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Abstract—We propose an Optimal candlesticK (OK) estimator for the spot
volatility using high-frequency candlestick observations. Under a standard
infill asymptotic setting, we show that the OK estimator is asymptotically
unbiased and has minimal asymptotic variance within a class of linear es-
timators. Its estimation error can be coupled by a Brownian functional,
which permits valid inference. Our theoretical and numerical results sug-
gest that the proposed candlestick-based estimator is much more accurate
than the conventional spot volatility estimator based on high-frequency re-
turns. An empirical illustration documents the intraday volatility dynamics
of various assets during the Fed chairman’s recent congressional testimony.

I. Introduction

REALIZED volatility measures computed using high-
frequency asset returns have been extensively studied

and applied in econometrics and statistics. Following the pi-
oneer work of Andersen and Bollerslev (1998), Barndorff-
Nielsen and Shephard (2002), and Andersen et al. (2003),
a large literature in econometrics has emerged to study in-
tegrated volatility over a fixed period of time, typically a
trading day. As high-quality asset price data become increas-
ingly more available at higher frequencies, researchers have
also rekindled their interest in the nonparametric estimation
and inference for the spot volatility at a given time point
(see Foster & Nelson, 1996, and Comte & Renault, 1998,
for early contributions). Spot volatility is useful for study-
ing news-induced volatility shocks such as those triggered
by macroeconomic news announcements (Bollerslev et al.,
2018; Nakamura & Steinsson, 2018).1 It is also an indis-
pensable input for designing intraday trading strategies and
performing real-time risk management. The classical spot
volatility estimator is constructed as a localized version of
the realized variance, but conducting reliable spot inference
is more challenging, fundamentally because of the scarcity
of local information, which may lead to finite-sample distor-
tions in conventional asymptotic approximations.

Spot inference thus naturally demands “more informa-
tive” data. Inspired by Parkinson (1980), Garman and Klass
(1980), Beckers (1983), Rogers and Satchell (1991), Ander-
sen and Bollerslev (1998), Yang and Zhang (2000), and Al-
izadeh et al. (2002), among others, our idea in this paper
is to seek information from a broader set of variables. In-
stead of relying only on (open-to-close) returns over high-
frequency sampling intervals, we exploit the richer infor-
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mation embedded in intraday “candlesticks” that contain the
open, close, high, and low prices within the sampling inter-
vals. The candlestick chart has been used by investors for
centuries (Nison, 2001), and intraday data are readily acces-
sible not only for professional researchers but also for re-
tail investors (through online trading applications). As a con-
crete illustration, we plot two candlesticks in figure 1. Each
candlestick contains a vertical rectangle box (i.e., real body)
determined by the open and close prices during a short trad-
ing period (say, a few minutes), with its color signifying the
direction of the price movement; the upper and lower ends of
the candlestick indicate the highest and lowest prices within
that period, respectively.

We propose a nonparametric estimator for the spot volatil-
ity at a given time point based on the associated candlestick
and study its asymptotic property under a standard Itô semi-
martingale price model (which features stochastic drift and
volatility, intraday seasonality, leverage effect, and price and
volatility jumps) using infill asymptotics.2 In its basic form,
the proposed estimator is constructed as a linear combina-
tion of the high-low range and the absolute open-close re-
turn, which is more precisely given by3

0.811 × (High − Low) − 0.369 × |Close − Open|(
Duration of the Trading Session

)1/2 . (1)

Here, the specific numerical weights are chosen to achieve a
type of optimality; that is, the resulting estimator is asymp-
totically unbiased and attains the minimal asymptotic vari-
ance within a class of linear estimators. We refer to this esti-
mator as the Optimal candlesticK (OK) estimator.

Since the OK estimator is based on a single candle-
stick observation, one evidently cannot use the conventional
law of large numbers or central limit theorem to derive its
asymptotic property. Our asymptotic analysis instead relies
on an “approximate finite-sample” approach in the same
spirit of Bollerslev et al. (2021). The underlying idea is sim-
ple: Within each “short” trading session, the Itô semimartin-
gale price process can be approximated by a Brownian mo-
tion scaled by a constant volatility. Guided by this intuition,
we show that the estimation error of the OK estimator may
be strongly approximated, or “coupled,” by a certain Brow-
nian functional, whose (nonstandard) distribution is known
in finite sample. This result can then be used to construct
confidence intervals (CIs) for the spot volatility. In fact, we
can optimize the CI (in terms of minimal length) by using

2See chapter 2 of Jacod and Protter (2012) for a comprehensive discus-
sion on the Itô semimartingale model.

3The volatility estimate computed using the dollar-denominated prices is
also in dollar unit, which may be transformed into relative terms by using
the open price as a normalization. Almost equivalently, one may compute
the volatility estimate in percentage terms using log-transformed prices.
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READING THE CANDLESTICKS: AN OK ESTIMATOR FOR VOLATILITY 1115

FIGURE 1.—CANDLESTICK EXAMPLES

The figure illustrates the generic form of candlesticks. In the bullish (resp. bearish) case, the close price is
higher (resp. lower) than the open price during the trading session.

the highest density interval (HDI) of the distribution of the
coupling variable as the critical value. Our theory suggests
that the resulting candlestick-based CI is much more effi-
cient than the conventional CI based only on high-frequency
returns. Our numerical findings from both simulated and real
data also support this theoretical claim.

To guide practical applications, we provide an empirical
illustration in section IV and show that the OK estimator
can indeed provide economically sensible spot volatility es-
timates with adequate precision for a variety of different as-
sets (bond, equity, gold, and cryptocurrency). We also note
that, although we intentionally “tilt” our main discussion to-
ward practicality, the underlying econometric idea can be ex-
tended in many directions for more complicated economet-
ric settings. For example, one may aggregate several can-
dlesticks within a short window to further improve the esti-
mation efficiency (though at the cost of potentially inducing
larger nonparametric bias). Moreover, following the influ-
ential work of Barndorff-Nielsen and Shephard (2004), we
may also consider a bipower version of the OK estimator
by simultaneously using adjacent candlesticks, which may
make the estimator more robust with respect to price jumps.
Additional ideas and more detailed discussions are provided
in section IIC.

Finally, we clarify the relation between the present paper
and prior work in the literature. Our work is inspired by the
classical papers of Parkinson (1980) and Garman and Klass
(1980). Based on the probabilistic result of Feller (1951),
Parkinson (1980) develops an estimator for asset return vari-
ance by aggregating a large number of observations of the
high-low price range, and makes the important observation
regarding the efficiency gain from using range data. Mod-
eling the price process as a scaled Brownian motion, Gar-
man and Klass (1980) construct a more efficient unbiased
estimator for variance by exploiting the information of the
entire candlestick. This prior work mainly focuses on finite-
sample properties in the baseline Brownian-motion model

and does not provide formal inference. In contrast, we con-
duct an infill nonparametric asymptotic analysis under the
far more general Itô semimartingale model and develop valid
optimal CIs for the spot volatility.

From a technical point of view, our paper is more closely
related to the high-frequency econometrics literature on
volatility inference; see the many papers cited above, and
Andersen and Bollerslev (2018) and Jacod and Protter
(2012) for a more complete list of references.4 We high-
light an important distinction between our method and the
existing ones. In essentially all prior studies, the integrated
variance and spot volatility are estimated by aggregating a
“large” number of return or range observations. The consis-
tency of the estimator can be claimed by invoking a law of
large numbers, and the asymptotic Gaussian-based inference
can be justified using a central limit theorem. In sharp con-
trast, we consider estimators formed using a fixed number
of candlesticks, which better mimics the “small-sample” en-
vironment for spot inference. Unlike conventional work, we
do not pursue a consistency claim, but instead focus on the
estimator’s “approximate finite-sample” properties. Specif-
ically, we show that the estimator is asymptotically unbi-
ased with a well-defined sense of optimality, and its asymp-
totic distribution is captured by a nonstandard coupling
variable, resulting in CIs that are quite distinct from conven-
tional asymptotic Gaussian-based CIs. Our coupling-based
approach is in the same spirit as the work of Bollerslev et al.
(2021). However, that prior work only focuses on estima-
tors formed using high-frequency returns. By exploiting the
richer information from candlesticks in an optimal way, our
estimator and CI substantially outperform those proposed by
Bollerslev et al. (2021). Correspondingly, our empirical il-
lustration shows that spot volatility estimates based only on
coarsely sampled returns may be too noisy to be economi-
cally meaningful, whereas the OK volatility estimates con-
structed at the same sampling frequency are much more ac-
curate and interpretable with respect to the underlying news
flow.

The remainder of the paper is organized as follows. Sec-
tion II presents our inference procedure and the correspond-
ing asymptotic theory. Section III reports the finite-sample
performance of the proposed method in a Monte Carlo ex-
periment. An empirical illustration is provided in section IV.
Section V concludes. The appendix collects all proofs.

II. Candlestick-Based Inference for Spot Volatility

Section IIA introduces the theoretical setting and briefly
reviews some existing methods for spot volatility inference.
Section IIB describes a basic version of our candlestick-
based inference procedure and establishes its theoretical va-
lidity. Further extensions are discussed in section IIC.

4A paper worth highlighting is that of Christensen and Podolskij (2007),
which establishes the infill asymptotic property of Parkinson’s estimator as
an estimator of integrated variance.
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1116 THE REVIEW OF ECONOMICS AND STATISTICS

A. The Setting and Background

Suppose that the (log) price process P is an Itô
semimartingale defined on a filtered probability space(
�,F, (Ft )t≥0,P

)
written as

Pt = P0 +
∫ t

0
bsds +

∫ t

0
σsdWs + Jt , (2)

where b is the drift process, σ is the stochastic volatility pro-
cess, W is a standard Brownian motion, and J is a pure-jump
process driven by a Poisson random measure.5 Our econo-
metric interest is in the estimation and inference for the spot
volatility σt at a given time point t . The method can be triv-
ially extended to the joint inference for a finite collection of
time points.

The classical nonparametric estimator for spot volatil-
ity, which is first proposed by Foster and Nelson (1996),
can be constructed based on a localized version of the re-
alized variance (Andersen et al., 2003; Barndorff-Nielsen
& Shephard, 2002). Under the classical theory, we assume
that the price process P is observed on a high-frequency
time grid 0, �n, 2�n, . . . over a fixed time interval [0, T ],
where the sampling interval �n → 0 asymptotically. Let
ri ≡ Pi�n − P(i−1)�n denote the ith return. To conduct spot
estimation, the user may choose a bandwidth sequence kn

and divide the returns into nonoverlapping blocks, with the
ith block containing

{
r(i−1)kn+ j : 1 ≤ j ≤ kn

}
. For any t ∈

[(i − 1) kn�n, ikn�n], the estimator for the spot variance σ2
t

is given by

v̂t (kn) ≡ 1

kn�n

kn∑
j=1

r2
(i−1)kn+ j . (3)

Under mild regularity conditions, the conventional the-
ory suggests that v̂t (kn) is a consistent estimator of σ2

t , pro-
vided that the bandwidth sequence satisfies kn → ∞ and
kn�n → 0.6 The two conditions on the tuning sequence play
distinct roles in the asymptotic theory, which are intuitively
easy to understand: The kn → ∞ condition permits the use
of a law of large numbers to establish consistency, and the
kn�n → 0 condition ensures that the [(i − 1) kn�n, ikn�n]

5In this paper, we do not consider complications arising from the mi-
crostructure noise. Following standard practice (see Andersen et al., 2003),
one may mitigate the effect of noise by sparsely sampling the data (e.g.,
using candlestick observations on the timescale of a few minutes). For al-
ternative methods for dealing with microstructure noise, see, for example,
Zhang et al. (2005), Bandi and Russell (2008), Barndorff-Nielsen et al.
(2008), Jacod et al. (2009), Da and Xiu (2021), and Li and Linton (2021).

6It is useful to note that the spot variance estimator at any fixed time
is robust to the presence of Poisson-type price jumps, even without using
the multipower (Barndorff-Nielsen & Shephard, 2004; Barndorff-Nielsen
et al., 2006) or truncation (Mancini, 2001) techniques. These more ad-
vanced techniques are needed to achieve jump robustness in the analysis
of integrated variance over a nondegenerate timespan. In contrast, the spot
estimation concerns a shrinking estimation window, during which jumps
occur with asymptotically negligible probability. This phenomenon is well
understood in the literature on spot estimation; see, for example, theorem
13.3.3 of Jacod and Protter (2012).

estimation window “collapses” to the time point t , so as to
give the local average estimator a nonparametric “spot” in-
terpretation. Under additional restrictions, one may push the
asymptotic analysis one step further to get the following fea-
sible central limit theorem (see theorem 2 in Foster & Nel-
son, 1996, for an early contribution and theorem 13.3.3 in
Jacod & Protter, 2012, for a more general result):

k1/2
n

(
v̂t (kn) − σ2

t

)
√

2v̂t (kn)

d→N (0, 1) . (4)

By the delta method, an analogous result for the spot volatil-
ity σt also holds in the form of

k1/2
n

(√
v̂t (kn) − σt

)
√

v̂t (kn) /2
d→N (0, 1) .

Consequently, for α ∈ (0, 1), a two-sided (1 − α)-level CI
for σt may be constructed as

CIG
1−α ≡

[
BG

α−
√

v̂t (kn), BG
α+

√
v̂t (kn)

]
, (5)

where BG
α± = 1 ± z1−α/2/

√
2kn and z1−α/2 is the 1 − α/2

quantile of the N (0, 1) distribution. Below, we refer to
CIG

1−α as the Gaussian CI.
Since the Gaussian CI is based on an asymptotic normal

approximation (which requires kn → ∞), it may suffer from
nontrivial size distortion when kn is relatively small (e.g.,
kn ≤ 10). Meanwhile, it would be unwise to naively use a
large kn, because that will increase the bias stemming from
the difference between the local average of the spot vari-
ance process and its spot value. Choosing the “proper” kn to
achieve good finite-sample coverage is a difficult practical
matter. To the best of our knowledge, the existing literature
does not offer a satisfactory answer to this question.

In a recent paper, Bollerslev et al. (2021) propose an al-
ternative “fixed-k” inference method for spot volatility. They
treat the window size kn as a fixed constant k in the asymp-
totic analysis and suggest using a relatively small value of
k in practice. When k is small, the bias becomes less of an
issue. However, without the power of the law of large num-
bers, the spot estimator v̂t (k) is no longer consistent and
the standard asymptotic Gaussian-based inference cannot be
justified using a central limit theorem. Nevertheless, Boller-
slev et al. (2021) show that feasible inference for σt can still
be conducted based on a coupling result:

√
v̂t (k)

σt
=

√√√√1

k

k∑
j=1

(
W(i−1)k+ j − W(i−1)k+ j−1

�
1/2
n

)2

+ op(1).

(6)

Importantly, the leading term on the right-hand side of equa-
tion (6), which strongly approximates the multiplicative
estimation error

√
v̂t (k)/σt , has the same finite-sample dis-

tribution as the square root of a scaled chi-squared random
variable with degree of freedom k. One can then exploit this
distributional knowledge to construct CIs for σt as follows.
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READING THE CANDLESTICKS: AN OK ESTIMATOR FOR VOLATILITY 1117

Let χ̄2
k denote a generic copy of the scaled chi-squared vari-

able with degree of freedom k. For α ∈ (0, 1), let BF
α− and

BF
α+ be two constants such that P (BF

α− ≤ (χ̄2
k )−1/2 ≤ BF

α+) =
1 − α. The corresponding fixed-kCI for σt at confidence level
1 − α may be constructed as

CIF
1−α ≡

[
BF

α−
√

v̂t (k), BF
α+

√
v̂t (k)

]
. (7)

This CI is not only asymptotically valid, but also finite-
sample exact in the “limiting” model with the price process
P being a scaled Brownian motion. In their simulation study,
Bollerslev et al. (2021) show that the fixed-k CI controls size
more reliably than the Gaussian CI, and the former attains
close-to-exact finite-sample coverage when k is small.

As mentioned in the introduction, we aim to improve the
statistical efficiency of spot volatility inference by harness-
ing the richer information from high-frequency candlesticks.
To fix ideas, we denote the time interval associated with the
ith candlestick by In,i ≡ [(i − 1) �n, i�n], with �n being its
duration. The open, close, high, and low prices during this
trading period can be expressed as, respectively,

Oi ≡ P(i−1)�n, Ci ≡ Pi�n, Hi ≡ sup
t∈In,i

Pt , Li ≡ inf
t∈In,i

Pt .

The open-close return and the high-low range are then de-
noted by

ri ≡ Ci − Oi, wi ≡ Hi − Li.

We start by considering a class of linear estimators for σt

that take the following form:

σ̂t (λ) ≡ λ1 |ri| + λ2wi

�
1/2
n

, t ∈ In,i, (8)

where the constant λ = (λ1, λ2) will be chosen according
to certain optimality requirement as detailed in section IIB,
below.7 We then construct asymptotically valid CIs for σt

using the optimal estimator. At first glance, it might be sur-
prising that valid feasible inference can be carried out in the
present setting, because the σ̂t (λ) estimator uses only “one
observation,” precluding the traditional law of large numbers
and central limit theorems from playing any role. Our infer-
ence is indeed justified using a different approach, which is
in the same spirit as the coupling approach first proposed by
Bollerslev et al. (2021). In fact, with λ1 = 1 and λ2 = 0,
σ̂t (λ) = �−1/2

n |ri| coincides with
√

v̂t (1), and Bollerslev

7Under the limiting experiment in which the price process is a scaled
Brownian motion, it can be shown that the length of the real body |ri|,
the upper shadow Hi − max{Ci, Oi}, and the lower shadow min{Ci, Oi} −
Li are sufficient statistics for the volatility parameter (see, for example,
Borodin and Salminen (2012)). A seemingly more general “three-feature”
linear estimator may be formed as a linear combination of |ri| and the two
shadows. However, by symmetry, it is easy to see that the optimal weights
on the two shadows would be the same, and hence it is sufficient to sum
them up as one feature, which may be written equivalently as wi − |ri|.
Since (|ri| ,wi ) spans the same linear space as (|ri| ,wi − |ri|), restricting
attention to the “two-feature” class of estimators in equation (8) is without
loss of generality for constructing the asymptotically unbiased minimum-
variance linear estimator.

et al.’s fixed-k method can be directly used to construct CIs.
In its more general form, equation (8), the σ̂t (λ) estimator
also exploits the information from the high-low range wi,
and the estimator’s coupling variable will take a more com-
plicated form as a Brownian functional with a nonstandard
distribution as we will show below.

B. Inference on Spot Volatility via Candlesticks

In this subsection, we establish the asymptotic property
of the σ̂t (λ) estimator defined in equation (8) and then pro-
pose CIs for the spot volatility. We start by introducing some
regularity conditions.

Assumption 1. Suppose that the price process P has the
form of equation (2) and there exists a sequence (Tm)m≥1 of
stopping times increasing to infinity and a sequence (Km)m≥1

of constants such that the following conditions hold for each
m ≥ 1: (i) for all t ∈ [0, Tm], |bt | + |σt | + |σt |−1 + Ft (R \
{0}) ≤ Km, where Ft denotes the spot Lévy measure of J; (ii)
for some constant κ > 0, E[|σt∧Tm − σs∧Tm |2] ≤ Km|t − s|2κ

for all t, s ∈ [0, T ].

Assumption 1 entails relatively mild regularity conditions
that allow for leverage effect, intraday periodicity, and price
and volatility jumps. Condition (i), in particular, imposes lo-
cal boundedness on various processes, while condition (ii)
states that the volatility process is locally κ-Hölder continu-
ous under the L2 norm. Note that the Hölder index κ is al-
lowed to be arbitrarily small, and we do not need to know its
value for the conduct of inference. When κ = 1/2, condition
(ii) can be readily verified if σ is an Itô semimartingale or a
long-memory process driven by a fractional Brownian mo-
tion (see, e.g., Comte & Renault, 1998). This condition ac-
commodates essentially unrestricted volatility jumps driven
by a (possibly compensated) Poisson random measure. Con-
dition (ii) even allows the volatility to have “rough” paths,
corresponding to κ ∈ (0, 1/2).

Theorem 1, below, establishes a coupling result for the
spot volatility estimator σ̂t (λ).

Theorem 1. Suppose that assumption 1 holds. Then, for
each i ≥ 1 and t ∈ In,i,

σ̂t (λ)

σt
= λ1ζ1,i + λ2ζ2,i + op(1), (9)

where ζ1,i ≡ �−1/2
n

∣∣Wi�n − W(i−1)�n

∣∣ and ζ2,i ≡ �−1/2
n

sups,t∈In,i
|Ws − Wt |.

Theorem 1 shows that the multiplicative estimation er-
ror σ̂t (λ) /σt can be strongly approximated, or “coupled,”
by λ1ζ1,i + λ2ζ2,i.8 Since the coupling variable is nonde-
generate for any λ �= 0, σ̂t (λ) is not a consistent estimator

8The op(1) term in equation (9) captures bias terms arising from the drift
component of price and the time variation of the volatility process. In the
proof, we show that this term is in fact Op(�min{1/2,κ}

n ). It vanishes at a
faster rate when the volatility process is “smoother” (i.e., larger κ).
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1118 THE REVIEW OF ECONOMICS AND STATISTICS

for σt , which is hardly surprising in the present “small-
sample” scenario. Nevertheless, the distribution of the cou-
pling variable is known in finite sample, which permits the
construction of feasible inference. To see this more clearly,
let W̃ be a generic copy of the standard Brownian motion
on [0, 1], and set ξ1 ≡ |W̃1 − W̃0| and ξ2 ≡ sups,t∈[0,1] |W̃s −
W̃t |. By the scaling property of the Brownian motion, we
see that λ1ζ1,i + λ2ζ2,i has the same distribution as ξ (λ) ≡
λ1ξ1 + λ2ξ2, which can be easily computed via Monte Carlo
simulation.

We may apply theorem 1 to construct CIs for σt as follows.
By the continuous mapping theorem, equation (9) implies
that

σt

σ̂t (λ)
d→ 1

ξ (λ)
. (10)

For α ∈ (0, 1), we can pick constants BC
α− (λ) and BC

α+ (λ)
such that

P
(
BC

α−(λ) ≤ ξ (λ)−1 ≤ BC
α+ (λ)

) = 1 − α. (11)

The convergence in equation (10) then implies that

CIC
1−α (λ) ≡ [

BC
α− (λ) σ̂t (λ) , BC

α+ (λ) σ̂t (λ)
]

(12)

is a CI for σt with asymptotic level 1 − α; that is,
P

(
σt ∈ CIC

1−α (λ)
) → 1 − α. We refer to CIC

1−α (λ) as a can-
dlestick CI.

The candlestick CI is asymptotically valid for any choice
of λ �= 0. But the arbitrariness in λ is clearly undesirable in
practice. Following classical statistical principles, we may
pin down λ = (λ1, λ2) so that (i) the candlestick estimator
is asymptotically unbiased and (ii) its asymptotic variance is
minimized within the class of linear estimators defined by
equation (8). In view of theorem 1, this amounts to setting λ

as

λ∗ = argmin
λ

Var (ξ (λ)) , s.t. E [ξ (λ)] = 1. (13)

Denoting μ1 ≡ E[ξ1] and μ2 ≡ E[ξ2], the solution to this
minimization problem can be written in explicit form as9

λ∗
1 = − 1

μ1

Cov
(

ξ1

μ1
− ξ2

μ2
,

ξ2

μ2

)
Var

(
ξ1

μ1
− ξ2

μ2

) ≈ −0.369,

λ∗
2 = 1

μ2

Cov
(

ξ1

μ1
− ξ2

μ2
,

ξ1

μ1

)
Var

(
ξ1

μ1
− ξ2

μ2

) ≈ 0.811. (14)

We refer to the resulting estimator, σ̂t (λ∗), as the Opti-
mal candlesticK (OK) estimator, which is what we have rec-
ommended (recall equation [1]) in the introduction. It is in-

9The numerical values of λ∗
1 and λ∗

2 are obtained by computing the mo-
ments using 100 million simulated paths of W̃ on the unit interval [0, 1],
which is discretized with mesh size 10−7 in each simulation.

teresting to note that the OK estimator assigns a nontrivial
negative weight on |ri|, although the absolute return is quite
commonly used as a proxy of volatility in empirical work.
A useful practical implication is if two candlesticks have the
same length (measured by the high-low range), the one with
a shorter real body (i.e., smaller absolute open-close return)
actually indicates a higher level of volatility, and vice versa.

Equipped with the optimal weights, we need to further
select the BC

α± (λ∗) constants in order to compute the CIs
described in equation (12). Note that the width of the CI
is determined by BC

α+(λ∗) − BC
α−(λ∗). Therefore, to obtain

the shortest CI that satisfies the coverage restriction in equa-
tion (11), we can simply set

[
BC

α−(λ∗), BC
α+(λ∗)

]
as the HDI

of the random variable ξ(λ∗)−1. To visualize this construc-
tion, we plot in figure 2 the probability density function
of ξ(λ∗)−1 along with its 90% HDI. For comparison, we
also plot the distribution and the 90% HDI of ξ (λ)−1 with
(λ1, λ2) being

(
μ−1

1 , 0
)

(resp.
(
0, μ−1

2

)
), which corresponds

to the asymptotically unbiased estimator formed using only
the absolute open-close return (resp. the high-low range).
Looking at the left-hand panel of figure 2, we see that the dis-
tribution of ξ(λ∗)−1 is much tighter than that of ξ

(
μ−1

1 , 0
)−1

and, in particular, the former’s 90% HDI is considerably
shorter than the latter’s. This suggests that CIs constructed
using the OK estimator are much more accurate than those
based only on the absolute return. Similarly, the right-hand
panel of the figure also reveals the superiority of the OK es-
timator relative to the estimator solely based on the high-low
range, although the contrast is not as striking as what we see
in the left-hand panel.

To facilitate applications, we tabulate in table 1 the afore-
mentioned HDI-based critical values BC

α± (λ∗) associated
with the OK estimator for various confidence levels. Since
we consider a “data-scarce” environment, we include some
lower-than-conventional confidence levels which may be rel-
evant for investors who seek sharper (but more “aggressive”)
inference. For simplicity, we refer to the resulting CI as the
optimal candlestick confidence interval (OKCI). In addition,
to gauge more precisely the statistical efficiency of the CI,
we report the width BC

α+ (λ∗) − BC
α− (λ∗). We also report

the analogous quantities for the open-close and the high-
low estimators (i.e., those corresponding to λ = (μ−1

1 , 0)
and (0, μ−1

2 )). From the table, we see that the OKCI is al-
ways tighter than the other two alternatives across all con-
fidence levels. Specifically, at the 90% level, the OKCI is
6.150/0.849 ≈ 7.24 (resp. 0.979/0.849 ≈ 1.15) times as ef-
ficient as the CI based on the open-close return (resp. high-
low range).

We summarize the above theoretical discussion more con-
cisely as a “user’s guide.” We recommend estimating the
spot volatility using the OK estimator

σ̂∗
t ≡ σ̂t

(
λ∗) = 0.811wi − 0.369 |ri|√

�n
, (15)
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READING THE CANDLESTICKS: AN OK ESTIMATOR FOR VOLATILITY 1119

FIGURE 2.—DENSITY AND HIGHEST DENSITY INTERVAL

The figure plots the probability density function of the ξ(λ)−1 variable evaluated at the optimal weight λ∗ and the associated 90% highest density interval (HDI). For comparison, the density and associated 90% HDI
are also plotted for λ = (μ−1

1 , 0) (resp. λ = (0, μ−1
2 )) on the left (resp. right) panel, corresponding to the “degenerate” candlestick estimator that only depends on the open-close return (resp. high-low range).

TABLE 1.—CRITICAL VALUES FOR CANDLESTICK CONFIDENCE INTERVALS

Optimal Open-Close High-Low

Level Lower Upper Width Lower Upper Width Lower Upper Width

50% 0.793 1.135 0.341 0.337 1.234 0.897 0.792 1.202 0.411
60% 0.762 1.189 0.427 0.307 1.561 1.255 0.749 1.260 0.511
70% 0.727 1.255 0.528 0.279 2.102 1.824 0.704 1.331 0.627
80% 0.688 1.343 0.656 0.249 3.173 2.924 0.654 1.424 0.770
90% 0.636 1.485 0.849 0.216 6.366 6.150 0.587 1.565 0.979

The table reports the critical values of alternative candlestick confidence intervals (CIs) for the spot volatility. The confidence level 1 − α ranges from 50% to 90%. The optimal, open-close, and high-low CIs
correspond to λ being λ∗ , (μ−1

1 , 0), and (0, μ−1
2 ), respectively. For each case, we report the lower bound BC

α− (λ) and the upper bound BC
α+ (λ) computed as the highest density interval (HDI) of the distribution of

ξ(λ)−1, along with the width of the HDI. The numerical values are computed by simulation using 100 million Monte Carlo draws, for which the Brownian motion W̃ on the unit interval is simulated under a Euler
scheme with mesh size 10−7.

and gauging its sampling variability using the 90%-level
OKCI

CI∗
90% ≡ [

0.636 σ̂∗
t , 1.485 σ̂∗

t

]
, (16)

where the critical values are obtained from table 1. At this
confidence level, the OKCI provides a reasonable balance
between statistical confidence and precision.10 The OK es-
timator and the OKCI are obviously very easy to compute.
This baseline estimator may be further improved in various
ways, to which we now turn.

C. Extensions

The OK estimator proposed in section IIB concerns the
inference for spot volatility using a single candlestick. We
have intentionally focused on this baseline scenario so as to

10If the practitioner is willing to trade some statistical confidence for
a sharper CI, they may use, for example, the 50% OKCI given by[
0.793 σ̂∗

t , 1.135 σ̂∗
t

]
.

highlight the main idea underlying our approach, which may
be further extended to many different and more complicated
settings. In this subsection, we discuss a few possibilities
that may be useful for guiding future research.

First, we may form a local average estimator by aggregat-
ing k candlesticks; that is,

σ̂t (k, λ) ≡ 1

k

k∑
j=1

λ1

∣∣ri+ j

∣∣ + λ2wi+ j

�
1/2
n

,

for t ∈ [(i − 1) k�n, ik�n] . (17)

This construction exactly parallels the conventional return-
based spot variance estimator, equation (3). By pooling in-
formation from multiple candlesticks, the k-candlestick esti-
mator displayed above is more efficient than that based on a
single candlestick, but an inevitable caveat is that the ag-
gregated estimator generally carries a larger bias because
the volatility process tends to vary more as the estima-
tion window becomes longer. Treating the bandwidth k as
a fixed constant (as by Bollerslev et al., 2021), we can easily
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1120 THE REVIEW OF ECONOMICS AND STATISTICS

TABLE 2.—CRITICAL VALUES FOR OPTIMAL CONFIDENCE INTERVALS BASED ON k CANDLESTICKS

k = 3 k = 5 k = 10

Lower Upper Width Lower Upper Width Lower Upper Width

50% 0.892 1.087 0.195 0.917 1.069 0.151 0.944 1.051 0.107
60% 0.870 1.114 0.244 0.900 1.089 0.189 0.931 1.064 0.133
70% 0.846 1.147 0.301 0.882 1.114 0.233 0.917 1.081 0.164
80% 0.818 1.191 0.373 0.858 1.146 0.288 0.899 1.103 0.203
90% 0.779 1.259 0.480 0.826 1.197 0.370 0.875 1.136 0.261

The table reports the critical values for optimal confidence intervals based on the k-candlestick estimator defined in equation (17). At confidence level 1 − α, the critical values are given by the highest density
interval of the distribution of k/

∑k
j=1

(
λ∗

1ζ1,i+ j + λ∗
2ζ2,i+ j

)
. The numerical values are computed by simulation under the same scheme as in table 1.

extend theorem 1 to establish an analogous coupling result
for σ̂t (k, λ), namely,

σ̂t (k, λ)

σt
= 1

k

k∑
j=1

(
λ1ζ1,i+ j + λ2ζ2,i+ j

) + op(1).

Since for each i the
(
ζ1,i+ j, ζ2,i+ j

)
variables are indepen-

dent across j, it is also easy to see that λ∗ determined
by equation (14) is still the optimal choice for minimiz-
ing the asymptotic variance of σ̂t (k, λ) while maintain-
ing asymptotic unbiasedness, and the aggregation leads to
a k-fold reduction of the asymptotic variance. Moreover,
the distribution of the coupling variable is known in fi-
nite sample, and so, we can use the (1 − α)-level HDI of
the distribution of k/

∑k
j=1

(
λ∗

1ζ1,i+ j + λ∗
2ζ2,i+ j

)
, denoted[

BC
α− (k, λ∗) , BC

α+ (k, λ∗)
]
, to construct the optimal CI given

by

CI∗
1−α (k) ≡ [

BC
α−

(
k, λ∗) σ̂t

(
k, λ∗) , BC

α+
(
k, λ∗) σ̂t

(
k, λ∗)] .

We tabulate the BC
α± (k, λ∗) critical values in table 2 for var-

ious confidence levels and k values. As expected, when k
increases, the OKCIs become tighter approximately along
the k−1/2 scale.11 For example, at the 90% confidence level,
the length of the ten-candlestick CI is 0.261/0.849 ≈ 31%
of that of the single-candlestick CI.

Second, we note that the result in theorem 1 can be used to
construct a formal test for detecting “large” volatility jumps.
Consider two time points s and t in two distinct trading ses-
sions In,i and In, j , respectively. We may test the null hypoth-
esis H0 : σt = σs against a one-sided alternative Ha : σt >

σs using the test statistic log(σ̂∗
t /σ̂

∗
s ) = log(σ̂∗

t ) − log(σ̂∗
s ),

where the log transformation is employed to “symmetrize”
the roles of the two volatility estimators in the test statis-
tic. Under the null hypothesis, theorem 1 and the continuous
mapping theorem12 imply that

log
(
σ̂∗

t

) − log
(
σ̂∗

s

) = log

(
λ∗

1ζ1, j + λ∗
2ζ2, j

λ∗
1ζ1,i + λ∗

2ζ2,i

)
+ op(1).

11The reduction in the width of CI is consistent with the k-fold reduction
in the asymptotic variance. But these two effects are not exactly the same
because the OKCIs are not based on the asymptotic Gaussian approxima-
tion.

12Since the OK estimators are not consistent for the spot volatility, the
delta method cannot be applied to derive the asymptotic distributions of
their nonlinear transformations.

For a significance level α ∈ (0, 1), the 1 − α quantile of the
coupling variable, which is known in finite sample, may
be used as the critical value, and we reject the null hy-
pothesis when log

(
σ̂∗

t

) − log
(
σ̂∗

s

)
is greater than the crit-

ical value. A two-sided test may be constructed similarly.
Since the coupling variable is nondegenerate, this test is
not consistent against fixed, but “small,” deviation from the
null. This is not surprising given the asymptotically “fixed”
amount of information being exploited. That said, the test
has valid asymptotic size control and is asymptotically unbi-
ased (i.e., it has nontrivial asymptotic power under the alter-
native). It can be used to detect “large” moves in volatility
across different time points, for example, around important
macroeconomic news announcements as studied by Lucca
and Moench (2015), Bollerslev et al. (2018), and Nakamura
and Steinsson (2018), among others.

Third, our coupling-based inference can be readily
adapted to construct valid inference for the other types of
estimators. For example, if one aims to make inference di-
rectly on the spot variance σ2

t , a good candidate estimator is
the Garman–Klass (GK) estimator defined as

v̂GK
t ≡ 0.5w2

i − (2 log 2 − 1)r2
i

�n
. (18)

Using a similar argument as theorem 1, we can show that
the Garman–Klass estimator is an asymptotically unbiased
estimator for σ2

t and it admits the following coupling:13

v̂GK
t

σ2
t

= 0.5ζ 2
2,i − (2 log 2 − 1)ζ 2

1,i + op(1).

CIs for σ2
t may be constructed as

[
BGK

α− v̂GK
t , BGK

α+ v̂GK
t

]
, whose

length can be minimized by taking
[
BGK

α− , BGK
α+

]
as the HDI of

the distribution of (0.5ζ 2
2,i − (2 log 2 − 1)ζ 2

1,i)
−1. Our results

thus provide a nonparametric justification for the Garman–
Klass estimator and complement the existing theory with a
formal inference procedure.

Fourth, we note that all aforementioned procedures may
be generalized to a bipower version in the spirit of Barndorff-
Nielsen and Shephard (2004). In an influential paper,

13Due to Jensen’s inequality, the square root of the Garman–Klass esti-
mator is not an asymptotically unbiased estimator of volatility, but has a
roughly 3% downward bias. The squared OK estimator carries an upward
bias for estimating the spot variance σ2

t .

D
ow

nloaded from
 http://direct.m

it.edu/rest/article-pdf/106/4/1114/2457394/rest_a_01203.pdf by SIN
G

APO
R

E M
AN

AG
EM

EN
T U

N
IV user on 24 M

arch 2025



READING THE CANDLESTICKS: AN OK ESTIMATOR FOR VOLATILITY 1121

Barndorff-Nielsen and Shephard (2004) propose the bipower
method to elegantly achieve jump-robust estimation of the
integrated variance. Although the candlestick-based spot es-
timators are robust to Poisson-type jumps (because with
probability approaching 1, [t − �n, t + �n] does not con-
tain any jump for each fixed t), it is conceivable that using
the bipower construction can further improve the estimator’s
robustness with respect to jumps. Specifically, we may con-
sider a bipower extension of our single-candlestick estimator
equation (8) as

σ̂
Bipower
t (λ) = λ1 |ri|1/2 |ri+1|1/2 + λ2w

1/2
i w

1/2
i+1

�
1/2
n

.

Similar to theorem 1, it can be shown that

σ̂
Bipower
t (λ)

σt

= λ1

∣∣ζ1,i

∣∣1/2 ∣∣ζ1,i+1

∣∣1/2 + λ2

∣∣ζ2,i

∣∣1/2 ∣∣ζ2,i+1

∣∣1/2

�
1/2
n

+ op(1).

The constants λ1 and λ2 can then be determined to achieve
certain optimality requirements (e.g., unbiasedness and min-
imal variance). As mentioned above, the advantage of the
bipower version is that it will be more robust with respect to
price jumps. But there is no free lunch. The bipower version
also implicitly requires the volatility to be “nearly” identical
across the two consecutive candlesticks on In,i and In,i+1 time
intervals. From a finite-sample point of view, this could be
restrictive when the news flows quickly (relative to the sam-
pling frequency) in the market. A comprehensive investiga-
tion on the bipower/multipower extension may be an inter-
esting topic for separate research, but it is beyond the scope
of the present paper.

Finally, while the optimal weight λ∗ in equation (13) is de-
termined by minimizing the asymptotic variance Var (ξ (λ)),
one may consider the other optimality criteria as well. An
interesting alternative is to minimize the relative length of
the CI, say, at the 90% confidence level.14 This amounts to
minimizing the length of the 90% HDI of ξ (λ)−1. Based on
the same random draws underlying the Monte Carlo calcu-
lation in equation (14), we find that the optimal values for
λ1 and λ2 according to this alternative notion of optimality
are −0.345 and 0.800, respectively. Perhaps not surprisingly,
these weights are close to those in equation (14).

III. Monte Carlo Simulations

We examine the finite-sample properties of the proposed
inference method in a Monte Carlo experiment. Follow-
ing Bollerslev and Todorov (2011), we simulate the (log)
price process from a two-factor stochastic volatility model.
Specifically, with the unit time interval normalized to “one

14We are grateful to two anonymous referees for suggesting this alterna-
tive notion of optimality.

day,” we generate the process P according to

dPt = σt dWt , σ2
t = V1,t + V2,t ,

dV1,t = 0.0128(0.4068 − V1,t )dt

+ 0.0954
√

V1,t

(
ρdWt +

√
1 − ρ2dB1,t

)
,

dV2,t = 0.6930(0.4068 − V2,t )dt

+ 0.7023
√

V2,t

(
ρdWt +

√
1 − ρ2dB2,t

)
,

where W , B1, and B2 denote independent standard Brow-
nian motions. The ρ = −0.7 parameter captures the well-
documented negative correlation between price and volatil-
ity shocks (i.e., the “leverage” effect). The V1 volatility
factor is highly persistent with a half-life of 2.5 months,
while the V2 volatility factor is quickly mean-reverting
with a half-life of only one day. For ease of discussion,
we fix V1,0 = V2,0 = 0.5, so that σ0 = 1. We simulate the
“continuous-time processes” using a Euler scheme with
mesh size being 10−7 min. The candlesticks used in the cal-
culations are then constructed on 10-min. and 1-min. inter-
vals. The estimand σt is sampled at the midpoint of each
10-min. estimation window.15 All numerical results reported
below are based on 10,000 Monte Carlo replications.

We consider six inference methods in total. The first three
are based on a single 10-min. candlestick. Specifically, we
compute three spot volatility estimators:

σ̂∗
t = 0.811wi − 0.369 |ri|√

�n
, σ̂r

t = |ri|
μ1

√
�n

,

σ̂w
t = wi

μ2
√

�n
,

where σ̂∗
t is the recommended OK estimator, and σ̂r

t and σ̂w
t

are asymptotically unbiased estimators based only on the
open-close return and the high-low range, respectively. Us-
ing the critical values reported in table 1, we further compute
their associated 90%-level CIs respectively as

CI∗
90% = [

0.636 σ̂∗
t , 1.485 σ̂∗

t

]
, CIr

90% = [
0.216σ̂r

t , 6.366σ̂r
t

]
,

CIw
90% = [

0.587σ̂w
t , 1.565σ̂w

t

]
.

The remaining three methods are implemented using ten
observations sampled at the 1-min. frequency. We use 1-
min. candlesticks to compute the local average OK estima-
tor σ̂t (k, λ∗) with k = 10 (recall equation [17]). The corre-
sponding 90%-level optimal CI is given by

CI∗
90% (10) = [

0.875 σ̂t
(
10, λ∗) , 1.136 σ̂t

(
10, λ∗)] .

Finally, we compute the conventional spot volatility es-
timator

√
v̂t (kn) using 1-min. returns and kn = 10. The

15Recall that theorem 1 holds for any t ∈ In,i. We have also considered σt
sampled at the start, end, and a random position of the 10-min. estimation
window. The results are very similar and, hence, are omitted for brevity.
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1122 THE REVIEW OF ECONOMICS AND STATISTICS

TABLE 3.—SIMULATION RESULTS

Method Bias RMSE Coverage Rate CI Width

Panel A. Methods based on one 10-min. observation

OK 10-min. 0.002 0.253 0.896 0.849
Open-Close −0.004 0.755 0.896 6.120
High-Low 0.001 0.300 0.896 0.978

Panel B. Methods based on ten 1-min. observations

OK 1-min. 0.001 0.081 0.892 0.261
Gaussian −0.023 0.224 0.861 0.718
Fixed-k −0.023 0.224 0.898 0.777

The table reports the relative biases and root-mean-squared error (RMSE) of σ̂∗
t (OK 10-min.), σ̂r

t
(Open-Close), σ̂w

t (High-Low), σ̂t (10, λ∗ ) (OK 1-min.), and
√

v̂t (kn ) (Gaussian and Fixed-k), and the
coverage rates and average widths of their associated 90%-level CIs. These numbers are calculated based
on 10,000 Monte Carlo replications.

associated Gaussian and fixed-k CIs are given by

CIG
90% =

[
0.632

√
v̂t (10), 1.368

√
v̂t (10)

]
,

CIF
90% =

[
0.679

√
v̂t (10), 1.476

√
v̂t (10)

]
.

Table 3 summarizes the finite-sample performance of
these spot volatility estimators and CIs. Specifically, we re-
port the bias and root-mean-squared error (RMSE) of the
spot volatility estimates, both in relative terms (i.e., estima-
tion errors are normalized by the true value of σt ). We also
report the coverage rates of the 90%-level CIs, along with
their widths averaged across all simulations.

Looking at panel A of the table, which reports results
based on the “coarse” 10-min.-level data, we see that all
three estimators are essentially unbiased, with their relative
biases bounded by 0.4% in magnitude. Their CIs also have
virtually exact size control. As expected, the OK estimator
has the smallest RMSE and the OKCI has the shortest width,
whereas the estimator based only on the open-close return is
evidently the least accurate.

Panel B reports the performance of the local average OK
estimator σ̂t (10, λ∗) and the conventional spot volatility es-
timator using the “fine” 1-min.-level data. Since these es-
timators are computed using more observations, they are,
not surprisingly, more accurate than those in panel A. We
note that the “fine” OK estimator formed by aggregating
ten 1-min. candlesticks is far more accurate than the con-
ventional estimator, as evidenced by the former’s smaller
bias and RMSE. The OKCI is also tighter than conven-
tional Gaussian and fixed-k CIs, and remains to exhibit ex-
cellent size control. It is also interesting to note that even the
“coarse” OK estimator based on a single 10-min. candlestick
is 0.224/0.253 ≈ 89% as efficient (in terms of RMSE) as
the conventional estimator computed using ten times more
observations, and the former’s CI is 0.777/0.849 ≈ 92% as
tight as the fixed-k CI. 16

16Consistent with the simulation findings of Bollerslev et al. (2021), we
see that the Gaussian-based CI is somewhat undersized, whereas the fixed-
k CI has almost exact coverage.

In summary, these simulation results are consistent with
our theoretical predictions. We see that the OK estimator
based on the 10-min. candlestick has adequate accuracy, and
is more efficient than candlestick-based estimators with sub-
optimal weights. In addition, the candlestick-based CIs all
have almost exact finite-sample coverage. We also see that
the OK method applied to 10-min.-level data can achieve
roughly 90% of the accuracy of the conventional method ap-
plied to 1-min.-level data and, if the OK method is also ap-
plied to 1-min. candlestick observations, its accuracy can be
further improved by a factor of three. Overall, these results
suggest that the proposed method can be reliably used for
making inference on spot volatility.

IV. Empirical Illustration

We illustrate the candlestick-based inference method in
a case study for a recent event on February 23, 2021,
when Federal Reserve Chairman Jerome Powell delivered
his semiannual monetary policy report to the U.S. Congress.
The media coverage of this event started at 10:00 EST
and the event lasted for approximately 2.5 hours. Till that
day, the 10-year Treasury yield had experienced an 8-month
liftoff from 0.54% in July 2020 to 1.37%, whereas the short
rate was kept at the zero lower bound. The steepening of the
yield curve reflected the market’s expectation for a strong
economic recovery from the COVID-19 pandemic. Mean-
while, the rising 10-year yield also led to much anxiety in the
equity market, in that the higher discount rate might lead to
a major correction on asset valuation. The Federal Reserve’s
economic outlook and its stance on monetary policy was the
focal point of the financial market at the time. This event is
thus ideal for our illustrative purpose for two reasons. First,
it corresponds to a high-stake economic and policy environ-
ment. Second, the intense flow of information together with
the market’s considerable attention paid to it also means that
the price and volatility tend to fluctuate substantially, pro-
viding us with a challenging real-data scenario to gauge the
practical performance of the proposed method.

We consider five assets from different asset classes includ-
ing the 10-year Treasury note, a passive equity ETF for the
S&P 500 index (SPY), an active equity ETF of technology
stocks (ARKK), a gold ETF (GLD), and Bitcoin, which we
use to represent the bond, equity, commodity, and cryptocur-
rency markets. Candlestick data for these assets are obtained
from the Bloomberg Terminal at the 10-min. frequency.17

We focus on the 10-min. data for two reasons. First, this
sampling scheme is sufficiently sparse to guard against com-
plications stemming from microstructure noise for the broad
variety of asset classes studied here. Second, the 10-min. fre-
quency also appears to be the lowest at which the candlestick
chart is updated in popular online trading applications (e.g.,

17Similar data are also available in real time to retail investors from var-
ious trading platforms (e.g., Charles Schwab, Fidelity, Interactive Broker,
Robinhood, etc.) or public websites such as Yahoo Finance.
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READING THE CANDLESTICKS: AN OK ESTIMATOR FOR VOLATILITY 1123

FIGURE 3.—10-YEAR TREASURY YIELD CANDLESTICK CHART (TOP) AND OPTIMAL CANDLESTICK VOLATILITY ESTIMATE

AND 90% CONFIDENCE INTERVAL (BOTTOM)

The top panel plots the 10-min. candlestick chart for the yield of the 10-year U.S. Treasury note from 7:30 to 17:00 EST on February 23, 2021. The solid and dashed lines highlight the regular trading hour and Fed
Chairman Powell’s congressional testimony, respectively. The bottom panel shows the optimal candlestick volatility estimate (on daily horizon in basis points) of the yield for each 10-min. trading session, along with
the associated 90% confidence interval.

the Robinhood mobile app) and, hence, allows us to exam-
ine how the proposed method will behave in a “worst-case”
practical scenario (in terms of data availability). In the dis-
cussion below, we sometimes associate the price and volatil-
ity dynamics with Powell’s testimony, the video recording of
which can be found on the website of the U.S. Senate Com-
mittee on Banking, Housing, and Urban Affairs.18 By doing
so, we aim to trace the market and the news flow simultane-
ously. We do not attempt to formally assert any causal link
between them, as it is impossible to rule out all potential
confounding factors.

Since Powell’s testimony was about monetary policy, our
primary focus, which was shared broadly by market partici-
pants at that time, is naturally on the 10-year Treasury yield.
To set the stage, we plot the 10-min. candlestick chart for
the 10-year Treasury yield on the top panel of figure 3. The
sample period is from 7:30 to 17:00 EST, and we highlight
the time intervals for the regular trading hours of the equity
market (i.e., 9:30–16:00) and Powell’s testimony for ease of

18The video is available at https://www.banking.senate.gov/hearings/
02/12/2021/the-semiannual-monetary-policy-report-to-the-congress. The
media coverage started at 10:00 AM EST, which corresponds to the 14:47
time stamp in the video.

discussion. In the bottom panel of the figure, we plot the cor-
responding OK volatility estimates along with the 90% OK-
CIs, as described in equations (15) and (16), respectively.

Figure 3 reveals some interesting price and volatility dy-
namics in the 10-year yield. From the candlestick chart, we
see that the 10-year yield gradually rose from 1.36% to
1.38% during the two hours before the stock market open,
and then fluctuated violently between 9:30 and 10:00, as ev-
idenced by the three long candlesticks during that half-hour
trading session. The volatility jump at the market open can
be seen more clearly from the spot volatility estimates plot-
ted on the bottom panel, particularly in view of the fact that
the volatility actually dipped in the 20-min. period before
9:30.

Powell’s testimony started at 10:00. The opening state-
ments given by Committee Chairman Sherrod Brown
(D-OH) and the ranking member Senator Pat Toomey
(R-PA) during the first 15 min. of the testimony reflected the
partisan disagreement on a range of policy issues, including
particularly the 1.9-trillion-dollar stimulus plan soon to be
voted on in the Senate. Interestingly, the estimated volatility
of the 10-year yield also reached its daily maximum of 11
basis points as the two senators spoke.
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It is instructive to explain how this large volatility esti-
mate is related to the corresponding candlestick. Looking
at the candlestick immediately after the 10:00 time stamp,
we see that it not only has a wide high-low range but also
a relatively short real body (i.e., open and close prices are
similar); indeed, the most salient feature of this candlestick
is its very long upper shadow. Recall that the OK estimator
assigns a negative weight on the absolute open-close return.
This explains why the volatility estimate for the 10:00–10:10
trading session is much higher than those between 9:30 and
10:00, despite the fact that all these candlesticks have similar
“sizes.”

The Fed chairman began his statement at around 10:15.
The aforementioned volatility spike soon reverted to a lower
level around 4–5 basis points and appeared to trend down
during the rest of the first hour of the testimony. Meanwhile,
the yield also dropped from 1.38% to 1.34%. These price
and volatility movements occurred as Chairman Powell con-
firmed that the central bank would continue to be accom-
modative in various policy dimensions such as the federal
funds rate, inflation target, and asset purchase. Immediately
after the first hour, we see, quite interestingly, a 6-basis-point
spike in volatility on the 11:00–11:10 interval. This might be
attributed to the conversation between Senator Mike Rounds
(R-SD) and Chairman Powell on whether the Federal Re-
serve would extend the temporary change to its supplemen-
tary leverage ratio (SLR) for bank holding companies. Dur-
ing the COVID-19 crisis, the SLR exclusion temporarily al-
lowed banks to exclude U.S. Treasuries and deposits at the
Federal Reserve from the SLR denominator. Without an ex-
tension, banks would have less capacity to own Treasuries,
and the resulting selling pressure might push the long-term
Treasury yield even higher. This was an important concern
in the bond market. Chairman Powell responded to Sena-
tor Rounds by saying that the Fed was thinking about this
issue and would make a decision “pretty soon.” The unre-
solved policy uncertainty might have disappointed the mar-
ket (in view of Powell’s evidently accommodative tone to
the other policy issues), which may explain the peculiar
volatility spike during that 10-min. trading session.19 But
this volatility spike is short lived: The volatility level soon
dropped to a lower 2–3 basis points range for the remaining
part of the testimony, and dropped even further afterward.

Our main goal of discussing the above real-data example
is to demonstrate the empirical applicability of our proposed
econometric method for studying asset price volatility. We
find the estimated spot volatility path to be economically
sensible, without any obviously erratic behavior that may be
hard to interpret. By carefully going through the contem-
poraneous economic events, we also see that the occasional
“spikes” in the estimated volatility tend to reflect “features”

19The market’s response turns out to be “rationalizable” with the ben-
efit of hindsight, as the central bank announced the termination of the
SLR exclusion later on March 19, 2021. The official announcement
can be found at https://www.federalreserve.gov/newsevents/pressreleases/
bcreg20210319a.htm.

of what is happening, rather than “bugs” of the estimator. In
addition, we note that the 90% OKCIs are reasonably tight
to make meaningful inferential statements about the ups and
downs of the volatility process. This is remarkable in view
of the fact that each CI is only based on a single 10-min.
candlestick.

To examine whether the proposed method works well on
the other types of assets, we further compute the OK esti-
mates and the 90% OKCIs for SPY, ARKK, GLD, and Bit-
coin, and plot the results on the left column of figure 4.
For comparison, we also implement the estimators based
only on the high-low range and the open-close return, that
is, μ−1

2 wi/�
1/2
n and μ−1

1 |ri|/�1/2
n , which we refer to as the

high-low and open-close estimators for simplicity, respec-
tively. We remind the reader that these estimators are also
asymptotically unbiased, and their CIs are asymptotically
valid; however, they are less efficient than the OK estima-
tor as shown in table 1. Numerical results for the high-low
and open-close estimators are plotted on the middle and right
columns of figure 4. For ease of comparison, we plot all
methods’ estimates under the same scale.

Looking at the left column of figure 4, we see that the
OK estimator generates sensible volatility estimates and rel-
atively tight CIs for this broader collection of assets, like
what we have seen for the 10-year Treasury yield in fig-
ure 3. The range-based high-low estimator produces simi-
lar estimates, but with lower accuracy. Meanwhile, the con-
trast between these estimators and the open-close estimator
is striking. The estimated volatility paths based on the open-
close estimator are clearly quite erratic. Indeed, volatility es-
timates for adjacent time intervals often bounce up and down
in an apparently “random” fashion, and the CIs are generally
very wide. This is very different from the much smoother
estimated volatility path generated by the optimal estimator,
even though smoothness across different time intervals is not
forced upon these estimators as each candlestick is treated on
its own in our estimation.

The erratic behavior of the open-close estimator may be
largely explained by its statistical inefficiency, resulting in
very noisy estimates. We also notice another undesirable fea-
ture of the open-close estimator; that is, it often generates
implausibly low volatility estimates. For example, the open-
close volatility estimates for SPY on the three 10-min. inter-
vals from 10:20 to 10:50 are 2.049%, 0.055%, and 2.349%
per day. In particular, the 10:30–10:40 estimate, 0.055% (or
0.869% in annualized terms), is very close to zero and is
much lower than the adjacent ones. It is obvious that this
estimate cannot be reflecting SPY’s actual volatility level at
that time. In contrast, the OK volatility estimates for these
three intervals are 1.236%, 1.042%, and 1.677% (or 19.54%,
16.47%, and 26.51% in annualized terms), which are eco-
nomically much more sensible and in line with SPY’s typical
volatility level.

To better understand the mechanics underlying this par-
ticular discrepancy between the open-close and the OK es-
timators, we examine the candlestick chart of SPY shown
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FIGURE 4.—VOLATILITY ESTIMATES OF VARIOUS ASSETS ON FEBRUARY 23, 2021

The figure plots volatility estimates (in daily percentage terms) of various assets on February 23, 2021, based on the optimal candlestick estimator (left), the high-low estimator μ−1
2 wi/�

1/2
n (middle), and the

open-close estimator μ−1
1 |ri |/�1/2

n (right), using data sampled at the 10-min. frequency. Confidence intervals are computed using the critical values in table 1 at the 90% level.

in figure 5, where we highlight the 10:30–10:40 trading ses-
sion for ease of discussion. The “†-shaped” candlestick for
that trading session is indeed visibly distinct from the others:
The open and close prices are virtually identical, whereas
the high and low prices are far apart. This is why the open-
close volatility estimate is close to zero, but the OK estimate
remains large. This example highlights a “bug,” in a prac-
tical sense, of the open-close volatility estimator; that is, it
ignores essentially all the price variation within the 10-min.
trading session. Coincidentally, the cross-shaped candlestick
is called a doji in technical analysis, which literally means
“mistake” in Japanese (and the one highlighted in the fig-
ure is dubbed “dragonfly doji”). Although technical analysis
is largely orthogonal to our econometric discussion, we do
need to emphasize the practical relevance of the doji pattern
for our candlestick-based volatility inference, in that it tends
to generate an insensible volatility estimate based only on

the open-close return. The OK estimator, on the other hand,
can better exploit the information from the whole candle-
stick and deliver more robust and efficient empirical esti-
mates. The doji pattern is of course not unique to the SPY
ETF, but is commonly seen in real data; for example, the 10-
year Treasury yield charted in figure 3 contains even more
dojis.

In summary, the above illustration highlights the empiri-
cal usefulness of the proposed volatility inference procedure
based on the OK estimator. We see that, for a broad variety of
assets, our method can deliver economically sensible volatil-
ity estimates with adequate statistical accuracy. Importantly,
the method can be easily implemented based on data that are
readily accessible in real time and, hence, may help investors
better manage risk and make more informed investment de-
cisions. We also demonstrate the clear benefit of adopting
the OK estimator relative to a commonly used benchmark
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FIGURE 5.—CANDLESTICK PRICE CHART OF SPY

The figure plots the candlestick chart of the price of the SPY ETF on February 23, 2021, during regular trading hours. The arrow highlights a “dragonfly doji” pattern, which generates quite distinct volatility estimates
for the optimal candlestick estimator and the open-close estimator.

based on the absolute return. Here, the take-home message
is clear: replacing the absolute return with the OK estimator
for an equally simple but substantially more accurate volatil-
ity proxy.

V. Conclusion

We propose an easy-to-implement econometric proce-
dure for spot volatility inference based on readily accessi-
ble candlestick data. The proposed optimal candlestick (OK)
volatility estimator is asymptotically unbiased and mini-
mizes the asymptotic variance within a class of linear esti-
mators. Under an approximate finite-sample approach, we
construct asymptotically valid CIs for the spot volatility
based on a nonstandard limiting distribution. We show that
the candlestick-based estimator and CI are much more accu-
rate than those based on high-frequency returns alone, and
demonstrate their ability to generate economically sensible
volatility estimates in practically relevant empirical settings.

A Appendix: Proof of Theorem 1

Throughout the proof, we fix some i ≥ 1 and t ∈ In,i, and
use K to denote a generic positive constant. By a standard lo-
calization procedure, we can strengthen assumption 1 by as-
suming that the conditions hold with T1 = ∞ without loss of
generality (see section 4.4.1 of Jacod and Protter, 2012, for
details on the localization procedure). Finally, we note that
under assumption 1(i), the probability that the interval In,i

contains at least one price jump is O (�n). Therefore, with

probability approaching 1, In,i does not contain any price
jump. Since our calculation concentrates on this one inter-
val, we can and will assume in the subsequent analysis that
there are no price jumps without loss of generality.

Turning to the proof, we start with introducing some no-
tation and preliminary estimates. We rewrite wi = ui − li,
where

ui ≡ sup
t∈In,i

(∫ t

(i−1)�n

bsds +
∫ t

(i−1)�n

σsdWs

)
,

li ≡ inf
t∈In,i

(∫ t

(i−1)�n

bsds +
∫ t

(i−1)�n

σsdWs

)
.

For ease of notation, we further denote

u′
i ≡ σ(i−1)�n sup

t∈In,i

(
Wt − W(i−1)�n

)
,

l ′
i ≡ σ(i−1)�n inf

t∈In,i

(
Wt − W(i−1)�n

)
,

r′
i ≡ σ(i−1)�n (Wi�n − W(i−1)�n ), w′

i ≡ u′
i − l ′

i ,

σ̂′
t (λ) ≡ λ1

∣∣r′
i

∣∣ + λ2w
′
i

�
1/2
n

.

It is easy to see that

∣∣∣∣∫ i�n

(i−1)�n

bsds

∣∣∣∣ ≤
∫ i�n

(i−1)�n

|bs| ds = Op(�n). (A1)
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Moreover, by the Burkholder–Davis–Gundy inequality (see,
e.g., equation (2.1.34) in Jacod & Protter, 2012), we have

E

[
sup
t∈In,i

∣∣∣∣∫ t

(i−1)�n

(
σs − σ(i−1)�n

)
dWs

∣∣∣∣2
]

≤ KE

[∫ i�n

(i−1)�n

(
σs − σ(i−1)�n

)2
ds

]
≤ K�1+2κ

n ,

where the second inequality follows from E[(σs −
σ(i−1)�n )2] ≤ K�2κ

n . This estimate further implies

sup
t∈In,i

∣∣∣∣∫ t

(i−1)�n

(
σs − σ(i−1)�n

)
dWs

∣∣∣∣ = Op
(
�1/2+κ

n

)
. (A2)

By the triangle inequality, and equations (A1) and (A2),∣∣|ri| − |r′
i |
∣∣

≤
∣∣∣∣∫ i�n

(i−1)�n

bsds

∣∣∣∣ +
∣∣∣∣∫ i�n

(i−1)�n

(
σs − σ(i−1)�n

)
dWs

∣∣∣∣
= Op(�min{1,1/2+κ}

n ). (A3)

In addition, we note that∣∣ui − u′
i

∣∣
=

∣∣∣∣∣ sup
t∈In,i

(∫ t

(i−1)�n

bsds +
∫ t

(i−1)�n

σsdWs

)

− σ(i−1)�n sup
t∈In,i

(
Wt − W(i−1)�n

) ∣∣∣∣∣
≤ sup

t∈In,i

∣∣∣∣∫ t

(i−1)�n

bsds +
∫ t

(i−1)�n

(
σs − σ(i−1)�n

)
dWs

∣∣∣∣
≤

∫ i�n

(i−1)�n

|bs| ds + sup
t∈In,i

∣∣∣∣∫ t

(i−1)�n

(
σs − σ(i−1)�n

)
dWs

∣∣∣∣
= Op(�min{1,1/2+κ}

n ),

where the first three lines are obvious, and the last line
follows from equations (A1) and (A2). Similarly, we can
derive

∣∣li − l ′
i

∣∣ = Op(�min{1,1/2+κ}
n ). Since wi = ui − li and

w′
i = u′

i − l ′
i , we further deduce

wi − w′
i = Op(�min{1,1/2+κ}

n ). (A4)

Combining equations (A3) and (A4) yields

σ̂t (λ) = σ̂′
t (λ) + Op(�min{1/2,κ}

n ). (A5)

From the definition of σ̂′
t (λ), we see that σ̂′

t (λ) =
σ(i−1)�n

(
λ1ζ1,i + λ2ζ2,i

)
, where ζ1,i and ζ2,i are defined

in theorem 1. Moreover, for any t ∈ In,i, |σ(i−1)�n − σt | =
Op(�κ

n). Therefore, σ̂′
t (λ) = σt

(
λ1ζ1,i + λ2ζ2,i

) + Op
(
�κ

n

)
,

which, combined with equation (A5) and the nondegeneracy
of σt , further implies

σ̂t (λ)

σt
= λ1ζ1,i + λ2ζ2,i + Op(�min{1/2,κ}

n ). (A6)

The assertion of theorem 1 then readily follows from equa-
tion (A6). �
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