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Optimal Inference for Spot Regressions†

By Tim Bollerslev, Jia Li, and Yuexuan Ren*

Betas from return regressions are commonly used to measure system-
atic financial market risks. “Good” beta measurements are essential 
for a range of empirical inquiries in finance and macroeconomics. 
We introduce a novel econometric framework for the nonparametric 
estimation of  time-varying betas with  high-frequency data. The “local 
Gaussian” property of the generic  continuous-time benchmark model 
enables optimal “ finite-sample” inference in a  well-defined sense. It 
also affords more reliable inference in empirically realistic settings 
compared to conventional  large-sample approaches. Two applica-
tions pertaining to the tracking performance of leveraged ETFs and 
an intraday event study illustrate the practical usefulness of the new 
procedures. (JEL C22, C58, G12, G23)

Time series return regressions, in which the returns on some financial asset are 
regressed on some benchmark factor, are omnipresent in macroeconomics and finance. 
The regression coefficient estimates, or betas, derived from such regressions are com-
monly used in empirical applications as intrinsic measures for systematic market risks. 
The practical estimation of said regressions have traditionally been based on daily or 
 lower-frequency monthly returns over  multi-year horizons. However, macroeconomic 
and financial market risks are clearly  time-varying (e.g., Engle 2004; Sims and Zha 
2006), and the assumption of constancy over extended time frames implicit in the 
standard  regression-based approach for estimating betas, has been called into question 
by numerous studies. As a case in point, a number of researchers have allowed the 
betas to depend parametrically on other variables (e.g., Ferson and Harvey 1999 and 
Gagliardini, Ossola, and Scaillet 2016), while others have inferred  time-varying betas 
from nonlinear parametric models that explicitly allow for  second-order dynamic 
dependencies (e.g., Bollerslev, Engle, and Wooldridge 1988 and Braun, Nelson, and 
Sunier 1995).

In response to these concerns, a more recent and rapidly growing litera-
ture, starting with  Barndorff-Nielsen and Shephard (2004a) and Andersen et  al. 
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(2005,  2006), has sought to nonparametrically estimate  so-called realized betas 
based on  higher-frequency intraday data over shorter, typically daily, time inter-
vals.1 Related, a burgeoning literature in macroeconomics has argued for the use-
fulness of  high-frequency-based identification procedures and related regressions 
to assess the effect of policy shocks in changing economic environments (e.g., 
Cochrane and Piazzesi 2002; Faust, Swanson, and Wright 2004; Nakamura and 
Steinsson 2018). Further pushing the estimation window to even finer  within-day 
 time-intervals, a series of newer studies (e.g., Bibinger and Reiß 2014; Bibinger 
et al. 2019; Andersen, Thyrsgaard, and Todorov 2021) have argued that the betas 
may also vary  nontrivially within the day, so that even daily estimation windows 
might be too coarse. Meanwhile, the assumption of a “large” number of observa-
tions over diminishing, or “local,” intraday estimation windows underpinning the 
inference procedures in all of these studies can be difficult to realistically mimic 
in practice (see also the introductory discussion in Andersen and Bollerslev 2018).

Hence, motivated by the need for more reliable estimation and inference proce-
dures in  high-frequency settings with  time-varying betas, we propose a new fixed- k  
inference method for spot return regressions that formally treats the window size  
k , or equivalently the number of observations underlying the nonparametric esti-
mation, as a fixed constant. As such, our approach forces the econometrician to 
directly address the “ small-sample” issue  head-on without resorting to conven-
tional  large-sample asymptotic arguments, and the fictitious notion of an infinitely 
growing number of observations, or bandwidth sequence. Our approach builds on 
recent work by Bollerslev, Li, and Liao (2021), and the observation that in a fric-
tionless financial market without any arbitrage opportunities, the underlying latent 
 continuous-time price process (formally modeled as an Itô semimartingale) should 
behave approximately as a scaled Brownian motion over “short” time intervals, and 
therefore locally also inherit the Gaussian property of a Brownian motion.2

This local Gaussian approximation in turn allows us to treat the nonparametric 
spot regression problem as if it were a  finite-sample Gaussian linear regression. 
Correspondingly, our fixed- k  theory naturally suggests the use of critical values 
based on the t-distribution, instead of the  Gaussian-based critical values obtained 
from conventional large- k  asymptotic theory. Importantly, going one step further, 
we show that the spot beta estimator and related t-test are both asymptotically opti-
mal, in the sense of achieving uniformly  minimum-variance among all unbiased 
estimators, and being uniformly most powerful among all unbiased tests, respec-
tively. The former optimality claim, justifying our fixed- k   least-squares estimator as 
the best unbiased estimator (BUE), in effect represents a new nonparametric “spot” 
version of the classic Gauss-Markov theorem.

To address concerns that the theoretically justified local Gaussianity underlying 
the fixed- k  approach may not provide a sufficiently close approximation for a given 
“local” sample, we develop a new diagnostic test based on the spot skewness and 
kurtosis calculated from the  high-frequency returns. Our Monte Carlo  simulation 

1 Precedent theory pertaining to the consistent filtering of spot betas has been developed by Nelson (1996).
2 Shephard (2022) has also recently developed a new class of volatility estimators that exploit the quantile 

properties of Brownian increments, as an interesting alternative to the conventional  high-frequency  moment-based 
approach.
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study, geared to various empirically realistic settings, also further underscores the 
superior performance of the new fixed- k  inference procedures compared to the 
conventional large- k  methods. Notably, a  simple-to-implement “robustified” ver-
sion of the approach, which explicitly incorporates the aforementioned diagnostic 
test for local Gaussianity as a safe guard, maintains excellent size control across a 
wide range of estimation window sizes, including situations with rapidly changing 
volatility.

Underscoring the practical applicability and insights afforded by the new pro-
cedures, we present two separate empirical applications. In the first application, 
we investigate the tracking performance of two leveraged  exchange-traded funds 
(ETFs), namely the popular TQQQ and SQQQ funds which aim to generate three 
and negative three times the return on the  Nasdaq-100 stock market index, respec-
tively. Using  high-frequency intraday data spanning 2018 to 2022, our analysis 
uncovers significant systematic intraday and episodic deviations in the funds’ esti-
mated spot betas from the funds’ stated tracking objectives, with especially notable 
deviations occurring during the  COVID-19 pandemic in 2020. As such, our results 
call into question the efficacy of the two funds for practical hedging and risk man-
agement purposes during tumultuous times, exactly when they would be needed the 
most.

In our second application, we showcase the use of the new  spot-regression-based 
inference in the context of an intraday event study, detailing the price impact of 
Microsoft’s announcement of its new AI tool, Copilot, on March 16, 2023. By esti-
mating the spot beta for Microsoft within a short  pre-event estimation window, 
we are able to reliably assess the performance of Microsoft’s stock in relation to a 
benchmark market model at a high intraday frequency. Doing so, our results reveal 
economically large and highly statistically significant abnormal positive returns 
during the live demonstration of the new AI system, with little evidence of any 
 preannouncement drift. At a broader level, this analysis clearly illustrates the rapid 
speed with which financial markets respond to certain economic news, and as such 
the practical usefulness of the new fixed- k  inference tools for properly analyzing the 
impact of news shocks more generally.

The rest of the paper is organized as follows. Section I formally presents the new 
fixed- k  spot regression inference procedure. Additional theoretical results, includ-
ing the optimality of the spot estimators and a uniform functional inference theory, 
are provided in Section II. This section is more technically involved, and it can be 
skipped by readers primarily interested in practical applications. Section III sum-
marizes the results of our Monte Carlo simulation study. Our empirical applications 
related to the tracking performance of leveraged ETFs and the impact of Microsoft’s 
AI announcement are presented in Section IV. Section V concludes the paper. All 
proofs are included in the online Supplemental Appendix, which also provides 
additional theoretical results briefly mentioned in the main text, along with various 
empirical robustness checks.

I. Fixed- k  Inference for Spot Regressions

Section IA details the formal econometric setting. Section IB establishes our new 
fixed- k  inference theory for nonparametric spot regressions. Section IC presents a 
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diagnostic test that can be used to guide the choice of spot estimation window and 
further robustify the inference procedure. Section ID describes a predictive infer-
ence procedure for intraday event studies. Below, we use   →   d    to denote convergence 
in distribution. All limits are for the number of observations  n → ∞ , along with 
the sampling interval of the  high-frequency data shrinking to zero   Δ n   → 0 , and the 
discretely sampled data series approaching their  continuous-time population limit.

A. Formal Setting and Notation

We consider a bivariate  jump-diffusion, or Itô semimartingale, price process   
Z t   =   ( X t  ,  Y t  )    ⊤   defined on a filtered probability space   (Ω, ,   (  t  )  t≥0  , P)   written as

(1)   Z t   =  Z   0   +  ∫ 
0
  
t
    b s   ds +  ∫ 

0
  
t
    σ s   d  W s   +  J t  , 

where the drift process  b  and the stochastic volatility matrix process  σ  are both 
càdlàg adapted,  W =   ( W 1,t  ,  W 2,t  )  t≥0    is a bivariate standard Brownian motion, and  J  
denotes a  pure-jump process with finite activity driven by a homogeneous Poisson 
random measure on   ℝ  +   × ℝ . For ease of notation, we will refer to the Brownian 
component of   Z t    (i.e.,   ∫ 0  

t    σ s   d  W s   ) as   Z  t  c  =   ( X  t   c ,  Y  t    c )    ⊤  , and the individual elements of 
the spot covariance matrix process by

(2)   c t   ≡  σ t    σ  t  ⊤  =  ( 
 c 11,t    

 c 12,t     c 21,t     c 22,t   ) . 

The semimartingale model, inspired by the  no-arbitrage principle (Delbaen and 
Schachermayer 1994), serves as the cornerstone model in  continuous-time finance 
and economics; comprehensive textbook treatments are available in Merton (1992); 
Duffie (2010); and Back (2017). In the broader realm of stochastic integration the-
ory, the semimartingale process is also recognized as the most general “reasonable” 
stochastic differential possible, as detailed in Protter (2005). Due to its versatility 
and applicability, the semimartingale model, together with the infill asymptotic set-
ting that we adopt here, have also emerged as the standard framework for analyzing 
 high-frequency data and financial asset prices in particular; e.g., the discussions in 
Jacod and Protter (2012) and  Aït-Sahalia and Jacod (2014).3

We further specialize the semimartingale model in the form of the following 
regression representation:

(3)  d  X  t   c  =  v  t  
1/2

  d  W 1,t  ,

 d  Y  t    c  =  β t   d  X  t   c  +  ς  t  
1/2

  d  W 2,t  . 

3 That said, it is important to acknowledge that the semimartingale model is clearly misspecified empirically at 
 ultra-high frequencies due to a host of difficult to quantify market microstructure frictions; e.g., the discussions in 
Bandi and Russell (2008) and Diebold and Strasser (2013). Thus, in line with standard practice, we only treat the 
Itô semimartingale model as a reasonable approximation to reality for “not too finely” sampled data. As such, our 
approach should only be used with data sampled at a “moderate” high frequency, say on a time scale of minutes, as 
opposed to  ultra-high-frequency data, say on a time scale of seconds.
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Our objective is to draw inferences about   β t   , or the “spot beta” which represents the 
instantaneous regression coefficient that quantifies how  Y  moves together with  X  at 
a specific time  t . The spot regression representation in (3) is equivalent to imposing 
a  lower-triangular structure on the   σ t    matrix,

(4)   σ t   =  
(

   v  t  
1/2

   0  
 β t    v  t  

1/2
 
  

 ς  t  
1/2

 
 
)

 . 

This structure effectively assigns the interpretation of the shock to the regressor 
process   X  t   c   to  d  W 1,t   , and  d  W 2,t    as the idiosyncratic shock specific to   Y  t    c  . As a result, 
the spot covariance matrix can be expressed as

(5)   c t   =  (  
 v t    

 β t    v t     
 β t    v t  

  
 β   t  2   v t   +  ς t  

 ) . 

This representation in turn demonstrates how the spot beta   β t    and the idiosyncratic 
variance   ς t    can be directly identified from   c t   ,

(6)   β t   =   
 c 12,t   _  c 11,t    ,  ς t   =  c 22,t   −   

 c  12,t  2  
 _  c 11,t    . 

The nonparametric “ reduced-form” estimation for the spot covariance matrix   c t    is 
 well known under the now standard infill asymptotic setting. To fix ideas, suppose 
that the price vector process  Z  is observed at discrete times  i  Δ n   , for  i = 0, 1, …, n ,  
within the fixed time interval   [0, T]  , where  T ≡ n ·  Δ n   . Let the  i th increment (i.e., 
return) of  Z  be denoted by

   Δ  i  n  Z ≡  Z i Δ n     −  Z  (i−1)  Δ n    , i ∈  {1, …, n} . 

The nonparametric spot estimation is then based on  high-frequency returns from 
a local window indexed by  i ∈   n,t   ≡  { ⌈t/ Δ n  ⌉  + 1, …,  ⌈t/ Δ n  ⌉  +  k n  }  , where  
  ⌈ · ⌉   denotes the ceiling function. Correspondingly, the spot estimator for   c t    is simply 
constructed as

(7)    c ˆ   t   ≡   1 _  k n    Δ n  
     ∑ 

i∈  n,t  
  

 
     ( Δ  i  n  Z)    ( Δ  i  n  Z)    ⊤ , 

with the corresponding estimators for the spot quantities of interest naturally defined 
by

(8)    v ˆ   t   ≡   c ˆ   11,t  ,   β ˆ   t   ≡   
  c ˆ   12,t   _   c ˆ   11,t  

  ,   ς ˆ   t   ≡   c ˆ   22,t   −   
  c ˆ    12,t  2  
 _   c ˆ   11,t  
  . 

Since Poisson jumps occur at a vanishing probability, all of these spot estimates are 
also formally robust to the presence of  Poisson-type jumps.4

4 This phenomenon is well understood in the literature on spot estimation; see, for example, Theorem 13.3.3 
in Jacod and Protter (2012). To further improve the estimator’s robustness against other types of jumps, it would 
be possible to rely on alternative multipower ( Barndorff-Nielsen and Shephard 2004b and Barndorff-Nielsen, 
Shephard, and Winkel 2006) or  truncation-type (Mancini 2001) realized measures. Alternative estimators explicitly 
designed to accommodate “noisy” and irregularly spaced observations have also been developed (see Hayashi and 
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The estimator defined in (7) represents a natural multivariate extension of the 
univariate spot variance estimator considered by Foster and Nelson (1996); see also 
Comte and Renault (1998) and Kristensen (2010). It may also be interpreted as a 
localized version of the realized covariance matrix estimator and the corresponding 
realized beta proposed by  Barndorff-Nielsen and Shephard (2004a), as they gen-
erate exactly the same estimate over the “short” time interval   [t, t +  k n    Δ n  ]  . The 
window size   k n    plays an analogous role to that of the bandwidth parameter in tradi-
tional  kernel-based nonparametrics. Under the conventional spot estimation theory,  
   c ˆ   t    consistently estimates   c t   , provided that the bandwidth sequence satisfies   k n   → ∞  
and   k n    Δ n   → 0 . The   k n   → ∞  condition permits the use of a law of large num-
bers to establish consistency, while the   k n    Δ n   → 0  condition ensures that the local 
estimation window “collapses” to the time point  t  so as to justify the “spot” inter-
pretation. Under an additional “undersmoothing” condition (i.e.,   k n   → ∞  “suffi-
ciently slowly”), a feasible central limit theorem for    c ˆ   t    may also be established (see 
Theorem 13.3.3 in Jacod and Protter 2012), which combined with the delta method 
implies the following feasible asymptotic distributional approximations for the spot 
quantities of interest,

(9)    
 k  n  

1/2
  (  v ˆ   t   −  v t  )   _________ 
 √ 

_
 2     v ˆ   t  

    →   d     (0, 1) ,

   
 k  n  

1/2
  (  β ˆ   t   −  β t  )   __________ 
 √ 
_

   ς ˆ   t  /  v ˆ   t    
    →   d     (0, 1) ,

   
 k  n  

1/2
  (  ς ˆ   t   −  ς t  )   _________ 
 √ 

_
 2     ς ˆ   t  
    →   d     (0, 1) . 

These conventional  asymptotic-Gaussian-based approximations have long served as 
the leading approach for spot regression inference, the vast literature on the analysis 
of  high-frequency financial data included.

That being said, it is evident that the asymptotic Gaussian approximations in (9) 
might work poorly when the number of observations used in the estimation is not 
“large enough” (i.e., for small values of   k n   ).5 On the other hand, the choice of a lon-
ger estimation window (i.e., larger values of   k n   ) might induce nonparametric biases 
in the estimation stemming from potentially  nonnegligible temporal variation in the 
true latent  continuous-time processes (as a case in point, the aforementioned recent 
study by Andersen, Thyrsgaard, and Todorov (2021) points to substantial intraday 
variation in the betas for many individual stocks). These considerations directly 
motivate our development of new and more reliable inference procedures intended 
to circumvent this delicate balancing act by explicitly treating the window size (i.e.,   
k n   ) as a fixed constant  k . Importantly, this framework also allows for a more detailed 

Yoshida 2005;  Aït-Sahalia, Fan, and Xiu 2010; and Mykland and Zhang 2009). We purposely do not pursue any of 
these extensions here, so as to highlight the main novelty of our new approach with minimal technicalities, partic-
ularly as it pertains to the optimality analysis.

5 When   k n    is small, the sampling uncertainty is of similar order as the signal, and the asymptotic Gaussian 
approximation for the “ reduced-form” estimator    c ˆ   t    may be poor. Moreover, since   β t    and   ς t    are nonlinear transforma-
tions of the spot covariance matrix   c t   , the additional linear approximation underlying the delta method may further 
worsen the asymptotic approximation. A similar phenomenon has been studied extensively in the context of weak 
instrumental variables; see, for example, Staiger and Stock (1997) and Andrews, Stock, and Sun  (2019).
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“approximate  finite-sample” decision-theoretic-based characterization of the opti-
mal spot estimators.

B. Fixed- k  Inference for Spot Beta

The fixed- k  asymptotic theory that we will develop for spot regressions is based 
on the simple idea that the Itô semimartingale model is locally Gaussian. Intuitively, 
within a narrow estimation window (i.e.,  k  Δ n   → 0 , as implied by   Δ n   → 0  and a 
fixed  k ), the drift component is of a smaller order, jumps occur with vanishing prob-
ability, and the volatility process is nearly constant. As a result, the Itô semimartin-
gale behaves approximately as a scaled Brownian motion, and as such exhibits the 
aforementioned local Gaussianity.

The local Gaussian approximation that we rely on is directly linked to the 
Gaussian nature of Brownian motion. However, that same approximation could in 
principle also be “ micro-founded” in the sense of a functional central limit theorem 
type argument. Putting this notion into a broader historical perspective, Bachelier 
(1900) first suggested using Brownian motion to model asset prices, considering the 
 continuous-time process as the scaling limit of a microscopic  tick-by-tick random 
walk. The physical interpretation of the Gaussian property of Brownian motion was 
also discussed in Einstein’s (1905) classic work. For additional discussion along 
these lines and more general results regarding semimartingales, see also  Aït-Sahalia 
and Jacod (2020) and the many references therein.

Given the local Gaussianity mentioned above, the nonparametric spot regression 
described in (3) may similarly be approximated by a “limit” Gaussian linear model. 
 Finite-sample results for this parametric problem can then be translated into the orig-
inal nonparametric context. The requisite regularity conditions are gathered in the 
following set of assumptions, which are standard for nonparametric  high-frequency 
econometrics; for a more detailed discussion of these conditions, see Jacod and 
Protter (2012); Jacod, Li, and Liao (2021); Bollerslev, Li, and Liao (2021); and Li, 
Wang, and Zhang (forthcoming).

ASSUMPTION 1: Suppose that the process  Z  satisfies (1) and (4), and that there exists 
a sequence    ( T m  )  m≥1    of stopping times increasing to infinity and a sequence    ( K m  )  m≥1    
of constants such that the following conditions hold for each  m ≥ 1 : (i)  ∥ b t  ∥ + 
∥ σ t  ∥ +  v  t  −1  +  ς  t  −1  +  F t   (핉\ {0} )  ≤  K m     for all  t ∈  [0,  T m  ]  , where   F t    denotes the 
spot Lévy measure of  J ; and (ii) for some constant  κ > 0 ,  E [ ∥ σ t∧ T m     −  σ s∧ T m    ∥   2 ]  
≤  K m    |t − s|   2κ   for all  t, s ∈  [0, T]  .

Theorem 1, below, shows that under these assumptions the studentized spot beta 
estimator may be strongly approximated, or “coupled,” by a student- t  variable, 
defined by the following quantities:

(10)   ξ 11   ≡   ∑ 
i∈  n,t  

  
 
      

  ( Δ  i  n   W 1  )    2  _  Δ n  
  ,  ξ 12   ≡   ∑ 

i∈  n,t  
  

 
      

 ( Δ  i  n   W 1  )  ( Δ  i  n   W 2  )   ___________  Δ n  
  ,  ξ 22   ≡   ∑ 

i∈  n,t  
  

 
      

  ( Δ  i  n   W 2  )    2  _  Δ n  
  . 
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THEOREM 1: For  k ≥ 2 , and under Assumption 1,

(11)    
 √ 
_

 k − 1   (  β ˆ   t   −  β t  )   ____________  
 √ 
_

   ς ˆ   t  /  v ˆ   t    
   =  ξ β   +  o p   (1) , 

where   ξ β   ≡  √ 
_

 k − 1    ξ 12  / √ 
_

   ξ 11    ξ 22   −  ξ  12  2      is  t-distributed with  k − 1  degrees of 
freedom.

This infill asymptotic coupling result for the nonparametric Itô semimartin-
gale model closely resembles a classical  finite-sample result for Gaussian lin-
ear  regressions, as in Proposition 1.3 in Hayashi (2011).6 The   o p   (1)   term in (11) 
accounts for biases arising from the drift and jump components, as well as biases 
related to temporal variation in the stochastic volatility process.7 In the limit model 
without these nonparametric “nuisances,” the   o p   (1)   term would be identically zero.

The fixed- k  asymptotic theory can be readily applied to test hypotheses related 
to the spot beta. Specifically, to test the null hypothesis   H 0  :  β t   =  β    ∗   against the 
alternative hypothesis   H a  :  β t   ≠  β    ∗  , one would reject the null at significance level  
α  when

(12)    
 √ 
_

 k − 1    |  β ˆ   t   −  β   ∗ | 
  ____________  

 √ 
_

   ς ˆ   t  /  v ˆ   t    
   >  t 1−α/2,k−1  , 

where   t 1−α/2,k−1    denotes the  1 − α/2  quantile of the   t k−1    distribution. In the 
Supplemental Appendix, we further extend the  coupling-based theory to prove that 
this test is also optimal, in the sense of being the asymptotically uniformly most 
powerful unbiased test. Correspondingly, the optimal fixed- k  confidence interval 
(CI) at the  1 − α  asymptotic level is naturally given by

(13)   CI 1−α   ≡  [  β ˆ   t   −   
 t 1−α/2,k−1   _ 
 √ 
_

 k − 1  
    √ 

_

     ς ˆ   t   _   v ˆ   t  
    ,   β ˆ   t   +   

 t 1−α/2,k−1   _ 
 √ 
_

 k − 1  
    √ 

_

     ς ˆ   t   _   v ˆ   t  
    ] . 

With the window size  k  given, the proposed fixed- k  inference procedure simply 
suggests that one may treat the problem as a “textbook” Gaussian linear regression 
and use the student- t  distribution to compute critical values. In practical applications, 
of course, the window size  k  is not given but needs to be chosen somehow. This choice 
mirrors the familiar “ bias-variance”  trade-off omnipresent in nonparametric estima-
tion. Making this choice “optimally” tends to be impractical, as it necessitates addi-
tional strong assumptions on both the data and the form of the loss function. This 
challenge, of course, is also not unique to the proposed fixed- k  framework, but applies 
to the conventional large- k  asymptotic framework as well. In that setting, a common 
practice has been to perform the inference for a range of “reasonable” choices of  k  as a 

6 More generally, the spot covariance matrix estimator    c ˆ   t    can be coupled by an    t   -conditional Wishart variable. 
This result may be useful for making fixed- k  inference for other  covariance-related quantities, as long as they are 
pivotalizable. For instance, it can be shown that    ς ˆ   t  / ς t    admits a coupling by a scaled  chi-squared variable with  k − 1  
degrees of freedom.

7 Theorem 1 remains valid with an estimation window centered at  t , as the  within-window variations in the spot 
quantities are of order   o p   (1)  .
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way to check for robustness. To assist in determining which values of  k  may indeed be 
reasonable in the fixed- k  context, the next section introduces a new diagnostic test and 
discusses how it can be used to “robustify” the overall inference procedure.8

C. Diagnostic Test for Local Gaussianity and Robustified Inference

The fixed- k  inference relies on the local Gaussianity of observed  high-frequency 
returns. This feature is more likely to hold if the stochastic volatility process is nearly 
constant within the estimation window, which favors the choice of shorter window 
sizes. For our inferential purpose, it is therefore natural to determine whether  k  is in 
fact “small enough” by assessing the adequacy of the local Gaussian approximation. 
To do so, we suggest new diagnostic tests based on the corresponding “spot” skew-
ness and kurtosis statistics. We present the idea for the regressor process  X , but the 
same diagnostics are readily applicable for the  Y  process as well.

The spot skewness and kurtosis for the local sample    ( Δ  i  n  X)  i∈  n,t      are formally 
defined by

(14)    S ˆ   t   ≡   
 k   −1   ∑ i∈  n,t    

      ( Δ  i  n  X −  k   −1   ∑ i∈  n,t    
      Δ  i  n  X)    

3
 
    _____________________________    

  [ k   −1   ∑ i∈  n,t    
      ( Δ  i  n  X −  k   −1   ∑ i∈  n,t    

      Δ  i  n  X)    
2
 ]    

3/2

 

  , 

(15)    K ˆ   t   ≡   
 k   −1   ∑ i∈  n,t    

      ( Δ  i  n  X −  k   −1   ∑ i∈  n,t    
      Δ  i  n  X)    

4
 
   ____________________________    

  [ k   −1   ∑ i∈  n,t    
      ( Δ  i  n  X −  k   −1   ∑ i∈  n,t    

      Δ  i  n  X)    
2
 ]    

2

 

  . 

These definitions closely resemble the classical skewness and kurtosis statistics fre-
quently used to test for Gaussianity in applied work. However, in contrast to the 
conventional large- k  asymptotic setting, where the skewness and kurtosis statistics 
are centered at 0 and 3, respectively, and diagnostic tests for normality may be con-
structed based on a standard central limit theorem together with the delta method 
(e.g., the often used tests by Jarque and Bera 1980), in the fixed- k  setting, the con-
ventional  large-sample limit theorems do not apply.

Instead, we explicitly derive the infill asymptotic distributions for    S ˆ   t    and    K ˆ   t    using 
the coupling argument, thereby allowing for the determination of critical values to 
detect “abnormal” spot skewness and/or kurtosis for a given window size  k . The 
following theorem formalizes the idea.

THEOREM 2: Under the same setting as Theorem 1, there exist i.i.d. standard nor-
mal random variables    ( η i  )  i∈  n,t      such that    S ˆ   t   =   S ̃   t   +  o p   (1)   and    K ˆ   t   =   K ̃   t   +  o p   (1)  ,  
where    S ̃   t    and    K ̃   t    are the sample skewness and kurtosis statistics of the coupling vari-
ables    ( η i  )  i∈  n,t     , respectively.

8 Contrasting the fixed- k  and conventional large- k  approaches, if  k  is chosen to be numerically “large,” the  
  t k−1   -distribution implied by the fixed- k  framework will, of course, be close to the standard normal distribution 
implied by the conventional framework. However, for  k  “small,” the   t k−1    and the normal distributions can differ 
substantially, and the large- k  Gaussian approximation can only introduce additional distortions. Hence, we always 
recommend computing critical values using the  t -distribution, regardless of whether the numerical value of  k  seems 
large or not.
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Theorem 2 shows that under the fixed- k  asymptotic setting, the distributions of 
the spot skewness and kurtosis statistics formed using the  high-frequency returns 
are given by the exact distributions of the same statistics formed using i.i.d. standard 
normal random variables. These distributions are highly nonstandard, but they can 
be easily computed via Monte Carlo simulations. To illustrate, Figure 1 plots the 
probability density functions of  |  S ̃   t  |  and    K ̃   t    for  k ∈  {5, 10, 15, 30}  .9

Under the Itô semimartingale model, these infill asymptotic approximations are 
theoretically valid for any fixed  k . Throughout our analysis, we adhere to this standard 
model and do not interpret abnormal levels of skewness and/or kurtosis as evidence 
against this  well-established benchmark model. Rather, we recognize that Theorem 
2 provides “good” approximations in finite samples only to the extent that the local 
Gaussian approximation is in force, corresponding to  k  being “sufficiently small.” 
Consistent with this reasoning, we view abnormal skewness and/or kurtosis as a sign 
that the local Gaussian approximation appears inadequate for a given local sample.

For this purpose, it is convenient to combine the spot skewness and kurtosis sta-
tistics into a single diagnostic test statistic

(16)    D ˆ   t   ≡ max { A k  |  S ˆ   t  |,   K ˆ   t  } , 

where the scaling factor   A k   ≡ median (  K ̃   t  ) /median (|  S ̃   t  |)   ensures that the   A k  
|  S ˆ   t  |  and    K ˆ   t    components have comparable magnitudes.10 Theorem 2 and the con-
tinuous mapping theorem readily imply that    D ˆ   t   =   D ̃   t   +  o p   (1)  , where    D ̃   t   =  
max { A k  |  S ̃   t  |,   K ̃   t  }  . The distribution of the    D ̃   t    coupling variable is known in finite 

9 For a finite sample with  k  observations, sample skewness and kurtosis statistics are bounded by  
  (k − 2) / √ 

_
 k − 1    and   ( k   2  − 3 k + 3) / (k − 1)  , respectively; see Wilkins (1944) and Dalén (1987). As a result, 

when  k = 5 , the absolute skewness is bounded by 1.5 and the kurtosis is bounded by 3.25, which explains the 
bounded supports of the corresponding distributions seen in Figure 1.

10 Given that  nonzero centered moments are strictly increasing in their orders, it is easy to show that  |  S ˆ   t  | <   K ˆ   t    
whenever the statistics are  well defined. Hence,    D ˆ   t    would trivially coincide with    K ˆ   t    if   A k    were simply set to unity.

Figure 1

Note: The figure shows the fixed- k  asymptotic probability density functions for the absolute spot skewness and spot 
kurtosis for different values of  k .
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samples, and we use its tail quantiles as critical values for the sample    D ˆ   t    statistic. 
With a slight abuse of terminology, we will say that the diagnostic test “rejects 
local Gaussianity” for a given local sample at significance level  δ , if    D ˆ   t    exceeds 
the  1 − δ  quantile of    D ̃   t   . Such a rejection by the diagnostic test in turn suggests 
that it would be inadvisable to proceed with the  t -test for the spot beta estimate, 
as the underlying asymptotic approximation could be unreliable. The following 
algorithm formalizes this decision rule in the form of a “compound” test.

ALGORITHM 1: Robust  t-test for   H 0  :  β t   =  β    ∗   with diagnostic correction:

Step 1: Conduct the    D ˆ   t    diagnostic test for local Gaussianity at significance level δ. 
If the test rejects, stop the testing procedure without rejecting the   H 0  :  β t   =  β    ∗   null 
hypothesis. Otherwise, proceed to step 2.

Step 2: Conduct the  t -test for the   H 0  :  β t   =  β    ∗   null hypothesis at significance 
level  α  as outlined in Section IB. Report the test decision accordingly.

This diagnostic correction obviously exerts a larger influence the larger the value 
of  δ . If a researcher fully trusts the asymptotic arguments presented in Section IB, 
and by extension the standard  local-Gaussianity heuristic, there would be no need to 
employ the more conservative robustification, effectively fixing  δ = 0 . Employing 
larger values of  δ  may in turn be viewed as expressing less confidence in the accu-
racy of the asymptotic theory for a given finite sample. In practice, we recommend 
employing  δ  at conventional significance levels, such as 1 percent, 5 percent, and 
10 percent.11

For any  δ ∈  (0, 1)   this robust approach is inherently more conservative than 
the “uncorrected”  t -test, as the compound procedure may be stopped in the first 
step by the  local-Gaussianity diagnostic test. However, since the uncorrected  t -test 
controls asymptotic size, the robust  t -test does so as well. Importantly, by employ-
ing the diagnostic test as a “ pretest,” it will not result in  over-rejection, while 
providing better size control in finite samples compared to the uncorrected test. As 
the diagnostic test is likely to reject when the window size  k  becomes “too large,” 
the robust approach will therefore also “automatically” become more conservative 
than the uncorrected  t-test. Our simulation results, detailed in Section III, further 
corroborate these observations and underscore the practical usefulness of this sim-
ple diagnostic correction.

D. Predictive Inference for Spot Regressions

The discussion so far pertains to the “ in-sample” analysis of spot beta. In many 
applications, however, the interest centers on predictive analysis. This section 
develops the requisite econometric tools for such analyses. For concreteness, we 
focus on the situation in which one relies on the spot beta estimate to form a 

11 Examining the test results collectively across such a range may also be used to provide a more comprehensive 
set of statistical evidence to evaluate the hypothesis of interest. Should ambiguous conclusions arise, it may be 
interpreted as a reflection of the challenges associated with the specific setting.
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 prediction of  Y  over some future time period based on the future realization of  X  . 
This type of scenario naturally arises in  high-frequency event studies, and appli-
cations where one is interested in assessing whether the intraday returns on some 
asset observed around the time of specific news arrivals appear “abnormal.”

To set out the idea, let the  high-frequency observations used for the spot regres-
sion be indexed by   {1, …, k}  . To emphasize the timing of the information, let  
   β ˆ    [1:k]     and    ς ˆ    [1:k]     denote the resulting estimators for the spot beta and the idiosyncratic vari-
ance, respectively. Utilizing these estimates, we form the  spot-regression-model-based 
prediction of the  h -period return   Y  (k+h)  Δ n     −  Y k Δ n     , as   ( X  (k+h)  Δ n     −  X k Δ n    )   β ˆ    [1:k]    . This pre-
diction naturally serves as a benchmark for the “normal” level of return on  Y  to expect. 
Correspondingly, the  ex-post cumulative abnormal return (CAR) of asset  Y  over the 
  [k  Δ n  ,  (k + h)  Δ n  ]   time period may be measured by

(17)    CAR ˆ   h   =  Y  (k+h)  Δ n     −  Y k Δ n     −  ( X  (k+h)  Δ n     −  X k Δ n    )  ·   β ˆ    [1:k]   . 

To help assess the significance of this return, the standard error of   Δ  n  −1/2    CAR ˆ   h    
may be estimated as

(18)    se ˆ   h   =  √ 

________________________

    [h +   
  ( X  (k+h)  Δ n     −  X k Δ n    )    2   _____________  

 ∑ i=1  k     ( Δ  i  n  X)    2 
  ]   

k   ς ˆ    [1:k]    _ 
k − 1    , 

which accounts for both the “ in-sample” estimation error in the spot beta and the 
“ out-of-sample” idiosyncratic shocks. Theorem 3 below further shows that the  
 t -statistic for the CAR can be coupled by a  t -distributed random variable.

THEOREM 3: For  k ≥ 2  and  h ≥ 1 , and under Assumption 1, there exists a  
  t k−1   -distributed random variable   τ h    such that

    
 Δ  n  −1/2    CAR ˆ   h    _________   se ˆ   h  

   =  τ h   +  o p   (1) . 

Theorem 3 readily suggests forming a predictive CI for the  h -period CAR at the  
1 − α  level as

(19)   PCI h,1−α   =  [− Δ  n  1/2   t 1−α/2,k−1     se ˆ   h  ,  Δ  n  1/2   t 1−α/2,k−1     se ˆ   h  ] , 

where   t 1−α/2,k−1    denotes the  1 − α/2  quantile of the   t k−1    distribution. If the esti-
mated CAR falls outside this predictive CI, the abnormal return may be deemed 
statistically significant at significance level α.

More concretely, for individual equities, large and seemingly abnormal returns 
typically arise from important  firm-specific news releases, prompting the compa-
ny’s stock price to deviate from what is predicted by a benchmark pricing model. 
In this situation, the predictive CI at a given confidence level in essence depicts a 
range of probable “counterfactuals” that could have happened in the absence of 
the news. By design, the predictive CI depends on  Y  solely through the  pre-event 
estimation window   {1, …, k}  , ensuring that it is not “contaminated” by  post-event 
information.
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This method for determining “abnormal” returns closely resembles the widely 
used approach in the event study literature, as discussed in  Campbell, Lo, and 
MacKinlay(1997). However, in contrast to the asymptotic Gaussian approxima-
tions traditionally employed in that literature, based on “large sample” arguments 
obtained by aggregating across assets, events, and time periods, the  high-frequency 
method developed here achieves local Gaussianity by concentrating on shorter time 
windows, thereby allowing for the construction of formal statistical tests pertaining 
to the immediate impact of singular news events. Section IVB provides a concrete 
empirical illustration.

II. Optimality and Uniform Inference

This section collects some additional theoretical results and discussions. Section 
IIA clarifies a robustness property of the fixed- k  method that is not afforded by the 
conventional large- k  method. Section  IIB demonstrates that the spot beta estima-
tor is asymptotically optimal, achieving the minimum variance among all unbiased 
estimators, including potential nonlinear ones. Section  IIC extends the pointwise 
inference for the spot beta to a uniform version for the entire spot beta process. The 
content in this section  is somewhat technical in nature. Readers primarily inter-
ested in the  finite-sample performance of the estimators or practical applications 
may choose to proceed directly to the Monte Carlo simulations in Section III, or the 
empirical analysis in Section IV.

A. Robustness of the Fixed- k  Method

The conventional large- k  theory and the proposed fixed- k  theory have their own 
distinct comparative advantages. On the one hand, the large- k  theory implies that 
the spot beta estimator is consistent, while consistency can no longer be claimed 
under the fixed- k  framework. On the other hand, for inference, the fixed- k  theory 
attains a  well defined theoretical sense of robustness that is not afforded by the 
large- k  theory.

To appreciate this added sense of robustness, it is useful to first recall the 
 bias-variance characterization under the large- k  setting with   k n   → ∞ . Under the 
maintained assumption that the spot volatility matrix process   σ t    is κ-Hölder contin-
uous, the nonparametric bias of the spot estimator is of order    ( k n    Δ n  )    κ   and its variance 
is of order   k  n  −1  . The  rate-optimal choice of   k n    is obtained by balancing the (squared) 
bias and variance such that    ( k n    Δ n  )    2κ  ≍  k  n  −1  , corresponding to   k n   ≍  Δ  n  −2κ/ (2κ+1)   . 
In order to construct  Gaussian-based CIs under the large- k  framework, the standard 
approach is therefore to “undersmooth” by letting   k n    grow slower than   Δ  n  −2κ/ (2κ+1)   ,  
so that the nonparametric bias becomes asymptotically negligible. If the Hölder 
continuity index κ is known, that undersmoothing choice of   k n    is feasible, at least 
in theory. However, if  κ  is unknown, the large- k   Gaussian-based CI would not be 
robust due to this lack of knowledge of the appropriate smoothing parameter. To 
appreciate this, fix a large- k  tuning scheme of the form   k n   ≍  Δ  n  −a   for some  a > 0 .  
Given this choice, there always exist data generating processes with sufficiently 
rough volatility paths (i.e., κ sufficiently small) such that  a > 2κ/ (2κ + 1)  . As 
such, the given   k n    sequence would lead to “oversmoothing” for that collection of 
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models. Correspondingly, the resulting nonparametric bias will dominate the stan-
dard error, and the large- k  CI will provide zero coverage asymptotically.

Meanwhile, the requisite undersmoothing is always in force under the fixed- 
k  framework, no matter how small the continuity index  κ  might be (since  k ≪  
Δ  n  −2κ/ (2κ+1)    for any  κ > 0 ). Theoretically, the fixed- k  inference is therefore robust 
with respect to “arbitrarily rough” volatility, whereas the large- k  inference theory 
is not. In other words, in situations when the stochastic volatility path may lack 
smoothness, the fixed- k  framework provides a  built-in robustness not afforded by 
the conventional large- k  approach.

These theoretical considerations aside, the fixed- k  and large- k  methods do sug-
gest their own distinct approaches for conducting inference. In that regard, as dis-
cussed in Section IB, the fixed- k   small-sample perspective arguably aligns more 
closely with the underlying  finite-sample problem, and importantly as demon-
strated by the simulations in Section III below, it also generally results in more 
accurate inference.

B. Optimality of the Spot Beta Estimator

In this subsection, we demonstrate that the spot beta estimator,    β ˆ   t   , is indeed optimal, 
as it is asymptotically  minimum-variance among a broad class of asymptotically unbi-
ased “regular” estimators.12 Our approach can be viewed as a  limits-of-experiments 
method specifically tailored to the infill  high-frequency asymptotic setting. Analogous 
arguments have been successfully employed in other areas of econometrics, including 
Jansson (2008); Hirano and Porter (2009); and Andrews and Mikusheva (2022).

For ease of notation, denote the vectors of observed  high-frequency returns in the 
local estimation window by

   r X   ≡   ( Δ  i  n  X/ √ 
_

  Δ n    )  i∈  n,t    ,  r Y   ≡   ( Δ  i  n  Y/ √ 
_

  Δ n    )  i∈  n,t    . 

A generic spot estimator for   β t    may then be expressed as  f  ( r X  ,  r Y  )   for some mea-
surable function  f :  핉   k  ×  핉   k  ↦ 핉 . We will thus identify an estimator with the 
function  f  and refer to it as regular if  f  is continuous Lebesgue almost everywhere. 
This regularity requirement appears rather minimal. However, it is sufficient to 
ensure that  f  ( r X  ,  r Y  )   can be coupled by an analogous estimator in the limit experi-
ment.13 The following lemma formalizes this assertion.

12 Utilizing the same approach, it can be demonstrated that the  bias-corrected estimator    ς ˆ    t  ∗  ≡ k   ς ˆ   t  / (k − 1)   is 
also optimal in the same sense for estimating the spot idiosyncratic variance,   ς t   .

13 In asymptotic statistics, as exemplified by Bickel et al. (1998), the notion of regularity involves not only 
specific asymptotic approximations for the estimator, typically in the form of weak convergence, but also demands 
the estimator to be equivariant, usually with respect to location shifts. However, in our analysis, we refrain from 
imposing equivariance restrictions and concentrate on asymptotically unbiased estimators.
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LEMMA 1: Under Assumption 1, any regular estimator  f  ( r X  ,  r Y  )   may be expressed 
as

(20)  f  ( r X  ,  r Y  )  = f  ( v  t  
1/2

  η,  β t    v  t  
1/2

  η +  ς  t  
1/2

  ϵ)  +  o p   (1) , 

where  η  and ϵ are independent  k -dimensional standard Gaussian random vectors 
independent of the time- t  information set    t   .

Lemma 1 shows that any regular estimator  f  ( r X  ,  r Y  )   may be decomposed into a 
generally nondegenerate leading term  f  ( v  t  1/2  η,  β t    v  t  1/2  η +  ς  t  1/2  ϵ)   and an asymptot-
ically negligible   o p   (1)   term. The leading coupling variable may be interpreted as an 
estimator constructed from the limit experiment with   v  t  1/2  η  and   β t    v  t  1/2  η +  ς  t  1/2  ϵ  as 
the random observables. Since   ( v t  ,  β t  ,  ς t  )   are    t   -measurable and   (η, ϵ)   is independent 
of    t   , the limit experiment is de facto an    t   -conditional Gaussian linear model.

Let  L ( · ,  · )   denote any nonnegative continuous loss function. By the continu-
ous mapping theorem, Lemma 1 implies that  L ( β t  , f  ( r X  ,  r Y  ) )  = L ( β t  , f  ( v  t  1/2  η,  β t    
v  t  1/2  η +  ς  t  1/2  ϵ) )  +  o p   (1) .  The asymptotic risk of the  f  ( r X  ,  r Y  )   estimator is naturally 
defined as the    t   -conditional expectation of its limit loss,

(21)  R ( f ;  v t  ,  β t  ,  ς t  )  ≡ E [L ( β t  , f  ( v  t  
1/2

  η,  β t    v  t  
1/2

  η +  ς  t  
1/2

  ϵ) )   |     t  ] . 

Since   (η, ϵ)   is independent of    t   , the asymptotic risk depends on the condition-
ing information only through   ( v t  ,  β t  ,  ς t  )  . As a result, the asymptotic risk function   
(v, β, ς)  ↦ R ( f ; v, β, ς)   may readily be computed for any given estimator  f  and loss 
function  L . However, the exact  finite-sample risk  E [L ( β t  , f  ( r X  ,  r Y  ) )  |   t  ]   is generally 
infeasible to compute due to the presence of various  infinite-dimensional nuisance 
parameters that govern the conditional distribution of the observed data vectors,  
  r X    and   r Y   .

In line with the previously defined asymptotic risk, the asymptotic bias of the  
 f  ( r X  ,  r Y  )   estimator for   β t    is naturally defined by

(22)  B ( f ;  v t  ,  β t  ,  ς t  )  ≡ E [ f  ( v  t  
1/2

  η,  β t    v  t  
1/2

  η +  ς  t  
1/2

  ϵ)   |     t  ]  −  β t  . 

We will focus on asymptotically unbiased regular estimators, that is estimators  
f  for which the bias function  B ( f ; v, β, ς)   is identically equal to zero for all  v > 0 ,  
β ∈ 핉 , and  ς > 0 . An estimator is considered optimal, or the best unbiased esti-
mator (BUE), if it achieves minimum asymptotic variance within that class of esti-
mators. For the quadratic loss function  L ( · ,  · )  , the optimal estimator   f      ∗   therefore 
satisfies14

(23)  R (  f      ∗ ; v, β, ς)  ≤ R ( f ; v, β, ς) , ∀ v > 0, β ∈ 핉, ς > 0, 

14 Optimality results for other strictly convex loss functions may similarly be obtained by appealing to Theorem 
2.1.11 in Lehmann and Casella (1998).
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for every asymptotically unbiased regular estimator  f . Following standard terminol-
ogy, the optimal estimator defined in this way may be more precisely referred to as 
the asymptotically uniformly  minimum-variance unbiased estimator.

THEOREM 4: Under Assumption 1,    β ˆ   t    is the asymptotically uniformly 
 minimum-variance unbiased estimators for   β t   .

Although the optimality claim for the spot beta estimator is closely related to 
the Gauss-Markov theorem for standard linear regressions, there are several key 
differences. Firstly, while the limit experiment underlying the optimality of the spot 
beta estimator corresponds to a parametric linear regression model, our original 
econometric setting is inherently nonparametric, and as such it differs  importantly 
from the classical Gauss-Markov setting. Secondly, while the classical Gauss-
Markov theorem states that the  least-squares estimator is the best linear unbiased 
estimator (BLUE), the linearity restriction is not necessary in the present context. In 
other words, when conducting spot regressions for Itô semimartingales, the “local” 
 least-squares    β ˆ   t    estimator is asymptotically the BUE, not just the BLUE. In a recent 
paper, Hansen (2022) examines the equivalence between the notions of BLUE and 
BUE for conventional linear regressions, mainly through the lens of alternative defi-
nitions of unbiasedness. The    β ˆ   t    spot beta estimator achieves its asymptotic superior 
BUE status for a very different reason, namely the conditional Gaussianity embed-
ded in the limit experiment (Lehmann and Scheffé 1950).

Using a similar line of reasoning, it is also possible to demonstrate that the  t -test 
for the spot beta, based on Theorem 1, is optimal in the sense that it is asymptoti-
cally uniformly most powerful among asymptotically unbiased tests. This additional 
theoretical result is further detailed in the Supplemental Appendix.

C. Uniform Inference for the Spot Beta Process

The fixed- k  CI for the spot beta proposed in Section IB pertains to the pointwise 
inference for   β t    at a specific point in time. In this subsection, we develop a uniform 
functional inference theory for the path of the spot beta process    ( β t  )  t∈ [0,T]     under the 
fixed- k  framework.

Compared to the pointwise inference described in Theorem 1, the uniform infer-
ence theory is more challenging to establish for two reasons. First, it needs to be 
shown that the pointwise coupling result in Theorem 1 holds uniformly across  
 O (n)   many local estimation windows, giving rise to a  high-dimensional  non-Gaussian 
coupling problem. Second, to conduct inference in this nonstandard setting, we also 
need to establish an  anti-concentration inequality for the maximum absolute value 
of a large number of  t -distributed coupling variables. To help focus our discussion 
on these more novel aspects of the theory, we purposely consider a simplified setting 
in which  X  and  Y  do not contain any jumps.15

15 This is quite unrestrictive, as one could simply apply the standard truncation technique (Mancini 2001) 
to consistently eliminate jumps in a preliminary step without affecting the asymptotics; see Proposition 1 in Li, 
Todorov, and Tauchen (2017) for a formal justification.
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Turning to the details, we begin by constructing our functional estimator for the 
spot beta process. To do so, we divide the  n   high-frequency returns into   m n   = n/k  
nonoverlapping blocks.16 Let    n, j   ≡  { ( j − 1) k + 1, …, jk}   collect the indices of 
the returns in the  j th block. The spot covariance matrix estimator for the  j th block is 
then given by

    c ̃   j   ≡   1 _ 
k  Δ n  

     ∑ 
i∈  n, j  

  
 
     ( Δ  i  n  Z)   ( Δ  i  n  Z)    ⊤ . 

Analogous to equations (8) and (10), we further define

    v ̃   j   ≡   c ̃   11, j  ,   β ̃   j   ≡   
  c ̃   12, j   _   c ̃   11, j  

  ,   ς ̃   j   ≡   c ̃   22, j   −   
  c ̃    12, j  2  
 _   c ̃   11, j  
    ,

and

   ξ 11, j   ≡   ∑ 
i∈  n, j  

  
 
      

  ( Δ  i  n   W 1  )    2  _  Δ n  
  ,  ξ 12, j   ≡   ∑ 

i∈  n, j  
  

 
      

 ( Δ  i  n   W 1  )  ( Δ  i  n   W 2  )   ___________  Δ n  
  ,  ξ 22, j   ≡   ∑ 

i∈  n, j  
  

 
      

  ( Δ  i  n   W 2  )    2  _  Δ n  
  . 

The collection of blockwise estimators    (  β ̃   j  )  1≤ j≤ m n      naturally serves as a piecewise 
constant estimator for the path    ( β t  )  t∈ [0,T]    . With a slight abuse of notation, we iden-
tify    (  β ̃   j  )  1≤ j≤ m n      with    (  β ̃   t  )  t∈ [0,T]     through    β ̃   t   ≡   β ̃   j    for  t ∈  [ ( j − 1) k  Δ n  , jk  Δ n  )   and  
j ∈  {1, …,  m n  }  , and    β ̃     T   ≡   β ̃    m n     . The functional estimators    (  v ̃   t  )  t∈ [0,T]     and    (  ς ̃   t  )  t∈ [0,T]     
are defined analogously.

Theorem 1 can be easily modified to show the following pointwise coupling 
result for a given time point  t ∈  [ ( j − 1) k  Δ n  , jk  Δ n  ]  ,

    
 √ 
_

 k − 1   (  β ̃   t   −  β t  )   ____________  
 √ 
_

   ς ̃   t  /  v ̃   t    
   =  ξ β, j   +  o p   (1) , 

where   ξ β, j   ≡  √ 
_

 k − 1    ξ 12, j  / √ 
___________

   ξ 11, j    ξ 22, j   −  ξ  12, j  2      is   t k−1   -distributed. The main chal-
lenge for developing a uniform inference theory is to show that this approximation 
holds uniformly across  t ∈  [0, T]  . That is, it pertains to all   m n   = O (n)   estimation 
blocks simultaneously. To achieve this, we need to strengthen Assumption 1 as fol-
lows, where  ∥ ·  ∥ p    denotes the   L p   -norm.

ASSUMPTION 2: Suppose that the process  Z  satisfies (1) and (4) with  J = 0 , 
and that there exists a sequence    ( T m  )  m≥1    of stopping times increasing to infinity such 
that the following conditions hold for each  m ≥ 1 : (i) there exists a constant   K m    
such that  ∥ b t  ∥ + ∥ σ t  ∥ +  v  t  −1  +  ς  t  −1  ≤  K m    for all  t ∈  [0,  T m  ]  ; and (ii) for some 
constant  κ > 0  and any  p ≥ 2 , there exist constants   K m,p    such that  ∥ sup s,t, |s−t| ≤h    
∥σ t∧ T m     −  σ s∧ T m      ∥ p   ≤  K m,p    h   κ   for any  h > 0 .

Assumption 2 explicitly rules out jumps in the price process. As already noted, 
this is not overly restrictive as one could apply the standard truncation technique 

16 For ease of exposition, we assume that  n/k  is an integer.
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to consistently eliminate jumps. Meanwhile, condition (ii) in Assumption 2 is sub-
stantially more restrictive than condition (ii) in Assumption 1. In particular, while 
the previous milder condition only requires the κ-Hölder continuity to hold under 
the   L  2   -norm, the more stringent condition requires the volatility process to be  
 κ -Hölder continuous under all   L p   -norms. This stronger condition allows us to apply 
maximal inequalities under certain   L p   -norms for the derivation of the requisite 
 high-dimensional coupling. The following theorem formalizes the results.

THEOREM 5: Suppose that Assumption 2 holds and  k ≥ max {13, 6/κ + 1}  . 
Then,

(24)    sup  
t∈ [0,T] 

   |   √ 
_

 k − 1   (  β ̃   t   −  β t  )   ____________  
 √ 
_

   ς ̃   t  /  v ̃   t    
  |  =  τ  n  ∗  +  o p   (1) , 

where   τ  n  ∗  ≡  max 1≤ j≤ m n     | ξ β, j  |   and    ( ξ β, j  )  1≤ j≤ m n      are i.i.d.   t k−1   -distributed random vari-
ables. Moreover, with the  1 − α  quantile of   τ  n  ∗   denoted by   z  n,1−α  ∗   ,

(25)  P 
(

  sup  
t∈ [0,T] 

   |      √ 
_

 k − 1   (  β ̃   t   −  β t  )   ____________  
 √ 
_

   ς ̃   t  /  v ̃   t    
   |   >  z  n,1−α  ∗  

)
  → α. 

The first part of Theorem 5 shows that the sup- t  statistic associated with the spot 
beta process over the   [0, T]   time interval can be coupled by   τ  n  ∗  , defined as the abso-
lute maximum of   m n    i.i.d.   t k−1   -distributed random variables.17 The second part of 
the theorem further shows that   z  n,1−α  ∗    is a valid critical value for conducting a func-
tional sup- t  test for the entire spot beta process. Since the distribution of the   τ  n  ∗   cou-
pling variable is known in finite samples, its  1 − α  quantile,   z  n,1−α  ∗   , can be easily 
computed. Inverting the resulting sup- t  test in turn yields a  1 − α  level uniform 
confidence band for the spot beta process:

(26)   CB 1−α   ≡  [  β ̃   t   −   
 z  n,1−α  ∗  
 _ 

 √ 
_

 k − 1  
    √ 

_

     ς ̃   t   _   v ̃   t  
    ,   β ̃   t   +   

 z  n,1−α  ∗  
 _ 

 √ 
_

 k − 1  
    √ 

_

     ς ̃   t   _   v ̃   t  
    ] , t ∈  [0, T] . 

This uniform confidence band obviously tends to be wider than the pointwise fixed- 
k  CIs previously defined in (13). We will use these tools to draw  across-time infer-
ence about the spot beta process in our empirical analysis in Section IVA below.

It is worth noting that the proof for (25) underlying the uniform confidence band 
in (26) not only relies on the uniform coupling given in (24), but also requires a 
 so-called  anti-concentration property for the coupling variable   τ  n  ∗   to ensure that its 
distribution does not concentrate “too much” at any given point. This property can-
not be taken for granted, as   τ  n  ∗   is defined as the maximum of a growing  dimensional 

17 Although the pointwise coupling result in Theorem 1 holds for any fixed  k ≥ 2 , the uniform version given 
by Theorem 5 requires  k ≥ 13  or even larger when  κ < 1/2 . This requirement arises mainly because of the 
required uniform coupling of the  t -statistic process, which involves the spot idiosyncratic variance estimator    ς ̃   t    in the 
denominator. When    ς ̃   t    is close to zero, the coupling error for the t-statistic will be magnified, and we need to “tame” 
this effect uniformly across the “many” estimation blocks. Bounding  k  from below fulfills this purpose because the 
estimation error in    ς ̃   t    is approximately   χ  k−1  2    distributed. That noted, our sufficient condition may not be necessary, 
and it is possible that it could be further weakened.
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random  vector (i.e.,    ( ξ β, j  )  1≤ j≤ m n     ) rather than a fixed random variable. Similar 
 anti-concentration inequalities have also been widely used in the recent literature on 
 high-dimensional inference. While existing work mainly pertains to Gaussian variables 
(e.g., Chernozhukov, Chetverikov, and Kato 2015), our analysis is concerned with  
 t -distributed variables. Correspondingly, in our proof in the Supplemental Appendix, 
we establish that   τ  n  ∗   does indeed satisfy the requisite  anti-concentration property. 
This result is to the best of our knowledge novel and of independent interest.

III. Monte Carlo Simulations

Our Monte Carlo simulations are based on two different data generating pro-
cesses (DGP). Under DGP I, the volatility   v t    for the regressor process   X t    is simulated 
using the setup originally proposed by Bollerslev and Todorov (2011). This same 
simulation design has also subsequently been used by a number of other studies 
(e.g., Bollerslev, Li, and Liao 2021 and Li, Wang, and Zhang forthcoming). In par-
ticular, we rely on a  two-factor model for   v t   =  V 1,t   +  V 2,t   , where   V 1,t    and   V 2,t    are 
generated according to

  d  V 1,t   = 0.0128 (0.4068 −  V 1,t  ) dt + 0.0954  √ 
_

  V 1,t     (ρ d  W 1,t   +  √ 
_

 1 −  ρ   2    d  B 1,t  ) ,

 d  V 2,t   = 0.6930 (0.4068 −  V 2,t  ) dt + 0.7023  √ 
_

  V 2,t     (ρd  W 1,t   +  √ 
_

 1 −  ρ   2    d  B 2,t  ) , 

in which   B 1    and   B 2    represent independent standard Brownian motions, which are 
also independent of the bivariate Brownian motion  W  that drives the   Z t   =   ( X t  ,  Y t  )    ⊤   
process (as defined below). The parameter  ρ = −0.7  captures the  well documented 
negative correlation between price and volatility shocks. Interpreting the unit time 
interval as one day, the   V 1    volatility factor exhibits high persistence with a  half-life 
of 2.5 months, while the   V 2    volatility factor is characterized by quick mean reversion 
with a  half-life of only a day.

Our second DGP II is based on the following  one-factor model for the   v t    process,

  d  v t   = 18.0218 (0.8136 −  v t  ) dt + 5.3153  √ _  v t     (ρ d  W 1,t   +  √ 
_

 1 −  ρ   2    d  B 1,t  ) , 

where the parameters are calibrated such that the simulated rejection frequencies for 
the diagnostic test for local Gaussianity align with those for our empirical study dis-
cussed in the next section. Compared to DGP I, the volatility paths observed under 
DGP II tend to experience much more rapid changes, with a  half-life of just 15 
minutes. This higher level of  volatility-of-volatility naturally complicates the local 
Gaussian approximation, and as such DGP II should present a more challenging 
scenario for nonparametric spot inference compared to DGP I.

Meanwhile, armed with the two different DGPs for the   v t    process, the full volatil-
ity matrix   σ t    defined in (4) is determined by

   β t   = 1 + 0.25  sin  (t)    2 ,  ς t   =  [1.5 + 0.25  sin  (t)    2 ]  v t   
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under both DGPs. The formula for   β t    implies that it changes between 1.0 and 1.25 
over the course of roughly  one-and-a-half day. The expression for   ς t    implies that the 
idiosyncratic variance comoves with the variance of   X t   , with the ratio   ς t  / v t    varying 
between 1.5 and 1.75. Finally, completing both DGPs, we generate the bivariate   Z t    
process according to  d  Z t   =  σ t   d  W t   .

We simulate all of the “ continuous-time” processes using an Euler scheme on a 
 one-second mesh. However, the actually observed  X  and  Y  processes used for the 
inference are only sampled at a coarser  one-minute, or   Δ n   = 1/390 , time inter-
val. This again is motivated by applications involving  high-frequency financial 
data for actively traded assets, where as discussed above a  one-minute sampling 
scheme is commonly employed as a convenient way to guard against complicated 
and  difficult-to-specify  high-frequency market microstructure noise. It also directly 
mirrors the sampling frequency of the data employed in the empirical applications 
discussed in Section IV below.

We begin our simulation analysis by examining the accuracy of the local 
Gaussian approximation across various window sizes, by implementing the diag-
nostic test based on    D ˆ   t    (recall (16)) for  k ∈  {5, 10, 15, 30, 60}  , and significance 
levels 1 percent, 5 percent, and 10 percent.  Finite-sample rejection rates under 
the different settings are displayed in Table 1. Focusing on the left panel and the 
results obtained under DGP I, it is evident that the rejection rates all closely align 
with their respective nominal levels. As such, this supports the prediction from 
the asymptotic theory, as formalized in Theorem 2, and suggests that the local 
Gaussian approximation works quite well under DGP I for a broad range of win-
dow sizes. The results for DGP II, reported in the right panel, reveals a markedly 
different picture. With a narrow window size of  k = 5 , the rejection rates are 
again all close to their nominal levels. However, as the window size  k  increases, 
the number of rejections steadily increase, underscoring the relevance of prop-
erly assessing the accuracy of the local Gaussian approximations underlying the 
 small-sample fixed- k  framework.

Table 2 in turn presents the  finite-sample rejection rates for different  t -tests per-
taining to the spot betas. All of the tests are conducted at the 10 percent nominal 
significance level. The table is divided into two panels corresponding to each of 
the two DGPs. Each panel contains results for different estimation window sizes  k ,  

Table 1—Diagnostic Tests for Local Gaussianity

DGP I DGP II

k 1 percent 5 percent 10 percent 1 percent 5 percent 10 percent

5 0.010 0.050 0.100 0.011 0.052 0.103
10 0.010 0.050 0.100 0.015 0.065 0.121
15 0.010 0.050 0.101 0.022 0.080 0.141
30 0.010 0.051 0.101 0.043 0.119 0.189
60 0.011 0.053 0.104 0.080 0.180 0.260

Notes: The table presents the  finite-sample rejection rates of the    D ˆ   t    diagnostic test for local 
Gaussianity for the DGP I and II data generating processes, for various window sizes  k , at the 
1 percent, 5 percent, and 10 percent significance levels. The rejection rates are calculated using 
one million Monte Carlo replications.
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and the rejection rates obtained for five different versions of the spot beta tests: the 
conventional large- k   asymptotic-Gaussian method based on (9), the uncorrected 
fixed- k  method based on (12), and the fixed- k  method “robustified” with 1 percent, 
5 percent, or 10 percent level diagnostic correction, as outlined in Algorithm 1.

Looking first at the results for DGP I, reported in the top panel, we observe that 
the conventional  asymptotic-Gaussian-based test exhibits significant  over-rejections 
for all window sizes, particularly when  k  is small. By comparison, the tests based 
on the fixed- k  critical values all demonstrate notably better size control. The rejec-
tion rates for the uncorrected test are generally very close to the 10 percent nominal 
level, while the robust  t -tests tend to be slightly undersized.

Turning to the bottom panel, and the results for the more challenging DGP II, 
the conventional  asymptotic-Gaussian-based test continues to display considerable 
size distortion. The fixed- k  test without diagnostic correction maintains reasonable 
size control for  k = 5  and 10, but it starts to exhibit nontrivial  over-rejections as  k  
increases beyond that. This aligns with the previous observations from Table 1, and 
the finding that the accuracy of the local Gaussian approximation deteriorates for 
larger values of  k . Meanwhile, as seen from the last three columns of the table, this 
size distortion may be effectively addressed by employing the simple “robustified” 
version of the tests outlined in Algorithm 1. The 5 percent diagnostic correction 
appears to work especially well, but a 10 percent correction also achieves very good, 
albeit slightly conservative, size control across all values of  k .

In sum, the simulation results demonstrate that the fixed- k  method offers more 
reliable inference than the conventional large- k   asymptotic-Gaussian-based method 
routinely employed in the literature, especially when implemented over relatively 
narrow estimation windows. We turn next to a pair of applications that naturally call 
for such empirical design.

Table 2—Finite-Sample Rejection Rates for Spot Beta  t -tests

 Fixed-k with diagnostic correction

k Gaussian Uncorrected 1 percent 5 percent 10 percent

Panel A. DGP I
5 0.215 0.100 0.098 0.091 0.082
10 0.154 0.100 0.098 0.091 0.082
15 0.135 0.101 0.099 0.091 0.082
30 0.118 0.101 0.099 0.091 0.082
60 0.122 0.114 0.111 0.102 0.092

Panel B. DGP II
5 0.223 0.105 0.103 0.095 0.086
10 0.171 0.115 0.111 0.100 0.089
15 0.160 0.123 0.116 0.102 0.090
30 0.157 0.138 0.125 0.105 0.090
60 0.178 0.168 0.140 0.113 0.092

Notes: The table reports the  finite-sample rejection rates for spot beta t-tests under the null 
hypothesis. All of the tests are conducted at the 10 percent nominal significance level. The tests 
are based on the conventional  asymptotic-Gaussian method (Gaussian), the  fixed-k method 
without diagnostic correction (Uncorrected), and the  fixed-k method with 1 percent, 5 percent, 
or 10 percent level diagnostic correction, as described in Algorithm 1. The rejection rates are 
calculated using one million Monte Carlo replications.
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IV. Empirical Applications

To highlight the practical applicability and usefulness of the new inference pro-
cedures, we consider two separate empirical applications. Section  IVA examines 
the tracking performance of leveraged ETFs as measured by their spot betas, while 
Section IVB showcases the use of the predictive spot inference in the context of an 
intraday event study. We base both of the studies on  high-frequency data sampled 
at  one-minute frequency, sourced directly from Tick Data.18 As discussed above, 
following the extant literature, we deliberately rely on a “coarse”  one-minute sam-
pling frequency to mitigate the impact of  difficult-to-specify market microstructure 
noise. The dataset for the ETF spans the period from January 2, 2018, to December 
31, 2022, with stock market holidays and  half-trading days excluded following 
standard practice. To ensure robustness against price jumps, we further apply a 
 five-standard-deviation truncation rule, with the truncation threshold calibrated 
using the bipower variation estimator of  Barndorff-Nielsen and Shephard (2004b) 
along with a correction for diurnal patterns in the volatility following Li, Todorov, 
and Tauchen  (2017).19

A. Are Leveraged ETFs Properly Leveraged?

The ETF market has witnessed tremendous growth over the past two decades in 
both size and the variety of individual ETFs tailored to unique investment goals. 
Among the most notable innovations are leveraged ETFs, which have considerably 
expanded the range of investment strategies available to investors. These finan-
cial instruments aim to magnify the returns of an underlying asset using leverage, 
thereby offering the potential for greater  short-term gains or more effective hedging. 
Initially, this burgeoning industry concentrated on market indices and sectors, but 
in recent years, it has extended to include many individual stocks as well. Many of 
these innovative financial instruments also involve the active management and trad-
ing of various derivative contracts.

It remains a fundamental question whether these new funds actually live up to 
their stated objectives and achieve their intended leverage. To investigate this issue, 
we analyze the relationship between three ETFs directly linked to the  Nasdaq-100 
stock market index. The  Nasdaq-100 includes 100 of the largest companies listed 
on the Nasdaq Stock Exchange, and it serves as one of the primary barometers for 
the tech sector. The index itself is not directly tradable, but the QQQ index fund 
passively tracks it as closely as possible, and that fund has now also become one of 
the world’s largest ETFs in terms of assets under management. The other two ETFs 
that we examine are designed to replicate leveraged positions in the  Nasdaq-100 
index: the TQQQ fund aims to generate three times the return on the index, while 
the inverse SQQQ fund seeks to produce three times the return on a short position 

18 The data is obtained from TickData: https://www.tickdata.com.
19 As shown in a previous working paper version, our main empirical findings remain largely unaffected with 

respect to alternative ways of applying this theoretically motivated  jump-removal procedure.

https://www.tickdata.com
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in the index. Both of these funds are now also extensively used for investment and 
risk management purposes.20

However, it is important to note that both the TQQQ and SQQQ only aim to track 
their specific multiples of the  Nasdaq-100 index over a single day, and as such the 
funds are primarily recommended to be used over short intraday time frames.21 
Thus, rather than questioning whether the two leveraged funds produce the desired 
multiples of the return on the QQQ fund over longer  multiday investment horizons, 
the empirically more relevant question is whether the fund’s intraday tracking per-
formance is in line with the stated objectives. Properly addressing this question 
naturally calls for the use of the optimal spot inference procedures. Specifically, 
treating QQQ as the regressor process  X  and TQQQ or SQQQ as the dependent 
process  Y , we want to assess if the intraday spot betas for the funds do indeed equal 
their respective target values of 3 and −3.

To do so, we begin by assessing the adequacy of the local Gaussian approximation 
using the  skewness-kurtosis    D ˆ   t    diagnostic statistic in (16) for  k ∈  {5, 10, 15, 30, 60}  ,  
corresponding to estimation windows ranging from five minutes to one hour. Table 3 
presents the proportion of estimation windows for which local Gaussianity is rejected 
at the 1 percent, 5 percent, or 10 percent significance level, for each of the three 
ETFs, over the full 2018–2022 sample period. For  k = 5 , the empirical rejection 
rates are close to the nominal level, indicating that the local Gaussian  approximation 

20 For example, an investor with a long position in several technology stocks may buy the SQQQ ETF to help 
neutralize her systematic risk exposure to the tech sector. But, if the SQQQ fund deviates from its stated objective 
of returning −3 times the QQQ, that investor may find herself exposed to unintended systematic risks.

21 Quoting from ProShares’ (the group that manages the funds) descriptions, they explicitly caution that, “due to 
the compounding of daily returns, holding periods of greater than one day can result in returns that are significantly 
different than the target return, and ProShares’ returns over periods other than one day will likely differ in amount 
and possibly direction from the target return for the same period.”

Table 3—Diagnostic Tests for Local Gaussianity of Nasdaq 100 ETFs

k

Level 5 10 15 30 60

Panel A. QQQ
1 percent 0.011 0.017 0.025 0.047 0.081
5 percent 0.054 0.069 0.085 0.124 0.177
10 percent 0.106 0.126 0.145 0.193 0.255

Panel B. TQQQ
1 percent 0.011 0.017 0.025 0.047 0.082
5 percent 0.054 0.069 0.084 0.124 0.179
10 percent 0.105 0.126 0.145 0.192 0.256

Panel C. SQQQ
1 percent 0.015 0.015 0.022 0.038 0.064
5 percent 0.055 0.065 0.078 0.110 0.154
10 percent 0.105 0.120 0.136 0.177 0.228

Notes: The table presents the average rejection rates of the    D ˆ   t    diagnostic test across all estima-
tion blocks over the 2018–2022 sample period, for different window sizes k. The diagnostic 
test counts a rejection for local Gaussianity at the 1 percent, 5 percent, or 10 percent signif-
icance level when    D ˆ   t    statistic exceeds the 99 percent, 95 percent, or 90 percent quantile of  
   D ̃   t    , respectively.



701BOLLERSLEV ET AL.: OPTIMAL INFERENCE FOR SPOT REGRESSIONSVOL. 114 NO. 3

appears adequate for such short windows. Meanwhile, as expected, the diagnos-
tic test tends to reject more often for larger values of  k , with the local Gaussian 
approximation appearing quite inadequate for  k = 30  and 60. Correspondingly, 
we will focus our main empirical investigation and discussion below on  k = 15 , or 
 15-minute  spot-estimation windows, with additional supportive robustness checks 
for  k = 5  and 10 provided in the Supplemental Appendix.

Turning to the evaluation of the intraday tracking performance of the two lever-
aged funds, we begin by examining the frequency at which the null hypothesis that 
their spot betas equal their target values of 3 and −3, respectively, are rejected. We 
conduct the t-test at a 10 percent significance level, and summarize the results by 
calculating the average rejection rates across all  within-day  15-minute estimation 
windows for each of the 60 months in our sample. To address potential size distor-
tions due to “ finite-sample breakdowns” of local Gaussianity, we also employ the 
robust t-tests outlined in Algorithm 1 in Section IC, with the diagnostic tests per-
formed at 1 percent, 5 percent, and 10 percent significance levels.

Figure 2 displays the monthly average rejection rates for both the uncorrected  
t-test and the robustified tests based on various degrees of diagnostic corrections. 
Since all of the tests are conducted at the 10 percent nominal level, we would expect 
average rejection rates not to exceed 10 percent if the funds’ betas are indeed con-
sistent with their target values. However, as the figure shows, the empirical rejection 
rates surpass 10 percent for most of the months in the sample, and quite dramatically 
so for certain months. Also, while the diagnostic correction reduces the rejection 
rates as expected, it does not materially affect the main findings. It is noteworthy 

Figure 2 

Notes: The figure presents average monthly rejection rates for the  fixed- k   t -tests for spot beta, including the uncor-
rected test, and the three robustified tests with diagnostic correction at the δ = 1%, 5%, and 10% levels. All of the 
tests are evaluated at the 10 percent significance level. The left panel reports the results for the null hypothesis that 
the spot betas for the TQQQ with respect to the QQQ equal 3. The right panel tests that the betas for the SQQQ with 
respect to the QQQ equal −3. The averages are computed across all  15-minute estimation windows for each of the 
individual months in the 2018–2022 sample.
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that, compared to TQQQ, the inverse SQQQ was much more frequently “off  target” 
during 2022, highlighting the unique challenges involved in properly managing 
 short-ETFs during certain time periods and economic conditions.22

Meanwhile, the month of March 2020 clearly stands out as the month with the 
most rejections for both funds. That month, of course, is also coincident with the 
initial outbreak of the  COVID-19 pandemic in the United States, and it witnessed 
unusually high levels of stock market volatility. In an effort to curb some of that 
volatility, the US stock market was subjected to four separate (and rare) trading 
halts, or “circuit breakers,” on March 9, 12, 16, and 18, 2020. Thus, while the dete-
riorating performance of the two leveraged funds around that time is not necessarily 

22 During that time period, the Federal Reserve raised its target range for the federal funds rate from   [0%, 0.25%]   
to   [4.25%, 4.5%]  , arguably resulting in a bear market, especially for the tech sector.

Figure 3

Notes: The figure presents the spot betas for the TQQQ (top) and SQQQ (bottom) funds with respect to QQQ esti-
mated over  15-minute windows, together with the corresponding 90 percent confidence intervals for the two weeks 
from March 9 to March 20, 2020. The  p-values reported in each of the panels refer to the uniform, or functional, 
hypotheses that the spot beta processes for the different days are in line with their target values. The four days on 
which the market  circuit-breaker went into effect are highlighted in bold font.
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 surprising, it is exactly during such extreme market events that the funds may be the 
most useful for risk management purposes.

In an effort to gain further insight into the funds’ performance during this tumul-
tuous time, Figure 3 plots the estimated spot betas and the associated 90 percent 
fixed- k  CIs, as described in (13), for all of the  15-minute estimation windows during 
the two weeks from March 9 to March 20, 2020. In addition, each of the different 
panels in the figure also reports the  p-value for the joint, or uniform, hypothesis that 
the spot beta process for the entire day is in line with its target value based on the 
functional test described in Theorem 5.

Looking first at the top panel of Figure 3 and the results for the TQQQ fund, it 
is noteworthy that on the four  circuit-breaker days (i.e., March 9, 12, 16, and 18, 
as indicated by bold font in the figure), the estimated spot betas are almost all sig-
nificantly higher than the target value of 3. In other words, the fund was actually 
“ over-leveraged” on those specific days. By contrast, for the four days immediately 
following the  circuit-breaker days, the spot betas for the TQQQ fund are almost all 
significantly below the target value, indicating that the fund was “ under-leveraged” 
on those days. The  p-values for the functional tests pertaining to the betas over the 
entire day further corroborate the significance of these general conclusions.

The results for the SQQQ fund, displayed in the bottom panel, evidence similar and, 
if anything, even more pronounced systematic deviations. However, unlike the find-
ings of excessively high betas for the TQQQ fund on the four  circuit-breaker days, the 
estimated spot betas for the SQQQ fund are all numerically too low compared to the 
target value of −3. Put differently, the inverse leveraged fund was “ under-leveraged” 
on those days and did not provide sufficient negative exposure to the  Nasdaq-100 
index. The functional tests again reinforce these same qualitative findings. As noted 
above, such systematically “wrong” intraday leverage levels can be quite detrimental 
from a practical risk management perspective. Yet, it would be impossible to accu-
rately tell whether these deviations are actually statistically significant, or merely due 
to chance, without the new spot inference procedures developed here.

B. An Intraday Event Study: Microsoft’s AI Moment

Our second empirical application pertains to the way in which financial mar-
kets respond to new information. Specifically, we seek to characterize the abnormal 
return on Microsoft (MSFT) stock around the time of Microsoft’s widely publicized 
“The Future of Work With AI” event on March 16, 2023.

The event commenced at 11:00 am, with the introduction of Microsoft’s new AI 
tool named Copilot designed to integrate large language models into its suite of pro-
ductivity software, and it lasted until approximately 11:36 am. Meanwhile, to prevent 
any “ pre-event drift” from confounding the results, we impose a  15-minute “buffer” 
between the official start time of the event and the estimation window for the spot 
beta used for calculating the abnormal returns.23 Relatedly, even though the event 

23 The existence of  pre-event drifts, possibly associated with the leakage of information, has been  well docu-
mented in the event study literature; e.g., the early analysis in Rendleman, Jones, and Latané (1982) pertaining to 
earnings announcements. Perhaps more surprisingly, Lucca and Moench (2015) have also recently found evidence 
for an FOMC  preannouncement drift.
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commenced at 11:00 am, the new information was only revealed gradually, with 
the actual demonstration of the new AI tool, which arguably represented the most 
novel aspect of the event, starting more than 10 minutes into the presentation.
Accordingly, following the discussion in Section ID, we estimate the CARs for the 
log return on MSFT ( Y ) with respect to the market portfolio ( X ), as proxied by the 
SPY ETF for the S&P 500 index, over  h -minute horizons after 10:45 am as

    CAR ˆ   h   =  Y 10:45+h   −  Y 10:45   −  ( X 10:45+h   −  X 10:45  )  ·   β ˆ     [10:30,10:45]   , 

with  h  spanning up until Noon.24 To assess the statistical significance of the result-
ing CARs, we compute the associated 90 percent level predictive CIs, or   PCI h   ’s as 
defined in (19). As previously discussed, these are naturally interpreted as the prob-
able counterfactuals in scenarios without any significant news.

Figure 4 presents the results, along with various annotated news segments, as per 
Microsoft’s official announcement. The predictive CIs obviously tend to widen as 
the horizon  h  increases, commensurate with increased uncertainty for predicting the 
returns over longer horizons. Interestingly, there appears to be a hint of a moder-
ate positive drift in the CARs during the 10: 45–11:00  pre-event window, although 
the estimates remain within the bounds of the predictive CI. The estimated CARs 
also stay relatively “flat” and within the CI bounds for the first 15 minutes follow-
ing the official start of the event, further corroborating the lack of any information 

24 The Supplemental Appendix provides additional robustness checks for  k = 5  and 10, yielding very simi-
lar, albeit slightly noisier, results compared to the ones for  k = 15  discussed below. Very similar results are also 
obtained using the more  tech-heavy QQQ ETF in place of the SPY as the regressor  X .

Figure 4

Notes: The figure shows the  minute-by-minute cumulative abnormal returns on Microsoft stock from 10:45 am to 
noon on March 16, 2023 (dots), together with 90 percent level predictive confidence intervals (shaded area). The 
spot regression used in the calculation of the abnormal returns is estimated with returns over the  15-minute window 
spanning 10:30–10:45 am. The timelines for specific announcements during “The Future of Work With AI” event 
are explicitly highlighted.
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leakage.25 Meanwhile, at approximately 11:15 am there is a marked change in the 
CARs, and when judged by the predictive CIs, the CARs observed at the conclusion 
of the event at around 11:36 am are all highly significant. This noticeable change 
in the CARs coincides with the presenter stating that “the real power of Copilot is 
in how it unleashes creativity at work,” proceeding to showcase a series of prac-
tical business applications. The scope and potential impact of these applications 
apparently went far beyond what the market expected, resulting in a highly signifi-
cant abnormal return of close to 2 percent over just 15 minutes, corresponding to a 
roughly $45 billion increase in the market value for Microsoft stock.

Putting these findings further into perspective, the Microsoft event occurred 
only two days after OpenAI’s launch of  ChatGPT-4 on March 14, 2023. That same 
time period also coincided with other generative AI technologies garnering sub-
stantial attention. Such clustering of many different closely related news events 
would pose a serious challenge to the application of conventional  low-frequency 
event study methodology, which attempts to achieve asymptotic Gaussianity and 
assess statistical significance by pooling across time and news events. Doing so 
in the present context would obviously confound different pre- and  post-event 
windows. Instead, by relying on local Gaussianity over a short event window, the 
new  high-frequency-based fixed- k  approach developed here allows for meaning-
ful  inference concerning  singular news events without the need for any pooling or 
aggregation across days or events.

V. Concluding Remarks

The conventional approach for nonparametric inference on spot regressions relies 
on  asymptotic-Gaussian-based approximations. The quality of such approximations 
can be poor when the estimators are constructed from relatively few observations 
over narrow estimation windows, as often done in practice to accommodate poten-
tially rapid fluctuations in the true betas and the other latent state processes. The new 
optimal estimation theory and fixed- k  inference framework developed here explic-
itly recognize this disconnect between conventional  asymptotic-Gaussian-based 
inference procedures and the small sample sizes typically utilized in practice. 
Specifically, by exploiting the local Gaussianity of the underlying workhorse 
 continuous-time model, the fixed- k  framework effectively converts the original non-
parametric spot regression problem into a  finite-sample Gaussian linear regression 
problem. This transformation in turn allows for the use of classical  finite-sample 
inference techniques and  decision-theoretic arguments to establish optimality for 
both estimation and testing. Importantly, it also allows for much sharper inference 
in empirically realistic settings.

Moving forward, the fixed- k  approach offers a new avenue for possibly incorpo-
rating additional insights from classical statistics into the  high-frequency dataset-
ting. In particular, since the limit model is fully parametric, a Bayesian approach 
could be adopted. Such an approach may be particularly beneficial in the context 

25 During the first 15 minutes of the event, presenters primarily reiterated the company’s general vision regarding 
the adoption of AI technologies. Given that similar information was already known since the debut of  ChatGPT-4 a 
few days earlier, it is not surprising that the corresponding CAR is essentially “flat.”
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of spot estimation, as it inherently presents a  data-scarce environment making any 
prior information especially valuable. At a broader level, the strategy of obtain-
ing an approximate parametric model through localization, and the subsequent 
use of  finite-sample analysis and inference, is not exclusive to the  continuous-time 
 high-frequency datasetting either. For example, if the observed data distribu-
tion is  mixture-Gaussian, and the mixing variable remains nearly constant within 
specific subsamples, one may similarly localize the problem, permitting the use 
of  Gaussian-based optimal statistical decision theory from more conventional set-
tings.26 We leave further explorations of these ideas for future research.
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