
Pao-Li Chang∗ Kefang Yao† Fan Zheng‡

November 13, 2020

Abstract

In this paper, we follow the micro-to-macro approach of Fajgelbaum et al. (2020) and analyse the impacts of the trade war for the Chinese economy. We use highly disaggregated trade and tariff data in monthly frequency to identify the demand/supply elasticities of Chinese imports/exports, combined with a general-equilibrium model for the Chinese economy (that takes into account input-output linkages, and regional heterogeneity in employment and sector specialization) to quantify the partial and general equilibrium effects of the tariff war at the product/sector/region/aggregate level. This complements the studies that focus on the ex post micro-level response of the U.S. economy by Amiti, Redding and Weinstein (2019), Fajgelbaum et al. (2020), and Cavallo et al. (2020).

Key Words: Chinese Economy; Tariff War; Elasticity Estimation; Regional Labor Market Adjustment; Welfare Analysis.

JEL Classification: F13; F14; F16.

∗Associate Professor, School of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903. Email: plcchang@smu.edu.sg. Tel: +65-68280830. Fax: +65-68280833.
†Ph.D. candidate, School of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903. Email: kfyao.2016@phdecons.smu.edu.sg.
‡Ph.D. candidate, School of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903. Email: fan.zheng.2018@phdecons.smu.edu.sg.
1 Introduction

During 2018–2019, in an unprecedented manner since 1930, the U.S. Trump administration enacted seven waves of tariff increase that affected Chinese exports. This includes the first wave of tariff increase in February 2018 on solar panel and washing machine imports, and the second wave of tariffs that targeted iron, aluminum, and steel products. They were followed by three tranches of tariff hikes in 2018 and two tranches in 2019 targeting imports specifically from China. In total, these seven rounds of tariff increase covered $325.1 billion (14.27%) of Chinese exports across 6428 HS-8 products (using 2017 pre-war trade values). The average U.S. statutory tariff rate on these Chinese products increased from 3.55% to 28.53%.

In return, China raised tariffs on U.S. products (four rounds in 2018 and two rounds in 2019). In total, 5833 distinct HS-8 products imported from the U.S. were targeted during the period 2018:1–2019:12. In 2017 trade values, these affected $109.3 billion (or 5.93%) of Chinese imports. The average retaliation tariff rate increased from 6.46% to 21.27%. As China raised its tariffs against the U.S. products, it also unilaterally lowered its Most-Favored-Nation (MFN) tariff rates on imports from non-U.S. sources where the MFN rate applies. This took place in four waves during 2018:5–11. In total, the lists covered 3054 products, with a pre-war trade value of $145.7 billion (or 7.90% of Chinese imports in 2017). The average tariff rate across these products decreased from 9.89% to 6.82%.

In the literature, Amiti, Redding and Weinstein (2019), Fajgelbaum et al. (2020), and Cavallo et al. (2020) evaluated the ex-post impacts on the U.S. economy of the 2018–2019 trade war (in terms of prices, import/export quantities, real wages, and welfare), given events up to 2018:12, 2019:4, and 2019:7, respectively. These studies often employ highly disaggregated product and tariff line classifications, with a strong focus on identifying the U.S. demand and supply structure at the micro product/variety level and their corresponding elasticities. On the other hand, studies by Charbonneau and Landry (2018), Guo et al. (2018) and Itakura (2020) conducted ex-ante predictions of the trade-war effects using, respectively, quantitative models of Caliendo and Parro (2015) and the GTAP CGE model (based on tariff changes imposed in the early phase of the trade war and/or proposed tariff changes at the time of their studies). Given the nature of their modelling frameworks, the trade and tariff changes are typically organized at the sector level, with emphasis on general equilibrium adjustment across sectors and countries. Li et al. (2020) similarly examined the welfare impacts of the trade war based on the GTAP model, but with analysis incorporating the tariff revisions as of 2020:3 (after the Phase One Deal was reached between the U.S. and China on December 13, 2019). The trade elasticities in these studies are often taken from the
literature based on sector-level trade analysis or built-in parameters assumed by the GTAP models.

In this paper, we follow the micro-to-macro approach of Fajgelbaum et al. (2020) and analyse the impacts of the trade war for the Chinese economy. We use highly disaggregated trade and tariff data in monthly frequency to identify the demand/supply elasticities of Chinese imports/exports, and a general-equilibrium model for the Chinese economy (that takes into account input-output linkages, and regional heterogeneity in employment and sector specialization) to quantify the general equilibrium effects of the tariff war at the product/sector/region/aggregate level. In particular, we compile China’s import and export data in monthly frequency for the period 2017:1–2019:12, in terms of both quantities and values, at the 8-digit Harmonized System (HS) level. We similarly compile the Chinese tariff rates on imports (at the HS-8 level) and the foreign tariff rates on China’s exports (at the HS-6 digit) in monthly frequency, which are constructed based on the baseline statutory tariff rates implemented across countries at the end of 2017 and the tariff changes associated with the tariff war as announced by the Ministry of Finance, China (and the U.S. Trade Representative) during 2018:1–2019:12.

Corresponding to the setup of Fajgelbaum et al. (2020) for the U.S. economy, the demand system we estimate for the Chinese economy builds in reallocations across imported varieties (defined as country-product pairs), across imported products (defined as 8-digit HS product codes), and between imported and domestic products within a sector (defined as a 2-digit GB/T code, a standard China Industry Classification System). This demand system is interacted with foreign export supply at the variety level, and with their joint effects on prices and quantities aggregated up the hierarchy of demand to the product and sector levels. As highlighted by Fajgelbaum et al. (2020) and Zoutman et al. (2018), the estimation of the import demand and foreign export supply elasticities rely on changes in tariffs that are uncorrelated with demand and supply shocks at the variety level. Tests are conducted to support the validity of using tariff shocks during the period 2018–2019 as a source of identification. Table A.1 summarizes the partial (direct) impacts on Chinese imports and exports, using the elasticity estimates and the average tariff changes due to the trade war. Imports of U.S. products targeted by Chinese import tariffs fell on average 17.76%; imports of products with targeted varieties fell on average 1.38%; and imports in sectors with targeted varieties fell on average 2.69%. The MFN tariff cuts extended by China on MFN non-U.S. sources of imports cushioned the negative impacts above substantially. Imports from these sources are estimated to have increased by 4.46% for targeted varieties, 0.02% for targeted products; and 0.03% for targeted sectors due to the tariff cuts. With the above opposing effects combined, the overall drop in Chinese imports of targeted varieties is estimated to be

3
1.68%; and that of targeted products/sectors to be merely 0.01%. On the other hand, Chinese products targeted by the U.S. tariffs fell by 9%. The estimated impacts on China’s imports are in general smaller than the U.S. counterpart reported by Fajgelbaum et al. (2020). This is due to two reasons. First, the elasticities we estimate for the Chinese economy are smaller in magnitude than the U.S. counterparts obtained by Fajgelbaum et al. (2020); thus the response of imports to given tariff increase is smaller in the case of China. In addition, the quantum of Chinese imports subject to the Chinese retaliatory tariffs is smaller than that of U.S. imports targeted by the U.S. tariff hikes.

We then simulate for the Chinese economy the general-equilibrium effects of the tariff shocks, given the elasticity parameters estimated above (at variety/product/sector level), and a supply-side structure calibrated to the observed labor allocation across Chinese sector-provinces, input-output structures across sectors, consumption allocation across non-tradable and tradable sectors, capital/labor/intermediate cost share in sector-level production, and imports and exports across varieties. The system is large in dimension, including endogenous prices for each variety, product, and sector, wages for each sector-province, and final and intermediate expenditures across sectors. Thus, as in Fajgelbaum et al. (2020), the system is solved as a first-order linear approximation in log changes around the pre-war equilibrium in 2017 given the China-U.S. tariff shocks during 2018:1–2019:12.

Table 8 summarizes the effects on producers/exporters (EVX), consumers/buyers of imports (EVM), and tariff revenue (∆R) in columns (1)–(3) and the aggregate impacts in column (4). Our analysis suggests large negative consequences of the trade war on both Chinese producers and consumers, which dominate the positive tariff revenue increase. The loss of the producers (exporters) is approximately double the loss of the buyers of imports. China sustained an aggregate loss of $21.636 billion, or 0.178% of its GDP, as a result of the trade war. Without counter-retaliation, its loss would have been much larger at $28.491 billion (0.235% of GDP), and largely borne by the producers (exporters). The retaliation against the U.S. imports shifted the burden to the Chinese buyers of imports such that producers (exporters) and buyers (importers) sustained about the same magnitude of loss. With further adjustment in the MFN tariff rates on non-U.S. imports, it lessened the loss of Chinese buyers of imports and shifted part of the burden back to the producers.

To illustrate the variation in exposure to the trade war across provinces in China, we construct the province-level exposure of tradable sectors by first computing the trade-weighted tariff changes by GB/T-2 sector and then mapping them to provinces based on provinces’ employment structure. Figure 2 suggests that China tends to: (A) retaliate against the U.S. on sectors with a relatively high concentration in the outlying provinces such as Xinjiang and Hainan; and (B) reduce MFN tariffs on sectors concentrated in provinces closer to the shore.
such as Shanghai and Beijing. Overall, China’s tariff increase tends to be biased toward inner provinces and turns negative in the Eastern provinces. Added to the burden, Panel (D) suggests that these provinces also faced higher tariff increase in their exports to the U.S.

Figure 3 summarizes the effects of the trade war on real wage across provinces in general equilibrium. Every province experienced a reduction in the tradable real wage. Provinces with larger relative losses are concentrated in the Southeast, whose employment structures were hit more strongly by the U.S. tariff increase. The real wage losses would have been one-level higher without the MFN tariff cuts by China. This contrasts with the finding in Table 8 where the MFN tariff cuts by China worsens the aggregate loss. This implies that the MFN tariff cuts help cushion the impacts on workers/consumers via lower import prices, at the cost of producers (and the owners of capital and fixed structures) who face steeper competition in the product market. Overall, on average across provinces, the nominal wages for workers in tradable sectors decreases by 1.69%. These income losses are however cushioned by a reduced cost of living, as the CPI of tradable goods decreases by 1.16% on average across sectors. As a result, real wages in the tradable sector fall by 0.24%.

The remainder of the paper is structured as follows. Section 2 summarizes the data used for the analysis and the timeline of the tariff events. Section 3 outlines the economic structure modelled. Section 4 presents the estimation results of elasticities and partial-equilibrium impacts on trade. Section 5 presents the general-equilibrium effects at the aggregate, across sources of imports and destination of exports, and across Chinese provinces. Section 6 concludes.

2 Data and Timeline

2.1 Data

We obtained the Chinese baseline tariff rates from the UN TRAINS Database and its tariff rate changes from the Ministry of Finance, China. The former available at the 10-digit Harmonized System (HS) level were aggregated and matched to the latter available at the HS-8 level. Starting with the baseline import tariff rate in January 2017, we update the rates in monthly frequency, given the official announcement by the Ministry of Finance, China, of any tariff changes. Only tariff changes announced in association with the tariff war are used as sources of identification of the import demand and export supply elasticities.

We similarly obtained the baseline tariff faced by Chinese exports from the UN TRAINS Database. These are harmonized across countries up to the HS-6 digit. The information on the U.S. tariff increase associated with the trade war are based on Fajgelbaum et al.
The Office of the United States Trade Representative (USTR) (for tariff changes in 2019). The tariff changes are aggregated from the HS-10 to the HS-6 level based on simple average. The estimations of trade elasticities for Chinese exports are nonetheless conducted at the HS-8 level of trade (with the HS-6 tariffs assigned to all HS-8 products in the category). Because we work with monthly data and the tariffs were implemented in the middle of months, we scale the tariff increases by the number of days of the month they were in effect.

We obtain China’s trade data in monthly frequency for the period 2017:1–2019:12 from the General Administration of Customs, China. We observe the Chinese imports and exports at the HS-8 digit level (which we refer to as products) by the source of imports and the destination of exports. Country-product pairs are referred to as varieties. For each variety, the customs data report the quantities of imports and exports, the value of imports at the CIF price, and the value of exports at the FOB price. The import and export values are reported in current USD values.

We classify sectors using the China Industry Classification system (GB/T 4754), which is widely used in the collection of official statistics on companies and organizations throughout Mainland China. The sector-level data by the GB/T 2-digit level (denoted as GB/T-2) are obtained from China’s National Bureau of Statistics. These include the producer price index for industrial products (PPI); the sectoral output in monthly frequency; and the input-output (IO) tables of 2017. For the analysis in the paper, we classify GB/T-2 sectors as tradable if they are matched to an HS-6 code in the trade data.

For the general equilibrium analysis, we collect the annual employment and wage data at the sector and province level from China Labor Statistical Yearbook of 2017. It records the employment and wage bills of urban units by sector and province. These are available for 31 provinces and 94 GB/T-2 sectors (covering services, agriculture, mining and manufacturing sectors). All 39 tradable sectors are covered individually in both the IO tables and the labor statistics dataset. We aggregate the remaining sectors as one non-tradable sector, reconciling the IO tables and the labor statistics dataset. More details about the data used are provided in Appendix A.

2.2 Timeline

Table 1 reports the list of tariff events enacted by U.S. (Panel A) and China (Panel B1 and B2) during the period 2018:1–2019:12 of the trade war. For each tariff event, we identify the number of HS-8 products targeted and the amount (and percentage) of Chinese exports and imports (in million USD) affected by the U.S. and Chinese tariff changes, respectively,
based on 2017 pre-war trade flows. We summarize the extent of tariff changes in each event by the simple average of tariff rates (in percentage points) across targeted products before and after the implementation. Figure 1 illustrates the timing and the tariff changes.

Panel A of Table 1 reports the seven waves of U.S. statutory tariff increase that affect Chinese exports during the period. This includes the first wave of tariff increase in February 2018 on solar panel and washing machine imports, and the second wave of tariffs that targeted iron, aluminum, and steel products. They were followed by three tranches of tariff hikes in 2018 and two tranches in 2019 targeting imports specifically from China. In total, these seven rounds of tariff increase covered $325.1 billion (14.27%) of total Chinese exports across 6428 HS-8 products (using 2017 pre-war trade flows). The average U.S. statutory tariff rate on these Chinese products increased from 3.55% to 28.53%.

Panel B1 of Table 1 lists the seven rounds of China’s retaliatory tariffs on U.S. products. In total, 5833 distinct HS-8 products imported from the U.S. were targeted. In 2017 trade values, these affected $109.3 billion (or 5.93%) of Chinese imports. The average retaliation tariff rate increased from 6.46% to 21.27%. The first wave of tariff increase by China against imports from U.S. were enacted on April 2, 2018. China increased tariff (by 15%-25%) on U.S. products (worth about $3 billion), including fruit, wine, seamless steel pipes, pork and recycled aluminum, in response to the U.S.’ steel and aluminum tariffs. In July and August 2018, China implemented two rounds of retaliatory tariff increase (by 25%) on U.S. products, including agricultural products, automobiles and aquatic products (List 1), and commodities such as coal, copper scrap, fuel, buses and medical equipment (List 2), respectively. In September 2018, China continued to respond to U.S. tariffs and enacted another round of tariff increases on about $60 billion worth of U.S. goods (List 3). In January 2019, China revised its lists and exempted U.S. autos (from an extra 25% tariff) and certain U.S. auto parts (from an extra 5% tariffs). But as the tariff war escalated, in June and July 2019, China further increased tariffs on more than $68 billion worth of products imported from the U.S.

As China raised its tariffs against the U.S. products, it also unilaterally lowered its MFN tariff rates on imports from non-U.S. sources where MFN rate applies. Panel B2 of Table 1 summaries four waves of China’s MFN tariff cuts in May to November 2018. Products affected include pharmaceuticals (May), autos and ITA products (July), a subset

\footnote{In estimations and welfare analysis, the tariff changes applicable to a month are scaled by the number of days the changes are in effect in a month. Refer to Data appendix for additional details. For illustration purposes only, in Table 1 and Figure 1 the implementation month is taken to be the current month if the implementation date is before the 15th of the month and the next month otherwise. The ‘before’ and ‘after’ simple monthly average tariff rates correspond to that in the month before, and in the month after, the implementation month.}
of consumer goods (July) and industrial goods (November). In total, the lists covered 3054 products, with a pre-war trade value of $145.7 billion (or 7.90% of Chinese imports in 2017). The average tariff rate across these products decreased from 9.89% to 6.82%.

Table 2 reports the summary statistics for import varieties and Chinese products targeted by the tariff war across GB/T-2 codes. For Chinese imports, we report the number of targeted HS-8 products and varieties, and the means and standard deviations of tariff increases across targeted varieties within GB/T-2 codes. Chinese sectors that receive the most protection from tariff increase on U.S. products are agricultural products, chemicals, fuel, metals and waste resources. In contrast, the sectors of food, textile, art crafts and automobiles are shown to be subject to MFN tariff cuts by a larger extent. On the export side, the table indicates that Chinese sectors that faced the largest tariff increase by the U.S. are metals, electrical equipment, machinery and computer products.

3 Economic Structure

In this section, we set up the economic structure à la Fajgelbaum et al. (2020). Sections 3.1–3.2 describe the demand/supply structure that guides the estimation in Section 4. Section 3.3 develops a full general equilibrium system that forms the basis of the welfare analysis in Section 5.

3.1 The Demand System and Preferences

Suppose there are S tradable sectors indexed by s. Within each of these sectors, aggregate demand (from producers and consumers) follows a three-tier CES structure: in the first tier, goods are differentiated by domestic and imported goods (denoted as D_s and M_s respectively); in the second tier, by products (indexed by g) within the domestic or imported bundle; and in the third tier, by varieties (indexed by ig) differentiated by country of origin i within each imported product.

In particular, in the first tier, the demand from consumers for consumption (C_s) and the demand from producers for intermediate inputs (I_s) follow the CES structure with an elasticity of substitution κ between the domestic and imported goods:

$$C_s + I_s = \left(A_{Ds}^{\frac{1}{\kappa}} D_s^{\frac{\kappa-1}{\kappa}} + A_{Ms}^{\frac{1}{\kappa}} M_s^{\frac{\kappa-1}{\kappa}} \right)^{\frac{\kappa}{\kappa-1}},$$

and sector-level demand shifters for domestic and imported goods (A_{Ds} and A_{Ms}), respec-
tively. This implies a sector-level price index:

\[P_s = \left(A_{Ds} P_{Ds}^{1-\kappa} + A_{Ms} P_{Ms}^{1-\kappa} \right) \frac{1}{1-\kappa} , \]

(2)
given the price indices of domestic and imported goods \((P_{Ds} \text{ and } P_{Ms})\) in sector \(s\).

In the second tier, the domestic or imported composite \((D_s \text{ and } M_s)\) are each CES aggregate of products within the sector \((d_g, m_g)\), with an elasticity of substitution \(\eta\) and demand shifter \(a_{Dg} \text{ and } a_{Mg}\) for \(g \in G_s\):

\[D_s = \left(\sum_{g \in G_s} a_{Dg}^{1/\eta} d_g^{\eta-1} \right)^{\frac{\eta}{\eta-1}} , \]

(3)
\[M_s = \left(\sum_{g \in G_s} a_{Mg}^{1/\eta} m_g^{\eta-1} \right)^{\frac{\eta}{\eta-1}} . \]

(4)
The corresponding price indices are:

\[P_{Ds} = \left(\sum_{g \in G_s} a_{Dg} p_{Dg}^{1-\eta} \right) \frac{1}{1-\eta} , \]

(5)
\[P_{Ms} = \left(\sum_{g \in G_s} a_{Mg} p_{Mg}^{1-\eta} \right) \frac{1}{1-\eta} . \]

(6)
given the prices of domestic and imported products \((p_{Ds} \text{ and } p_{Ms})\) for \(g \in G_s\).

Finally, in the third tier, the imported products \((m_g)\) are further CES aggregate of varieties \((m_{ig})\) differentiated by country of origin \(i\), with an elasticity of substitution \(\sigma\) and demand shifter \(a_{ig}\):

\[m_g = \left(\sum_i a_{ig}^{1/\sigma} m_{ig}^{\sigma-1} \right)^{\frac{\sigma}{\sigma-1}} , \]

(7)
and the associated price index:

\[p_{Mg} = \left(\sum_i a_{ig} p_{ig}^{1-\sigma} \right) \frac{1}{1-\sigma} , \]

(8)
given the variety price \(p_{ig}\). The above demand system implies that the value of demand for
domestic goods and imported goods in sector s are:

$$P_{Ds} D_s = E_s A_{Ds} \left(\frac{P_{Ds}}{P_s} \right)^{1-\kappa}, \quad (9)$$

$$P_{Ms} M_s = E_s A_{Ms} \left(\frac{P_{Ms}}{P_s} \right)^{1-\kappa}, \quad (10)$$

where E_s are aggregate expenditures in sector s (by both final consumers and firms). In turn, the value of imports for product g in sector s is:

$$p_{Mg} m_g = P_{Ms} M_s a_{Mg} \left(\frac{p_{Mg}}{P_{Ms}} \right)^{1-\eta}, \quad (11)$$

and the quantity imported of product g’s variety from country i is:

$$m_{ig} = m_g a_{ig} \left(\frac{p_{ig}}{p_{Mg}} \right)^{-\sigma} \quad (12)$$

where a_{ig} is a demand shock and p_{ig} is the consumer price of the variety m_{ig}. Given ad valorem tariff rate τ_{ig} imposed on a variety and the variety’s CIF price p_{ig}^* before tariff, the consumer price of the variety is:

$$p_{ig} = (1 + \tau_{ig}) p_{ig}^*. \quad (13)$$

In summary, the three-tier demand system described here depends on three elasticities: across imports and domestic goods within sector, κ; across products within import or domestic composite, η; and across imported varieties within product, σ.

In the general equilibrium, to study the regional effects of tariffs, we divide China into R regions (effectively provinces). Each region is indexed by r and the set of regions is denoted as \mathcal{R}. There is one non-tradable sector in addition to the set of tradable sectors described above. Tradable sectors are freely traded within China but subject to trade costs internationally. The representative consumer in each region r is assumed to have a Cobb-Douglas preference over the non-tradable and tradable goods:

$$\beta_{NT} \ln C_{NT,r} + \sum_{s \in S} \beta_s \ln C_{sr} \quad (14)$$

where $C_{NT,r}$ is the consumption of the homogeneous non-tradable good, C_{sr} is the consumption of the tradable goods of sector s, and the β’s add up to 1. Consumers in a region r faces the price of the non-tradable good $P_{NT,r}$ and the price index P_s for each sector s.

10
3.2 The Foreign Counterpart

For each trade partner, its export supply to China and its import demand for Chinese products at the variety level are specified as follows to fully characterize the international markets. For a product from country \(i\), China faces an inverse foreign export-supply curve according to:

\[
p_{ig}^* = z_{ig}^* m_{ig}^*
\]

where \(z_{ig}^*\) is a foreign export supply shifter, and \(\omega^*\) is the inverse foreign export supply elasticity. The larger the parameter is, the more China can extract a decrease in the supply price from the exporter and hence the larger the potential gain from imposing import tariffs.

The foreign import demand for the variety from China of product \(g\) is assumed to be similar to China’s import variety demand:

\[
x_{ig} = a_{ig}^* \left((1 + \tau_{ig}^*) p_{ig}^X\right)^{-\sigma^*},
\]

where \(x_{ig}\) is country \(i\)’ demand for product \(g\) from China, \(a_{ig}^*\) is a foreign import demand shifter, \(\tau_{ig}^*\) is the ad valorem tariff set by country \(i\) on China’s exports of good \(g\), \(p_{ig}^X\) is the price received by China’s exporters, and \(\sigma^*\) is the corresponding foreign import demand elasticity.

3.3 The Supply-Side Structure

Production of tradable goods in each sector-region uses workers, intermediate inputs, and a fixed factor (capital and structures). In the short-run, the primary factors of production, capital and labor, are assumed to be immobile across regions and sectors. In deriving the system’s hat algebra, Appendix [B] also considers the implications of perfect labor mobility across sectors. In particular, the production of tradable goods in a sector-region is assumed to be:

\[
Q_{sr} = Z_{sr} \left(\frac{I_{sr}}{\alpha_{Is}}\right)^{\alpha_{Is}} \left(\frac{L_{sr}}{\alpha_{Ls}}\right)^{\alpha_{Ls}}
\]

where \(Z_{sr}\) is the productivity of sector \(s\) in region \(r\), \(I_{sr}\) is the use of intermediate input bundle, \(L_{sr}\) is the labor input, and \(\alpha_{Is}\) and \(\alpha_{Ls}\) are the shares of intermediates and labor in total sales of sector \(s\), respectively.

The intermediate input bundle used by sector \(s\) is assumed to be a Cobb-Douglas aggregate of inputs from other sectors, with \(\alpha_{s's}^*\) representing the share of input \(s'\) in total sales of
sector s. This implies the cost of the intermediate input bundle used by sector s is:

$$
\phi_s \propto \prod_{s' \in S} P^{s'_{Is'}}_{s'r} \quad (18)
$$

The owners of the fixed factor choose inputs I_{sr} and L_{sr} to minimize the cost of production, given the cost of the intermediate input bundle ϕ_s; the wage rate w_{sr} in sector s and region r; and the production target Q_{sr}. Given the producer price p_s in sector s, the fixed factor owners then choose the production level Q_{sr} that maximizes the profit:

$$
\Pi_{sr} \equiv \max_{Q_{sr}} p_s Q_{sr} - \phi_s I_{sr}(Q_{sr}) - w_{sr} L_{sr}(Q_{sr})
$$

$$
= \max_{Q_{sr}} p_s Q_{sr} - (1 - \alpha_{Ks}) \left(\frac{\phi_s w_{sr}^{\alpha_{Ls}}}{Z_{sr}}Q_{sr} \right)^{\frac{1}{1-\alpha_{Ks}}},
$$

where $\alpha_{Ks} \equiv 1 - \alpha_{Is} - \alpha_{Ls}$ is the share of capital cost in total sales of sector s. This implies an optimal output choice as a function of output and factor prices:

$$
Q_{sr} = Z_{sr}^{\frac{1}{1-\alpha_{Ks}}} p_s^\alpha_{Ks} I_{sr}^{\frac{1}{\alpha_{Ks}}} L_{sr}^{\frac{\alpha_{Ls}}{\alpha_{Ks}}},
$$

and the national production in sector s:

$$
Q_s = \sum_{r \in R} Q_{sr}. \quad (20)
$$

The non-tradable sector is assumed to use only labor in production: $Q_{rNT}^{NT} = Z_{rNT} L_{rNT}^{NT}$, where Z_{rNT}^{NT} is the labor productivity of region r in the non-tradable sector, and L_{rNT}^{NT} is the employment in this sector in region r.

Production by sector Q_s is assumed to be allocated across products q_g at a constant marginal rate of transformation according to:

$$
\sum_{g \in G_s} \frac{q_g}{z_g} = Q_s, \quad (22)
$$

where z_g is a product-level productivity shock. Assuming perfect competition, this pins down the local price of the domestic variety of product g at $p_{Dg} = \frac{p_s}{z_g}$. The price of the same variety when shipped to a foreign country i is $p_{Xig} = \delta_{ig} p_{Dg}$, given the iceberg trade cost...
factor δ_{ig}. The market-clearing for the local variety of product g requires that:

$$q_g = (a_{Dg}D_s) \left(\frac{P_{Dg}}{P_{Ds}} \right)^{-\eta} \delta_{ig} a_{ig}^* \left(\frac{1 + \tau_{ig}^*}{x_{ig}} \right)^{-\sigma^*}$$ \hspace{1cm} (23)

Labor income and profits are assumed to be spent where they are generated. Total tariff revenue R and nation trade deficit D are assumed to be distributed to each region in proportion to the population share b_r of the region. Thus, by accounting identity, final expenditures in region r are:

$$X_r = w_{NT,r}L_{NT,r} + \sum_{s \in S} w_{sr}L_{sr} + \sum_{s \in S} \Pi_{sr} + b_r (D + R)$$

$$= P_{NT,s}Q_{NT,r} + \sum_{s \in S} (1 - \alpha_{Is}) p_{sr}Q_{sr} + b_r (D + R).$$ \hspace{1cm} (24)

Finally, the optimal output choice Q_{sr} in (20) implies an (inverse) labor demand function in sector s of region r:

$$w_{sr} = \left(\frac{Z_{sr}p_s}{(L_{sr}/\alpha_{Is})\phi_s^{\alpha_{Is}}} \right)^{\frac{1}{1-\alpha_{Is}}},$$ \hspace{1cm} (25)

and an average wage for the tradable sectors in region r:

$$w^T_r = \frac{\sum_{s \in S} w_{sr}L_{sr}}{\sum_{s \in S} L_{sr}}.$$ \hspace{1cm} (26)

The wage for the non-tradable sector is then pinned down by the market-clearing condition:

$$w^{NT}_{r} = \frac{\beta_{NT}X_r}{L^{NT}_r}.$$ \hspace{1cm} (27)

A general equilibrium given tariffs consists of import prices $\{p_{ig}^*\}$, producer prices $\{p_s\}$, price indices $\{p_{Mg}, p_{Ms}, P_{Ds}, P_s, \phi_s\}$, tradable sector wages $\{w_{sr}\}$ and non-tradable sector wages $\{w^{NT}_r\}$ such that (i) given these prices, consumers, producers and workers optimize; (ii) domestic markets for final goods and intermediates clear, international markets for imports and exports of every variety clear, and labor markets for every sector and region clear; and (iii) the government budget is balanced.
4 Identification and Estimation

In this section, we estimate the 3-tier demand system using the variation of import tariffs associated with the trade war as exogenous instruments, and conduct pretrend test to support the validity of the instruments.

4.1 China import demand and foreign export supply elasticities at variety level (σ, ω^*)

Following Fajgelbaum et al. (2020), we use variation in China’s import tariffs to estimate China’s import demand and foreign export supply elasticities at the variety level. As suggested by Zoutman, Gavrilova and Hopland (2018), if the tariff variations are uncorrelated with the unobserved import demand and export supply shocks, we can identify the demand and supply elasticities simultaneously with the variation in tariffs as the instrument. The idea is that given the price received by foreign suppliers, an increase in tariff shifts down the import demand curve and helps trace the foreign export supply curve. Similarly, given the price paid by buyers of imports, a tariff increase shifts up the foreign export supply curve, helping to identify the import demand curve.

In particular, we will use China’s increase in import tariffs against the U.S. products, and decrease in MFN tariffs against non-U.S. sources, announced in association with the U.S.-China trade war during 2018:1–2019:12 as the instrument. Tariff changes due to free-trade agreements or regular adjustments (e.g., twice yearly MFN tariff revisions) are not included/used as exogenous variations. Specifically, by adding a time subscript (t) and taking the log-difference in the import demand equation (12) and foreign export supply equation (15), we have:

\[
\begin{align*}
\Delta \ln m_{igt} &= \psi_{mg} + \psi_{st} - \sigma \Delta \ln p_{igt} + \varepsilon_{migt}, \\
\Delta \ln p^*_{igt} &= \psi_{p^*g} + \psi_{p^*st} + \omega^* \Delta \ln m_{igt} + \varepsilon_{p^*igt},
\end{align*}
\]

(28)

(29)

where $\varpi = \{p^*, m\}$, and ψ_{mg} and ψ_{p^*g} are variety and sector-time fixed effects, ε_{migt} and ε_{p^*igt} are the respective import demand and export supply residuals, collecting shocks to import demand $\Delta \ln a_{igt}$ and export supply $\Delta \ln z^*_{igt}$, respectively, and other unobservables.

In contrast to the U.S., which slapped tariffs against multiple sources in selected sectors and also against China in multiple products, China’s tariff increase is mainly targeted at the U.S. versus non-U.S. MFN sources of imports in selected products. There are limited variations across countries; thus, we cannot adopt the same set of fixed effects (FE) controls as in Fajgelbaum et al. (2020). In particular, we drop the country-time (it) FE, and replace...
the remaining set of FEs \((gt, is)\) by \((ig, st)\).

Then, as the identification strategy described above suggests, the import demand elasticity \(\sigma\) and the foreign (inverse) export supply elasticity \(\omega^*\) can be consistently estimated by instrumenting the duty-inclusive price \(\Delta \ln p_{igt}\) and imports \(\Delta \ln m_{igt}\) with the tariff \(\Delta \ln \tau_{igt}\) in the two equations (28) and (29), respectively.

The estimation results are reported in Table 3. Columns (1) to (4) report the reduced-form regressions of the four key outcomes, the import value, the import quantity, the before-duty price and the duty-inclusive price on the tariff changes \(\Delta \ln (1 + \tau_{igt})\) due to the trade war. Column (5) reports the IV regression estimation of foreign (inverse) export supply elasticity \(\hat{\omega}^*\) based on equation (29); with its first stage in Column (2). Column (6) reports the IV regression estimation of import demand elasticity \(\hat{\sigma}\) based on equation (28); with its first stage in Column (4).

Columns (1) and (2) show that the import value (before-duty) and quantity decrease significantly with the tariff increase. The elasticities of these two outcomes in response to tariff changes are very similar in magnitude. The result in Column (3) indicates that the before-duty unit values do not respond to import tariff changes, suggesting a complete pass-through of tariffs to duty-inclusive prices. This is consistent with the result in Column (4), where the duty-inclusive unit value responds to tariff with an elasticity close to one.

The IV estimate of \(\omega^*\) in Column (5) is statistically insignificant and numerically negligible. This implies that we cannot reject a horizontal foreign export supply curve, consistent with the finding of a complete pass-through of tariffs in the reduced-form regressions. Column (6) reports the IV estimation of import demand elasticity \(\hat{\sigma}\), statistically significant at \(\hat{\sigma} = 1.120\) (std. err. \(= 0.3158\)). We can use the variety-level import demand and export supply equations (28) and (29) to impute the average change in import values of the target varieties, given the elasticity estimates:

\[
\Delta \ln (p^*_{igt}m_{igt}) = -\hat{\sigma} \frac{1 + \hat{\omega}^*}{1 + \hat{\omega}^*\hat{\sigma}} \Delta \ln (1 + \tau_{igt}) = 1.68\%.
\]

The above calculation includes both increase in tariffs against the U.S. products and MFN tariff cuts on non-U.S. MFN sources of imports. If we consider only China’s retaliation tariffs against the U.S. products, the average change in import value would be negative at \(-17.76\%\), as reported in Table A.1. The MFN tariff cuts in response to the tariff war thus cushion the drop in imports from the U.S. substantially.

\(^2\)Since we measure the duty-inclusive price as the product of duty-exclusive price and the tariff factor: \(p_{igt} = p^*_{igt}(1 + \tau_{igt})\), the estimate in Column (4), by construct, equals one plus the estimate in Column (3), subject to sample attrition across the two estimations.
4.2 Demand elasticity across products (η)

The demand elasticity η across products is identified by aggregating the variety-level tariff changes into the product level. By adding a time subscript, taking the log-difference over time of equation (11), we obtain:

$$\Delta \ln s_{Mgt} = \psi_{st} + (1 - \eta) \Delta \ln p_{Mgt} + \varepsilon_{Mgt},$$

(30)

where $s_{Mgt} \equiv \frac{p_{Mgt}m_{gt}}{P_{Mst}M_{st}}$ is the import share of product g in sector s, $\psi_{st} \equiv -(1 - \eta) \Delta \ln P_{Mst}$ is a sector-time fixed effect controlling for the sector-level price index of imports, and the residual term ε_{Mgt} captures the product-level import demand shock $\Delta \ln a_{Mgt}$ and other unobservables.

The import share of each product is observed in data. We construct the product-level import price index from variety-level prices as in Feenstra (1994), which accounts for entry and exit of varieties in two successive periods:

$$\Delta \ln p_{Mgt} = \frac{1}{1 - \sigma} \ln \left(\sum_{i \in C_{gt}} s_{igt} \left[e^{(1 - \sigma) \Delta \ln \left(p_{igt}^*(1 + \tau_{igt}) \right) + \Delta \ln a_{igt}} \right] \right) - \frac{1}{1 - \sigma} \ln \left(\frac{S_{g,t}(C_{gt})}{S_{g,t-1}(C_{gt})} \right),$$

(31)

where $s_{igt} \equiv \frac{p_{igt}m_{igt}}{\sum_{i' \in C_{igt}} p_{i't}m_{i't}}$ is the share of continuing imported variety from country i in all continuing imported varieties at period t, C_{gt} is the set of continuing imported varieties in product g between periods $t - 1$ and t, and $S_{g,t}(C_{gt}) \equiv \sum_{i' \in C_{igt}} p_{i't}m_{i't}$ is the share of continuing imported value in total imported value of good g at time t. The first term in equation (31) corresponds to the conventional price index for the set C_{gt} of continuing imported varieties. The second term adjusts the price index for the effect of new and exited varieties.\(^3\) In the construction of the product-level price index, we use the estimated σ from equation (28) and the residuals (which reflect mean-zero demand shocks $\Delta \ln a_{igt}$) from Section 4.1.

Applying the same logic as in the estimation of variety-level elasticities σ and ω^*, we use product-level tariff changes as instruments for $\Delta \ln p_{Mgt}$. We construct the instrument variable by the simple average (instead of import-value weighted average) of the tariff changes across the continuing imported varieties:\(^4\)

$$\Delta \ln Z_{Mgt} \equiv \ln \left(\frac{1 + \tau_{igt}}{1 + \tau_{igt,t-1}} \right) = \ln \left(\frac{1}{N_{igt}} \sum_{i \in C_{gt}} e^{\Delta \ln \left(1 + \tau_{igt} \right)} \right),$$

(32)

\(^3\)Equation (31) can be derived from the product-level import price index in equation (8) and the variety demand equation (12).

\(^4\)As argued by Fajgelbaum et al. (2020), this avoids mechanical correlation of the instrument with the product-level trade share.
where N_{gt}^c is the number of continuing imported varieties in product g between $t - 1$ and t.

Table 4 presents the estimation results of equation (30). Column (1) shows the impact of the instrument on the product-level trade share: higher product-level tariffs lower the share of the targeted products. This implies that diversion to non-U.S. import sources is less than sufficient to offset the decrease in imports from the U.S. within the same product category. Column (2) provides the first-stage result of the IV regression of (30): the sign of the coefficient is positive as expected, since the product-level price index is aggregated from duty-inclusive variety prices. Column (3) reports the IV estimate of the coefficient of the product-level import demand equation (30), which implies an elasticity of $\hat{\eta} = 1.087$. The bootstrapped confidence interval for η, which accounts for the variance of $\hat{\sigma}$ and the demand shocks from the previous step in Section 4.1 is [1.041, 1.131]. Using the elasticity estimate $\hat{\eta}$ and the average change in product-level import tariffs, the average change in import values for targeted products can be computed as:

$$
\Delta \ln (p_{Mgt} m_{gt}) = (1 - \hat{\eta}) \Delta \ln Z_{Mgt} = 0.01\%.
$$

If we consider the partial effects of China’s retaliation tariffs against the U.S. products (but not the MFN tariff cuts), the average change in import value would be larger at -1.38%, as indicated in Table A.1.

4.3 Demand elasticity across domestic and foreign goods (κ)

We further estimate the top-tier elasticity of substitution, κ, between domestic and foreign goods within a sector. The ratio of the expenditure on foreign goods (10) and domestic goods (9) implies that:

$$
\Delta \ln \left(\frac{P_{Mst} M_{st}}{P_{Dst} D_{st}} \right) = \psi_s + \psi_t + (1 - \kappa) \Delta \ln \left(\frac{P_{Mst}}{P_{Dst}} \right) + \varepsilon_{st},
$$

(33)

where ψ_s and ψ_t denote sector and time fixed effects, respectively. The residual ε_{st} captures the relative demand shocks to foreign and domestic goods. The monthly change in the expenditures on domestic goods of sector s, $\Delta \ln P_{Dst} D_{st}$, is not observable in the data. We use the difference between the changes in the sectoral production and exports as its proxy. The change in domestic sectoral price index, $\Delta \ln P_{Dst}$, is assumed to be equal to the change in producer price index (PPI), $\Delta \ln p_{st}$. The change in sectoral price index of imports $\Delta \ln P_{Mst}$ is built in a similar way as in the construction of the product-level import price
index $\Delta \ln p_{Mgt}$:

$$\Delta \ln P_{Mst} = \frac{1}{1 - \eta} \ln \left(\sum_{g \in C_{st}} s_{gt} e^{(1-\eta)\Delta \ln p_{Mgt} + \Delta \ln (a_{Mgt})} \right) - \frac{1}{1 - \eta} \ln \left(\frac{S_{s,t} (C_{st})}{S_{s,t-1} (C_{st})} \right),$$ \hspace{1cm} (34)

where s_{gt} is the share of continuing imported product g in all continuing imported products in sector s, C_{st} is the set of continuing imported products in sector s between periods $t - 1$ and t, and $S_{s,t}(C)$ is the share of products in the set C in total imported value of sector s at time t.\footnote{That is, $s_{gt} \equiv \frac{p_{Mst} m_{gst}}{\sum_{g' \in C_{st}} p_{Mst} m_{g'st}}$, and $S_{s,t}(C) \equiv \frac{\sum_{g' \in C} p_{Mst} m_{g'st}}{\sum_{g' \in C} p_{Mst} m_{g'st}}$.}

We use the estimates of η and $\Delta \ln a_{Mgt}$ from the product-level estimation in Section 4.2.

We instrument for the relative price of imports $\Delta \ln \frac{P_{Mst}}{P_{Dst}}$ using the simple average of tariff changes across the continuing imported products in sector s:

$$\Delta \ln Z_{Mst} \equiv \ln \left(\frac{1}{N^c_{st}} \sum_{g \in C_{st}} e^{\Delta \ln Z_{Mgt}} \right),$$ \hspace{1cm} (35)

where N^c_{st} is the number of continuing imported products in sector s between $t - 1$ and t, and $\Delta \ln Z_{Mgt}$ is the instrument defined in (32).

The estimation results are summarized in Table 5. Column (1) reports the estimated impact of the average sector-level import tariff changes on the sectoral relative import expenditures. Columns (2) and (3) report the first and second stages of the IV estimation of (33), respectively. The estimated coefficients of the two reduced-form specifications in Columns (1) and (2) are of the expected signs, but imprecisely estimated. The IV estimate in Column (3) implies a statistically significant $\hat{\kappa} = 1.173$ (std. err. = 0.3208). The bootstrap confidence interval for $\hat{\kappa}$, which takes into account the estimated $\{\hat{\sigma}, \hat{\eta}\}$ and demand shocks from the previous stages, is $[0.541, 1.385]$. Using the sector-level elasticity estimate, we can impute the average change in the relative import expenditures due to the China’s import tariff changes as:

$$\Delta \ln \left(\frac{P_{Mst} M_{st}}{P_{Dst} D_{st}} \right) = (1 - \hat{\kappa}) \Delta \ln Z_{Mst} = 0.01\%.$$

Table A.1 indicates that the impact due to the tariff increase on U.S. products alone on the sector-level import expenditure share would be -2.69% instead.
4.4 Foreign import demand and China export supply elasticities at variety level (σ^*, ω)

The foreign import demand and China export supply at the variety level are estimated in a similar way as in Section 4.1. Taking log changes of the foreign import demand equation (16) across time, we have:

$$\Delta \ln x_{igt} = \psi^x_{ig} + \psi^x_{st} - \sigma^* \Delta \ln \left((1 + \tau^*_{igt}) p^X_{igt} \right) + \varepsilon^x_{igt},$$

(36)

where we have used the product-destination and sector-time FE to control for the log change of the foreign demand shifter. Because the increase in foreign tariffs against China is only implemented by the U.S., it limits the set of FE we can include compared with Fajgelbaum et al. (2020). Assuming the export supply of China has a symmetric structure as the foreign export supply, that is, $p^X_{igt} = z_{ig}^x x_{igt}^\omega$, we have:

$$\Delta \ln p^X_{igt} = \psi^p_{ig} + \psi^p_{st} + \omega \Delta \ln x_{igt} + \varepsilon^p_{igt},$$

(37)

where ω is the inverse export supply elasticity of China, after controlling for the fixed effects. By analogous arguments as in Section 4.1, we use the variation in foreign tariffs due to the trade war (with nonzero observations only for ig corresponding to the U.S. destination) as instruments for the independent variables in the above two equations to identify σ^* and ω.

Table 6 reports the estimation results. The pattern of these estimates is quite similar to those of σ and ω^* in Table 3: Columns (1) and (2) show that the export value and quantity fell with the tariff increases implemented by the U.S., and Columns (3) and (4) imply that Chinese exporters do not change their price; the incidence of the U.S. tariff increases is largely borne by U.S. buyers of imports. Column (5) reports the IV estimate of ω with its first stage in Column (2). The estimate ($\hat{\omega} = 0.083$) is statistically insignificant, consistent with the reduced-form result that the U.S. faced a horizontal Chinese export supply curve. Column (6) reports the IV estimate of equation (36) with its first stage in Column (4). It implies that $\hat{\sigma}^* = 0.379$ (std. err. = 0.1143). The bootstrapped confidence interval is $[0.142, 0.608]$. The estimates are on the low side, mostly due to the limited variations across countries in tariff changes faced by China.

Given the elasticity estimate and an average increase in U.S. tariffs of 23% on targeted products, the average change in Chinese export values across targeted products is:

$$\Delta \ln \left(p^X_{igt} x_{igt} \right) = -\hat{\sigma}^* \Delta \ln \left(1 + \tau^*_{igt} \right) = -9\%.$$

19
Table A.1 provides the summary of the partial effect estimates of the tariff war on Chinese imports and exports.

4.5 Pre-trend test

The identification of the import demand and export supply system using a single tariff change variable as the instrument requires that the tariff variation is uncorrelated with the demand and supply shocks. In this section, we verify the validity of this condition. We show that the import tariff changes due to the trade war (the 18 events listed in Table 1) are uncorrelated with the prewar trends of the import and export outcomes in terms of: values, quantities, before-duty prices and duty-inclusive prices.

We compute the average monthly change of these outcome variables during 2017:1–2017:12, and regress them against the latest revised tariff change for each variety during the period of 2018:1–2019:12:

\[
\Delta \ln y_{ig,2017} = FE + \beta \Delta \ln (1 + \tau_{ig}) + \epsilon_{ig}. \tag{38}
\]

We conduct the test separately for the three sets of events—China’s retaliatory tariff changes against the U.S., China’s tariff cuts on non-U.S. MFN sources of imports, and U.S. tariff increases against Chinese products—with suitable sets of fixed effects given the dimension(s) of the tariff changes. The results are summarized in Table 7.

Panel A1 shows the pretrend test where we consider China’s retaliatory tariff increase against U.S. products. Since all targeted varieties are U.S. products and there are no variations across countries in this case, only the sector fixed effects are controlled for. The results indicate that all pre-war Chinese import outcome variables (with respect to the U.S. as the source of imports) are uncorrelated with the subsequent tariff increase China imposed against the U.S. products. Panel A2 reports the pre-trend test for China’s MFN tariff cuts during the trade war. We control for country-sector and product fixed effects in this case, since MFN tariff cuts do not apply to all non-U.S. sources of imports (e.g., they are not applicable to FTA trading partners of China). We do not observe statistically significant correlations between pre-war Chinese imports from these MFN sources and China’s subsequent MFN tariff cuts during the trade war. Finally, in Panel B, we conduct the pre-rend test for the U.S. tariff increase against Chinese products. For the same reason as in Panel A1, we include only sector fixed effect. The estimated coefficients are statistically insignificant, suggesting that the prewar export trends of Chinese products are not systematically correlated with subsequent increase in the U.S. tariff against China during the trade war.
5 Welfare Analysis

The impacts of tariff shocks on the Chinese economy are evaluated based on first-order approximations to the general-equilibrium structure set up in Section 3 around the pre-war equilibrium in 2017. Letting \(\hat{x} \equiv d \ln x \), the system characterizes the change in each endogenous variable \{\(\hat{w}_{sr}, \hat{w}_{s}^{NT}, \hat{p}_{s}, \hat{\phi}_{s}, \hat{L}_{r}, \hat{P}_{s}, \hat{P}_{Ms}, \hat{p}_{ig}, \hat{R}, \hat{E}_{s}, \hat{X}, \hat{Y}, \hat{P}_{sI}, \hat{p}_{s}Q_{s}, \hat{X}_{r} \} \), given shocks to Chinese and foreign tariffs, \{d\(\tau_{ig}, d\tau^{*}_{ig} \} \}. The details are provided in Appendix B. The numerical implementation is carried out by solving the linear system (B.1)–(B.4), (B.7)–(B.11), (B.14), (B.18)–(B.23), and (B.24) in the reduce-form of \(\hat{x} = A^{-1} \hat{y} \), where \(\hat{x} \) is a column vector including all the endogenous variables, \(y \) is a column vector with functions of the given tariff shocks, and \(A \) collects elasticities (\(\sigma, \sigma^{*}, \omega^{*}, \eta, \kappa \)) estimated in Section 4, the preference and technology parameters (\(\beta_{NT}, \beta_{s}, \alpha_{Ls}, \alpha_{Is}, \alpha_{s}^{*} \)), distribution of sales and employment across sectors and provinces, and imports and exports across varieties. We use the 2017 Chinese input-output (IO) tables, the China Labor Statistical Yearbook of 2017, and the Chinese customs data of 2017, as documented in Section A, to parameterize the allocation shares. As a result, we match the model to 2017 data on economic activity for 31 Chinese provinces, 39 tradable sectors (at GB/T-2 digit codes), 119 trade partners, 5,385 imported HS-8 products, 128,778 imported varieties (unique product-country origin), 5,448 exported products, and 378,430 unique product-destination countries. The shocks to the Chinese and U.S. tariffs, \{d\(\tau_{ig}, d\tau^{*}_{ig} \} \), are measured by the latest revised tariff change for each variety observed during the period 2018:1–2019:12.

5.1 Aggregate Effects

Given the tariff shocks to the pre-war equilibrium in 2017, and the changes to the endogenous variables calculated from the system described above, the welfare impact for each primary factor (capital and labor) can be measured as the change in income at initial prices (before the tariff war) that would have left that factor indifferent with the changes in tariffs that took place. Adding up the equivalent variations across all primary factors (capital and labor in each province) gives the aggregate equivalent variation \(EV \), or change in aggregate real income. This term can be shown to be a function of initial trade flows and price and revenue changes (following Dixit and Norman [1980]):

\[
EV = - \sum_{s} \sum_{g \in G_s} \sum_{i} m_{ig} \Delta p_{ig} + \sum_{s} \sum_{g \in G_s} \sum_{i} x_{ig} \Delta p_{ig}^{X} + \Delta R, \tag{39}
\]
where EV^M is the increase in the duty-inclusive cost of the prewar import basket, EV^X is the increase in the value of the prewar export basket, and ΔR is the change in tariff revenue.

Table 8 reports the decomposition by EV^X, EV^M, and tariff revenue (ΔR) in columns (1)–(3) and the aggregate impacts in column (4). The top panel reports the effects from the 2018–2019 trade war. The bottom two panels study the alternative hypothetical scenarios if China did not implement MFN tariff cuts in response to tariff increases against the U.S. during the 2018–2019 trade war, and if China did not retaliate against the U.S. or implement MFN tariff cuts as a result of the retaliation. Each panel reports the monetary equivalent on an annual basis at 2017 prices in billions of US$, and the numbers relative to 2017 GDP of China. The point estimates are calculated using the model elasticities estimated in Section 4, \{\hat{\sigma} = 1.120, \hat{\eta} = 1.087, \hat{\kappa} = 1.173, \hat{\omega}^* = -0.008, \hat{\sigma}^* = 0.379\}, and bootstrapped confidence intervals are computed for each component using the 1,000 bootstrapped parameter estimates.

The first column shows a decrease of EV^X of $17.093 billion (0.141% of China’s GDP) due to the trade war. This aggregate number equals a model implied 1.3% decrease in the export price index times a 10.82% observed share of exports of agricultural and industrial sectors in GDP. This implies that the diversion of demand away from China’s products (due to higher U.S. tariffs against China and due to China’s lower MFN tariffs on non-U.S. imports) dominates potential reallocation toward Chinese products (in response to China’s higher tariffs against U.S. products). The drop in the export price indices and the decrease of EV^X would have been less at $11.629 billion (0.096% of GDP) if China had not lowered its MFN tariffs on non-U.S. imports during the trade war. On the other hand, the decrease in the export price index would have been more severe if China had not retaliated against the U.S. (and changed its MFN tariffs accordingly). This scenario corresponds to a decrease of EV^X of $27.029 billion (0.223% of GDP). The above estimates of EV^X are however noisy with confidence intervals that include zero, except in the last scenario when there were no counter retaliation and MFN response from China; in this case, the decrease in EV^X is statistically negative.

The next column shows that Chinese buyers of imports sustained a loss in aggregate of $8.132 billion (0.067% of GDP) because of the trade war. The loss would have been larger at $11.772 billion (0.097% of GDP) if the Chinese government had not lowered MFN tariffs on non-U.S. imports when it increased tariffs against U.S. products. Both of these estimates are statistically significant at 90% confidence intervals. The loss of buyers of imports would, on the other hand, have been negligible and statistically insignificant at $0.289 billion (0.002% of GDP) if China did not counter-respond to the U.S. tariff hike. This is consistent with our finding of a foreign supply elasticity ω^* being very close to zero, so import price changes that consumers face reflect mainly import tariff changes, which in the last scenarios are nil.
The final component of the decomposition implies an increase in tariff revenue of $3.589 billion (0.030% of GDP). The tariff revenue increase would have nearly doubled at $7.145 billion (0.059% of GDP)—with the increase in tariffs against the U.S.—if China had not also lowered MFN tariffs on non-U.S. imports. Both of these estimates are statistically significant. In the third scenario without counter-retaliation by China, the tariff revenue is shown to decrease, reflecting a decrease in import volume due to general equilibrium effects of U.S. tariffs on the Chinese economy.

In sum, these numbers imply large negative consequences of the trade war on both Chinese producers and consumers, which dominate the positive tariff revenue increase. The loss of the producers (exporters) is approximately double the loss of the buyers of imports. Column (4) suggests an aggregate loss of $21.636 billion, or 0.178% of China’s GDP, as a result of the trade war. Without the counter-retaliation, the loss would have been much larger at $28.491 billion (0.235% of GDP), and largely borne by the producers (exporters). The retaliation against the U.S. imports shifted the burden to the Chinese buyers of imports such that producers (exporters) and buyers (importers) sustained about the same magnitude of loss. With further adjustment in the MFN tariff rates on non-U.S. imports, this lessened the loss of Chinese buyers of imports and shifted part of the burden back to the producers. Overall, the aggregate loss in EV is not significant statistically due to the large estimation errors around EV^X, except in the third scenario. Although we cannot reject the null that the aggregate losses are zero, both EV^M and ΔR are precisely estimated and we can conclude that the Chinese consumer losses from the trade war were large.

5.2 Regional Effects

We now examine the distributional impacts of the trade war across Chinese provinces. Tariffs negatively affect buyers of imports for final demand and for intermediate use. The costs of intermediate inputs could increase more in provinces where the inputs targeted by Chinese tariff increases are used more intensively. Workers could also be more negatively affected in regions whose production are more concentrated in sectors targeted by the U.S. tariffs (through changes in the producer and export prices), less protected by China’s retaliatory tariffs against the U.S., or subject to China’s MFN tariff reductions.

Figure 2 illustrates the variation in exposure to the trade war across provinces in China: (A) with respect to China’s tariff increase on U.S. products; (B) with respect to China’s MFN tariff cuts; (C) the combination of the first two; and (D) with respect to the U.S. tariff increase on Chinese products. We construct the province-level exposure of tradable sectors by first computing the trade-weighted tariff changes by GB/T-2 sector and then mapping them
to provinces based on provinces’ employment structure. In particular, the tariff shock at the sector level is computed as the trade-weighted average of the variety-level tariff changes using the 2017 trade shares. The province-level tariff shocks are then constructed as the labor-compensation weighted average of the sector-level tariff shocks.\footnote{The exposure of region r to the Chinese import tariff changes is $\Delta \tau_r = \sum_{s \in S} \frac{w_{sr}}{w_{Tr}} \left(\sum_{g_i \in G_s} \sum_{i \in I} p_{ig} m_{ig} \Delta \tau_{ig} \right) \sum_{g' \in G_s} \sum_{i' \in I} p_{ig'} x_{i'g'} \Delta \tau_{i'g'}$, and the exposure to the U.S. tariff changes is $\Delta \tau^*_r = \sum_{s \in S} \frac{w_{sr}}{w_{Tr}} \left(\sum_{g_i \in G_s} \sum_{i \in I} p_{ig} m_{ig} \Delta \tau_{ig} \right) \sum_{g' \in G_s} \sum_{i' \in I} p_{ig'} x_{i'g'} \Delta \tau_{i'g'}$, where $w^T r L_r$ are total tradable sector wages in province r.}

Figure 2 suggests that China tends to: (A) retaliate against the U.S. on sectors with a relatively high concentration in the outlying provinces such as Xinjiang and Hainan; and (B) reduce MFN tariffs on sectors concentrated in provinces closer to the shore such as Shanghai and Beijing. Overall, China’s tariff increase tends to be biased toward inner provinces and turns negative in the Eastern provinces. Added to the burden, Panel (D) suggests that these provinces also faced higher tariff increase in their exports to the U.S.

Figure 3 shows the effects of the trade war on real wage across provinces. The first map (A) shows the province-level reduction in real wages in tradable sectors due to the trade war, and the second map (B) shows real wage losses in the hypothetical scenario where China had not reduced MFN tariffs on non-U.S. imports. Every province experienced a reduction in the tradable real wage. Provinces with larger relative losses are concentrated in the Southeast, whose employment structures were hit more strongly by the U.S. tariff increase. Map (B) suggests that the real wage losses would have been one-level higher without the MFN tariff cuts by China. This contrasts with the finding in Table 8 where the MFN tariff cuts by China worsens the aggregate loss. This implies that the MFN tariff cuts help cushion the impacts on workers/consumers via lower import prices, at the cost of producers (and the owners of capital and fixed structures) who face steeper competition in the product market.

Overall, on average across provinces, the nominal wages for workers in tradable sectors decreases by 1.69\% (std. dev. = 0.06\%). These income losses are however cushioned by a reduced cost of living, as the CPI of tradable goods decreases by 1.16\% on average across sectors, reflecting an average 0.63\% increase in import prices and lower prices of domestic goods (-1.38\%). As a result, real wages in the tradable sector fall by 0.24\% (std. dev. = 0.03\%).

5.3 Trade Diversion Effects

In this section, we report the model-implied trade diversion effects of the trade war. Details are documented in Appendix B.3. Table 9 summarizes the diversion of Chinese imports and exports due to the trade war. As China increased tariffs on U.S. products and decreased
MFN tariffs on other trading partners, Chinese imports are diverted from U.S. toward non-U.S. sources. The share of imports from the U.S. dropped from 9.09% to 8.17%. Chinese imports were largely diverted toward countries in Asia and Europe. Although China reduced imports from all sources due to general-equilibrium effects, the drop is proportionally less with respect to countries in Europe. On the other hand, facing the U.S. tariff increase, China diverted its exports toward the other markets. The share of exports to the U.S. reduced from 19.21% to 18.11%. In particular, its exports to all destinations decreased but proportionally less so with respect to countries in Asia. Thus, as a result of the trade war, China tilted its sources of input toward countries in Europe (19.17% to 19.50%), while relied more on countries in Asia as its markets (48.64% to 49.38%).

6 Conclusion

The U.S.-China tariff war escalated in a short span of 24 months during 2018:1–2019:12 before the Phase One Deal was reached in 2019:12. This paper provides an ex post analysis of the micro and macro responses of the Chinese economy to the tariff shocks of 2018:1–2019:12. This complements the studies by Amiti, Redding and Weinstein (2019), Fajgelbaum et al. (2020), and Cavallo et al. (2020) for the U.S. economy.

In the first step, we use monthly variations during 2018:1–2019:12 in Chinese imports and exports of HS-8 digit products by source and destination countries to identify the elasticities of the economy’s import demand and export supply at the above product-country (i.e., variety) level. The identification relies on monthly variations in tariff rates that are uncorrelated with the unobserved demand and supply shocks of the corresponding variety. The tariff shocks associated with the tariff war are taken as the ideal instrument given its unprecedented and unpredictable nature. The validity of the instrument was verified with pre-trend tests. The resulting elasticity estimates provide a first cut of the direct effects of the tariff war on Chinese imports and exports at the variety, product, and sector level.

In the second step, the estimated demand structure is embedded in a general equilibrium model with a supply-side structure calibrated to the Chinese economy. In particular, goods markets (for final demand and intermediate use) are integrated across Chinese provinces but primary inputs (labor and specific factor) are confined to their current sector-province of employment in the short run. The tariff shocks to the demand for Chinese and foreign varieties in the local and U.S. markets trickle ‘up’ the 3-tier demand system, and affect the Chinese producer prices across sectors and the real wages across sector-provinces. The exposure of a sector-province to the tariff war depends on the sector’s exposure to the tariff shocks and a province’s production structure across sectors.
The tariff war imposed large welfare loss on Chinese producers/exporters (17.093 billion US$) and on buyers of imports (8.132 billion US$), with a net loss of aggregate welfare (21.636 US$) after taking into account the tariff revenue. The Chinese initiative to lower MFN tariffs as it raised tariffs against the U.S. products has led to larger aggregate welfare losses at the cost of producers, but appear to be an effective redistributive policy to cushion the impacts on consumers/workers. The loss in consumers/buyers of imports would have been higher (11.772 billion US$) and the average real wage in tradable sectors would have dropped by more (0.28% v.s. 0.24%) if not for the MFN tariff cuts. The analysis also indicates that the provinces that are closer to the shore are hit harder (in terms of real wages in tradable sectors) by the tariff war. Not only because these provinces were proportionally more specialized in products targeted by the U.S. tariff jump, but also because the Chinese government tended to lower MFN tariffs on products produced by these provinces. Finally, due to the tariff war, the Chinese economy reduced its share of imports from the U.S. (from 9.09% to 8.17%). At the same time, the share of its exports to the U.S. market dropped from 19.21% to 18.11%. Trade tended to be diverted toward countries in Europe (as sources of imports) and Asia (as markets of its exports).

Some comments are in order. First, similarly to Fajgelbaum et al. (2020), our estimates suggest horizontal foreign export supply and Chinese export supply curves; thus, incidence of import tariffs is borne entirely by the importing country. This implies less policy room for China to retaliate as there are no terms-of-trade gains. This might help explain the moderate increase in Chinese tariff rates for a majority of products included in its targeted list, and its move to lower MFN tariffs. Second, one potential caveat to the above finding is the nature of estimation specification, where sector-time fixed effects are controlled for and changes in import quantities/prices/tariffs are evaluated in monthly frequency. These are likely to reduce the magnitude of elasticity estimates, if the sector-time fixed effects used to control for unobservables also absorb a significant source of variations in variety imports/exports or if import responses are not fully manifested at the monthly frequency. Third, the general-equilibrium structure used has a high resolution with respect to modelling of product markets for the local economy. It covers for the Chinese economy, e.g., 5,385 imported HS-8 products, and 128,778 imported varieties (unique product-country origin); and 5,448 exported products, and 378,430 unique product-destination countries. It, however, has a very simple structure for the rest of the world, and thus cannot accommodate general equilibrium adjustment across countries. For example, it cannot address the repercussion of the trade war on the regional or global value chain in which China plays a critical role. Fourth, the model used is static in nature, and thus, cannot address the potential impacts in the long run due to factor reallocations across sectors and regions. We leave these generalizations to future research.
References

A Data Appendix

A.1 Definitions

Products, varieties, and sectors are defined as follows in the analysis:

- Products are defined at the Harmonized Standard 8-digit level (denoted as HS-8 below). For example, the HS 8-digit code 40131000 covers the product “inner tubes of rubber used on motor cars.”

- Varieties are defined at the product-country level. For example, imports (exports) of “inner tubes of rubber used on motor cars” from (to) the US are a distinct variety.

- Sectors are defined according to the China Industry Classification system (GB/T 4754) at the 2-digit level (denoted as GB/T-2 below). For example, the GB/T-2 code 29 covers “manufacture of rubber and plastics products.”

A.2 Variety-level Data on Trade and Tariffs

The variety-level data on Chinese imports and Chinese tariffs are used to identify the Chinese import demand and foreign export supply elasticities \((\sigma, \omega^*)\) at the variety level. Similarly, the variety-level data on Chinese exports and foreign tariffs against Chinese products are used to identify the foreign import demand and Chinese export supply elasticities \((\sigma^*, \omega)\) at the variety level.

A.2.1 Trade Data

We obtain China’s trade data in monthly frequency for the period 2017:1–2019:12 from the General Administration of Customs, China.\[7\] We observe the Chinese imports and exports at the HS-8 digit level by the source of imports and the destination of exports (i.e., at the variety level). For each variety, the customs data report the quantities of imports and exports, the value of imports at the CIF price, and the value of exports at the FOB price. The import and export values are reported in current USD values.

A.2.2 Tariff Data

Our tariff data comprise of two main components, the baseline tariff rates applied to Chinese imports and exports, and tariff changes associated with the US-China trade war. For the Chinese baseline tariff rates, we download the annual tariff schedule of China from the UN.\[http://www.customs.gov.cn/\]
TRAINEs Database via the World Integrated Trade Solution (WITS).\(^8\) Given the tariff rates available at the HS-10 level, we assume that the most-favored-nation (MFN) rate is applied to the WTO members, the preferential rate to trading partners with which China has any preferential trade agreement (PTA) in place, and the general duty rate (GDR) to the rest of the world. We then take the simple average of the HS-10 level tariff rates as the HS-8 level tariff rate. This aggregation is in view that the tariff rate changes (or tariff rates in general) published by the Ministry of Finance, China, are only available at the HS-8 level.\(^9\) We cross-check, correct and supplement the missing values of the data obtained from TRAINS with the annual tariff schedules released by the Ministry of Finance, China. After constructing the baseline import tariff rate for January 2017, we then update the rates in monthly frequency, given the official announcement by the Ministry of Finance, China, of any tariff changes (tariff increases against the US or MFN tariff cuts against the other WTO members).\(^10\) These tariff changes are specified at the HS-8 level.\(^11\)

For tariffs faced by the Chinese exports, we compile the annual tariff rates imposed by Chinese trading partners from the UN TRAINS Database.\(^12\) In particular, we use the simple average of the Effectively Applied (AHS) tariff rates by Chinese trading partners against China. These are available at the HS-6 digit level. For tariff changes associated with the trade war, we obtain that part of information from Fajgelbaum et al. (2019) (for tariff changes in 2018) and the Office of the United States Trade Representative (USTR) (for tariff changes in 2019). The tariff changes are aggregated from the HS-10 to the HS-6 level based on simple average. The use of the HS-6 digit for tariffs faced by Chinese exports is in view that the HS codes are only harmonized across countries up to the level of HS-6 codes. The estimations of trade elasticities for Chinese exports are nonetheless conducted at the HS-8 level of trade (with the HS-6 tariffs assigned to all HS-8 products in the category). Thus, the same caveat noted by Fajgelbaum et al. (2020) applies that we may overestimate the value of Chinese exports subject to tariffs and underestimates the foreign import demand.

\(^11\) Beside the tariff changes associated with the trade war, in constructing the applied tariff rates we also record other tariff revisions. These include annual MFN rate adjustments (normally twice in a year, in January and July), tariff reductions resulting from long-standing treaty commitments, new PTAs signed between China and its trading partners, or the removal of import tariff barriers in certain products due to its 13th Five-Year Plan for the National Economic and Social Development. These other tariff revisions are used to construct a more precise measure of the applied tariff rate. Their variations, however, are not used in the construction of instrumental variables, i.e., not as sources of identification of the elasticities.

\(^13\) https://ustr.gov/
Following Fajgelbaum et al. (2020), we scale tariff increases by the number of days of the month they were in effect. For example, a 15 p.p. tariff increase enacted on the 20th day of a 30-day month is assigned a 5 p.p. tariff increase \((15 \times 10/30 = 5)\) in the initial month, and an additional 10 p.p. increase in the subsequent month.

A.3 Sector-level Data

The sector-level price and output data are used to identify the elasticity of substitution \((\kappa)\) between domestic and imported goods at the sector level. The input-output (IO) table is used in the general equilibrium analysis of welfare effects. We classify sectors using the China Industry Classification system (GB/T 4754), which is widely used in the collection of official statistics on companies and organizations throughout Mainland China. The sector-level data by the GB/T 2-digit level (denoted as GB/T-2) are obtained from China’s National Bureau of Statistics.\(^{14}\) The classification includes 97 sectors in total, and 43 sectors in agriculture, mining and manufacturing.

1. Measure of \(\Delta \ln P_{Dst}\): The change in the price index of domestically produced goods is proxied by the change in the producer price index. The producer price index for industrial products (PPI) is available in monthly frequency for 40 industrial sectors.

2. Measure of \(\Delta \ln (P_{Dst}D_{st})\): The monthly change in expenditures on domestically produced goods is measured as the difference between the changes in sectoral production and exports. The data on the sectoral output (quantity) are available in monthly frequency but only for major products in 27 manufacturing sectors. We normalize the output of each product relative to 2016:1, and use the simple average across products within each sector as the sectoral production index.\(^{15}\) The export quantity is constructed as the ratio of export values and the producer price index. The estimations of the elasticity \(\kappa\) are thus based on a subset of industrial sectors where the above data are available.

3. The input-output (IO) tables are compiled for 2017. These tables quantify annual inputs and outputs of commodities by intermediate and final users in 2017, for 88 sectors.

\(^{14}\)http://www.stats.gov.cn/

\(^{15}\)The methodology of constructing the production index usually requires the industrial value-added of each product to be used as the weight in calculating the index, but such data are not available. Thus, in our calculation, we take the weight to be equal across the major products.
For the analysis in the paper, we classify GB/T-2 sectors as tradable if they are matched to an HS-6 code in the trade data. For the cross-walk between GB/T sectors and HS products, we use the conversion table of Sheng (2002) (available for 36 industrial sectors), and the concordance tables from WITS (ISIC-HS)16 and from China’s National Bureau of Statistics (ISIC-GB/T)17 (available for all economic activities). Minor modifications are further made where a product is mapped to more than one sector, using our interpretations of the official descriptions of the products and sectors. There are in total 39 tradable sectors.

A.4 Province-level Data

For the general equilibrium analysis, we collect the annual employment and wage data at the sector and province level from China Labor Statistical Yearbook of 2017. It records the employment and wage bills of urban units by sector and region. These are available for 31 provinces and 94 GB/T-2 sectors (covering services, agriculture, mining and manufacturing sectors). All of the 39 tradable sectors are covered individually in both the IO tables and the labor statistics dataset. We aggregate the remaining sectors as one non-tradable sector, thus reconciling the IO tables and the labor statistics dataset.

B Appendix to Section 5 (Welfare Analysis)

The general-equilibrium (GE) system is fully characterized in Fajgelbaum et al. (2020). We provide the derivations in Section B.1 for ease of reference (correcting some typos of the original paper along the way), and document the details of the implementations in the context of China in Sections B.2. Section B.3 elaborates on how we evaluate the trade diversion impact given shocks to the system.

B.1 General-Equilibrium System in Changes

The model solution is derived as a system of first-order approximations around an initial equilibrium corresponding to the period before the tariff war. Every market clearing condition is expressed in log-changes. The outcome depends on endogenous variables, observed initial shares, elasticities and tariff shocks. Letting $\hat{x} \equiv d\ln x$, the system gives the change in each endogenous variable given shocks to Chinese and foreign tariffs, $\{d\tau_{ig}, d\tau^{*}_{ig}\}$. Using market clearing conditions, the solution of the model can be expressed as a system for the changes in wages per efficiency unit $\{\hat{w}_{sr}\}$, average wages in the traded sectors $\{\hat{w}_{T}^{r}\}$, wages

16https://192.86.102.134/product_concordance.html
17http://www.stats.gov.cn/tjsj/tjbz/hyflbz/201710/t20171012_1541679.html
in the non-tradable sector $\{\hat{w}_r^{NT}\}$, producer prices $\{\hat{p}_s\}$, intermediate input prices $\{\hat{\phi}_s\}$, employment in the tradable sector $\{\hat{L}_r^T\}$, sector price indexes $\{\hat{P}_s\}$, sector-level import price indexes $\{\hat{P}_{Ms}\}$, product-level import price indexes $\{\hat{p}_{Mg}\}$, duty-inclusive prices of imported varieties $\{\hat{p}_{ig}\}$, tariff revenue \hat{R}, sector-level expenditures $\{\hat{E}_s\}$, national final consumer expenditures \hat{X}, national value added \hat{Y}, national intermediate expenditures by sector $\{\hat{P}_s^I\}$, national sales by sector $\{\hat{p}_s\hat{Q}_s\}$, and final consumer expenditures by region $\{\hat{X}_r\}$.

Wages, Producer Prices, Input Prices, and Tradable Employment

The first set of equations characterizes $\{\hat{w}_{sr}, \hat{w}_r^T, \hat{w}_r^{NT}, \hat{p}_s, \hat{\phi}_s, \hat{L}_r^T\}$, given $\{\hat{X}_r, \hat{E}_s, \hat{P}_s, \hat{\tau}_{ig}^r\}$.

First, by (25), we have:

$$\hat{w}_{sr} = \frac{1}{1 - \alpha_{Is}} \left(\hat{p}_s - \alpha_{I_1} \hat{\phi}_s - \alpha_{K_1} \hat{L}_{sr} \right).$$

Define χ^I to be an indicator that equals one if labor is immobile across sectors and zero otherwise. In the case where $\chi^I = 1$, it follows that:

$$\hat{L}_{sr} = 0,$$
$$\hat{w}_{sr} = \frac{1}{1 - \alpha_{Is}} \left(\hat{p}_s - \alpha_{I_1} \hat{\phi}_s \right),$$
$$\hat{w}_r^T \equiv \frac{dw_r^T}{w_r^T} = \frac{\sum_{s \in S} dw_{sr} L_{sr}}{\sum_{s \in S} w_{sr} L_{sr}} = \sum_{s \in S} \frac{w_{sr} L_{sr}}{w_r^T L_r^T} \frac{dw_{sr}}{w_{sr}} = \sum_{s \in S} \left(\frac{w_{sr} L_{sr}}{w_r^T L_r^T} \right) \hat{p}_s - \alpha_{I_1} \hat{\phi}_s.$$

In the alternative case where $\chi^I = 0$, we have instead:

$$w_{sr} = w_r^T,$$
$$\hat{w}_{sr} = \hat{w}_r^T = \frac{1}{1 - \alpha_{Is}} \left(\hat{p}_s - \alpha_{I_1} \hat{\phi}_s - \alpha_{K_1} \hat{L}_{sr} \right),$$
$$\hat{w}_r^T \equiv \frac{dw_r^T}{w_r^T} = \sum_{s \in S} \frac{w_{sr} L_{sr}}{w_r^T L_r^T} \left(\frac{dw_{sr}}{w_{sr}} + \frac{dL_{sr}}{L_{sr}} - \frac{dL_r^T}{L_r^T} \right),$$
$$\hat{L}_r^T \equiv \frac{dL_r^T}{L_r^T} = \sum_{s \in S} \frac{dL_{sr}}{L_r^T} = \sum_{s \in S} \frac{L_{sr}}{L_r^T} \frac{dL_{sr}}{L_{sr}}.$$
Thus, it follows that:

\[
\hat{w}_r^T = \sum_{s \in S} \frac{w_{sr} L_{sr}}{w_r^T L_r^T} \left(\hat{w}_{sr} + \hat{L}_{sr} - \hat{L}_r^T \right) \\
= \sum_{s \in S} \frac{w_{sr} L_{sr}}{w_r^T L_r^T} \hat{w}_{sr} + \sum_{s \in S} \frac{L_{sr}}{L_T^T} \hat{L}_{sr} - \hat{L}_r^T \\
= \sum_{s \in S} \frac{w_{sr} L_{sr}}{w_r^T L_r^T} \hat{w}_{sr}
\]

\[
\sum_{s \in S} \left(\frac{w_{sr} L_{sr}}{w_r^T L_r^T} \right) \frac{1 - \alpha_{Is}}{\alpha_K} \hat{w}_r^T = \sum_{s \in S} \left(\frac{w_{sr} L_{sr}}{w_r^T L_r^T} \right) \frac{1}{\alpha_K} \left(\hat{p}_s - \alpha_{Is} \hat{\phi}_s - \alpha_{Ks} \hat{L}_{sr} \right) \\
\sum_{s \in S} \left(\frac{w_{sr} L_{sr}}{w_r^T L_r^T} \right) \frac{1 - \alpha_{Is}}{\alpha_K} \hat{w}_r^T = \sum_{s \in S} \left(\frac{w_{sr} L_{sr}}{w_r^T L_r^T} \right) \frac{\hat{p}_s - \alpha_{Is} \hat{\phi}_s}{\alpha_K} - \hat{L}_r^T
\]

In sum, we have:

\[
\hat{w}_{sr} = \chi_I \hat{p}_s - \alpha_{Is} \hat{\phi}_s + \left(1 - \chi_I \right) \hat{w}_r^T, \quad \text{(B.1)}
\]

\[
\hat{w}_r^T = \chi_I \sum_{s \in S} \left(\frac{w_{sr} L_{sr}}{w_r^T L_r^T} \right) \hat{p}_s - \alpha_{Is} \hat{\phi}_s \left(1 - \chi_I \right) \sum_{s \in S} \left(\frac{w_{sr} L_{sr}}{w_r^T L_r^T} \right) \frac{\hat{p}_s - \alpha_{Is} \hat{\phi}_s - \hat{L}_r^T}{\alpha_K} \\
\sum_{s \in S} \left(\frac{w_{sr} L_{sr}}{w_r^T L_r^T} \right) \frac{1 - \alpha_{Is}}{\alpha_K} \hat{w}_r^T. \quad \text{(B.2)}
\]

Second, by the wage rate for non-tradable sectors (27), we have:

\[
\hat{w}_r^{NT} = \hat{X}_r - \hat{L}_r^{NT}
\]

and by full employment in each region, it follows that:

\[
\hat{L}_r^T = - \frac{L_r^{NT}}{L_r^T} \hat{L}_r^{NT}.
\]

Thus, in sum:

\[
\hat{w}_r^{NT} = \chi_I \hat{X}_r + \left(1 - \chi_I \right) \hat{w}_r^T, \quad \text{(B.3)}
\]

\[
\hat{L}_r^T = \left(1 - \chi_I \right) \left(\hat{w}_r^T - \hat{X}_r \right) \frac{L_r^{NT}}{L_r^T}. \quad \text{(B.4)}
\]

Third, note that by setup, \(p_{Dg} = \frac{p_g}{z_g} \); \(p_{ig}^X = \delta_{ig} p_{Dg} \); and (5) holds. It follows that
\[\hat{p}_{Dg} = \hat{p}_{ig} = \hat{P}_{Ds} = \hat{p}_s. \]

By (22) and (23), we have:

\[
\hat{Q}_s = \sum_{g \in G_s} \frac{d_g}{z_g} \hat{d}_g + \sum_{g \in G_s} \sum_{i \in I} \frac{\delta_{ig} x_{ig}}{Q_s} \hat{x}_{ig},
\]

\[
= \frac{P_{Ds} D_s}{p_s Q_s} \hat{d}_g + \sum_{g \in G_s} \sum_{i \in I} \frac{\hat{x}_{ig}}{p_s Q_s} \hat{x}_{ig}.
\]

Further, by equations (22), (9) and (16) we have:

\[
\hat{d}_g = \hat{D}_s = \hat{E}_s + (\kappa - 1) \hat{P}_s - \kappa \hat{p}_s,
\]

\[
\hat{x}_{ig} = -\sigma^* \left(\frac{d_{\tau^*_ig}}{1 + \tau^*_ig} + \hat{p}_s \right).
\]

It follows that:

\[
\hat{Q}_s = \frac{P_{Ds} D_s}{p_s Q_s} \left(\hat{E}_s + (\kappa - 1) \hat{P}_s - \kappa \hat{p}_s \right) - \sum_{g \in G_s} \sum_{i \in I} \frac{\hat{x}_{ig}}{p_s Q_s} \sigma^* \left(\frac{d_{\tau^*_ig}}{1 + \tau^*_ig} + \hat{p}_s \right). \tag{B.5}
\]

Further, by (21) and (20), we have:

\[
\hat{Q}_s = \sum_{r \in R} \frac{Q_{sr}}{Q_s} \hat{Q}_{sr}
\]

\[
= \sum_{r \in R} \frac{Q_{sr}}{Q_s} \left(\frac{1 - \alpha_{Ks}}{\alpha_{Ks}} \hat{p}_s - \frac{\alpha_{Is}}{\alpha_{Ks}} \hat{\phi}_s - \frac{\alpha_{Ls}}{\alpha_{Ks}} \hat{w}_{sr} \right)
\]

\[
= \frac{1 - \alpha_{Ks}}{\alpha_{Ks}} \hat{p}_s - \frac{\alpha_{Is}}{\alpha_{Ks}} \hat{\phi}_s - \sum_{r \in R} \frac{p_{s} Q_{sr}}{p_s Q_s} \frac{\alpha_{Ls}}{\alpha_{Ks}} \hat{w}_{sr}. \tag{B.6}
\]

Finally, combining (B.5) and (B.6) we get:

\[
\hat{p}_s = \frac{P_{Ds} D_s}{p_s Q_s} \left(\hat{E}_s + (\kappa - 1) \hat{P}_s \right) + \frac{\alpha_{Is}}{\alpha_{Ks}} \hat{\phi}_s + \sum_{r \in R} \frac{p_{s} Q_{sr}}{p_s Q_s} \frac{\alpha_{Ls}}{\alpha_{Ks}} \hat{w}_{sr} - \sigma^* \sum_{g \in G_s} \sum_{i \in I} \frac{\hat{x}_{ig}}{p_s Q_s} \frac{d_{\tau^*_ig}}{1 + \tau^*_ig},
\]

\[
= \frac{1 - \alpha_{Ks}}{\alpha_{Ks}} + \frac{P_{Ds} D_s}{p_s Q_s} \kappa + \left(1 - \frac{P_{Ds} D_s}{p_s Q_s} \right) \sigma^*, \tag{B.7}
\]

where by (18), the change in the price index of intermediates is:

\[
\hat{\phi}_s = \sum_{s' \in S} \frac{\alpha_{s'}}{\alpha_{Is}} \hat{p}_{s'}. \tag{B.8}
\]
Consumer Prices, Import Prices, and Tariff Revenue

The second set of equations characterize \(\{ \hat{P}_s, \hat{P}_{Ms}, \hat{p}_{Mg}, \hat{p}_{ig}, \hat{R} \} \) given \(\{ \hat{E}_s, d\tau_{ig} \} \). First, from (2), the sector price index changes according to a weighted average of producer prices and the import price index:

\[
\hat{P}_s = \frac{P_{Ds} D_s}{E_s} \hat{p}_s + \left(1 - \frac{P_{Ds} D_s}{E_s} \right) \hat{P}_{Ms}. \tag{B.9}
\]

Next, by (6), the import price index in sector \(s \) changes according to:

\[
\hat{P}_{Ms} = \sum_{g \in G_s} \left(\frac{p_{Mg} m_g}{P_{Ms} M_g} \right) \hat{p}_{Mg}, \tag{B.10}
\]

and by (8), the product-level import price index changes according to:

\[
\hat{p}_{Mg} = \sum_{i \in I} \left(\frac{p_{ig} m_{ig}}{p_{Mg} m_g} \right) \hat{p}_{ig}. \tag{B.11}
\]

Further, from (12), (11), and (9), we have:

\[
\hat{m}_{ig} = \hat{m}_g + \sigma \hat{p}_{Mg} - \sigma \hat{p}_{ig}
= \hat{M}_s + \eta \hat{P}_{Ms} + (\sigma - \eta) \hat{p}_{Mg} - \sigma \hat{p}_{ig}
= \hat{E}_s + (\kappa - 1) \hat{P}_s + (\eta - \kappa) \hat{P}_{Ms} + (\sigma - \eta) \hat{p}_{Mg} - \sigma \hat{p}_{ig}. \tag{B.12}
\]

From the foreign export supply (15) and the price relationship (13), we also have:

\[
\hat{m}_{ig} = \frac{1}{\omega^*} \left(\hat{p}_{ig} - \frac{d\tau_{ig}}{1 + \tau_{ig}} \right). \tag{B.13}
\]

Combining (B.12) and (B.13), it follows that:

\[
\hat{p}_{ig} = \frac{\omega^*}{1 + \omega^* \sigma} \left(\hat{E}_s + (\kappa - 1) \hat{P}_s + (\eta - \kappa) \hat{P}_{Ms} + (\sigma - \eta) \hat{p}_{Mg} \right) + \frac{1}{1 + \omega^* \sigma} \frac{d\tau_{ig}}{1 + \tau_{ig}}. \tag{B.14}
\]

Lastly, recall the definition of tariff revenue,

\[
R = \sum_{s \in S} \sum_{g \in G_s} \sum_{i \in I} \tau_{ig} p_{ig}^* m_{ig}. \tag{B.15}
\]
Taking the second-order total differentiation gives:

\[
\frac{dR}{d\tau_{ig}} = \sum_{s} \sum_{g} \sum_{i} \left(p_{ig}^* m_{ig} d\tau_{ig} + \tau_{ig} m_{ig} dp_{ig}^* + \tau_{ig} p_{ig}^* dm_{ig} \right) + \frac{1}{2} \sum_{s} \sum_{g} \sum_{i} \left(2 m_{ig} dp_{ig}^* d\tau_{ig} + 2 p_{ig}^* dm_{ig} d\tau_{ig} + 2 \tau_{ig} dp_{ig}^* dm_{ig} \right) \\
= \sum_{s} \sum_{g} \sum_{i} p_{ig}^* m_{ig} d\tau_{ig} + \sum_{s} \sum_{g} \sum_{i} \tau_{ig} p_{ig}^* m_{ig} (\hat{p}_{ig} + \hat{m}_{ig}) + \sum_{s} \sum_{g} \sum_{i} d\tau_{ig} p_{ig}^* m_{ig} (\hat{p}_{ig} + \hat{m}_{ig}) + \frac{1}{2} \sum_{s} \sum_{g} \sum_{i} \tau_{ig} d^2 (p_{ig}^* m_{ig})
\]

(B.16)

It follows that:

\[
\dot{R} = \sum_{s} \sum_{g \in G_s} \sum_{i} \frac{p_{ig}^* m_{ig}}{R} d\tau_{ig} + \sum_{s} \sum_{g \in G_s} \sum_{i} \frac{p_{ig}^* m_{ig}}{R} (\tau_{ig} + d\tau_{ig}) (\hat{p}_{ig} + \hat{m}_{ig}) + \frac{1}{2} \sum_{s} \sum_{g \in G_s} \sum_{i} \frac{\tau_{ig} d^2 (p_{ig}^* m_{ig})}{R}
\]

(B.17)

We set the last second order term \(\tau_{ig} d^2 (p_{ig}^* m_{ig})\) to 0, provided that the initial tariffs \(\tau_{ig}\) are reasonably small. Using the solutions for \(\hat{p}_{ig}\) and \(\hat{m}_{ig}\) from equations (B.14) and (B.13), in addition to (13), we get:

\[
\dot{R} = \sum_{s} \sum_{g \in G_s} \sum_{i} \left(\tau_{ig} + d\tau_{ig} \right) \frac{p_{ig}^* m_{ig}}{R} \frac{1 + \omega^*}{1 + \omega^* \sigma} \left(\dot{E}_s + (\kappa - 1) \dot{P}_s + (\eta - \kappa) \dot{P}_{Ms} + (\sigma - \eta) \dot{P}_{Mg} \right) + \sum_{s} \sum_{g \in G_s} \sum_{i} \left(1 - \tau_{ig} \frac{\sigma - 1}{1 + \omega^* \sigma} \right) \frac{p_{ig}^* m_{ig}}{R} \frac{d\tau_{ig}}{1 + \tau_{ig}} \\
- \sum_{s} \sum_{g \in G_s} \sum_{i} \frac{p_{ig} m_{ig}}{R} \frac{1 + \omega^* \sigma}{1 + \omega^* \sigma} \left(\frac{d\tau_{ig}}{1 + \tau_{ig}} \right)^2
\]

(B.18)

Sector and Region Demand Shifters

The third set of equations characterize the sector and region level expenditure shifters \(\{\dot{E}_s, \dot{X}_r\}\) given \(\{\dot{R}, \dot{p}_s, \dot{\phi}_s, \dot{w}_{rNT}, \dot{w}_{sr}\}\). The expenditure in sector \(s\) is defined as \(E_s = P_s C_s + P_s I_s\), and from (14) we have \(P_s C_s = \beta_s X\), where \(X\) is the national total expenditure, defined as \(X = Y + R + D\), where \(D\) is trade deficit. We assume that national trade deficit is determined by factors outside the model and remain unchanged. Thus, it follows that:

\[
\dot{E}_s = \frac{P_s C_s}{E_s} \dot{X} + \left(1 - \frac{P_s C_s}{E_s} \right) \dot{P}_s I_s, \quad (B.19)
\]

\[
\dot{X} = \frac{Y}{X} \dot{Y} + \frac{R}{X} \dot{R}. \quad (B.20)
\]
Since we assume that the non-tradable sectors only use labor as input, it implies that the national income equals:
\[Y = \sum_{r \in R} P_{NT,r}Q_{NT,r} + \sum_{s \in S} (1 - \alpha_{Is}) p_s Q_s. \]
Hence,
\[\hat{Y} = \sum_{r \in R} \left(\frac{P_{NT,r}Q_{NT,r}}{Y} \right) \hat{X}_r + \sum_{s \in S} (1 - \alpha_{Is}) \left(\frac{p_s Q_s}{Y} \right) \sum_{r \in R} \left(\frac{p_s Q_{sr}}{p_s Q_s} \right) \left(\hat{p}_s + \hat{Q}_{sr} \right). \]
(B.21)

The total demand for intermediates of sector \(s \) is defined as:
\[P_s I_s = \sum_{s' \in S} \alpha^s_{s'} p_{s'} Q_{s'}, \]
so that
\[\hat{P}_s I_s = \sum_{s' \in S} \alpha^s_{s'} \sum_{r \in R} \frac{p_{s'} Q_{s'r}}{p_s I_s} \left(\hat{p}_{s'} + \hat{Q}_{s'r} \right). \]
(B.22)

Using (20) for \(Q_{sr} \), we have:
\[\hat{p}_s + \hat{Q}_{sr} = \frac{1}{\alpha_{Ks}} \hat{p}_s - \frac{\alpha_{Is}}{\alpha_{Ks}} \hat{\phi}_s - \frac{\alpha_{Ls}}{\alpha_{Ks}} \hat{w}_{sr}. \]
(B.23)

By (14), we have \(P_{NT,r}Q_{NT,r} = \beta_{NT} X_r \). Hence, using (24), the change of expenditures in region \(r \) can be expressed as:
\[\hat{X}_r = \frac{\sum_{s \in S} \frac{p_s Q_s}{X_r} (1 - \alpha_{Is}) \left(\hat{p}_s + \hat{Q}_{sr} \right) + \frac{b_r}{X_r} \hat{R}}{1 - P_{NT,r}Q_{NT,r}} \]
(B.24)

B.2 Implementation

The numerical implementation is carried out by solving the linear system (B.1)–(B.4), (B.7)–(B.11), (B.14), (B.18)–(B.23), and (B.24) in the reduce-form of \(\hat{x} = A^{-1} \hat{y} \), where \(\hat{x} \) is a column vector including all the endogenous variables, \(y \) is a column vector with functions of the given tariff shocks \((d\tau_{ig}, d\tau^*_{ig}) \), and \(A \) collects elasticities \((\sigma, \sigma^*, \omega^*, \eta, \kappa) \) estimated in Section 4, the preference and technology parameters\((\beta_{NT}, \beta_s, \alpha_{Ls}, \alpha_{Is}, \alpha^s_{s'}) \), distribution of sales and employment across sectors and provinces, and imports and exports across varieties.

We use the 2017 Chinese input-output (IO) tables, the China Labor Statistical Yearbook of 2017, and the Chinese customs data of 2017, as documented in Section A, to parameterize the allocation shares. We basically follow the same steps as in Fajgelbaum et al. (2020) to construct the shares. Differences in the China’s context are highlighted below. The share of expenditures on the non-tradable is set at \(\beta_{NT} = 0.6 \) such that the model matches the observed 18% share of imports in GDP. Implementing the system also requires information on labor income and employment shares by regions. We allocate the sectoral labor compensation
(from the IO tables) across Chinese provinces using the regional labor compensation shares (from the China Labor Statistical Yearbook of 2017). All 31 provinces are with positive employment in both tradable and non-tradable sectors. Finally, implementing the system requires information on import and export flows by variety. We allocate the sector-level import and export flows (from the IO tables) across varieties using the import and export shares at the variety level within each GB/T-2 sector (observed in the Chinese customs data).

As a result, we match the model to 2017 data on economic activity for 31 Chinese provinces, 39 tradable sectors (at GB/T-2 digit codes), 119 trade partners, 5,385 imported HS-8 products, 128,778 imported varieties (unique product-country origin), 5,448 exported products, and 378,430 unique product-destination countries. In sum, the vector \(\hat{x} \) includes 664,928 endogenous variables, where 657,932 correspond to the variety prices \(\hat{p}_{ig} \).

B.3 Trade Diversion Impacts

Note that the change in the import from a trading partner \(i \) across all products in sector \(s \) is:

\[
\sum_{g \in G_s} p_{ig}^* m_{ig} = \sum_{g \in G_s} \left(\frac{p_{ig}^* m_{ig}}{\sum_{g \in G_s} p_{ig}^* m_{ig}} (\hat{p}_{ig}^* + \hat{m}_{ig}) \right), \tag{B.25}
\]

and across all tradable sectors is:

\[
\sum_{s \in S} \sum_{g \in G_s} p_{ig}^* m_{ig} = \sum_{s \in S} \sum_{g \in G_s} \left(\frac{p_{ig}^* m_{ig}}{\sum_{s \in S} \sum_{g \in G_s} p_{ig}^* m_{ig}} (\hat{p}_{ig}^* + \hat{m}_{ig}) \right). \tag{B.26}
\]

Aggregating across trading partners within a set of countries \(i \in I_o \), the corresponding expressions are:

\[
\sum_{i \in I_o} \sum_{g \in G_s} p_{ig}^* m_{ig} = \sum_{i \in I_o} \sum_{g \in G_s} \left(\frac{p_{ig}^* m_{ig}}{\sum_{i \in I_o} \sum_{g \in G_s} p_{ig}^* m_{ig}} (\hat{p}_{ig}^* + \hat{m}_{ig}) \right), \tag{B.27}
\]

\[
\sum_{s \in S} \sum_{i \in I_o} \sum_{g \in G_s} p_{ig}^* m_{ig} = \sum_{s \in S} \sum_{i \in I_o} \sum_{g \in G_s} \left(\frac{p_{ig}^* m_{ig}}{\sum_{s \in S} \sum_{i \in I_o} \sum_{g \in G_s} p_{ig}^* m_{ig}} (\hat{p}_{ig}^* + \hat{m}_{ig}) \right). \tag{B.28}
\]

Next, using (16), we have:

\[
\hat{x}_{ig} = -\sigma^{*} \hat{p}_{ig}^* = -\sigma^{*} \hat{p}_s, \quad \text{for } i \neq US;
\]

\[
\hat{x}_{ig} = -\sigma^{*} \left(\frac{d\tau_{ig}^*}{1 + \tau_{ig}^*} + \hat{p}_s \right), \quad \text{for } i = US.
\]
Thus, for each $s \in S$ and $i \neq US$, the change in export value is:

\[
\widetilde{EX}_{-US,s} = \sum_{i \neq US} \sum_{g \in G_s} \tilde{p}_{ig}^X \tilde{x}_{ig} = \sum_{i \neq US} \sum_{g \in G_s} \left(\frac{\tilde{p}_{ig}^X \tilde{x}_{ig}}{\sum_{i \neq US} \sum_{g \in G_s} \tilde{p}_{ig}^X \tilde{x}_{ig}} \left(\hat{p}_s^X + \hat{x}_{ig} \right) \right)
\]

\[
= \sum_{i \neq US} \sum_{g \in G_s} \left(\frac{\tilde{p}_{ig}^X \tilde{x}_{ig}}{\sum_{i \neq US} \sum_{g \in G_s} \tilde{p}_{ig}^X \tilde{x}_{ig}} \left(1 - \sigma^* \right) \hat{p}_s \right),
\] \hspace{1cm} (B.29)

and similarly for $i = US$:

\[
\widetilde{EX}_{US,s} = \sum_{g \in G_s} \tilde{p}_{ig}^X \tilde{x}_{ig} = \sum_{g \in G_s} \left(\frac{\tilde{p}_{ig}^X \tilde{x}_{ig}}{\sum_{g \in G_s} \tilde{p}_{ig}^X \tilde{x}_{ig}} \left(\hat{p}_s^X + \hat{x}_{ig} \right) \right)
\]

\[
= \sum_{g \in G_s} \left(\frac{\tilde{p}_{ig}^X \tilde{x}_{ig}}{\sum_{g \in G_s} \tilde{p}_{ig}^X \tilde{x}_{ig}} \left(1 - \sigma^* \right) \hat{p}_s - \sigma^* \frac{d\tau_{ig}^*}{1 + \tau_{ig}^*} \right),
\] \hspace{1cm} (B.30)

The change in export value across all tradable sectors can be similarly aggregated.
Table 1: Trade War Events during 2018–2019

<table>
<thead>
<tr>
<th>Event</th>
<th>Effective Date</th>
<th>Products</th>
<th>Trade Value in 2017</th>
<th>Tariff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(# HS-8)</td>
<td>(mil US$)</td>
<td>(%)</td>
</tr>
<tr>
<td>Panel A. Tariff increase on Chinese products enacted by U.S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>February 7, 2018</td>
<td>12</td>
<td>983</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>March 27, 2018</td>
<td>158</td>
<td>2,868</td>
<td>0.13</td>
</tr>
<tr>
<td>3</td>
<td>July 6, 2018</td>
<td>957</td>
<td>59,890</td>
<td>2.63</td>
</tr>
<tr>
<td>4</td>
<td>August 23, 2018</td>
<td>345</td>
<td>19,810</td>
<td>0.87</td>
</tr>
<tr>
<td>5</td>
<td>September 24, 2018</td>
<td>3829</td>
<td>189,400</td>
<td>8.32</td>
</tr>
<tr>
<td>6</td>
<td>May 10, 2019</td>
<td>“—”</td>
<td>“—”</td>
<td>“—”</td>
</tr>
<tr>
<td>7</td>
<td>September 1, 2019</td>
<td>1859</td>
<td>131,400</td>
<td>5.77</td>
</tr>
<tr>
<td>Panel B1. China’s retaliatory tariffs on U.S. products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>April 2, 2018</td>
<td>93</td>
<td>2,970</td>
<td>0.17</td>
</tr>
<tr>
<td>2</td>
<td>July 6, 2018</td>
<td>267</td>
<td>33,830</td>
<td>1.98</td>
</tr>
<tr>
<td>3</td>
<td>August 23, 2018</td>
<td>201</td>
<td>14,110</td>
<td>0.83</td>
</tr>
<tr>
<td>4</td>
<td>September 24, 2018</td>
<td>5190</td>
<td>58,160</td>
<td>3.41</td>
</tr>
<tr>
<td>5</td>
<td>January 1, 2019</td>
<td>120</td>
<td>14,250</td>
<td>0.83</td>
</tr>
<tr>
<td>6</td>
<td>June 1, 2019</td>
<td>4545</td>
<td>40,220</td>
<td>2.35</td>
</tr>
<tr>
<td>7</td>
<td>September 1, 2019</td>
<td>1153</td>
<td>28,670</td>
<td>1.68</td>
</tr>
<tr>
<td>Panel B2. China’s MFN tariff cuts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>May 1, 2018</td>
<td>26</td>
<td>13,710</td>
<td>0.8</td>
</tr>
<tr>
<td>9</td>
<td>July 1, 2018</td>
<td>151</td>
<td>59,590</td>
<td>3.49</td>
</tr>
<tr>
<td>10</td>
<td>July 1, 2018</td>
<td>1376</td>
<td>36,030</td>
<td>2.11</td>
</tr>
<tr>
<td>11</td>
<td>November 1, 2018</td>
<td>1532</td>
<td>59,610</td>
<td>3.49</td>
</tr>
</tbody>
</table>

Note: Table reports tariff events implemented by U.S. (Panel A) and China (Panel B), which are used as sources of identification in the estimations of demand and supply elasticities in Section 4. In addition to the retaliation on U.S. products (Panel B1), China also implemented MFN tariff cuts in response (Panel B2). The columns display: the number of HS-8 products affected; the value of trade affected (in million US$); the corresponding shares (%) in 2017; and the simple monthly average tariff rates (in percentage points) across targeted products in the month before, and in the month after, the implementation month (which is taken to be the current month if the implementation date is before the 15th of the month and the next month otherwise). The denominator for trade share is the 2017 annual US$ value of total Chinese exports (imports) in Panel A (Panel B), respectively. See the text for data sources. In Panel A, Event 6 applies to the same set of products as Event 5 but with an upward revision of the tariff rates.
<table>
<thead>
<tr>
<th>Sector</th>
<th>GB/T-2</th>
<th># Products</th>
<th># Varieties</th>
<th>Mean</th>
<th>Std. dev.</th>
<th># Products</th>
<th># Varieties</th>
<th>Mean</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Products</td>
<td>1-5</td>
<td>77</td>
<td>121</td>
<td>0.15</td>
<td>0.10</td>
<td>94</td>
<td>94</td>
<td>0.24</td>
<td>0.11</td>
</tr>
<tr>
<td>Mining</td>
<td>6-12</td>
<td>126</td>
<td>410</td>
<td>0.09</td>
<td>0.13</td>
<td>71</td>
<td>71</td>
<td>0.21</td>
<td>0.07</td>
</tr>
<tr>
<td>Processing of Food from Agricultural Products</td>
<td>13</td>
<td>448</td>
<td>1687</td>
<td>0.07</td>
<td>0.21</td>
<td>371</td>
<td>371</td>
<td>0.21</td>
<td>0.09</td>
</tr>
<tr>
<td>Manufacture of Foods</td>
<td>14</td>
<td>174</td>
<td>1564</td>
<td>-0.01</td>
<td>0.15</td>
<td>143</td>
<td>143</td>
<td>0.22</td>
<td>0.09</td>
</tr>
<tr>
<td>Manufacture of Liquor, Beverages</td>
<td>15</td>
<td>75</td>
<td>790</td>
<td>-0.03</td>
<td>0.19</td>
<td>74</td>
<td>74</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>Manufacture of Tobacco</td>
<td>16</td>
<td>8</td>
<td>43</td>
<td>0.10</td>
<td>0.14</td>
<td>6</td>
<td>6</td>
<td>0.19</td>
<td>0.13</td>
</tr>
<tr>
<td>Manufacture of Textile</td>
<td>17</td>
<td>740</td>
<td>13225</td>
<td>-0.02</td>
<td>0.11</td>
<td>777</td>
<td>777</td>
<td>0.20</td>
<td>0.08</td>
</tr>
<tr>
<td>Manufacture of Textile, Wearing Apparel</td>
<td>18</td>
<td>160</td>
<td>5334</td>
<td>-0.06</td>
<td>0.10</td>
<td>158</td>
<td>158</td>
<td>0.12</td>
<td>0.06</td>
</tr>
<tr>
<td>Manufacture of Leather Products and Footwear</td>
<td>19</td>
<td>138</td>
<td>3320</td>
<td>-0.04</td>
<td>0.10</td>
<td>139</td>
<td>139</td>
<td>0.16</td>
<td>0.09</td>
</tr>
<tr>
<td>Manufacture of Wood Products</td>
<td>20</td>
<td>126</td>
<td>788</td>
<td>0.04</td>
<td>0.12</td>
<td>128</td>
<td>128</td>
<td>0.21</td>
<td>0.09</td>
</tr>
<tr>
<td>Manufacture of Furniture</td>
<td>21</td>
<td>31</td>
<td>234</td>
<td>0.08</td>
<td>0.13</td>
<td>34</td>
<td>34</td>
<td>0.25</td>
<td>0.04</td>
</tr>
<tr>
<td>Manufacture of Paper and Paper Products</td>
<td>22</td>
<td>121</td>
<td>2412</td>
<td>0.03</td>
<td>0.09</td>
<td>120</td>
<td>120</td>
<td>0.24</td>
<td>0.05</td>
</tr>
<tr>
<td>Printing and Reproduction of Recording Media</td>
<td>23</td>
<td>35</td>
<td>796</td>
<td>0.03</td>
<td>0.09</td>
<td>36</td>
<td>36</td>
<td>0.13</td>
<td>0.06</td>
</tr>
<tr>
<td>Manufacture of Articles for Culture Activities</td>
<td>24</td>
<td>210</td>
<td>4146</td>
<td>-0.05</td>
<td>0.12</td>
<td>195</td>
<td>195</td>
<td>0.15</td>
<td>0.08</td>
</tr>
<tr>
<td>Processing of Petroleum, Coking</td>
<td>25</td>
<td>41</td>
<td>114</td>
<td>0.17</td>
<td>0.12</td>
<td>27</td>
<td>27</td>
<td>0.23</td>
<td>0.05</td>
</tr>
<tr>
<td>Manufacture of Raw Chemical Materials</td>
<td>26</td>
<td>903</td>
<td>4254</td>
<td>0.08</td>
<td>0.11</td>
<td>876</td>
<td>876</td>
<td>0.23</td>
<td>0.08</td>
</tr>
<tr>
<td>Manufacture of Medicines</td>
<td>27</td>
<td>151</td>
<td>458</td>
<td>0.07</td>
<td>0.11</td>
<td>55</td>
<td>55</td>
<td>0.24</td>
<td>0.07</td>
</tr>
<tr>
<td>Manufacture of Chemical Fibres</td>
<td>28</td>
<td>54</td>
<td>54</td>
<td>0.17</td>
<td>0.08</td>
<td>64</td>
<td>64</td>
<td>0.20</td>
<td>0.09</td>
</tr>
<tr>
<td>Manufacture of Rubber and Plastics Products</td>
<td>29</td>
<td>154</td>
<td>1329</td>
<td>0.06</td>
<td>0.11</td>
<td>156</td>
<td>156</td>
<td>0.24</td>
<td>0.06</td>
</tr>
<tr>
<td>Manufacture of Non-metallic Mineral Products</td>
<td>30</td>
<td>232</td>
<td>3212</td>
<td>0.02</td>
<td>0.11</td>
<td>240</td>
<td>240</td>
<td>0.23</td>
<td>0.06</td>
</tr>
<tr>
<td>Smelting and Pressing of Ferrous Metals</td>
<td>31</td>
<td>223</td>
<td>1053</td>
<td>0.13</td>
<td>0.13</td>
<td>239</td>
<td>239</td>
<td>0.31</td>
<td>0.07</td>
</tr>
<tr>
<td>Smelting and Pressing of Non-ferrous Metals</td>
<td>32</td>
<td>177</td>
<td>400</td>
<td>0.15</td>
<td>0.09</td>
<td>130</td>
<td>130</td>
<td>0.22</td>
<td>0.06</td>
</tr>
<tr>
<td>Manufacture of Metal Products</td>
<td>33</td>
<td>299</td>
<td>4844</td>
<td>0.02</td>
<td>0.12</td>
<td>293</td>
<td>293</td>
<td>0.23</td>
<td>0.07</td>
</tr>
<tr>
<td>Manufacture of General Purpose Machinery</td>
<td>34</td>
<td>470</td>
<td>4232</td>
<td>0.07</td>
<td>0.11</td>
<td>509</td>
<td>509</td>
<td>0.27</td>
<td>0.11</td>
</tr>
<tr>
<td>Manufacture of Special Purpose Machinery</td>
<td>35</td>
<td>406</td>
<td>2123</td>
<td>0.08</td>
<td>0.12</td>
<td>454</td>
<td>454</td>
<td>0.24</td>
<td>0.12</td>
</tr>
<tr>
<td>Manufacture of Automobiles</td>
<td>36</td>
<td>180</td>
<td>2624</td>
<td>-0.03</td>
<td>0.09</td>
<td>160</td>
<td>160</td>
<td>0.23</td>
<td>0.09</td>
</tr>
<tr>
<td>Manufacture of Transport Equipments</td>
<td>37</td>
<td>64</td>
<td>440</td>
<td>0.06</td>
<td>0.14</td>
<td>101</td>
<td>101</td>
<td>0.24</td>
<td>0.10</td>
</tr>
<tr>
<td>Manufacture of Electrical Machinery</td>
<td>38</td>
<td>302</td>
<td>4057</td>
<td>0.00</td>
<td>0.13</td>
<td>276</td>
<td>276</td>
<td>0.29</td>
<td>0.12</td>
</tr>
<tr>
<td>Manufacture of Computers,</td>
<td>39</td>
<td>228</td>
<td>656</td>
<td>0.06</td>
<td>0.15</td>
<td>227</td>
<td>227</td>
<td>0.26</td>
<td>0.16</td>
</tr>
<tr>
<td>Manufacture of Measuring Instruments</td>
<td>40</td>
<td>176</td>
<td>1012</td>
<td>0.04</td>
<td>0.11</td>
<td>205</td>
<td>205</td>
<td>0.28</td>
<td>0.15</td>
</tr>
<tr>
<td>Other Manufacture</td>
<td>41</td>
<td>57</td>
<td>1229</td>
<td>-0.04</td>
<td>0.12</td>
<td>40</td>
<td>40</td>
<td>0.14</td>
<td>0.07</td>
</tr>
<tr>
<td>Utilization of Waste Resources</td>
<td>42</td>
<td>26</td>
<td>55</td>
<td>0.23</td>
<td>0.10</td>
<td>30</td>
<td>30</td>
<td>0.19</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Note: Table shows the mean and standard deviation of tariff changes for Chinese imports and exports across 2-digit GB/T sectors. A tariff change of 0.10 indicates a 10 percentage point increase. For imports, China implemented both retaliatory tariff increases against U.S. and MFN tariff cuts on sources of imports that the MFN rates apply. Sectors with the same number of targeted varieties and products in Columns (3) and (4) reflect import tariff increase targeting U.S. products without accompanied decrease in MFN tariffs. For Chinese exports, which faced only U.S. tariff increase, the number of products targeted by trading partners is equal to that of varieties targeted. Due to space constraint, we aggregate sectors of Agricultural products and of Mining.
Table 3: Estimation of Variety-level Elasticities—Import Demand (σ) and Foreign Export Supply (ω^*)

<table>
<thead>
<tr>
<th></th>
<th>$\Delta \ln p_{igt}^* m_{igt}$ (1)</th>
<th>$\Delta \ln m_{igt}$ (2)</th>
<th>$\Delta \ln p_{igt}^*$ (3)</th>
<th>$\Delta \ln p_{igt}$ (4)</th>
<th>$\Delta \ln p_{igt}^*$ (5)</th>
<th>$\Delta \ln m_{igt}$ (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \ln(1 + \tau_{igt})$</td>
<td>-1.133*** (0.2940)</td>
<td>-1.121*** (0.2214)</td>
<td>0.009 (0.1740)</td>
<td>1.004*** (0.1770)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \ln m_{igt}$</td>
<td></td>
<td>-0.008 (0.1549)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \ln p_{igt}$</td>
<td></td>
<td></td>
<td>-1.120*** (0.3158)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Country × Product FE Y Y Y Y Y Y Y
Sector × Time FE Y Y Y Y Y Y Y
1st-stage F 40.179 81.805
Bootstrap CI [-0.146,0.204] [0.853,1.432]
R^2 0.038 0.027 0.035 0.027 0.012 0.192

Note: Table reports the variety-level import responses to import tariffs. Columns (1) to (4) report the reduced-form regression of different trade outcomes (before-duty import value, import quantity, before-duty unit value and duty-inclusive unit value) on the tariff changes. Column (5) reports the IV regression estimation of foreign (inverse) export supply elasticity ω^* based on equation (29); with its first stage in Column (2). Column (6) reports the IV regression estimation of import demand elasticity σ based on equation (28); with its first stage in Column (4). Robust standard errors (in parentheses) are clustered at the product and country level. 90% bootstrap confidence intervals of (ω^* and σ) are constructed from 1000 samples. The symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Sample: monthly variety-level import data from 2018:1 to 2019:12.
Table 4: Estimation of Product-level Elasticity

<table>
<thead>
<tr>
<th></th>
<th>$\Delta \ln s_{Mgt}$</th>
<th>$\Delta \ln p_{Mgt}$</th>
<th>$\Delta \ln s_{Mgt}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>$\Delta \ln Z_{Mgt}$</td>
<td>-1.537**</td>
<td>17.639***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.6271)</td>
<td>(6.2563)</td>
<td></td>
</tr>
<tr>
<td>$\Delta \ln p_{Mgt}$</td>
<td>-0.087***</td>
<td></td>
<td>-0.087***</td>
</tr>
<tr>
<td></td>
<td>(0.0230)</td>
<td></td>
<td>(0.0230)</td>
</tr>
<tr>
<td>Sector × Time FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1st-stage F</td>
<td></td>
<td>19.187</td>
<td></td>
</tr>
<tr>
<td>$\tilde{\eta}$ (se[\tilde{\eta}])</td>
<td></td>
<td>1.087 (0.0230)</td>
<td></td>
</tr>
<tr>
<td>Bootstrap CI</td>
<td></td>
<td>[1.041, 1.131]</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.015</td>
<td>0.010</td>
<td>0.351</td>
</tr>
<tr>
<td>N</td>
<td>226,372</td>
<td>226,372</td>
<td>226,372</td>
</tr>
</tbody>
</table>

Note: Table reports product-level import responses to import tariffs. Column (1) reports the reduced-form regression of the imported product’s share within sectoral imports, s_{Mgt}, on the product-level instrument, Z_{Mgt}. Column (2) reports the regression of the product-level import price index p_{Mgt} on Z_{Mgt}. Column (3) reports the IV estimation of product-level elasticity based on equation (30) with its first stage estimation in Column (2). The product-level import price index is constructed using $\tilde{\sigma}$ from column (6) of Table 3 according to equation (31), and the instrument is constructed using the statutory tariffs using equation (32). Robust standard errors (in parentheses) are clustered at the product level. 90% bootstrap confidence intervals of $\tilde{\eta}$ are constructed from 1000 samples. The symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Sample: monthly product-level import data from 2018:1 to 2019:12.
Table 5: Estimation of Sector-level Elasticity

<table>
<thead>
<tr>
<th></th>
<th>$\Delta \ln \frac{P_{Mst}Mst}{P_{Dst}Dst}$</th>
<th>$\Delta \ln \frac{P_{Mst}}{p_{st}}$</th>
<th>$\Delta \ln \frac{P_{Mst}Mst}{P_{Dst}Dst}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \ln Z_{Mst}$</td>
<td>-15.055</td>
<td>86.888</td>
<td>-0.173</td>
</tr>
<tr>
<td></td>
<td>(9.7353)</td>
<td>(201.2985)</td>
<td>(0.3208)</td>
</tr>
<tr>
<td>$\Delta \frac{P_{Mst}}{p_{st}}$</td>
<td></td>
<td></td>
<td>-0.173</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.3208)</td>
</tr>
</tbody>
</table>

	Y	Y	Y
Sector FE			
Time FE			
1st-stage F	0.546		
$\hat{\kappa}(s.e[\hat{\kappa}])$	1.173 (0.3208)		
Bootstrap CI	[0.541,1.385]		
R^2	0.194	0.232	
N	850	850	850

Note: Table reports sector-level import responses to import tariffs. Column (1) reports the reduced-form regression of the ratio of the expenditure on foreign goods and domestic goods, $\frac{P_{Mst}Mst}{P_{Dst}Dst}$, on the sector-level instrument, Z_{Mst}. Column (2) reports the regression of the ratio of sector-level import price index and domestic price index $\frac{P_{Mst}}{p_{st}}$ on Z_{Mst}. Column (3) reports the IV estimation of sector-level elasticity based on equation (33), with its first stage estimation in Column (2). The sector import price index is constructed using $\hat{\sigma}$ from Table 3, column (6), and $\hat{\eta}$ from Table 4, column (3), according to equation (34), and the instrument is constructed using the statutory tariffs using equation (35). Robust standard errors (in parentheses) are clustered at the sector level. 90% bootstrap confidence intervals of $\hat{\kappa}$ are constructed from 1000 samples. The symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Sample: monthly sector-level data from 2018:1 to 2019:12.
Table 6: Estimation of Variety-level Elasticities—Foreign Import Demand (σ^*) and China Export Supply (ω)

<table>
<thead>
<tr>
<th></th>
<th>$\Delta \ln p_{igt}^X$ (1)</th>
<th>$\Delta \ln x_{igt}$ (2)</th>
<th>$\Delta \ln p_{igt}^X$ (3)</th>
<th>$\Delta \ln p_{igt}^X(1 + \tau_{igt})$ (4)</th>
<th>$\Delta \ln p_{igt}^X$ (5)</th>
<th>$\Delta \ln x_{igt}$ (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \ln(1 + \tau_{igt}^*)$</td>
<td>-0.454***</td>
<td>-0.368***</td>
<td>-0.030</td>
<td>0.970***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1330)</td>
<td>(0.1065)</td>
<td>(0.0664)</td>
<td>(0.0664)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \ln x_{igt}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.083</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.1809)</td>
<td></td>
</tr>
<tr>
<td>$\Delta \ln p_{igt}^X(1 + \tau_{igt}^*)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.379***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.1143)</td>
<td></td>
</tr>
</tbody>
</table>

Country \times Product FE	Y	Y	Y	Y	Y	Y
Sector \times Time FE	Y	Y	Y	Y	Y	Y
1st-stage F	3.74	74.874				
Bootstrap CI	[-0.302,1.082]	[0.142,0.608]				
R^2	0.044	0.029	0.042	0.029	-	0.156
N	5,473,204	5,431,219	5,431,219	5,431,219	5,431,219	5,431,219

Note: Table reports the variety-level export responses to U.S. import tariffs. Columns (1)-(4) report reduced-form regressions of different export outcomes (export values, quantities, before-duty unit values, and duty-inclusive unit values) on the tariff changes. Column (5) reports the IV estimation of (inverse) export supply elasticity based on equation (37), with its first stage in Column (2). Column (6) reports the IV estimation of foreign import demand elasticity based on equation (36), with its first stage in Column (4). Robust standard errors (in parentheses) are clustered at the HS-6 and country level. 90% bootstrap confidence intervals of ($\hat{\omega}$ and $\hat{\sigma}^*$) are constructed from 1000 samples. The symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Sample: monthly variety-level export data from 2018:1 to 2019:12.
Table 7: Pre-trend tests for Chinese Imports and Exports

Panel A1: China’s retaliatory tariffs on U.S. products

<table>
<thead>
<tr>
<th></th>
<th>(\Delta \ln p_{ig}m_{ig})</th>
<th>(\Delta \ln m_{ig})</th>
<th>(\Delta \ln p_{ig})</th>
<th>(\Delta \ln p_{ig})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta_{17-19} \ln(1 + \tau_{ig}))</td>
<td>0.052</td>
<td>0.070</td>
<td>-0.029</td>
<td>-0.028</td>
</tr>
<tr>
<td></td>
<td>(0.1870)</td>
<td>(0.2249)</td>
<td>(0.1452)</td>
<td>(0.1452)</td>
</tr>
<tr>
<td>Sector FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.012</td>
<td>0.020</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>(N)</td>
<td>5,064</td>
<td>4,951</td>
<td>4,951</td>
<td>4,950</td>
</tr>
</tbody>
</table>

Panel A2: China’s MFN tariff cuts

<table>
<thead>
<tr>
<th></th>
<th>(\Delta \ln p_{ig}m_{ig})</th>
<th>(\Delta \ln m_{ig})</th>
<th>(\Delta \ln p_{ig})</th>
<th>(\Delta \ln p_{ig})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta_{17-19} \ln(1 + \tau_{ig}))</td>
<td>0.720</td>
<td>0.803</td>
<td>0.115</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>(0.6089)</td>
<td>(0.6978)</td>
<td>(0.4236)</td>
<td>(0.4237)</td>
</tr>
<tr>
<td>Country × Sector FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Product FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.144</td>
<td>0.144</td>
<td>0.132</td>
<td>0.132</td>
</tr>
<tr>
<td>(N)</td>
<td>66,886</td>
<td>64,844</td>
<td>64,844</td>
<td>64,820</td>
</tr>
</tbody>
</table>

Panel B: U.S. tariff increase on Chinese exports

<table>
<thead>
<tr>
<th></th>
<th>(\Delta \ln p_{ig}^Xx_{ig})</th>
<th>(\Delta \ln x_{ig})</th>
<th>(\Delta \ln p_{ig}^X)</th>
<th>(\Delta \ln p_{ig}^X(1 + \tau_{ig}^X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta_{17-19} \ln(1 + \tau_{ig}^X))</td>
<td>0.037</td>
<td>0.073</td>
<td>-0.002</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.1209)</td>
<td>(0.1178)</td>
<td>(0.0845)</td>
<td>(0.0817)</td>
</tr>
<tr>
<td>Sector FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.007</td>
<td>0.012</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>(N)</td>
<td>5,483</td>
<td>5,473</td>
<td>5,473</td>
<td>5,445</td>
</tr>
</tbody>
</table>

Note: Table reports pre-trend tests for Chinese imports (Panels A1 and A2) and exports (Panel B) at the variety level. The dependent variables are the average monthly change of trade outcome variables during 2017:1–2017:12 in terms of before-duty trade value, quantity, before-duty unit value and duty-inclusive unit value. Panel A1 and B regress the pre-war trade outcomes of Chinese imports from (exports to) the U.S. on the (latest revised) tariff changes during the trade war period 2018:1–2019:12. Panel A2 regresses the trade outcomes of Chinese imports from non-U.S. sources on China’s tariff changes on non-U.S. sources of imports during the trade war. Robust standard errors (in parentheses) are clustered at the product level (Panel A1 and B), and product and country level (Panel A2), respectively. The symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Sample: monthly variety-level import and export data from 2017:1–2017:12 for the pre-trend variables, and 2018:1–2019:12 for the tariff changes.
<table>
<thead>
<tr>
<th></th>
<th>EV(^X)</th>
<th>EV(^M)</th>
<th>∆R</th>
<th>EV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>2018–2019 trade war</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change ($ b)</td>
<td>-17.093</td>
<td>-8.132</td>
<td>3.589</td>
<td>-21.636</td>
</tr>
<tr>
<td></td>
<td>[-37.629,5.860]</td>
<td>[-14.311,-1.511]</td>
<td>[2.651,4.884]</td>
<td>[-44.171,2.778]</td>
</tr>
<tr>
<td>change (% GDP)</td>
<td>-0.141</td>
<td>-0.067</td>
<td>0.030</td>
<td>-0.178</td>
</tr>
<tr>
<td></td>
<td>[-0.310,0.048]</td>
<td>[-0.118,-0.012]</td>
<td>[0.022,0.040]</td>
<td>[-0.364,0.023]</td>
</tr>
<tr>
<td>2018–2019 trade war (w/o China’s MFN tariff cuts)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change ($ b)</td>
<td>-11.629</td>
<td>-11.772</td>
<td>7.145</td>
<td>-16.256</td>
</tr>
<tr>
<td>change (% GDP)</td>
<td>-0.096</td>
<td>-0.097</td>
<td>0.059</td>
<td>-0.134</td>
</tr>
<tr>
<td></td>
<td>[-0.262,0.130]</td>
<td>[-0.144,-0.047]</td>
<td>[0.051,0.072]</td>
<td>[-0.304,0.110]</td>
</tr>
<tr>
<td>2018–2019 trade war (w/o retaliation by China)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change ($ b)</td>
<td>-27.029</td>
<td>-0.289</td>
<td>-1.173</td>
<td>-28.491</td>
</tr>
<tr>
<td>change (% GDP)</td>
<td>-0.223</td>
<td>-0.002</td>
<td>-0.010</td>
<td>-0.235</td>
</tr>
<tr>
<td></td>
<td>[-0.398,-0.052]</td>
<td>[-0.057,0.056]</td>
<td>[-0.013,-0.005]</td>
<td>[-0.415,-0.067]</td>
</tr>
</tbody>
</table>

Note: Table reports the aggregate impacts in column (4) and the decomposition into EV\(^X\), EV\(^M\), and tariff revenue (∆R) in columns (1)–(3). The top panel reports the effects from the 2018–2019 trade war. The bottom two panels simulate hypothetical scenarios where China did not implement MFN tariff cuts in response to tariff increases against the U.S., and where China did not retaliate against the U.S. or implement MFN tariff cuts as a result of the retaliation. The first row in each panel reports the overall impacts of each term in billions of US$. The third row scales the value by 2017 GDP of China. These numbers are computed using the model described in Section 4 and Appendix B with {\(\hat{\sigma} = 1.120, \hat{\eta} = 1.087, \hat{\kappa} = 1.173, \hat{\omega}^* = -0.008, \hat{\sigma}^* = 0.379\)}. Bootstrapped 90% confidence intervals based on 1,000 simulations of the estimated parameters are reported in brackets.
Table 9: Simulated Trade Diversion Impacts of the Trade War 2018–2019

<table>
<thead>
<tr>
<th></th>
<th>∆ trade volume (1)</th>
<th>Trade share w/o war (2)</th>
<th>Trade share with war (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A. Imports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S.</td>
<td>-12.47%</td>
<td>9.09%</td>
<td>8.17%</td>
</tr>
<tr>
<td>ROW</td>
<td>-1.57%</td>
<td>90.91%</td>
<td>91.83%</td>
</tr>
<tr>
<td>North America</td>
<td>-10.59%</td>
<td>11.01%</td>
<td>10.10%</td>
</tr>
<tr>
<td>Asia</td>
<td>-1.73%</td>
<td>52.01%</td>
<td>52.46%</td>
</tr>
<tr>
<td>Europe</td>
<td>-0.85%</td>
<td>19.17%</td>
<td>19.50%</td>
</tr>
<tr>
<td>Panel B. Exports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S.</td>
<td>-7.74%</td>
<td>19.21%</td>
<td>18.11%</td>
</tr>
<tr>
<td>ROW</td>
<td>-0.80%</td>
<td>80.79%</td>
<td>81.89%</td>
</tr>
<tr>
<td>North America</td>
<td>-6.73%</td>
<td>22.22%</td>
<td>21.17%</td>
</tr>
<tr>
<td>Asia</td>
<td>-0.64%</td>
<td>48.64%</td>
<td>49.38%</td>
</tr>
<tr>
<td>Europe</td>
<td>-0.80%</td>
<td>19.00%</td>
<td>19.26%</td>
</tr>
</tbody>
</table>

Note: Table reports the simulated changes in China’s imports from and exports to its trading partners due to the trade war, using 2017 Chinese economy given the tariff changes of 2018–2019. Section 5.3 provides the formulas. Columns (2) and (3) report the trade shares by regions without the trade war and as a result of the trade war.
Figure 1: Trade War Timeline

(A) U.S. statutory tariffs on Chinese exports

(B1) Chinese retaliatory tariffs (on imports from U.S.)
(B2) Chinese MFN tariff cut

Note: Figure shows the unweighted average tariff rate of targeted import and export varieties for each tariff wave before and after they are targeted. The numbering of the events corresponds to those in Table. Refer to Data Appendix for additional details on the construction of tariff rates and the scaling of tariff increases when the implementation date is not on the first day of the month. In drawing the above diagram, the implementation month is taken to be the current month if the implementation date is before the 15th of the month and the next month otherwise.
Figure 2: Regional Exposure to Tariff Increase of China and U.S.

(A) China’s Tariff Increase on U.S. Imports, 2018–2019

Weighted by Variety-Level China Import Share and Province-Level 2017 Tradeable Sector Employee Wage Bill

(B) China’s MFN Tariff Decrease on Non-U.S. Imports, 2018–2019

Weighted by Variety-Level China Import Share and Province-Level 2017 Tradeable Sector Employee Wage Bill
(C) China’s Net Tariff Increase on Imports, 2018–2019

Weighted by Variety-Level China Import Share and Province-Level 2017 Tradeable Sector Employee Wage Bill

(D) U.S. Tariff Increase on China’s Exports, 2018–2019

Weighted by Variety-Level China Export Share and Province-Level 2017 Tradeable Sector Employee Wage Bill

Note: Figure shows province-level exposure to China’s tariff increase on U.S. imports (Panel A), China’s MFN tariff decrease on non-U.S. imports (Panel B), China’s net tariff increase (Panel C), and U.S. tariff increase on China’s exports (Panel D), in relation to the trade war during 2018–2019, weighted by 2017 variety-level China trade shares (constructed from Customs data) and by 2017 province-level tradeable sector employee wage bill (constructed from China Labor Statistical Yearbook). Darker shades indicate exposure to larger tariff changes. Values indicate percentage point tariff changes.

Mean = 0.13, std = 0.81

Mean = 3.19, std = 0.87
Figure 3: Simulated Real Wage Impacts from the Trade War

(A) Tradeable Real Wage Loss from Tariff Increase of China and U.S.

(B) Tradeable Real Wage Loss from Tariff Increase of China and U.S. (w/o the MFN tariff adjustment by China)

Note: Figure shows province-level mean tradeable wage losses as simulated from the model. Panel A shows losses accounting for all import tariff changes by China and U.S. tariff changes against China. Panel B shows losses in the counterfactual scenario where China did not implement MFN tariff cuts in response to tariff increases against the U.S. Darker shades indicate greater losses. Values indicate percent wage declines.
Table A.1: Effects of Tariff Wars on China’s Imports and Exports (Partial Effects)

<table>
<thead>
<tr>
<th>IMPORT</th>
<th>China’s tariff increase against U.S. products</th>
<th>MFN tariff cuts</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ tariff</td>
<td>Δ import values</td>
<td>Δ tariff</td>
</tr>
<tr>
<td>Varieties</td>
<td>15.84%</td>
<td>-17.76%</td>
<td>-3.97%</td>
</tr>
<tr>
<td>Products</td>
<td>15.84%</td>
<td>-1.38%</td>
<td>-0.20%</td>
</tr>
<tr>
<td>Sectors</td>
<td>15.56%</td>
<td>-2.69%</td>
<td>-0.19%</td>
</tr>
</tbody>
</table>

U.S. tariff increase against Chinese products

<table>
<thead>
<tr>
<th>EXPORT</th>
<th>Δ tariff</th>
<th>Δ export values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23%</td>
<td>-9%</td>
</tr>
</tbody>
</table>

Note: Table reports the average change in tariffs and trade values at the variety, product, and sector level. The calculations use the elasticity estimates from Tables 4.6.
Formulas used in the calculations are provided in Sections 4.1–4.4.