
1, R−1) ≤ p. If pamin(R

′
1, R−1) < 9 or pbmin(R

′
1, R−1) <

9, then 0 /∈ D(R′
1, pmin(R

′
1, R−1)) and for each i ∈ {2, 3}, 0 /∈ D(Ri, pmin(R

′
1, R−1)), which im-

plies pmin(R
′
1, R−1) /∈ P (R′

1, R−1), a contradiction. Thus, pmin(R
′
1, R−1) = (9, 9). Moreover,

z is the only WE allocation supported by pmin(R
′
1, R−1). Thus, f1(R

′
1, R−1) = z, and hence,

f1(R
′
1, R−1) = (a, 9) ∈ o1(R−1).

Substep C-2: (b, 10) ∈ o1(R−1).

Let R′′
1 ∈ RU be such that

V ′′
1 (b;0) > max{V2(b;0), V3(b;0)} and V ′′

1 (a;0) < min{V2(a;0), V2(a;0)}.

For example, let R′′
1 ∈ RU be such that

V ′′
1 (a;0) = 1, V ′′

1 (b;0) = 50 and V ′′
1 ({a, b};0) = 50.

Since (R′′
1, R−1) ∈ (RU)3, by Lemma 10, f(R′′

1, R−1) ∈ ZW
min(R

′′
1, R−1). Let z

′ ∈ Z be such that

z′1 = (b, 10), z′2 = (a, 9), and z′3 = 0.

Figure 6 illustrates (R′′
1, R−1) and z′.

***** FIGURE 6 ((R′′
1, R−1) and z′ in Step C) ENTERS HERE *****

Let p′ ≡ (9, 10). Then, D(R′′
1, p

′) = {{b}}, D(R2, p
′) = {{a}, {b}}, and D(R3, p

′) =
{∅, {a}}. Thus (z′, p′) ∈ W (R′′

1, R−1), implying pmin(R
′′
1, R−1) ≤ p′. If pamin(R

′′
1, R−1) < 9, then

0 /∈ D(R′′
1, pmin(R

′′
1, R−1)) and for each i ∈ {2, 3}, 0 /∈ D(Ri, pmin(R

′′
1, R−1)), which implies

pmin(R
′′
1, R−1) /∈ P (R′′

1, R−1), a contradiction. Thus, pamin(R
′′
1, R−1) = 9. If pbmin(R

′′
1, R−1) < 10,

then we have D(R′′
1, pmin(R

′′
1, R−1)) = {{b}} and D(R2, pmin(R

′′
1, R−1)) = {{b}}, which further

implies pmin(R
′′
1, R−1) /∈ P (R′′

1, R−1), a contradiction. Thus, pmin(R
′′
1, R−1) = (9, 10). Moreover,

z′ is the only WE allocation which is supported by pmin(R
′′
1, R−1). Thus, f(R

′′
1, R−1) = z′, and

hence, f1(R
′′
1, R−1) = (b, 10) ∈ o1(R−1).

Substep C-3: A1(R) = a.

Since A2(R) ̸= ∅ by Step B, |A1(R)| ≤ 1. If A1(R) = ∅, then by Lemma 5, we have f1(R) =
0, and thus, f1(R

′
1, R−1) P1 f1(R), which contradicts strategy-proofness. Thus, A1(R) = a or

b, and therefore, by (i) of Lemma 11, f1(R) = (a, 9) or (b, 10). Since (a, 9) P1 (b, 10), (ii) of
Lemma 11 implies f1(R) = (a, 9). ■
Step D: f(R) is not efficient for R.

By A2(R) ̸= ∅ and A1(R) = a, A2(R) = b. By Lemma 6, t2(R) ≤ V2(b;0) = 12. By
Lemma 9, t2(R) ≥ 0.

Let z ≡ ((Ai, ti))i∈N ∈ Z be such that

z1 = ({a, b}, 29), z2 = (∅,−3), and z3 = f3(R).
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Figure 7 illustrates z.

***** FIGURE 7 (z in Step D) ENTERS HERE *****

Since, V1({a, b}; f1(R)) = V1({a, b}; (a, 9)) = 29, it is easy to see that z1 I1 f1(R) and
z3 I3 f3(R). Also by t2(R) ≥ 0 and A2(R) = b, z2 = (∅,−3) I2 (b, 0) R2 f2(R). Moreover, by
t1(R) = 9 and t2(R) ≤ 12,∑

i∈N

ti = 29− 3 + t3(R) = 26 + t3(R) >
∑
i∈M

ti(R),

implying that f(R) is not efficient for R, a contradiction. ■

We emphasize the difference between a (direct) proof of the Corollary 1 that one might
write, and the proof of the Theorem that we have shown. To prove the Corollary 1 directly, we
can freely pick preference profiles in RU ∪ RM to derive a contradiction. On the other hand,
in the proof of the Theorem, we may only choose preferences from RU ∪ {R0}. Moreover,
the preference relation R0, which could be anything in RM , forces us to construct profiles
depending on R0, further complicating the process. In the above sketch, R0 ∈ RM is assumed
to be quasi-linear, but the basic logic of the sketch works even in the case R0 ∈ RM\RQ.

In the formal proof in the Appendix, we have six steps. Steps A, B, C, and D correspond
to Steps 1, 3, 4, and 6, respectively, in the formal proof. Steps 2 and 5 in the formal proof are
necessary only for the more general case, so they do not appear in the above sketch.

6 Concluding remarks

In this article, we have considered an object assignment problem with money where each
agent can receive more than one object. We focused on domains that contain enough variety
of unit-demand preferences and some multi-demand preferences. We studied allocation rules
satisfying efficiency, strategy-proofness, individual rationality, and no subsidy for losers, and
showed that if the domain contains enough variety of unit-demand preferences and at least
one multi-demand preference relation, and if there are more agents than objects, then no rule
satisfies the four properties. As discussed in Section 1, we have been motivated by the search
for efficient and strategy-proof rules on a domain which is not quasi-linear or unit-demand.
Our result establishes the difficulty of designing efficient and strategy-proof rules on such a
domain. We state three remarks on our result.

Maximal domain. Some literature on strategy-proofness investigates the existence of maximal
domains on which there are rules satisfying desirable properties.16 A domain Rn is a maximal
domain for a list of properties of rules if there is a rule on Rn satisfying the properties, and for
each R′ ⊋ R, no rule on (R′)n satisfies the properties. Our result is rather closer to maximal
domain results than impossibility results of the form of the Corollary 1. However, our result
does not imply that the unit-demand domain is a maximal domain for the four properties in

16 For example, see Ching and Serizawa (1998), Berga and Serizawa (2000), Massó and Neme (2001), Ehlers
(2002), etc.
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the Theorem, since we add only multi-demand preferences to the rich domains and derive the
non-existence of rules satisfying the four properties. In fact, what domains including (RU)n

are maximal domains for the four properties is an open question.
However, we are sure that (RU)n is not a maximal domain for the four properties. For

example, consider Ri in Example 4 and let R ≡ RU ∪ {Ri}. Since Ri does not satisfy the
unit-demand property, R ⊋ RU . Note that for each Rj ∈ R, each Aj ∈ M with |Aj| > 1
and each tj ∈ R, if tj ≥ 0, then there is a ∈ Aj such that (a, tj) Ij (Aj, tj). Thus, since each
agent never pays negative amount of money under the minimum price Walrasian rules, and
since they satisfy the four properties on the unit-demand domain, they also satisfy the four
properties on Rn. Hence, (RU)n is not a maximal domain for the four properties.

Although we do not find maximal domains for the four properties, the multi-demand class
includes most of natural preferences outside the unit-demand class. Thus, our result implies
that on most of natural domains including the unit-demand domain, if there are more agents
than objects, we have an impossibility of designing rules satisfying the four properties.

Other properties. Efficiency is not the only property studied in the literature on auction theory.
For example, some authors study strategy-proof and individually rational rules that achieve
as much revenue as possible. Since efficiency takes the auctioneer’s revenue into account,
efficiency is closely related to maximizing the auctioneer’s revenue, However, there may exist
strategy-proof and individually rational rules that is not efficient but achieve as much revenue
as possible.17

While efficiency takes the auctioneer’s revenue into account, some authors study another
efficiency notion that takes only agents’ preferences into account.18 An allocation is efficient
with no deficit if (i) the sum of payments is nonnegative, and (ii) no other allocation with
nonnegative sum of payments makes each agent at least as well off and at least one agent
better off. Notice that efficiency is implied by efficiency with no deficit.19 Thus, the Theorem
holds even if we replace efficiency by efficiency with no deficit.

Identical objects. Some literature on object assignment problems also study the case in which
the objects are identical.20 In this paper, we do not make this assumption. When objects are
not identical, the domain includes a greater variety of preference profiles than when objects
are identical. This variety plays an important role in our proof. Therefore, our theorem does
not exclude the possibility that when objects are identical, multi-demand preferences can be
added to the unit-demand domain without preventing the existence of rules satisfying the four
properties.

17 For the single object case with quasi-linear preferences, Myerson type rules are not necessarily efficient
but maximize the auctioneer’s revenue. See Myerson (1981).

18 For example, see Sprumont (2013).
19 Let R ≡ (Ri)i∈N be a preference profile. Suppose there is an allocation z ≡ ((Ai, ti))i∈N that is efficiency

with no deficit for R but not efficient for R. Then, there is an allocation z′ ≡ ((A′
i, t

′
i))i∈N such that

for each i ∈ N, z′i Ri zi, for some j ∈ N, z′j Pj zj , and
∑
i∈N

t′i ≥
∑
i∈N

ti.

By condition (i) of efficiency with no deficit, we have
∑

i∈N ti ≥ 0. Thus,
∑

i∈N t′i ≥ 0. However, this implies
that z is not efficient with no deficit for R, a contradiction.

20 For example, see Saitoh and Serizawa (2008), Ashlagi and Serizawa (2012), Adachi (2014), etc.
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Appendix: Proofs

A Proofs of Lemmas

Proof of Lemma 1: Since Ri is complete, transitive, and continuous, there is a continuous
utility function ui : M × R → R representing Ri. By possibility of compensation, there are
t′i ∈ R and t′′i ∈ R such that (A′

i, t
′
i) Ri zi Ri (A

′
i, t

′′
i ), that is, ui(A

′
i, t

′
i) ≥ ui(zi) ≥ ui(A

′
i, t

′′
i ). If

we have either (A′
i, t

′
i) Ii zi or zi Ii (A

′
i, t

′′
i ), then we are done. Thus, suppose (A′

i, t
′
i) Pi zi and

zi Pi (A
′
i, t

′′
i ), that is, ui(A

′
i, t

′
i) > ui(zi) > ui(A

′
i, t

′′
i ).

Since ui is continuous, ui(A
′
i, ·) is continuous in R. Moreover, by money monotonicity,

t′i < t′′i . Since [t′i, t
′′
i ] is a closed interval, intermediate value theorem implies that there is

t∗i ∈ (t′i, t
′′
i ) such that ui(A

′
i, t

∗
i ) = ui(zi), that is (A

′
i, t

∗
i ) Ii zi. 2

Proof of (i) of Lemma 2: Suppose that there is (Ai, ti) ∈ D(Ri, p) such that |Ai| > 1. By
Ri ∈ RU , there is a ∈ Ai such that (a, ti) Ri (Ai, ti). By (Ai, ti) ∈ B(p), ti =

∑
b∈Ai

pb. By

p ∈ Rm
++ and |Ai| > 1, pa <

∑
b∈Ai

pb = ti. Thus, by money monotonicity,

(a, pa) Pi (a, ti) Ri (Ai, ti),

which contradicts (Ai, ti) ∈ D(Ri, p). 2

Proof of (ii) of Lemma 2: Let A′
i ∈ M. If |A′

i| ≤ 1, then by the def. of Ai, (Ai,
∑

a∈Ai
pa) Ri

(A′
i,
∑

a∈A′
i
pa). Suppose |A′

i| > 1. By Ri ∈ RU , there is a ∈ A′
i such that (a, pa) Ri

(Ai,
∑

b∈A′
i
pb). By pa ≥ 0 and by money monotonicity, (a, pa) Ri (a,

∑
b∈A′

i
pb) Ri (A

′
i,
∑

b∈A′
i
pb).

Thus, by the def. of Ai,

(Ai,
∑
b∈Ai

pb) Ri (a, p
a) Ri (A

′
i,
∑
b∈A′

i

pb).

Thus, (Ai,
∑

b∈Ai
pb) ∈ D(Ri, p). 2

Proof of (i) of Lemma 3: By contradiction, suppose that n > m and pa = 0 for some a ∈ M .
Then, by money monotonicity, for each i ∈ N , (a, pa) Pi 0. Thus, for each i ∈ N , 0 /∈ D(Ri, p),
which implies that for each ((A, t), p) ∈ W (R), Ai ̸= ∅. However, this contradicts n > m. 2

Proof of (ii) of Lemma 3: By p ∈ P (R), there is (A, t) ∈ Z such that ((A, t), p) ∈ W (R).
Let N∗ = {i ∈ N : |Ai| > 1} and i ∈ N∗. By Ri ∈ RU , there is a ∈ Ai such that

(a, ti) Ri (Ai, ti). By (Ai, ti) ∈ B(p), ti =
∑

b∈Ai
pb. By p ∈ Rm

+ , p
a ≤

∑
b∈Ai

pb = ti. Thus, by
money monotonicity, (a, pa) Ri (a, ti) Ri (Ai, ti), which implies (a, pa) ∈ D(Ri, p). Hence, for
each i ∈ N∗, there is ai ∈ Ai such that (ai, p

ai) ∈ D(Ri, p).
Let z′ ∈ Z be such that for each i ∈ N∗, z′i = (ai, p

ai), and for each i ∈ N \N∗, z′i = (Ai, ti).
Then, each agent receives at most one object at z′, and clearly, (z′, p) ∈ W (R). 2

Proof of Lemma 4: Suppose by contradiction that Ri ∈ RU and |Ai(R)| > 1. Then, there is
a ∈ Ai(R) such that (a, ti(R)) Ri fi(R). By |Ai(R)| > 1, there is b ∈ Ai(R) such that b ̸= a.
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By n > m, there is j ∈ N \ {i} such that Aj(R) = ∅. Let z ≡ ((Ak, tk))k∈N ∈ Z be such
that

zi = (a, ti(R)),

zj = (b, tj(R)), and

zk = fk(R) for each k ∈ N \ {i, j}.

Clearly,
∑

k∈N tk =
∑

k∈N tk(R), and for each k ∈ \{i, j}, zk Ik fk(R). Moreover, zi =
(a, ti(R)) Ri fi(R), and by first object monotonicity, zj = (b, tj(R)) Pj fj(R). This contradicts
efficiency. 2

Proof of Lemma 8: Suppose by contradiction that Vi(Ai; fi(R))+Vj(Aj; fj(R)) > ti(R)+tj(R).
Let z′ ∈ Z be such that z′i = (Ai, Vi(Ai; fi(R))), z′j = (Aj, Vj(Aj; fj(R))), and for each k ∈ N \
{i, j}, z′k = fk(R). Then z′k Ik fk(R) for each k ∈ N . Moreover, Vi(Ai; fi(R))+Vj(Aj; fj(R))+∑

k ̸=i,j tk(R) >
∑

k∈N tk(R). By Remark 2, this contradicts efficiency. 2

Proof of Lemma 9: (Figure 8.) Suppose by contradiction that ti(R) < V ′
i (Ai(R);0). If Ai(R) =

∅, then ti(R) < V ′
i (∅;0) = 0, which contradicts no subsidy for losers. Hence, Ai(R) ̸= ∅.

Next, we show Ai(R
′
i, R−i) ̸= ∅. Suppose not. Then, by Lemma 5, fi(R

′
i, R−i) = 0. By

ti(R) < V ′
i (Ai(R);0), fi(R) P ′

i 0 = fi(R
′
i, R−i), which contradicts strategy-proofness. Hence

Ai(R
′
i, R−i) ̸= ∅.

By R′
i ∈ RU , Ai(R

′
i, R−i) ̸= ∅, and Lemma 4 , there is a ∈ M such that Ai(R

′
i, R−i) = a.

Since n > m and Ai(R
′
i, R−i) ̸= ∅, there is j ∈ N \{i} such that Aj(R

′
i, R−i) = ∅. By Lemma 5,

fj(R
′
i, R−i) = 0. Thus, letting si ≡ V ′

i (∅; fi(R′
i, R−i)),

V ′
i (∅; fi(R′

i, R−i)) + Vj(a; fj(R
′
i, R−i))

= si + Vj(a;0) (by si = V ′
i (∅; fi(R′

i, R−i)) and fj(R
′
i, R−i) = 0)

= ti(R
′
i, R−i)− (ti(R

′
i, R−i)− si) + Vj(a;0)

= ti(R
′
i, R−i)− (V ′

i (a; (∅, si))− si) + Vj(a;0) (by V ′
i (a; (∅, si)) = ti(R

′
i, R−i))

> ti(R
′
i, R−i) (by V ′

i (a; (∅, si))− si < Vj(a;0))

= ti(R
′
i, R−i) + tj(R

′
i, R−i). (by tj(R

′
i, R−i) = 0)

This contradicts Lemma 8. 2

***** FIGURE 8 (Illustration of proof of Lemma 9)) ENTERS HERE *****

B Proof of Theorem

The proof of the Theorem has six steps.

Step 1: Constructing preferences.

Let R1 ≡ R0. For each a ∈ M , let Ma ≡ {A1 ∈ M : a ∈ A1}.
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Claim 1: There is t1 ∈ R such that t1 > 0 and

t1 = min
a∈M

min
t1∈[0,V1({a};0)]

max
A1∈Ma

{V1(A1; (a, t1))− t1}.

Proof: For each a ∈ M , let ga be a function on Ma ×R such that for each A1 ∈ Ma and each
t1 ∈ R, ga(A1, t1) = V1(A1; (a, t1)) − t1, and let gamax be a function on R such that for each
t1 ∈ R, gamax(t1) = maxA1∈Ma g

a(A1, t1).
Note that for each a ∈ M , and each A1 ∈ Ma, ga(A1, ·) is continuous in R. Thus,

Berge’s maximum theorem implies that for each a ∈ M , gamax(·) is also continuous in R.21
For each a ∈ M , since [0, V1(a;0)] is compact, there is t̂a1 ∈ [0, V1(a;0)] such that gamax(t̂

a
1) =

mint1∈[0,V1(a;0)] g
a
max(t1). For each a ∈ M , let ta1 ≡ gamax(t̂

a
1). Since M is finite, min{ta1 : a ∈ M}

exists. Let t1 ≡ min{ta1 : a ∈ M}. Then,

t1 = min
a∈M

min
t1∈[0,V1(a;0)]

max
A1∈Ma

{V1(A1; (a, t1))− t1}.

Next, we show t1 > 0. Let a ∈ M be such that t1 = maxA1∈Ma{V1(A1; (a, t̂
a
1)) − t̂a1}. By

R1 ∈ RM , there is Â1 ∈ Ma such that (Â1, t̂
a
1) P1 (a, t̂

a
1), that is, V1(Â1; (a, t̂

a
1))− t̂a1 > 0. Thus,

t1 = max
A1∈Ma

{V1(A1; (a, t̂
a
1))− t̂a1} ≥ V1(Â1; (a, t̂

a
1))− t̂a1 > 0.

2

By Claim 1, there is d∗ ∈ R++ such that 5(m−1)d∗ < t1 and for each a ∈ M , (a, 3d∗) P1 0.
Let a∗ ∈ M be such that for each a ∈ M \{a∗}, (a∗, 3d∗) R1 (a, 3d∗). Without loss of generality,
assume a∗ = 1.

Since R is rich, there is R′
1 ∈ R ∩ RU such that for each a ∈ M and each t1 ∈ R,

V ′
1(a; (∅, t1)) = d∗

2
+ t1. Let

s∗1 ≡ min{0, min
A1∈M\{∅}

V ′
1(A1;0)}, and

M(R1, s
∗
1) ≡ {A1 ∈ M \ {∅} : V1(A1;0) ≥ s∗1}.

Note that by first object monotonicity, M(R1, s
∗
1) ̸= ∅.

Claim 2: There is t1 ∈ R such that t1 ≥ t1 and

t1 = max
A1∈M(R1,s∗1)

max
t1∈[s∗1,V1(A;0)]

{t1 − V1(∅; (A1, t1))}.

Proof: For each A1 ∈ M(R1, s
∗
1), let gA1 be a function on R such that for each t1 ∈ R,

gA1(t1) = t1 − V1(∅; (A1, t1)). Note that for each A1 ∈ M(R1, s
∗
1), g

A1 is continuous in R.
For each A1 ∈ M(R1, s

∗
1), since [s∗1, V1(A1;0)] is compact, there is t̂A1

1 ∈ [s∗1, V1(A1;0)] such

that gA1(t̂A1
1 ) = maxt1∈[s∗1,V1(A1;0)] g

A1(t1). For each A1 ∈ M(R1, s
∗
1), let t

A1 = gA1(t̂A1
1 ). Since

M(R1, s
∗
1) is finite, max{tA1 : A1 ∈ M(R1, s

∗
1)} exists. Let t1 ≡ max{tA1 : A1 ∈ M(R1, s

∗
1)}.

21 See Berge (1963).
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Then,
t1 = max

A1∈M(R1,s∗1)
max

t1∈[s∗1,V1(A;0)]
{t1 − V1(∅; (A1, t1))}.

Next, we show t1 ≥ t1. Let a ∈ M , t1 ∈ [0, V1(a;0)] and A1 ∈ Ma be such that t1 =
V1(A1; (a, t1))− t1. Let t̂1 ≡ V1(A1; (a, t1)). Since V1(∅; (A1, t̂1)) = V1(∅; (a, t1)) and since first
object monotonicity implies t1 − V1(∅; (a, t1)) > 0,

t̂1 − V1(∅; (A1, t̂1)) = V1(A1; (a, t1))− t1 + t1 − V1(∅; (a, t1))
> V1(A1; (a, t1))− t1.

By t1 ≤ V1(a;0), t̂1 ≤ V1(A1;0). By t1 ≥ 0, t1 > 0, and s∗1 ≤ 0, t̂1 = t1 + t1 > 0 ≥ s∗1.
Thus, s∗1 ≤ t̂1 ≤ V1(A1;0). This implies A1 ∈ M(R1, s

∗
1), and thus,

t1 = max
A′

1∈M\{∅}
max

t′1∈[0,V1(A′
1;0)]

{t′1 − V1(∅; (A′
1, t

′
1))}

≥ t̂1 − V1(∅; (A1, t̂1))

≥ V1(A1; (a, t1))− t1 = t1.

2

Let d∗ ∈ R++ be such that d∗ > t1. Note that by Claim 2, 5(m−1)d∗ < t1 ≤ t1 < d∗. Since
R is rich, for each i ∈ {2, . . . ,m}, there is Ri ∈ R ∩RU satisfying the following conditions:

Vi(a;0) =


d∗ if a = i− 1,

4d∗ if a = i,

d∗ otherwise,

(ia)

Vi(∅; (i, 0)) = −d∗, and (ib)

for each a ∈ M \ {i}, Vi(a; (i, 3d∗)) < 0. (ic)

Since R is rich, for each i ∈ N \ {1, . . . ,m}, there is Ri ∈ R ∩ RU such that for each a ∈ M
and each ti ∈ R,

Vi(a; (∅, ti)) = 3d∗ + ti.

Denote R ≡ (R1, . . . , Rn). Figure 9 illustrates Ri and Rj, where i ∈ {2, . . . ,m} and j ∈
{m+ 1, . . . , n}.

***** FIGURE 9 (Illustrations of Ri (i ∈ {2, . . . ,m}) and Rj (j ∈ {m+ 1, . . . ,m}).)
ENTERS HERE *****

Notice that for each a ∈ M and each t1 ∈ R,

V ′
1(a; (∅, t1))− t1 =

d∗
2

< min
i∈N\{1}

Vi(a;0).

Thus, by Lemma 9, t1(R) ≥ V ′
1(A1(R);0) ≥ s∗1. ■

Step 2: For each i ∈ {2, . . . ,m}, Vi(∅; fi(R)) ≥ −d∗.

20



Let i ∈ {2, . . . ,m}. If Ai(R) = ∅, then by Lemma 5, Vi(∅; fi(R)) = ti(R) = 0 > −d∗.
Suppose Ai(R) ̸= ∅. By Ri ∈ RU and Lemma 4, there is a ∈ M such that Ai(R) = a. Thus,
Lemma 9 implies ti(R) ≥ 0.

If a = i, then by money monotonicity, (i, 0) Rj fj(R), and thus, by ib, Vi(∅; fi(R)) ≥
Vi(∅; (i, 0)) = −d∗. If a ̸= i, then by ic,

Vi(a; (i, 0)) < Vi(a; (i, 3d∗)) < 0 ≤ ti(R),

which implies (i, 0) Pi fi(R), and thus, by ib Vi(∅; fi(R)) > Vi(∅; (i, 0)) = −d∗. ■

Step 3: For each i ∈ {2, . . . ,m}, Ai(R) ̸= ∅.

Suppose by contradiction that there is an agent i ∈ {2, . . . ,m} such that Ai(R) = ∅. By
Lemma 5, ti(R) = 0. By Lemma 7, there is an agent j ∈ N \ {i} such that i− 1 ∈ Aj(R). We
show the following claim.

Claim 1: tj(R)− Vj(∅; fj(R)) < d∗.

Proof: We have three cases.

Case 1: j = 1. By Lemma 6 and Lemma 9, s∗1 ≤ t1(R) ≤ V1(A1(R);0), implying A1(R) ∈
M(R1, s

∗
1). Thus, by the def. of t1,

t1(R)− V1(∅; f1(R)) ≤ t1 < d∗.

Case 2: j ∈ {2, . . . ,m}. By Rj ∈ RU and Lemma 4, Aj(R) = i − 1. By Lemma 6, tj(R) ≤
Vj(i− 1;0). Since j − 1 ̸= i− 1, Vj(i− 1;0) = 4d∗ or d∗. Thus, Vj(i− 1;0) ≤ 4d∗. Moreover,
by Step 2, Vj(∅; fj(R)) ≥ −d∗. Therefore, by 5d∗ < 5(m− 1)d∗ < d∗,

tj(R)− Vj(∅; fj(R)) ≤ Vj(i− 1;0) + d∗ ≤ 5d∗ < d∗.

Case 3: j ∈ {m+1, . . . , n}. By Rj ∈ RU and Lemma 4, Aj(R) = i− 1. Let t∗j ≡ Vj(∅; fj(R)).
By the def. of Rj and 3d∗ < 5(m− 1)d∗ < d∗,

tj(R)− Vj(∅; fj(R)) = Vj(i− 1; (∅, t∗j))− t∗j = 3d∗ < d∗.

2

By fi(R) = 0, Vi(i− 1; fi(R)) = Vi(i− 1;0) = d∗. Thus, by Claim 1,

Vi(i− 1; fi(R)) + Vj(∅; fj(R)) > d∗ + tj(R)− d∗ = ti(R) + tj(R).

This contradicts Lemma 8. ■

Step 4: A1(R) = 1.

First we show the following claim.
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Claim 1: For each a ∈ M , there is t1(a) ∈ R such that (a, t1(a)) ∈ o1(R−1) and

t(a)

{
≤ 3d∗ if a = 1,

> 3d∗ otherwise.

Proof: Let a ∈ M . Since R is rich, there is R′′
1 ∈ R ∩RU such that

V ′′
1 (a;0) > max

i∈N
Vi(a;0), (1a′′)

for each b ∈ M \ {a}, V ′′
1 (b;0) < min

i∈N
Vi(b;0), and (1b′′)

for each b ∈ M \ {a}, V ′′
1 (b; (a, 3d∗)) < 0. (1c′′)

Figure 10 illustrates R′′
1.

***** FIGURE 10 (Illustration of R′′
1) ENTERS HERE *****

By (R′′
1, R−1) ∈ (RU)n and Lemma 10, f(R′′

1, R−1) ∈ ZW
min(R

′′
1, R−1). Let p ≡ pmin(R

′′
1, R−1).

By (R′′
1, R−1) ∈ (RU)n and Lemma 4, for each i ∈ N , |Ai(R

′′
1, R−1)| ≤ 1. In the following three

paragraphs, we show (a, pa) ∈ o1(R−1).
First, suppose A1(R

′′
1, R−1) = ∅. By Lemma 5, f1(R

′′
1, R−1) = 0. By A1(R

′′
1, R−1) = ∅

and Lemma 7, there is an agent i ∈ N \ {1} such that Ai(R
′′
1, R−1) = a. Since f(R′′

1, R−1) ∈
ZW

min(R
′′
1, R−1), ti(R

′′
1, R−1) = pa. By Lemma 6, pa = ti(R

′′
i , R−i) ≤ Vi(a;0). Since f(R

′′
1, R−1) ∈

ZW
min(R

′′
1, R−1), f1(R

′′
1, R−1) = 0 ∈ D(R′′

1, p), and thus, 0 R′′
1 (a, pa). Therefore,

V ′′
1 (a;0) ≤ pa ≤ Vi(a;0).

This contradicts 1a′′. Hence, A1(R
′′
1, R−1) ̸= ∅.

Next, suppose that for some b ∈ M\{a}, A1(R
′′
1, R−1) = b. Since f(R′′

1, R−1) ∈ ZW
min(R

′′
1, R−1),

t1(R
′′
1, R−1) = pb. By Lemma 6, pb = t1(R

′′
1, R−1) ≤ V ′′

1 (b;0). By A1(R
′′
1, R−1) ̸= ∅ and n > m,

there is an agent i ∈ N \ {1} such that Ai(R
′′
1, R−1) = ∅. By Lemma 5, fi(R

′′
1, R−1) = 0. Since

f(R′′
1, R−1) ∈ ZW

min(R
′′
1, R−1), fi(R

′′
1, R−1) = 0 ∈ D(Ri, p), and thus, 0 Ri (b, p

b). Therefore,

Vi(b;0) ≤ pb ≤ V ′′
1 (b;0).

This contradicts 1b′′. Thus for each b ∈ M \ {a}, A1(R
′′
1, R−1) ̸= b.

By A1(R
′′
1, R−1) ̸= ∅, A1(R

′′
1, R−1) ̸= b for each b ∈ M \ {a}, and |A1(R

′′
1, R−1)| ≤ 1, we

conclude that A1(R
′′
1, R−1) = a. Since f(R′′

1, R−1) ∈ ZW
min(R

′′
1, R−1), t1(R

′′
1, R−1) = pa. Hence,

(a, pa) ∈ o1(R−1).
Next, we show that pa ≤ 3d∗ if a = 1, and pa > 3d∗ otherwise.

Case 1: a = 1. Let z ∈ Z be such that for each i ∈ N ,

zi =

{
(i, 3d∗) if i ∈ {1, . . . ,m}
0 otherwise.

Let p̂ ∈ Rm
+ be such that for each b ∈ M , p̂b = 3d∗. We show that z1 ∈ D(R′′

1, p̂), and
for each i ∈ N \ {1}, zi ∈ D(Ri, p̂). This implies that (z, p̂) ∈ W (R′′

1, R−1), and thus, by
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p = pmin(R
′′
1, R−1), we conclude that p1 ≤ p̂1 = 3d∗.

Note that by p̂ ∈ Rm
++ and (i) of Lemma 2, for each (A1, t1) ∈ D(R′′

1, p̂), |A1| ≤ 1, and for
each i ∈ N \ {1} and each (Ai, ti) ∈ D(Ri, p̂), |Ai| ≤ 1.

Let i ∈ N . We have three subcases.

Subcase 1-1: i = 1. By 1c′′ and p̂ ∈ Rm
++, for each b ∈ M \ {1},

V ′′
1 (b; (1, p̂

1)) = V ′′
1 (b; (1, 3d∗)) < 0 < p̂b.

Thus for each b ∈ M \ {1}, (1, p̂1) P ′
1 (b, p̂b). Also by 1c′′ and first object monotonicity,

V ′′
1 (∅; (1; p̂1)) = V ′′

1 (∅; (1, 3d∗)) < 0, which implies (1, p̂1) P ′
1 0. Thus, z1 = (1, p̂1) ∈ D(R′′

1, p̂).

Subcase 1-2: i ∈ {2, . . . ,m}. By ic and p̂ ∈ Rm
++, for each b ∈ M \ {i},

Vi(b; (i, p
i)) = Vi(b; (i, 3d∗)) < 0 < pb.

Thus, for each b ∈ M \ {i}, (i, p̂i) Pi (b, p̂b). Also by ic and first object monotonicity,
Vi(∅; (i, p̂i)) = Vi(∅; (i, 3d∗)) < 0, which implies (i, p̂i) Pi 0. Thus, zi = (i, p̂i) ∈ D(Ri, p̂).

Subcase 1-3: i ∈ {m + 1, . . . , n}. For each b ∈ M , Vi(b;0) = 3d∗ = p̂b. This implies
0 Ri (b, p̂

b). Thus, zi = 0 ∈ D(Ri, p̂).

Case 2: a ∈ {2 . . . ,m}. Let i = a. Suppose by contradiction that pa ≤ 3d∗. Note that by
n < m and (i) of Lemma 3, p ∈ Rm

++. Thus by (i) of Lemma 2, for each (Ai, ti) ∈ D(Ri, p),
|Ai| ≤ 1. By pa ≤ 3d∗, i = a, ic, and p ∈ Rm

++, for each b ∈ M \ {a},

Vi(b; (a, p
a)) ≤ Vi(b; (i, 3d∗)) < 0 < pb.

Thus for each b ∈ M \ {a}, (a, pa) Pi (b, pb). Also by i = a, pa ≤ 3d∗, ic, and first ob-
ject monotonicity, Vi(∅; (a, pa)) ≤ Vi(∅; (i, 3d∗)) < 0, which implies (a, pa) Pi 0. Therefore,
D(Ri, p) = {(a, pa)}. Since f(R′′

1, R−1) ∈ ZW
min(R

′′
1, R−1), Ai(R

′′
1, R−1) = a. This contradicts

A1(R
′′
1, R−1) = a. 2

Recall that (1, 3d∗) P1 0 and for each a ∈ M \ {1}, (1, 3d∗) R1 (a, 3d∗). By Claim 1 of
Step 4, t(1) ≤ 3d∗ and for each a ∈ M \ {1}, t(a) > 3d∗. Thus,

(1, t(1)) R1 (1, 3d∗) P1 0,

and for each a ∈ M \ {1},

(1, t(1)) R1 (1, 3d∗) R1 (a, 3d∗) P1 (a, t(a)).

Therefore, (ii) of Lemma 11 implies A1(R) ̸= ∅ and for each a ∈ M \{1}, A1(R) ̸= a. By Step 3,
|A1(R)| ≤ 1, because otherwise there exists an agent i ∈ {2, . . . ,m} such that Ai(R) = ∅, which
contradicts Step 3. Hence, A1(R) = 1. ■

Step 5: For each i ∈ {2, . . . ,m}, Ai(R) = i.

We show that for each i ∈ {2, . . . ,m}, Ai(R) ⊆ {i, i−1}. Then, since A1(R) = 1 by Step 4,
we conclude that for each i ∈ {2, . . . ,m}, Ai(R) = i.
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Suppose by contradiction that there is i ∈ {2, . . . ,m} such that Ai(R) ̸⊆ {i − 1, i}. By
Step 3 and Lemma 4, there is a ∈ M \ {i − 1, i} such that Ai(R) = a. By a ∈ M \ {i − 1, i}
and ia, Vi(a;0) = d∗. Thus, by Step 2 and Lemma 6,

Vi(∅; fi(R)) ≥ −d∗ = Vi(a;0)− 2d∗ ≥ ti(R)− 2d∗. (1)

Let j ∈ {m+1, . . . , n}. By Step 3 and Step 4, Aj(R) = ∅, and thus, by Lemma 5, fj(R) = 0.
Thus, by the def. of Rj,

Vj(a; fj(R)) = Vj(a;0) = 3d∗. (2)

Therefore, by (1), (2), and tj(R) = 0,

Vi(∅; fi(R)) + Vj(a; fj(R)) ≥ ti(R)− 2d∗ + 3d∗ > ti(R) = ti(R) + tj(R).

This contradicts Lemma 8. ■

Step 6: Completing the proof.

For each i ∈ {2, . . . ,m}, by Step 2, Vi(∅; fi(R)) ≥ −d∗, by ia, Vi(i;0) = 4d∗, and by
Lemma 6 and Step 5, ti(R) ≤ Vi(Ai(R);0) = Vi(i;0). Thus, for each i ∈ {2, . . . ,m},

Vi(∅; fi(R)) ≥ −d∗ = Vi(i;0)− 5d∗ ≥ ti(R)− 5d∗. (3)

By A1(R) = 1, there is A1 ∈ M such that 1 ∈ A1 and

V1(A1; f1(R))− t1(R) = max
A′

1∈M1

{V1(A
′
1; f1(R))− t1(R)}.

By A1(R) = 1, Lemma 6, and Lemma 9, t1(R) ∈ [0, V1(1;0)]. Thus, by the def. of t1,

V1(A1; f1(R))− t1(R) ≥ t1. (4)

Let N ′ ≡ {i ∈ {2, . . . ,m} : Ai(R) ⊆ A1}. Let z′ ≡ ((A′
i, t

′
i))i∈N ∈ Z be such that

z′1 = (A1, V1(A1; f1(R))),

z′i = (∅, Vi(∅; fi(R))) for each i ∈ N ′, and

z′i = fi(R) for each i ∈ N \ (N ′ ∪ {1}).

Figure 11 is an illustration of z′ when A1 = {1, 2, 3}.

***** FIGURE 11 (Illustration of z′ when A1 = {1, 2, 3}.)) ENTERS HERE *****

Clearly, for each i ∈ N , z′i Ii fi(R). By Step 5 and 1 ∈ A1, |N ′| = |A1| − 1 ≤ m− 1. Thus,
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5|N ′|d∗ ≤ 5(m− 1)d∗ < t1, Therefore, by (3), (4), and 5|N ′|d∗ < t1,∑
i∈N

t′i = V1(A1; f1(R)) +
∑
i∈N ′

Vi(∅; fi(R)) +
∑

i∈N\(N ′∪{1})

ti(R)

≥ t1(R) + t1 +
∑
i∈N ′

(ti(R)− 5d∗) +
∑

i∈N\(N ′∪{1})

ti(R) (by (3) and (4))

= t1 − 5|N ′|d∗ +
∑
i∈N

ti(R)

>
∑
i∈N

ti(R). (by 5|N ′|d∗ < t1)

This contradicts efficiency. ■
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[25] Massó, Jordi and Alejandro Neme (2001), “Maximal domain of preferences in the division
problem.” Games and Economic Behavior, 37, 367–387.

[26] Mishra, Debasis and David C. Parkes (2007), “Ascending price Vickrey auctions for general
valuations.” Journal of Economic Theory, 132, 335–366.

[27] Morimoto, Shuhei and Shigehiro Serizawa (2015), “Strategy-proofness and efficiency with
non-quasi-linear preference: A characterization of minimum price Walrasian rule.” Theo-
retical Economics, 10, 445–487.

[28] Myerson, Roger B. (1981), “Optimal auction design.” Mathematics of Operations Re-
search, 6, 58–73.
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Figure 1: Unit-demand preference relation.
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Figure 2: Multi-demand preference relation.
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