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1 Introduction

The event study model is one of the most widely used econometrics tools in accounting,

finance, applied microeconomics for studying the effects of firm and economy-wide events,

such as mergers and acquisitions, earnings announcements, the release of macroeconomic

variables, and policy evaluation, see Campbell et al. (1997),MacKinlay (1997), and Miller

(2023) for comprehensive reviews.

Although these studies focus on different problems, they all employ a common approach

to conduct event study analysis1. Take earnings announcements, which has been widely

studied in finance2, as an example. The pre-event daily data3 is used to estimate the market

model, and the abnormal returns are obtained in the post-event window. After aggregating

over time and across securities, we can draw inference on the cumulative abnormal return

(CAR), a common measure of event impact. However, if we are interested in the effect of

a firm-specific event that occurs during trading hours, the classic approach is inadequate,

as using daily data and aggregation is inappropriate. This motivates us to explore how to

conduct the intraday event studies for the firm-specific event in a high-frequency setting.

High-frequency event studies have received a lot of attention in the recent high-frequency

financial econometrics literature, with most focusing on macroeconomic news announce-

ments, particularly Federal Open Market Committee (FOMC) announcements and other

prescheduled economic news events. Numerous studies have shown that these events often

trigger “abrupt” changes in financial asset prices over the short time intervals. Empirical

evidence of intraday news announcement effects has been explored by Ederington and Lee

1See Chapter 4 in Campbell et al. (1997) for a comprehensive overview of event study analysis in finance
context.

2Hung et al. (2014) studies how firms’ financial reporting quality affects post-earnings-announcement
drift. Hou and Moskowitz (2005) analyses the impact of market frictions on cross-sectional return pre-
dictability. Agrawal et al. (2020) assesses the relationship between labor flow and corporate earnings an-
nouncements. Patton and Verardo (2012) compares the beta variation between earnings announcement days
using daily price data.

3Earnings announcements are typically released during the non-trading hours, therefore the daily price
data is commonly used for such event studies.
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(1993) and Andersen et al. (2003), leading to a large body of literature using high-frequency

data to test for abrupt price changes, or jumps, over short time intervals. Barndorff-Nielsen

and Shephard (2006) introduced the first nonparametric test for asset price jumps using

high-frequency data under an infill asymptotic framework. Similar studies examining jumps

in volatility and trading intensity in jump regressions have been conducted in Bollerslev

et al. (2018) and Li et al. (2017). Another closely related work is Bugni et al. (2023), which

proposed a permutation-based discontinuity test for two local subsamples on the two sides

of an event cutoff point.

Set against this background, Bollerslev et al. (2024) introduced a novel predictive infer-

ence procedure for high-frequency event studies involving the firm-specific intraday events.

The approach is based on the fixed-k theory, where the local window size is treated as a fixed

constant. The underlying continuous-time price process can be approximated as a scaled

Brownian motion over “short” time intervals, and the t-statistic of cumulative abnormal

return (CAR) can be approximated by a t-distributed random variable, adopting the core

idea of traditional analysis. However, empirical evidence from diagnostic tests based on

spot skewness and spot kurtosis, as presented in Bollerslev et al. (2024), indicates that this

approximation appears inadequate even for windows of thirty minutes or longer. This ob-

servation motivates the consideration of a more general model where the underlying process

exhibits heavier tails compared to Brownian motion. Such a broader framework is more

appropriate for capturing rapid variations over short time intervals and facilitates a more

comprehensive exploration of inference under such a general setting.

In this paper, we consider a more general continuous-time model in which the underlying

price process behaves approximately as a scaled stable Lévy motion under the fixed-k asymp-

totic setting. This general model has been widely used in the literature to model the price

processes, see Todorov and Tauchen (2012) and Barndorff-Nielsen and Shephard (2001).

This local approximation allows us to treat the nonparametric spot regression problem as

a finite sample linear regression where both the regressor and the dependent variable are
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stable distributed. However, in this general model, the limiting distribution of t-statistic of

the CAR is no longer t-distributed, and the previous inference theory breaks down. There-

fore, we recast the inference problem of the CAR as a (counterfactual) prediction problem

for cumulative return. Specifically, we aim to construct a prediction interval for cumulative

high-frequency return under this general model, which can be applied in intraday event

studies. This approach leads us to build on the conformal prediction literature.

The conformal prediction method is an excellent tool for constructing a prediction in-

terval for Yn+1, when considering a model in which the data (Xi, Yi)1≤i≤n and the new

observation Xn+1 are i.i.d. distributed. This method, first proposed by Vovk et al. (2005),

is a widely adopted modern technique for providing valid predictive inference for arbitrary

machine learning models, and has been extensively applied in various contexts4. The va-

lidity of the conformal prediction interval relies on the assumption of data exchangeability

and the symmetry of the given model-fitting algorithm.

We derive the asymptotic validity of the conformal prediction interval in a general

continuous-time setting, building on the conformal idea. Specifically, we link the conformal

prediction method applied to the original data with the one used in the “limit experiment”, a

linear regression model where both regressor and dependent variables are stable distributed.

In the latter case, the conformal prediction method can be directly applied. Using the cou-

pling theory we developed, we demonstrate that conformal prediction maintains asymptotic

validity under the fixed-k approach.

Going one step further, we extend the proposed prediction method to a high-dimension

setting, allowing for the inclusion of many regressors in the spot regression, which can be

viewed as a synthetic control framework, see Abadie and Gardeazabal (2003); Abadie et al.

(2010) and Abadie et al. (2015). We consider this scenario because endogeneity issues

4For example, Lei et al. (2013) considered nonparametric prediction sets, and Lei and Wasserman (2014)
extended it to the low-dimensional nonparametric regression. Lei et al. (2018) examined high-dimensional
regression, and the time-series settings have been conducted by Chernozhukov et al. (2018) and Cher-
nozhukov et al. (2021), Tibshirani et al. (2019) and Barber et al. (2023) extended conformal prediction to
handle nonexchangeable data under certain assumptions.
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may arise when the target asset is part of the market portfolio. By excluding the target

asset from the market portfolio, we consider the remaining assets as control units, adopting

a counterfactual model where the target asset is the treated one. The challenge lies in

demonstrating that the previous coupling theory holds for all the units. Given these the

approximation results, we can apply the canonical synthetic control method5 to estimate the

weights for each unit. These weights are then used to generate predictor estimates, allowing

us to construct the corresponding conformal prediction interval using similar procedures as

before.

In an empirical application of an intraday event study, we demonstrate the use of con-

formal prediction method, detailing the price impact of a conference session held by AMD’s

CEO, Lisa Su, on September 5, 2023. By constructing a prediction interval for the cumu-

lative return during the event window, we reliably assess the performance of AMD’s stock

price relative to the expected return at a high intraday frequency. We find that the dis-

cussion led to a significant positive return for AMD’s stock, and observe that the financial

market responded quickly to the new information and positive outlook conveyed during the

discussion. This highlights the practical usefulness of the conformal prediction method in

high-frequency event studies.

The remainder of the paper is organized as follows. Section II formally presents the main

theory for general spot regression setting, including the coupling result and the asymptotic

validity of the conformal prediction interval. Section III extends the theory to the counter-

factual model with many control units, and the corresponding conformal prediction interval.

Section IV summarizes the results of our Monte Carlo simulation study. Our empirical appli-

cation of the intraday event study for AMD is presented in Section V. Section VI concludes

the paper. All proofs, additional simulation results, and empirical robustness checks are

included in the Appendix.

5This method was first proposed by Doudchenko and Imbens (2016), under a synthetic control formula-
tion without covariates, while Abadie et al. (2010) and Abadie et al. (2015) consider a more general version
that includes covariates into the estimation problem.
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2 Theory

In this section, we consider the intraday event study problem under the infill time-series

setting. Section A provides a simple illustration of the main idea, and Section B introduces

the formal setting. Section C establishes the coupling theory for spot return regressions

and conformal prediction approach. Section D describes the corresponding theory under a

synthetic control framework, where the spot regression includes many regressors. Below,

the sampling interval of the high-frequency data shrinking to zero, i.e., ∆n → 0, as the

asymptotic stage n → ∞.

2.1 A simple illustrative example

We start by illustrating the main idea of this paper in a “toy” model. This is essentially

without loss because the toy model in fact corresponds to the “limit experiment” of the

nonparametric spot regression problem of interest. The discussion here involves minimal

technicality and guides the more general theory developed below.

To conduct event study analysis, we consider a general counterfactual model as followed:

yNi = βxN
i + ϵi, i ∈ {1, · · · , k0}

yEi = βxN
i + ϵi + θi, i ∈ {k0 + 1, · · · , k0 + k1}

where the superscripts N and E indicate the absence of an event and the presence of

an event, respectively. The xN
i and ϵi variables are mutually independent and identically

distributed. In the spot regression context, yi and xN
i are the high-frequency returns of two

assets, β is the beta of asset y with respect to asset x, and ϵi represents the idiosyncratic,

or asset-specific, shock. The sample is divided into a pre-event window and a post-event

window, containing k0 and k1 observations, respectively.

The common approach to studying the effect of this event is to consider an inference
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problem for θi. In this paper, we recast the inference problem as a counterfactual prediction

problem. Specifically, we aim to construct a prediction interval for yi using the observed

data (xN
i , y

N
i )(1,··· ,k0) in the pre-event window and new realization for xN

i in the post-event

window. This approach relies on the assumption that, in the absence of the event, yi would

have the same distribution as in the previous sample.

The independence assumption may initially appear strong. However, Bollerslev et al.

(2024) show that, under the continuous-time benchmark model, both independence and

normality approximately hold for asset returns observed at a high frequency within a short

(i.e., asymptotically shrinking) estimation window, where the number of observations, k, is

treated as fixed. The intuition behind this result is straightforward: when the estimation

window is sufficiently short, stochastic volatility remains nearly constant, and other com-

ponents become negligible. Therefore, high-frequency returns inherit the independence and

normality properties of the driving martingale Brownian motion in the model.

Nevertheless, empirical evidence suggests that this approximation may be inadequate

in some situations, prompting consideration of a more general model that can account

for rapid variation within the short window. This corresponds to the “limit experiment”,

where both xi and yi are mutually independent and identically distributed according to a

symmetric stable distribution. Consequently, the classic finite-sample predictive analysis

is not applicable in this limit experiment, as it relies on both normality and independence

assumptions. This limitation motivates the adoption of the conformal prediction method,

which requires only the independence assumption. We establish the formal theoretical

results in the following section.
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2.2 The Formal Setting

We consider the following general Itô semimartingale model, the bivariate price process

Zt = (Xt, Yt)
⊤ , defined on some filtered probability space (Ω,F , (Ft)t≥0,P), is given by:

Zt = Z0 +

∫ t

0

bsds+

∫ t

0

σsdLs + J t (1)

where the drift process b, and the stochastic volatility matrix process σ are both càdlàg

adapted. The bivariate Lévy martingale L = (L1,t, L2,t)t≥0 is allowed to be continuous

(i.e., Brownian motion) or of pure-jump type (i.e., the standard Lévy stable motion with

index η ∈ (1, 2), where the Lévy measure around zero behaves like that of the symmetric

η-stable process). Given Assumption 1 below, we further assume this pure-jump martingale

Lt is of infinite variation. J t denotes the pure-jump process with finite activity driven by a

homogeneous Poisson random measure on R+ × R.

Such a semimartingale model, serves as the milestone model in continuous-time finance

and economics. In particular, the jump-diffusion semimartingale model, where the driving

martingale is a Brownian motion, is considered the benchmark model and has been widely

studied in the literature, for example, the estimation for volatility6, and inference for “spot

regression” in Barndorff-Nielsen (2004) and Bollerslev et al. (2024). The model driven by

the Lévy martingale is more general, as it incorporates infinite activity jumps that generate

smaller, more frequent jumps. It has been used in various studies related to volatility

estimation, see Aı̈t-Sahalia and Jacod (2007, 2008) and Todorov and Tauchen (2012); and

jump activity index estimation, see Todorov (2015) and Todorov (2017).

6The volatility estimation problem mainly includes “spot volatility” and “integrated volatility function-
als”, see Jacod and Protter (2012); Aı̈t-Sahalia and Jacod (2014); Jacod et al. (2021) and Bollerslev et al.
(2021).
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For the volatility matrix σt, We impose the following lower-triangular structure:

σt =

 v
1/2
t 0

βtv
1/2
t ζ

1/2
t

 (2)

and therefore the semimartingale model can be represented as the regression form:

dXt = bX,tdt+ v
1/2
t dL1,t

dYt = bY,tdt+ βtv
1/2
t dL1,t + ζ

1/2
t dL2,t

In line with the illustrative example presented earlier, our primary objective is to conduct

event study analysis by constructing a prediction interval for the cumulative return of Y dur-

ing the post-event window. The observed data include high-frequency return observations

of X and Y in the pre-event window, along with the returns of X in the post-event window.

We adopt the standard infill asymptotic framework here, letting ∆n
i Z = Zi∆n − Z(i−1)∆n

represents the increment of the asset price process Zt over the i-th sampling interval, with

a sampling frequency of ∆n.

We denote the “event” or the “cutoff” time point of interest by τ ∗ and let the index i∗

be the unique integer such that τ ∗ ∈ [i∗∆n, (i
∗ + 1)∆n). Furthermore, we denote the index

set for the observed data as In,1 = {i∗ − k0 + 1, . . . , i∗}, representing the k0 observations

in the pre-event window, and the index set for the prediction period is denoted as In,2 =

{i∗ +1, . . . , i∗ + k1}, representing the k1 observations in the post-event window. We assume

that the number of observations in both the pre-event and post-event windows is fixed,

referred to as the fixed-k approach in Bollerslev et al. (2021) and Bollerslev et al. (2024).

For ease of notation, we reset the index notation to {1, · · · , k0} for the pre-event window

and {k0 + 1, · · · , k0 + k1} for the post-event window.

The primary objective of this paper is to assess the significance of the cumulative return

of the target asset, defined as CR = Y(k0+h)∆n − Yk0∆n , by constructing the prediction
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interval. If the observed cumulative return falls outside this interval, it can be considered

statistically significant. The predictor for the cumulative return is obtained using the spot

estimator of the parameters, which are derived from the spot estimator for the covariance

matrix ct = σtσ
⊤
t as:

ĉt ≡
1

kn∆n

∑
i∈In,1

(∆n
i Z)(∆n

i Z)⊤

the spot estimator for beta βt, and the idiosyncratic variance ςt can be directly obtained

from the lower-triangular structure of the covariance matrix ct:

β̂t ≡
ĉ12,t
ĉ11,t

, ζ̂t ≡ ĉ22,t −
ĉ212,t
ĉ11,t

(3)

The intraday predictive inference has been studied by Bollerslev et al. (2024) through the

cumulative abnormal return, denoted as:

ĈARh = Y(k0+h)∆n − Yk0∆n −
(
X(k0+h)∆n −Xk0∆n

)
· β̂[1:k0]. (4)

The t-statistic for the CAR can be “coupled” by a t−distributed random variable, based

on the approximation theory in Bollerslev et al. (2024), thereby enabling the validity of

the prediction interval for the cumulative return. The coupling theory can be intuitively

understood by that Itô semimartingale model behaves as locally Gaussian within a short

estimation window under the fixed-k asymptotic setting. The diagnostic tests conducted in

their empirical application, however, suggests that the local Gaussian approximation may

be inadequate when using a short window of 30 minutes.

This observation motivates us to consider a broader class of models to account for such

deviations, specifically, a general semimartingale model driven by a Lévy martingale, in

which the Lévy measure behaves around zero like that of a stable process. The correspond-

ing fixed-k asymptotic theory we develop for spot regressions builds on the idea that the
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general Itô semimartingale model is “locally stable”. This framework effectively captures

rapid variations, even within relatively short windows, such as thirty or sixty minutes. The

conformal prediction framework can be employed in this context, to construct valid predic-

tion intervals for cumulative returns in the post-event window. This approach provides a

rigorous statistical methodology to assess whether a firm-specific event significantly affects

its stock prices.

2.3 Coupling Result

The main idea of the fixed-k asymptotic theory in a general framework is that, within a

narrow estimation window (i.e., k∆n → 0, as implied by ∆n → 0 and a fixed k), the drift

component becomes asymptotically negligible, large jumps occur with vanishing probabil-

ity, and the volatility process can be treated as nearly constant. Consequently, the spot

regression under this general setting can be approximated by a linear model, where both

the regressor and the response variable follow the η−stable distribution. We then introduce

the conformal prediction method and establish its asymptotic validity under this general

framework. The requisite regularity conditions for the “coupling” theory are presented

in the following two assumptions, which align with standard high-frequency econometrics

literature.

Before stating the assumptions, we recall that a Lévy process Lt with characteristic

triplet (b, c, v) with respect to truncation function κ(x) = x (we will always assume that the

process has a finite first order moment) is a process with characteristic function given by

E
(
eiuLt

)
= exp

(
t

(
iub− u2c/2 +

∫
R

(
eiux − 1− iux

)
ν(dx)

))

With this notation, we assume that the Lévy process Lt in (1) has a characteristic triplet

(0, 0, v), where v is a Lévy measure. Note that since the truncation function with respect to

which the characteristics of the Lévy processes are presented is the identity, this implies that
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Lt is a pure-jump martingale. We still permit the possibility that the driving martingale

is a Brownian motion, corresponding to the benchmark model in Bollerslev et al. (2024).

Assumption 1 below imposes some restrictions on its properties.

Assumption 1. The driving Lévy process is a symmetric η−stable Lévy motion, with char-

acteristic triplet (0, 0, ν(dx)) for ν a Lévy measure with density given by:

ν(dx) =
A

|x|1+η
dx

where A =
(

4Γ(2−η)| cos(ηπ/2)|
η(η−1)

)−1

, the stability index η ∈ (1, 2], and
∫
R |x|v(dx) < ∞.

Assumption 1 implies that the small-scale behavior of the driving martingale Lt resembles

that of a stable process with index η, which characterizes the “activity” level of the driving

process and reflect the vibrancy of its trajectories. Hence, we refer to η as the activity index7.

We further assume that the jump-activity index η remains constant over the shrinking time

interval. The value of constant A is chosen such that the pure jump process converges in

finite-dimensional distributions to Brownian motion as η → 2. Additionally, we impose

another set of standard regularity conditions, as specified in Assumption 2.

Assumption 2. Suppose that the process Z satisfies (1), and that there exists a sequence

(Tm)m≥1 of stopping times increasing to infinity and a sequence (Km)m≥1 of constants such

that the following conditions hold for each m ≥ 1:

(i) ∥bt∥+ ∥σt∥+ ν−1
t + ζ−1

t + Ft(R \ {0}) ≤ Km for all t ∈ [0, Tm], where Ft denotes the

spot Lévy measure of J;

(ii) for some constant κ > 0,

∥σt∧Tm − σs∧Tm∥2 ≤ Km|t− s|κ for all t, s ∈ [0, T ].

7The index η is equivalent to the Blumenthal-Getoor index of the Lévy process Lt under this assumption,
and if η = 2, Lt is a scaled Brownian motion.
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Assumption 2 entails very mild regularity conditions on the underlying process, per-

mitting the approximation of observed data using coupling variables. To be more specific,

condition (i), in particular, impose the local boundedness on various processes, including

the drift, stochastic volatility and jump components. Condition (ii) states that the volatility

process is locally κ-Hölder continuous under the L2 norm. Such Hölder-continuity require-

ment can be verified using well-established results, provided that the stochastic volatility

process is an Itô semimartingale or a long-memory process (see Chapter 2 in Jacod and

Protter (2012) and Li and Liu (2021))8.

Remark 1. Throughout the paper, we assume that the index η is known. A large body of

literature studying the estimation problem of η. Aı̈t-Sahalia and Jacod (2008) shows that the

optimal rate for η is
√
n log(1/∆n), and is unaffected by the presence of jumps with finite

variations. However, the primary focus of this paper is not on the estimation of η, instead,

we aim to extend the benchmark model to a more generalized framework by allowing for

1 < η ≤ 2.

Theorem 1, below, establishes that under these assumptions, the price process Zt can be

approximated by a linear model over a short interval, where both the regressor and response

variables follow the symmetric stable distribution with index η. For notation simplicity, the

relevant quantities are defined as follows:

xn,i ≡ v
1/2
t ∆n

i L1

yn,i ≡ βtxn,i + ς
1/2
t ∆n

i L2 (5)

zn,i ≡ (xn,i, yn,i)
⊤

Theorem 1. Under Assumptions 1 and 2, for any p < η, the spot regression model in (1)

8Similar assumptions have been made in Bollerslev et al. (2021), Bugni et al. (2023) and Bollerslev et al.
(2024)
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and (2) can be approximated by the linear regression model in (5):

∥∆n
i Z − zn,i∥p = op(∆

1/η
n )

Building on the coupling result established in Theorem 1, we can reformulate the regres-

sion of the scaled return of X and Y as follows:

∆n
i Y

∆
1/η
n

= βt
∆n

i X

∆
1/η
n

+ ς
1/2
t

∆n
i L

∆
1/η
n

+ op(1)

The coupling result derived under the fixed-k asymptotic theory demonstrates that the

general Itô semimartingale model closely approximates a classical linear regression model,

in which both the regressor and the independent variable are i.i.d. and follow a symmetric

η−stable distribution. The op(1) term accounts for biases arising from the drift and jump

components with finite variation, as well as from the temporal variation in the stochastic

volatility process. In the limiting model, these “nuisance” terms are omitted, resulting in

the op(1) terms being identically zero. Since classical finite-sample predictive inference relies

on the normality of the limiting model, which doesn’t hold in the general case, we instead

apply the conformal prediction method, which only requires exchangeability of the data.

We next demonstrate how to establish the asymptotic validity for our conformal prediction

interval.

2.4 Conformal Prediction for Spot Regression

We begin by considering the one-step prediction problem and subsequently extend the anal-

ysis to the h−step prediction. To simplify notation, we denote the observed data collection

as (rX,i, rY,i)i=1,··· ,k0 and rX,k0+1, where rX,i =
∆n

i X

∆
1/η
n

and rY,i =
∆n

i Y

∆
1/η
n

. The corresponding

coupling variables are (xn,i, yn,i), as defined in (5), which are independent and identically

distributed. Our goal is to construct a prediction interval for rY,k0+1, and we will then show
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that the conformal prediction interval constructed from the original data asymptotically

inherits the validity of the prediction interval derived from the limiting variables.

The conformal prediction approach is based on test inversion applied to the augmented

dataset, where the null hypothesis is H0 : rY,k0+1 = y, with y representing a test value. The

prediction interval is constructed by collecting all plausible values of y through evaluating

each y ∈ R, typically using a discrete grid of trial values in practical applications. Under the

null hypothesis for a given value y, the augmented data sample Z(y) = (rX,i, rY,i)i=1,··· ,k0,k0+1

is assumed to be drawn from the same joint distribution. The spot-regression-based esti-

mates for rY can then be obtained as µ̂(rX,i) = β̂trX,i, where β̂t represents the spot beta

estimator obtained from the augmented data sample. We next define the following noncon-

formity measure:

S
(y)
i =


|rY,i − µ̂(rX,i)| if 1 ≤ i ≤ k0

|y − µ̂(rX,k0+1)| if i = k0 + 1

(6)

which quantifies how atypical a given value is relative to prior samples by leveraging the

fitted residuals. The choice of the score function, as well as the estimates for the predicted

value, can influence the efficiency of the prediction interval. Given that the prediction inter-

val remains invariant under monotonic transformations of the score function, the precision

of the point estimator, particularly the spot estimator, is crucial in determining the overall

accuracy of the prediction.

The p−value can be computed as:

p̂(y) =
1

k0 + 1

k0+1∑
i=1

1

{
S
(y)
i ≥ S

(y)
k0+1

}
(7)

which represents the proportion of the augmented data sample for which the fitted sample

exceeds the last value. For a given miscoverage level α ∈ (0, 1), the prediction interval for

rY,k0+1 can be constructed using the test inversion, as outlined in Algorithm 1.
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Algorithm 1

Step 1: Choose a trail value y ∈ Y , where Y collects all fine grid values.
Step 2: Define the augmented data sample Z(y) and test the null hypothesis H0 : rY,k0+1 = y,
then we use (7) to compute the corresponding p−value (8).
Step 3: Return the (1− α) prediction intervals:

C1−α(rX,k0+1) = {y ∈ Y : p̂(y) > α} (8)

The finite-sample validity of conformal prediction intervals, particularly in a regression

setting, is a well-established property of all conformal inference procedures. This feature

is noteworthy, as it imposes no specific distributional assumptions, relying solely on the

exchangeability of the data, a condition inherently satisfied in an i.i.d. setting under the

limit model of spot regression. We establish the asymptotic validity of this novel conformal

prediction method within the broader context of the general Itô semimartingale model, as

formalized in the following theorem.

Theorem 2. Under Assumptions 1 and 2, and consider the model (1) and (2), the conformal

prediction interval C1−α(rX,k0+1) attains asymptotic validity, as follows:

1− α ≤ lim inf P(rY,k0+1 ∈ C1−α(rX,k0+1)) ≤ lim supP(rY,k0+1 ∈ C1−α(rX,k0+1)) ≤ 1− α +
1

k0 + 1

Theorem 2 characterizes the asymptotic coverage probabilities of the prediction interval.

The fundamental idea is that, given the coupling results established in Theorem 1, under the

null hypothesis H0 : rY,k0+1 = y, the new data point for label y follows the same distribution

as the previously observed sample. This implies that all data points in the augmented

dataset are asymptotically locally i.i.d., allowing us to “absorb” the finite-sample validity

of the prediction interval in the limit experiment. The left-hand side holds automatically

by construction of the prediction interval. For the right-hand size, the focus in on the anti-

conservativeness, which was initially proposed under the i.i.d. setting by Lei et al. (2018),

assuming the nonconformity score has an asymptotic distribution that is continuous.
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Building on the one-period prediction theory, we extend the conformal prediction frame-

work to accommodate a h−period cumulative returns, denoted by CR = Y(k0+h)∆n − Yk0∆n ,

to mitigate the high noise in the high-frequency returns. When applying the conformal

prediction method, We add the scaled cumulative return of X and trail value y to the aug-

mented dataset. The main intuition for considering the scaled cumulative return is that the

underlying driving martingale is a stable Lévy motion Lt, which possesses the self-similarity

property. The stability index η determines the scaling across different frequencies. Such

property allows the scaled cumulative return in the limit model to retain the same distri-

bution as the previous data. Lemma 1 formalizes the approximation theory for the scaled

cumulative return.

Lemma 1. Under Assumptions 1 and 2 for the general model (1), there exists a η-stable

distributed random variable such that:

h−1/η(Y(k0+h)∆n − Yk0∆n) = Sk0+1 + op(1)

for any h > 0 and ∆n → 0.

The η−stable distributed random variable Sk0+1 is assumed to have the same distribu-

tion as the limiting variable considered in the one-period prediction setting. Under the null

hypothesis, it also shares the same distribution as the limiting variable in the pre-event win-

dow, thereby satisfying the exchangeability assumption required for conducting conformal

prediction method.

To formalize the conformal prediction procedure for the h−period setting, we aim to

construct the conformal prediction interval for h−period cumulative return Y(k0+h)∆n −

Yk0∆n , by inverting the test of the null hypothesis H0 : r̄Y,k0+h = y, where r̄Y,k0+h =

(h∆n)
−1/η(Y(k0+h)∆n −Yk0∆n) is the scaled cumulative return and y is a specified trail value.
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Then we can define the augmented dataset as:

Z̄
(y)

= (rX,1, rY,1), · · · , (rX,k0 , rY,k0), (r̄X,k0+h, y)

which contains the observed data from the pre-event window, the realized scaled cumulative

return of X as r̄X,k0+h = (h∆n)
−1/η(X(k0+h)∆n −Xk0∆n) and the trail value y.

We then follow the prediction procedure described in Algorithm 1 to determine the

corresponding prediction interval is Cη,1−α(r̄X,k0+h). After rescaling by (h∆n)
1/η, we obtain

the prediction interval for the cumulative return Y(k0+h)∆n −Yk0∆n . The asymptotic validity

of the h−period prediction interval still holds, as it is inherited from the limit experiment.

2.5 Asymptotic Equivalence

Bollerslev et al. (2024) establish the predictive inference theory for the benchmark model,

specifically the jump-diffusion model where the stochastic volatility process is driven by the

Brownian motion. This approach is based on the asymptotic distribution of the model,

which, in finite-samples, resembles a linear model with Gaussian-distributed regressor and

response variables. The t-statistics for the CAR estimator follows a t−distribution under

the Gaussian assumption.

The conformal prediction method, applied within a general model setting, provides a ro-

bust approach in scenarios where t-theory is inapplicable. Nevertheless, as we will demon-

strate in Theorem 3, even without relying on distributional assumptions, the conformal

prediction interval aligns with the t-based prediction interval under the benchmark model,

corresponding to the general model in (1) with a stability index η = 2. In other words, both

intervals have the same length.

We then focus on this special case, the benchmark model, and start by introducing some

notation and preliminary setup. In the pre-event window, denoted by In,1 = {1, · · · , k0},

the t-based prediction interval is constructed using the spot estimator for beta, β̂[1:k0] and
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idiosyncratic variance, ς̂[1:k0], as described in Bollerslev et al. (2024), The spot-regression-

based estimator for CAR is obtained using (4), with the corresponding standard error of

∆
−1/2
n ĈAR given by:

ŝe =

√√√√[1 + (X(k0+1)∆n −Xk0∆n

)2∑k0
i=1 (∆

n
i X)2

]
k0ς̂[1:k0]
k0 − 1

which accounts for the “in-sample” estimation error in the spot beta and the “out-of-sample”

idiosyncratic shocks. The coupling theory implies that the t−statistic for the CAR estima-

tor can be coupled by a t−distributed random variable with k0 − 1 degrees of freedom,

which is used to construct the confidence interval for CAR and then, the prediction interval

for cumulative return. The conformal prediction interval is constructed according to Algo-

rithm 1, using data from the pre-event window along with the new observation through an

augmented data approach. Theorem 3 summarizes the comparison between two methods.

Theorem 3. Under Assumptions 1 and 2, consider the benchmark setting with η = 2 in

model (1). By applying Algorithm 1 with the nonconformity score in (6), calculated using

the spot estimator in (3), and a given confidence level α, the conformal prediction interval

is asymptotically equivalent to the prediction interval derived from t-theory:

PCIα =
[(
X(k0+1)∆n −Xk0∆n

)
· β̂[1:k0] −∆1/2

n t1−α/2,k0−1ŝe,(
X(k0+1)∆n −Xk0∆n

)
· β̂[1:k0] +∆1/2

n t1−α/2,k0−1ŝe
]

(9)

Theorem 3 presents that, in the benchmark setting, both methods are valid, as they yield

identical prediction intervals. The key intuition is that the spot-regression-based interval

relies on the locally Gaussian approximation of the linear model, whereas the conformal

prediction interval is established under the uniform conditional distribution of the Gaussian

linear model. Under this setting, the standardized nonconformity score remains asymptoti-

cally t-distributed with k0−1 degrees of freedom. By monotonicity, this leads to an identical
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prediction interval as that obtained from the spot regression approach. Therefore, we con-

clude that the proposed conformal prediction method is robust, and does not incur any

loss of efficiency in the benchmark model, despite not relying on asymptotic distributional

assumptions.

2.6 Counterfactual Model with Many control units

The conformal prediction interval constructed in Section 2.3 uses the market model to

estimate the normal (predicted) return, with the market portfolio return serving as the

regressor in the spot regression. However, when conducting firm-specific event studies, if the

target firm’s stock is a component of the market portfolio, its price variation may influence

the market portfolio. Given these concern, we incorporate the individual components of

the market portfolio directly into the regression, excluding the target asset. This approach

divides the assets in the market portfolio into two groups: the one experiencing the event and

those without it. Since we focus on a firm-specific event, the idiosyncratic risk of the target

asset is assumed to be independent to others assets, which implies that the event should

have no impact on other firms. By including many individual assets in the spot regression,

we estimate the weight independently using a canonical synthetic control method proposed

by Doudchenko and Imbens (2016), in contrast to the weight of each individual asset in

the market portfolio. This allows us to reformulate the model within a counterfactual

framework. To illustrate the key idea, we first consider a simplified “limit” case.

Assume we have J+1 assets, where the goal is to study the effect of an event on the first

firm. The remaining assets are used to construct an estimate of the counterfactual outcome

for the target asset during the pre-event window, using the synthetic control approach9.

Given the observed data of the control units in the post-event window, we construct an

estimate of the predicted outcome for the treated asset by using weights estimated from

9A similar framework has been widely adopted in the literature, particularly in studies on policy inter-
ventions in applied Microeconomics, see Abadie and Gardeazabal (2003), Abadie et al. (2010) and Abadie
et al. (2015).
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pre-event information. The model can be represented as follows:

yNi =
J∑

j=1

wjx
N
j,i + ϵi

yEi =
J∑

j=1

wjx
N
j,i + ϵi + θi

where w ≥ 0 and
∑J

j=1wj = 1, with N representing assets without the event, and E

denoting the asset experiencing the event. y denotes the target asset, while x represents

the control units. The data sample is divided into two time periods: the pre-event period,

indexed by {1, · · · , k0}, and the post-event period, indexed by {k0+1, · · · , k0+k1}. Building

on the simple illustration of the framework, we now introduce the formal setting for a

collection of continuous-time price processes.

We consider a vector of log price processes of asset j at time t, denoted as (Xj
t )1≤j≤J+1.

The target asset is labeled j = 1, while the control assets are labeled 2 ≤ j ≤ J + 1. Asset

prices are defined on a filtered probability space (Ω,F , (Ft)t≥0,P), where the dynamics of

each Xj are given by the following continuous-time model:

Xj
t = Xj

0 +

∫ t

0

bjsds+

∫ t

0

βj
svsdWs +

∫ t

0

ςjsdL̃
j
s + J j

t (10)

where bjs, β
j
s , vs and ςjs are càdlàg adapted. W is standard Brownian motion and L̃j are

η−stable Lévy motion, which is assumed to be independent with W and L̃i for j ̸= i,

which ensures the identification of the weights. vs represents the systematic risk and ςjs

represents the idiosyncratic risk. The jump process is assumed to be the independent

Poisson measures on R+ ×R+ with finite activity. For each asset, we establish the coupling

theory as before, and demonstrate that the coupling result holds across all units, resulting

in a high-dimensional coupling problem. To ensure these results hold, we must strengthen

Assumption 2 on the price process.
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Assumption 3. Suppose that the price process (Xj
t )1≤j≤J+1 satisfies model (10) with J = 0,

and that there exists a sequence (Tm)m≥1 of stopping times increasing to infinity such that

the following conditions hold for each j ∈ {1, · · · , J + 1} and m ≥ 1:

(i) there exists a constant Km such that |bjt |+ |σj
t |+σj

t

−1
+ ςjt

−1 ≤ Km for all t ∈ [0, Tm];

(ii) for some constant κ > 0 and any 0 < p ≤ η, there exist constants Km,p such that,

max
1≤j≤J+1

E

[
sup
z∈[s,t]

∥σj
z∧Tm

− σj
z∧Tm

∥p
]
≤ Km,p|t− s|p/2

where Km,p represents some finite constant.

Assumption 3 strengthens Assumption 2 in two ways, the first one is to assume that

there is no big jump, since we can always conduct the truncation techniques to consistently

eliminate the big jumps. Second, It also requires the κ−Hölder continuity holds under all

Lp norm for the volatility process for each subinterval Tm. Theorem 4, below, describe the

approximation theory for the counterfactual model.

Theorem 4. Suppose that Assumption 3 holds, J = Op(∆
−1
n ), for any fixed constant 0 <

l < min{p, (κ+ 1/η)p}, such that,

sup
t∈[0,T ]

∥∥∥∥ max
1≤j≤J+1

(
∆i

nXj

∆
1/η
n

− xj,t

∆
1/η
n

)∥∥∥∥
Lp

= op(1)

where xj,t ≡ ς
1/2
j,t

∆
1/2
n L1

∆
1/η
n

denotes the scaled symmetric η−stable distributed random variables.

Theorem 4 establishes that the price processes of the J + 1 assets, within the local

estimation window with a fixed number of observations, can be uniformly approximated

by a collection of i.i.d. random variables. In other words, the counterfactual model can

be coupled with a limit model in which both the control units and treated unit follow an

η-stable distribution. This allows us to apply the canonical synthetic control method to

estimate the counterfactual outcome in the pre-event window, providing an estimate for the
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predictor, which can then be used to construct the nonconformity score. The prediction

interval retains asymptotic validity, a property inherited from the coupling model.

To develop the formal setting, we redefine the scaled data sample as Yj,i =
∆i

nXj

∆
1/η
n

. The

primary objective is to construct a prediction interval for Y1,k0+1 by inverting the test of the

null hypothesis H0 : Y1,k0+1 = y. The procedures are quite similar to the previous simple

case. The first step involves defining the augmented data sample, which can be expressed

as (Yj,1, · · · , Yj,k0)j=1,··· ,k0 , along with new observations for the control units, denoted as

(Yj,k0+1)j=2,··· ,k0 , and the trial value for the treated unit, y. We employ the synthetic con-

trol method proposed by Doudchenko and Imbens (2016) to derive the canonical synthetic

control estimator for the weights:

ŵ = argmin
w

k0+1∑
i=1

(
Y1,i −

J+1∑
j=2

wjYj,i

)2

s.t. w ≥ 0 and
J+1∑
j=2

wj = 1.

Then the counterfactual is estimated as µ̂(Yi) =
∑J+1

j=2 ŵjYj,i, which can be used to obtain

the nonconformity score following the similar approach:

S
(y)
i =


|Y1,i − µ̂(Yi)| if 1 ≤ i ≤ k0

|y − µ̂(Yk0+1)| if i = k0 + 1

the corresponding p−value can be defined in the same way as (7), and then we follow the

Algorithm 1 to construct the prediction interval. The asymptotic validity of the prediction

interval within this counterfactual model for spot regression can be established, summarized

in the following theorem:

Theorem 5. Suppose that Assumption 3 holds, given the construction of the predictor and

the nonconformity score for the counterfactual model, then the conformal prediction method
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maintains asymptotic validity as:

P(Y1,k0+1 ∈ C1−α(Yk0+1)) ≥ 1− α (11)

The conformal prediction interval is constructed similarly to the previous setting, with

the key distinction being the estimator used for the predictor. In contrast to the spot-

regression-based estimator, the counterfactual model with many regressors employs the

synthetic control method to estimate the weights, which are then used to obtain the predictor

estimate. The asymptotic validity of prediction interval is preserved, as the nonconformity

scores remain asymptotically exchangeable.

To underscore the practical applicability of the new conformal prediction methods, we

proceed to present the results from a Monte Carlo simulation experiment.

3 Simulation

Our Monte Carlo simulations consist of two parts. The first part focuses on spot regression

with one regressor, representing market return, where the estimated predictor is obtained

using the spot beta estimator. The second part involves spot regression with many regres-

sors, representing individual component assets, where the estimated predictor is computed

using synthetic control methods to estimate the weights of each individual. We design two

types of data-generating processes to demonstrate the usefulness of our approach.

3.1 Spot Regression Setting

We follow the usual setup originally proposed by Bollerslev and Todorov (2011) to simulate

the volatility vt for the regressor processXt, and this simulation design has also subsequently

been used by a number of other studies, see Bollerslev et al. (2021), Bugni et al. (2023) and

Bollerslev et al. (2024). In particular, we rely on the two-factor model for vt = V1,t + V2,t,
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where V1,t and V2,t are generated according to:

dV1,t = 0.0128 (0.4068− V1,t) dt+ 0.0954
√
V1,t

(
ρdL1,t +

√
1− ρ2dB1,t

)
,

dV2,t = 0.6930 (0.4068− V2,t) dt+ 0.7023
√
V2,t

(
ρdL1,t +

√
1− ρ2dB2,t

)
.

(12)

where B1 and B2 represent independent standard Brownian motions, which are also in-

dependent of the Lévy motion Lt = (L1,t, L2,t), simulated as a symmetric stable process

with stability index η = {1.5, 1.7, 1.9, 2}. The scaling parameter for the stable process is

adjusted to 1/
√
2 to recover Brownian motion when η = 2. The skewness and location

parameters are set to 0. The parameter ρ = −0.7 captures the well-documented negative

correlation between price and volatility shocks. Interpreting the unit time interval as one

day, the V1 volatility factor exhibits high persistence with a half-life of 2.5 months, while

the V2 volatility factor is characterized by rapid mean reversion with a half-life of only one

day.

Following the design in Bollerslev et al. (2024), the full volatility matrix σt is determined

by:

βt = 1 + 0.25 sin(t)2, ςt =
[
1.5 + 0.25 sin(t)2

]
vt (13)

which implies that βt fluctuates between 1.0 and 1.25 over approximately one-and-a-half

days, and that the design for the ratio of idiosyncratic variance to systematic risk varies

between 1.5 and 1.75. The bivariate price process Zt is generated according to dZt = σtdLt.

The “continuous-time” process are simulated using an Euler scheme on a one-second

mesh, while the observed X and Y processes are only sampled at a coarser one-minute time

interval, ∆n = 1/390. This is a quite standard setting in the high-frequency literature to

guard against complicated market microstructure noise, and it directly mirrors the sampling

frequency of the data used in the empirical applications discussed in the next section.

We begin our simulation analysis by examining the coverage rate for the conformal

prediction interval and the spot regression based prediction interval, which relied on the

25



asymptotic t−distribution of the t-statistics of CAR, therefore we refer to this prediction

method as t−based theory. We compute the results for different stability index across

different window sizes k0 = {30, 45, 60, 75, 90}, and construct the prediction interval for one

period ahead. The confidence level is set to be 10 percent. Finite-sample coverage rates

under two methods are displayed in Table 1.

Table 1: Finite-Sample Coverage Rates for Prediction Interval

η = 1.5 η = 1.7

k0 t-based conformal t-based conformal

30 0.918 0.900 0.909 0.897

45 0.926 0.909 0.920 0.897

60 0.932 0.899 0.927 0.897

75 0.938 0.907 0.923 0.897

90 0.938 0.892 0.930 0.897

η = 1.9 η = 2

k0 t-based conformal t-based conformal

30 0.908 0.908 0.899 0.902

45 0.910 0.914 0.896 0.911

60 0.913 0.901 0.897 0.898

75 0.908 0.904 0.897 0.907

90 0.913 0.897 0.899 0.899

Notes: The table reports the finite-sample coverage rates for two prediction intervals, both
constructed at the 10 percent nominal confidence level. The intervals include t−based
intervals, which are based on the t-distribution of the CAR under the benchmark
spot-regression model (t-based), and the conformal prediction intervals (conformal). The
construction of the conformal prediction interval is detailed in Algorithm 1, while the
t-based prediction interval is constructed using (9). The coverage rates are calculated using
104 Monte Carlo replications.

Focusing on the top panel, the results for the stability index η = 1.5 and 1.7 indicate that

the coverage rates for the conformal prediction interval closely align with the nominal level.

This supports the conclusion that the conformal prediction interval is asymptotically valid,

achieving exact coverage as the number of observation in the pre-event window increase.

Specifically, as k0 increases, the coverage rates approach the nominal level. In contrast, the t-
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based prediction interval, which relies on the local Gaussian approximation of the benchmark

model for spot regression (corresponding to η = 2), displays over-coverage under these data

generating processes. This occurs because the sample data exhibit fat tails, whereas the

underlying model assumes a Gaussian approximation, leading to an overestimation of the

standard error. Consequently, the prediction interval is much wider, resulting in over-

coverage, as illustrated by the interval lengths displayed in the top panel in Figure 1.
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(c) k0 = 60
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(d) k0 = 75

Figure 1

Notes: The figure presents the lengths of the prediction intervals for both methods under
different data generating processes, with the stability index varying from 1.5 to 2. The
pre-event window sizes are set to {30, 45, 60, 75}, corresponding to the four subfigures. The
dotted line represents the length of the t−based prediction interval, while the solid line
represents the length of the conformal prediction interval. All intervals are constructed at
the 10 percent nominal confidence level.
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In the bottom panel, the stability index is set to introduce only mild variation in the

volatility and price processes. When η = 2, the scenario corresponds to the benchmark

model, where the driving martingale is indeed the Brownian motion. In this case, the

local Gaussian approximation holds, and the t−based prediction interval achieves the exact

coverage rate for all window sizes. The conformal prediction interval also maintains exact

coverage in all cases, demonstrating the robustness of our new method.

Figure 1 presents the lengths of the prediction intervals for both methods, with all

intervals constructed at the 10 percent nominal confidence level across the four subfigures.

Each subfigure depicts the lengths of the two prediction intervals for different window sizes

and data generating processes (different η). For a given window size, when the stability

index is smaller, indicating greater deviation of the t−distribution under the benchmark

model, therefore the length of the t−based prediction interval is significantly larger, which

corresponds to the over-coverage observed in Table 1. Additionally, when the stability index

is fixed, increasing the number of data observations results in wider prediction intervals, since

the sample data exhibit fatter tails and deviate from the t−distribution. We also observe

that when the stability index η = 2, the lengths of the two prediction intervals are almost

identical, suggesting that the conformal prediction interval performs as well as the t−based

prediction interval under the benchmark model.

Table 2 presents the finite-sample coverage rates of the prediction intervals for the cu-

mulative return over periods of k1 = {03, 45, 60, 75}, with the pre-event window size set to

k0 = 60. The prediction interval is constructed based on the scaled cumulative return, which

is expected to have the same distribution as the return in the pre-event window. We observe

that the conformal prediction interval exhibits almost exact coverage rate across all data

generating processes. In contrast, the t−based prediction interval shows over-coverage when

the stability index is smaller. The scaling approach does not introduce significant distortion

in constructing the prediction interval, demonstrating the effectiveness of this approach.
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Table 2: Finite-Sample Coverage Rates for Cumulative Return Prediction Interval

η = 1.5 η = 1.7

k1 t-based conformal t-based conformal

30 0.928 0.895 0.923 0.899

45 0.926 0.895 0.918 0.893

60 0.928 0.893 0.918 0.893

75 0.928 0.894 0.918 0.893

η = 1.9 η = 2

k1 t-based conformal t-based conformal

30 0.909 0.898 0.896 0.895

45 0.911 0.898 0.897 0.896

60 0.899 0.888 0.892 0.894

75 0.894 0.884 0.888 0.891

Notes: The table reports the finite-sample coverage rates for two prediction intervals of the
cumulative return over the period of k1, with the pre-event window size as k0 = 60. All the
prediction intervals are constructed based on the scaling of the cumulative return, at the 10
percent nominal confidence level. The intervals include t−based intervals, which are based
on the t-distribution of the CAR under the benchmark spot-regression model (t-based), and
the conformal prediction intervals (conformal). The construction of the conformal prediction
interval is detailed in Algorithm 1, while the t-based prediction interval is constructed using
(9). The coverage rates are calculated using 104 Monte Carlo replications.

3.2 Counterfactual Setting with Many Regressors

Next, we consider a simulation design involving a counterfactual model with many individual

stocks as control units (the component assets in the market portfolio) and one target asset

(the asset we are interested in). We set the number of control units to J = 100, and we rely

on a one-factor model vj,t = 2Vj,t to simulate the volatility process vj,t for each individual

asset j according to the following dynamics:

dVj,t = 0.0128 (0.4068− Vj,t) dt+ 0.0954
√
Vj,t

(
ρdLj,t +

√
1− ρ2dBt

)
, (14)

where Lj,t is independent of Bt and Li,t for all i ̸= j, and Lj,t represents a symmetric

stable process with stability index η = {1, 5, 1.7, 1.9, 2}, and Bt represents an independent
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standard Brownian motion.

We simulate the price process Yj,t of each asset j according to:

dYj,t = λjdFt + vj,tdLj,t (15)

where λj = j/J denotes the factor loading for j = 1, · · · , J , and dFt = vtdWt represents

the market factor, where the volatility process follows the same one-factor model, vt = 2Vt

with Vt simulated similarly to Vj,t, replacing Lj,t with an independent Brownian motion Wt.

Given the simulated process Yj,t for the control units 1 ≤ j ≤ J , we can design the price

process for the target unit Y1,t:

dY1,t =
J+1∑
j=2

wjdYj,t + v1,tdL1,t (16)

where wj represents the weight for each individual control unit:

w(j) =


1
10
, for j = 1, 2, . . . , 9

1
100

, for j = 10

1
1000

, for j = 11, 12, . . . , 100

(17)

which sums to 1. The design mirrors the weights of each individual asset in the market

portfolio used in the empirical application. The remaining settings, such as the sampling

frequency, are the same as in the previous section.

Table 3 presents the coverage rates for the conformal prediction interval method for k0 ∈

{30, 45, 60, 75, 90} and k1 = 1 (one-period ahead). Since the number of observations in the

pre-event window is less than the number of control units, we cannot use the spot-regression

estimator. Instead, we rely on the conformal prediction method with the predictor estimated

using the synthetic control method. All conformal prediction intervals are constructed at the

10 percent nominal confidence level. The results show that the conformal prediction method
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provides good coverage rates across all window sizes and data-generating processes with

different stability index, demonstrating the robustness of our proposed conformal prediction

approach.

Table 3: Coverage Rates for Prediction Interval under Counterfactual model

k0 η = 1.5 η =1.7 η =1.9 η =2

30 0.908 0.900 0.896 0.884

45 0.891 0.925 0.919 0.915

60 0.895 0.918 0.887 0.903

75 0.899 0.906 0.918 0.909

90 0.903 0.903 0.899 0.901

Notes: The table reports the finite-sample coverage rates for conformal prediction interval
under the counterfactual model with many control units setting. All the prediction intervals
are constructed at the 10 percent nominal confidence level. The construction of the
conformal prediction interval is detailed in Algorithm 1. The coverage rates are calculated
using one thousand Monte Carlo replications.

In summary, the simulation results demonstrate the validity of the proposed conformal

prediction method, showing that it performs at least as well as the spot-regression-based

prediction method. Even in settings with many control units, the conformal prediction

interval remains valid. Next, we turn to the empirical application to demonstrate the use

of the conformal prediction method in practice.

4 Empirical Study

To illustrate the practical applicability of the proposed prediction procedures, we apply the

conformal prediction method in an intraday event study. We focus on Advanced Micro

Devices (AMD), a leading multinational semiconductor company that designs and manu-

factures high-performance computing, graphics, and visualization technologies for various

markets. Specifically, we are interested in the AMD’s session at the Goldman Sachs Com-

munacopia and Technology conference, one of the biggest investment banking events of the

year, which took place on September 5, 2023. Our goal is to determine whether this event
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had a significant impact on AMD’s stock price. To do this, we construct a prediction in-

terval for the cumulative return of AMD stock, serving as a measure of the event’s impact.

If the actual cumulative returns fall outside the prediction interval, then we can conclude

that the event had a significant effect on AMD.

To conduct this analysis, we use high-frequency return data sampled at one-minute fre-

quency, sourced from WRDS. In line with the existing literature, we adopt this “coarse”

one-minute sampling frequency to mitigate the influence of difficult-to-specify market mi-

crostructure noise.

The session started at 11:50 AM, and focused on AMD’s strategic focus in the semi-

conductor industry, particularly its role in AI, along with expectations or assessments of

AI trends. The entire session lasted approximately 35 minutes. To prevent any “pre-event

drift” from confounding the results, we included a 15-minute “buffer” before the official start

time of the event. We also impose a 15-minute window after the event ended. Therefore,

the prediction interval for cumulative return is constructed from 11:35 AM to 12:40 PM.

We treat the observation window as 10:35 AM to 11:35 AM, which is a one-hour period,

and we are aim to construct a prediction interval for the cumulative return of AMD’s log

return (Y ) over h−minute horizons after 11:35 AM:

ĈRh = Y11:35+h − Y11:35 (18)

with h extending up until 12:35 PM. The cumulative return estimates are obtained using

spot regression of AMD’s log return against the market portfolio, proxied by the QQQ

ETF for the Nasdaq 100 Index, or alternatively, by applying the synthetic control methods,

treating the market portfolio’s holdings (excluding AMD) as untreated units, while AMD is

the target unit. To assess the statistical significance of the cumulative return, we compute

the associated 90 percent confidence level prediction interval (“PI”), as previously defined.

We use η = 1.9 as the scaling factor for generating the prediction interval for the cumulative
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return.

As previously discussed, these values represent the counterfactual outcomes in scenarios

without any significant news. In other words, if there is no event or if the event has no

impact, the cumulative return of AMD should remain within the prediction interval.

Figure 1 presents the results. The prediction interval tends to widen as the horizon

h increases, reflecting the increased uncertainty in predicting returns over longer horizons.

During the pre-event window from 11:35 AM to 11:50 AM, the cumulative return shows

a moderate positive drift but remains within the prediction interval. Although the event

started at 11:50 AM, new information was revealed gradually. At the beginning of the

session, the market had high expectations regarding the discussion, but those expectations

soon normalized, as the initial content covered general company developments over the past

10 years without providing new information. However, five minutes into the session, Lisa

Su, CEO of AMD, expressed a strong and positive stance on AI, stating, “our first, second

and third priority are around AI, AI and AI”. This optimistic assessment of AI trend led

to an uptick in the cumulative return.

Lisa continued discussing customer engagements, which showed continued acceleration,

and elaborated on AMD’s strategies and growth prospects in several areas, including PCs,

embedded systems, data centers, AI, and global supply chain management. She also con-

veyed confidence in AMD’s technological capabilities and expressed a positive outlook on

long-term growth opportunities in AI and the data center market. All this positive senti-

ment and new information resulted in a significant effect on AMD’s stock, with the price

rising around 1% during the session.

Figure 2 provides a comparison of the time effect. The figure is plotted for the day

following the event, using the same procedure as Figure 1. The cumulative returns remained

within the prediction interval throughout the entire period, as no new information was

released after the event day. Compared to Figure 1, this suggests that the intraday event

had a significant impact on AMD’s stock price, not related to timing or broader market
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conditions.

We conducted additional robustness checks for the effect of this intraday event, as shown

in the Appendix. These checks include using a counterfactual model with many control units

(components of QQQ ETF holdings), varying the observation window size, and different

choice of scaling factors. All robustness checks consistently indicate a significant effect of

the intraday event, demonstrating that the proposed approach provides meaningful evidence

for the impact of firm-specific news events directly.

5 Conclusion

In this paper, we propose using the conformal prediction method to construct prediction

intervals for cumulative returns in intraday event studies. Compared to the existing liter-

ature, our proposed method is robust to the model setting, whether the underlying price

process is driven by Brownian motion or a pure-jump Lévy process. We exploit the finite-

sample validity of the conformal prediction interval based on the “coupling” theory, under

which the original nonparametric spot regression model can be approximated by a linear

regression model where the regressor and dependent variables are i.i.d. This is suitable for

conducting conformal prediction, as it doesn’t rely on any distribution assumptions. When

the price process is driven by Brownian motion, which serves as the benchmark model, the

prediction interval constructed based on the predictive inference in Bollerslev et al. (2024)

has the same length as the conformal prediction interval.

We also consider a more sophisticated model in which the target asset is excluded from

the market portfolio, and the remaining assets are added into the spot regression, which

we can be represented within a synthetic control framework. Using the synthetic control

estimator for the weights of each asset, we obtain a proxy for the predictor, which can be

used to construct a conformal prediction interval, whereas the previous inference theory is

not applicable in this setting.
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Figure 2: The figure presents the minute-by-minute cumulative return on AMD stock from
11:35 AM to 12:40 AM on September 5, 2023 (dots), together with the 90 percent level
prediction intervals (shaded area). The predicted value used in constructing the prediction
interval is estimated by the spot regression of return on AMD stock with respect to the
return of market portfolio QQQ over the 60-minute window spanning from 10:35 AM -
11:35 AM. The pre-event window and post-event window are explicitly highlighted.
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Figure 3: The figure presents the minute-by-minute cumulative return on AMD stock from
11:35 AM to 12:40 AM on September 5, 2023 (dots), together with the 90 percent level
prediction intervals (shaded area). The predicted value used in constructing the prediction
interval is estimated by the spot regression of return on AMD stock with respect to the
return of market portfolio QQQ over the 60-minute window spanning from 10:35 AM -
11:35 AM. The pre-event window and post-event window are explicitly highlighted.
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The conformal prediction interval establishes finite-sample asymptotic validity under

the general settings based on a fixed-k approach. Since it only requires the data to be

exchangeable, it can be applied to many other problems. Further exploration of these ideas

is left for future research.
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