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A B S T R A C T

We present a general framework for optimal nonparametric spot volatility estimation based
on intraday range data, comprised of the first, highest, lowest, and last price over a given
time-interval. We rely on a decision-theoretic approach together with a coupling-type argument
to directly tailor the form of the nonparametric estimator to the specific volatility measure
of interest and relevant loss function. The resulting new optimal estimators offer substantial
efficiency gains compared to existing commonly used range-based procedures.

1. Introduction

Most financial and macroeconomic time series exhibit time-varying volatility. Accurate assessments of said volatilities are
important for financial decision making and the evaluation of economic policies alike. Accordingly, a large econometrics literature
has emerged over the past several decades dedicated to the development of ever more reliable volatility estimation procedures. We
add to this burgeon literature by providing new optimal range-based volatility estimators.1 We rely on a novel decision-theoretic
approach together with a coupling-type asymptotic representation to explicitly tailor the form of the optimal estimator to the
volatility measure of interest and relevant loss function. In so doing, we demonstrate nontrivial efficiency gains for the new optimal
estimators compared to commonly used procedures.

Prompted by the increased availability of high-frequency intraday prices for a variety of financial assets and markets, most of the
volatility estimation procedures proposed in the more recent literature have been nonparametric, built on the notion of ever finer
sampled returns and corresponding infill asymptotic arguments (see, e.g., the introductory discussion in Andersen and Bollerslev
(2018)). In a stylized theoretical setting, the use of finely sampled intraday returns naturally affords more accurate volatility
estimates than the use of coarser, say daily, returns. Empirically, however, the presence of market microstructure ‘‘noise’’ presents
formidable challenges to the direct use of ultra high-frequency returns, necessitating more advanced robust inference procedures
and/or the use of ‘‘not-too-finely’’ sampled intraday returns (see, e.g., the discussion in Jacod et al. (2017) and Li and Linton (2022),
along with the many additional references therein).

✩ We would like to thank Xiaohong Chen, Frank Diebold (discussant), Rob Engle, Peter Phillips, Oliver Linton, Jun Yu, and participants at the SoFiE conference,
SH3 conference, and various seminars for their inspiring comments. J. Li’s research was partially supported by Ministry of Education in Singapore tier-1 grant
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1 Following the existing literature, we will refer to any estimator that exploits not only the information in the high and low prices over a given time interval,
but also the first and last prices over the interval, as a ‘‘range-based’’ estimator. When there is no ambiguity, we will also frequently use the word ‘‘volatility’’
as a catchall for any scale measure, the variance included.
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Meanwhile, pioneering work by Parkinson (1980) and Garman and Klass (1980), dating back almost half-a-century, first
emonstrated the increased accuracy for daily variance estimation afforded by harnessing the richer information embedded in the
aily high-low range and so-called “candlestick charts,” comprised of the open, high, low, and close prices over the day.2 This type

of daily data has long been freely available for a vast array of financial assets. It is now also readily available on an intraday basis.3
Importantly, and in parallel to the common use of ‘‘not-too-finely’’ sampled high-frequency intraday returns, intraday candlesticks
sampled at ‘‘not-too-fine’’ a frequency offer a similar built-in robustness to market microstructure noise, and as such holds the
promise of easy-to-implement improved volatility estimation.4 Yet, it remains an open question how to optimally exploit the full
information inherent in such candlesticks for said estimation.

We rely on ideas from decision theory to provide a definitive answer to this question. Classical decision theory generally invokes
specific parametric distributional assumptions to determine the optimal estimator that minimizes the specific risk. By contrast,
our high-frequency framework adopts a nonparametric approach. We leverage the infill asymptotic ‘‘coupling’’ method recently
developed by Bollerslev et al. (2021) to bridge the gap between our setting and the classical decision-theoretic approach. This
enables us to derive unique optimal high-frequency range-based spot volatility estimators corresponding to particular loss functions
(e.g., Quadratic or Stein) and volatility measures (e.g., 𝜎𝑡, 𝜎2𝑡 , 𝜎4𝑡 , or 𝜎−1𝑡 ). For spot estimation based on a single candlestick, we derive
closed-form analytical expressions for the optimal estimators. These estimators are non-standard, but straightforward to implement
in practice. In cases involving multiple candlesticks, we provide semi-closed form solutions for the optimal estimators and illustrate
how to employ machine learning tools to numerically compute the optimal estimation functions.

Our results are most closely related to the recent work of Li et al. (2022). Extending the original analysis in Garman and Klass
(1980) based on the assumption of a continuous-time price process with constant volatility to a high-frequency nonparametric infill
asymptotic setting, Li et al. (2022) propose a range-based estimator for the spot volatility that achieves the minimum asymptotic
variance within the class of unbiased linear estimators. Their proposal may be regarded as the best linear unbiased estimator (BLUE)
for spot volatility. While that analysis is informative, it is also incomplete, and by design much simpler than the present analysis. In
particular, a priori restricting the functional form of the estimator to be linear simplifies the search for the ‘‘optimal’’ estimator to a
search for the optimal set of weights, as opposed to a search for the risk-minimizing estimator in an infinite-dimensional functional
space. Importantly, restricting the functional form also does not guarantee that the resulting ‘‘shape-constrained’’ optimal estimator
is actually the optimal estimator.5 Indeed, as we demonstrate below, the ‘‘unconstrained’’ optimal nonparametric range-based spot
volatility estimators derived here often provide nontrivial efficiency gains compared to existing procedures hitherto derived in the
literature under various simplifying assumptions, the classical Garman–Klass estimator and the BLUE estimator of Li et al. (2022)
included.

Further relating our work to the existing high-frequency literature on nonparametric volatility estimation, most of the prior
theoretical work on optimal estimation of spot volatility (see, e.g., Foster and Nelson (1996), Comte and Renault (1998), Kristensen
(2010), and Chapter 13 in Jacod and Protter (2012)) has primarily been concerned with rate optimality. However, that optimality
criterion sheds little light on the estimators’ actual finite-sample performance.6 Another strand of the literature has instead
been concerned with the semiparametric efficient estimation of integrated volatility functionals (see, e.g., Mykland and Zhang
(2009), Jacod and Rosenbaum (2013), Renault et al. (2017), and Li and Liu (2021)). The optimality concept typically adopted in that
literature has been built on the convolution theorem and the related local asymptotic minimaxity results for locally asymptotically
mixed normal (LAMN) models (see, e.g., Le Cam (1960), Hájek (1972), Jeganathan (1982, 1983)). By contrast, our coupling theory
directly links the nonparametric range-based spot volatility estimation/decision problem with a non-Gaussian limit experiment. As a
result, the functional form of our new optimal estimators generally depend on the loss function and are quite nonstandard, although
straightforward to implement in practice.

The remainder of this paper is organized as follows. In Section 2, we start by outlining our nonparametric high-frequency setting
and basic assumptions, followed by a discussion of our key coupling arguments. We then introduce the new optimal range-based spot
volatility estimators and provide a characterization of their asymptotic properties. Section 3 illustrates the practical applicability of
the new estimators, and shows the intraday candlestick-based spot volatility estimates for a market portfolio for each of the eight
2022 prescheduled Federal Open Market Committee (FOMC) announcement days. We conclude with a few suggestions for future
research. All proofs are included in the Appendix, while additional theoretical and numerical results can be found in the online
Supplemental Appendix.

2 Candlestick charts are also routinely used by finance practitioners in the formulation of technical trading strategies. The first such documented use of
andlestick charting dates back to the 18th century and the Japanese rice trader Munehisa Homma; see, for example, Nison (2001) for an introduction to the
ain ideas.
3 High-frequency candlestick data is provided by various online trading platforms (e.g. E-Trade, Robinhood), publicly available databases (e.g., Yahoo Finance),

nd commercial databases (e.g., Bloomberg, Tick Data, TAQ).
4 Extending our ideas to range-based estimation with even finer sampled intraday candlesticks for which the noise cannot be ignored would be an interesting

irection for future research. However, as discussed further below, the requisite task of pinning down the fine structure of the noise and the underlying economic
echanisms presents formidable challenges beyond our main research question.
5 Of course, seemingly ad hoc functional-form restrictions do not necessarily result in efficiency loss. For example, in Gaussian linear regression models, the

rdinary least-squares estimator is also the uniformly minimum-variance unbiased estimator by the Lehmann–Scheffé theorem (see, e.g., Shaffer (1991)). That is,
he BLUE estimator is also the best unbiased estimator (BUE); see also the related recent discussion pertaining to possibly non-Gaussian linear regression models
n Hansen (2022) and Pötscher and Preinerstorfer (2022).

6 Kristensen (2010) does seek to characterize the optimal choice of the smoothing kernel. However, the underlying assumption that the volatility process has
ifferentiable sample paths rules out all Brownian stochastic volatility models, as well as any model featuring volatility jumps.
2
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2. Nonparametric range-based volatility estimation

2.1. Theoretical setting and decision-theoretic framework

The (log) price process 𝑃 is assumed to follow an Itô semimartingale defined on a filtered probability space
(

𝛺, , (𝑡)𝑡≥0,P
)

of
he form

𝑃𝑡 = 𝑃0 + ∫

𝑡

0
𝑏𝑠𝑑𝑠 + ∫

𝑡

0
𝜎𝑠𝑑𝑊𝑠 + 𝐽𝑡, 0 ≤ 𝑡 ≤ 𝑇 , (2.1)

where the drift process 𝑏 and the volatility process 𝜎 are both c àdlàg adapted, 𝑊 is a standard Brownian motion, and 𝐽 is a
pure-jump process driven by a Poisson random measure. We are interested in the optimal nonparametric estimation of the 𝑝th
power of the spot volatility, 𝜎𝑝𝑡 , at some fixed time 𝑡 under a standard infill asymptotic setting with the sampling interval 𝛥𝑛 → 0.
We will focus our discussion in the main text on cases with 𝑝 = 2 (variance) and 𝑝 = 1 (volatility). The same ideas may similarly be
pplied in the construction of optimal estimators for other powers 𝑝.7

The baseline Itô semimartingale in (2.1) is directly motivated by no-arbitrage arguments. However, it is well-known that the
process is misspecified empirically at ultra high, or tick level, frequencies. In addition to a host of market microstructure frictions
that ‘‘contaminate’’ the actually observed prices (see, e.g., Diebold and Strasser (2013) for a discussion of the underlying economic
mechanisms), prices are also not truly recorded on a continuous-time scale. The most commonly used approach to circumvent these
difficulties for the purpose of volatility estimation is to ‘‘down-sample’’ the available data, and rely on returns at ‘‘not-too-high’’ a
frequency 1∕𝛥𝑛. The practical choice of 𝛥𝑛 has typically been guided by the so-called volatility signature plot introduced by Andersen
et al. (2000) (see also the discussion in Hansen and Lunde (2006), and the recent formalization of that approach in Aït-Sahalia and
Xiu (2019)). The new estimation method proposed here is similarly intended to be used with ‘‘not-too-finely’’ sampled data. Put
differently, acknowledging that the workhorse Itô semimartingale model is only meant as a plausible approximation over ‘‘coarser’’
time scales, effectively allows us to follow the common approach in the literature and remain agnostic about the fine structure of
the market microstructure noise.8

The existing high-frequency econometrics literature on nonparametric volatility estimation has primarily been focused on
stimators formed using high-frequency returns; i.e., 𝑃𝑖𝛥𝑛 − 𝑃(𝑖−1)𝛥𝑛 . We augment the information in the high-frequency return by
‘looking inside’’ the 𝛥𝑛 time-interval through the lens of high-frequency candlesticks. More specifically, denote the 𝑖th sampling
interval by 𝑖 = [(𝑖 − 1)𝛥𝑛, 𝑖𝛥𝑛]. The corresponding candlestick then provides information on the open, high, low, and close prices,
formally defined by 𝑃(𝑖−1)𝛥𝑛 , sup𝑡∈𝑖 𝑃𝑡, inf 𝑡∈𝑖 𝑃𝑡, and 𝑃𝑖𝛥𝑛 , respectively. This information may be summarized in the form of the three
normalized) returns

𝑟𝑖 ≡
𝑃𝑖𝛥𝑛 − 𝑃(𝑖−1)𝛥𝑛

√

𝛥𝑛
, 𝑢𝑖 ≡

sup𝑡∈𝑖 𝑃𝑡 − 𝑃(𝑖−1)𝛥𝑛
√

𝛥𝑛
, 𝑙𝑖 ≡

inf 𝑡∈𝑖 𝑃𝑡 − 𝑃(𝑖−1)𝛥𝑛
√

𝛥𝑛
, (2.2)

here 𝑟𝑖 denotes the usual open-close return traditionally used for high-frequency-based volatility estimation, and 𝑢𝑖 (resp. 𝑙𝑖) refers
o the high (resp. low) return brought by the candlestick (to help fix ideas, see Fig. 1). All range-based estimators may be expressed
s functions of (𝑟𝑖, 𝑢𝑖, 𝑙𝑖). To facilitate our representation and subsequent discussion of the optimal estimators, it is convenient to also
efine the scaled range 𝑤𝑖 ≡ 𝑢𝑖−𝑙𝑖 (as also indicated in Fig. 1), and a measure of asymmetry 𝑎𝑖 ≡ |𝑢𝑖 + 𝑙𝑖 − 𝑟𝑖|. The asymmetry measure
uantifies the absolute difference between the lengths of the ‘‘wicks’’ above and below the rectangular box of the candlestick. The
andlestick is symmetric if and only if 𝑎𝑖 = 0.

To more clearly highlight the key novelty of our approach, we first focus on estimators based on a single high-frequency
andlestick “neighboring” 𝑡 in the sense that |𝑖𝛥𝑛 − 𝑡| = 𝑜(1).9 Optimal estimation with multiple adjacent candlesticks is discussed in
ection 2.4. Accordingly, we will express our estimators for 𝜎𝑝𝑡 generically as

𝑆 = 𝑓 (𝑟𝑖, 𝑢𝑖, 𝑙𝑖), (2.3)

or some function 𝑓 (⋅). Since spot volatility is fundamentally a “scale parameter,” we will restrict our attention to scale-equivariant es-
imators, requiring the function 𝑓 (⋅) to be homogeneous of degree 𝑝, that is, 𝑓 (𝜆𝑥) = 𝜆𝑝𝑓 (𝑥) for any 𝜆 > 0. We will further refer to the

7 Analogous results for 𝑝 = 4 (quarticity) and 𝑝 = −1 (precision) are presented in the online Supplemental Appendix.
8 Alternatively, one could impose more explicit assumptions about the form of the noise, and the way in which the prices observed at ultra high frequencies

iffer from the efficient prices. However, it is far from obvious how the noise component should be modeled, plus the ‘‘right’’ choice is invariably asset and/or
arket specific. For instance, are the conditional moments of the noise constant or time-varying; does the noise exhibit conditional and/or unconditional serial
ependence; should the noise be treated as ‘‘small’’ (i.e., local-to-zero) or ‘‘large;’’ is the noise correlated with the latent efficient price (see, e.g., Kalnina
nd Linton (2008), Zhang et al. (2005), Jacod et al. (2017), and Li and Linton (2022)). Further complicating matters, the broader econometrics literature on
onclassical measurement errors (see, e.g., Schennach (2020)) also calls into question the ‘‘classical’’ additive separability and mean independence assumptions
outinely invoked in the high-frequency econometrics literature, and instead suggests that the noise may be better accounted for using nonclassical models (as
n, e.g., Berkson (1950) and Hyslop and Imbens (2001)). Hence, while it is conceivable that the new approach developed here could be extended to allow for
he use of ultra high-frequency data by explicating the ‘‘fine structure’’ of the noise, any associated theoretical efficiency claims would come with the perhaps
ven more challenging task of justifying the additional requisite assumptions.

9

3

Note, the index 𝑖 generally also depends on 𝑛. We purposely suppress this dependence in our notation so as to avoid nested subscripts.
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Fig. 1. The figure shows two prototypical candlesticks, bearish and bullish, comprised of the open, high, low, and close prices. The corresponding return 𝑟𝑖,
range 𝑤𝑖, high return 𝑢𝑖, and low return 𝑙𝑖, as defined in Eq. (2.2), are explicitly highlighted.

estimator as regular if 𝑓 (⋅) is continuous (Lebesgue) almost everywhere. This regularity requirement seems rather innocuous. How-
ever, it ensures that any candidate estimator has a limit distribution that is also scale-equivariant.10 As shown in Theorem 1 below,
it also proves sufficient to ‘‘couple’’ the original nonparametric estimation problem with a much simpler limit decision problem.

In the analysis of scale estimation problems, it is also standard to gauge the estimator’s performance by a scale-invariant loss
function. For any non-negative loss function 𝐿(⋅) this is readily achieved by considering the scaled loss 𝐿(𝑆∕𝜎𝑝𝑡 ). Correspondingly,
the risk of the estimator 𝑆 may be succinctly expressed as

𝑅(𝑆;𝐿) ≡ E[𝐿(𝑆∕𝜎𝑝𝑡 )]. (2.4)

t is impossible to obtain an optimal estimator that minimizes 𝑅(𝑆;𝐿) under the general nonparametric model in (2.1). Intuitively,
s the joint distribution of the data vector (𝑟𝑖, 𝑢𝑖, 𝑙𝑖) is determined by the unknown joint law of the (𝑏, 𝜎,𝑊 , 𝐽 ) process this would
ssentially amount to an optimization problem with an infinite-dimensional nuisance parameter. Importantly, however, under mild
egularity conditions on the price process, the multiplicative estimation error 𝑆∕𝜎𝑝𝑡 may be shown to be asymptotically pivotal for any
egular scale-equivariant estimator. Consequently, the asymptotic loss and risk are both nuisance-free, simplifying the optimality
nalysis.

The following regularity condition, which is standard in the literature on nonparametric volatility estimation (see, e.g., Jacod
nd Protter (2012), Jacod et al. (2021), Bollerslev et al. (2021), and Li et al. (2022)) suffices for this pivotalization scheme to obtain.

ssumption 1. Suppose that the price process 𝑃 has the form in (2.1) and that there exists a sequence (𝑇𝑚)𝑚≥1 of stopping times
ncreasing to infinity and a sequence (𝐾𝑚)𝑚≥1 of finite constants such that the following conditions hold for each 𝑚 ≥ 1: (i) for
ll 𝑡 ∈ [0, 𝑇𝑚], |𝑏𝑡| + |𝜎𝑡| + |𝜎𝑡|

−1 + 𝐹𝑡(R ⧵ {0}) ≤ 𝐾𝑚, where 𝐹𝑡 denotes the spot Lévy measure of 𝐽 ; (ii) for some constant 𝜅 > 0,
[|𝜎𝑡∧𝑇𝑚 − 𝜎𝑠∧𝑇𝑚 |

2] ≤ 𝐾𝑚|𝑡 − 𝑠|
2𝜅 for all 𝑠, 𝑡 ∈ [0, 𝑇 ].

Assumption 1 necessitates that various processes are bounded by a finite constant 𝐾𝑚 up to a stopping time 𝑇𝑚, without requiring
he bound to hold over the entire sample span. This setup is commonly employed when applying localization, a standard technique
n stochastic calculus used for extending limit theorems under weaker conditions. For a comprehensive discussion on its application
n the analysis of high-frequency data, see, e.g., Section 4.4.1 in Jacod and Protter (2012). The parameter 𝜅, defined as the Hölder
ontinuity index for the volatility process 𝜎 under the 𝐿2 norm, pertains to the smoothness of 𝜎. If the volatility is driven by
Brownian motion, 𝜅 is at most 1∕2, and the volatility path is non-differentiable everywhere. This setting differs from typical

onparametric problems, where unknown functions are often assumed to be differentiable of higher order. Values of 𝜅 < 1∕2 also
ermits the volatility to exhibit ‘‘rough’’ paths, as emphasized by Gatheral et al. (2018) among others.

10 This mirrors the notion of regularity in Gaussian shift limit experiments that requires the estimator to be asymptotically location-equivariant (see, e.g., Van der
4

aart (1998)).
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The following theorem stipulates a general asymptotic representation for any regular scale-equivariant estimator 𝑆 = 𝑓 (𝑟𝑖, 𝑢𝑖, 𝑙𝑖)
allowed under these mild conditions. By linking the nonparametric estimation problem with that in a limit non-Gaussian experiment,
he result differs notably from the Gaussian shift experiment commonly used in the analysis of semiparametric efficiency, the
stimation of integrated volatility functionals included.

heorem 1. Under Assumption 1, any regular scale-equivariant estimator 𝑆 = 𝑓 (𝑟𝑖, 𝑢𝑖, 𝑙𝑖) with |𝑖𝛥𝑛 − 𝑡| → 0 may be expressed as

𝑆
𝜎𝑝𝑡

= 𝑓 (𝜁𝑖) + 𝑜𝑝(1), (2.5)

here 𝜁𝑖 ≡ (𝜁𝑖,𝑟, 𝜁𝑖,𝑢, 𝜁𝑖,𝑙) and

𝜁𝑖,𝑟 ≡
𝑊𝑖𝛥𝑛 −𝑊(𝑖−1)𝛥𝑛

√

𝛥𝑛
, 𝜁𝑖,𝑢 ≡

sup𝑠∈𝑖 (𝑊𝑠 −𝑊(𝑖−1)𝛥𝑛 )
√

𝛥𝑛
, 𝜁𝑖,𝑙 ≡

inf 𝑠∈𝑖 (𝑊𝑠 −𝑊(𝑖−1)𝛥𝑛 )
√

𝛥𝑛
.

The theorem shows that the multiplicative estimation error in 𝑆 may be decomposed into a nondegenerate leading term 𝑓 (𝜁𝑖) and
an asymptotically negligible 𝑜𝑝(1) term. The 𝑜𝑝(1) term absorbs various nonparametric biases stemming from the drift, time-variation
of volatility, and jumps. If the price was simply a scaled Brownian motion, this term would be identically equal to zero. Importantly,
the distribution of the 𝜁𝑖 random variable that determines the leading 𝑓 (𝜁𝑖) term is known in finite samples. To appreciate this point,
et 𝐵 denote a generic copy of the standard Brownian motion on the unit interval [0, 1] with 𝐵0 = 0. It then follows that

𝜁𝑖
𝑑
= 𝜁 ≡

(

𝐵1, sup
𝑡∈[0,1]

𝐵𝑡, inf
𝑡∈[0,1]

𝐵𝑡
)

. (2.6)

Since this distribution, and by implication the 𝑓 (𝜁𝑖) term in (2.5), are both nuisance-free, the multiplicative estimation error 𝑆∕𝜎𝑝𝑡
is therefore also asymptotically pivotal.11

If the loss function 𝐿(⋅) is continuous, Theorem 1 further implies an analogous coupling result for the estimation loss

𝐿(𝑆∕𝜎𝑝𝑡 ) = 𝐿
(

𝑓 (𝜁𝑖)
)

+ 𝑜𝑝(1). (2.7)

ollowing the literature (e.g., Le Cam (1986) and Van der Vaart (1998)), this naturally suggests defining the asymptotic risk of
ny regular scale-equivariant estimator as the expected value of the limit loss 𝐿

(

𝑓 (𝜁𝑖)
)

. By (2.6) the asymptotic risk may thus be
expressed as

𝑅(𝑆;𝐿) ≡ E
[

𝐿
(

𝑓 (𝜁 )
)]

. (2.8)

The distribution of 𝜁 is known in finite sample and so 𝑅(𝑆;𝐿) can be readily evaluated for any loss function 𝐿(⋅) and estimator
𝑓 (⋅). We will refer to a regular scale-equivariant estimator 𝑆 as optimal, or more precisely as an Asymptotic Minimum-Risk scale-
Equivariant (AMRE) estimator, if it minimizes 𝑅(𝑆;𝐿). Since this asymptotic risk does not depend on any unknown quantities in the
nonparametric model in (2.1), this optimality concept is valid in a uniform sense. As such, it also implies asymptotic admissibility
and minimaxity (within the class of regular scale-equivariant estimators). Consequently, any suboptimal estimator is necessarily
asymptotically inadmissible.

Theorem 1 is based on the Itô semimartingale model (2.1), which as previously noted does not explicitly incorporate microstruc-
ture noise. However, the same result remains valid if the observed prices are affected by ‘‘small’’ noise. Specifically, if the magnitude
of the noise is of order 𝑜𝑝(𝛥

1∕2
𝑛 ), the ‘‘noisy’’ observation of (𝑟𝑖, 𝑢𝑖, 𝑙𝑖) deviates from their true value by 𝑜𝑝(1), which, according to the

continuous mapping theorem, implies that (2.5) also holds for the ‘‘noisy’’ estimator. Intuitively, the 𝑜𝑝(𝛥
1∕2
𝑛 ) rate requirement for

the noise is more plausible when 𝛥𝑛 is not ‘‘too-small’’, consistent with the idea of not using ‘‘too-finely’’ sampled data, or coarse
sampling.12

In order to construct an AMRE estimator, it is helpful to recognize that the asymptotic risk of a regular estimation function
𝑓 (⋅) can be equivalently represented in terms of its finite-sample risk in a limit parametric model, where the (log) price process 𝑃
is a simple scaled Brownian motion (i.e., 𝑃𝑡 = 𝜎𝑊𝑡). This, in turn, facilitates the use of classical finite-sample theory for optimal
equivariant estimation in determining the optimal estimation function and the AMRE estimator.13 The AMRE estimators presented
in Sections 2.2 and 2.4 below, as well as the additional estimators discussed in the online Supplemental Appendix, are developed
using this approach.

11 This nuisance-free limit distribution also permits the construction of asymptotically valid confidence intervals for 𝜎𝑝𝑡 . For any 𝛼 ∈ (0, 1), let 𝐿 and 𝑈 be
constants such that P

(

𝐿 ≤ 1∕𝑓 (𝜁 ) ≤ 𝑈
)

= 1 − 𝛼. Then [𝐿𝑆,𝑈𝑆] is a confidence interval for 𝜎𝑝𝑡 at asymptotic level 1 − 𝛼. The length of the interval is minimized
by taking [𝐿,𝑈 ] as the 1 − 𝛼 level highest density interval of the distribution of 1∕𝑓 (𝜁 ).

12 In line with the existing empirical literature on high-frequency-based volatility estimation, we recommend adopting a 𝛥𝑛 = 5-min sampling scheme as the
default choice in practice. Simulation results in the online Supplemental Appendix also demonstrate that the noise, when calibrated to empirically realistic levels,
has a negligible effect on the resulting 5-min estimators. As the noise level becomes higher, the noise leads to larger positive bias in the volatility estimates,
and the shrinkage estimator derived from minimizing the quadratic loss tends to outperform other estimators.

13 According to Corollary 3.3.4 in Lehmann and Casella (1998), the solution to the functional minimization problem min𝑓 E
[

𝐿
(

𝑓 (𝜁 )
)]

exists and is unique,
provided that an equivariant estimator with finite risk exists and the function 𝑥↦ 𝐿(𝑒𝑥) is strictly convex and not monotone.
5
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2.2. Optimal estimation for spot variance and volatility

To streamline the presentation and more clearly highlight our main theoretical contributions, we will focus our discussion on
he optimal estimation of the spot variance 𝜎2𝑡 and the spot volatility 𝜎𝑡.14 We will restrict our attention to optimal estimators based

on Stein’s loss and the standardized quadratic loss,

𝐿Stein(𝑥) ≡ 𝑥 − log(𝑥) − 1, 𝐿Quad(𝑥) ≡ |𝑥 − 1|2. (2.9)

These specific loss functions arguably constitute the two most commonly used losses in practice. AMRE estimators for other, possibly
case-specific, loss functions could be derived similarly.

To facilitate the representation of the optimal estimators, it is helpful to define the functions 𝐺𝑞(⋅) and 𝐻𝑞(⋅) for any integer 𝑞 ≥ 0
as,

𝐺𝑞(𝑥) ≡ 𝜓𝑞
( 1 − 𝑥

2

)

+ 𝜓𝑞
( 1 + 𝑥

2

)

− 𝑥
𝑞 + 1

(

𝜓𝑞+1
( 1 − 𝑥

2

)

− 𝜓𝑞+1
( 1 + 𝑥

2

)

)

− 1 − 𝑥2
4(𝑞 + 1)(𝑞 + 2)

(

𝜓𝑞+2
(1 − 𝑥

2

)

+ 𝜓𝑞+2
(1 + 𝑥

2

)

)

, (2.10)

𝐻𝑞(𝑥) ≡ 𝜓𝑞
(

1 − 𝑥
2

)

+ 𝜓𝑞
(𝑥
2

)

− 𝑥
𝑞 + 1

(

𝜓𝑞+1
(

1 − 𝑥
2

)

− 𝜓𝑞+1
(𝑥
2

)

)

+ 𝑥2

4(𝑞 + 1)(𝑞 + 2)

(

𝜓𝑞+2
(

1 − 𝑥
2

)

+ 𝜓𝑞+2
(𝑥
2

)

)

, (2.11)

here 𝜓𝑞(𝑥) denotes the polygamma function of order 𝑞, that is, the (𝑞+1)th-order derivative of the logarithm of the Gamma function.
The 𝐺𝑞(⋅) and 𝐻𝑞(⋅) functions are both continuous almost everywhere, making them suitable for constructing regular estimators.15

Using these definitions, the subsequent theorem offers explicit analytical expressions for the AMRE estimators of the spot variance
and spot volatility under each of the two loss functions.

Theorem 2. Under the same setting as Theorem 1, we have
(a) the AMRE range-based estimator for 𝜎2𝑡 under Stein’s loss is asymptotically unbiased and given by

𝜎̂2Stein ≡
4𝑤2

𝑖
3

⋅
𝐺0(𝑎𝑖∕𝑤𝑖) −𝐻0(|𝑟𝑖|∕𝑤𝑖)
𝐺2(𝑎𝑖∕𝑤𝑖) −𝐻2(|𝑟𝑖|∕𝑤𝑖)

,

while the AMRE range-based estimator for 𝜎2𝑡 under standardized quadratic loss equals

𝜎̂2Quad ≡
32𝑤2

𝑖
5

⋅
𝐺2(𝑎𝑖∕𝑤𝑖) −𝐻2(|𝑟𝑖|∕𝑤𝑖)
𝐺4(𝑎𝑖∕𝑤𝑖) −𝐻4(|𝑟𝑖|∕𝑤𝑖)

;

(b) the AMRE range-based estimator for 𝜎𝑡 under Stein’s loss is asymptotically unbiased and given by

𝜎̂Stein ≡
√

2𝜋
3

𝑤𝑖 ⋅
𝐺0(𝑎𝑖∕𝑤𝑖) −𝐻0(|𝑟𝑖|∕𝑤𝑖)
𝐻1(|𝑟𝑖|∕𝑤𝑖) − 𝐺1(𝑎𝑖∕𝑤𝑖)

,

while the AMRE range-based estimator for 𝜎𝑡 under standardized quadratic loss equals

𝜎̂Quad ≡ 2
√

2
𝜋
𝑤𝑖 ⋅

𝐻1(|𝑟𝑖|∕𝑤𝑖) − 𝐺1(𝑎𝑖∕𝑤𝑖)
𝐺2(𝑎𝑖∕𝑤𝑖) −𝐻2(|𝑟𝑖|∕𝑤𝑖)

.

Comment 1. The asymptotic unbiasedness of the 𝜎̂2Stein and 𝜎̂Stein estimators is reminiscent of the classical finite-sample result that
minimum-risk estimators under Stein’s loss are guaranteed to be unbiased. As demonstrated by Brown (1968), Stein’s loss is also
the unique loss function (up to affine transformations) that satisfies this property. Consequently, AMRE estimators under other loss
functions are necessarily asymptotically biased.

Comment 2. The AMRE estimators depend solely on the shape of the candlestick, as summarized by the scaled range 𝑤𝑖 ≡ 𝑢𝑖−𝑙𝑖, the
scaled absolute return |𝑟𝑖|, and the 𝑎𝑖 asymmetry measure. These shape-related features remain unaffected by a ‘‘color change’’ or
an ‘‘upside-down flip’’ of the candlestick.16 Consequently, the optimal volatility estimators are also invariant to these ‘‘directional’’
transformations. This feature reduction is due to a sufficiency argument, as formalized by Lemma A.1 in the Appendix, which shows
that the shape features (𝑤𝑖, |𝑟𝑖|, 𝑎𝑖) are indeed sufficient statistics for 𝜎 in the limit model 𝑃𝑡 = 𝜎𝑊𝑡. Recall that according to the

ao–Blackwell theorem, optimal estimators depend on data only through sufficient statistics.

14 Analogous derivations for the spot quarticity 𝜎4𝑡 and spot precision 𝜎−1𝑡 are provided in the online Supplemental Appendix.
15 The almost everywhere continuity of the 𝐺𝑞 (⋅) and 𝐻𝑞 (⋅) functions follows from the fact that polygamma functions are formally meromorphic, meaning that

hey are analytic except for a discrete set of points.
16 More precisely, the color change corresponds to changing the sign of 𝑟𝑖 and the upside-down flip amounts to swapping the upper and lower shadows of

he candlestick.
6
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The AMRE estimation functions defined in Theorem 2 are relatively complex. Clearly, it would have been challenging to
ccurately ‘‘intuit’’ these specific functional forms when searching for optimal estimators within a restricted class of functions.
ince the AMRE estimators are uniquely determined (Corollary 3.3.4 in Lehmann and Casella (1998)), any ad hoc restrictions on the
unctional form used in the derivation of ‘‘shape-constrained’’ optimal estimators would therefore also generally result in suboptimal
nd, as previously mentioned, asymptotically inadmissible estimators.

For a more direct comparison, recall that Garman and Klass’s (1980) minimum-variance unbiased quadratic estimator for spot
ariance is given by17

𝜎̂2GK ≡ 0.511(𝑢𝑖 − 𝑙𝑖)2 − 0.019
(

𝑟𝑖(𝑢𝑖 + 𝑙𝑖) − 2𝑢𝑖𝑙𝑖
)

− 0.383𝑟2𝑖
= 0.5015𝑤2

𝑖 + 0.0095𝑎2𝑖 − 0.3925𝑟2𝑖 ,

while the BLUE for spot volatility proposed by Li et al. (2022) is given by

𝜎̂BLUE ≡ 0.811𝑤𝑖 − 0.369|𝑟𝑖|.

eanwhile, approximating the functional forms of the AMRE estimators described in Theorem 2 by cubic polynomials of the
maximal invariant) ratio statistics, |𝑟𝑖|∕𝑤𝑖 and 𝑎𝑖∕𝑤𝑖, the spot variance estimator may be expressed as18

𝜎̂2Stein ≈ 0.5921𝑤2
𝑖 − 0.2066|𝑟𝑖|𝑤𝑖 − 0.1289𝑎2𝑖 − 0.5874𝑟2𝑖 − 0.0001

𝑎3𝑖
𝑤𝑖

+0.0382
|𝑟𝑖|𝑎2𝑖
𝑤𝑖

− 0.0001
𝑟2𝑖 𝑎𝑖
𝑤𝑖

+ 0.3872
|𝑟𝑖|

3

𝑤𝑖
,

𝜎̂2Quad ≈ 0.4936𝑤2
𝑖 − 0.0002𝑎𝑖𝑤𝑖 − 0.2436|𝑟𝑖|𝑤𝑖 − 0.1003𝑎2𝑖 + 0.0001|𝑟𝑖|𝑎𝑖

−0.4316𝑟2𝑖 − 0.0006
𝑎3𝑖
𝑤𝑖

+ 0.0883
|𝑟𝑖|𝑎2𝑖
𝑤𝑖

− 0.0005
𝑟2𝑖 𝑎𝑖
𝑤𝑖

+ 0.3282
|𝑟𝑖|

3

𝑤𝑖
,

while the analogous approximations for the AMRE spot volatility estimators take the form

𝜎̂Stein ≈ 0.7859𝑤𝑖 − 0.1010|𝑟𝑖| − 0.0888
𝑎2𝑖
𝑤𝑖

− 0.4798
𝑟2𝑖
𝑤𝑖

− 0.0178
𝑎2𝑖 |𝑟𝑖|

𝑤2
𝑖

+ 0.2341
|𝑟𝑖|

3

𝑤2
𝑖

,

𝜎̂Quad ≈ 0.7526𝑤𝑖 − 0.1366|𝑟𝑖| − 0.0846
𝑎2𝑖
𝑤𝑖

− 0.0001
𝑎𝑖|𝑟𝑖|
𝑤𝑖

− 0.4345
𝑟2𝑖
𝑤𝑖

+ 0.0181
𝑎2𝑖 |𝑟𝑖|

𝑤2
𝑖

−0.0001
𝑎𝑖𝑟2𝑖
𝑤2
𝑖

+ 0.2284
|𝑟𝑖|

3

𝑤2
𝑖

.

While not exact, these cubic expansions formally highlight the differences between the AMRE estimators and the shape-constrained
estimators, by explicating the former’s dependence on additional higher-order nonlinear features.

To help more clearly visualize these differences, Fig. 2 present the estimation functions for the three spot variance estimators:
̂ 2Stein, 𝜎̂

2
Quad, and 𝜎̂2GK . As the estimators are all scale-equivariant, we compare them without loss of generality under the scale

normalization 𝑤𝑖 = 1 (i.e., |𝑟𝑖| and 𝑎𝑖 are interpreted in a relative sense). In the left panel of Fig. 2, we further fix the asymmetry
factor at 𝑎𝑖 = 0, and plot the spot variance estimators as functions of the absolute return |𝑟𝑖|. Looking at the two asymptotically
unbiased estimators, 𝜎̂2Stein and 𝜎̂2GK , the former is higher when |𝑟𝑖| is close to 0 or 1, and lower when |𝑟𝑖| takes medium values.19

Meanwhile, the estimation function associated with 𝜎̂2Quad is systematically below the estimation functions for the two unbiased
estimators, indicating that the AMRE estimator under quadratic loss exhibits a certain “shrinkage” and therefore also is downward
biased.

In the right panel of Fig. 2, we fix |𝑟𝑖| = 0.3 and plot the estimators as functions of the asymmetry factor 𝑎𝑖.20 While 𝜎̂2GK displays a
slightly positive dependence on the asymmetry factor, the two AMRE estimators evidence a more pronounced negative dependence.
Comparing the left and right panels further reveals that the absolute return has a greater impact on variance estimation than the
asymmetry factor.

A similar comparison for the three spot volatility estimators, 𝜎̂Stein, 𝜎̂Quad, and 𝜎̂BLUE, is provided in Fig. 3. The overall patterns
generally mirror those of Fig. 2. Underscoring the difference between the two AMRE and the BLUE estimator of Li et al. (2022),
which does not depend on 𝑎𝑖, the right panel clearly shows that the two optimal estimators both depend negatively, and nontrivially,
on the asymmetry factor.

We turn next to a more direct assessment of how these differences in the functional forms of the estimators translate into
asymptotic biases, variances, and differences in Stein and quadratic risks.

17 A simplified “practical” version of the Garman–Klass estimator, defined by 0.5𝑤2
𝑖 −

(

2 log(2)−1
)

𝑟2𝑖 ≈ 0.5𝑤2
𝑖 −0.386𝑟2𝑖 , has also sometimes been used in empirical

pplications.
18 The approximation for 𝜎̂2Stein is constructed by projecting

(

𝐺0(𝑎𝑖∕𝑤𝑖)−𝐻0(|𝑟𝑖|∕𝑤𝑖)
)

∕
(

𝐺2(𝑎𝑖∕𝑤𝑖)−𝐻2(|𝑟𝑖|∕𝑤𝑖)
)

onto a cubic polynomial of the maximal invariant
|𝑟𝑖|∕𝑤𝑖 , 𝑎𝑖∕𝑤𝑖) under the 𝐿2 distance. The approximations for the other AMRE estimators are obtained similarly.
19 As a point of reference, in the Brownian limit model, the interquartile range of |𝑟𝑖|∕𝑤𝑖 spans 0.243 to 0.676, while the interdecile range covers 0.099 to
.817.
20 Since 𝑎 measures the absolute difference between the lengths of the upper and lower shadows of the candlestick, it takes values in [0, 𝑤 − |𝑟 |].
7
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Fig. 2. Alternative range-based variance estimators. The figure plots the AMRE estimators for the variance under Stein’s loss (Stein) and quadratic loss
(Quadratic), together with the Garman–Klass estimator. The range 𝑤𝑖 is normalized to unity. The left panel plots the spot variance estimator as a function of
he absolute return |𝑟𝑖|, with the asymmetry factor fixed at 𝑎𝑖 = 0. The right panel plots the spot variance estimator as a function of the asymmetry factor 𝑎𝑖,
ith the absolute return fixed at |𝑟𝑖| = 0.3.

Fig. 3. Alternative range-based volatility estimators. The figure plots the AMRE estimators for the volatility under Stein’s loss (Stein) and quadratic loss
(Quadratic), together with the BLUE estimator proposed by Li et al. (2022). The range 𝑤𝑖 is normalized to unity. The left panel plots the spot volatility
stimator as a function of the absolute return |𝑟𝑖|, with the asymmetry factor fixed at 𝑎𝑖 = 0. The right panel plots the spot volatility estimator as a function of
he asymmetry factor 𝑎𝑖, with the absolute return fixed at |𝑟𝑖| = 0.3.

Table 1
Asymptotic properties of spot variance estimators.

Estimator Bias Variance Relative efficiency

Stein Quadratic

𝜎̂2Stein 0.000 0.259 1.000 0.803
𝜎̂2Quad −0.205 0.165 0.813 1.000
𝜎̂2GK 0.000 0.270 0.968 0.770
(𝜎̂BLUE)2 0.062 0.295 0.976 0.698

Note: The table reports the asymptotic biases, variances, and relative efficiency under Stein’s and quadratic risks
for each of the spot variance estimators indicated in the first column.

2.3. Risk comparisons

We will focus our comparisons of the risks of the different estimators by considering the relative efficiency, defined as the ratio
between the risk of the relevant AMRE estimator and the estimator under consideration. Table 1 reports the results for the three spot
variance estimators: 𝜎̂2Stein, 𝜎̂

2
Quad, and 𝜎̂2GK . Since 𝜎̂BLUE is the BLUE for spot volatility, we also include (𝜎̂BLUE)2 as a fourth contender

or estimating the spot variance. Table 2 presents the analogous results for the three spot volatility estimators: 𝜎̂Stein, 𝜎̂Quad, and
̂BLUE. For comparison, we also include the transformed (𝜎̂2GK)

1∕2 spot volatility estimator.21

Looking first at Table 1, the optimal 𝜎̂2Quad estimator exhibits substantial downward asymptotic bias. This “shrinkage” feature
s attributable to the fact that the quadratic loss assigns a heavier penalty to overestimation than underestimation, and as such
he corresponding optimal estimator naturally sacrifices some downward bias in order to further reduce the variance. Indeed, the

21 All of the numbers are computed numerically based on ten million Monte Carlo draws of a standard Brownian motion (𝐵𝑡)𝑡∈[0,1] (recall (2.6)) as the simulated
̃ ( ̃ ) [ ( ̃ )]
8

ample averages corresponding to E[𝑓 (𝜁 )] − 1, 𝑉 𝑎𝑟 𝑓 (𝜁 ) , and E 𝐿 𝑓 (𝜁 ) , respectively.
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Table 2
Asymptotic properties of spot volatility estimators.

Estimator Bias Variance Relative efficiency

Stein Quadratic

𝜎̂Stein 0.000 0.061 1.000 0.967
𝜎̂Quad −0.058 0.055 0.909 1.000
(𝜎̂2GK )

1∕2 −0.030 0.060 0.938 0.952
𝜎̂BLUE 0.000 0.063 0.968 0.937

Note: The table reports the asymptotic biases, variances, and relative efficiency under Stein’s and quadratic risks
for each of the spot volatility estimators indicated in the first column.

asymptotic variance of the 𝜎̂2Quad estimator is notably lower than the corresponding numbers for all of the other estimators. Compared
to the optimal estimator 𝜎̂2Quad, the relative efficiencies of the shape-constrained 𝜎̂2GK and (𝜎̂BLUE)2 estimators equal 77.0% and 69.8%
respectively.22

Although the shape-constrained estimators clearly demonstrate suboptimal performance under quadratic loss, they exhibit ‘‘near-
optimal’’ behavior under Stein’s loss. Specifically, the relative efficiencies of 𝜎̂2GK and (𝜎̂BLUE)2 are 96.8% and 97.6%, respectively,

hen compared to the AMRE 𝜎̂2Stein. In other words, in scenarios where an economic agent’s loss function closely resembles Stein’s
oss, the classical Garman–Klass and the BLUE estimators are both reasonable practical choices. Of course, since the AMRE estimator
an also easily be calculated in practice using our explicit closed form solution, there is really no need to suffer any efficiency loss,
owever small it might be.

Turning to Table 2 and spot volatility estimation, the results again evidence notable bias for the 𝜎̂Quad estimator. In general,
he efficiency gaps between the shape-constrained volatility estimators and the optimal estimator are smaller than for variance
stimation. Intuitively, the optimal estimation of 𝜎𝑡 is ‘‘easier’’ than the optimal estimation of its nonlinear transform 𝜎2𝑡 .23 As such,
he Garman–Klass estimator and the simple linear estimator proposed by Li et al. (2022) turn out to perform quite well for spot
olatility estimation under both quadratic and Stein’s loss functions, although both estimators, strictly speaking, are inadmissible.

More broadly, these numerical comparisons also demonstrate that the relative asymptotic risks of alternative estimators, and
n turn the design of optimal estimators, can depend quite strongly on the underlying loss function. This reflects the finite-sample
ature of our coupling-based asymptotic analysis in a non-Gaussian limit experiment. By contrast, in the conventional ‘‘large sample’’
symptotic setting with Gaussian shift limit experiments, different loss functions (as long as they are bowl-shaped) result in the same
ptimal estimators (see, e.g., Chapter 8 in Van der Vaart (1998)).

Acknowledging the practical challenge of precising the loss function in some applications, we observe an intriguing pattern for
he risk comparisons in Tables 1 and 2. In both tables, the AMRE estimators derived under Stein’s loss exhibit lower risks than the
hape-constrained estimators, not only under Stein’s loss (which holds by construction), but also under quadratic loss.24 Hence, for
sers who are uncertain about their specific loss function, we recommend employing 𝜎̂2Stein and 𝜎̂Stein as ‘‘general purpose’’ estimators
or spot variance and spot volatility estimation, respectively.

.4. Optimal estimators with multiple candlesticks

The estimators discussed above rely on a single candlestick for optimally estimating the spot volatility, or the spot variance. In
his section we describe how to combine multiple adjacent candlesticks (over asymptotically shrinking time intervals) for optimally
stimating 𝜎𝑝𝑡 .

To set out the notation, given a fixed integer 𝑘 ≥ 1, let 𝒄𝑖 = (𝑟𝑖+𝑗−1, 𝑢𝑖+𝑗−1, 𝑙𝑖+𝑗−1)1≤𝑗≤𝑘 collect the observed features of 𝑘 successive
andlesticks starting at the 𝑖th observation. Denote the corresponding estimator for 𝜎𝑝𝑡 that utilizes the 𝑘 candlesticks by 𝑓 (𝒄𝑖). A
irect extension of Theorem 1 produces the following analogous coupling result for the 𝑘-candlestick setting.

orollary 1. Under Assumption 1, given any fixed integer 𝑘 ≥ 1, any regular scale-equivariant estimator 𝑆 = 𝑓 (𝒄𝑖) with |𝑖𝛥𝑛 − 𝑡| → 0
ay be expressed as

𝑆
𝜎𝑝𝑡

= 𝑓 (𝜁𝑖, 𝜁𝑖+1,… , 𝜁𝑖+𝑘−1) + 𝑜𝑝(1),

here the variables 𝜁𝑖+𝑗 , 𝑗 = 1,… , 𝑘, are defined as in Theorem 1.

22 Interestingly, 𝜎̂2Stein exhibits lower quadratic risk than 𝜎̂2GK . Since both of these two estimators are asymptotically unbiased, this suggests that under quadratic
oss the Garman–Klass estimator is asymptotically inadmissible, not only within the class of regular scale-equivariant estimators, but also within the subclass of
symptotically unbiased estimators.
23 Consistent with this intuition, Tables S1 in the online Supplemental Appendix shows that the efficiency gap between the AMRE estimators and the shape-

onstrained estimators is also larger for the quarticity 𝜎4𝑡 , an even ‘‘more nonlinear’’ transform of the volatility than the variance. For example, under quadratic
oss, the relative efficiencies of (𝜎̂2GK )

2 and (𝜎̂BLUE)4 are only 31.2% and 25.5%, respectively, in comparison with the AMRE estimator for 𝜎4𝑡 .
24 Additional results reported in the online Supplemental Appendix show that this phenomenon remains true for estimating the spot quarticity, 𝜎4𝑡 , and the

spot precision, 𝜎−1.
9
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Table 3
Asymptotic properties of spot variance estimators based on two candlesticks.

Estimator Bias Variance Relative efficiency

Stein Quadratic

𝜎̂2Stein(2) 0.000 0.128 1.000 0.891

𝜎̂2Quad(2) −0.103 0.103 0.833 1.000

𝜎̂2GK 0.000 0.135 0.923 0.844

(𝜎̂BLUE)2 0.062 0.147 0.923 0.755

Note: The table reports the asymptotic biases, variances, and relative efficiency under Stein’s and quadratic risks
for each of the spot variance estimators indicated in the first column.

Building on the same reasoning outlined in Section 2.2, we may therefore couple the original estimation problem with that in
the Brownian limit experiment. Moreover, by a direct extension of the proof of Theorem 2, we can also derive semi-closed form
expressions for the AMRE estimators that utilize 𝑘 successive candlesticks. Concretely, the AMRE estimators under Stein’s loss and
standardized quadratic loss may be expressed as

𝜎̂𝑝Stein(𝑘) = 𝑤𝑝𝑖 ⋅
1

𝐹𝑘,𝑝
(

|𝑟𝑖|
𝑤𝑖
, 𝑎𝑖𝑤𝑖

, 𝑤𝑖+1𝑤𝑖
, |𝑟𝑖+1|𝑤𝑖

, 𝑎𝑖+1𝑤𝑖
,… , 𝑤𝑖+𝑘−1𝑤𝑖

, |𝑟𝑖+𝑘−1|𝑤𝑖
, 𝑎𝑖+𝑘−1𝑤𝑖

) ,

𝜎̂𝑝Quad(𝑘) = 𝑤𝑝𝑖 ⋅
𝐹𝑘,𝑝

(

|𝑟𝑖 |
𝑤𝑖
, 𝑎𝑖𝑤𝑖

,
𝑤𝑖+1
𝑤𝑖

,
|𝑟𝑖+1 |
𝑤𝑖

,
𝑎𝑖+1
𝑤𝑖

,…,
𝑤𝑖+𝑘−1
𝑤𝑖

,
|𝑟𝑖+𝑘−1 |

𝑤𝑖
,
𝑎𝑖+𝑘−1
𝑤𝑖

)

𝐹𝑘,2𝑝
(

|𝑟𝑖 |
𝑤𝑖
, 𝑎𝑖𝑤𝑖

,
𝑤𝑖+1
𝑤𝑖

,
|𝑟𝑖+1 |
𝑤𝑖

,
𝑎𝑖+1
𝑤𝑖

,…,
𝑤𝑖+𝑘−1
𝑤𝑖

,
|𝑟𝑖+𝑘−1 |

𝑤𝑖
,
𝑎𝑖+𝑘−1
𝑤𝑖

) .

(2.12)

he function 𝐹𝑘,𝑞 ∶ R3𝑘−1 → R that enters these expressions for 𝑞 ∈ {𝑝, 2𝑝} is formally defined as a conditional expectation function:

𝐹𝑘,𝑞

(

|𝑟𝑖|
𝑤𝑖

,
𝑎𝑖
𝑤𝑖
,
𝑤𝑖+1
𝑤𝑖

,
|𝑟𝑖+1|
𝑤𝑖

,
𝑎𝑖+1
𝑤𝑖

,… ,
𝑤𝑖+𝑘−1
𝑤𝑖

,
|𝑟𝑖+𝑘−1|
𝑤𝑖

,
𝑎𝑖+𝑘−1
𝑤𝑖

)

≡ E
[

𝜉𝑞𝑤,1
|

|

|

|

𝜉𝑤,𝑗
𝜉𝑤,1

=
𝑤𝑖+𝑗−1
𝑤𝑖

,
𝜉𝑟,𝑗
𝜉𝑤,1

=
|𝑟𝑖+𝑗−1|
𝑤𝑖

,
𝜉𝑎,𝑗
𝜉𝑤,1

=
𝑎𝑖+𝑗−1
𝑤𝑖

for all 1 ≤ 𝑗 ≤ 𝑘
]

, (2.13)

here (𝜉𝑤,𝑗 , 𝜉𝑟,𝑗 , 𝜉𝑎,𝑗 ), 𝑗 = 1, 2,… , 𝑘, are independent copies of
(

sup
𝑡∈[0,1]

𝐵𝑡 − inf
𝑡∈[0,1]

𝐵𝑡, |𝐵1|,
|

|

|

sup
𝑡∈[0,1]

𝐵𝑡 + inf
𝑡∈[0,1]

𝐵𝑡 − 𝐵1
|

|

|

)

. (2.14)

In parallel to the optimal estimators that rely on a single candlestick, the two AMRE estimators defined in (2.12) are also
structurally similar. The 𝑤𝑝𝑖 component, in particular, acts as a generic scale-equivariant estimator for 𝜎𝑝𝑡 , while the 𝐹𝑘,𝑞(⋅)
function depends on candlestick observations solely through the maximal invariant statistics, defined as the shape features
(𝑤𝑖+𝑗−1, |𝑟𝑖+𝑗−1|, 𝑎𝑖+𝑗−1)1≤𝑗≤𝑘 normalized by 𝑤𝑖. The earlier closed form solutions for the single-candlestick case, or 𝑘 = 1, detailed in
Theorem 2 were obtained by explicitly deriving the functional form of 𝐹1,𝑞(⋅). Regrettably, analytical solutions for 𝐹𝑘,𝑞(⋅) for 𝑘 ≥ 2
re currently unattainable.

Nonetheless, the semi-closed form solutions in (2.12) still suggest a strategy for numerically computing the optimal estimation
unctions. In particular, since 𝐹𝑘,𝑞(⋅) is defined as the conditional expectation of 𝑤𝑞𝑖 given the maximal invariant statistics under the
imit experiment, one may simulate the (𝜉𝑤,𝑗 , 𝜉𝑟,𝑗 , 𝜉𝑎,𝑗 )1≤𝑗≤𝑘 variables as i.i.d. copies of the Brownian functionals defined in (2.14) and
hen calculate the requisite conditional expectation function in (2.13) via Monte Carlo integration. This calculation, which formally
ntails the formation of a predictor that minimizes the mean squared error, may be conveniently implemented using popular machine
earning tools such as neural networks, or random forests. We stress that for a given 𝑘 and 𝑞, the function 𝐹𝑘,𝑞(⋅) only needs to be
omputed once.

To illustrate the idea, consider the case with two candlesticks, or 𝑘 = 2. Employing a neural network to compute the conditional
xpectation functions 𝐹2,𝑝(⋅) and 𝐹2,2𝑝(⋅) numerically, Tables 3 and 4 report the resulting asymptotic bias, variance, and relative
fficiency for the AMRE estimators for estimating the spot variance and volatility, respectively, obtained by using these numerical
pproximations in place of the true unknown functions in (2.12).25 The 𝑘 = 2 versions of the shape-constrained 𝜎̂2GK and 𝜎̂BLUE

estimators, also included in the tables, are constructed as simple averages of their respective single-candlestick estimates, following
the suggestion of Li et al. (2022).

The general results are qualitatively very similar to the ones for the single-candlestick estimators previously reported in Tables 1
and 2. The optimal estimators are notably more accurate, especially for estimating the spot variance under quadratic loss. At the
same time, the ‘‘near optimality’’ property of the shape-constrained estimators under Stein’s loss observed for the single-candlestick

25 More specifically, we rely on a logistic sigmoid activation function, and an architecture comprised of an input layer with 32 neurons, followed by two
hidden layers with 16 and 8 neurons, respectively. We train the model based on five million random draws of (𝜉𝑤,𝑗 , 𝜉𝑟,𝑗 , 𝜉𝑎,𝑗 )𝑗=1,2, where the Brownian motion
𝐵𝑡)𝑡∈[0,1] is generated using an Euler scheme with a mesh size of 10−7. Underscoring the accuracy of the approach, using the same procedures to calculate the
10

unctions for 𝑘 = 1 results in numerical solutions that are practically indistinguishable from the closed form solutions detailed in Theorem 2.
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Table 4
Asymptotic properties of spot volatility estimators based on two candlesticks.

Estimator Bias Variance Relative efficiency

Stein Quadratic

𝜎̂Stein(2) 0.000 0.030 1.000 0.966

𝜎̂Quad(2) −0.025 0.029 0.939 1.000

(𝜎̂2GK )
1∕2 −0.030 0.030 0.940 0.935

𝜎̂BLUE 0.000 0.031 0.942 0.935

Note: The table reports the asymptotic biases, variances, and relative efficiency under Stein’s and quadratic risks
for each of the spot volatility estimators indicated in the first column.

case does not appear to hold as well. For instance, the relative efficiency of the Garman–Klass variance estimator drops from 96.8%
in the 𝑘 = 1 case to 92.3% in the 𝑘 = 2 case, while the relative efficiency of the BLUE volatility estimator drops from 96.8% to
94.2%. These findings further motivate the use of the AMRE estimators in practice.

Putting the results in Tables 3 and 4 further into perspective, it is, of course, not surprising that the spot estimators constructed
by combining two candlesticks exhibit smaller theoretical asymptotic variances than their single-candlestick counterparts. At the
same time, the temporal aggregation of multiple candlesticks can easily be harmful in practice, especially when the volatility
fluctuates rapidly. In such situations, the limit experiment with constant volatility that formally underlies the theoretical asymptotic
comparisons will likely not provide a good finite-sample guide either. Of course, this type of empirical scenario is precisely when
spot estimation can be most useful and informative. The empirical application discussed in the next section further highlights these
issues.

3. An empirical illustration

To demonstrate the practical applicability and insights afforded by the new optimal estimators, we present spot volatility
estimates for a market portfolio on the eight 2022 prescheduled FOMC announcement days. Putting the results into perspective,
at the start of the year U.S. inflation had already soared to its highest level since the 1980s. In response to this, the Federal
Reserve indicated at its January 2022 meeting that it would soon be appropriate to raise the target range for the federal funds
rate. Subsequently, the target rate was indeed increased by 25 basis points (bps) in March, followed by a more substantial 50 bps
hike in May. The pace of rate increases further accelerated to 75 bps for the next four meetings, before moderating to a 50 bps
rise at the final 2022 meeting in December. Each of these rate increases were detailed in a short formal release by the FOMC at
exactly 14:00 EST, followed by additional comments and a press conference led by Federal Reserve Chairman Jerome Powell starting
half-an-hour later.

It is well established that financial markets often reacts quite strongly to the initial 14:00 FOMC announcement.26 It is much
ess clear, however, what happens to market volatility at the exact time of the FOMC announcement, let alone in its immediate
ftermath and during the subsequent press conference. We shed new light on this issue by utilizing intraday candlestick data for the
&P 500 index, in the form of the VOO exchange-traded fund (ETF) managed by the Vanguard Group, to estimate high-frequency
pot volatilities. Guided by the simulation results discussed above, to mitigate the impact of microstructure noise, we employ 5-min
OO candlesticks, sourced directly from Bloomberg. We focus our analyses on the 5-min 𝜎̂Stein AMRE spot volatility estimator;
omparisons with the other estimators discussed above are presented in the online Supplemental Appendix.27

Fig. 4 displays the resulting estimates, together with 90% level pointwise confidence intervals. To facilitate comparison across
he different days, all of the plots are presented on a uniform percentage daily scale. As the figure shows, the market volatility
enerally spikes immediately following the initial FOMC announcement at 14:00.28 The volatility then generally reverts towards
more ‘‘normal’’ level in the half-hour window between the initial release and the start of the press conference. By comparison,

he volatility patterns observed during the press conference appear less systematic. In addition to reiterating key policy decisions,
lso summarized in the initial release, the press conference and the subsequent interaction with the media often provide additional
orward guidance about future Fed policies, interspersed with comments about the general economic outlook as perceived by the
ed. The staggered information flow delivery throughout this process naturally manifest in event specific volatility spikes linked to
he exact timing of the new information.

26 Andersen et al. (2007), Lee and Mykland (2008), Lee (2012), and Bollerslev et al. (2018), among others, have previously associated high-frequency jumps
n asset prices with FOMC announcements. FOMC announcements have also been used as a powerful tool for the high-frequency identification of monetary
olicy shocks, as exemplified by Cochrane and Piazzesi (2002), Rigobon and Sack (2004), Bernanke and Kuttner (2005), and Nakamura and Steinsson (2018),
hile Savor and Wilson (2014), Lucca and Moench (2015), Cieslak et al. (2019), and Ai and Bansal (2018) have emphasized the significance of an FOMC
nnouncement risk premium and pre-announcement drifts.
27 The online Supplemental Appendix also reports analogous results for the Dollar/Yen exchange rate.
28 Interestingly, for some of the days, most notably March 16, May 4, and June 15, the volatility actually increased slightly in advance of the official 14:00
nnouncement. Whether these ‘‘abnormal’’ pre-announcement increases can be attributed to information leaks during the Fed’s official blackout period may
arrant further scrutiny.
11
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Fig. 4. Spot volatility estimates for the VOO ETF on FOMC announcement days. The figure plots the 𝜎̂Stein spot volatility estimates based on 5-min VOO
ETF candlesticks, expressed in daily percentage units. Pointwise confidence intervals at the 90% level is calculated as detailed in footnote 11. The vertical lines
included in each of the panels indicate the official 14:00 FOMC announcement times.

The November 2 announcement provides an interesting case in point. In line with the general pattern noted above, the spot
volatility shows an initial burst at 14:00, followed by a gradual decline to a lower, albeit still elevated, level at 14:30. Then,
concurrent with the start of Chairman Powell’s speech, the 14:30–14:35 volatility estimate increased moderately, reflecting the
limited new information presented in the opening, relatively structured, portion of the speech. This modest uptick is then followed
by a dramatic volatility spike, of even greater magnitude than the initial surge that accompanied the 14:00 announcement. This
volatility spike coincided with the time at which Powell concluded his opening remarks and began the press conference by
12
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mentioning that the ultimate level of interest rates would be ‘‘higher than previously expected’’.29 Powell’s brief interaction with the
media shortly thereafter further underscored the looming uncertainty surrounding the central bank’s monetary tightening agenda.30

These comments on the likely trajectory of monetary policy offered crucial forward guidance, and their unexpected nature in effect
amounted to a ‘‘policy shock’’ resulting in a sharp increase in market volatility at the time.

In sum, asset price volatilities often experience large changes over short time windows in response to the release of important
new economic information. The new optimal high-frequency candlestick estimators developed here allows for meaningful estimation
of such changes, which would otherwise be obscured by the use of longer estimation windows, in turn affording a more nuanced
depiction and better understanding of the economic mechanisms at work.

4. Concluding remarks

We develop a new class of optimal range-based nonparametric volatility estimators. The new optimal estimators are explicitly
geared to the volatility object of interest and relevant loss function. They involve complex, yet closed-form and easy-to-evaluate,
nonlinear functions of the range, the absolute return, and a measure of asymmetry. The efficiency gains provided by the new
estimators compared to currently used suboptimal range-based estimators rooted in ad hoc functional-form assumptions can be
substantial.

Looking ahead, the same infill asymptotic decision-theoretic framework developed here, based on coupling the nonparametric
volatility estimation problem with a finite-sample optimal estimation problem, could possibly be adapted to study other outstanding
optimal nonparametric inference problems. High-frequency range-based estimators have also previously been used for the estimation
of integrated volatility over non-trivial time intervals (e.g., Christensen and Podolskij (2007)). The new optimal estimators developed
here could similarly be employed for that purpose, as well as the estimation of other volatility functionals. The integrated quarticity,
in particular, has proven notoriously difficult to accurately estimate in practice, yet it plays a crucial role in assessing the estimation
error of traditional realized volatility type estimators (e.g., Barndorff-Nielsen and Shephard (2002) and Bollerslev et al. (2016)). Prior
empirical uses of range-based volatility estimators for modeling and forecasting time-varying volatility abounds (early contributions
include Gallant et al. (1999) and Alizadeh et al. (2002)). The range-based estimators developed here may naturally be used in
that context as well for obtaining more accurate inference. They could also help sharpen the inference in the recent and growing
literature that relies on high-frequency identification through heteroskedasticity (following Rigobon (2003)), and volatilities being
higher over short ‘‘treatment’’ windows following news events (e.g., Nakamura and Steinsson (2018) and Bollerslev et al. (2018)).
We leave further work on all of these theoretical and more empirically oriented issues for future research.

Appendix A. Proofs

Proof of Theorem 1. In this proof, we focus on a specific time point, denoted as 𝑡, and examine 𝑖𝑛 such that 𝑖𝑛𝛥𝑛 = 𝑡 + 𝑜(1). To
simplify our notation, we write 𝑖 instead of 𝑖𝑛. We employ a generic constant 𝐾 > 0, which may vary throughout the proof. Relying
on a standard localization technique, we can strengthen Assumption 1 by assuming that the boundedness conditions hold uniformly
over the whole sample. For more details on the localization method, refer to Section 4.4.1 in Jacod and Protter (2012).

Under Assumption 1(i), the probability of the interval 𝑖 containing at least one price jump is 𝑂(𝛥𝑛). Consequently, price jumps
occur in 𝑖 with asymptotically negligible probability. As our analysis focuses on this particular interval, we can assume without
loss of generality that there are no jumps.

Denote 𝑟′𝑖 ≡ 𝜎(𝑖−1)𝛥𝑛𝜁𝑖,𝑟, 𝑢
′
𝑖 ≡ 𝜎(𝑖−1)𝛥𝑛𝜁𝑖,𝑢, and 𝑙′𝑖 ≡ 𝜎(𝑖−1)𝛥𝑛𝜁𝑖,𝑙. Since there is no jump within the 𝑖 interval, we can rewrite (𝑟𝑖, 𝑢𝑖, 𝑙𝑖) as

𝑟𝑖 = 𝛥−1∕2𝑛

(

∫

𝑖𝛥𝑛

(𝑖−1)𝛥𝑛
𝑏𝑠𝑑𝑠 + ∫

𝑖𝛥𝑛

(𝑖−1)𝛥𝑛
𝜎𝑠𝑑𝑊𝑠

)

,

𝑢𝑖 = 𝛥−1∕2𝑛 sup
𝑠∈𝑖

(

∫

𝑠

(𝑖−1)𝛥𝑛
𝑏𝑢𝑑𝑢 + ∫

𝑠

(𝑖−1)𝛥𝑛
𝜎𝑢𝑑𝑊𝑢

)

,

𝑙𝑖 = 𝛥−1∕2𝑛 inf
𝑠∈𝑖

(

∫

𝑠

(𝑖−1)𝛥𝑛
𝑏𝑢𝑑𝑢 + ∫

𝑠

(𝑖−1)𝛥𝑛
𝜎𝑢𝑑𝑊𝑢

)

.

Under Assumption 1(i), it is easy to see that
|

|

|

|

∫

𝑖𝛥𝑛

(𝑖−1)𝛥𝑛
𝑏𝑠𝑑𝑠

|

|

|

|

≤ ∫

𝑖𝛥𝑛

(𝑖−1)𝛥𝑛
|𝑏𝑠|𝑑𝑠 = 𝑂𝑝(𝛥𝑛). (A.1)

Moreover, by the Burkholder–David–Gundy inequality and Assumption 1(ii), we have

E
[

sup
𝑠∈𝑖

|

|

|

|

∫

𝑠

(𝑖−1)𝛥𝑛
(𝜎𝑢 − 𝜎(𝑖−1)𝛥𝑛 )𝑑𝑊𝑢

|

|

|

|

2]

≤ 𝐾E
[

∫

𝑖𝛥𝑛

(𝑖−1)𝛥𝑛
|𝜎𝑢 − 𝜎(𝑖−1)𝛥𝑛 |

2𝑑𝑢
]

≤ 𝐾𝛥1+2𝜅𝑛 ,

29 A complete transcript of Powell’s statement is available at: https://www.federalreserve.gov/monetarypolicy/fomcpresconf20221102.htm.
30 The first two questions from the media, posed by Colby Smith of the Financial Times and Howard Schneider of Reuters, respectively, also both concerned

the potential slowdown of future rate increases.
13
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u

L
(

P
f

(

and hence,

sup
𝑠∈𝑖

|

|

|

|

∫

𝑠

(𝑖−1)𝛥𝑛
(𝜎𝑢 − 𝜎(𝑖−1)𝛥𝑛 )𝑑𝑊𝑢

|

|

|

|

= 𝑂𝑝(𝛥
1∕2+𝜅
𝑛 ). (A.2)

By the triangle inequality, (A.1), and (A.2),

|𝑟𝑖 − 𝑟′𝑖| ≤ 𝛥−1∕2𝑛
|

|

|

|

∫

𝑖𝛥𝑛

(𝑖−1)𝛥𝑛
𝑏𝑠𝑑𝑠

|

|

|

|

+ 𝛥−1∕2𝑛
|

|

|

|

∫

𝑖𝛥𝑛

(𝑖−1)𝛥𝑛
(𝜎𝑠 − 𝜎(𝑖−1)𝛥𝑛 )𝑑𝑊𝑠

|

|

|

|

= 𝑂𝑝(𝛥
(1∕2)∧𝜅
𝑛 ). (A.3)

In addition, we note that

|𝑢𝑖 − 𝑢′𝑖| = 𝛥−1∕2𝑛
|

|

|

|

sup
𝑠∈𝑖

(

∫

𝑠

(𝑖−1)𝛥𝑛
𝑏𝑢𝑑𝑢 + ∫

𝑠

(𝑖−1)𝛥𝑛
𝜎𝑢𝑑𝑊𝑢

)

− 𝜎(𝑖−1)𝛥𝑛 sup𝑠∈𝑖
(𝑊𝑠 −𝑊(𝑖−1)𝛥𝑛 )

|

|

|

|

≤ 𝛥−1∕2𝑛

(

∫

𝑖𝛥𝑛

(𝑖−1)𝛥𝑛
|𝑏𝑢|𝑑𝑢 + sup

𝑠∈𝑖

|

|

|

|

∫

𝑠

(𝑖−1)𝛥𝑛
(𝜎𝑢 − 𝜎(𝑖−1)𝛥𝑛 )𝑑𝑊𝑢

|

|

|

|

)

= 𝑂𝑝(𝛥
(1∕2)∧𝜅
𝑛 ), (A.4)

where the last line follows from (A.1) and (A.2). Similarly, we can derive

|𝑙𝑖 − 𝑙′𝑖 | = 𝑂𝑝(𝛥
(1∕2)∧𝜅
𝑛 ). (A.5)

Since 𝑓 (⋅) is continuous a.e., the estimates from (A.3)–(A.5) imply that 𝑓 (𝑟𝑖, 𝑢𝑖, 𝑙𝑖) = 𝑓 (𝑟′𝑖 , 𝑢
′
𝑖 , 𝑙

′
𝑖 ) + 𝑜𝑝(1). Since 𝜎 is bounded away

from zero under Assumption 1(i), we further have

𝑓 (𝑟𝑖, 𝑢𝑖, 𝑙𝑖)
𝜎𝑝(𝑖−1)𝛥𝑛

=
𝑓 (𝑟′𝑖 , 𝑢

′
𝑖 , 𝑙

′
𝑖 )

𝜎𝑝(𝑖−1)𝛥𝑛
+ 𝑜𝑝(1) = 𝑓 (𝜁𝑖) + 𝑜𝑝(1), (A.6)

where the second equality follows from the homogeneity of 𝑓 (⋅) and the definition of 𝜁𝑖. By Assumption 1(ii), |𝜎𝑡 − 𝜎(𝑖−1)𝛥𝑛 | =
𝑂𝑝(|𝑡 − 𝑖𝛥𝑛|

𝜅 ) = 𝑜𝑝(1) as |𝑖𝛥𝑛 − 𝑡| → 0, which together with (A.6) implies the assertion of Theorem 1. □

To prove Theorem 2, we first prove two lemmas. Lemma A.1 shows the sufficiency of the shape features for volatility estimation
nder the limit model. Lemma A.2 derives a closed-form expression for the conditional expectation of certain Brownian functionals.

emma A.1. Under the limit model 𝑃𝑡 = 𝜎𝑊𝑡, the collection of shape features (|𝑟𝑖|, 𝑤𝑖, 𝑎𝑖) is a sufficient statistic for 𝜎 given the observation
𝑟𝑖, 𝑢𝑖, 𝑙𝑖).

roof of Lemma A.1. Recall that (𝐵𝑡)𝑡∈[0,1] is a standard Brownian motion with 𝐵0 = 0. Let 𝑔(𝑟, 𝑢, 𝑙) denote the probability density
unction of (𝐵1, sup0≤𝑡≤1 𝐵𝑡, inf0≤𝑡≤1 𝐵𝑡). The density of (𝑟𝑖, 𝑢𝑖, 𝑙𝑖) is then given by the function

(𝑟, 𝑢, 𝑙) ↦ 1
𝜎3
𝑔
( 𝑟
𝜎
, 𝑢
𝜎
, 𝑙
𝜎

)

. (A.7)

By equation (1.15.8) in Borodin and Salminen (2002),

P
(

𝑙 < inf
0≤𝑡≤1

𝐵𝑡, sup
0≤𝑡≤1

𝐵𝑡 < 𝑢,𝐵1 ∈ 𝑑𝑟
)

= 1
√

2𝜋

∞
∑

𝑘=−∞

{

exp
(

−
(2𝑘(𝑢 − 𝑙) + 𝑟)2

2

)

− exp
(

−
(2𝑘(𝑢 − 𝑙) + 𝑟 − 2𝑙)2

2

)}

𝑑𝑟. (A.8)

The function 𝑔(𝑟, 𝑢, 𝑙) is thus proportional to ∑∞
𝑘=−∞

(

𝐴𝑘(𝑟, 𝑢, 𝑙) − 𝐵𝑘(𝑟, 𝑢, 𝑙)
)

, where

𝐴𝑘(𝑟, 𝑢, 𝑙) ≡ 𝑘2{(2𝑘(𝑢 − 𝑙) + 𝑟)2 − 1} exp
(

−
(2𝑘(𝑢 − 𝑙) + 𝑟)2

2

)

,

𝐵𝑘(𝑟, 𝑢, 𝑙) ≡ 𝑘(𝑘 + 1){(2𝑘(𝑢 − 𝑙) + 𝑟 − 2𝑙)2 − 1} exp
(

−
(2𝑘(𝑢 − 𝑙) + 𝑟 − 2𝑙)2

2

)

.

By a change of variable via 𝑤 = 𝑢 − 𝑙 and 𝑑 = 𝑢 + 𝑙 − 𝑟, we may identify these functions with

𝐴̃𝑘(𝑟, 𝑤, 𝑑) ≡ 𝑘2{(2𝑘𝑤 + 𝑟)2 − 1} exp
(

−
(2𝑘𝑤 + 𝑟)2

2

)

,

𝐵̃𝑘(𝑟, 𝑤, 𝑑) ≡ 𝑘(𝑘 + 1){(2𝑘𝑤 +𝑤 − 𝑑)2 − 1} exp
(

−
(2𝑘𝑤 +𝑤 − 𝑑)2

2

)

.

Note that for each 𝑘 ≥ 0, 𝐴̃𝑘(−𝑟, 𝑤, 𝑑) = 𝐴̃−𝑘(𝑟, 𝑤, 𝑑) and 𝐵̃𝑘(𝑟, 𝑤,−𝑑) = 𝐵̃−𝑘−1(𝑟, 𝑤, 𝑑). Thus, 𝑔(𝑟, 𝑢, 𝑙) depends on (𝑟, 𝑢, 𝑙) only through
14

|𝑟|, 𝑤, |𝑑|). The assertion of the lemma then follows from the Fisher–Neyman factorization theorem. □
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Lemma A.2. Let 𝐵 be a standard Brownian motion on the unit interval with 𝐵0 = 0 and

𝜉1 ≡ sup
𝑡
𝐵𝑡 − inf

𝑡
𝐵𝑡, 𝜉2 ≡

| sup𝑡 𝐵𝑡 + inf 𝑡 𝐵𝑡 − 𝐵1|

sup𝑡 𝐵𝑡 − inf 𝑡 𝐵𝑡
, 𝜉3 ≡

|𝐵1|

sup𝑡 𝐵𝑡 − inf 𝑡 𝐵𝑡
,

where sup𝑡 and inf 𝑡 are taken over [0, 1]. Then for each integer 𝑞 ≥ 1 we have

E[𝜉𝑞1 |𝜉2, 𝜉3] = (−1)𝑞
(𝑞 + 2)
√

2𝑞𝜋𝑞!
𝛤
( 𝑞 + 3

2

)𝐺𝑞(𝜉2) −𝐻𝑞(𝜉3)
𝐺0(𝜉2) −𝐻0(𝜉3)

,

where 𝐺𝑞(⋅) and 𝐻𝑞(⋅) are defined as in (2.10) and (2.11).

Proof of Lemma A.2. Let 𝑔𝜉 (⋅) denote the joint density of (𝜉1, 𝜉2, 𝜉3). The conditional expectation of interest can then be written as

E[𝜉𝑞1 |𝜉2 = 𝑦, 𝜉3 = 𝑧] =
∫ ∞
0 𝑥𝑞𝑔𝜉 (𝑥, 𝑦, 𝑧)𝑑𝑥

∫ ∞
0 𝑔𝜉 (𝑥, 𝑦, 𝑧)𝑑𝑥

.

The main task is to calculate the numerator ∫ ∞
0 𝑥𝑞𝑔𝜉 (𝑥, 𝑦, 𝑧)𝑑𝑥 for 𝑞 ≥ 1 and the denominator ∫ ∞

0 𝑔𝜉 (𝑥, 𝑦, 𝑧)𝑑𝑥. (The calculation for
he latter is not a special case of the former by simply setting 𝑝 = 0, as it requires a slightly more refined technical argument due

to the lack of convergence of certain series.)
We first calculate ∫ ∞

0 𝑥𝑞𝑔𝜉 (𝑥, 𝑦, 𝑧)𝑑𝑥. From (A.8) and the definition of (𝜉1, 𝜉2, 𝜉3), we obtain 𝑔𝜉 (𝑥, 𝑦, 𝑧) = 4
√

2∕𝜋
∑∞
𝑘=−∞

(

𝐶𝑘(𝑥, 𝑧) −
𝐷𝑘(𝑥, 𝑦)

)

, where

𝐶𝑘(𝑥, 𝑧) ≡ 𝑘2𝑥2
(

(2𝑘 + 𝑧)2𝑥2 − 1
)

exp
(

−
(2𝑘 + 𝑧)2𝑥2

2

)

,

𝐷𝑘(𝑥, 𝑦) ≡ 𝑘(1 + 𝑘)𝑥2
(

(2𝑘 + 1 − 𝑦)2𝑥2 − 1
)

exp
(

−
(2𝑘 + 1 − 𝑦)2𝑥2

2

)

.

Since 𝑧 ∈ [0, 1], for 𝑞 ≥ 1, by a direct integration, we have

∫

∞

0

∞
∑

𝑘=−∞
𝑥𝑞𝐶𝑘(𝑥, 𝑧)𝑑𝑥 =𝑀𝑞 ⋅

∞
∑

𝑘=−∞

𝑘2

|

𝑧
2 + 𝑘|𝑞+3

, (A.9)

where we denote 𝑀𝑟 ≡ 2−(𝑟+5)∕2(𝑟+ 2)𝛤
(

(𝑟+ 3)∕2
)

for any 𝑟 ≥ 0. (Note that the convergence of the above series requires the integer
𝑞 ≥ 1.) We now express (A.9) using polygamma functions. By (5.15.1) in Olver et al. (2010), for 𝑟 ≥ 1 we have

𝜓𝑟
( 𝑧
2

)

=
∞
∑

𝑘=0

(−1)𝑟+1𝑟!
( 𝑧2 + 𝑘)𝑟+1

. (A.10)

Note that when 𝑘 ≥ 0, the summand in (A.9) may be rewritten in the form of the summand in (A.10) as

𝑘2

( 𝑧2 + 𝑘)𝑞+3
= (−1)𝑞+1

(

1
𝑞!

⋅
(−1)𝑞+1𝑞!
( 𝑧2 + 𝑘)𝑞+1

+ 1
(𝑞 + 1)!

⋅ 𝑧
(−1)𝑞+2(𝑞 + 1)!
( 𝑧2 + 𝑘)𝑞+2

+ 1
4(𝑞 + 2)!

⋅ 𝑧2
(−1)𝑞+3(𝑞 + 2)!
( 𝑧2 + 𝑘)𝑞+3

)

. (A.11)

Combining (A.9)–(A.11) yields
∞
∑

𝑘=0
∫

∞

0
𝑥𝑞𝐶𝑘(𝑥, 𝑧)𝑑𝑥

=
(−1)𝑞+1𝑀𝑞

𝑞!

(

𝜓𝑞
( 𝑧
2

)

+ 1
𝑞 + 1

𝑧𝜓𝑞+1
( 𝑧
2

)

+ 1
4(𝑞 + 1)(𝑞 + 2)

𝑧2𝜓𝑞+2
( 𝑧
2

)

)

.

The summation in (A.9) over 𝑘 < 0 can be rewritten, with a change of variable 𝑚 = −𝑘 − 1, as
−1
∑

𝑘=−∞

𝑘2

(− 𝑧
2 − 𝑘)𝑞+3

=
∞
∑

𝑚=0

(𝑚 + 1)2

(1 − 𝑧
2 + 𝑚)𝑞+3

.

Using an argument similar to (A.11), we also have
−1
∑

𝑘=−∞
∫

∞

0
𝑥𝑞𝐶𝑘(𝑥, 𝑧)𝑑𝑥

=
(−1)𝑞+1𝑀𝑞

𝑞!

(

𝜓𝑞
(

1 − 𝑧
2

)

− 1
𝑞 + 1

𝑧𝜓𝑞+1
(

1 − 𝑧
2

)

+ 1
4(𝑞 + 1)(𝑞 + 2)

𝑧2𝜓𝑞+2
(

1 − 𝑧
2

)

)

.

ombining the above results for 𝑘 ≥ 0 and 𝑘 < 0 and recalling the definition of 𝐻𝑞(⋅), we obtain

∞ ∞
∑

𝑥𝑞𝐶𝑘(𝑥, 𝑧)𝑑𝑥 =
(−1)𝑞+1𝑀𝑞𝐻𝑞(𝑧). (A.12)
15

∫0 𝑘=−∞ 𝑞!
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By a similar argument leading to (A.12), we can also show that

∫

∞

0

∞
∑

𝑘=−∞
𝑥𝑞𝐷𝑘(𝑥, 𝑦)𝑑𝑥 =

(−1)𝑞+1𝑀𝑞

𝑞!
𝐺𝑞(𝑦).

Hence, for 𝑞 ≥ 1,

∫

∞

0
𝑥𝑞𝑔𝜉 (𝑥, 𝑦, 𝑧)𝑑𝑥 = 4

√

2
𝜋
(−1)𝑞𝑀𝑞

𝑞!
(

𝐺𝑞(𝑦) −𝐻𝑞(𝑧)
)

. (A.13)

For the denominator ∫ ∞
0 𝑔𝜉 (𝑥, 𝑦, 𝑧)𝑑𝑥, by a direct integration, we have

∫

∞

0

∞
∑

𝑘=−∞

(

𝐶𝑘(𝑥, 𝑧) −𝐷𝑘(𝑥, 𝑦)
)

𝑑𝑥 =

√

2𝜋
8

∞
∑

𝑘=−∞

(

𝑘2

|

𝑧
2 + 𝑘|3

−
𝑘(𝑘 + 1)

|

1−𝑦
2 + 𝑘|

3

)

. (A.14)

By (5.7.6) in Olver et al. (2010), we obtain

𝜓0

( 1 − 𝑦
2

)

− 𝜓0

( 𝑧
2

)

=
∞
∑

𝑘=0

(

1
𝑧
2 + 𝑘

− 1
1−𝑦
2 + 𝑘

)

. (A.15)

Note that when 𝑘 ≥ 0, the summand in (A.14) may be rewritten in the form of the summand in (A.10) and (A.15) as

𝑘2

( 𝑧2 + 𝑘)3
−

𝑘(𝑘 + 1)

( 1−𝑦2 + 𝑘)3
=

(

1
𝑧
2 + 𝑘

− 1
1−𝑦
2 + 𝑘

)

− 𝑧 1
( 𝑧2 + 𝑘)2

− 𝑦 1
( 1−𝑦2 + 𝑘)2

− 1
8
𝑧2 −2

( 𝑧2 + 𝑘)3
− 1

8
(1 − 𝑦2) −2

( 1−𝑦2 + 𝑘)3
. (A.16)

Combining (A.10) and (A.14)–(A.16) yields
∞
∑

𝑘=0
∫

∞

0

(

𝐶𝑘(𝑥, 𝑧) −𝐷𝑘(𝑥, 𝑧)
)

𝑑𝑥 =

√

2𝜋
8

(

𝜓0

( 1 − 𝑦
2

)

− 𝜓0

( 𝑧
2

)

− 𝑧𝜓1

( 𝑧
2

)

− 𝑦𝜓1

( 1 − 𝑦
2

)

− 1
8
𝑧2𝜓2

( 𝑧
2

)

− 1
8
(1 − 𝑦2)𝜓2

( 1 − 𝑦
2

)

)

.

he summation in (A.14) over 𝑘 < 0 can be rewritten, with a change of variable 𝑚 = −𝑘 − 1, as
−1
∑

𝑘=−∞

(

𝑘2

(− 𝑧
2 − 𝑘)3

−
𝑘(𝑘 + 1)

(− 1−𝑦
2 − 𝑘)3

)

=
∞
∑

𝑚=0

(

(𝑚 + 1)2

(1 − 𝑧
2 + 𝑚)3

−
𝑚(𝑚 + 1)

( 1+𝑦2 + 𝑚)3

)

.

sing an argument similar to (A.16), we also have
−1
∑

𝑘=−∞
∫

∞

0

(

𝐶𝑘(𝑥, 𝑧) −𝐷𝑘(𝑥, 𝑧)
)

𝑑𝑥

=

√

2𝜋
8

(

𝜓0

( 1 + 𝑦
2

)

− 𝜓0

(

1 − 𝑧
2

)

+ 𝑧𝜓1

(

1 − 𝑧
2

)

+ 𝑦𝜓1

( 1 + 𝑦
2

)

− 1
8
𝑧2𝜓2

(

1 − 𝑧
2

)

− 1
8
(1 − 𝑦2)𝜓2

( 1 + 𝑦
2

)

)

.

ombining the above results for 𝑘 ≥ 0 and 𝑘 < 0 and recalling the definition of 𝐺0(⋅), 𝐻0(⋅), and 𝑀0, we obtain

∫

∞

0
𝑔𝜉 (𝑥, 𝑦, 𝑧)𝑑𝑥 = 4

√

2
𝜋
𝑀0

(

𝐺0(𝑦) −𝐻0(𝑧)
)

. (A.17)

he assertion of the lemma then readily follows from (A.13), (A.17), and the fact that
𝑀𝑞

𝑀0
=

(𝑞 + 2)
√

2𝑞𝜋
𝛤
( 𝑞 + 3

2

)

. □

roof of Theorem 2. We first consider the case with Stein’s loss. Recall that the asymptotic risk E
[

𝐿
(

𝑓 (𝜁 )
)]

equals the finite-sample
risk of the estimator 𝑓 (𝑟𝑖, 𝑢𝑖, 𝑙𝑖) under the limit model 𝑃𝑡 = 𝜎𝑊𝑡. Therefore, minimizing the asymptotic risk is equivalent to finding the
minimum-risk scale-equivariant estimator for 𝜎 under the limit model. By Lemma A.1 and the Rao–Blackwell theorem, this optimal
estimator only depends on the shape features (|𝑟𝑖|, 𝑤𝑖, 𝑎𝑖). Note that (𝑤𝑖, 𝑎𝑖∕𝑤𝑖, |𝑟𝑖|∕𝑤𝑖) has the same distribution as (𝜉1, 𝜉2, 𝜉3) defined
in Lemma A.2. With an appeal to Corollary 3.3.8 in Lehmann and Casella (1998), the minimum-risk scale-equivariant estimation
function under the limit problem is given by 𝑤𝑝𝑖 ∕E[𝜉

𝑝
1 |𝜉2 = 𝑎𝑖∕𝑤𝑖, 𝜉3 = |𝑟𝑖|∕𝑤𝑖]. For estimating spot variance, taking 𝑝 = 2 and applying

Lemma A.2 with 𝑞 = 2, we may rewrite this function in closed form as

4𝑤2
𝑖 ⋅

𝐺0(𝑎𝑖∕𝑤𝑖) −𝐻0(|𝑟𝑖|∕𝑤𝑖) .
16

3 𝐺2(𝑎𝑖∕𝑤𝑖) −𝐻2(|𝑟𝑖|∕𝑤𝑖)
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Recalling the meromorphic property of the polygamma functions, we see that this estimation function is continuous almost
everywhere. This estimator is thus regular, and so, is also the AMRE estimator under the original nonparametric model as asserted
in Theorem 2.

The proof for the quadratic loss is similar, except that we now apply (3.3.18) in Lehmann and Casella (1998) and Lemma A.2
bove with 𝑝 = 2, 𝑞 = 2 and 4 to show that the optimal estimation function of 𝜎2 under the limit model is

𝑤2
𝑖 ⋅

E[𝜉21 |𝜉2 = 𝑎𝑖∕𝑤𝑖, 𝜉3 = |𝑟𝑖|∕𝑤𝑖]

E[𝜉41 |𝜉2 = 𝑎𝑖∕𝑤𝑖, 𝜉3 = |𝑟𝑖|∕𝑤𝑖]
=

32𝑤2
𝑖

5
⋅
𝐺2(𝑎𝑖∕𝑤𝑖) −𝐻2(|𝑟𝑖|∕𝑤𝑖)
𝐺4(𝑎𝑖∕𝑤𝑖) −𝐻4(|𝑟𝑖|∕𝑤𝑖)

.

This estimator is also regular and thus is the AMRE estimator under the original nonparametric model as asserted.
The derivation of AMRE estimators of spot volatility follows the same lines of arguments, except for taking 𝑝 = 1, 𝑞 = 1 and

2. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2023.105548.
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