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Abstract

We document that a firm’s research and development (R&D) expenditure de-
pends on its product diversity. Combining with the fact that Chinese manufac-
turers often enter new product markets via technology adoption, we develop a
quantitative framework of innovation and technology adoption, allowing firms
to expand their product scopes. Firms adopt technologies across multiple fields
to expand their knowledge base, which in turn serves as an input for subse-
quent innovation or adoption. Counterfactual analysis from the 2000s reveals
that two-thirds of knowledge privately held by all firms is generated through
adoption, accounting for one-third of aggregate innovation.
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1 Introduction

Endogenous growth theory has emphasized several determinants of innovation capabil-
ity, including innovation experience (Klette and Kortum, 2004), productivity levels (Lu-
cas, 2009; Konig et al., 2016), and competition intensity (Aghion et al., 2005). However, it
overlooks the role of technology adoption in improving innovation capability through the
channel of product expansion.! In reality, firms usually expand into new products so that
different firms produce the same products, even if some are not at the frontier. These firms
benefit from learning by doing in the product expansion process, which further enhances
innovation capacity. In this paper, we extend the innovation workhorse model of Klette
and Kortum (2004) to incorporate technology adoption, the neglected mechanism of which
could have been an important driver of aggregate innovation in China.

Empirical evidence supports this mechanism. After 1978, the Chinese government sys-
tematically reduced technology adoption barriers, which facilitated firms to acquire ad-
vanced technology and expanded the manufacturing sector. This policy shift coincided
with two stylized facts in China’s manufacturing sector during the early 2000s. First, we
find that each product market consists of many firms and there is a large proportion of
multi-product firms in the economy; both witness a rising trend between year 2000 to 2006.
This suggests intensifying market competition and widespread technology diffusion within
each product market, as similar products often share common technological principles and
cater to similar consumer demands. Second, an individual firm’s R&D expenditure relies
on its product diversity. Taken together, both stylized facts provide direct evidence that
product diversity, mainly resulting from technology adoption, enhances innovation capa-
bility.

Tencent in China serves as a good example to further illustrate the important role of
technology adoption. Founded in 1998, Tencent has become a giant with a diverse product
portfolio that spans multiple industries, including internet social networking, digital gam-
ing, media, advertising, and financial technology. Tencent’s products have been widely
regarded as exhibiting imitative characteristics, mirroring the functionalities of established
domestic and foreign predecessors.”? Although the newly adopted products may not be
initially attractive, Tencent’s deep understanding of technology and experience from suc-
cessful products have made the company able to respond swiftly to market demand and
continuously upgrade the products. In 2021, Tencent invested $17.7 billion in research and

!Firms can adopt an existing technology through specific investment and use it for production (and benefit
from it in subsequent innovations) even though they are not its original inventor.

2Additional information regarding Tencent’s technology adoption experience can be found in Appendix
A.



development (R&D), an amount that was even higher than the investments made by the
leading database developer, Oracle, as well as the traditional technology giant, IBM.

Motivated by the stylized facts and the Tencent example, this paper proposes a new
model of innovation and technology adoption through product expansion. In the spirit of
Klette and Kortum (2004), each firm attempts to engage in indirect leapfrogging innovation
to monopolize multiple product markets through Bertrand competition. We extend this
framework by allowing firms to enter new product markets through technology adoption.
Upon successful technology adoption, firms fully internalize the knowledge embedded in
the adopted products and compete with incumbents in the market, through Bertrand com-
petition with capability precommitment.> A firm is composed of different product lines,
each representing a specialized field of knowledge about its technological capability and
market insights. Hence, based on their own knowledge capital stock — the number of
product lines privately held, firms make innovation and adoption decisions. The aggregate
knowledge capital in the economy, measured by the sum of firms’ individual knowledge
capital, in turn, determines the destruction rate and the rate of encountering adoption that
will be applied to all firms. Our model captures rich innovation and adoption dynamics in
reality, and yet remains tractable.

The model highlights a novel mechanism — the knowledge accumulation mechanism, re-
lated to technology adoption and learning by doing, in addition to the well-known nega-
tive profit externality for incumbents. More specifically, firms that adopt new technology
would gain knowledge through production experience.* This learning-by-doing process
fosters private knowledge capital formation for each firm, which in turn contributes to the
aggregate knowledge capital build-up in the economy. Together with aggregate R&D in-
puts, the stock of aggregate knowledge capital — enriched by technology adoption — de-
termines aggregate innovation. In an economy with restricted technology sharing, where
innovators have perfect technology protection, each piece of knowledge capital is exclud-
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able and retained by the only innovator.”> Upon incorporating technology adoption into

this framework, firms can also accumulate knowledge capital through technology adop-

3In a market where innovators and adopters are unable to drive others out of market through price com-
petition, they negotiate and form an oligopolistic structure. Similarly, in the study by Aghion et al. (2005), the
laggard firm negotiates with the technology leader after the full internalization of the advanced technology.

The learning-by-doing process includes experimentation, refinement and science investigation in pro-
duction, and access to real market data (Arrow, 1962). Since most Chinese firms’ technology base originates
from adoption rather than indigenous innovation, the learning-by-doing channel is key for firms to build
innovation capability.

SRomer (1990) considers the knowledge accumulation channel for a representative firm, yet does not ac-
count for assimilating knowledge through technology adoption. Specifically, the accumulation of knowledge

A follows A = §H 4 A, where § denotes a positive parameter and H 4 denotes the rival component of technol-
ogy, such as labor.



tion, which improves the marginal productivity of rival inputs (such as research labor) in
the innovation production. Therefore, given the constant R&D inputs, aggregate R&D out-
put increases with the stock of adopted knowledge.

The Chinese manufacturing sector in the 2000s is ideal for quantifying the effect of tech-
nology adoption on economic growth for several compelling reasons. First, as the largest
developing country, China has heavily relied on technology adoption. Since 1978, the Chi-
nese government has progressively built a comprehensive institutional foundation to sup-
port this process. A key strategy proposed at the national level is the pathway of “introduc-
tion, digestion, absorption, and re-innovation” to develop national science and foster tech-
nology adoption. Second, numerous Chinese firms have risen to industry leaders primarily
through technology adoption. Notable examples include Huawei in telecommunications
infrastructure (Mu and Lee, 2005), Lenovo in computer manufacturing (Sun et al., 2014),
and many others. China’s relatively low R&D intensity and short yet successful history of
industrial modernization imply that technology adoption may explain the huge scale and
rich product diversity of these giants, contributing to our understanding of the growth path
and theoretical modeling.

By incorporating technology adoption, this model features rich market structure dy-
namics, wherein successful innovation yields monopolistic profits, and successful technol-
ogy adoption intensifies competition and reduces innovators’ profitability. Leveraging this
feature and data on profitability, we employ the Simulated Method of Moments (SMM) to
estimate parameters related to technology adoption and innovation efficiencies. The distri-
bution of firm profitability is utilized to identify the underlying market structure distribu-
tion across all product markets. Meanwhile, as low R&D intensity cannot support the long
tail of firm size distribution, it provides another identification for technology adoption. Be-
sides a good fit of targeted moments, our model can fit several untargeted moments, such as

the firm size distribution, and the elasticity of production expansion to the existing product
scope.

In the counterfactual exercise, where the technology adoption channel is shut down,
the results reveal that the average number of active producers per market decreases to
one-third, the total amount of knowledge capital declines by two-thirds, and the aggregate
growth rate declines by one-third. Our quantitative analysis reveals that a lower technol-
ogy adoption cost drives economic growth. This growth arises because the accumulation
in non-rival knowledge capital is quite cheap through technology adoption. Meanwhile,
the negative impact on innovation incentives remains limited, as the adoption process also
needs time to realize.



2 Literature

This paper relates to three strands of literature. First, this paper contributes to our under-
standing of the role of technology adoption in China’s economic growth in 2000s. Konig et
al. (2022) demonstrate that less productive firms have a high growth potential through tech-
nology adoption, which diminishes as these firms become technologically advanced. Jiang
et al. (2024) demonstrate that entrants” stimulus on incumbents” innovation incentives is
contingent upon the extent of technology adoption. Patent data also provide rich empiri-
cal evidence. Chinese firms assimilate knowledge in patents from multi-national firms and
domestic peers, and then gradually innovate independently (Holmes et al., 2015; Ma and
Zhang, 2023; Baslandze et al., 2021). Similar patterns are also well-documented in manage-
ment literature; see, for example, Mu and Lee (2005) and Sun et al. (2014). Compared to
the research above, our paper emphasizes the positive impacts of technology adoption on
firms” innovation capability through product expansion or knowledge accumulation.

Second, this paper contributes to a growing literature on modeling aggregate innova-
tion by heterogeneous firms. In an economy without technology adoption, incumbent firms
face a destruction rate from aggregate product innovation in the economy, as in Klette and
Kortum (2004), Lentz and Mortensen (2008), Luttmer (2011), Lentz and Mortensen (2016),
Acemoglu et al. (2018), Jones and Kim (2018), Akcigit and Kerr (2018), Akcigit et al. (2022),
Seker et al. (2024), and Cao et al. (2024). These models assume that different firms are not al-
lowed to produce the same products, and that each firm’s private knowledge, accumulated
from production, are distinct.® In reality, many firms produce the same products, even if
some are not at the technology frontier. These firms benefit from learning by doing, which
enhances their innovation capability. Our paper incorporates this channel, and the quan-
titative results indicate significant deviations from the Klette-Kortum world in the context
of China. Our results reveal that most of the knowledge capital in Chinese firms originates
from technology adoption rather than innovation.

Finally, our novel mechanism in the manufacturing sector aligns with historical evi-
dence from the agricultural sector on how technological capability improved through learn-
ing by doing. Foster and Rosenzweig (1995) document this process in details: farmers” lack
of knowledge initially acts as a barrier to technology adoption, but this barrier diminishes
as they accumulate operational experience. In China, reports indicate that some farmers,

after years of experience using tractors, have become providers of tractor maintenance.”

®One extension of Klette and Kortum (2004) compared to Romer (1990) is that a firm innovates based on
private knowledge tying to its product lines, instead of public knowledge in society. Knowledge in different
product markets is unique and distinct from one another.

"The source is the Dazhou Municipal Government Website in China (https://www.dazhou.gov.cn/news-



In Kenya, information barriers impede farmers” adoption of new agricultural technologies
(Duflo et al., 2008). Overall, a growing understanding of technology in practice will gener-
ate a positive spillover effect on economic returns.

The remainder of this paper is organized as follows. Section 3 introduces some insti-
tutional background and motivating facts in the Chinese context. Section 4 presents the
theoretical framework. Section 5 calibrates the model to the Chinese manufacturing sec-
tor in 2006 and evaluates the model performance. Section 6 quantifies the impacts on the
economic state from the reduction in technology adoption cost. Finally, Section 7 concludes.

3 Institutional Background and Motivating Facts

From 1978 to 2007, China’s manufacturing sector achieved remarkable progress in scale,
efficiency, and complexity. During this period, the Chinese government lowered barriers
to the technology adoption, and the manufacturing sector witnessed the rapid expansion
despite relatively low R&D intensity.

Following the economic destruction caused by the Cultural Revolution, China’s tech-
nological capability was significantly underdeveloped in 1978. In the planned economy,
China’s manufacturing sector was predominantly characterized by primary and light in-
dustries, featuring low productivity and limited product diversification. Despite account-
ing for 22.5% of the global population, China’s manufacturing value added represented
merely 1.7% of the world total, with an even lower global R&D share of 0.6%. This tech-
nological backwardness was evident in major industrial enterprises. For instance, An-
shan Steel, the largest steel enterprise in China, produced only basic products — pig iron,
crude steel, and steel sections. Similarly, the First Automobile Works (FAW) in Changchun,
China’s largest automobile manufacturer at that time, manufactured only a single model of
Liberation (Jiefang) trucks.

By 2007, China’s manufacturing sector’s value-added ranking had advanced from 10th
in 1978 to 2nd globally. While China’s population still accounted for 20% of the global
total, its manufacturing value-added share had surged to 12.1%, with global R&D expen-
diture share reaching 8.9%. Product diversity had also significantly improved. For in-
stance, Shanghai Baosteel’s product portfolio expanded to include around 10 varieties of
steel plates (including hot-rolled, cold-rolled, and galvanized sheets), 5-6 types of steel sec-
tions (such as H-beams and I-beams), and 3-4 categories of steel tubes (including seamless

show-245730.html).



pipes and welded pipes). Similarly, FAW Changchun also had substantially diversified its
product portfolio, manufacturing various vehicle models including luxury cars, passenger
cars, Jiefang heavy-duty truck series, and light commercial vehicles.

This remarkable transformation was accompanied with governments’ commitment to
establishing institutional frameworks and increasing national investment in science and
technology. During 1978 to 1990, China’s government laid the foundation for scientific and
technological development through several key arrangements. These included shifting ide-
ological focus from class struggle to modernization, restarting the college entrance exami-
nation system, establishing technology transaction markets, and positioning enterprises as
the main drivers of technological advancement.

After 1990, China’s government further enhanced the environment for enterprises-led
technology development. The government demonstrated a sophisticated understanding of
technological externalities, recognizing that breakthrough in key industries could generate
spillover effects to entire industrial clusters. The policy framework encompassed several
key contents. First, the government promoted industry-university-research collaboration
and encouraged enterprises to develop and absorb advanced technology. By 2001, there
were 5,039 university-run-enterprises, of which 40 were publicly listed companies (Eun et
al., 2006). Second, priority was given to the development of telecommunications infras-
tructure, aimed at addressing modernization challenges and facilitating information flow
across industries such as transportation, commerce, finance, and other services. Accord-
ing to a report by the China Internet Network Information Center in 2008, the population
of internet users increased to 210 million, and 93.1% of these users agreed that the inter-
net benefits their work and study. Third, financial support for enterprise expansion was
strategically directed toward product diversification and quality improvement rather than
simple capacity expansion. The investment in renovation and upgrading increased from
997 billion yuan in 1991 to 5077 billion yuan in 2000.> Fourth, military technologies were
permitted for civilian use, and state owned enterprises (SOEs) were encouraged to establish
systematic innovation mechanisms.

Along with these reforms, China’s manufacturing sector expanded rapidly. Using an-
nual statistics from mid-sized and large manufacturing firms from 1991 to 2006, the man-
ufacturing value added grew at an average annual rate of 14.8%. However, the average

R&D-to-value-added ratio remained relatively low, at just 2.1%.° The contrast between the

8Data source: the Statistical Communiqué of the People’s Republic of China on the National Economic and
Social Development for the Year.

9Data from various sources indicate that China’s R&D intensity remains relatively low compared to some
other major economies. For instance, in 2006, the World Bank reports that the national R&D-to-GDP ratio is
1.37% in China, 0.99% in Brazil, 2.87% in South Korea, and 2.55% in the United States.
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Table 1: Status of product markets and product portfolios

Panel A. #Firms in product markets Panel B. Multi-product firm proportion
Year P25 P50 P75 Mean SD Balanced Full
2000 27 71 210 196 407 31.2% 30.2%
2006 54 136 328 387 912 33.0% 31.7%

Notes: In Panel A, we choose 298 product markets continuously recorded from 2000 to 2006; refer to Appendix
B.4 for details. In Panel B, we study the proportion of multi-product firms in the balanced sample from 2000
to 2006, and in the full sample. We employ the Heckman two-step estimation method to address the selection
bias in the merged dataset; see Appendix B.5 for details.

rapid expansion of the manufacturing sector and low R&D intensity suggests that technol-
ogy adoption played a significant role in driving the sector’s rapid growth. An indicator
that highlights the importance of technology adoption is the aggregate value of technology
transaction contracts.'’ The total contract value for technology adoption was 1.6 times that
of technology development, which is closely linked to innovation.

To conduct the analysis related to products, we merge Chinese manufacturing survey
and the product quantity dataset.! Since the granularity of product codes is not fine
enough, we refer to each code as a product category rather than an individual product.
For example, code 5654 represents knitted garments, without differentiating by gender, age
group, or intended usage. We document two stylized facts using the merged dataset.

Stylized Fact 1. Each product market consists of many firms, and there is a large pro-
portion of multi-product firms in the economy; both witness a rising trend between year
2000 to 2006.

Panel A of Table 1 presents the distribution of the number of firms across 298 product
markets in 2000 and 2006. The data reveal a consistent upward trend in the number of firms
per product market, as reflected in increases in the 25th, 50th, and 75th percentiles, as well
as the mean value. Since products within the same product market typically share similar
usage, designs, and characteristics, this increased market participation not only indicates
intensified competition but also suggests enhanced knowledge spillovers and technological
diffusion within these markets.

Panel B of Table 1 documents the product diversification pattern from 2000 to 2006. The

19The data source is the Annual Statistical Report of China’s National Technology Market (2003-2006). It is
important to note this report does not include technology adoption expenditures incurred through the firm’s
own learning efforts.

11n section B, we introduce the two datasets, the merged results, potential problems, and our solutions.



Table 2: Product diversity and innovation investment
log(R&D)
I II I

log(scope)  0.28** 0.20%* (0.35%**
(0.003) (0.008) (0.009)

log(firm size) 0.52%4% () 59%**
(0.002) (0.003)
R’ 003 013  0.30

Notes: OLS. The sample includes year 2001, 2004, 2005, and 2006 when R&D expenditures were recorded. The
number of observations is 296,300. In Column III, we conduct an additional robustness check by controlling
for productivity, together with industry, city, ownership, and year fixed effects. Coefficient p-values are:
*p < 0.10,* p < 0.05,* p < 0.01.

merged dataset is likely to include larger firms, thereby creating a sample selection bias.
To address this issue, we use the Heckman two-step estimation method to predict their
product counts; see Appendix B.5 for detailed procedures. Then we focus on the balanced
sample under the ‘Balanced’ column, and the full sample under the ‘Full” column in Panel
B. For the balanced sample of 76,540 unique firms, the proportion of multi-product firms
increased from 31.2% to 33.0%. While the full sample also shows a modest 1.5 percentage
point increase in the proportion, the number of multi-product firms grew substantially,
nearly doubling from 49,333 to 94,827, driven largely by new firm establishments after 2001.
These patterns suggest that Chinese firms have become increasingly capable of adopting
technology or innovating to expand their product portfolios.

Stylized Fact 2. An individual firm’s R&D expenditure relies on its product diversity.

We document a novel empirical pattern regarding the relationship between R&D expen-
ditures and product diversity at the firm level. Table 2 demonstrates the positive impacts
of product diversity on R&D expenditures. Column I shows that, without any controls, the
estimated elasticity of R&D expenditures with respect to product scope is 0.28 and statis-
tically significant. To address the potential concern that larger firms may invest more in
R&D simply due to greater resource availability, we control for firm size in Column II. The
estimated elasticity becomes 0.20 and is still statistically significant. In Column III, we con-
duct an additional robustness check by controlling for productivity, together with industry,
city, ownership, and year fixed effects. The result remains robust. These firm-level findings
support our hypothesis that product diversity enhanced firm’s innovation capability.* To

12To alleviate the concerns that our results may be driven by confounding factors and reversal causality,
we re-do the analysis by taking the first difference of all the variables and lagging the differenced product



address the concern that SOEs’” product expansions and innovation patterns are primarily
driven by government mandates, we conduct a similar analysis on the SOE subsample in
Appendix B.7. The results show that SOEs also exhibit similar patterns.

4 The Model

To build a theoretical model that captures the empirical findings on firm’s product expan-
sion through innovation and technology adoption, we extend Klette and Kortum (2004) by
allowing for technology adoption. In this section, we present the model setup. This section
is organized as follows. First, we introduce the preferences and final good technology in
Section 4.1. Second, we introduce the setup for firms in Section 4.2. This includes 1) innova-
tion technology, and adoption technology, 2) market structure evolution, 3) the incumbent
tirm’s value maximization problem, and 4) the entry and exit of firms. Third, we illustrate
how the stationary distribution of the market structure in the balanced growth path (BGP)
can be solved by considering the balance between inflow and outflow for each product mar-
ket status in Section 4.3. Fourth, we provide the aggregate setting in the economy in Section
4.4. Finally, we define the general equilibrium in the BGP and discuss the key mechanisms
in Section 4.5.

4.1 Preferences and Final Good Technology

The population size is fixed at L. Individuals are homogeneous and each is endowed with
one unit of labor. On each date, households receive wages and dividends and consume a
tinal good denoted as C'. The discount rate across years is represented by p. The household’s
intertemporal preference over the final good C'is as follows:

U:/ e PlogCdt. (1)
0

The consumption good C'is produced using input services from a continuum of inter-
mediate sectors, denoted by j € [0,1]. The production function is provided in Equation

(2):

diversity by one period. We find that the product diversity expansion helps predict the R&D expenditure
growth; see details in empirical finding 1a in Appendix B.6.




1
logCt:/ log(Xj1z;t)dy, (2)
0

where X, represents the quantity of input j at date ¢ and z;; denotes the quality of input ;.
If the quality of product j has experienced « instances of upgrading, the quality is defined
as z;; = ¢", assuming a fixed step size of quality upgrades at g.

In our model, the version of a firm—product pair is determined not only by the technol-
ogy generation but also by the technology source. Note that X, is an aggregate quantity of
product j, supplied by one innovator and n technology adopters simultaneously on date ¢.
Specifically, the quantity is given by:

X = 2% (n) +nafy(n), n=0,1,.,nm"

wji(n) = i (n),

where 27} (n) and 27}(n) denote the quantity produced by each innovator and adopter, re-
spectively. A market consists of one innovator and n adopters. The number of adopters
(n) varies from 0 to n™**. Here, n™** denotes the upper limit of the number of adopters in
one market. To avoid an infinite number of adopters and heavy calculation load, we set
n™** to be a positive integer for tractability. When n = 0, the innovator monopolizes the
market. For simplicity, firms of the same technology equally share the market. In Section
4.2.3, we will introduce the setup for Bertrand competition with capacity precommitment,
which results in an equal share of active firms in one product market.

4.2 Incumbent Firms

The economy is composed of a single type of multi-product firms, the measure of which is
endogenously determined. Each firm is characterized by the statuses of the products in its
product mix. This status of a product is influenced by the times of upgrading, the market
structure and the knowledge source. A firm is considered active if it owns at least one prod-
uct line. Conversely, a firm exists when the technology of the last product line is replaced.
In addition, the economy’s production knowledge is enhanced through two primary activ-
ities: innovation and technology adoption. Innovation introduces new knowledge into the
economy for production. In contrast, technology adoption draws on knowledge about an
existing technology that is already within the economy. This technology, while not new to
the economy, is new to the technology adopter. When an innovator’s technology is adopted
by other firms, its profit decreases as a result of reduced market share and lower markup.
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Knowledge capital serves as a crucial input in both technology adoption and innova-
tion production functions. Meanwhile, the accumulation of knowledge capital is a result
of producing new products. This concept draws inspiration from Romer (1990), who ex-
plores how a representative firm in an economy combines existing knowledge or designs
within an economy to create valuable and novel products. We adopt this generation pro-
cess from a micro perspective, as Klette and Kortum (2004) do, emphasizing how a firm
benefits from its private knowledge base instead of public knowledge. A key distinction in
our framework is that firms can also accumulate private knowledge capital through tech-
nology adoption. Through learning by doing, the internalization of adopted knowledge
capital further improves a firm’s innovation capability.

For both adoption and innovation production functions, the technological attributes of
knowledge and labor inputs remain consistent with the literature on endogenous technol-
ogy change. Labor inputs are rivalrous, so each labor input can be allocated to only one task
among innovation, adoption, and production on each date. In contrast, knowledge inputs
are non-rival, meaning that both innovation and adoption directly benefit from the firm’s
private knowledge base.

4.21 Technology Adoption

Intermediate producers have profit incentives to expand their product scopes through tech-
nology adoption. Both incumbents and potential entrants have such incentives. This sec-
tion describes the technology adoption production function for incumbents.

Technology adoption production function. The conventional model posits that a firm’s
adoption rate depends on its investment, denoted by RM units of labor. Moreover, we
assume that the firm’s adoption rate also depends on its private knowledge capital, k. The
adoption production function can be expressed as:

H = GY(RM k),

where H denotes the Poisson arrival rate of successful adoption and the function G is
homogeneous of degree one in RM and k. To highlight the positive learning capability from
the firm knowledge base, G increases in k. In addition, G increases in R because a
larger physical input contributes to assimilating knowledge.

— RM
=k

represent the labor cost for a piece of knowledge capital to adopt. This cost can be specified

Let h = L denote the adoption rate per unit of knowledge capital, and let ¢ (h)
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as
M(h) =

where 7{ and 74’ are the two parameters governing the adoption cost function, which will

be estimated.!®

Adoption decisions directly impact the status of the product market and the firm in
three significant ways: 1) The firm’s adoption investment flow generates technology adop-
tion with a Poisson arrival rate kh; 2) successful adoption adds one producer to the corre-
sponding product market, consequently making the market more competitive; 3) successful
adoption adds a new piece of knowledge capital to the firm, increasing the extensive margin
of knowledge capital held by the firm to k + 1.4

Since adoption does not introduce new technology into the economy, the quality of
the adopted product remains the same to that of the innovated product. As a result, the
aggregate extensive margin of unique knowledge capital in the economy, K7/, remains un-
changed. However, the aggregate extensive margin of private knowledge capital (K + K*)
increases by one unit due to the non-rivalry of knowledge.

A firm conducts a cost-benefit analysis to make the technology adoption decision. It
weighs the cost of adoption against the expected return on adoption. A firm stops investing
more in adoption if the marginal cost of adoption surpasses the expected return of adoption.
To capture variations in realized returns, the adopted product market is chosen randomly.
Although the firm faces no uncertainty regarding the expected return, the realized return
will vary depending on the realized market structure.

4.2.2 Research and Development

Firms also have incentives to accrue monopolistic profits by adding innovative products.
Both incumbents and entrants have such incentives. In this section, the focus is on incum-
bents.

13This modeling approach is commonly used in the Klette-Kortum type models. It facilitates obtaining a
tractable solution when solving the first-order conditions (FOCs).

4This assumption is motivated by the concept of the neck-and-neck status resulting from successful tech-
nological catch-up, as developed in Aghion et al. (2001, 2005), Akcigit and Ates (2023) and Jiang et al. (2024).
We follow these papers in modeling each product market as an industry. Firms in the neck-and-neck status
possess the same innovation capability, regardless of the underlying knowledge sources (either through in-
novation or technology adoption). Hence, in this setting, a firm that successfully adopts frontier technology
is naturally assumed to fully absorb and internalize the underlying knowledge, thereby raising its private
knowledge capital by one unit — just as the original innovator would.

12



Innovation technology. Consistent with convention, it is assumed that a firm’s innovation
rate depends on its investment in innovation (R’ unit labor) and its amount of knowledge
capital (k). The innovation production function is expressed as:

A =G'(R' k),

where A denotes its Poisson arrival rate of innovation, and the function G’ is homogeneous

of degree one in R! and k.

— Rf
=%
denote the cost function in labor for a piece of knowledge capital. This cost can be specified
as

Let A = 2 denote the innovation rate per unit of knowledge capital, and let ¢/())

¢'(A) = 9 \%,

where 7{ and 14 are the two parameters governing the innovation cost function, which will
be estimated.

Innovation decisions directly impact the status of the corresponding product market
and the firm in four ways: 1) The firm randomly adds a product with a Poisson arrival
rate kA. 2) The successful innovator monopolizes the new product market due to quality
advantage. 3) Successful innovation adds a new piece of knowledge capital to the firm,
increasing the private knowledge base to £ + 1. 4) The previous producers in this product
market cease production and lose the corresponding knowledge capital because they lose
the chance of learning by doing through production.

When a firm makes an innovation decision, it considers the cost of innovation (R! units
of labor) and the expected return. Since the new innovator monopolizes the product mar-
ket, there is no uncertainty regarding the market structure for the innovative product.

4.2.3 Competition

For expositional simplicity, we assume that followers or potential entrants in any interme-
diate product market can catch up with the leader by one step. Therefore, product markets
in the economy can exist in one of two states: (i) a leveled or neck-and-neck state, where the
leader and multiple technology adopters compete with same technology level; or (ii) un-
leveled state, where the leader (successful innovator) lies one step ahead of its competitor in
the same product market. This modeling approach establishes a link between competition

15See Appendix C.1 for an example of Cobb-Douglas production function for innovation technology.
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and technology adoption.'® This idea builds on the framework of Aghion et al. (2001) by
extending it to allow for more than two firms competing in the neck-and-neck state.

This model outlines two types of Bertrand competition that firms may encounter in
an economy allowing for innovation and technology adoption. The first occurs when a
new innovation arrives. The innovating firm engages in Bertrand competition to drive
other active firms out of the market, thereby securing monopolistic profits. However, when
a new technology is successfully adopted, Bertrand competition is not effective because
the incumbent innovator lacks a marginal cost advantage to expel new adopters from the
market. To ensure positive profits, firms publicly claim their production plan and then set
prices to compete simultaneously. Kreps and Scheinkman (1983) formalize this oligopoly
game as Bertrand competition with capacity precommitment.'”

The market structure of each product market is shaped by the incumbents’ decisions
regarding innovation, adoption, as well as the presence of new entrants in the economy.
In Figure 1, we demonstrate how the market structure evolves as a consequence of these
decisions. The left panel exhibits three markets with different market structure: monopoly,
duopoly, and again monopoly. Firm A initially produces product 2. Firm B has a broader
production scope, manufacturing product 1, and 2. Firm C produces product 3. In the
next date, three decisions are made and change the market structure of these markets. The
right panel exhibits the new status of the economy. In market 1, Firm A adopts technology
from Firm B. In market 2, Firm C innovates a new technology and drives A and B out of
this market. Finally, in market 3, Firm D enters through innovation, prompting Firm C to
exit. Innovations introduced in product markets 2 and 3 have improved the quality of the
corresponding products at a step size ¢q. Based on the example above, the market structure
and corresponding pricing decisions can be summarized by two cases.

16Tn reality, technology adopters often produce lower-quality products compared to the previous technol-
ogy leader. However, in some cases, adopters may capture a larger market share due to a profound under-
standing of local demands or appropriate marketing strategies. The neck-and-neck formulation is adopted
here to simplify the exposition and to ensure tractability.

7Numerous studies, including Moreno and Ubeda (2006) and Acemoglu et al. (2009), have confirmed that
this setup leads to an equilibrium that is identical to Cournot competition, even with more than two players.
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Figure 1: Evolution of product markets
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Notes: Panel A exhibits the technology level of products held by various firms at date ¢. Panel B provides an
update on the situation at a subsequent point at date ¢ + 1. In each market, the leftmost firm is the innovator
and the others are adopters.

Case 1. Monopolistic innovator. When a new innovation is introduced, the quality of the
new version is ¢ times that of the incumbent version. Let us assume that the marginal cost
of the incumbent version is c. Adjusted for quality, the marginal cost of the new product is
<. To occupy the entire market through Bertrand competition, the innovator sets its price

at the follower’s marginal cost, c. As a result, the innovator monopolizes the market and

attains a profit rate of 1 — _.

Case 2. Competition with n technology adopters. The unit-elasticity demand curve for

one product market is given by X = %, based on the Cobb-Douglas production function

for the final good. Here, E denotes the expenditure in the market.!® Proposition 1 solves the
problem under Bertrand competition with capacity precommitment. The proof is provided
in Section C.2.

Proposition 1. In Case 2, when the innovator and its technology adopters have identical marginal
costs in a product market and conduct Bertrand competition with capacity precommitment, the

markup of the product is determined by the number of adopters (n) in the market. Moreover, the

E 1

markup is 2. The profit is m(n) = £ 1. Both the markup and the profit decrease in n.

18Since the measure of all product markets is set to be 1, the size of each market is equal to the aggregate
market size (F).
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4.2.4 Firm Problem

Before introducing the firm’s problem, it is important to consider the exogenous shocks
that incumbents may encounter in this model. First, each existing product faces a risk of
creative destruction, represented by a Poisson hazard rate of u/(> 0). This is known as the
destruction rate. Second, each innovative product randomly meets adoption shocks. The
Poisson hazard rate of this event, per product market, is /(> 0). The ™ is called the rate
of encountering adoption.

Consider a firm with a product portfolio represented by the vector g, which serves as the
state variable in the firm’s problem. For each product held by the firm, there are two state
variables: market structure and knowledge source. The source of knowledge is differenti-
ated by subscripts, where I and m indicate knowledge obtained from innovation, and m
denotes knowledge acquired through adoption. For example, ¢"*(n) denotes an innovative
product being adopted by n firms. The firm’s portfolio of innovative products suffering
adoption is denoted by g¢™. The firm’s portfolio of products obtained through adoption is
denoted by q"™. The firm’s portfolio of innovative products without adoption is denoted by
q'. They satisfy q"Uq™Uq’ = gand q"Ng™Nq’ = (). We also use g; to indicate the product
J held by the firm. We provide an example to describe the product mix in Appendix C.3.

Given wage w and interest rate r, the firm chooses the optimal R&D effort ), and the
adoption effort i to maximize the following value function:

m(n;)
—we' (N + A (V (qUs {¢'}) — V(g))
PV(a) = max 37 | —we (h) + h(E,V(g Uy {4 (n)}) ~ Vi@))| @)
" jeq +u' [V (g\-q;) — V(q)]

+"[V(g\-g;(n;) Uy ¢j(n; +1)) = V(q)]

The right-hand side of Equation (3) is a summation term (} ), presents the changes in
value associated with decisions and shocks that affect all product lines. The summation
term includes five components. The first line represents the operating profit generated by
a product line with n adopters. The second and third lines capture the changes in value
related to innovation and adoption decisions, respectively. The second line includes the
innovation cost and the expected return from innovation. The term V (q U, {¢’}) represents
the firm’s value when it introduces a new innovative product. Similarly, the third line
includes the adoption cost and the benefit obtained from adoption. The term E,V (g U}
{¢™(n)}) denotes the expected value of the firm after adding a new product line through
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adoption, considering the uncertainty in the market structure denoted by n. The fourth
line shows the change in firm value resulting from the loss of product line j due to creative
destruction rate p/. The term V(q\_g;) represents the firm value after losing product j.
Finally, the fifth line demonstrates the change in firm value caused by encountering an
adoption shock. The term V'(g\_g;(n;) U; ¢;j(n; + 1)) represents the value of the firm when
the market of product j meets a new adoption. The state of the market structure for product
J transitions from n; to n; + 1. Here, n; denotes the number of adopters in the market of
product j.

Following the classical approach to solve Kelette-Kortum type models, we assume and
verify that the value function can be expressed in a summation form:

Vig)=Y v+ > v™ny)+ > v"(ny), (4)

Jjeq! jeEq™ JEQT

where v!, v"™(n;) and v™(n;) represent product values in different states. Specifically, v’
represents the value of an innovative product that monopolizes a market. The term v (n;)
refers to the value of an innovative product that is being adopted by n;(> 0) firms. Lastly,
v™(n;) represents the value of a product that is obtained through adoption, with n;(> 0)
adopters in its own market.

A tirm’s decisions and exogenous shocks shape the firm’s value together. The value of
each product is determined by the state, including the knowledge source and the market
structure. To gain a comprehensive understanding of how these values are determined, we
provide detailed information and calculations in Appendix C.4. To formalize this idea, we
develop Proposition 2.

Proposition 2. Following the summation form in Equation (4), we use the firm value function in

Equation (3) to derive 2n™" + 1 equations to obtain the value of v’ {v™(n)}7"1", and {v™(n)}""7",

given firm decisions {\, h} and shocks {u", p™}.

Then, we use FOCs on ), and h to solve for the firm’s optimal decisions:

w =v,w = Ev™. 5)

These expressions show that the marginal cost of each decision should equate to the change

in value due to the corresponding decision.!” Given the measure of markets with n adopters

YThese FOCs provide a set of equations for estimating cost parameters.
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M (n), the expected value of an adopting product is

nmaz M
Ev™ = Z W#vm(n)
n=1 Zn:l M(n)

4.2.5 Entry and Exit

In the economy, there is a mass of potential entrants. Each potential entrant considers an
entry flow rate > 0, incurring an entry cost of nF in terms of labor. Unlike in Klette and
Kortum (2004), the potential entrant faces an additional decision: whether to enter through
innovation or adoption. This decision depends on the associated values of the two choices:
v’ for innovation and E,,v™(n) for adoption. The choice is subject to independent shocks ¢;
and ¢,, respectively.?’ The V; represents the value for a potential entrant. To formalize the
problem faced by the potential entrants, we express it as follows:

rVo = maxn[Evy — Vo] — nF (6)
n

vy = max{v’e, E,u™(n)es}, (7)

where Ev, denotes the expected value of a firm that owns a single product line upon suc-
cessful entry. The term Ewv is an expectation over the two statuses:

Evy = Plv" + (1 = P)E,v™(n),

I _ (,UI)G
where P = iy
Assuming free entry, n ensures that the net value of entry is zero. For instance, if Evy
is very high, resulting in a value of entry that exceeds the fixed cost, more firms will enter.
This increased entry will drive down the value of v’ or v™(0) until the expected profit of
entry is zero.

As each existing product line faces the same destruction rate u!, a firm exits the economy
once it loses all of its product lines.

2Preference shock e follows a type II extreme value distribution, with a cumulative distribution function
given by F(e) = exp(—e~?).
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4.3 Evolution of Market Structure

Building upon the foundation of previous studies following Klette and Kortum (2004),
which consider only a monopoly market structure, our study introduces an endogenous
market structure. This complexity presents a significant challenge for solving the general
equilibrium. To address this, we determine the distribution of market structure by analyz-
ing the balanced conditions of different market structure in the BGP.

Firm decisions affect the market structure of a product market in two ways. First, suc-
cessful innovation leads to a temporary monopoly. Second, successful adoption adds an
additional competitor. Figure 2 illustrates the dynamics of markets of different market
structures, showing the inflow and outflow for each market state. In the BGD, the following
equations describe the balance between the entry and exit of each state of market structure,
resulting from firm decisions and shocks. Recall that M (n) is the measure of markets with

n adopters, which satisfies Y7 M (n) = 1.

Figure 2: Evolution of markets structure

M(nmax)

Notes: This figure describes the inflow and outflow for markets of each market structure. The M (n) denotes
the measure of markets with n adopters. Each market suffers a destruction shock and adoption shock with
rate pi/ and p™, respectively. An innovation shock results in a temporary monopoly, while an adoption shock
adds one additional competitor.

For markets of state n = 0, inflows come from the creative destruction from all markets,

Sy M(n)p!. Outflows result from encountering adoption shocks, M (0)y™, and destruc-
tion shocks, M (0)u!. Therefore, the balance condition for market with state n = 0 is:

max

> Mn)p" = MO)u™ + M(0)p'. 8)
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For markets of state n > 1 and n < n**, inflows come from adopting technology from a
market with state n — 1. Outflows arise from encountering adoption, and destruction. The
balance conditions for these states are given by:

M(n—1)u™ = M(n)(p' +p™), 1<n<n™ ©)

For markets of state n = n™**, there is no inflow or outflow from markets of state n** 4
1, and thus, the balance condition derived from Equation (9) is:

M(nmar o 1),um — M(nmax)ul‘ (10)

max

To solve for the measure of markets as a function of shocks, we first replace Y _, M (n)
with one in Equation (8). We then combine Equations (8), (9) and (10) to obtain Equation
(11). Proposition 3 provides a quick calculation to numerically solve for the probability
density of each market structure, M, given shocks.

Proposition 3. In the BGPD, the stationary distribution of markets of market structure, M =

[M(0) M(1) ... M(n™®)],is determined by the following matrix equation:
(u"+pm™) 0 0 0 0 u!
—pm™ pm 0 0 0 0
xM=1|..1]. (11)
0 —u™ pm 4+t 0 0
0 0 0 —um ot 0

By denoting the matrix on the left of M as A and the matrix on the right-hand side as B
in Equation (11), we can quickly solve for the distribution of market states using M = A~'B.
This matrix form is highly useful for calculating the aggregate state of the economy in the
model estimation and simulation.

4.4 Aggregate Setting on the Balanced Growth Path

The aggregate level of the whole economy is constrained by limited resources and requires
a balance between micro-level decisions and macro-level shocks. First, the aggregate de-
struction rate at the macro level is a result of micro-level innovation. Second, the aggregate
rate of encountering adoption is determined by the individual adoption decisions. Finally,
the aggregate labor used for innovation, adoption, and production is bounded by the pop-
ulation size.
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We introduce an aggregate amount of knowledge capital that is non-exclusively held by
tirms as the aggregate measure of firm—product pairs:

mazx mazx
n

K=Y (n+1)M(n)=1+Y_ nM(n). (12)

n=0

Unlike the aggregate amount in Klette and Kortum (2004) models, this amount considers
the non-rival attribute of knowledge, which accounts for shared knowledge across firms.
Although the total amount of unique knowledge capital is fixed as K/ = 1, there is an
additional measure of knowledge obtained through adoption. The amount of this type of
knowledge, denoted by K#, is .7 " nM(n). The increase in the amount of knowledge
capital enhances the marginal productivity of rival inputs in the innovation production

function.

The aggregate destruction rate is the sum of innovation efforts by incumbents, K\, and
the entry rate through innovation, nP;:

p'=KX+nP]. (13)

This equation demonstrates that the aggregate innovation depends on K, which accounts
for knowledge capital obtained through innovation and adoption together. It emphasizes
the importance of knowledge diffusion in aggregate innovation.

The growth rate of the economy is determined by the product of aggregate destruction

rate, ;i/, and quality improvement in each innovation, ¢ — 1:

g=p'(g—1). (14)

The aggregate rate of encountering adoption is the sum of adoption effort by incum-
bents, K'h, and the entry rate through technology adoption, n(1 — P}):

p™ = Kh+n(l-Pl). (15)

This equation implies that the aggregate rate of encountering adoption relies on the amount
of knowledge capital. Adoption improves the utilization of existing knowledge for diffu-
sion across individual firms in the economy. It implies a multiplier effect in knowledge
accumulation through adoption.

The labor market clearing condition is as follows:
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max
n

L=nl"" + 3 " (n+ 1)M(n) (I'(n) + 1" (n) + 1" (n)) , (16)

n=0

where (" denotes the labor used by each entrant. In addition, I/, I, and I denote the la-

bor used for innovation, adoption and production for each firm-product pair, respectively.?!

The labor market clearing condition accounts for various types of labor usage. The first
item on the right-hand side of Equation (16) represents the labor used for firm entry. The
second item represents the aggregate labor used for innovation, technology adoption, and
production.

Finally, workers spend all of their income on consumption, resulting in the consumption-
output clearing condition:
wL = F. (17)

4.5 General Equilibrium and the Key Mechanisms

Combining g = r — p from the Euler equation with the utility maximization problem, we
define the general equilibrium as in Section C.5. In Section C.6, we provide a method to
check the uniqueness and existence of a solution in the BGP for n™** = 1, which allows one
adopter to exist in each product market.

We provide a partial equilibrium analysis to explain why the knowledge accumulation
via adoption might either augment or diminish innovation. The two effects underscore the
two key mechanisms: the knowledge accumulation and the negative technology external-
ity. Combing Equation (12), (13) and (14), the aggregate growth rate satisfies:

g~ (K" 4 K\, (18)

where K’ denotes the aggregate amount of knowledge capital from innovation, fixed at

one. The K denotes the aggregate amount of private knowledge capital obtained through
adoption by all individual firms.

The two mechanisms can be outlined through Equation (18). The first effect implies a
decline in the technology adoption cost can enhance the growth rate by augmenting the

E/(n+1)

ZLA firm’s labor input for producing a product with status n, denoted by I?(n), can be expressed by TR

Here, E/(n + 1), u(n), and w denote sales, markup, and wage respectively.
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amount of non-rival knowledge capital in the economy, K*. The second effect indicates
that a decline in the adoption cost will depress innovation incentives (), conditional on
each piece of knowledge capital. This is due to the negative technology externality, mainly
through the profit channel: As the adoption cost becomes lower, firms will expand product
scope, product markets become more competitive, and the profits to be gained from each
innovative product will decline accordingly. The innovation rate A declines if the expected
profit decreases. In summary, a decline in the technology adoption cost raises the extensive
margin but reduces the intensive margin of innovation in the economy.

If the first effect dominates, the growth rate increases when the technology adoption
cost declines. This positive effect differs from the mechanism described in Aghion et al.
(2001) and Aghion et al. (2005), in which knowledge spillover intensifies market competi-
tion and firms innovate to escape competition. Conversely, if the second effect dominates,
the growth rate decreases with knowledge spillover. This negative technology externality
mechanism is consistent with Aghion et al. (2001) and Aghion et al. (2005). Our model
introduces flexibility in the extensive margin of competing firms across product markets.

5 Estimation

Section 5.1 gives a brief introduction to empirical moments. Section 5.2 describes the iden-
tification strategy. Section 5.3 presents the indirect inference. Section 5.4 provides the main
estimation results. Appendix D.1 provides detailed procedures for estimating this model.

5.1 Moments

For calibration, we use data from year 2006. There are several reasons for this choice. First,
the Chinese manufacturing survey data is of relative high quality between 1998 and 2007,
while the product quantity dataset is available only from 2000 to 2006. Second, the calibra-
tion relies on the assumption that the economy is on a balanced growth path. Considering
potential disruptions from China’s WTO accession in 2001 and the outbreak of the global
financial crisis in 2007, the year 2006 provides a relatively stable window for calibration.

We prepare five types of moments using the following approach. First, we select value

added to measure firm size.”? Second, we calculate the Lerner index, or the price cost mar-

22A pioneer work by Lentz and Mortensen (2008) employed value added as a measure for firm size, es-
tablishing a methodological foundation that we build upon. We do not use sales to measure firm size. Sales
figures can be disproportionately influenced by the cost of intermediate goods, which is not well modeled
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gin, following Nickell (1996), as a measure of profitability. A firm’s Lerner index is calcu-
lated as the ratio of net profit to firm scale. Net profit is established by deducting deprecia-
tion, provisions and an estimated financial cost of capital from the operating profit. Third,
we count the number of product codes to measure product diversity.”> As mentioned above,
we adopt the Heckman two-step selection method to calculate product category counts for
all firms.** Fourth, we calculate R&D intensity by dividing aggregate R&D expenditures
by aggregate value added and obtain 3.3%.%” These measures are obtained from the man-
ufacturing survey data. Finally, we estimate the growth rate by utilizing World Bank data
on China’s GDP at current US prices. We obtain manufacturing value added by multiply-
ing the GDP with the proportion of manufacturing value added of GDP. The growth rates
for 2004, 2005, 2006 and 2007 are found to be 6.94%, 8.54%, 10.9% and 10.8%, respectively.
To mitigate volatility due to business cycles, we compute the average value of these rates,
which results in a targeted growth rate of 9.3%.

5.2 Model Identification Strategy

There are several points aiding in the identification of parameters from the data. First,
the distribution of product scopes directly measures the historically accumulated product
expansion through innovation and technology adoption together.

Second, the existence of a fat-tailed distribution of firm size and the low R&D intensity in
China suggest that firms may heavily rely on technology adoption for expansion.”® Mean-
while, it can be inferred that the efficiency of innovation is low relative to the efficiency of
technology adoption.

without production networks. In addition, we do not use employment to measure firm size because it is not
directly related to GDP.

ZWe provide evidence that product codes in the product quantity dataset are too coarse to define indi-
vidual products in Appendix B.3. Therefore, we assume that each product category includes several distinct
individual products. In the estimation, we find that assuming each category includes 13 individual products
fits the data well.

24The procedure is provided in Appendix B.5.

PData from China’s national manufacturing annual statistics reported this indicator at 2.7%. The survey
ratio is higher than the annual statistics primarily because the survey firms tend to be larger and have a
higher R&D intensity. According to the Chinese manufacturing survey, the aggregate R&D-to-sale ratio is at
a modest 0.4%. The considerable gap between the two measures of R&D intensity can be primarily attributed
to the sector’s heavy reliance on intermediate goods.

%The firm size distribution generated by Klette and Kortum (2004) is a logarithmic distribution, which does
not support a fat tail. However, the observed distribution typically exhibits a fat tail and can be well fitted by
a Pareto distribution. Our model generates a distribution that is aligned with the observations and performs
better than other similar works.
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Third, the distribution of firms’ profit rates serves as an indicator of the level of compe-
tition, which implies the degree of technology adoption. Given the relatively weak enforce-
ment of intellectual property rights in China, the majority of firms prefer to adopt technol-
ogy to catch up with the technology leader rather than innovation. Therefore, the degree of
competition is predominantly shaped by adoption. Appendix C.7 provides evidence at the
industry-city level to validate this theoretical mechanism by showing that leading firms’
profitability decreases in competition from technology adopters. In the dataset analyzed,
approximately 75% of firms’ profits are below 10%, indicating the fierce competition in
the market. The modeling of competition helps identify the market structure based on the
observed profit rates. Akcigit and Ates (2023) employ a similar idea for identifying knowl-
edge spillover in the US. Instead of merely estimating an exogenous knowledge spillover
parameter, we estimate the production function for adoption. Although our dataset does
not record information on adoption expenditures, we utilize the equalization between the
marginal cost of adoption and the expected value of adoption to infer the function. In
addition, the net profit variable also partially discloses information about adoption cost pa-
rameters. Last, low R&D intensity and a fat tail of firm size distribution imply that adoption
is the preferred strategy for expanding products.

Finally, the aggregate growth rate serves as an identification indicator for aggregate in-
novation. By considering R&D expenditures as input and the growth rate as output, we can
easily obtain the efficiency of the innovation production function. Acemoglu et al. (2018)
and Akcigit and Kerr (2018) use a similar strategy to identify the efficiency of the innovation
production function.

5.3 Indirect Inference

There are eight parameters to be estimated: v{, v{, 74,74, 6, q, F and p, as shown in Table 3.
We identify these parameters using an indirect inference approach in the spirit of Lentz and
Mortensen (2008) and Akcigit and Kerr (2018). This method involves generating targeted
moments via simulation and then comparing these moments to those generated from the
data to minimize the gap:

17 . N2

1(5) —
minz (mode (2)17 data(7)) |
=1

where each moment is indexed by i. Our indirect inference procedure targets 17 moments,
which are divided into five categories. Unlike previous studies, we also include the dis-
tribution of profitability as targeted moments. This broader set of moments provides a
more comprehensive understanding of the competition in the economy. As the model does
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not yield an analytical solution, it is impractical to directly explain how each parameter
influences the moments. Based on the identification strategy discussed in Section 5.2, we
provide five types of moments to capture the economy’s key characteristics as follows.

Table 3: Estimated parameters

Parameters Explanation Value
i Coefficient of innovation cost function 423
v Power of innovation cost function ~ 2.97
v Coefficient of technology adoption cost function 50
o Power of technology adoption cost function  3.10
7 Power of the discrete choice function  0.002
q Quality upgrade  1.43
F Entry cost (1000 RMB) 2,280
p Discount rate  0.040

Distribution of value added. Firm size is related to a firm'’s ability to expand.” In our
model, product size tends to be small in a competitive market, and yet large in a monopo-
listic market. Hence, firm size does not only depend on the product scope but also on the
related technology source.

1
ey
is determined by the market structure. The distribution of market structure is determined

Distribution of Lerner index. In our model, the profit rate in each product market

by !, and ™ based on Equation (11). Therefore, it reveals information about innovation
and technology adoption production function, including 71, 72, 7, and ~4'. Moreover, the
profit rate for a monopolist is 1 — % in our model, which aids in identifying ¢. Although the
profit rate for each product is not directly observable, the variation in profit rates of firms
is enough for identification. Moreover, the profitability provides information on estimating
the adoption production function. The marginal cost of adoption firstly provides insights
into the two parameters, as expressed by the equation 7775 h%' ~1w = Ev™. In the model,
the value of Ev™ is mainly determined by ¢, u!, ™, h and \. Same to other Klette-Kortum
type models, ¢ can be estimated from profitability and p/ can be estimated through the
growth rate. In addition, h and p™ can be derived through profitability. Thus, we partially
infer 4{' and ~4’. Combining that the net profit already excludes the innovation cost and

the adoption cost, net profit = > .__[7(n;) — wc! (X) — wck (h)], we have another equation to

Jj€q

¥In other works following Klette and Kortum (2004), the distribution of firm size is only influenced by the
innovation rate ), the destruction rate ;! and entrants (n).
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estimate 7{' and 74’. Therefore, we have two equations to infer 7 and ~J’.

Distribution of product category counts. Product category counts directly measure the ac-
cumulated product expansion through innovation or adoption. Therefore, it is directly af-

fected by \, h, p!, ™, and 7.

Growth rate. In our model, the growth rate, denoted as ¢, is determined by aggregate
innovation rate ;! and the step size in quality upgrading ¢, as shown in the equation g =
p! (g —1). With the known ¢ identified from the profitability, we can directly obtain ! using
the observed growth rate, g, in the data. Furthermore, the aggregate innovation rate ./, is
a result of innovation by entrants and incumbents, as expressed by u' = nP] + K. The
profitability, which is determined by the degree of competition, helps pin down the market
structure of each product. Moreover, the aggregate number of firm—product pairs serves as
a measure of knowledge capital, which is an assumption in the Klette-Kortum type model.
Last, the entry cost F'is pinned down by the value of new firms’ products.

R&D intensity. We discipline the parameter governing the cost of innovation ~{ and ~4
through measures of the ratio of R&D expenditures to firms’ value added. In our dataset,
the value is directly observed. In the model, the ratio is:

max

S (n 4 )M (n)y N2 w
- .

Recall that E, M(n), and X are previously estimated from the firm size distribution,
the profitability distribution, and the growth rate. Therefore, the relationship between the
R&D intensity and the growth rate partially yields information on the two parameters ~{
and 2. The marginal cost of innovation provides yields additional information into the
two parameters, as expressed by the equation /4 \% 1w = v7(0). Consequently, the two
parameters can be identified through these two equations.

5.4 Estimation Results

Table 4 reports the empirical and simulated moments using the model. Overall, the model
closely matches the targeted empirical moments. The corresponding parameter estimates

are reported in Table 3.2

28 As there is a concern that the calibration results may be specific to the single year 2006, we conduct
an alternative calibration using the average moments over the period 2004-2006. This three-year window
provides sufficient data to smooth out temporary fluctuations while remaining close to our benchmark year,
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Our estimation yields several interesting findings. First, we find that both the innovation
and technology adoption production functions exhibit decreasing return to scales (DRS) in
labor input, as indicated by the estimated values of v, which exceed one. Furthermore, our
estimates highlight the expensive costs associated with innovation compared to technology
adoption. The values of 7{ and ~{' suggest that the cost of adoption is merely one-eighth
of the cost of innovation. Successful innovation improves productivity or quality by 42%.
Finally, an entrepreneur invests 2.4 million RMB to establish a new firm.

5.4.1 Moment Fitting

The model closely matches the data for the value added measure. As the model in Klette
and Kortum (2004) generates a logarithmic firm size distribution, which lacks a long tail,

our model has achieved progress.”

Table 4: Data and model fit

Data Model Data Model
Value added 10% 1391 873 Lerner index 10% -0.08 -0.09
Value added 25% 2640 2184 Lerner index 25% 0.04 0.07
Value added 50% 6090 5829 Lerner index 50% 0.17 0.20
Value added 75% 15,890 15,930 Lerner index 75% 0.32 0.27
Value added 90% 42,093 37,651 Lerner index 90% 0.48 0.33
# Product category 10% 1 1 #Product category 25% 1 1
# Product category 50% 1 1 #Product category 75% 2 2
# Product category 90% 3 3
Growth rate 93%  89% R&D intensity 33%  4.2%

Notes: The unit of value added is 1,000 RMB.

The model exactly matches the data on product category counts. It is important to note
that none of the previous works utilizes the information on the number of products to infer
firms’ capability in product expansion.

2006. We then compare the estimated parameters from the benchmark model with those from the robustness
check. Overall, the estimated values from the two approaches are quite similar. For {y{,~4’}, the deviation is
about 5%, while for the other parameters it is less than 1%.

Y Compared to related studies, it is worth noting that our model makes progress in fitting firm size. For
example, Lentz and Mortensen (2008) provide substantial flexibility by assuming firms of three types of step
size of quality upgrading, but this research only fits the mean and standard error of firm size instead of
detailed percentiles. Moreover, Jones and Kim (2018), Acemoglu et al. (2018), Akcigit and Kerr (2018), and
Akcigit et al. (2022) disregard the fitting of firm size.
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The model demonstrates a good fit for the Lerner index distribution, capturing various
market structures that firms encounter. The Lerner index at the 10th percentile is negative,
which can be attributed to low profits in a competitive market despite the costs of obtaining
technology. Firms may suffer losses in a highly competitive market and generate a higher
profit in a market with less competition. This model expands the research scope of inno-
vation, technology adoption or knowledge diffusion to include a flexible market structure,
which is a topic often overlooked in the existing studies. Our paper addresses the issue of
the limited attention given to the endogenous market structure in this field.

The model also demonstrates a close fit to the growth rate, with a rate of 8.9% compared
to 9.3% observed in the data. Finally, the R&D intensity in the model is 4.2%, which is also
quite close to the value of 3.3% in the data.

5.4.2 Estimated Parameters

The model parameter estimates are reported in Table 3. The model estimates two groups
of production function parameters for innovation and technology adoption. Comparing
the coefficients of these cost functions reveals that innovation is more expensive (v > 7#7).
This suggests that employing 423 workers leads to the acquisition of a new technology at a
100% arrival rate within one year. In contrast, only 50 workers are needed for technology
adoption. Both the two cost functions exhibit DRS in labor inputs. The power of innovation
(2.97) is similar to that of technology adoption (3.10).

Compared to the estimates of the Danish innovation cost function in Lentz and Mortensen

(2008) (] Permmark — 175 45Permark — 3 7), our results show that innovation in China is less
efficient (larger 7/ ) but exhibits a greater return to scale (smaller +3). The difference in
efficiency can be attributed to factors such as lower human capital and more distortion in
research in China compared to developed countries such as Denmark. The greater return
to scale in China can be explained by the country’s larger space and richer resources. For
example, with more R&D staff involved in a research project, it is easier for Chinese firms to
expand other aspects of research inputs, such as research space, land and experimentation
materials in addition to labor. By comparison, Hall and Van Reenen (2000) estimate a scale
parameter of 2 for US firms (y5""® = 2), which is slightly smaller than the parameter in our
estimation. This implies that US firms are more capable of providing additional inputs to
R&D than Chinese firms.

Note that data often do not record expenditures related to technology adoption. As a
result, related studies have often treated technology adoption or knowledge spillover as
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a parameter rather than an endogenous variable. Although we do not find a direct com-
parison in existing studies, our estimation results are quite instructive in understanding
tirms” choice of knowledge source due to adoption costs. In the literature on imitation
and innovation, such as Benhabib et al. (2021) and Konig et al. (2022), imitation is usually
cheaper than innovation, which is qualitatively consistent with our estimates of adoption-
related parameters. One potential comparison is Akcigit and Ates (2023), who estimate an
exogenous knowledge spillover parameter rather than a technology adoption production
function. They find that the knowledge spillover parameter in the US ranges between 0.03
and 0.09, which is significantly lower than the adoption arrival rate of 0.17 estimated in our
model.* This discrepancy suggests strict IPR protection in the US and echoes the finding
of Akcigit and Ates (2023) that the dominant role of a decline in the intensity of knowledge
diffusion from the frontier firms to the laggard ones.

The estimated step size of quality upgrading is 1.4, which is slightly higher than the val-
ues reported in previous studies focusing on developed countries, for example 1.17 in Den-
mark (Lentz and Mortensen, 2008) and 1.12 or 1.13 in US (Akcigit and Kerr, 2018; Acemoglu
etal., 2018). The larger innovation step size in China can be attributed to the greater amount
of new knowledge obtained through innovation. Since the new knowledge in China may
have been discovered in frontier countries, it is easier for China to acquire more knowledge
in each innovation step. This finding aligns with the concept of catch-up in technology ob-
served in developing countries (Acemoglu et al., 2006; Buera and Oberfield, 2020). Jiang
et al. (2024), another research on China’s growth and competition, estimate the step size in
quality upgrading at 1.2, which is higher than the findings for developed countries. This
value is lower than the estimate in our model because we use the highest profitability across
tirms, rather than the average profitability, to infer this parameter.

The power parameter of the discrete choice production, 6, is estimated to be 0.002. It in-
dicates that innovation is not a perfect substitute for technology adoption when new firms
choose the knowledge source of production technology to enter the market. This may be
due to the government’s encouragement and Chinese entrepreneurs’ comparative advan-
tage. In addition, the estimated entry cost is 2.3 million RMB.

5.4.3 Untargeted Moments

To further validate the effectiveness of our quantified model, we compare several important
variables in the model with untargeted moments from the data. While the model’s calibra-
tion was specifically focused on targeting only the annual state of firm size, profitability,

39We report the endogenous rate 0.17 in Table 6.
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product diversity, R&D intensity, and the growth rate, the fitness of the model’s predictions
to empirical observations beyond its targeted variables would provide confidence in the
model’s performance.

In Table 5, we consider four types of variables to provide further validation for our
model. Before the detailed analysis, we check the inequality in firm size and the distribution
of the product count at a finer level. First, The firm size inequality in the model (0.74)
is close to the measure in the data (0.73). The inequality index is measured by the shape
parameter of the firm size distribution based on the Zipf’s law. Second, compared to the
median individual product count, the relative individual product counts for the 75th, 90th,
and 95th percentiles are close to the relative HS6 counts in the data. In this comparison, we

only consider firms above mid-size due to export selection effects.”

Table 5: Comparision of data and untargeted moments

Data Model

Firm Size Inequality  0.73 0.74

# individual product (75%) / # individual product (50%) 2.2 2.7
# individual product (90%) / # individual product (50%) 5 6.4
# individual product (95%) / # individual product (50%) 7.3 9.8
Elasticity (# New Categories, # Categories) 0.14 0.21

Elasticity (# Newly Adopted Categories, # Categories) 0.10 0.14
Corr(log(Lerner Index), # Categories) -0.01 0.06

Notes: The firm size inequality measure (3;) is obtained through regression log(firm size rank; 2006) = So —
B1log(firm size; 2006) + €i,2006- For the second to fourth untargeted moments in the data, we use a HS code to
represent an individual product. To estimate the elasticity of adoption in the data, the analysis is restricted to a
sample of firms that invest in R&D less than 100 thousands of RMB in history. In the simulation, we generate
a dynamic process that records firms’ entry, exit, products addition and product removals. We choose the
years 199 and 200 in the simulation to present year 2005 and 2006. We then use this panel dataset to estimate
the elasticity in the model by regressions.

When comparing the model’s outcomes to the data, it is essential to assess whether the
model adequately captures firms’ capability in product expansion. We check whether the
endogenous product expansion decision in our model still relies on the existing number of
product categories, as shown in the empirical finding 4a in the Appendix B.6. To do this, we
analyze the data on the number of new product categories a firm added in 2006 compared
to 2005. The elasticity, which measures the response of the number of new categories to
the number of existing product categories, is found to be 0.14 according to the data. The
model predicts a higher elasticity of 0.21. Restricted to the subsample of adopters that invest
in R&D less than 100 thousands of RMB in history, we obtain the elasticity of the newly

31Coincidentally, the count of HS6 codes is around 13 times the count of product category codes.
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adopted product category counts to the product category counts at 0.10. The counterpart
in the model is estimated at 0.14. Both the data and model reveal that the elasticity of
the added product scope to the existing scope is greater than the elasticity resulting from
adoption. This finding supports the assumption that firms tend to innovate and adopt
simultaneously.

To further check the effectiveness of our model, we examine the correlation between
the logarithm of firm Lerner index and the number of product categories. The profitability

reflects the degree of competition faced by the firm. The correlation is nearly zero in the
data, implying that competition shocks faced by a firm are unrelated to its product diversity.
The model echoes this finding: the corresponding correlation is 0.06, which is also close
to zero. Although innovation improves a firm’s profitability, the simultaneous adoption
decision reduces the correlation between profitability and product scopes. In an economy
with free entry, a firm’s profitability is determined by aggregate shocks instead of the firm'’s
status of product counts.

5.4.4 Characterization of the Economy

The endogenous variables in Table 6 provide insights into the characteristics of the econ-
omy, specifically related to innovation, technology adoption and associated shocks.

Table 6: A list of endogenous variables

Variables Explanation Value
Panel A. Firm decisions

A Innovation arrival rate 0.07
h Technology adoption arrival rate 0.17
Panel B. Aggregate outcomes

w! Aggregate destruction rate 0.24
" Aggregate rate of encountering adoption 0.61
K Aggregate amount of knowledge 3.07
Panel C. Other endogenous variables

n Entrant flow rate 0.051
v’ Value of a newly innovative product 3,057
v™(1) Value of an innovative product with one adopter 2,350
v™(1) Value of an adopted product without other adopters 2,350
Ey™ Expected value from a successful adoption 1,416

Notes: The unit is 1,000 RMB for v!, v™(1), v™(1) and Ev™ in Panel C.

In Panel A, the firms’ decisions are reported. The innovation arrival rate is 0.07, which
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indicates a 0.07% probability that a newly innovated technology will arrive on the next
day.*? The technology adoption arrival rate, at 0.17, is significantly higher than the innova-
tion arrival rate. The difference can be attributed to the low cost of technology adoption,

although the value of innovation (v') is twice that of adoption (EV™) in Panel C.

In Panel B, shocks are reported. The destruction rate, 0.24, implies that one-quarter of
existing products will be replaced by a new generation within one year. In addition, the
rate of encountering adoption is 0.61, approximately 1.5 times higher than the destruction
rate. Without considering technology adoption as a source of product expansion, existing
research overestimates the impacts from innovation on firm size expansion. This highlights
the importance of incorporating technology adoption into standard creative destruction
models, especially when the variation of firm size is used to calibrate innovation dynamics.
The aggregate measure of private knowledge capital held by all firms is 3.07, given that the
aggregate measure held exclusively by all firms is one. Accordingly, our model predicts
that two-thirds of all private knowledge capital in the economy results from technology
adoption, which emphasizes the importance of non-rivalry attribute of knowledge in the
context of China.

Panel C reports the measure of entrants and values of various product states. The mea-
sure of entrants, 0.051, increases the innovation arrival rate by 0.022.% Compared to the
aggregate rate of creative destruction, 0.24, one-twelfth of innovation is due to entrants. In
addition, the value of a product depends on the market structure and the source of knowl-
edge. The value of a newly innovated product (v?) is largest among the four product states
in this panel. When the new product is successfully adopted by one follower, only three-
quarters of the value remains. When only one adopter exists in one market, the value of the
original product is close to that of the adopted product. Technology adoption yields an ex-
pected value of 1,416 thousand RMB, which is approximately half that of a newly innovated
product.

The model generates a favorable distribution of productivity, which steadily shifts to
the right in the BGP; see Appendix D.2 for details.

3In the model, we assume that one year is composed of 100 days.

3 The aggregate frequency of entrants is n x P} = 0.051 x 0.44 = 0.022.
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6 Impacts of Technology Adoption

To provide further intuition on the impacts of technology adoption, we examine how eco-
nomic states vary with ~{, specifically when it is set to 50, 100, or 10,000. The case i’ =
10,000, simulating the prohibitively high adoption costs prior to 1978.3* Despite the al-
lowance for a small degree of technology adoption, this case mirrors the original setting in
Klette and Kortum (2004), where technology adoption is assumed to be absent. The case
711 = 50 represents the estimated adoption cost coefficient in 2006. Additionally, we provide
an intermediate case of 7 = 100 to illustrate the state of the economy when the adoption
cost is twice as high as in 2006. We present several figures and tables to fully illustrate the
impacts of the technology adoption cost reduction.

Figure 3 plots how alternative values of 4 affect the distribution of market structure
across product markets and the distribution of firms” individual product counts. The mar-
ket structure distribution reflects not only the degree of competition but also the extent of
technology diffusion across product markets in the economy. In Panel (a) of Figure 3, the
dotted line indicates {’ = 10,000 and the corresponding market structure is predominantly
monopolistic. The dashed line reveals that a lower value of v{' at 100 leads to a more com-
petitive economy. The solid line, when {7 = 50, exhibits the flattest distribution. This
suggests that the reduction in the cost parameter v{ makes firms more capable of adopting
existing technology, resulting in a higher probability density of competitive markets with
more adopters. The average numbers of adopters per product market are 0.04, 1.3, and 2.1
for the three cases, respectively.

Panel (b) of Figure 3 visualizes the distribution of firms” individual product counts un-
der different values of v¥. With v/ = 10,000, 84% of firms are shown to produce fewer
than six individual products. This predominance of the narrower product scope suggests
that the absence of technology adoption acts as a barrier to product line expansion. As ~{
decreases to 100, the distribution changes markedly: only 68% of firms are now found with
fewer than 6 product lines. This trend is further accentuated when ~{’ is lowered to 50,
at which point the proportion of firms with fewer than six product lines declines to 64%.
These shifts illustrate a clear pattern that lower adoption costs will result in more product

expansion. Consistent with the analysis above, this figure reveals that the tail for v{’ at 50

¥Due to the lack of firm-level database for 1978, it is not possible to accurately estimate parameters govern-
ing the economy at that time. However, historical events during the Cultural Revolution and limited product
diversity among China’s largest manufacturing firms strongly suggest that adoption costs were prohibitively
high. Obviously, the Cultural Revolution also had a devastating effect on innovation, but our main purpose
is to isolate the effect of technology adoption cost reduction on production expansion and thus aggregate
innovation in this paper. Therefore, we only experiment with alternative values of 4 rather than /.
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Figure 3: Market structure and firms’ individual product counts
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Notes: Panel (a) plots the distribution of product markets based on the number of active firms in each product
market. The market state is defined by the number of technology adopters within a product market (n). Panel
(b) plots the distribution of firms according to the count of product lines.

is the longest for the three cases considered.

Figure 4 shows that the reduction in technology adoption costs leads to a greater con-
tribution of technology adoption to firm size. The number of innovative product lines in-
creases in proportion to firm size. This suggests that larger firms have greater capacity and
more resources to invest in innovation. However, new results appear when analyzing the
number of adopted product lines. In the case akin to the Klette-Kortum model (v = 10,000)
in Panel (c), technology adoption activity is almost non-existent, as evidenced by the negli-
gible number of adopted product lines. As the adoption cost decreases, the model predicts
an increase in the number of adopted product lines, which also scales with firm size. For
v = 100, the number of adopted product lines is close to that of innovative product lines.

When ~{ decreases to 50, the number of adopted product lines become twice that of inno-
vative product lines.
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Figure 4: Firm size and number of product lines of two sources
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Notes: The simulated sample is divided evenly into 80 groups based on the logarithmic value of firm size. The
dashed line represents the number of product lines achieved through technology adoption, while the solid
line denotes the number of product lines achieved through innovation.

To show the degree of competition, Figure 5 plots the associated values of products un-
der various market structures. It demonstrates that cheaper adoption costs tend to diminish
the return or value associated with each product. In Panel (a), we compare the value of in-
novative products with status n = 0, which determines the innovation incentives directly.
As ~{! decreases, the value declines. In Panel (b), the two lines of innovative product values
decrease in market structure n. This demonstrates the negative technology externality from
adoption is related to the frequency of adoption shocks confronting the innovators within
an economy. In addition, Panel (b) illustrates that the dashed line, which is positioned
above the solid line, indicates that an increase in v{’ mitigates the negative externality from
adopters for innovators. In Panel (c), the shapes of the two lines of adopting product values
are similar to those in Panel (b). This shows that followers” adopted products also suffer
negative technology externality from other firms” adoption.

Now we explain the channels through which technology adoption affects growth. Specif-
ically, growth is driven by (i) new entrants and (ii) existing incumbents. The aggregate
innovation rate is essentially influenced by the stock of knowledge capital that has been
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Figure 5: Firm—product value
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accumulated through innovation (K”) and technology adoption (K*), as well as the rate of
innovation (), as captured by the following equation:

p' =nPl+ (K" + K"\ (19)

Table 7 reports the value of each component of the aggregate innovation rate for dif-
ferent values of v/!. We observe that as the cost parameter decreases from ~{ = 10,000 to
711 = 50, there is a notable increase in the amount of knowledge capital acquired through
technology adoption, with K# rising from almost 0 to 2.07. Given that the measure of
K' is held constant at one, K# = 2.07 suggests that technology adoption has become a
substantial contributor to the firm’s knowledge base. This channel is called the knowledge
accumulation mechanism through technology adoption. However, the rate of innovation (\)
decreases as more technology adoption results in more negative technology externalities for
existing innovation. This channel is called the negative technology externality from technol-
ogy adoption. These two channels are not considered in other Klette-Kortum type models.
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Technology adoption in our model increases the amount of private knowledge capital by
two-folds but the innovation arrival rate decreases by 30%.%° Therefore, the aggregate in-
novation still increases.

Table 7: Variables directly related to aggregate growth (u')
pt npPl K'OKT A
i = 50 0.237 0.022 1 207 0.07

¥ =100 0210 0.030 1 1.30 0.08
v =10,000 0.156 0.050 1 0.05 0.10

To better understand the impact of technology adoption on aggregate innovation in this
model, we decompose the growth in aggregate innovation as v{’ decreases from 10,000 to
50. The results are reported in Table 8. The model suggests that the accumulation of pri-
vate knowledge significantly boosts aggregate innovation while simultaneously reducing
innovation incentives for entrants and incumbents. Following the analysis in section 4.5,
technology adoption contributes to 250 percentage points of aggregate innovation through
the knowledge accumulation channel, while it reduces innovation of incumbents by 116
percentage points. Moreover, reduced innovation incentives of entrants lead to a decline by
34 percentage points.

Overall, the negative impacts of technology adoption on innovation incentives are out-
weighed by its positive contribution to innovation through knowledge accumulation. The
aggregate innovation increases by around 50%.

¥t is calculated as 1 — %27, Note that the innovation value also decreases by around 35%, a comparable
magnitude. This is not a coincidence as the innovation arrival rate reflects the innovation incentives stemming
from the innovation value, as clearly shown in the FOC equation for A in equation (5). This reduction in
innovation value is 35%, which is relatively small compared to the increment of private knowledge growth
rate by two-folds. The modest reduction in innovation value is because innovators have a window of time to

enjoy high profits before adoption occurs.
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Table 8: Aggregate Innovation Growth Decomposition due to Technology Adoption Cost
Reduction

Entry Knowledge accumulation Incumbent incentives Aggregate
Actual values -0.028 0.20 -0.09 0.081
Percentage -34% 250% -114% 100%

Notes: We decompose the growth in aggregate innovation (u!) as v{ decreases from 10,000 to 50, based on
Equation (19). We use the value of v/ in parenthesis to indicate the state of the economy. Growth in entrants
innovation is obtained by 77(50)P,{ (50) — n(lOOOO)P,{ (10000). Growth from the private knowledge channel
is obtained by [K*(50) — K*(10000)]A(10000). Growth from the incumbent innovation incentive channel is
obtained by [K + K*(50)][A(50) — A(10000)].

7 Conclusion

Empirical evidence from China highlights the importance of technology adoption through
product expansion in driving economic growth after 1978: Both the number of producers
within each product category and firms’ product diversity have increased, despite histori-
cally low R&D intensity. Our firm-level evidence shows that innovation capability benefits
from greater product diversity, which is primarily driven by technology adoption. These
facts offer a new perspective on technological growth, particularly in developing economies
like China. In reality, some firms produce the same goods as industry leaders, even though
they are not at the frontier. These firms also benefit from learning by doing, through which
they enhance their innovation capability. Therefore, lowering the cost of technology adop-
tion serves as a powerful driver of innovation.

However, endogenous growth theory has not modeled this aspect yet. Standard mod-
els, such as Klette and Kortum (2004), do not leave a space for private knowledge from
technology adoption. Meanwhile, the single-product frameworks in Aghion et al. (2005)
and Lucas (2009) do not incorporate product expansion. To fill the gap, we propose a new
model to capture this dynamic as an important driver of productivity gains, consistent with
the historical experience of the Chinese manufacturing sector.

We quantify this model using data from Chinese manufacturing firms in the 2000s. The
model not only fits traditional moments well, such as the firm size distribution, the growth
rate, R&D intensity, but also captures the distribution of profitability and product scope.
These features better reflect real-world patterns of competition and product expansion.
Counterfactual exercises show that two-thirds of the technology knowledge behind prod-
uct lines is obtained through technology adoption and accounts for one-third of aggregate
innovation. This represents a radical departure from the Klette-Kortum framework and
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provides a closer match to the real world. This new framework lays a foundation to quan-
tify a wide range of development patterns, including but not limited to knowledge transfer
from foreign direct investments, imitation strategies adopted by entrants, the impact of
counterfeit products, among others, particularly in emerging markets.
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A A Case Study of Tencent in China

Tencent’s products have been widely regarded as exhibiting imitative characteristics, mir-
roring the functionalities of established domestic and foreign predecessors. For instance,
the early version of its QQ instant messaging service shares similarities with ICQ (Xie et al.,
2006). Its chess and card games mirror those of Lianzhong, another Chinese gaming com-
pany. The QQ Hall and the Korean Bubble Hall also share many similarities in both game
roles and game play mechanics. Even the bubble chat features of WeChat exhibits similar-
ities to the Talk Box, a startup from Hong kong (FTimes, 2017; The Economist, 2020). Ten-
cent’s founder, Pony Ma, has openly defended the company’s imitative strategy, stating,
“I do not pursue innovation blindly; Microsoft and Google have also engaged in activities
previously undertaken by others. The wisest approach is to study the best practices and
then strive to surpass them.”

The example of Tencent offers several insights about technology adoption. First, the
company effectively accumulates knowledge through technology adoption across various
tields, facilitating the development of new products. Failing to acknowledge these impacts
may lead to underestimation of the role played by technology adoption on growth and
overemphasis of the significance of strict IPR protection in fostering innovation. Second,
it is worth noting that even large and productive firms such as Tencent also engage in im-
itation practices for fast expansion, including imitation of small firms. This observation
challenges the prevailing assumptions in knowledge diffusion literature, that unproduc-
tive firms imitate more than productive firms. In reality, the peripheral products of the
large and productive firms do not necessarily have advantages over the core products of

smaller firms.

B Appendix to the Data

B.1 Data Sources

The primary source of data in our analysis is the Chinese manufacturing survey. This
dataset was collected annually by the National Bureau of Statistics in China from 1998 to
2007. It encompasses a wide range of manufacturing firms with various ownership types.
Specifically, it includes all the firms with an annual revenue surpassing 5 million RMB, as
well as all the state-owned enterprises (SOEs). The manufacturing survey provides valu-
able information such as revenue, production cost, R&D expenditure and employment for
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each firm.** Between 2000 and 2006, the sample consists of 457,385 firms and 1.56 million
firm—year observations. The average revenue is 64 million RMB.

We supplement the Chinese manufacturing survey with the production quantity dataset
at the product-firm—year level between 2000 and 2006. This dataset contains a total of 729
product category codes. Since the granularity of product category codes is not fine enough,

we refer to each code as a product category rather than an individual product.?”

B.2 The Merged Dataset

By merging the two datasets, the number of firms decreases to 180,123 and the number of
tirm-year observations decreases to 542,785. This reduction is primarily attributable to the
scope of the product quantity dataset, which is limited to products listed in the Catalog of
Industrial Product Output for Above-Scale Enterprises. This catalog excludes components
and semi-finished products, leading to a more focused but smaller sample. This sub-sample
covers 64% of total revenue in the raw data.”® Therefore, this merged dataset remains rep-
resentative of Chinese manufacturing industries.

The manufacturing survey provides valuable information such as value added, revenue,
production cost and R&D expenditure. For robustness checks, we also combine it with
the quantity dataset and the customs dataset, and obtain a more detailed dataset on the
number of products. These variables serve as crucial inputs for the estimation and analysis
of the model parameters. The parameters of the model are identified using several key
indicators, including the distribution of firm size, the distribution of number of products,
the distribution of profit rates, R&D expenditure, and the growth rate.

%For a deep discussion of this dataset, see Brandt et al. (2012).

3By comparison, the World Customs Organization, which maintains the Harmonized System (HS) code
system, typically has 99 2-digit headings and over 1,200 4-digit headings. Therefore, the granularity of prod-
uct category codes in the production quantity dataset is finer than at the 2-digit HS level but does not reach
the specificity of the 4-digit HS code level. Trade economists usually define a product at the 6-digit HS code
level.

%Rubens (2023) also merges the Chinese manufacturing survey and the quantity dataset to research the
Chinese tobacco industry. In the Chinese manufacturing survey, the sample consists of 470 tobacco firms and
2,025 observations. Combining both datasets reduces the sample size to 1,132 observations and 257 firms.
This sub-sample covers 78% of total revenue in the raw data.
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B.3 Product Category and HS Code

Table B.1: Three distributions of firms” product numbers in 2006

Sample Merged Exporters Exporters
Product Definition Category Category HS6
# Products 1% 1 1 1
# Products 5% 1 1 1
# Products 10% 1 1 1
# Products 25% 1 1 2
# Products 50% 1 1 4
# Products 75% 2 2 9
# Products 90% 3 3 20
# Products 95% 3 3 29
# Products 99% 5 6 51

In the merged dataset, only 45% of firms in 2006 produced more than one product category.
However, the granularity of product variety may not be sufficient enough in the dataset,
potentially leading to an understatement of the diversity of a firm’s product portfolio. To
address this limitation, we merge this dataset and the Chinese customs dataset that records
richer data on types of products at the 8-digit Harmonized System (HS) code level. The dis-
tributions of the number of all firms” categories, exporters’ categories and exporters” HS6
products are reported in Table B.1. First, the distribution of the number of product cate-
gories is close for the merged subsample and the exporter subsample, except that exporters
at the 99 percentile produce one more category than the merged subsample. This implies
that the selection bias in exporters is not a problem to be concerned. Regarding the number
of HS6 products, more firms are multi-product firms in the customs dataset. Among the
exporters in the merged dataset, the average number of product categories produced is 1.7,
with an average of 8.1 unique HS6 products exported per firm. Based on the information
on product categories, 45% of the exporters are classified as multi-product firms, while a
larger percentage, specifically 76% of firms, export more than one HS6 product.

B.4 Procedures to Obtain the Number of Firms in Each Product Market

Product Code Unification. Between 2000 and 2006, there were two different versions of
product classification codes. The first version, used from 2000 to 2003, contained 529 codes.

The second version, during 2004-2006, includes 401 codes. In the transition between ver-
sions, 173 codes from the first version were discontinued after 2003, and 45 new codes were
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introduced in the second version.

Since the National Bureau of Statistics of China did not publish an official concordance
table between the two versions, we develop a mapping methodology based on single-
product firms, which are likely to maintain production of the same code across 2003 and
2004. The mapping procedure is implemented as follows:

1. Select all of the single-product firms operating in 2003.
2. Identify firm-product pairs for these firms across 2003 and 2004.

3. Categorize firms into distinct groups based on their 2003 product classification, where

3003 denotes the set of single-product firms producing product ;.

4. For product j, we calculate the number of 2004 product classification. We use g}, to
denote the set of firms that produce j in 2003 and produce 7 in 2004.

5. Calculate the probability as %&4, which indicates the likelihood that product 7 in

92003

2004 classification is product j in 2003 classification. Establish a product mapping
J — i between 2003 and 2004 classifications when this probability exceeds a threshold
value, which is set at 0.33 based on empirical judgement.

6. However, many-to-one and one-to-many mapping scenarios may exist. All products
can map to j or ¢ directly or indirectly are treated as a product group.

Finally, we identify 375 unique product groups. Among them, 298 product groups contin-
uously appeared from 2000 to 2006.

Count the Number of Firms in Each Product Market. In the Chinese manufacturing sur-
vey, the number of firms in 2000 is 45% of that in 2006. In the merged dataset, this figure is
77%. To ensure consistency with the survey’s firm ratio, we randomly selected 70% of firms
in 2000 from the merged dataset. Then we make Panel A of Table 1 based on this subset.

B.5 Sample Selection Bias Correction

We adopt the Heckman two-step model to address the sample selection bias in product
counts for the merged dataset. In the first stage, we formulate the selection equation to
estimate the probability of a firm being included in the quantity production dataset. The
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regression is as follows:

1{Merged Sample} = ay + ailog(age) + aslog(capital) + a3 T F P + Fixed effects + ey,
Using this equation, we generate the predicted probability of being included for all ob-
servations as Pj.

Next, we calculate the Inverse Mills Ratio (IMR) by dividing the estimated probability
density function by the cumulative distribution function.

In the second step, we use the multinomial logit model to estimate the following regres-
sion for the merged sample:

#Category = By + Pilog(age) + Balog(capital) + BT FP + 3,1 M R + Fixed effects + €«
The estimation results of the two stages are reported in Table B.2.

Table B.2: Heckman two-step model

Step 1 Step 2
Dummy #Cat.2 #Cat3 #Catd #Catbh #Catb
log(age+1) -0.184*** 0.59 -0.15***  -0.15* -0.13 -0.29**
(0.015) (0.046) (0.06) (0.10) (0.16) (0.14)

log(capital+1)  0.034**  -0.03** 0.069*** 0.18** 021** 0.30***
(0.0013) (0.004)  (0.007) (0.012) (0.02) (0.031)

TFP 0396  0.056™* 0477+ 1.0%*  14% 170"
(0.003) (0.022) (0.032) (0.05)  (0.06) (0.088)
IMR 0.974%%  0.95%* -0.48*** -0.89%*  -0.72*
(0.08)  (0.12)  (0.18)  (0.27)  (0.39)
R? 0.16 0.24
Obs 1,399,375 531,938

Notes: Step 1 is estimated by OLS; Step 2 by multinomial logit. Fixed effects for province, industry, year, and
ownership are controlled for. Coefficient p-values are: *p < 0.10,** p < 0.05,*** p < 0.01.

Finally, we predict the product category counts for the full sample. The results are re-
ported in Table B.3. First, we compare the distribution between the data and the model
prediction for the merged dataset. The prediction from the Heckman two-step model per-
forms well. We also report the predicted distribution for the full sample, which shows a
shorter right tail, as the size of firms in the full sample is averagely smaller than the merged
sample.
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Table B.3: Results of the Heckman two-step method

Method Data Prediction Prediction
Sample Merged Merged Full
# Products 1% 1 1 1
# Products 5% 1 1 1
# Products 10% 1 1 1
# Products 25% 1 1 1
# Products 50% 1 1 1
# Products 75% 2 2 1
# Products 90% 3 3 2
# Products 95% 3 3 3
# Products 99% 6 6 4
Obs 539,384 531,384 2,216,397

B.6 Additional Empirical Findings

In this subsection, we document several additional empirical findings that are consistent
with the model predictions.

Empirical finding 1a. The expansion of a firm’s product diversity predicts the growth of
its R&D expenditure.

Recall that Stylized Fact 2 only indicates a positive correlation between an individual
firm’s R&D expenditure and its product diversity. Confounding factors and reversal causal-
ity may bias the results. To alleviate these concerns, we take the first difference of all the
variables to remove the time-invariant firm characteristics, such as the firms’ long-term
strategies in product diversity and R&D, in driving the co-movements of the two key vari-
ables. We further lag the differenced product diversity by one period to further reduce
endogeneity. Table B.4 reports the results. The estimated elasticity is stable between 0.11
and 0.17 across three specifications, with significance at 1% level. Hence, the expansion of
a firm’s product diversity predicts the growth of its R&D expenditure.
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Table B.4: Product diversity expansion and R&D expenditure growth

Alog(R&D)
I II I1I
L1.Alog(scope) 0.11*** 0.14*** 0.17***
(0.028) (0.027) (0.029)
Alog(firm size) 0.20***  0.018***
(0.014) (0.013)

Notes: OLS. The sample includes year 2005 and 2006 when R&D expenditures and their one-period lags were
recorded. The number of observations is 88,232. For column III, we control for the differenced productivity,
together with industry, city, ownership, and year fixed effects. Coefficient p-values are: *p < 0.10,**p <
0.05,"** p < 0.01.

Empirical finding 2a. A firm’s product scope is positively correlated to its R&D intensity.

Table B.5: Product diversity and R&D intensity

log( R&D intensity )
I II
log(scope) 0.18*** 0.35%**
(0.008) (0.009)
log(firm size) -0.48***  -0.41***
(0.002) (0.003)

R? 0.11 0.31

Notes: OLS. The sample includes year 2001, 2004, 2005 and 2006 when R&D expenditures are recorded. The
number of observations is 296,300. R&D intensity is defined as the ratio of R&D expenditures over value
added. For column III, we control for productivity, together with industry, city, ownership, and year fixed
effects. Coefficient p-values are: *p < 0.10,** p < 0.05,*** p < 0.01.

Empirical finding 3a. A firm’s product scope is a powerful indicator for its firm size.

In Table B.6, we demonstrate a strong positive correlation between firm size and product
scope. Firm size is measured using three different variables: revenue, value added and
employment. The positive correlation consistently holds across all the measures. In the first
row, the correlation coefficients range from 0.25 to 0.31. In the second row, the elasticity of
tirm size with respect to the number of product categories is estimated between 0.26 and
0.27. In the third row, the conclusion still holds even when controlling for the TFP.*

¥Firms’ total factor productivity (TFP) is estimated by following Ackerberg et al. (2015).
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Table B.6: Firm size and product scope

log(revenue) log(value added) log(employment)

Correlation 0.25 0.24 0.31
Elasticity 0.27 0.26 0.27
Elasticity (TFP controlled for) 0.28 0.29 0.26

Notes: The sample includes all firm—year observations between 2000 and 2006. Elasticity is denoted by g,
estimated through the regression log(size;:) = By + Silog(scope;;) + €. In the third column, we control for
productivity to estimate ;s as robustness checks. All estimated ;s coefficients are significant at the 1% level.
Ordinary least squares (OLS) regression is used.

Previous empirical studies on multi-product firms have shown a similar positive re-
lationship between firm size and product scope; see the empirical evidence from the US
(Bernard et al., 2010) and India (Goldberg et al., 2010). These studies collectively suggest
that differences in productivity cannot fully explain the observed gap in firm size due to
product scope. Specifically, Bernard et al. (2010) find that the TFP of multi-product firms is
only 2% higher than that of single-product firms, and Goldberg et al. (2010) report a differ-
ence of 1%. In our dataset, the difference in TFP between multi-product and single-product
tirms is 2.5%.

Empirical finding 4a. The existing product scope is a more crucial factor for the product
expansion than productivity.

To examine the number of product categories added by firms, we select a sample of
firms that were active in both 2000 and 2006. This yields a cross-section dataset of 66,914
firms. A new product category is defined based on the records that the product quantity
was positive in 2006 but was zero in 2000. To investigate the relationship between the firm’s
capability to add new products and the number of existing products, we calculate the av-
erage number of new products for four distinct groups based on firms” existing product
scope. The results, presented in Figure B.1, indicate that firms with 1-9, 10-19 ,20-29 and
30-39 existing product categories add on average 0.05, 1.01, 3.4, and 4.6 new product cate-

gories, respectively.®

40We exclude the group of firms with more than 40 products from this analysis, as this group comprises
only five firms. The sample size is too small to be statistically reliable.
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Figure B.1: Average number of new products by product scope

4.6
3.4
1.01
0.05 -
19 10-19 20-29 30-39

Scope

Notes: The sample includes firms that produced both in 2000 and 2006. By dividing the firms from year 2000
into four groups based on the number of active product categories they had, we calculate the average number
of new products for each group over the period.

We demonstrate that the propensity of firms to add new product categories depends
more on their existing product scope than on their productivity level. To illustrate this
point, we regress the number of new product categories on product scope and produc-
tivity. Table B.7 reports the regression results. The estimated elasticity of the number of
new product categories to the existing scope is 0.096 and statistically significant. Even after
controlling for productivity, this estimated elasticity remains significant in column II of the
table. By contrast, the elasticity with respect to the TFP is substantially smaller, at just 0.01,
suggesting that existing product scope is a more crucial factor for the expansion of product
categories than productivity.

Table B.7: Two determinants of product addition

log(# new product categories)

I I I
log(scope) 0.088** 0.096***
log(TEP) 0.014***  0.017***
R? 0.030 0.034 0.002

Notes: OLS. The number of observations is 66,914. Coefficient p-values are: *p < 0.10,"* p < 0.05,"** p < 0.01.

This relationship between firm product scope, the addition of new product categories
and productivity is well-established in the literature. Bernard et al. (2010) document that
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US multi-product firms are more likely to expand their product lines, with 68% adding new
products compared to only 39% of single-product firms. The elasticity of new product ad-
dition in relation to productivity is notably minimal, recorded at 0.014 for single-product
firms and even lower at 0.0026 for multi-product firms. A similar pattern is also docu-
mented for India (Goldberg et al., 2010) and Chile (Navarro, 2012).

B.7 Empirical Findings on SOEs

Since SOEs are responsible for executing Chinese national public affairs, there is concern
that their product expansions or innovation patterns may result from administration man-
dates instead of product diversity or technology adoption experience. To assess whether
SOEs’ behavior aligns with the pattern observed in the full sample, we conduct the same
analysis using only the SOE subsample. The results show that the estimated coefficients are
similar, suggesting that SOEs’ behavior is broadly consistent with the overall findings.

Empirical finding 1b. SOEs” product scope is positively correlated to its R&D expendi-
tures and R&D intensity.

Table B.8: Product diversity and innovation investment (SOEs)

log( R&D ) log( R&D intensity)
I I I v \Y% VI
log(scope) 0.80*** (0.38*** 0.33*** -0.1*** (0.37** 0.34**
(0.016) (0.016) (0.018) (0.016) (0.016) (0.018)

log(firm size) 0.49%  (.64%** 0.51%%  -0.35%+
(0.005) (0.007) (0.005)  (0.007)
R? 004 017 042 00006 0.14  0.40

Notes: OLS. The sample includes year 2001, 2004, 2005 and 2006 when R&D expenditures are recorded. The
number of observations is 64,062. For column III, we control for productivity, together with industry, city, and
year fixed effects. Coefficient p-values are: *p < 0.10,"* p < 0.05,"** p < 0.01.

Empirical finding 2b. The existing product scope of SOEs is a more crucial factor for the
product expansion than productivity.
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Table B.9: Two determinants of product addition (SOEs)

log(# new product categories)

I I III
log(scope) 0.060*** 0.061***
log(TFP) 0.010***  0.005***
R? 0.090 0.10 0.001

Notes: OLS. The number of observations is 13,809. Coefficient p-values are: *p < 0.10,** p < 0.05,*** p < 0.01.

C Appendix to the Model

C.1 An Example of Cobb-Douglas Production Function for Innovation
Technology

Assuming G'(R!, k) = Ak*(R")'™*, 0 < a < 1, based on CRS, we derive

» R!

A= AR*(RN = k(AE?)l‘a.
We define A = (A= %I)l_a so that A = k.
Given ¢! = RTI, we have
o = A Ta )T, (C.1)

Since we assume that ¢’ is governed by the two cost parameters such that ¢/ (\) = 7/ \2,
the two cost parameters can be expressed as:
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C.2 Solution for the Static Problem

Proposition 1. In Case 2, when the innovator and its technology adopters have identical marginal
costs in a product market and conduct Bertrand competition with capacity precommitment, the

markup of the product is determined by the number of adopters (n) in the market. Moreover, the

E 1

T T4 Both the markup and the profit decrease in n.

markup is 2. The profit is w(n) =

Proof: In a product market, there are n firms with the same level of technology. The inverse
demand curve, which is of unit elasticity, is p({z; }I- ) = Z%ox-’ where z; denotes the quan-

tity sold by firm ¢. Based on Kreps and Scheinkman (1983), the solution for the Bertrand
competition with capacity precommitment can be solved via a Cournot competition game.
Using Firm 0 as an example, the optimal output by Firm 0, z,, can be derived by solving
the following profit maximization problem:

max - p({zi}ize)zo — co. (C.2)

By substituting the inverse demand function into Equation(C.2), we obtain:

E
max —.——Ty— CTg. (C.3)

o D ico Ti

From the FOC for z, we derive the optimal response function:

i=1

In equilibrium, zy = ... = x, = x. Substituting this condition into Equation(C.4), we
solve for:
_E n
S (1+mn)?
B E _1+n
b= (1+n)z  n “

Finally, we conclude that p = (1 + +)c and the profit rate 7(n) = —. It is evident that
both the markup and profit rate decrease as the number of imitators n increases. The profit

ism(n) = H%ﬁ(n) O
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C.3 Product Portfolio

A product portfolio is composed of three sub-portfolios: 1) the sub-portfolio of innovative
products that monopolize the corresponding markets, denoted by g'; 2) the sub-portfolio
of innovative products that are suffering from adoption, denoted by ¢™; and 3) the sub-
portfolio of adopting products, denoted by ¢™. Taking the left panel in Figure 1 as the
example, the structure for each market and the portfolio for each firm can be described in
Table C.1. Panel A of the table lists the number of adopters in each market. In Panel B, we
list the firms and their product portfolios.

Table C.1: Firms, markets and portfolios
Panel A. Markets and structure

Market Number of adopters Structure

1 0 Monopoly
2 1 Duopoly

3 0 Monopoly
Panel B. Firm-specific product portfolios

Firm Portfolio

A q™={2}

B a'=(1}, q={2}

C q'={3}

C.4 Solving the Value Function

Proposition 2 Following the summation form in Equation (4), we use the firm value function in
Equation (3) to derive 2n™® +1 equations to obtain the value of v*, {v™(n)} 21", and {v™(n)}"_1"

n=1 n=1 7

given firm decisions {\, h} and shocks {u", n™}.

Proof: First, we guess and verify that the summation in Equation (4) solves the value
function in Equation (3). The details of the 2n™** + 1 product values are guessed by Equa-
tions (C.5), (C.6) and (C.7). Substituting the three equations into Equation(4) , we obtain
Equation(3) and verify the summation form.

o= 0+ (—wC(A) + \'(0)) + (~wCH (h) + hEv™) + p™v™(1) (C.5)
r— XA+ pul +pum
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o(n) = m(n) + (—wCH(\) + Av’(0)) —i;L(—[wCHn(lh) + hEV™) 4+ ™0™ (n + 1) (C6)
rpl 4 p

o(n) = m(n) + (—wCT(A) + M’ (0)) J:L(—IwCHW(Lh) + hEV™) 4+ ™™ (n + 1)‘ )
r+ut+u

Second, we show that vf, {v™(n)}""1", {v™(n)}""]" can be solved through the 2n™ + 1

n=1 > n=1

equations given by Equations (C.5), (C.6) and (C.7) if i, A, /, and p™ are known.

We can substitute Equations (C.5), (C.6) and (C.7) into the value function and verify it.
O

C.5 General Equilibrium

The general equilibrium is the allocation of resources to production, innovation, adoption,
and entry {I*(n), " (n), " (n),1*"v}, the likelihood of entrants and incumbent firms’ choice
of innovation P/, the innovation rate ), the adoption rate 5, the price markup in markets
without adoption p'°?, the markup in markets with n(> 0) adopters {u"***(n)}, the aggre-
gate destruction rate p!, the rate of encountering adoption y™, and the distribution of the
product market structure { M (n)}, the wage rate w and the real interest rate r:

(i) Given the wage rate w, workers maximize utility through utility functions (Equations
1 and 2) and obtain g = r — p from the Euler equation.

(ii) The entrant firm solves the entry problem (Equation 6).

lead

(iii) The leading firm sets the markup /** = %5 to drive existing producers out of the

market if the product is newly innovated.

(iv) When n adopters are in a neck-and-neck state, meaning that they have the same ad-
vanced technology as the innovator, they compete with each other using a markup

prek(n) = 2t in a Bertrand competition with capacity precommitment.

n

(v) Firms maximize the value of their portfolio (Equation 3) by choosing the innovation
rate \, adoption rate h.
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(vi) The aggregate creative destruction shock ! results from individual firm innovation
(Equation 13).

(vii) The rate of encountering adoption ;" is determined by the firm’s adoption decisions
(Equation 15).

(viii) The labor market clearing condition is satisfied (Equation 16).

(ix) The wage rate w is determined such that it balances the aggregate income of workers
and consumption (Equation 17).

(x) The distribution of the market structure on the BGP satisfies Equation (11).

C.6 Uniqueness and Existence of the Equilibrium

In this section, we show that there is a unique solution (!, u™) for any given (n, A, h, PT{ ) in
BGP. We only consider a simplified version where n™** = 1. For the more complex cases
(n™** > 1), the way to verify the uniqueness and existence of the solution is similar but
requires a heavier calculation load. The BGP satisfies:

I m I

p+p™ 0 _ (K
(M Y sar (1) <
p=nPl+X(1 2)M (C.9)
" =nP+h(1 2)M. (C.10)

Equation (C.8) can be written as AM = B. First, we use the elements of matrix A to
obtain the reverse of A directly:

1 I m
Al -  (H H ) ) C.11

(! + pm) (u) (0 ot (10
To obtain M, we substitute Equation (C.11) into Equation (C.8) to replace A~! and obtain:

M=A" (‘6[) = m ((’“‘6)2> . (C.12)
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Substituting Equation (C.12) into the second and third equations, we get:

(C.13)

Combining these two equations, we obtain

A A
1 m I H
% ——h,LL _n'PTI_—thPW .

Substituting this into the right-hand side of Equation (C.13), x! can be replaced by u™.
The solution of ;™ can be determined directly. Using the following numerical method, we
can check whether the solution satisfies uniqueness and existence for each given (A, h, P,{ .
We set the benchmark as (, A, A, PT{ )=(0.1, 0.2, 0.6, 0.5). We vary the value of these param-
eters and numerically check whether the equilibrium has a unique solution. As Figure C.1
shows, there is always a unique solution because of the unique interaction point between
the 45-degree line and the curve.
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Figure C.1: Uniqueness and Existence of the Equilibrium

Panel A. eta varies Panel B. h varies

Dlagonal_ [ Dlagonal_
187 ela=0.01 187 h=0.1
ela=0.1 h=0.4
E16¢ ela=0.5 | 5§ 167 h=1
= eta=0.9 -] he2
E 14 F E 14}
o =
E12¢} 12
] ]
i) @
E 1} E 1
=] ] )
08 | & 08}
- ©
L 05 £ 08
B 2
= D4 = 04
02 02
ol . . . ] o b . . . ]
V] 05 1 1.5 2 0 0.5 1 15 2
The rate of meeting imitation The rate of meeting imitation
'y Panel C. lambda varies
Dlagonal-
18 F lam=0.1 |
lam=0.4
5 16 lam=1
= lam=2 |
T 14
@
£ 1.2}
i)
@
E 4|
B
o
® 08
° }
B 06+ J
2 |
D04 :
02¢
o L . . . ]
1] 05 1 1.5 2

The rate of meeting imitation

Notes: The X axis denotes all possible values of 1™, and the Y axis value of the curves denotes the updated
1™ based on the RHS of Equation (C.13).

C.7 Empirical Evidence on Profitability and Technology Adoption

In this section, we present an empirical analysis to examine the negative impacts of adopters’
productivity and the number of adopters on technology leaders’ profitability within each
city-industry pair.*! We define technology leaders as firms in the top 10% of productivity.
To measure the extensive margin of competition, we count the number of firms that has no
R&D records in each city-industry pair as the number of adopters. In addition, we calculate

1 An industry is defined at the four-digit level of the Chinese Industry Classification (CIC) code.
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the average productivity of competing firms within the same city-industry pair. We expect
that both the number of adopters and the productivity of competitors will have a negative
effect on profit measures. The results are reported in Table C.2.

Table C.2: Profit and Technology Adoption

log(Firm Profit) log(Lerner index)
log(# Adopter) -0.26%*  -0.19*** -0.08*** -0.04***

(0.004) (0.007) (0.005) (0.008)
log(Competitor TFP) -0.11** -0.08*** -0.31*** -0.16***

(0.021)  (0.04) (0.03) (0.05)

Year NO Yes NO Yes
City NO Yes NO Yes
Industry NO Yes NO Yes
R? 0.05 0.07 0.013 0.13
Obs 81,878 81,878 81,878 81,878

Notes: OLS. Coefficient p-values are: *p < 0.10,"* p < 0.05,** p < 0.01.

D Appendix to Estimation

D.1 Estimation Procedure

D.1.1 Step 1. Generating firm decisions, aggregate shocks and market structure distri-
bution

The inputs of the economic system are exogenous parameters, which govern the discounted
utility, the shape of cost functions, technology upgrade size, discrete choices and entry costs.
With these parameters and states that are exogenous to individual firms, firms make dy-
namic decisions, and the aggregation of these decisions transforms them into exogenous
shocks to individual firms.

The explanations for the parameters are given in Table 3. With the given initializing pa-
rameters {+{,~4,74,74, 0, q, p, F'}, we solve for firm decisions and the corresponding aggre-
gate shocks. First, we use the backward iteration of the value function because this is a dy-
namic model. Note that Equation (4) provides a method to decompose firm dynamics into
product dynamics. Therefore, we do not have to solve for heterogeneous firm decisions; in-
stead, we discuss how firm decisions are made based on each product status independently.
There are 1+ 2n"** value functions to be estimated, of which one is for innovative products
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without infringement, there are n™* states for innovative products suffering infringement,

max

and there are n™** states for imitating products. The backward method begins on the last
day. Firms do not survive to the next day and earn profits on the last day. On the last day,
they only produce and do not make decisions for the future. With the definition of the last
day, the infinite dynamic model becomes finite. One day earlier, every product generates
profits, and firms make innovation decisions, and technology adoption decisions based on
the known future product statues. Furthermore, the aggregate destruction rate and the
infringement rate need to be calculated. FOCs help solve firm decisions {, A}. To solve
for the aggregate variables {u!, u™, M(n)}, equations (11), (13) and (15) are used. Having
solved for firms’ decisions and the corresponding aggregate rates, we solve for the value of
each type of product one day earlier. This step is repeated until the values converge. Then,
the decisions, shocks and market structure distribution, {\, k, !, u™, M(n)}, on the BGP are
obtained.

D.1.2 Step 2. Simulation

Now, we have firm decisions {\, i}, the market structure distribution {/(n)} and shocks
{u!, p™}. We assume that the number of entrants in one year is * = 1000. Moreover, one
year is defined as 100 days, so that the time interval d = 0.01. On each date, the number of
potential entrants is = 10. We use an ID generator to obtain firm IDs to identify entrants,
which are used for the entrant’s entire life.

The state of a firm’s product is (x,n). The first state variable « represents the method to
obtain knowledge capital, x € {innovation, adoption}, and the second state variable n indi-
cates the structure of the market where the firm’s product is located, n € {0, 1, ..., 4, }. The

number of all product markets is p™** = n%nz,

where 7P} denotes the measure of innovating
entrants. An array with p™ elements is generated to simulate all product markets. An
element in the array is one product market, which records the IDs and knowledge sources

of those firms that are active in this market.

A product market is composed of its active participants, market = (I Dy, [D1,1Ds, ..., ID,,).
The knowledge source is indicated by the order of IDs. The first ID, 1D, is the innova-
tor, and the other IDs denote adopters. The whole economy is composed of all markets,
{market,, market,, ..., market,ma= }. A simple example is described in Figure D.1. The ID of
a product market is p with 0 < p < p™e*.

For each entrant, we generate a uniform random variable u’,, € (0,1). If ul

ent

< PJ, then

the entrant obtains the first technology through innovation; otherwise, it chooses technol-
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ogy adoption.

For all markets, we use a uniform random variable @ to generate random numbers for
each product. The value of the number determines the method of acquiring new technol-
ogy: If & < Ad, then the firm uses the knowledge capital of the product to innovate; if
Ad < @ < Ad + hd, then the firm uses the knowledge to expand a new product through
technology adoption; and, otherwise, the firm does nothing.

Each market consists of innovators and adopters. Now, we introduce how the market
is formed. For each newly innovative product, we randomly assign it a product market,
and then it destroys the existing product market. The number of competitors in the market
becomes zero. The first firm ID in the market becomes the innovator’s ID, such as the firm
IDs 1, 7, 6, 4 in the first row in Figure D.1. For the newly adopted product, we randomly
assign a market for the product and add the adopting firm ID to the tail of the existing ID
array of participants. As a result, the number of competitors in the markets increases by
one, including the firm IDs 6, 33, 6 in the markets 1, 2 and 4, respectively.
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Figure D.1: A simple example of the state of an economy

Product ID
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1M
(34)
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Notes: This figure shows a simple example of an economy with only four product markets. The product IDs
for the four markets are 1, 2, 3 and 4. For each market, there is one innovator and several technology adopters.
For example, in the first market, there is one innovator and three adopters. The firm ID for the innovator is
1. The firm IDs for the adopters are 3, 5 and 6. IN and IM are short for innovation and adoption, respectively,
which imply the knowledge capital source.

D.2 Simulated Distribution of Productivity

We also present the simulated distribution of firm productivity at a selected date along the
BGP. The results are shown in Figure D.2. Although our model does not specifically target
the moments of productivity in the model fitting, the simulated distribution exhibits fa-
vorable characteristics. The simulated distribution aligns with the key features targeted
by Konig et al. (2016), that also model innovation and adoption together. Specifically,
both high-productivity and low-productivity firms follow power laws, and the distribu-
tion shifts consistently over time in an affine manner.
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Figure D.2: Simulated distribution of firm productivity
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Notes: To obtain the firm productivity in the model, we completed the following procedures. First, we col-

lected the upgrade times «/ for each product j in the simulation. In addition, we collected 7, the num-

ber of labor units used to produce product j by firm i. Second, we calculated the quality or productiv-
ity of each product by logTFP? = k7log(q). Third, we calculated the physical output (adjusted by qual-
ity) for each firm-product pair logQ’? = logT' FP7 + log(l?). Finally, we obtained the firm productivity by
log(TFP;) = log(Q;) — log(l;), where Q; and [; are the aggregate output and input in production by firm 1,
respectively.
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