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ABSTRACT
This article proposes a uniform functional inference method for nonparametric regressions in a panel-data
setting that features general unknown forms of spatio-temporal dependence. The method requires a long
time span, but does not impose any restriction on the size of the cross section or the strength of spatial
correlation. The uniform inference is justified via a new growing-dimensional Gaussian coupling theory for
spatio-temporally dependent panels. We apply the method in two empirical settings. One concerns the
nonparametric relationship between asset price volatility and trading volume as depicted by the mixture
of distribution hypothesis. The other pertains to testing the rationality of survey-based forecasts, in which
we document nonparametric evidence for information rigidity among professional forecasters, offering new
support for sticky-information and noisy-information models in macroeconomics.
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1. Introduction

Nonparametric regressions allow empirical researchers to study
the conditional mean function of a dependent variable given
certain covariates in a flexible manner. While classical methods
were originally motivated to study iid data (Nadaraya 1964;
Watson 1964; Andrews 1991a; Newey 1997), a vast literature has
emerged to accommodate both time-series and spatial depen-
dence (Robinson 1983, 2011; Chen and Shen 1998; Jenish 2012;
Chen, Liao, and Sun 2014; Lee and Robinson 2016). The prior
literature has mainly focused on the pointwise inference of the
unknown function by providing confidence intervals for the
function’s value evaluated at a given point. This may be unsatis-
factory in empirical work, because a practitioner’s main goal of
performing a nonparametric estimation in the first place is often
to make inferential statements regarding the entire function,
which would require a uniform inference theory. The contribu-
tion of this article is to develop such a method for panel data,
which accommodates general unknown forms of dependence
in both time-series and cross-sectional (i.e., spatial) dimensions
that are now well known to be important in various empiri-
cal settings (Bertrand, Duflo, and Mullainathan 2004; Petersen
2009).

The key challenge for conducting uniform inference is that
the asymptotic analysis for the nonparametric functional esti-
mator is a non-Donsker problem, because the estimator does
not admit a functional central limit theorem in the usual weak-
convergence sense. This issue is particularly easy to understand
in the context of series regression (Eubank and Spiegelman
1990; Andrews 1991a; Newey 1997; Huang 1998, 2003), where
the nonparametric estimation is carried out by regressing the
dependent variable on an asymptotically growing number of
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approximating functions (e.g., polynomials) of the covariates.
Because the dimensionality of the set of regressors increases
with the sample size, conventional central limit theorems and
the “textbook” notion of convergence in distribution can no
longer be used to capture the joint asymptotic normality of the
regression coefficients.

In a cross-sectional setting with independent data, Cher-
nozhukov, Lee, and Rosen (2013) and Belloni et al. (2015)
make an important contribution to address this non-Donsker
issue. These authors show that the growing-dimensional regres-
sion coefficient in the nonparametric series estimation may
be strongly approximated, or “coupled,” by a Gaussian ran-
dom vector. Consequently, the estimation error of the func-
tional estimator may be further strongly approximated by a
divergent sequence of Gaussian processes. Li and Liao (2020)
extend this theory to a general time-series setting for heteroge-
neous mixingales, which permits a broader range of empirical
applications.

The use of nonparametric methods in the time-series context,
however, may be hindered by a small sample size: For example,
the number of observations for macroeconomic time series is
typically in the low hundreds. The limited information embod-
ied in the small sample may render nonparametric estimators
too noisy to provide interesting empirical discoveries. Panel data
is helpful in this regard: If the researcher is willing to assume that
the conditional mean function is shared among cross-sectional
units (e.g., countries, states, cities, or firms), more accurate
nonparametric estimates may be obtained by further pooling the
cross-sectional information.

This consideration motivates us to develop a uniform non-
parametric inference method tailored for panel-data appli-
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cations, for which it is important to accommodate different
types of spatio-temporal dependence encountered by empirical
researchers (Bertrand, Duflo, and Mullainathan 2004; Petersen
2009). In the baseline context of linear panel regressions,
this mainly manifests as alternative ways of computing stan-
dard errors. One popular choice is the clustered standard
error proposed by Arellano (1987), which is White’s (1980)
standard error formed using the cross section of time-series
averages. This approach allows for general serial correlation,
but relies on cross-sectional/spatial independence. Ruling out
spatial correlation is undesirable for applications in macroe-
conomics and finance, which are our main empirical focus.
Driscoll and Kraay (1998) propose an alternative approach
under which the standard errors are computed using het-
eroscedasticity and autocorrelation consistent (HAC) estima-
tors (Newey and West 1987; Andrews 1991a) of cross-sectional
averages. An advantage of the Driscoll–Kraay approach is that
it allows for arbitrary spatial dependence in the cross-sectional
dimension and, at the same time, it also accommodates a type
of “weak” serial dependence commonly employed in time-series
analysis.

We develop an analogous panel-data method under a similar
spatio-temporal dependence structure as in Driscoll and Kraay
(1998), by combining their insight with some technical results
developed by Li and Liao (2020). Like Driscoll and Kraay, we also
allow for arbitrary spatial dependence and derive asymptotics
under a “large T ” setting by exploiting the weak dependence
in the time-series dimension. Needless to say, our statistical
objective is quite distinct from that prior work: Driscoll and
Kraay’s (1998) study is about how to construct a HAC estimator
for the standard error of a classical extremum estimator, but
we focus on how to make uniform functional inference for the
conditional expectation function.

To illustrate the usefulness of the proposed procedure, we
conduct two empirical applications. The first concerns the func-
tional relationship between price volatility and trading volume
of financial assets (Clark 1973; Tauchen and Pitts 1983; Ander-
sen 1996). Specifically, we study how the volume-volatility rela-
tionship estimated using a recent panel consisting of all stocks
listed in the U.S. equity market has changed after the breakout
of the COVID-19 pandemic, and document a significant higher
market impact of trades during the post-COVID period. In the
second application, we study the rationality of survery-based
forecasts, by estimating the nonparametric relationship between
the average ex post forecast error and ex ante forecast revi-
sion in the Survey of Professional Forecasters (SPF). Consistent
with the theoretical prediction from the information-rigidity
theory (Mankiw and Reis 2002; Sims 2003; Woodford 2003;
Reis 2006; Coibion and Gorodnichenko 2015), our nonparamet-
ric estimate of the conditional mean function of the forecast
error is increasing in the forecast revision, and so, provides
robust nonparametric evidence for the presence of sticky or
noisy information.

The remainder of the article is organized as follows. Section 2
presents our uniform nonparametric inference method for panel
data. The empirical applications are provided in Section 3.
Section 4 concludes. The supplemental appendix contains all
proofs and reports the finite-sample performance of the pro-
posed method in a Monte Carlo study.

2. The Statistical Method

In this section, we present the uniform nonparametric infer-
ence procedure. We describe the setting and some relevant
background in Section 2.1. Section 2.2 presents new growing-
dimensional Gaussian coupling results for spatio-temporally
dependent panel data, which are then used to construct uniform
confidence bands in Section 2.3.

2.1. The Setting and Background

Consider an N × T panel
(
Yit , X�

it
)

1≤i≤N,1≤t≤T where Yit is
a scalar-valued dependent variable and the covariate Xit takes
value in a compact set X ⊆ R

d. Like Driscoll and Kraay (1998),
we are interested in a setting with “weak” time-series depen-
dence, whereas the spatial dependence among cross-sectional
units may be arbitrarily strong with an unknown form. Corre-
spondingly, we derive asymptotic results in a “large T” thought
experiment, but do not make any assumption on the cross-
sectional dimension N. That is, T → ∞ and N may be fixed
or grow to infinity.

The inferential target is the conditional expectation function
of Yit given Xit , denoted by g (x) ≡ E [Yit|Xit = x] for x ∈ X .
Setting the disturbance term as εit ≡ Yit − g (Xit), we may
equivalently state the problem as a nonparametric regression

Yit = g (Xit) + εit , E [εit|Xit] = 0. (2.1)

Our main goal is to nonparametrically estimate g (·) and con-
struct a uniform confidence band for it. More precisely, for a
given confidence level 1 − α, we aim to construct a pair of
functional estimates [L(·), U (·)] such that

P
(
L (x) ≤ g (x) ≤ U (x) for all x ∈ X

) → 1 −α, as T → ∞.
(2.2)

Our procedure is built on the series regression method
(Eubank and Spiegelman 1990; Andrews 1991a; Newey 1997;
Huang 1998, 2003). Under the series approach, the nonpara-
metric estimation can be performed by running a (pooled)
least-squares regression of Yit on a collection of approximat-
ing functions of Xit . Specifically, consider a column vector of
approximating functions P (·) = (pj(·))1≤j≤m, which may be
polynomials, splines, trigonometric functions, wavelets, etc.; see
Chen (2007) for a comprehensive review. Regressing Yit on
P (Xit) yields the regression coefficient

b̂ ≡
( T∑

t=1

N∑
i=1

P (Xit) P (Xit)
�
)−1 ( T∑

t=1

N∑
i=1

P (Xit) Yit

)
,

(2.3)
and the resulting nonparametric estimator for g (·) is then
given by

ĝ (·) ≡ P (·)� b̂. (2.4)

This nonparametric series estimator is very simple to implement
and naturally generalizes the commonly used ordinary least
squares. The key element of the nonparametric theory is to let
the number of series terms m → ∞ asymptotically, so that the
unknown function g (·) can be well approximated by a growing
set of approximating functions. The growing dimensionality
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is exactly the main source of complication for the theoretical
analysis.

The pointwise inference for g (x) at a given point x ∈ X has
been extensively studied in the prior literature using standard
econometric techniques; see, for example, Andrews (1991a) and
Newey (1997). The uniform inference, however, is much more
challenging because it is a non-Donsker problem (i.e., ĝ (·) does
not admit a functional central limit theorem in the sense of weak
convergence). This theoretical difficulty stems from the growing
dimensionality of the series regression. In particular, one cannot
use classical central limit theorems to characterize the asymp-
totic normality of b̂, because its dimensionality is divergent
asymptotically. This in turn leads to difficulties for establishing
the asymptotic Gaussianity of the functional estimator ĝ (·).

In a cross-sectional setting (i.e., T = 1) with independent
data, Belloni et al. (2015) show that the aforementioned non-
Donsker issue may be addressed by using a strong Gaussian
approximation theory. For ease of discussion, denote hit ≡
P (Xit) εit , so that the score vector for the (single cross-section)
series regression may be written as N−1/2 ∑N

i=1 hi1. Under the
assumption that the cross-sectional units are independent, Bel-
loni et al. invoke Yurinskii’s coupling to show that the growing-
dimensional (i.e., m → ∞) score vector may be strongly
approximated, or “coupled,” by a zero-mean Gaussian random
vector ξN with the same variance-covariance matrix, that is,∥∥∥∥∥ 1√

N

N∑
i=1

hi1 − ξN

∥∥∥∥∥ = op (1) ,

ξN ∼ N
(

0,
1
N

N∑
i=1

var [hi1]

)
, (2.5)

where ‖·‖ denotes the Euclidean norm. Consequently, the esti-
mation error in b̂ also admits a Gaussian coupling in the form
of ∥∥N1/2 (̂

b − b∗) − Q−1ξN
∥∥ = op(1),

where b∗ is the population regression coefficient and Q is the
population Gram matrix E[N−1 ∑N

i=1 P (Xi1) P (Xi1)
�]. The

coupling of the regression coefficient in turn implies that the
scaled estimation error function N1/2(̂g (·) − g (·)) may be
coupled by a Gaussian process P (·)� Q−1ξN , which can then
be used to construct uniform confidence bands for g (·).

The logic above reveals that the key to establish a uniform
inference theory is the growing-dimensional Gaussian coupling
for the score vector as described in (2.5). Along this line,
Li and Liao (2020) generalize Yurinskii’s coupling from the
independent-data setting to one with heterogeneous mixingales,
which enables them to extend Belloni et al.’s method to various
time-series settings. Li and Liao’s coupling theory implies that
the score for the ith time series admits a Gaussian coupling in
the form of ∥∥∥∥∥ 1√

T

T∑
t=1

hit − ξ
(i)
T

∥∥∥∥∥ = op (1) , (2.6)

ξ
(i)
T ∼ N

(
0, var

[
1√
T

T∑
t=1

hit

])
.

Not surprisingly, the variance-covariance matrix of the cou-
pling variable ξ

(i)
T is generally the long-run variance-covariance

matrix of the (hit)t≥1 series. For the conduct of feasible infer-
ence, these authors also show that standard HAC estimators
(Newey and West 1987; Andrews 1991b) remain to be valid even
under the growing-dimensional setting.

The present article further extends the aforementioned the-
ory to the panel-data setting, without restricting (i) the size
of the cross section (i.e., N may be fixed or growing) or (ii)
the degree of spatial dependence between cross-sectional units.
These features are now well recognized to be important in many
applied scenarios. A seemingly natural approach is to “stack”
the cross-sectional units into a multivariate time series and then
directly apply Li and Liao’s ( 2020) coupling theory to obtain a
“stacked” version of ( 2.6). This approach, however, would have
two drawbacks. First, note that the stacking would substantially
increase the dimensionality of the coupling problem and, as a
consequence, the joint coupling can only be obtained under
very stringent restrictions on how fast N and/or m may grow
as T → ∞. As a matter of fact, N could only grow at a much
slower rate than T, which is undesirable in applications with
even moderately large cross sections. Second, to conduct feasible
inference, one would need to perform a HAC estimation for
the (Nm) × (Nm) long-run variance-covariance matrix of the
stacked score vector. A satisfactory HAC estimation is known to
be difficult even if N is moderately large and m is fixed (Driscoll
and Kraay 1998). This issue ought to be more severe in the
present growing-dimensional setting with m → ∞.

We thus consider an alternative approach that is inspired by
Driscoll and Kraay (1998). These authors’ key insight, when
applied to the present context, is to rewrite the scaled score
vector as

1
N

√
T

T∑
t=1

N∑
i=1

hit = 1√
T

T∑
t=1

Ht , where

Ht ≡ 1
N

N∑
i=1

hit . (2.7)

This simple rewriting highlights the fact that the analysis for
spatially dependent panels closely resembles the (seemingly)
simpler time-series problem, except that the Ht time series is
now “generated” as a cross-sectional average of the unit-specific
influence function hit . Combining this powerful idea with an
adaptation of the technical results in Li and Liao (2020), we shall
construct a uniform inference procedure for the conditional
expectation function g(·) for spatio-temporally dependent pan-
els. We now turn to the details.

2.2. Growing-Dimensional Gaussian Coupling for Panel
Data

We now present the aforementioned new results concerning the
growing-dimensional Gaussian coupling for spatio-temporally
dependent panel data. This section may be skipped by readers
who are mainly interested in applications.

The formal theoretical setting is as follows. Let hit be an m
-dimensional random vector for 1 ≤ i ≤ N and 1 ≤ t ≤ T. In
this section, we write m as mT to emphasize that mT → ∞ as
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T → ∞, whereas N may be fixed or divergent. We also consider
a filtration Ft . We do not always assume that hit is measurable
with respect to Ft , but the filtration is useful to specify the serial
dependence of hit .

Our goal is to construct a Gaussian coupling for a
sequence of mT-dimensional random vectors given by ST ≡
T−1/2 ∑T

t=1 a−1
N

∑N
i=1 hit . The normalizing sequence aN is

introduced to ensure that a−1
N

∑N
i=1 hit is nondegenerate. For

example, one may set aN = N if the hit variables are strongly
dependent on the cross section, or set aN = N1/2 when the
cross-sectional dependence is weak (e.g., independence). More
generally, it is possible to have aN = Nγ for some γ ∈ (1/2, 1) if
hit exhibits some form of spatial weak dependence (Conley 1999;
Kelejian and Prucha 2007). Introducing aN helps streamline our
theoretical presentation, but the user does not need to know
its specific form for implementation because it will be canceled
through studentization.

We stress that the key novelty of the coupling theory under
study is that it concerns the asymptotic normality of growing-
dimensional statistics, which is very different from conventional
central limit theorems for fixed-dimensional statistics or tight
empirical processes. Like Driscoll and Kraay (1998), we rewrite
ST as

ST ≡ 1√
T

T∑
t=1

HT,t , where HT,t ≡ 1
aN

N∑
i=1

hit .

The T subscript in HT,t highlights the fact that it is generally
treated as a triangular array.

Our coupling theory will be developed in two steps: We first
consider the baseline case in which each time series (hit)t≥1
forms a martingale difference sequence (MDS) with respect to
the filtration Ft , and then extend the theory to the more general
setting in which (HT,t)t≥1 forms a mixingale. It is well known
that the mixingale class includes linear processes (e.g., ARMA),
various mixing processes, and certain near-epoch processes as
special cases, and hence, accommodates a majority of depen-
dence structures seen in time-series applications; we refer the
reader to Davidson’s (1994) monograph for a comprehensive
review of these well-known facts. Singling out the MDS special
case is useful, because it quite commonly arises from rational-
expectation models, for which the feasible inference does not
require HAC estimation.

Regularity conditions for the MDS setting are collected in the
following assumption, where ‖·‖S denotes the matrix spectral
norm and H(j)

T,t denotes the jth component of HT,t .

Assumption 1. Suppose that the panel (hit)1≤i≤N,1≤t≤T satis-
fies the following: (i) for each (i, t), hit is Ft-measurable and
E[hit|Ft−1] = 0; (ii) the eigenvalues E[HT,tH�

T,t] are uniformly
bounded from above and away from zero by some fixed positive
constants; (iii) E[|H(j)

T,t|3] is bounded uniformly for all
(
j, t

)
; (iv)

uniformly for any sequence T′ of integers that satisfies T′ ≤ T
and T′/T → 1,∥∥∥∥∥∥ 1

T

T′∑
t=1

(
E[HT,tH�

T,t|Ft−1] − E[HT,tH�
T,t]

)∥∥∥∥∥∥
S

= Op(rT),

(2.8)
where rT is a real sequence such that rT = o(1).

Condition (i) of Assumption 1 states that hit forms an MDS
for each i with respect to the filtration Ft , which further implies
that HT,t is a martingale difference array. Condition (ii) requires
that the variance-covariance matrix of HT,t is nondegenerate,
and condition (iii) further imposes a bound on its third moment.
Condition (iv) mainly requires that the conditional variance-
covariance matrix E[HT,tH�

T,t|Ft−1] satisfies a matrix law of
large numbers at a certain convergence rate. It is worth noting
that this condition holds trivially for rT = 0 if HT,t is con-
ditionally homoscedastic (i.e., the conditional second moments
coincide with the unconditional ones).

Theorem 1, below, establishes the Gaussian coupling for the
ST statistic when hit forms an MDS.

Theorem 1. Under Assumption 1, there exists a sequence
ξT of mT-dimensional random vectors with distribution
N (0, T−1 ∑T

t=1 var[HT,t]) such that∥∥ST − ξT
∥∥ = Op(m1/2

T r1/2
T + T−1/6m5/6

T ). (2.9)

A couple of remarks are in order. First, we note that
the variance-covariance matrix of the coupling variable is
T−1 ∑T

t=1 var[HT,t], which does not involve any autocovari-
ance, because hit forms an MDS with respect to the common
filtration Ft . Consequently, the related feasible inference will
not require HAC estimation. Second, observe that the rate of
convergence of the coupling error is the same as what Li and
Liao (2020) obtain in the time-series setting. As alluded above,
if we had directly applied Li and Liao’s result by stacking the
cross-sectional units into an NmT -dimensional time series, the
resulting rate (i.e., N1/2m1/2

T r1/2
T + T−1/6N5/6m5/6

T ) would be
much slower when N is large. We have avoided this issue by
relying on Driscoll and Kraay’s (1998) insight.

We next extend Theorem 1 to the more general case in which
the triangular array HT,t = a−1

N
∑N

i=1 hit forms a mixingale.
The mixingale assumption is stated as follows: For a sequence
of constants c̄T = O(1) and a summable nonnegative sequence
(ψk)k≥0 (i.e.,

∑
k≥0 ψk < ∞), we have for 1 ≤ j ≤ mT and

k ≥ 0, ∥∥∥E[H(j)
T,t|Ft−k]

∥∥∥
q

≤ c̄Tψk, (2.10)∥∥∥H(j)
T,t − E[H(j)

T,t|Ft+k]
∥∥∥

q
≤ c̄Tψk+1,

where ‖·‖q denotes the Lq-norm of a random variable for some
q ≥ 1, and the constants c̄T and ψk control the magnitude and
the serial dependence of the

(
HT,t

)
t≥1 variables, respectively.

Note that if HT,t forms a martingale difference array and each
of its entries has bounded qth moment, it is trivially a mixingale
that verifies (2.10) with ψk = 0 for all k ≥ 1.

We extend Theorem 1 to the more general mixingale case via
a martingale approximation. Specifically, under the maintained
assumption

∑
k≥0 ψk < ∞, it can be shown that∥∥∥∥∥ST − 1√

T

T∑
t=1

H∗
T,t

∥∥∥∥∥ = Op(T−1/2m1/2
T ), (2.11)

where

H∗
T,t ≡

∞∑
s=−∞

{
E

[
HT,t+s|Ft

] − E
[
HT,t+s|Ft−1

]}
. (2.12)
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Observe that H∗
T,t forms a martingale difference array and so

T−1/2 ∑T
t=1 H∗

T,t admits a strong Gaussian coupling by Theo-
rem 1. Since ST can be approximated by T−1/2 ∑T

t=1 H∗
T,t up

to a relatively small Op(T−1/2m1/2
T ) error, this further implies

that ST also admits a Gaussian coupling. Theorem 2 formalizes
this logic.

Theorem 2. Suppose (i) the triangular array HT,t forms a mixin-
gale satisfying (2.10) for some q ≥ 3; (ii) the martingale differ-
ence array H∗

T,t defined in (2.12) satisfies Assumption 1; (iii) the
largest eigenvalue of var[ST] is bounded; and (iv) mT = o(T).
Then there exists a sequence ξT of mT-dimensional random
vectors with distribution N (0, var [ST]) such that∥∥ST − ξT

∥∥ = Op(m1/2
T r1/2

T + T−1/6m5/6
T ). (2.13)

Theorem 2 establishes the strong Gaussian approximation
for ST when HT,t forms a mixingale. The convergence rate
in (2.13) is the same as that in Theorem 1. It is also impor-
tant to note that var[ST] is a long-run variance-covariance
matrix given by var [ST] = var[T−1/2 ∑T

t=1 HT,t] that
generally involves all autocovariances cov

[
HT,t , HT,s

]
. Since

HT,t = a−1
N

∑N
i=1 hit , we may further rewrite cov[HT,t , HT,s] =

a−2
N

∑N
i,j=1 cov

[
hit , hjs

]
, which clarifies how the spatio-temporal

correlation across the panel contributes to the sampling variabil-
ity in ST .

2.3. Uniform Nonparametric Inference Procedures for
Panel Data

The Gaussian coupling results developed in the previous section
(Theorems 1 and 2) allow us to construct uniform confidence
bands for the conditional expectation function g (·). Below, we
discuss the implementation and accompanying heuristics; the
technical justification is given by Theorem 3.

Turning to the details, we first recall from (2.3) that b̂ is the
least-squares coefficient obtained by regressing Yit on P (Xit),
and ĝ (·) = P (·)� b̂ is the nonparametric series estimator
for g (·). When the number of series terms m → ∞, we
have g (·) ≈ P (·)� b∗ for some “population” regression coef-
ficient b∗ and so Yit ≈ P (Xit)

� b∗ + εit . Hence, with Q̂ ≡
T−1 ∑T

t=1 N−1 ∑N
i=1 P(Xit)P(Xit)�, we have

b̂ − b∗ ≈ Q̂−1
(

1
T

T∑
t=1

1
N

N∑
i=1

P (Xit) εit

)
, (2.14)

which obviously resembles the representation of the estimation
error in the “textbook” least-squares regression, though in the
latter case (2.14) would hold as an equality.

The approximation in (2.14) suggests that the asymptotic
normality of b̂ may be established by applying the afore-
mentioned Gaussian coupling theorems for the panel hit =
P (Xit) εit . To do so, we set Ht = a−1

N
∑N

i=1 hit as in Section 2.2
(the T subscript of the triangular array is omitted here for
simplicity). With this notation, we rewrite (2.14) as

T1/2N
aN

(̂
b − b∗) ≈ Q̂−1 × 1√

T

T∑
t=1

Ht . (2.15)

Theorem 2 above shows that T−1/2 ∑T
t=1 Ht may be strongly

approximated by a Gaussian vector ξT ∼ N (0, A), where

A ≡ var

[
1√
T

T∑
t=1

Ht

]
= var

[
1

aN
√

T

T∑
t=1

N∑
i=1

P(Xit)εit

]
.

(2.16)
The estimation error in b̂ thus admits the following Gaussian
approximation in distribution:

T1/2N
aN

(̂
b − b∗) d≈ (

Q−1AQ−1)1/2 N ∗
m, (2.17)

where Q ≡ (NT)−1 ∑N
i=1

∑T
t=1 E[P(Xit)P(Xit)�] is the pop-

ulation analogue of Q̂ and N ∗
m is a generic copy of an m-

dimensional standard normal vector. Since g (·) ≈ P (·)� b∗ and
ĝ (·) = P (·)� b̂, we have the following analogous result for the
functional estimator

T1/2N
aN

(̂
g (·) − g (·)) d≈ P (·)� (

Q−1AQ−1)1/2 N ∗
m. (2.18)

In particular, the standard error function for the scaled func-
tional estimation error displayed on the left-hand side is given
by

σ (·) ≡
√

P (·)� Q−1AQ−1P (·). (2.19)

To carry out the feasible inference, we need a consistent esti-
mator for the long-run variance-covariance matrix A. A natural
choice is the Newey–West estimator given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Â (aN) ≡
MT−1∑

s=−(MT−1)

|MT − s|
MT

�̂s (aN) , where

�̂s (aN) ≡ 1
T

min{T−s,T}∑
t=max{1,1−s}

(
1

aN

N∑
i=1

P (Xit) ε̂it

)
(

1
aN

∑N
i=1 P (Xit+s) ε̂it+s

)�
,

(2.20)

ε̂it = Yit − ĝ(Xit), and MT is the bandwidth parameter for
nonparametric HAC estimation which may be chosen using
Andrews’s (1991b) procedure.1 If the number of regressors m
were fixed, we could directly use Driscoll and Kraay’s (1998)
theory to justify the consistency of Â (aN). However, since m →
∞ in the present nonparametric setting, we may instead invoke
the HAC estimation theory for growing-dimensional triangular
arrays developed in Li and Liao (2020); see their Theorem 6.2 In
applications, it is useful to note that if P(Xit)εit forms an MDS,
then the user does not need to include sample autocovariances

1In the empirical applications of this article, a simplified version of the optimal
rule proposed in Andrews (1991b) is employed for setting the bandwidth
in the Newey–West estimator. Specifically, we set MT =

⌊
0.75T1/3

⌋
, where

�a� denotes the largest interger smaller than or equal to a. This simplified
rule has been found to work well in our simulation study, as demonstrated
in the supplemental appendix of the article.

2It is worth noting that while the Newey–West estimator is commonly used in
practice, it may not be optimal in terms of mean square error (as discussed
in Andrews (1991b)). The optimal HAC estimator proposed in Andrews
(1991b) replaces the Bartlett kernel in (2.20) with the Quadratic Spectral
kernel. By Theorem 6 of Li and Liao (2020) , this alternative estimator is
consistent in the general case with a divergent m. However, the optimality
of this alternative estimator and the optimal choice of bandwidth have not
been established in the general case, to the best of our knowledge.
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in Â (aN), which amounts to setting MT = 1.3 Equipped with
Â (aN), we estimate the standard error function σ (·) defined in
(2.19) via its sample analogue

σ̂ (·; aN) ≡
√

P (·)� Q̂−1Â (aN) Q̂−1P (·). (2.21)

For notational simplicity in the discussion below, we omit aN
in the notation when aN = N; in particular, we write Â =
Â (N) and σ̂ (·) = σ̂ (·; N). It is worth noting that Â and σ̂ (·)
are feasible estimators as they no longer involve the generally
unknown normalizing sequence aN .

Our uniform nonparametric inference is based on a “sup-t”
statistic defined as

τ̂ ≡ sup
x∈X

T1/2N
aN

∣∣̂g (x) − g (x)
∣∣

σ̂ (x; aN)
.

At first glance, this statistic might appear “infeasible” because
we do not assume that the form of the aN normalizing fac-
tor is known a priori. This is not an issue, because τ̂ is in
fact invariant to aN . To see this, we note that σ̂ (·; aN) =
Na−1

N σ̂ (·) by definition, and hence, we may rewrite τ̂ as
τ̂ ≡ supx∈X T1/2 ∣∣̂g (x) − g (x)

∣∣ /σ̂ (x). In view of the Gaussian
approximation in (2.18), we may approximate the distribution
of τ̂ via that of

sup
x∈X

∣∣∣P (x)�
(
Q−1AQ−1)1/2 N ∗

m

∣∣∣
σ (x)

,

for which a feasible approximation may be further constructed
as

τ̂ ∗ ≡ sup
x∈X

∣∣∣∣P (x)�
(

Q̂−1Â (aN) Q̂−1
)1/2

N ∗
m

∣∣∣∣
σ̂ (x; aN)

= sup
x∈X

∣∣∣∣P (x)�
(

Q̂−1ÂQ̂−1
)1/2

N ∗
m

∣∣∣∣
σ̂ (x)

.

Critical values for the sup-t statistic can be computed as the
tail quantile of τ̂ ∗ via simulation, which in turn can be used to
construct the uniform confidence bands for g (·).

For ease of application, we detail the construction of a 1 − α

level two-sided uniform confidence band for g (·) in the follow-
ing algorithm.

We may also adapt this procedure to make uniform inference
for the derivative function of g (·). For ease of discussion, we
consider the case with scalar-valued Xit and denote the deriva-
tive of g (·) by ∂g (·).

The statistical procedures described in Algorithms 1 and
2 can be readily implemented using an accompanying Stata

3Another case where the HAC estimator may not be needed is when there is a
large number of clusters with a known cluster structure, and the data from
different clusters are independent. In this case, one may proceed as follows:
Use t to index the clusters and define Ht as the score aggregated across
within-cluster units and time periods. As such, the possibly strong serial
and within-cluster dependence is absorbed within Ht , and one can invoke
asymptotics by exploiting the independence across clusters. In particular,
since the clusters are assumed to be independent, there is no need to
use the HAC estimator. We are grateful to a referee for suggesting the
incorporation of cluster dependence.

Algorithm 1 Uniform Confidence Band for g (·))
Step 1. Run a pooled panel least-squares regression for Yit on
P (Xit) and obtain b̂ as described in (2.3). Set the nonparametric
estimator ĝ (·) = P (·)� b̂.
Step 2. Let ε̂it = Yit − ĝ(Xit) and Q̂ ≡
(NT)−1 ∑N

i=1
∑T

t=1 P(Xit)P(Xit)�. Compute Â = Â (N)

and σ̂ (·) = σ̂ (·; N) according to (2.20) and (2.21) with
aN = N.
Step 3. Draw N ∗

m from the m-dimensional standard normal
distribution many times. For each draw, compute

τ̂ ∗ = sup
x∈X

∣∣∣∣P (x)�
(

Q̂−1ÂQ̂−1
)1/2

N ∗
m

∣∣∣∣
σ̂ (x)

,

where the supremum may be computed on a discretized mesh of
X . Set the critical value cv1−α as the 1 − α empirical quantile of
the simulated τ̂ ∗.
Step 4. Report the 1 − α level two-sided uniform con-
fidence band for g (·) as [̂g(·) − cv1−αT−1/2σ̂ (·) , ĝ(·) +
cv1−αT−1/2σ̂ (·)].

Algorithm 2 Uniform Confidence Band for ∂g (·))
Step 1. Compute b̂, Q̂, and Â as described in Algorithm 1. Set

∂ ĝ (·) = ∂P (·)� b̂, σ̃ (·) =
√

∂P (x)�
(

Q̂−1ÂQ̂−1
)

∂P (x).

Step 2. Draw N ∗
m from the m-dimensional standard normal

distribution many times. For each draw, compute

τ̂ ′∗ = sup
x∈X

∣∣∣∣∂P (x)�
(

Q̂−1ÂQ̂−1
)1/2

N ∗
m

∣∣∣∣
σ̃ (x)

,

where the supremum may be computed on a discretized mesh of
X . Set the critical value cv′

1−α as the 1 − α empirical quantile of
the simulated τ̂ ′∗.
Step 3. Report the 1 − α level two-sided uniform confi-
dence band for ∂g (·) as [∂ ĝ(·) − cv′

1−αT−1/2σ̃ (·) , ∂ ĝ(·) +
cv′

1−αT−1/2σ̃ (·)].

package. We also note that, since the underlying asymptotic
theory is developed in a general setting with triangular arrays,
the proposed method can be easily extended (mainly at the
cost of more complicated notation) to the setting in which the
number of observations in each cross-section, say Nt , depends
on t. The only modification needed is to replace the cross-
sectional average N−1 ∑N

i=1 with N−1
t

∑Nt
i=1 when computing

various sample-average statistics. This more general setting is
accommodated in the Stata package as well.

Theorem 3 justifies the theoretical validity of the confi-
dence bands described in the algorithms above. The subse-
quent technical discussion may be skipped by readers who
are mainly interested in applications. To facilitate exposition,
we collect the requisite regularity conditions in the follow-
ing high-level assumption. These conditions are either stan-
dard in the series estimation literature or can be verified using
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the limit theorems developed in the current article. The fol-
lowing notation is needed. For j = 0, 1, we denote ζ

j
m ≡

supx1,x2∈X
∥∥∂ jP(x1) − ∂ jP(x2)

∥∥ / ‖x1 − x2‖, where ∂0P(x) ≡
P(x) and ∂1P(x) ≡ ∂P(x). For any vector a ≡ (a1, . . . , ad)

� of
nonnegative integers, the derivative ∂ah(x) of any differentiable
function h(x) is defined as ∂ah(x) ≡ ∂ |a|h(x)/∂xa1

1 · · · ∂xad
d

where |a| ≡ ∑d
j=1 aj. Let ‖h‖1,∞ ≡ max|a|≤1 supx∈X |∂ah(x)|.

Assumption 2. Suppose: (i) there exists a sequence
b∗ of m-dimensional constant vectors such that
T1/2Na−1

N
∥∥g − g∗

m
∥∥

1,∞ = o((log(T))−1) where g∗
m(x) ≡

P(x)�b∗; (ii) the eigenvalues of Q and A are bounded from
above and away from zero; (iii) the sequence T−1/2 ∑T

t=1 Ht
admits a strong approximation ξT ∼ N (0, A) such that∥∥∥∥∥T−1/2

T∑
t=1

Ht − ξT

∥∥∥∥∥ = op
(
log(T)−1) ;

(iv) ‖Q̂ − Q‖S + ‖Â (aN) − A‖S = op(m−1/2 log(T)−1); (v)
minj=0,1 infx∈X ‖∂ jP(x)|| > 0, maxj=0,1 log(ζ j

m) = O(log(m))

and log(m) = O(log(T)).

Assumptions 2(i, ii) are fairly standard in series estimation;
see, for example, Andrews (1991a), Newey (1997), Chen (2007),
and Belloni et al. (2015). In particular, condition (i) specifies
the precision for approximating the unknown function g (·) via
approximating functions, for which comprehensive results are
available from numerical approximation theory. For example
when x is univariate, it is well-known that for polynomials
and splines,

∥∥g − g∗
m
∥∥

1,∞ = O(m−α+1) where α is related to
the smoothness of the unknown function g (see, e.g., Newey
(1997) for references and related discussions). When Ht forms a
martingale difference array, Assumption 2(iii) can be verified by
using Theorem 1. More generally, this condition can be verified
by using Theorem 2 for mixingales.4 Assumption 2(iv) pertains
to the convergence rates of Q̂ and Â (aN), which can be verified
under low level conditions using Lemma B1 and Theorem 6
in Li and Liao (2020), respectively. Assumption 2(v) includes
restrictions on the approximating functions. Since many approx-
imating functions, such as polynomials and cubic splines include
a constant and a linear term, the lower bound condition in
Assumption 2(v) is easily satisfied. The upper bound ζ

j
m is

known for many commonly used approximating functions. For
example, ζ

j
m = O(mj+1/2) for splines and ζ

j
m = O(m2j+1) for

polynomials (see, e.g., Andrews 1991a; Newey 1997).

Theorem 3. Under Assumption 2, the 1 − α level two-sided
uniform confidence bands constructed in Algorithms 1 and 2

4In light of Theorems 1 and 2, Assumption 2(iii) implies that the value of
m should be of a smaller order than T1/5. In the empirical applications
presented in this article, the rule m =

⌊
2T0.19

⌋
is employed to meet this

requirement. It is worth noting that this requirement, in conjunction with
Assumption 2(i), imposes a restriction on the smoothness of the unknown
function g. For instance, in the case of univariate x and strong spatial
dependence where aN = N, Assumption 2 (i) requires that g is at least three
times continuously differentiable. The development of an adaptive rule for
selecting the value of m to achieve certain desirable properties of uniform
inference is appealing. However, due to its complexity, this task is left for
future investigation.

cover g(x) and ∂g(x), respectively uniformly over x ∈ X with
probability converging to 1 − α.

3. Empirical Applications

In this section, we demonstrate how the proposed uniform infer-
ence method may be used in empirical work via two examples:
The first concerns the nonparametric relationship between the
volatility and trading volume of financial assets, and the second
pertains to testing the rationality of survey-based forecasts.

3.1. Volume-Volatility Relationship during COVID-19

A large literature in finance has been devoted to understanding
the relationship between asset price volatility and trading vol-
ume; see, for example, Clark (1973), Tauchen and Pitts (1983),
Andersen (1996), Bollerslev, Li, and Xue (2018), and the many
references therein. A common theme in this literature is the
Mixture of Distribution Hypothesis (MDH), which postulates
that the trading volume and price volatility are both driven by
news arrival, and so, implies a positive relationship between
volume and volatility. While the MDH is the leading theory
for understanding the volume-volatility relationship, it does
not force any specific functional form between these variables,
which makes nonparametric procedures a natural choice for
empirical study. In the first application, we apply the proposed
nonparametric inferential tools to examine the volume-volatility
relationship for the U.S. equity universe, with a particular focus
on how this relationship may have changed after the breakout of
the ongoing COVID-19 pandemic.

The dataset used in this empirical study consists of daily
time series of Parkinson’s volatility measure (Parkinson 1980)
and turnover for all stocks listed on NYSE, AMEX, and NAS-
DAQ. Recall that Parkinson’s volatility is defined as Yit =
log(hit/lit)/

√
4 log 2, where hit and lit are the intraday high and

low prices of stock i on day t, and the stock’s turnover Xit is
defined as the number of traded shares divided by the total
number of shares outstanding. The data is obtained from the
Center for Research in Security Prices (CRSP) via Wharton
Research Data Services (WRDS). Our post-COVID subsample
ranges from February 24, 2020 to June 30, 2021, consisting of 342
trading days. The cutoff date, February 24, 2020, is when the U.S.
government issued an official response to fight the pandemic.
Meanwhile, we form the pre-COVID subsample using data from
October 11, 2018 to February 21, 2020, so that it contains exactly
the same number of trading days as the post-COVID sample.
Our full sample thus contains 684 trading days in total and there
are 7452 firms in the cross-section on an average day. To make
the volatility and volume observations more comparable across
firms, we consider the logarithm of each series and normalize
it via its full-sample mean and standard deviation. As in the
simulation study (see the supplemental appendix), we further
transform the (log-normalized) turnover onto the [−1, 1] inter-
val via the x �→ 2
(x) − 1 transformation, where 
(·) denotes
the standard normal distribution function. The nonparametric
procedure is then carried out using Legendre polynomials up to
the sixth order, which is guided by the rule m = �2T0.19�.
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Figure 1. Volume-volatility relationship before and after COVID-19.
NOTE: The figure plots the nonparametric estimates of the conditional mean func-
tions of the volatility given the (transformed) turnover for the pre- and post-COVID
subsamples using all stocks. Each time series of volatility and turnover is log-
normalized to have zero sample mean and unit standard deviation over the full
sample period from October 11, 2018 to June 30, 2021. The transformed turnover is
defined by transforming the normalized data via the x �→ 2
(x)−1 transformation
so that it takes values on the [−1, 1] interval. The nonparametric series estimation
is implemented using Legendre polynomials up to the sixth order, which is guided
by the rule m = �2T0.19�. The 95% uniform confidence bands are computed using
Algorithm 1, where the Newey–West bandwidth is set to �0.75T1/3�.

Figure 1 plots the estimated conditional mean functions of
volatility given turnover for the pre- and post-COVID sub-
samples. To gauge the sampling variability of these functional
estimates, we also plot the associated 95% uniform confidence
bands computed according to Algorithm 1. It is worth re-
emphasizing that the uniform confidence band is designed to
cover the entire conditional mean function simultaneously, and
hence, allows us to make inferential statements regarding the
whole function, rather than its value at a specific point. From
the figure, we see that the confidence bands are reasonably tight,
which highlights the advantage of harnessing the rich infor-
mation from the panel dataset. The functional estimates reveal
a clear positive relationship between volatility and turnover.
Interestingly, the estimated curves appear to be steeper when
the turnover is exceptionally high (roughly corresponding to
the highest quintile). This finding suggests that, during extreme
market conditions with “trading frenzy,” the price impact of
trades tends to be larger, which is likely due to an elevated
level of asymmetric information among market participants
during such circumstances (Kyle 1985). In addition, we also
note that the post-COVID estimate is higher than the pre-
COVID estimate uniformly across all levels of trading activity.
The nonoverlapping confidence bands for the two estimated
functions suggest that the observed difference between them is
statistically highly significant (indeed, the formal test for their
difference yields a p-value that is virtually zero). In view of the
economic logic underlying the MDH, this result suggests that
each “unit” of news during the pandemic period exerts more
impact on stock price than it would do during normal times,
even after conditioning on the same level of trading activity in a
completely nonparametric fashion.

It is interesting to further investigate whether these findings
may differ across small and large firms. To do so, we divide the
stocks evenly into four quartile groups according to their market
capitalizations. Figure 2 plots the nonparametric estimates and
uniform confidence bands for these size-based groups. Remark-
ably, the results appear quite similar across all four groups.
Hence, the findings seen from the full-sample analysis in Fig-
ure 1 are not driven by any particular size group. This observed
homogeneity also confirms that pooling information among
them, as we have done in Figure 1, is empirically sound.

3.2. Forecast Rationality and Information Rigidity

In our second empirical application, we apply the proposed
method to study the rationality of survey-based forecasts.
Expectation surveys are routinely conducted among individuals,
corporate officials, and professional researchers, and are widely
used to gauge their forward-looking belief on the various aspects
of socioeconomic life, business operation, and government pol-
icy. Arguably one of the most important surveys of this type
is the Survey of Professional Forecasters (SPF), which collects
institutional researchers’ forecasts on leading macroeconomic
indicators such as GDP, inflation, and unemployment. A large
literature in macroeconomics has argued that these forecasts
are not rational, in the sense that the ex post forecasting error
can be partly predicted using a priori available information.
An important mechanism for explaining this phenomenon is
information friction. Coibion and Gorodnichenko (2015) show
that both the sticky-information model of Mankiw and Reis
(2002) and the noisy-information model of Woodford (2003)
and Sims (2003) imply a positive relation between the aver-
age ex post forecast errors across forecasters and their average
ex ante forecast revisions, and find empirical support for this
hypothesis. Set against this background, we revisit Coibion and
Gorodnichenko’s (2015) analysis by employing the proposed
functional inference method, which allows us to study a more
general nonparametric notion of information rigidity.

It is instructive to briefly recall the empirical framework
developed by Coibion and Gorodnichenko (2015). Let Zk,t+h
denote the kth economic variable to be forecast, which is realized
at time t + h. The average time-t forecast across a group of
forecasters for this variable is denoted by FtZk,t+h. The average
ex post forecast error is thus Zk,t+h − FtZk,t+h, and the average
ex ante forecast revision from t − 1 to t is FtZk,t+h − Ft−1Zk,t+h.
Coibion and Gorodnichenko’s ( 2015) baseline specification is
the following linear regression:

Zk,t+h−FtZk,t+h = c+β
(
FtZk,t+h − Ft−1Zk,t+h

)+ek,h,t , (3.1)

where the error term ek,h,t is mean-independent of the time-t
information, and β measures the degree of information rigidity.
If the average forecast is rational, one would have β = 0; oth-
erwise, both sticky-information and noisy-information models
imply β > 0. This testable implication is quite intuitive: Infor-
mation frictions tend to make the average forecast revision “too
conservative” relative to the rational-expectation benchmark.
For ease of notation in our discussion below, we shall use i =
(k, h) to index both the variable of interest and the forecast
horizon, and set Yit = Zk,t+h − FtZk,t+h, Xit = FtZk,t+h −
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Figure 2. Volume-volatility relationship for small and large firms.
NOTE: The figure plots the nonparametric estimate of the conditional mean function of volatility given the transformed turnover for each quartile of stocks sorted by their
market capitalizations. The estimation is done separately for each size group following the same procedure as described in Figure 1.

Ft−1Zk,t+h, and εit = ek,h,t . The specification in (3.1) may be
rewritten more concisely as a linear panel regression

Yit = c + βXit + εit . (3.2)

A natural generalization of (3.2) is the nonparametric regres-
sion in (2.1), namely, Yit = g (Xit) + εit . In the nonparametric
context, information rigidity implies that g (·) is an increasing
function. Compared to the baseline linear specification, the
nonparametric model allows the marginal response (i.e., the
derivative of g (·)) to depend on the level of forecast revision
itself. This may be formalized in the sticky-information (resp.
noisy-information) model if the agents’s updating frequency
(resp. Kalman gain) is a function of the revision.

We carry out the empirical analysis using the data from
the SPF. For ease of comparison, we employ exactly the same
data as in Coibion and Gorodnichenko (2015), obtained from
American Economic Review’s website.5 The dataset consists of
quarterly time series of forecast errors and revisions from 1969
to 2014 for 5 macroeconomic variables (i.e., GDP price defla-
tor, real GDP, industrial production, housing starts, and the
unemployment rate) and 4 horizons (i.e., h = 0, 1, 2, 3). The
resulting panel corresponds to N = 20 and T = 173. In
this setting, it is clearly implausible to rule out cross-sectional
dependence between forecast errors across different variables
and/or horizons, or to impose ad hoc “weak” spatial dependence.
Since forecasts over multiple horizons are involved, one cannot
rule out serial dependence, either (Hansen and Hodrick 1980).
Our proposed method is designed to accommodate this type of
general dependence structure for nonparametric analysis. Like
in Section 3.1, we normalize each time series with its sample

5The data is obtained from https://www.aeaweb.org/articles?id=10.1257/aer.
20110306.

mean and standard deviation, and transform the conditioning
variable (i.e., forecast revision) onto the [−1, 1] interval via x �→
2
(x)−1. The series basis consists of Legendre polynomials up
to the fifth order, which is guided by the rule m = �2T0.19�.

We now turn to the empirical results. On the left panel of
Figure 3, we plot the nonparametric estimate of the condi-
tional mean function of the forecast error given the transformed
forecast revision, along with its 90% uniform confidence band
computed according to Algorithm 1.

Since the uniform confidence band does not fully cover
zero, the functional estimate is statistically significantly different
from zero, which provides nonparametric evidence against the
hypothesis that the SPF forecasts are fully rational.

Importantly, the estimated conditional expectation function
appears to be an increasing function in the forecast revision,
which, as mentioned above, is consistent with the presence
of information rigidity. To see this more clearly, on the right
panel of Figure 3, we plot the nonparametric estimate of the
derivative function, together with its 90% uniform confidence
band computed according to Algorithm 2. The plot reveals
that the derivative estimate is indeed almost always positive,
and the nonparametric functional estimate as a whole is sig-
nificantly different from zero.6 Overall, these findings provide
strong support for those of Coibion and Gorodnichenko (2015):
The information rigidity documented in the prior work is not
solely driven by the linear specification but holds quite robustly
in a nonparametric setting; moreover, information rigidity is not
only an on-average phenomenon (as summarized by the scalar

6The inferential statement based on the uniform confidence band concerns
the entire function. The zero level set of the confidence band provides a
confidence set for the zero level set of the estimand function, which is
generally conservative.

https://www.aeaweb.org/articles?id=10.1257/aer.20110306
https://www.aeaweb.org/articles?id=10.1257/aer.20110306
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Figure 3. Nonparametric estimation of information rigidity.
NOTE: The left panel plots the nonparametric estimate of the conditional mean function of the forecast error given the transformed forecast revision, and the right panel
plots the nonparametric estimate of its derivative. Each time series of forecast error or forecast revision is normalized to have zero sample mean and unit standard deviation.
The transformed forecast revision is defined by transforming the normalized data via x �→ 2
(x)−1 so that it takes values on the [−1, 1] interval. The nonparametric series
estimation is implemented using Legendre polynomials up to the fifth order, which is guided by the rule m = �2T0.19�. The 90% uniform confidence band is computed
using Algorithm 1 (resp. Algorithm 2) for the left (resp. right) panel, where the Newey–West bandwidth is set to �0.75T1/3�.
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Figure 4. Test for linear specification.
NOTE: The figure plots the nonparametric estimate of the conditional mean function
of the linear-regression residual given the transformed forecast revision. Each time
series of forecast error and forecast revision is normalized to have zero sample
mean and unit standard deviation. The residuals are obtained from a pooled linear
panel regression according to (3.2). The transformed forecast revision is defined
by transforming the normalized data via x �→ 2
(x) − 1 so that it takes values
on the [−1, 1] interval. The nonparametric series estimation is implemented using
Legendre polynomials up to the fifth order, which is guided by the rule m =
�2T0.19�. The 90% uniform confidence band is computed using Algorithm 1, where
the Newey–West bandwidth is set to �0.75T1/3�.

β), but also appears to hold uniformly in a functional sense
across different levels of forecast revision.

We may also formally test whether the linear specification
(3.2) is in fact compatible with observed data. This type of
specification test can be easily carried out using the proposed
method. To do so, we first estimate the linear model and obtain
the residual; we then nonparametrically regress the residuals
on the covariate. If the linear model is correctly specified, the
nonparametrically estimated conditional mean function of the
linear-regression residual should be statistically zero; otherwise,
the linear specification should be rejected. Figure 4 plots the
estimated conditional mean function of the residual and the
associated 90% uniform confidence band. Since the confidence

band always covers zero, we cannot reject the linear specification
in (3.2). This suggests that the rigidity parameter β is likely con-
stant across different levels of forecast revision and so Coibion
and Gorodnichenko’s (2015) linear specification (with constant
β) is indeed adequate from this perspective.

4. Conclusion

Nonparametric regressions offer flexible empirical designs but
need more data for informative inference. This need could hin-
der macroeconomic applications in which the number of obser-
vations for a typical time series is often in the low hundreds.
A reasonable and oft-used empirical strategy to overcome this
issue is to pool the richer information from a panel. The related
inference should be done carefully due to the presence of serial
and cross-sectional dependence in the data. The proposed uni-
form nonparametric inference method readily accommodates
general spatio-temporal dependence. It may be used to make
functional inference concerning the conditional mean function
in panel-data settings with a large T, regardless whether N is
small or large.

Supplementary Materials

The online supplemental appendix contains the simulation results for the
proposed uniform inference procedure, proofs of the main theoretical
results, and the replication code for the Monte Carlo simulations and the
empirical applications.
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