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Abstract—This paper provides a nonparametric test for deciding the di-
mensionality of a policy shock as manifest in the abnormal change in asset
returns’ stochastic covariance matrix, following the release of a macroeco-
nomic announcement. We use high-frequency data in local windows before
and after the event to estimate the covariance jump matrix and then test its
rank. We find a one-factor structure in the covariance jump matrix of the
yield curve resulting from the Federal Reserve’s monetary policy shocks
before the 2007–2009 financial crisis. The dimensionality of policy shocks
increased afterwards because of the use of unconventional monetary policy
tools.

I. Introduction

THE movements of financial asset prices are driven
by underlying economic shocks. Large market-wide

shocks are often caused by unanticipated components of
economic policies, such as central banks’ decisions on in-
terest rates and governments’ emergency aids during a cri-
sis. Understanding the impact of policy shocks on finan-
cial markets and the macroeconomy is evidently of great
interest for both academics and policymakers. Disentangling
such shocks from the other confounding factors, however,
presents a difficult empirical challenge. The conventional
approach based on structural vector autoregressive (VAR)
models (Christiano, Eichenbaum, and Evans, 1999) often re-
lies on strong orthogonalization assumptions and may incor-
rectly interpret anticipated actions to be shocks (Rudebusch,
1998; Cochrane & Piazzesi, 2002).

An alternative approach to achieve identification, which
has become increasingly popular in the recent literature,
is to study the behavior of asset prices in short time win-
dows around certain news announcements, so that high-
frequency price movements can be plausibly attributed to
the announced information. A prominent example in this
regard concerns the reaction of asset prices to monetary
policy shocks triggered by Federal Open Market Commit-
tee (FOMC) announcements. For instance, Kuttner (2001),
Cochrane and Piazzesi (2002), and Nakamura and Steinsson
(2018) use moves in bond futures prices around FOMC
announcements to identify monetary shocks; Rigobon and
Sack (2003, 2004) and Bernanke and Kuttner (2005) use in-
formation in asset price data around FOMC announcements
to study the impact of monetary shocks on asset prices; and
Beechey and Wright (2009) study the effect of macroeco-
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nomic news on long-term yields and compare it with that
implied by structural models.1

A key implication of having one type of shock driving
multiple asset prices around the news event (e.g., FOMC
announcements) is that the resulting abnormal change, or
“jump,” in assets’ stochastic covariance matrix should have a
one-factor structure. A case in point is the conventional mon-
etary policy, which focuses solely on the short-term inter-
est rate. But some policy shocks may be multidimensional.
For example, during the Great Recession of 2007–2009 and
its aftermath, the Federal Reserve and many other central
banks were impelled to employ new monetary policy tools
such as forward guidance and large-scale asset purchases;
see Bernanke (2020) for a recent review. It is conceivable
that the complex mix of policy tools may have resulted in
multidimensional policy shocks in the era of unconventional
monetary policy. Nonetheless, if the dimensionality of the
policy shock is lower than the number of assets, which is
likely the case, the announcement-induced jump in the co-
variance matrix may still be of reduced rank. Pinning down
the dimensionality of policy shocks is a natural starting point
for the further understanding of their impact on asset prices
and other economic quantities. The dimensionality, however,
cannot be directly read off from the actual announcement be-
cause the shock stems from the unanticipated policy compo-
nent, rather than the policy itself.

Set against this background, our goal in this paper is to
provide a formal test to rigorously uncover the dimensional-
ity of policy shocks as manifest in asset prices. The method
is decidedly nonparametric and is based on intraday high-
frequency observations of assets’ returns around news events
such as prescheduled macroeconomic announcements. Us-
ing the high-frequency data, we form nonparametric esti-
mates of the instantaneous (or “spot”) covariance matrices
of asset returns immediately before and after the event. Their
difference is our estimate of the covariance jump matrix.
With the underlying confounding factors differenced out,
the covariance jump matrix captures the effect of the pol-
icy shock on asset prices, and its rank is equivalent to the
shock’s dimensionality. Econometrically, we carry out the
rank test by checking whether all but the r largest (in mag-
nitude) estimated eigenvalues are statistically equal to zero,
where r is the dimensionality being tested. The correspond-
ing test statistic is defined as the sum of squared estimated
eigenvalues associated with the zero eigenvalues under the
null hypothesis.

1A large literature in finance also documents the equity risk premium
earned during different phases of the FOMC news release cycle; see, for
example, Savor and Wilson (2014), Lucca and Moench (2015), and Cieslak
et al. (2019). Ai and Bansal (2018) provide a nonexpected utility theory
that explains the risk premium related to macro news announcement.
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TESTING THE DIMENSIONALITY OF POLICY SHOCKS 471

We establish the asymptotic properties of the test in an
in-fill asymptotic framework with the sampling interval of
high-frequency observations going to zero asymptotically.
The limiting distribution of the test statistic is nonstandard:
it takes the form of a weighted mixture of chi-squared ran-
dom variables, with the random weights depending on the
stochastic volatilities before and after each event. Impor-
tantly, the event-specific heterogeneity is fully reflected in
these random weights without being “averaged out” as in
conventional event-study method based on classical time-
series tools. This desirable feature is achievable here because
we draw inference from the “large number” of intraday ob-
servations around individual events, rather than by pooling a
large number of distinct events based on a (likely fragile) ho-
mogeneity presumption.2 For the same reason, the proposed
high-frequency econometric method can in fact be imple-
mented on an event-by-event basis. Since the limiting dis-
tribution of the test statistic is nonstandard, we propose and
theoretically justify an easy-to-implement bootstrap method
for constructing critical values, which exhibits good finite-
sample performance in empirically realistically calibrated
Monte Carlo experiments. Our analysis of the asymptotic
behavior of the test statistic and the associated bootstrap
method is new to the literature, which is the main theoret-
ical contribution of the present paper.

On the empirical side, we apply the proposed inference
procedure to study the dimensionality of policy shocks gen-
erated by FOMC announcements through testing the rank of
the resulting stochastic covariance jump matrix of the yield
curve. Our sample spans the period from October 2001 till
August 2018 and covers 135 scheduled FOMC announce-
ments. We study the responses of Eurodollar and Treasury
security futures with maturities ranging from one year to
thirty years. The testing results show that, before the fi-
nancial crisis of 2007–2009, the covariance jump matrix
of bond futures around FOMC announcements had a one-
factor structure, which suggests that monetary policy shocks
were one-dimensional under the conventional monetary pol-
icy regime. However, from the onset of the use of unconven-
tional monetary policies by the central bank, the dimension-
ality of the policy shock increased to three in the 2007–2009
crisis period and largely stayed at two from then on. These
findings formally demonstrate the complex impact of mone-
tary policy on asset prices during the crisis and its aftermath.
In particular, they are consistent with the fact that news about
forward guidance and large-scale asset purchases can gener-
ate shocks not only to investors’ long-term expectations of
interest rates but also to bond risk premia as recently dis-
cussed by Bernanke (2020). Our postcrisis testing results are
also in line with the findings of Gurkaynak, Sack, and Swan-
son (2004); Swanson (2017); Cieslak and Schrimpf (2019),
and Cieslak and Pang (2021) for the multifactor structure of
asset returns around FOMC announcements.

2See Kuttner (2018) for additional discussions on the conventional event-
study approach and the related fragility issue.

The present paper is related to several strands of liter-
ature. A large literature looks at rank testing in various
economic contexts; see Rothenberg (1973), Hsiao (1983),
Lewbel (1991), Gill and Lewbel (1992), Cragg and Don-
ald (1997), and Robin and Smith (2000), among others. Our
theory is different from that prior literature mainly because
of its nonstandard in-fill asymptotic setting, which in partic-
ular allows for essentially unrestricted nonstationarity and
data heterogeneity in a nonergodic setting. Under the in-
fill asymptotic setting, Li et al. (2019) recently studied a
rank test for price jumps of multiple assets over a collec-
tion of statistically detected jump events. But the economet-
ric analysis here is fundamentally different from that prior
work for two reasons. One is that we focus on jumps in the
spot covariance matrix, treating the price jumps as a nui-
sance. The other difference is that we consider presched-
uled macro news announcements rather than statistically de-
tected price-jump events.3 These differences also manifest
in the methods’ distinct empirical scopes: our test speaks to
the dimensionality of announcement-induced policy shocks,
whereas the method of Li et al. (2019) mainly concerns the
stability of factor loadings over time. Our analysis of the
rank of the covariance jump matrix is more generally re-
lated to heteroskedasticity-based identification of simulta-
neous linear equations models (Rigobon, 2003; Rigobon &
Sack, 2004), for which the key identification assumption is
that the change in the covariance matrix of asset returns has
rank one. Our in-fill asymptotic theory also contributes to
the high-frequency econometrics literature on nonparamet-
ric volatility inference; see, for example, Comte and Renault
(1996), Foster and Nelson (1996), Kristensen (2010), and
Jacod and Protter (2012). However, unlike the prior work,
our focus is not on the spot volatility estimation per se, but
rather on the rank of the covariance jump matrix. Finally, our
bootstrap inference shares the same “local i.i.d.” resampling
scheme as originally proposed by Bollerslev, Li, and Xue
(2018). Our new bootstrap result is developed under much
weaker conditions (regarding jump activity) in a more gen-
eral multivariate setting; moreover, Bollerslev et al. (2018)
does not consider rank test, which is exactly the focus here.

The remainder of the paper is organized as follows. Sec-
tion II describes the new inference method and the underly-
ing asymptotic theory. In section III we examine the finite-
sample performance of the proposed test in a Monte Carlo
experiment. An empirical application on monetary policy
shocks is presented in section IV. Section V concludes. The
online supplemental appendix contains all proofs and addi-
tional numerical results. The following notation will be used.
We denote the d-dimensional identity matrix by Id . The

3Kandel and Pearson (1995) show both theoretically and empirically that
a news announcement does not necessarily cause a price jump, but gener-
ally leads to elevated trading activity when investors agree to disagree on
the interpretation of the news, which in turn results in a heightened level
of asset price volatility after the announcement; see Lucca and Moench
(2015) and Bollerslev et al. (2018) for additional empirical evidence for
macro news announcements.
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472 THE REVIEW OF ECONOMICS AND STATISTICS

Euclidean norm is denoted ‖·‖. For a matrix A, we use Ajk

and A� to denote its ( j, k) element and transpose, respec-
tively. For two real sequences an and bn, we write an � bn if
an/C ≤ bn ≤ Can for some finite constant C ≥ 1.

II. The Econometric Method

We describe the rank test of spot covariance jump ma-
trix in this section. Section IIA introduces the setting, and
section IIB describes the test and establishes its asymptotic
validity.

A. The Setting

Suppose that the vector of log price processes X is a d-
dimensional Itô semimartingale, d ≥ 2, defined on a filtered
probability space

(
�,F, (Ft )t≥0,P

)
that can be written as

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs + Jt , (1)

where the d-dimensional drift process b is optional, the
stochastic volatility matrix process σ is càdlàg adapted and
takes values in Rd×d , and W is a standard d-dimensional
Brownian motion. The J process captures the price jumps,
defined as the sum of a purely discontinuous local martin-
gale with jump sizes no bigger than 1 and a purejump pro-
cess with jump sizes bigger than 1, both of which are driven
by a homogeneous Poisson random measure on R+ × R. We
impose the following regularity conditions on the underlying
processes.

Assumption 1. Suppose that X has the form equation (1)
and there exists a sequence (Tm)m≥1 of stopping times in-
creasing to infinity and a sequence (Km)m≥1 of constants
such that the following conditions hold for each m ≥ 1: (i)
for some constant γ ∈ [0, 2), |bt | + |σt | + |σt |−1 + ∫

(|x|γ ∧
1)Ft (dx) ≤ Km for all t ∈ [0, Tm], where Ft denotes the spot
Lévy measure of J; (ii) E[|σt∧Tm − σs∧Tm |2] ≤ Km|t − s| for
all t, s ∈ [0, T ].

Assumption 1 entails some very mild and rather standard
regularity conditions, allowing for essentially unrestricted
price and volatility jumps, leverage effect, and intraday pe-
riodicity. Condition (i) imposes local boundedness on vari-
ous processes, and condition (ii) states that the volatility pro-
cess σ is locally (1/2)-Hölder continuous under the L2 norm,
which can be readily verified if σ is an Itô semimartingale
or a long-memory process driven by a fractional Brownian
motion.

The spot covariance matrix process is formally defined as

ct ≡ σtσ
�
t ,

which can be interpreted as the instantaneous covariance ma-
trix of the diffusive returns (i.e., σt dWt ). As mentioned in the
introduction, we focus not on the level of spot covariance
matrix per se, but rather on its jump at the news announce-

ment time, which precisely measures the “abnormal” move-
ment induced by the “lumpy” information embedded in the
announcement. More precisely, with T ≡ {τ1, . . . , τm} de-
noting a collection of announcement times, we denote the
spot covariance jump matrix at each time τ ∈ T as

�cτ ≡ cτ+ − cτ−,

with cτ− and cτ+ being the left and right limits of the c pro-
cess at time τ, respectively.4 Note that the spot covariance
matrix ct at a given point in time generally has full rank
when the assets under consideration are nonredundant. How-
ever, the jump matrix �cτ may be of reduced rank if the
underlying policy shock has a lower-dimensional structure.
For example, if the Federal Reserve surprises the market by
only altering the short-term interest rate, as is typical under
the conventional monetary policy, we may find a one-factor
structure in �cτ (see, e.g., Rigobon & Sack, 2004). On the
other hand, a multidimensional policy shock may arise if the
announcement also contains forward guidance regarding the
future trajectory of interest rates, which in turn can result in
a higher rank in the jump matrix �cτ.

The main goal of this paper is to uncover the dimension-
ality of policy shocks through testing the rank of the spot co-
variance jump matrix. The method is decidedly nonparamet-
ric without imposing any parametric restrictions. That noted,
the proposed method also speaks to more specific structural
estimation problems concerning policy impact. One case in
point is the heteroskedasticity-based identification and esti-
mation of linear simultaneous equation models as consid-
ered by Rigobon (2003) and Rigobon and Sack (2004). The
key premise of this identification strategy is that there is a
single source of policy shock, which implies that the differ-
ence between assets’ covariance matrices in two subsamples
(corresponding to announcement and nonannouncement pe-
riods) has rank one. The rank test proposed below may be
used to test the underlying identification assumption. Re-
cently, Lewis (2020) proposed an empirical strategy to iden-
tify announcement-specific decompositions of asset price
changes into monetary policy shocks using high-frequency
data. He does not provide formal inference theory for his
empirical procedure, as the “parameters” of econometric in-
terest are themselves random quantities, which is typical in
nonergodic high-frequency inference problems as studied in
the present paper. Our theory may also shed light on further
theoretical development in this direction.5

These economic considerations motivate us to rigorously
test the rank of the spot covariance jump matrix. For-
mally, the null and alternative hypotheses of interest are

4Since the c process is right continuous, we simply have cτ+ = cτ. Nev-
ertheless, we adopt the cτ+ notation because it matches the same notational
convention in equation (4) below and is convenient for later discussions.

5It is also worth noting that heteroskedasticity-based inference may en-
counter weak-identification issues if time variation in some component
of the volatility process is moderate. In such a scenario, the economet-
ric method of Cheng et al. (2021) may be applied to achieve robust and
efficient inference.
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TESTING THE DIMENSIONALITY OF POLICY SHOCKS 473

represented, respectively, by the following events:

�0,r = {Rank (�cτ) = r for all τ ∈ T },
�a,r = {Rank (�cτ) > r for some τ ∈ T }, (2)

where r ∈ {1, . . . , d − 1} is the candidate rank to be tested.
We note that in the present setting, the spot covariance jump
matrix �cτ is itself a random matrix, and the null hypothesis
�0,r contains the sample paths on which this random ma-
trix has rank r. Specifying hypotheses as random events is
common in the high-frequency econometrics literature, be-
cause the “population quantity” is the realized sample paths
of processes of interest, instead of some constant parame-
ter; see Aït-Sahalia and Jacod (2014) for a comprehensive
review.

Our inference is developed under an in-fill asymptotic
framework that is now standard in the high-frequency econo-
metrics literature (see, e.g., Jacod & Protter, 2012 and Aït-
Sahalia & Jacod, 2014). Suppose that the price vector pro-
cess X is observed at discrete times i�n for i = 0, 1, . . . ,

within the fixed time interval [0, T ]. We denote the ith re-
turn of X by

Rn,i ≡ Xi�n − X(i−1)�n .

Since we are interested in the local behavior of the spot co-
variance matrix process near announcement times, we fo-
cus on return observations in local windows before and af-
ter each announcement. For each τ ∈ T , let iτ denote the
unique integer such that τ ∈ ((iτ − 1) �n, iτ�n]. We pick a
local window sequence kn of integers satisfying kn → ∞
and kn�n → 0, which plays a similar role as the “band-
width” parameter in conventional kernel-based nonparamet-
ric estimation. Our inference relies on observations in the
pre-event window In,τ− and the post-event window In,τ+,
defined, respectively, as

In,τ− ≡ {iτ − kn, . . . , iτ − 1},
In,τ+ ≡ {iτ + 1, . . . , iτ + kn}. (3)

Each of these local windows consists of kn returns. It is in-
structive to note that the return at the announcement time (in-
dexed by iτ) is excluded from these windows, as it is likely
to be “contaminated” by the price jump at the announcement
time, which may bias the estimation of the spot covariance
matrix.

The spot covariance matrix estimators before and after
each announcement are constructed essentially as the sec-
ond sample moments of returns from the corresponding local
windows. Specifically, we estimate the pre-event and post-
event spot covariance matrices using

ĉn,τ± ≡ 1

kn�n

∑
i∈In,τ±

Rn,iR
�
n,i1{‖Rn,i‖≤un}, (4)

where the 1{‖Rn,i‖≤un} indicator is a standard device used
to eliminate price jumps in the spot covariance estimation
(as originally proposed by Mancini, 2001), with un being

a (shrinking) sequence of truncation threshold. Using well-
known results in the literature (see, e.g., Chapter 9 of Jacod
& Protter, 2012), the spot estimators ĉn,τ− and ĉn,τ+ consis-
tently estimate the pre-event and post-event spot covariance
matrices cτ− and cτ+, respectively.6

An important advantage of the in-fill asymptotic setting
considered here is that it permits theoretically valid infer-
ence even if one has only a small number of events. This is
reflected by the fact that the sample span [0, T ] is explicitly
fixed under our in-fill asymptotic framework, so the collec-
tion T of event times is treated as a finite set. Indeed, our test
can be applied even when T is a singleton {τ}, corresponding
to a single-case study. This feature is empirically desirable
because important macro news announcements are infre-
quent (e.g., FOMC meetings are scheduled only eight times
per year), and their effects can be highly heterogeneous de-
pending on the prevailing macroeconomic and policy envi-
ronment. Our approach overcomes this “small-sample” issue
by exploiting the “large sample” of high-frequency price ob-
servations in the neighborhood of announcement times. We
next proceed with the details.

B. The Rank Test

A natural way to carry out the rank test is to examine the
number of zero eigenvalues of �cτ. Although the c process
takes values as positive semidefinite matrices, its jump �cτ

is only a symmetric matrix and may have negative eigenval-
ues. It is thus more convenient to consider the squared jump
matrix

Qτ ≡ (�cτ)2 ,

which is positive semidefinite by construction. The rank test
can then be implemented by examining whether the smallest
d − r eigenvalues of Qτ are all identically zero. More pre-
cisely, let (λ j,τ)1≤ j≤d denote the eigenvalues of �cτ, so each
λ2

j,τ is an eigenvalue of Qτ, and order them as λ2
1,τ ≥ λ2

2,τ ≥
· · · ≥ λ2

d,τ. We then set

Sr ≡
∑
τ∈T

Sr,τ, where Sr,τ ≡
d∑

j=r+1

λ2
j,τ. (5)

In restriction to �0,r (resp. �a,r), we have Sr = 0 (resp. Sr >

0). Therefore, we can rely on the Sr variable to discriminate
the null and alternative hypotheses.

6The consistent spot estimation relies on the length of the local windows,
kn�n, shrinking to zero asymptotically, as is standard in kernel-based non-
parametric statistics. From their constructions, it is clear that the pre- and
post-event spot estimators are in fact consistent estimators of the local aver-
ages (kn�n )−1

∫ τ

τ−kn�n
cs ds and (kn�n )−1

∫ τ+kn�n

τ
cs ds, respectively. This

latter interpretation is somewhat more robust in a finite-sample sense be-
cause it holds true even if one treats the window length kn�n as fixed, and
our results may be interpreted accordingly. That being said, we note that,
under commonly used term-structure models (see, e.g., Singleton, 2009),
the average volatility is typically close to the spot values over short win-
dows. Hence, the aforementioned distinction is often immaterial, and we
adopt the standard “spot” interpretation in our subsequent discussion.
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474 THE REVIEW OF ECONOMICS AND STATISTICS

Our test statistic is simply the sample analog of Sr . Based
on the spot estimators in equation (4), we estimate Qτ using

Q̂n,τ ≡ (
ĉn,τ+ − ĉn,τ−

)2
.

Let λ̂2
n,1,τ ≥ · · · ≥ λ̂2

n,d,τ be the (ordered) eigenvalues of
Q̂n,τ. The test statistic is then defined analogously to equa-
tion (5) as

Ŝn,r ≡
∑
τ∈T

Ŝn,r,τ, where Ŝn,r,τ ≡
d∑

j=r+1

λ̂2
n, j,τ. (6)

To obtain the critical value, we need to characterize the
asymptotic distribution of Ŝn,r under the null hypothesis.
Some additional notation is needed to describe the asymp-
totic distribution. Clearly, the sampling variability of the test
statistic is solely driven by that of the spot covariance ma-
trix estimators. To represent the latter, we consider d × d
random matrices (ζτ−, ζτ+)τ∈T that are F-conditionally in-
dependent, centered Gaussian, with the covariances between
their components characterized by

E
[
ζ jk,τ±ζlm,τ±|F] = c jl,τ±ckm,τ± + c jm,τ±ckl,τ±,

for 1 ≤ j, k, l, m ≤ d.

It can be shown that

(k1/2
n

(
ĉn,τ− − cτ−

)
, k1/2

n

(
ĉn,τ+ − cτ+

)
)τ∈T

L-s−→ (ζτ−, ζτ+)τ∈T , (7)

where
L-s−→ denotes stable convergence in law. We also need

to consider an eigenvalue decomposition of �cτ in the form

�cτ = Uτ�τU
�
τ , (8)

where �τ is a diagonal matrix collecting the ordered (in
magnitude) eigenvalues (λ j,τ)1≤ j≤d , and Uτ is an orthogo-
nal matrix consisting of the corresponding eigenvectors. Fi-
nally, we partition Uτ = [�τ

...Vτ] such that �τ and Vτ contain
r and d − r columns, respectively. Theorem 1 establishes the
asymptotic distribution of the test statistic Ŝn,r under the null
hypothesis.

Theorem 1. Suppose that (i) assumption 1 holds and (ii)
kn � �−ρ

n and un � ��
n such that

0 < ρ <

(
2

γ
− 1

)
∧ 1

2
,

ρ

2 (2 − γ)
< � <

1

2
. (9)

Then, in restriction to the null hypothesis �0,r ,

knŜn,r
L-s−→ ξr ≡

∑
τ∈T

∥∥V �
τ (ζτ+ − ζτ−)Vτ

∥∥2
. (10)

COMMENTS. (i) The limiting variable ξr described in equa-
tion (10) has a nonstandard distribution. It is instructive
to elaborate on the structure of this variable. Since each
ζτ+ − ζτ− matrix is an F-conditional centered Gaussian,

V �
τ (ζτ+ − ζτ−)Vτ is also a mixed centered Gaussian matrix.

Consequently, ‖V �
τ (ζτ+ − ζτ−)Vτ‖2 is the sum of (condi-

tionally correlated) scaled chi-squared variables. These vari-
ables generally have different F-conditional distributions re-
sulting from the heterogeneity of different events. They are
F-conditionally independent across different τ’s, and ξr is
their sum.

(ii) Although we are mainly interested in the rank of
the jump matrix �cτ, our method can be easily adapted to
study the rank of cτ+ and cτ− as well. For example, if cτ+
is of interest, then one can simply replace the returns in
the pre-event window with zeros, so that �cτ = cτ+. Our
theoretical results remain valid in this partially degenerate
case.

The nonstandard limiting distribution described in Theo-
rem 1 does not appear to be pivotalizable. We instead pro-
pose a bootstrap algorithm for estimating the limiting distri-
bution, particularly its quantiles. Analogous to equation (8),
we perform the following eigenvalue decomposition for each
estimated jump:

ĉn,τ+ − ĉn,τ− = Ûn,τ�̂n,τÛ
�
n,τ,

where the eigenvalues and eigenvectors are ordered in mag-
nitude. We then set V̂n,τ to be the d × (d − r) matrix con-
sisting of the last d − r columns of Ûn,τ, which consistently
estimates Vτ up to rotation. The bootstrap algorithm for com-
puting the critical value at significance level α ∈ (0, 1) is de-
tailed below.

Algorithm 1 (bootstrap critical value for rank test)

Step 1: For each τ ∈ T , generate i.i.d. draws (R∗
n,i)i∈In,τ− and

(R∗
n,i)i∈In,τ+ from (Rn,i)i∈In,τ− and (Rn,i)i∈In,τ+ , respectively.

Step 2: Compute ĉ∗
n,τ± in the same way as ĉn,τ±, except

that the original data Rn,i is replaced with R∗
n,i. Set ζ ∗

n,τ± =
k1/2

n (ĉ∗
n,τ± − ĉn,τ±).

Step 3: Repeat steps 1 and 2 many times. Set the criti-
cal value cvn,α as the 1 − α quantile of

∑
τ∈T ‖V̂ �

n,τ

(
ζ ∗

n,τ+ −
ζ ∗

n,τ−
)
V̂n,τ‖2 at significance level α. �

The intuition underlying the bootstrap algorithm is as fol-
lows. Step 1 of the algorithm implements i.i.d. resampling of
the return vectors in each local window. The “localized” re-
sampling is needed to address the data heterogeneity across
different estimation windows (i.e., In,τ±). Note that even
within each local window, the return observations are not
assumed to be actually i.i.d. In fact, since the returns de-
pend on the stochastic volatility, they are generally hetero-
geneous and serially highly dependent. Nevertheless, return
observations within each local window are approximately
conditionally i.i.d., which is the intuition why the local i.i.d.
resampling is valid. The ζ ∗

n,τ± variables defined in step 2 are
exactly the bootstrap analogs of k1/2

n

(
ĉn,τ± − cτ±

)
, and their

conditional distribution estimates that of the ζτ± limiting
variables. The ‖V̂ �

n,τ

(
ζ ∗

n,τ+ − ζ ∗
n,τ−

)
V̂n,τ‖2 variable in step 3
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TESTING THE DIMENSIONALITY OF POLICY SHOCKS 475

clearly mirrors the limiting variable ‖V �
τ (ζτ+ − ζτ−)Vτ‖2 in

Theorem 1. The validity of the bootstrap algorithm and the
asymptotic properties of our rank test are described in The-
orem 2 below.

Theorem 2. Suppose that the conditions in Theorem 1 hold
and � > 1/(4 − γ). Then (a) the conditional distribution
function of

∑
τ∈T ‖V̂ �

n,τ

(
ζ ∗

n,τ+ − ζ ∗
n,τ−

)
V̂n,τ‖2 given data con-

verges in probability to the F-conditional distribution of ξr

under the uniform metric and (b) the test associated with the
critical region {knŜn,r ≥ cvn,α} has asymptotic level α under
the null hypothesis and asymptotic power 1 under the alter-
native hypothesis, that is,

P
(
knŜn,r ≥ cvn,α

∣∣�0,r
) → α, P

(
knŜn,r ≥ cvn,α

∣∣�a,r
) → 1.

We close this section with two practical remarks about the
purposed test. The first concerns the threshold un, which is
a statistical device for eliminating price jumps in the volatil-
ity estimation. In practice, recognizing that the price jump is
very likely to occur either at or very close to the announce-
ment time, one may exploit this prior knowledge and elim-
inate price jumps by simply removing a few returns near
the announcement time, without performing any additional
“statistical” truncation (i.e., use un = ∞). This is our recom-
mended method that is adopted in the subsequent numerical
work.7

Second, we note that null hypotheses with different r val-
ues are ordered and the alternative hypotheses are nested.
As illustrated in Robin and Smith (2000) (see section 5),
this structure naturally suggests that tests with different r
values may be interpreted as a sequential testing procedure:
we can implement the test with increasing r values and stop
at the first nonrejection. Since the proposed test is consis-
tent, this procedure will rule out all r values strictly less than
Rank(�cτ) with probability approaching 1. In particular, if
�cτ is of full rank, the sequential procedure will reject all
reduced-rank null hypotheses and, hence, provide a consis-
tent estimator for the true rank. On the other hand, when
�cτ is of reduced rank, the true null hypothesis at stage
r = Rank(�cτ) will be rejected with asymptotic probability
α, reflecting the type I error of the test.

III. Monte Carlo Simulations

In this section we examine the performance of the pro-
posed test in a Monte Carlo experiment. The unit of time
is one day. Let (Wj,t )1≤ j≤3 and

(
Bj,t

)
1≤ j≤3 be independent

standard Brownian motions. We consider three assets and
simulate their log returns according to

7More generally, one can use the un-based truncation to further guard
against price jumps occurring within the local estimation windows. For
example, when jumps have finite variation, a theoretically valid adaptive
choice is un = 3 × σ̂ × �1/3

n , with σ̂ being some preliminary estimate of
volatility. That said, for frequencies of several minutes, this choice very
rarely leads to any additional truncation after the returns near the an-
nouncement time are removed.

dXt =

⎛⎜⎝ 1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

⎞⎟⎠ dft ,

where f is a three-dimensional factor process with its jth
component satisfying

df j,t = σ j,t dWj,t , 1 ≤ j ≤ 3.

The volatility processes are simulated according to the fol-
lowing stochastic differential equations:

dσ2
1,t = 0.6930(0.4068 − σ2

1,t )dt

+ 0.7023
√

σ2
1,t

(
ρdW1,t +

√
1 − ρ2dB1,t

)
+ Jσσ

2
1,t−1{t=τ},

dσ2
2,t = 0.0128(0.4068 − σ2

2,t )dt

+ 0.0954
√

σ2
2,t

(
ρdW2,t +

√
1 − ρ2dB2,t

)
+ φJσσ

2
2,t−1{t=τ},

dσ2
3,t = 0.0128(0.4068 − σ2

3,t )dt

+ 0.0954
√

σ2
3,t

(
ρdW3,t +

√
1 − ρ2dB3,t

)
,

where the parameter values are calibrated according to
Bollerslev and Todorov (2011), and we set ρ = −0.7 to cap-
ture the well-documented negative correlation between price
and volatility shocks (i.e., the “leverage” effect). The first
volatility factor σ2

1,t is quickly mean-reverting with a half-
life of one day, and it jumps at the announcement time τ with
relative jump size Jσ ∼Exp(7), where the mean of the expo-
nential distribution is calibrated to the empirical estimates of
Bollerslev et al. (2018). The other two volatility factors, σ2

2,t

and σ2
3,t , are highly persistent with a half-life of 2.5 months.

The σ2
2,t process also jumps at time τ when φ �= 0. The φ pa-

rameter conveniently controls the relative magnitude of the
jump in σ2

2,t with respect to that in σ2
1,t . These continuous-

time processes are simulated using an Euler scheme on a
one-second mesh. The observed returns actually used in
the calculations are resampled at �n = 1, 3, and 5 minute
intervals.

This data-generating process permits a simple charac-
terization of the factor structure of spot covariance matrix
jumps. Let �cτ and �c f ,τ denote the jumps of the spot
covariance matrices of X and f , respectively. It is easy to
see that �cτ and �c f ,τ share the same rank, and the latter is
diagonal with elements Jσσ

2
1,τ−, φJσσ

2
2,τ−, and 0. Therefore,

Rank (�cτ) =
{

1 when φ = 0,

2 when φ > 0.

We can then impose the null hypothesis in two ways: when
φ = 0, the null hypothesis corresponds to r = 1, and when
φ > 0, the null hypothesis corresponds to r = 2. Moreover,
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476 THE REVIEW OF ECONOMICS AND STATISTICS

TABLE 1.—MONTE CARLO REJECTION RATES UNDER NULL HYPOTHESIS

60-Minute Window 90-Minute Window

�n = 1 �n = 3 �n = 5 �n = 1 �n = 3 �n = 5

Panel A: Case r = 1

φ = 0 0.050 0.035 0.036 0.053 0.036 0.034

Panel B: Case r = 2

φ = 0.25 0.037 0.037 0.043 0.040 0.034 0.038
φ = 0.50 0.044 0.043 0.048 0.047 0.040 0.043
φ = 0.75 0.048 0.045 0.051 0.050 0.044 0.046
φ = 1.00 0.051 0.047 0.053 0.051 0.047 0.048

This table reports the finite-sample rejection rates of the 5% level rank test under the null hypothesis for various data generating processes. Panel A reports results for the null hypothesis with r = 1 that is imposed
by setting φ = 0. Panel B reports results for the null hypothesis with r = 2 that is imposed by setting φ > 0. The sampling interval �n ranges from 1 minute to 5 minutes. The length of the local estimation window
is fixed in calendar time to be 60 or 90 minutes, corresponding to kn ∈ {60, 20, 12} and kn ∈ {90, 30, 18}, respectively, for the three different sampling frequencies. The volatility of microstructure noise is set to be
η = 0.0156.

specifications with φ > 0 also provide a range of alter-
native hypotheses versus the r = 1 null. To trace out the
power function, we consider a range of φ values in {0, 0.05,

0.1, . . . , 1} and expect to see higher finite-sample power as-
sociated with larger φ.

Finally, we allow for the presence of microstructure noise
in the data. That is, instead of the “efficient price” Xt , the
econometrician observes noise-contaminated price Yt given
by

Y ( j)
i�n

= X ( j)
i�n

+ η × ε
( j)
i , j = 1, 2, 3, i ≥ 0, (11)

where the constant η determines the noise scale and {ε ( j)
i }i≥0

are i.i.d. standard normal error terms that are independent
across assets. Note that our asymptotic theory is designed
for the no-noise case with η = 0. That being said, in the
more realistic setting with microstructure noise, the com-
mon practice in the high-frequency econometrics literature
is to mitigate the effect of noise by using sparsely sampled
data, which we adopt throughout our numerical work. In
this regard we use the noisy setting as a robustness check.
We calibrate η = 0.0156 according to the noise-to-signal ra-
tio in our empirical data, determined using the two-scale
method of Zhang, Mykland, and Aït-Sahalia (2005). Con-
sistent with aforementioned conventional wisdom, we find
that the proposed test is indeed robust to the presence of
noise when applied to sparsely sampled data. Therefore, for
brevity, we present results only in the (more challenging)
case with noisy data in the subsequent discussion.8

Below we report rejection frequencies of tests based on
two local window specifications. Specifically, we fix the
width of each local window to be either 60 minutes or 90
minutes, so kn takes different values for different sampling
frequencies. For example, we have kn = 60 or 90 when
�n = 1 minute, and kn = 12 or 18 when �n = 5 minutes.
This setup makes numerical results for different sampling
frequencies more comparable. The bootstrap algorithm is
implemented using 1,000 repetitions. For all tests below,
we fix the significance level at 5% and compute finite-

8In the no-noise case, we find that the test has similar size properties and,
as expected, its power is higher than that in the noisy case.

sample rejection frequencies based on 100,000 Monte Carlo
replications.

Table 1 reports the test’s rejection rates under the null hy-
pothesis. Panel A reports results for the r = 1 null hypoth-
esis imposed by setting φ = 0. We see that the test controls
size well across different sampling frequencies and window
sizes. The rejection rates are slightly lower than the 5% nom-
inal level, suggesting that the test is somewhat conservative
in finite samples. Panel B reports the rejection rates for the
r = 2 null hypothesis for a range of positive φ values. Again,
we see that the test controls size quite well across the board.

We next turn to the power analysis. As mentioned above,
alternative hypothesis with respect to the r = 1 null hypoth-
esis can be imposed by setting φ > 0. The value of φ mea-
sures the “distance” between the null and the alternative hy-
potheses. Figure 1 plots the test’s rejection rates as functions
of φ separately for three sampling frequencies and two local
window sizes. Consistent with table 1, we see that the test
controls size well in all settings under the null hypothesis
(i.e., φ = 0). As φ increases, the power of the test clearly in-
creases as predicted by the asymptotic theory. Other things
being equal, the test rejects more often for more frequently
sampled data (i.e., smaller �n). In addition, the rejection
rates for the 90-minute window appear to be higher than
those for the 60-minute window, which can be explained by
the former’s larger sample size. As a caveat, we note that this
finding does not automatically imply one should always use
larger local windows, which would be subject to more non-
parametric estimation bias stemming from the time-variation
in stochastic volatility.

Overall, these simulation results show that the proposed
test has excellent size control and adequate power for a range
of commonly used sampling frequencies. The results also
appear to be stable for different choices of local window
sizes. These findings support our asymptotic theory devel-
oped above and suggest that the test can be reliably used in
empirical work, to which we now turn.

IV. FOMC Announcements and Monetary Policy Shocks

To demonstrate the usefulness of the proposed rank test,
we conduct a formal econometric analysis to study the
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TESTING THE DIMENSIONALITY OF POLICY SHOCKS 477

FIGURE 1.—MONTE CARLO REJECTION RATE OF RANK TEST

The figure plots the rejection frequencies of the r = 1 null hypothesis at 5% nominal level for sampling frequencies at 1, 3, and 5 minutes (solid, dash-dot, and dashed). The test is implemented using 60-minute and
90-minute local windows. The shaded area signifies the 5% nominal level. The null and alternative hypotheses correspond to φ = 0 and φ > 0, respectively. The critical value for each test is computed using 1,000
bootstrap repetitions. The rejection rates are computed for φ ∈ {0, 0.05, . . . , 1} based on 100,000 Monte Carlo trials.

dimensionality of monetary policy shocks triggered by
scheduled FOMC announcements. A large literature in
macroeconomics studies the effect of monetary policy
shocks induced by FOMC announcements. Early notable
contributions include Kuttner (2001), Cochrane and Piazzesi
(2002), Rigobon and Sack (2004), and Bernanke and Kuttner
(2005). More recently, Nakamura and Steinsson (2018) rely
on intraday high-frequency data on short-term interest rate
futures to measure policy shocks and then use these mea-
sures to test for monetary nonneutrality. Although the tar-
get federal funds rate is conventionally the main policy
tool of the central bank, the Federal Reserve has relied
heavily on unconventional monetary policy tools such as
forward guidance and quantitative easing (QE) during the
Great Recession and its aftermath (Kuttner, 2018; Bernanke,
2020). The plurality of policy tools naturally suggests that
the notion of a “monetary policy shock” is a multidimen-
sional concept in the era of unconventional monetary policy.
We apply the rank test to formally test hypotheses regarding
the shock’s dimensionality.

Our data consist of intraday transaction prices for four in-
terest rate futures contracts including 12-month Eurodollars,
2-year and 10-year Treasury notes, and 30-year Treasury
bonds. The sample period is from October 2, 2001, to August
13, 2018. The data are obtained from Tick Data. We rely on
Bloomberg’s Economic Calendar to pinpoint the exact an-
nouncement times for each of the 135 scheduled FOMC an-
nouncements that occurred during regular trading hours over
our sample period.

The rank test is implemented as follows. To help mitigate
the effect of market microstructure “noise,” we follow stan-
dard practice in the literature to sparsely sample the data at
a 3-minute sampling frequency (see, e.g., the discussion in

Zhang et al., 2005).9 We take the block size kn = 30, corre-
sponding to a 90-minute window for spot estimation as we
have done in the simulation study above. As a conservative
way to remove announcement-induced price jumps, we ex-
clude the returns from the five minutes immediately before
and the five minutes immediately after each announcement
time, so that there is a 10-minute gap between pre-event and
post-event windows.10 Critical values are computed using
Algorithm 1 based on 100,000 bootstrap resamples to mini-
mize the effect of random resampling on the testing results.

The most important episode in our sample period ar-
guably is the global financial crisis and the Great Reces-
sion of 2007–2009, which marked the beginning of the
recent era of unconventional monetary policy. From Septem-
ber 16, 2007, to December 16, 2008, the Federal Reserve
gradually lowered the target federal funds rate from the peak
level of 5.25% to the [0, 0.25%] range, namely, the zero
lower bound. The rate stayed at the lower bound till the end
of 2015, and gradually increased to the [1.75%, 2%] range
by the end of our sample. During the crisis and the subse-
quent recovery period, the Federal Reserve was impelled
to rely on unconventional monetary policy tools such as

9Our choice of the 3-minute sampling frequency is justified by a prelim-
inary analysis based on the volatility signature plot (see figure S.1 in the
online supplemental appendix). We find that realized volatility estimates
are insensitive to the change of sampling frequency when �n ≥ 3 minutes,
but they appear to carry large positive bias at higher sampling frequencies.
Also recall that with the level of noise calibrated to the data, our Monte
Carlo experiment indicates that the 3-minute sampling frequency is sparse
enough to sufficiently mitigate the effect of noise on the proposed test.

10Our subsequent empirical results are not sensitive to the choice of the
10-minute gap between the pre- and post-event windows. In results not
presented here, we also conducted the empirical analysis with 8-minute
and 12-minute gaps as robustness checks. Our main empirical findings are
qualitatively unaltered with respect to these changes.
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478 THE REVIEW OF ECONOMICS AND STATISTICS

FIGURE 2.—EIGENVALUES OF SPOT COVARIANCE JUMP MATRIX AT SELECTED ANNOUNCEMENT TIMES

The figure plots the relative magnitudes of the eigenvalues of spot covariance jump matrices for four FOMC announcements. The relative magnitude is computed as the absolute value of each eigenvalue normalized
by the sum of the absolute values of all eigenvalues. The two announcements displayed on the left column are examples for forward guidance (January 25, 2012) and quantitative easing (March 18, 2009) as discussed
in Rudebusch (2018), respectively, and the right column corresponds to the two subsequent announcements used for comparison.

forward guidance and QE to steer the macroeconomy. It
is thus economically important to examine whether, and to
which extent, the multifaceted policy tools are associated
with multidimensional policy shocks, which should manifest
in the factor structure of the spot covariance jump matrix of
bond futures.

To have a clear narrative relating unconventional mone-
tary policy and announcement-induced shocks, we start with
a case study based on two specific FOMC announcements
that involve forward guidance and QE. The first announce-
ment, which occurred on January 25, 2012, provided an ex-
plicit forward guidance that “economic conditions . . . are
likely to warrant exceptionally low levels for the federal
funds rate at least through late 2014.” The second example
pertains to the announcement on March 18, 2009, when the
Federal Reserve stated that it would be purchasing an ad-
ditional $300 billion of Treasury bonds as part of its QE1
program. These two examples are chosen solely based on
the recent review article by Rudebusch (2018) on unconven-
tional monetary policy, which also provides additional pol-
icy background.

We test the ranks of the spot covariance jump matrices for
these two announcements separately. For the announcement
on January 25, 2012, we reject the null hypothesis of r = 1
at the 5% significance level but do not reject r = 2 or r = 3.
This result thus suggests that the announcement was associ-
ated with two distinct sources of policy shocks. According to
Rudebusch (2018), during the early recovery period (2010–
2011) after the Great Recession, market investors expected
a quick policy rate liftoff. Contrary to this anticipation, the

Federal Reserve ruled out the possibility of raising the rate
not only in short term, but also throughout a three-year hori-
zon, which may explain the finding of a two-dimensional
policy shock. The QE announcement on March 18, 2009,
tells a similar story.11 We reject the null hypothesis of r = 1
and r = 2 both at the 1% significance level, and reject the
null hypothesis of r = 3 at the 5% significance level, indicat-
ing the presence of an even higher dimensional policy shock
that had a distinct impact on different sections of the yield
curve.

The two examples discussed above are intentionally pre-
sented here to highlight how a multidimensional policy
shock, backed with a clear economic narrative, may be re-
vealed by the proposed rank test. Because of their unique
nature, these announcements (particularly the one on March
18, 2009) are not meant to be thought of as “typical” pol-
icy announcements. It is thus instructive to contrast them
with others. To prevent confounding factors from complicat-
ing the comparison, we compare these two events with the
two FOMC announcements that occurred immediately after
them (and hence under similar macroeconomic conditions),
on March 13, 2012, and April 29, 2009, respectively. For
these comparison events, we do not reject the r = 1 null hy-
pothesis at any conventional significance levels and, hence,
find evidence for a one-dimensional policy shock.

To gain further insight into these testing results, in fig-
ure 2 we plot the relative magnitude of the covariance jump

11This announcement also contains a forward guidance; see the discus-
sion in Kuttner (2018), p. 130.
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TESTING THE DIMENSIONALITY OF POLICY SHOCKS 479

FIGURE 3.—EIGENVALUES OF SPOT COVARIANCE MATRIX AT SELECTED ANNOUNCEMENT TIMES

The figure plots the relative magnitudes of the eigenvalues of spot covariance matrices before and after two FOMC announcements, along with those of the covariance jump matrices. The relative magnitude is
computed as the absolute value of each eigenvalue normalized by the sum of the absolute values of all eigenvalues.

matrix’s eigenvalues (i.e., |λ̂ j |/
∑4

k=1 |λ̂k|) for these events.
The top panel corresponds to the January 25, 2012, an-
nouncement and its comparison event on March 13, 2012.
For the former, the contribution of the second largest (in
magnitude) eigenvalue is nontrivial, which contrasts sharply
with the notable one-factor pattern for the March 13, 2012,
event shown on the top-right panel. These plots are consis-
tent with the formal testing results that suggest a two-factor
structure for the former, and a one-factor structure for the
latter. The bottom panel of figure 2 tells a similar story for
the announcements on March 18, 2009, and April 29, 2009.

The sharp one-factor structure in the covariance jump ma-
trix for the March 13, 2012, and April 29, 2009, events seen
in figure 2 is remarkable, because it suggests a single source
of policy shock to the four interest rate futures contracts. It
is important to note that this finding speaks to the covariance
jump matrix at the announcement time, rather than the as-
sets’ spot covariance matrix itself. Indeed, a reduced rank in
the covariance matrix of the asset returns would imply the
redundancy of certain assets, which is highly unlikely for
the four bond futures studied here. To make this point more
concrete, in figure 3 we compare the normalized eigenvalues
of cτ−, cτ+, and �cτ for the announcements on March 13,
2012, and April 29, 2009. From the figure, we see that the
low-rank structure is indeed much more pronounced in the
jump matrix than the pre-event and post-event covariance
matrices. Formally, the r = 3 null hypotheses are strongly
rejected for both cτ− and cτ+, suggesting that they have full
ranks as expected.

TABLE 2.—EIGENVECTORS OF SPOT COVARIANCE JUMP MATRIX

First Eigenvector Second Eigenvector

January 25, March 18, January 25, March 18,
Maturity 2012 2009 2012 2009

1 year 0.0108 0.0188 −0.0215 −0.0648
2 year −0.0035 0.0271 −0.0852 −0.0761
10 years 0.3888 0.3920 −0.9178 −0.9140
30 years 0.9212 0.9194 0.3873 0.3932

The table reports the first two eigenvectors of spot covariance jump matrices for FOMC announcements
on January 25, 2012, and March 18, 2009.

It is interesting to note that the FOMC meetings on Jan-
uary 25, 2012, and March 18, 2009, for which we find strong
evidence for a multifactor structure of the generated policy
shock, are both followed by ones for which our test sug-
gests the policy shocks were one-dimensional. This shows
that there can be significant time variation in the nature of
the policy shocks triggered by the FOMC announcements
and further illustrates the benefits of the developed testing
procedures based on event-by-event analysis.

To gain further insight about the change in the yield curve
triggered by the policy shocks, we present the first two
eigenvectors of �cτ in table 2 for the announcements on Jan-
uary 25, 2012, and March 18, 2009. These eigenvectors have
remarkably similar structure across the two dates.12 The first

12The value of the first eigenvector is in fact quite stable across all an-
nouncements in our sample. The second eigenvector is more difficult to in-
terpret across the board because it is not uniquely identified for announce-
ments whose policy shock is only one-dimensional.
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TABLE 3.—REJECTION DECISION OF RANK TESTS FOR FOMC ANNOUNCEMENTS

Subsample Periods

Null 2001–2018 2001–2003 2004–2006 2007–2009 2010–2012 2013–2015 2016–2018

r = 1 Yes No No Yes No Yes Yes
r = 2 Yes No No Yes No No No
r = 3 No No No No No No No

We report the rejection decisions of the rank tests for the spot covariance jump matrix for the full sample (column 1) and 3-year subsamples (columns 2–7). The rows correspond to null hypotheses with rank r = 1,
2, and 3, respectively. The test is implemented for �n = 3 minutes and kn = 30. The significance level is fixed at 1%.

eigenvector appears to collect loadings of a “level” factor
that moves all yields in the same direction. Not surprisingly,
the weights assigned to the 12-month Eurodollar and the 2-
year Treasury note are close to zero, whereas most of the
weight is assigned to the 30-year Treasury bond. The rank-
ing of these weights are in line with the volatilities of the
four assets, with the 12-month Eurodollar contract and the
30-year Treasury bond being the least and most volatile, re-
spectively. The second eigenvector of �cτ reveals a “slope”
factor as it moves the yields in different directions. Again,
we see that the weights assigned to the 12-month Eurodollar
contract and the 2-year Treasury note are small in magni-
tude. In contrast to the first eigenvector of �cτ, the second
eigenvector puts most weight on the 10-year Treasury note,
suggesting that the corresponding policy shock is particu-
larly relevant for the medium term.13

To draw more general conclusions regarding lower fre-
quency variation in the nature of the policy shocks, we next
turn to aggregated testing results by pooling information
from all announcements in our sample. In view of the evo-
lution of monetary policy during this sample period, we also
divide the 18-year sample period between 2001 and 2018
into six 3-year subsamples. The two precrisis subsamples
spanning 2001–2003 and 2004–2006 are mainly subject to
conventional monetary policy. The 2007–2009 period wit-
nessed the financial crisis and the Great Recession, during
which the Federal Reserve employed both conventional and
unconventional policy tools. The next two subsamples cover
the 2010–2015 period, when the target federal funds rate was
maintained at the zero lower bound, and the rate was grad-
ually raised during the last subsample between 2016 and
2018. We implement the rank test for the six subsamples
separately. To guard against concerns pertaining to “multiple

13As mentioned above, the two announcements discussed here were
picked on the basis of the review article of Rudebusch (2018). We also im-
plemented a similar analysis on the FOMC announcement days during the
QE1 (December 16, 2008, January 28, 2009, and March 18, 2009) and QE2
(August 10, 2010, and September 21, 2010) episodes. These additional re-
sults are qualitatively similar to those presented in this paper. Specifically,
for all of the FOMC announcements in QE1 and QE2, we find evidence
for multidimensional policy shocks. Moreover, the decomposition of the
eigenvectors of �cτ on these dates is similar to the ones reported in table
2. In particular, we do not see a qualitative difference in the structure of
�cτ for the events in QE1 and QE2. Vissing Jorgensen and Krishnamurthy
(2011) argue for the existence of different economic channels of the QE1
and QE2 programs: QE1 contains liquidity and risk premia channels that
are not operative during QE2. These different economic channels may be
further analyzed (identified) by the inclusion of additional fixed-income se-
curities, such as mortgage-backed securities and fixed-income derivatives,
to the ones considered in our analysis.

testing,” we use a relatively stringent 1% significance level
for all tests. Formally, because of the asymptotic conditional
independence among test statistics formed on the nonover-
lapping subsamples, we may equivalently interpret the test-
ing results jointly across all six subsamples at significance
level 1 − (99%)6 ≈ 5.85%.

Table 3 reports whether the null hypotheses with differ-
ent ranks (i.e., r) are rejected.14 From the full-sample results
displayed in column 1, we see that both r = 1 and r = 2 null
hypotheses are rejected at the 1% significance level, whereas
the r = 3 hypothesis is not rejected. This echoes our earlier
finding for the QE announcement on March 18, 2009, further
confirming that some announcements within this sample pe-
riod triggered multidimensional policy shocks.

The subsample analysis reveals richer and economically
more interesting information. From columns 2 and 3, we
see that none of the null hypotheses (particularly including
r = 1) is rejected for the first couple of 3-year subsamples.
This suggests that during the precrisis 2001–2006 period,
when the conventional monetary policy was largely in force,
monetary policy shocks delivered by FOMC announcements
is one-dimensional, which is consistent with the notion that
the Federal Reserve achieves its macroeconomic objectives
mainly by altering the short-term interest rate. However, the
story is drastically different during the 2007–2009 crisis pe-
riod. As shown in column 4 of the table, both the r = 1 and
r = 2 null hypotheses are rejected at the 1% significance
level, suggesting formally that some FOMC announcements
had triggered multi-dimensional policy shocks. The evi-
dence is in line with the policy environment during that
period when the Federal Reserve deployed a complex mix
of policy tools including the reduction of the target federal
funds rate gradually to the zero lower bound, forward guid-
ance about future rate policy, large-scale purchases of both
mortgage-backed securities and US Treasury securities, and
policies aimed at stabilizing dysfunctional financial markets
(Bernanke, 2020).

In the postcrisis period, we again find a low-dimensional
structure for policy shocks. Specifically, during the 2010–
2012 subsample, we do not reject the r = 1 null hypothe-
sis at the 1% significance level. This likely reflects the lim-
ited policy tools at the central bank’s disposal during the
early recovery phase after the crisis. Interestingly, for the

14The null hypothesis with r = 0 is overwhelmingly rejected in the data,
suggesting the presence of volatility jumps; this is consistent with prior
findings of Bollerslev et al. (2018).
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TABLE 4.—REJECTION DECISION OF RANK TESTS FOR NON-FOMC ANNOUNCEMENTS

Subsample Periods

Null 2001–2018 2001–2003 2004–2006 2007–2009 2010–2012 2013–2015 2016–2018

r = 1 No No No No No No No
r = 2 No No No No No No No
r = 3 No No No No No No No

We report the rejection decisions of the rank tests for the spot covariance jump matrix for the full sample (column 1) and 3-year subsamples (columns 2–7) for the inflation, initial jobless claims, and the nonfarm
payroll announcements. The rows correspond to null hypotheses with rank r = 1, 2, and 3, respectively. The test is implemented for �n = 3 minutes and kn = 30. The significance level is fixed at 1%.

2013–2015 and 2016–2018 subsamples, we reject the r =
1 null hypothesis and, hence, find evidence for two-
dimensional policy shocks. Relative to the 2010–2012 pe-
riod, the higher rank in these two later periods may be at-
tributed to two important policies. The first pertains to a se-
quence of decisions on the QE program. After Bernanke’s
congressional appearance in May 2013, hints that asset pur-
chases might begin to slow led to a “taper tantrum” in
bond markets. In its September 18, 2013, announcement, the
FOMC clarified that it would not immediately slow down
the pace of asset purchasing. The Federal Reserve then an-
nounced its decision to taper QE on December 18, 2013,
and ended the asset purchasing program in October 2014.
The other policy concerns raising the target federal funds
rate. Following the ending of the QE program, the FOMC
carefully indicated the possibility of a rate increase in its an-
nouncements throughout 2015, and eventually raised the rate
by 0.25% on December 16, 2015. The target rate gradually
rose to the [1.75%, 2%] range by the end of our sample pe-
riod (August 13, 2018).

The evidence above shows that the jump in spot covari-
ance matrix of bond prices triggered by the FOMC an-
nouncement is generally of reduced rank, even in the more
recent period associated with unconventional monetary pol-
icy. It is thus possible to carry out heteroskedasticity-based
structural identification in the spirit of Rigobon (2003) us-
ing changes in high-frequency volatility estimates. Note that
this empirical regularity is mainly driven by the elevated
trading activity in the (short) post-announcement window,
when the new information is incorporated into the asset
prices, rather than because of any “abnormal” volatility dy-
namics in the pre-announcement window. To illustrate this
point concretely and further buttress the findings in table
3, we replace the pre-announcement “control” cτ− with a
post-announcement version c(τ+1)+ (i.e., the next-day spot
covariance matrix at the same time of day as cτ+) and test
the rank of cτ+ − c(τ+1)+. The resulting rejection decisions
are exactly the same as those reported in table 3, confirming
that the findings are robust to the selection of “control,” or
nonannouncement, time windows.

The evidence for increased dimension of the policy shock
triggered by FOMC announcements following the start of
the unconventional monetary policy by the Federal Reserve
can be contrasted with the reaction of the yield curve fol-
lowing the other types of prescheduled macroeconomic an-
nouncements. More specifically, we look at the CPI, the
initial jobless claims (IC), and the nonfarm payroll (NFP)

announcements. All of them are issued at 8:30 EST, and
we find altogether 1,248 of them during our sample period.
These events are typically associated with nontrivial change
in the volatility matrix of the four fixed-income contracts
that we analyze here. We conduct our rank test for �cτ trig-
gered by these announcements by pooling the data in the
same subperiods as those reported in table 3. The results
from the test are reported in table 4 and are in sharp con-
trast to those for the FOMC announcements presented in ta-
ble 3. Mainly, throughout our sample period, we find no ev-
idence that the jump �cτ triggered by the CPI, IC, and NFP
announcements is multidimensional. This reinforces the ob-
servation that the evidence for higher rank of the generated
policy shock triggered by FOMC announcements is to do
with the change of monetary policy around the period of the
financial crisis rather than because of a change in the overall
economic environment.

In summary, the multidimensionality of policy shocks un-
covered by our rank test is closely in line with the underlying
economic narrative and demonstrates the empirical useful-
ness of the proposed econometric method. The finding that
FOMC announcements during the precrisis period triggered
one-dimensional monetary shocks confirms the view that
conventional monetary policy has its direct impact mainly
on the short end of the yield curve. Meanwhile, the rank
test also formally reveals the multifaceted nature of the Fed-
eral Reserve’s policy shocks during the Great Recession and
its aftermath. Our findings also have useful implications for
studies on the identification and estimation of the effect of
monetary shocks on asset prices and macroeconomic quan-
tities (see, e.g., Rigobon & Sack, 2004; Bernanke & Kuttner,
2005; Nakamura & Steinsson, 2018).

V. Conclusion

Motivated by the recent literature on the high-frequency
identification of policy shocks, we propose a test for the
rank of spot covariance jump matrix of asset prices at macro
news announcement times. The test statistic is formed us-
ing the eigenvalues of the covariance jump matrix estimated
nonparametrically from high-frequency asset returns in lo-
cal windows around announcement times. The test statis-
tic has a nonstandard limiting distribution. We propose an
easy-to-implement bootstrap algorithm to compute the crit-
ical value, and justify its asymptotic validity. Empirically,
we apply the method to test the dimensionality of mone-
tary policy shocks triggered by FOMC announcements using
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intraday transaction data for interest rate futures contracts in
a sample from 2001 to 2018. We document empirical evi-
dence for one-dimensional policy shocks before the Great
Recession, when conventional monetary policy largely pre-
vailed, and find support for multidimensional policy shocks
in the era of unconventional monetary policy, especially dur-
ing the 2007–2009 financial crisis.
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