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Abstract

A social choice function (SCF) is said to be Nash implementable if there
exists a mechanism in which every Nash equilibrium induces outcomes spec-
ified by the SCF. The main objective of this paper is to assess the impact
of considering mixed strategy equilibria in Nash implementation. We call a
mixed strategy equilibrium “uncompelling” if its outcome is strictly worse
for any agent than that induced by the SCF. We show that if the finite
environment and the SCF to be implemented jointly satisfy what we call
Condition COM , we construct a finite mechanism which Nash implements
the SCF in pure strategies and its any mixed strategy Nash equilibrium
outcome is either uncompelling or consistent with the SCF. Our mechanism
has several desirable features: transfers can be completely dispensable; only
finite mechanisms are considered; integer games are not invoked; and agents’
attitudes toward risk do not matter. These features make our result quite
distinct from many other prior attempts to handle mixed strategy equilibria
in the theory of implementation.
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1 Introduction

The theory of implementation attempts to answer two questions. First, can one
design a mechanism that successfully structures the interactions of agents in such a
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way that, in each state of the world, they always choose actions which result in the
socially desirable outcomes for that state? Second, if agents possess information
about the state and interact through a given mechanism, what properties do the
resulting outcomes, viewed as a map from states to outcomes (and called social
choice functions - henceforth, SCFs), possess? In answering these, the consequences
of a given mechanism are predicted through the application of game theoretic
solution concepts.1

In this paper we adopt Nash equilibrium as a solution concept, consider com-
plete information environments, and ask if a given SCF is implementable, i.e., when
we can design a mechanism in which “every” Nash equilibrium induces outcomes
consistent with the SCF. Although the literature claims to care about all equilibria,
it often ignores mixed strategy equilibria and only focuses on pure strategy equi-
libria. Jackson (1992) provides the most forceful argument for why the omission
of mixed strategy equilibria brings about a serious consequence. In his Example
4, Jackson (1992) constructs a two-person environment and an SCF such that (i)
there is a finite mechanism that pure Nash implements the SCF; and (ii) every finite
pure Nash implementing mechanism always has a mixed strategy equilibrium that
gives a lottery that is preferred by both agents to the outcome of the SCF. Thus, if
we insist on using finite mechanisms, which is to be anticipated in an environment
with finite number of alternatives and agents, we must question why agents would
limit themselves to playing only pure strategies, particularly when there is a mixed
strategy equilibrium that would be strictly preferred by both of them than any
pure strategy equilibrium. In this paper, we revisit Jackson’s example in Section
3.

To obtain the main result of the paper, we consider a finite environment with
respect to an SCF on which we impose Condition COM , which delineates a set of
conditions where it is always possible to construct a finite, pure Nash implementing
mechanism such that every mixed strategy equilibrium outcome is either socially
desirable or uncompelling in the sense that it is strictly Pareto dominated by the
socially desirable outcome.2 We call such a notion of implementation compelling
implementation. Importantly, compelling implementation allows the implementing
mechanism to admit mixed strategy equilibria that result in outcomes not consis-
tent with the ones induced by the SCF, provided these mixed equilibria are uncom-

1See Jackson (2001), Maskin and Sjöström (2002), and Serrano (2004) for the survey of im-
plementation theory.

2Note that Moore and Repullo (1990) identify Condition µ as a necessary and sufficient con-
dition for pure strategy Nash implementation when there are at least three agents. In addition,
Dutta and Sen (1991) and Moore and Repullo (1990) identify Condition β and Condition µ2,
respectively, as a necessary and sufficient condition for pure Nash implementation when there are
only two agents.
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pelling.3 Hence, compelling implementation is considered a compromise between
pure Nash implementation where only pure strategies are considered and mixed
Nash implementation where all mixed strategy equilibria are fully considered.

To locate our contribution in a broader context, we first acknowledge that every
prior work cited in the table below exploits some combination of the following five
ingredients to handle mixed strategy equilibria in complete information environ-
ments: (i) infinite mechanisms; (ii) rationalizability as a stronger requirement than
Nash equilibrium;4 (iii) refinements of Nash equilibrium, such as subgame perfect
equilibrium and undominated Nash equilibrium; (iv) environments with transfers
or ones similar to separable environments of Jackson, Palfrey, and Srivstava (1994);
and (v) cardinal utilities.5

Combination of Previous works which handle mixed strategy equilibria
ingredients used in complete information environments

(i) Kartik and Tercieux (2012), Maskin (1999), Maskin and Sjöström (2002), Mezzetti and Renou (2012a)

(i) × (v) Kunimoto (2019), Serrano and Vohra (2010)

(i) × (ii) × (v) Bergemann, Morris, and Tercieux (2011), Jain (2021), Kunimoto and Serrano (2019), Xiong (2022)

(ii) × (iv) × (v) Abreu and Matsushima (1992), Chen, Kunimoto, Sun, and Xiong (2021)

(iii) × (iv) Goltsman (2011), Jackson, Palfrey, and Srivastava (1994), Moore and Repullo (1988), Sjöström (1994)

(iii) × (iv) × (v) Abreu and Matsushima (1994)

(iv) Mezzetti and Renou (2012b)

(iv) × (v) Chen, Kunimoto, Sun, and Xiong (2022)

Table 1: The list of prior works handling mixed strategy equilibria in complete
information environments.

We next emphasize that we obtain the main result of the paper without using
any of the five ingredients used in the previous works. Of course, there is the cost
associated with this result, as our implementing mechanism might admit mixed
strategy equilibria which are uncompelling. In addition to the information about
the agents’ ordinal strict preferences, what is required is the information regarding
the smallest difference in cardinal utilities between any two distinct alternatives.
We can think of such information as the smallest unit in which the agents’ utilities

3Our compelling implementation is similar to the notion of repeated implementation adopted
by Lee and Sabourian (2015). They design a sequence of simple, finite mechanisms such that every
pure strategy subgame perfect equilibrium “repeatedly” implements the efficient social choice
function, while every mixed strategy subgame perfect equilibrium is strictly Pareto dominated
by the pure equilibrium.

4Rationalizability is a more demanding requirement than Nash equilibrium because every
action played with positive probability in a mixed strategy Nash equilibrium is rationalizable.

5This table, by no means, exhausts all related papers.
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are measured. As long as that unit of measure is positive, we can construct a
mechanism that compellingly implements the SCF. In this sense, while compelling
implementation is not completely ordinal, it can be made as ordinal as it can pos-
sibly be. We consider Nash implementation as the right notion of implementation
if we insist on the robustness to information perturbations. This is so because
Aghion, Fudenberg, Holden, Kunimoto, and Tercieux (2012) and Chung and Ely
(2003) both show that Maskin monotonicity, a necessary condition for Nash imple-
mentation, is also necessary if we want implementation using refinements of Nash
equilibria to be robust to information perturbations.6 Our mechanism is finite so
that it does not use the integer games which are often considered a questionable
device in the literature.7 The use of transfers can be dispensed with completely,
which allows us to apply our result to an important class of environments includ-
ing the models of voting and matching in which monetary transfers are simply
unavailable.

We finally take up Korpela (2016) which is perhaps the closest to our paper.8

Korpela (2016) uses a weaker notion of implementation than our compelling imple-
mentation in the sense that his notion of implementation ignores all uncompelling
Nash equilibria, “regardless of whether they are pure or mixed.” Therefore, Ko-
rpela’s (2016) notion of implementation does not necessarily imply pure strategy
Nash implementation, whereas our compelling implementation does.9

We organize the rest of the paper as follows: Section 2 presents the environ-
ment, notation, mechanisms and solution concepts, as well as a small discussion
on Maskin Monotonicity. Section 3 revisits Example 4 of Jackson (1992), which
motivates our inquiry. Section 4 slightly modifies Example 4 of Jackson (1992) and
presents an illustration of this paper’s main result. Section 5 contains the main
result of the paper when there are at least three agents and proposes a canonical
mechanism that can achieve compelling implementation under Condition COM .
Section 6 argues that Condition COM is indispensable for compelling implemen-
tation in the sense that our mechanism fails to achieve compelling implementation
when at least one property of Condition COM is violated. Section 7 extends the
main result of Section 5 to the case of two agents. In Section 8, we compare Prop-
erties 1 and 2 of Condition COM with Condition µ of Moore and Repullo (1990)

6Aghion, Fudenberg, Holden, Kunimoto, and Tercieux (2012) and Chung and Ely (2003)
adopt subgame perfect equilibrium and undominated Nash equilibrium as a solution concept,
respectively.

7In the integer game, each agent announces some integer and the person who announces the
highest integer gets to name his favorite outcome.

8This paper has been developed independently of Korpela (2016) and we only became aware
of it after we completed the first draft of the paper.

9In the rest of the paper, we will further make the connection to Korpela (2016) wherever
necessary.
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for pure Nash implementation. Section 9 concludes the paper and the Appendix
contains the proofs omitted from the main body of the paper.

2 Preliminaries

There is a finite set of agents, denoted by I = {1, 2, . . . , n}. Let Θ be the finite
set of states. It is assumed that the underlying state θ ∈ Θ is commonly certain
among the agents. This is the complete information assumption. Let A denote the
set of social alternatives, which are assumed to be independent of the information
state. We shall assume that A is finite, and denote by ∆(A) the set of probability
distributions over A. Associated with each state θ is a preference profile ⪰θ= (⪰θ

i

)i∈I where ⪰θ
i is agent i’s preference relation over A at θ. We write a ⪰θ

i a
′
when

agent i weakly prefers a to a
′
in state θ. We also write a ≻θ

i a
′
if agent i strictly

prefers a to a
′
in state θ and a ∼θ

i a
′
if agent i is indifferent between a and a

′
in

state θ. We can now define an environment as E =
(
I, A,Θ, (⪰θ

i )i∈I,θ∈Θ
)
, which is

implicitly understood to be commonly certain among the agents.
We assume that any preference relation ⪰θ

i is representable by a von Neumann-
Morgenstern utility function ui(·, θ) : ∆(A) → R. We say that ui(·, θ) is consistent
with ⪰θ

i if, for any a, a
′ ∈ A, ui(a, θ) ≥ ui(a

′
, θ) ⇔ a ⪰θ

i a
′
. We denote by U θ

i the
set of all possible cardinal representations ui(·, θ) that are consistent with ⪰θ

i . We
formally define U θ

i as follows:

U θ
i =

{
ui(·, θ) ∈ [0, 1]|A|

∣∣∣∣ ui(·, θ) is consistent with ⪰θ
i ; mina∈A ui(a, θ) = 0;

and maxa∈A ui(a, θ) = 1

}
,

where |A| denotes the cardinality of A. Let U θ ≡ ×i∈IU θ
i and U ≡ ×θ∈ΘU θ. We

denote any subset of U θ
i by Û θ

i , any subset of U θ by Û θ, any subset of U by Û ,
respectively.

The planner’s objective is specified by a social choice function (henceforth,
SCF) f : Θ → ∆(A), which takes only ordinal information about the state θ as
input, but is allowed to have lotteries as outputs. Although many papers deal with
multi-valued social choice correspondences in the literature of Nash implementa-
tion, we focus only on single-valued SCFs.

2.1 Compelling Implementation

Let Γ = ((Mi)i∈I , g) be a finite mechanism where Mi is a nonempty finite set of
messages available to agent i; g : M → ∆(A) (where M ≡ ×i∈IMi) is the outcome
function. At each state θ ∈ Θ and profile of representations u ∈ U , the environment
and the mechanism together constitute a game with complete information which
we denote by Γ(θ, u). By Γ(θ) we mean the game in which the preference profile
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(⪰θ
i )i∈N is commonly certain among the agents so that any representation u ∈ U

is admissible. Note that the restriction of Mi to a finite set rules out the use of
integer games (See, for example, Maskin (1999)).

Let σi ∈ ∆(Mi) be a mixed strategy of agent i in the game Γ(θ, u). A strategy
profile σ = (σ1, . . . , σn) ∈ ×i∈I∆(Mi) is said to be a mixed-strategy Nash equilib-
rium of the game Γ(θ, u) if, for all agents i ∈ I and all messages mi ∈ supp (σi)
and m′

i ∈ Mi, we have∑
m−i∈M−i

∏
j ̸=i

σj(mj)ui(g(mi,m−i), θ) ≥
∑

m−i∈M−i

∏
j ̸=i

σj(mj)ui(g(m
′
i,m−i), θ).

A pure-strategy Nash equilibrium is a mixed-strategy Nash equilibrium σ such
that each agent i’s mixed-strategy σi assigns probability one to some mi ∈ Mi. Let
NE(Γ(θ, u)) denote the set of mixed-strategy Nash equilibria of the game Γ(θ, u)
and pureNE(Γ(θ)) denote the set of pure strategy Nash equilibria of the game
Γ(θ). As far as we are only concerned with pure strategy equilibria, we only need
ordinal preferences so that we can write pureNE(Γ(θ)). We also define

NE(Γ(θ)) =
⋃
u∈Uθ

NE(Γ(θ, u))

as the set of all Nash equilibria of the class of games Γ(θ, u) across all possible
representation u ∈ Uθ. Since it does not depend upon cardinal utilities, NE(Γ(θ))
is defined only in terms of ordinal preferences. We say that an SCF f is pure
Nash implementable if there exists a mechanism Γ = (M, g) such that for any
state θ, the following two conditions hold: (i) pureNE(Γ(θ)) ̸= ∅; and (ii) m ∈
pureNash(Γ(θ)) ⇒ g(m) = f(θ).

We strengthen the notion of pure Nash implementation by requiring that any
mixed equilibrium outcome, if exists, be either socially desirable or “uncompelling”
in the sense that it is strictly Pareto dominated by the socially desirable outcome.
For every mixed strategy profile σ ∈ ×i∈I∆(Mi), we write

g(σ) ≡
∑
m∈M

σ(m)g(m).

Our notion of implementation can then be formally defined as follows:

Definition 1 Let Û ⊆ U . An SCF f is compellingly implementable (C-
implementable) with respect to Û if there exists a finite mechanism Γ = (M, g)
such that for every state θ ∈ Θ, (i) pureNE(Γ(θ)) ̸= ∅; (ii) m ∈ pureNE(Γ(θ)) ⇒
g (m) = f (θ); and (iii) for any u ∈ Û θ and σ ∈ NE(Γ(θ, u)), g(σ) ̸= f(θ) ⇒
ui(f(θ), θ) > ui(g(σ), θ) for all i ∈ I.
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Remark 1 The implementing mechanism may have two types of mixed strategy
equilibria. We call the first type of it a “good” mixed strategy equilibrium in the
sense that its outcome is socially desirable and call the second type of it a “bad”
mixed strategy equilibrium in the sense that its outcome is strictly worse for all
agents than the socially desirable outcome. Our notion of compelling implementa-
tion says that the planner should ignore bad mixed strategy equilibria in the mech-
anism.

3 The Relevance of Mixed Strategy Equilibria in

Nash Implementation

In this section, we articulate a compelling reason why we need to be worried about
mixed strategy equilibria in Nash implementation. To do so, we revisit Example
4 of Jackson (1992), which shows that the omission of mixed strategy equilibria
brings about a serious blow to Nash implementation.

We revisit Example 4 of Jackson (1992). Suppose that there are two agents
I = {1, 2}; four alternatives A = {a, b, c, d}; and two states Θ = {θ, θ′}. Suppose
that agent 1 has the state-independent preference a ≻1 b ≻1 c ∼1 d and agent 2
has the preference a ≻θ

2 b ≻θ
2 d ≻θ

2 c at state θ and preference b ≻θ′
2 a ≻θ′

2 c ∼θ′
2 d

at state θ′. Consider the SCF f such that f (θ) = a and f (θ′) = c.
First, Jackson (1992) constructs a finite mechanism Γ = (M, g) (described in

Table 2) that implements the SCF f in pure-strategy Nash equilibria:

g(m) Agent 2
m1

2 m2
2 m3

2

m1
1 c d d

Agent 1 m2
1 d a b

m3
1 d b a

Table 2: The mechanism introduced in Example 4 of Jackson (1992).

There are two pure strategy Nash equilibria, (m2
1,m

2
2) and (m3

1,m
3
2), in the

game Γ(θ), both of which result in outcome a. In the game Γ(θ
′
), the unique pure-

strategy Nash equilibrium is (m1
1,m

1
2), which results in outcome c. Thus, the SCF

f is implementable by the above finite mechanism in pure-strategy Nash equilibria.
Due to the necessity of Maskin monotonicity for Nash implementation, we know
that the SCF f satisfies Maskin monotonicity. However, in the game Γ(θ

′
), there

is a mixed-strategy Nash equilibrium, where each agent i plays m2
i and m3

i with
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equal probability, which results in outcomes a and b, each with probability 1/2.
Both agents strictly prefer any outcome of the mixed-strategy equilibrium to the
outcome of the pure-strategy equilibrium. Thus, according to our terminology,
this mixed strategy Nash equilibrium is compelling. Note that there is a conflict
of interests between the two agents over a and b in state θ

′
, i.e., while agent 1

prefers a to b, agent 2 prefers b to a. This conflict of interests allows us to have the
unique pure strategy Nash equilibrium in the game Γ(θ

′
), which results in outcome

c. At the same time, this logic for the uniqueness of the pure-strategy equilibrium
is extremely dubious because outcomes a and b are strictly better for both agents
than outcome c.

Jackson (1992) further shows that his argument applies to any finite implement-
ing mechanism. That is, for any finite mechanism which implements the SCF f in
pure-strategy Nash equilibria, there must also exist a compelling mixed-strategy
Nash equilibrium at state θ′ inducing a lottery different from c, which is the so-
cially desirable outcome by the SCF f at state θ

′
. Therefore, the SCF f is “not”

C-implementable with respect to U , which is the set of “all” cardinal utility rep-
resentations, or any of its subsets. It thus follows that the identified compelling
mixed strategy equilibrium persists independently of any cardinal representation.

4 Illustration of the Main Result

The main objective of this paper is to identify a class of environments where
the issue of mixed strategy equilibria can be avoided by carefully designing an
implementing mechanism. In this section, we illustrate how we resolve this issue
in the slightly modified version of Example 4 of Jackson (1992).

One crucial feature Jackson’s Example 4 has is that its argument seems to rely
heavily on the extreme inefficiency of the SCF, i.e., the SCF f assigns the common
worst outcome in state θ

′
.10 To investigate how robust Jackson’s argument is, we

only make the following modification: both agents now strictly prefer c to d in

state θ
′
, i.e., c ≻θ

′

i d for each i = 1, 2.
We summarize the basic setup. Agent 1 has the state-independent preference

a ≻1 b ≻1 c ≻1 d and agent 2 has the preference a ≻θ
2 b ≻θ

2 d ≻θ
2 c at state θ

and preference b ≻θ′
2 a ≻θ′

2 c ≻θ′
2 d at state θ′. Consider the same SCF f such

that f (θ) = a and f (θ′) = c. This way the SCF never assigns the worst outcome
for any agent in either state (a feature that will also be implied by our sufficient
condition).

With this modification, we are able to construct a mechanism that not only
implements the SCF in pure-strategy Nash equilibrium but also guarantees that

10Jackson (1992, p.770) is well aware of this point.
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all mixed-strategy equilibria of the constructed mechanism give each agent the
expected payoff arbitrarily close to that of d, which is worse than that of c, the
outcome induced by the SCF f at state θ′. Hence, we essentially overturn the
implication of Jackson’s Example 4 by assuming that there is a uniform bound for
the utility difference.11

For each integer k ≥ 2, we define Γk = (Mk, gk) as a mechanism with the
following properties: (i) for each i ∈ N , Mk

i = {0, 1, . . . , k} and (ii) the outcome
function gk : Mk → A is given by the following rules: for each m ∈ Mk,

• If m = (k, k), then gk(m) = c;

• If there exists an integer h with 0 ≤ h ≤ k − 1 such that m = (h, h), then
gk(m) = a;

• If there exists an integer h with 0 ≤ h ≤ k − 1 such that m = (h, (h +
1 mod k)), then gk(m) = b; and

• Otherwise, gk(m) = d.

We illustrate this mechanism as follows:

gk(m) Agent 2
k k − 1 k − 2 k − 3 · · · 3 2 1 0

k c d d d · · · d d d d
k − 1 d a d d · · · d d d b
k − 2 d b a d · · · d d d d
k − 3 d d b a · · · d d d d

Agent 1
...

...
...

...
...

. . .
...

...
...

...
3 d d d d · · · a d d d
2 d d d d · · · b a d d
1 d d d d · · · d b a d
0 d d d d · · · d d b a

Table 3: Γk = (Mk, gk) where k ≥ 3.

When k = 2, our mechanism is reduced to the one introduced by Jackson (1992)
where we set m1

i = 2;m2
i = 1; and m3

i = 0 for each i ∈ {1, 2}.
11The mechanism presented here differs slightly from the canonical mechanism presented in

Section 5. Specifically, the mechanism here has been tailored to the particular example at hand
and simplified for ease of exposition. Nevertheless, the main insights of this paper are still
obtained in this illustration section.
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g(m) Agent 2
2 1 0

2 c d d
Agent 1 1 d a b

0 d b a

Table 4: Γk = (Mk, gk) where k = 2.

For each θ ∈ Θ, i ∈ {1, 2}, and ε > 0, we define U θ,ε
i as a subset of U θ

i as
follows:

U θ,ε
i =

{
ui ∈ Uθ

i

∣∣∣ |ui(a, θ)− ui(a
′
, θ)| ≥ ε, ∀a ∈ A, ∀a′ ∈ A\{a}, ∀θ ∈ Θ

}
.

Let U θ,ε ≡ ×i∈NU θ,ε
i and U ε ≡ ×θ∈ΘU θ,ε. We observe that U ε possesses the follow-

ing monotonicity:

ε > ε
′
> 0 ⇒ U ε ⊊ U ε

′

⊆ U ⊆ U0.

Loosely speaking, if we choose ε > 0 small enough, we can approximate U by U ε

to an arbitrary degree. We are now ready state the main result of this section.

Proposition 1 For any ε > 0, there exists K ∈ N large enough such that the SCF
f is C-implementable with respect to U ε by the mechanism ΓK.

Proof : The proof is completed by a series of lemmas. For the moment, we fix
k in the proof and we ignore the dependence of the mechanism on k. We first show
pure Nash implementation by the mechanism Γk.

Lemma 1 The mechanism Γk implements the SCF in pure-strategy Nash equilib-
rium.

Proof: The message profile (1, 1) is a Nash equilibrium of the game Γk(θ), as
it yields a which is their most preferred outcome for both agents so that no agent
can find a profitable deviation. We claim that a is the unique Nash equilibrium
outcome of the game Γk(θ). Let m be a message profile such that g(m) ̸= a. We
will show that m is “not” a Nash equilibrium in the game Γk(θ):

• If g(m) = b, there exists an integer h with 0 ≤ h ≤ k − 1 such that m =
(h, (h + 1 mod k)). Then agent 1 has an incentive to send a message h +
1 mod k so that outcome a is induced.

• If g(m) = c, then m = (k, k). Then, agent 2 has an incentive to send any
message other than k so that outcome d is induced, as he strictly prefers
outcome d to outcome c at state θ.

10



• If g(m) = d, then we have m = (m1,m2) where m1 ̸= m2. If m1 > m2

then, agent 1 has an incentive to deviate from m1 to m2 so that outcome a
is induced. Conversely, if m2 > m1, then agent 2 has an incentive to deviate
from m2 to m1, so that outcome a is induced.

We next claim that (k, k) is a Nash equilibrium of the game Γk(θ
′
) because any

unilateral deviation from (k, k) yields d, which is inferior to c induced by (k, k) for
both agents. Moreover, no other outcome can be induced by a Nash equilibrium
in this game: every message profile m = (m1,m2) where m2 < k and g(m) ̸= a
has a profitable deviation for player 1 at m′

1 = m2, while every message profile
m = (m1,m2) where m1 < k and g(m) ̸= b has a profitable deviation for player
2 at m′

2 = m1 + 1 mod k. Since g(m) = a implies m1 < k and g(m) = b implies
m2 < k, we have that there are no possible Nash equilibria with either m1 < k or
m2 < k. Thus, the only possible Nash equilibrium in pure strategies for this game
is (k, k). ■

The following lemma is our key result, characterizing the set of Nash equilibria
of the mechanism Γk in state θ

′
.

Lemma 2 For each i ∈ {1, 2}, let σi = (σi(0), σi(1), ..., σi(k)) denote agent i’s
strategy and for each x ∈ {0, 1, . . . , k}, let σi(x) denote the probability that agent
i chooses x. If σ = (σ1, σ2) is a Nash equilibrium in the game Γk(θ

′
), then, for

each i ∈ {1, 2}, there is a number pi ∈ [0, 1] such that σi(x) = pi/k for each
x ∈ {0, . . . , k − 1}. Moreover, p1 = 0 if and only if p2 = 0.

Proof: Recall that we set ui(d; θ
′
) = 0 for each ui ∈ Uθ

′

i and i ∈ {1, 2}. Let σ
be a Nash equilibrium of the game Γk(θ

′
). If σi(k) = 1 for each i ∈ {1, 2}, such pi

in the lemma is guaranteed to exist by setting pi = 0. Thus, we assume that there
exists i ∈ {1, 2} for whom σi(k) < 1. We divide the proof into a series of steps,
whose proofs will be found in the Appendix:

Step 1a: If there exists x ∈ {0, . . . , k − 1} such that σ1(x) > 0, then σ2(x) > 0.

Step 1b: If there exists x ∈ {1, . . . , k−1} such that σ2(x) > 0, then σ1(x−1) > 0.
Moreover, if σ2(0) > 0, then σ1(k − 1) > 0.

Step 1c: If there exist i ∈ {1, 2} and x
′ ∈ {0, . . . , k − 1} for whom σi(x

′
) > 0,

then σ1(x) > 0 and σ2(x) > 0 for all x ∈ {0, . . . , k − 1}.

Step 2: If there exist i ∈ {1, 2} and x, x
′ ∈ {0, . . . , k− 1} such that σi(x) > 0 and

σi(x
′
) > 0, then σi(x) = σi(x

′
).
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It follows from both Steps 2 and 1c that σi(x) = σi(x
′
) for every x, x

′ ∈
{0, . . . , k − 1} and i ∈ {1, 2}. Thus, we can set pi =

∑k−1
x=0 σi(x). Since we as-

sume σi(k) < 1 for each i ∈ {1, 2}, we have pi > 0. This completes the proof of
Lemma 2. ■

As we can easily see in the proof of Lemma 1, there are no (compelling) mixed
strategy Nash equilibria of the game Γk(θ) because, in state θ, the unique Nash
equilibrium outcome is a, which is the best outcome for both agents. It thus
remains to prove that there are no compelling mixed strategy equilibria in the
game Γk(θ

′
).

If k ≥ 3, we let σk be a nontrivial mixed-strategy Nash equilibrium in the game
Γk(θ

′
). Then, the resulting outcome distribution induced by σk is given by

g ◦ σk =


c w.p. (1− p1)(1− p2)
a w.p. (p1p2)/k
b w.p. (p1p2)/k
d w.p. ((k − 2p1p2)/k)− ((1− p1)(1− p2)),

where p1, p2 ∈ (0, 1] and pi =
∑k−1

x=0 σi(x) for each i ∈ {1, 2}. Recall the following
pieces of notation:

U θ
′

1 =
{
u1(·; θ

′
) ∈ [0, 1]A

∣∣ 1 = u1(a; θ
′
) > u1(b; θ

′
) > u1(c; θ

′
) > u1(d; θ

′
) = 0

}
;

U θ
′

2 =
{
u2(·; θ

′
) ∈ [0, 1]A

∣∣ 1 = u2(b; θ
′
) > u2(a; θ

′
) > u2(c; θ

′
) > u2(d; θ

′
) = 0

}
.

Let U θ
′
≡ Uθ

′

1 × U θ
′

2 . For each ε ∈ (0, 1), we have

U θ
′
,ε

1 =
{
u1(·; θ

′
) ∈ Uθ

′

1

∣∣ u1(c; θ
′
) ≥ ε

}
;

U θ
′
,ε

2 =
{
u2(·; θ

′
) ∈ U θ

′

2

∣∣ u2(c; θ
′
) ≥ ε

}
.

Similarly, let U θ
′
,ε ≡ Uθ

′
,ε

1 × U θ
′
,ε

2 .
By the lemma below, we show that for each ε > 0, there exists K ∈ N large

enough so that, for any u ∈ U θ
′
,ε, the game ΓK(θ

′
, u) has no compelling mixed

strategy equilibria.

Lemma 3 For each ε > 0, there exists an integer K ∈ N large enough so that for

any k ≥ K, i ∈ {1, 2}, and (u1(·, θ
′
), u2(·; θ

′
)) ∈ Uθ

′
,ε,

Ui(σ
k; θ

′
) < ui(c; θ

′
),

where Ui(σ
k; θ

′
) =

∑k
x=0 σ

k
1(x)

∑k
x′=0 σ

k
2(x

′
)ui(g(x, x

′
); θ

′
).

12



Proof : Fix ε > 0 and i ∈ {1, 2}. We compute

Ui(σ
k; θ

′
) =

p1p2

k
[ui(a; θ

′
) + ui(b; θ

′
)] + (1− p1)(1− p2)ui(c; θ

′
).

For each (p1, p2) ∈ [0, 1]2, we define

k(p1, p2) =
ui(a; θ

′) + ui(b; θ
′)

ui(c; θ′)

[
1

p1
+

1

p2
− 1

]−1

.

In the rest of the proof, we make use of the following properties of k(p1, p2):

• k(·, ·) is strictly increasing in both arguments over [0, 1]2.

• k(p1h, p
2
h) converges to zero no matter how the sequence {(p1h, p2h)}∞h=1 ap-

proaches (0, 0). Thus, k(0, 0) ≡ lim(p1,p2)→(0,0) k(p
1, p2) = 0.

• k(1, 1) = [ui(a; θ
′) + ui(b; θ

′)]/ui(c; θ
′) = max(p1,p2)∈[0,1]2 k(p

1, p2).

• We can conveniently rewrite k(p1, p2) as

k(p1, p2) =
ui(a; θ

′) + ui(b; θ
′)

ui(c; θ′)

p1p2

[1− (1− p1)(1− p2)]
.

We set K = min{k ∈ N|k ≥ 2/ε}. As 2/ε ≥ [ui(a; θ
′) + ui(b; θ

′)]/ui(c; θ
′) for

any ui(·; θ
′
) ∈ U θ

′

i [ε], we have that K ≥ k(1, 1). Due to the strict monotonicity of
k(p1, p2) with respect to p1 and p2, we have that K ≥ k(p1, p2) for any (p1, p2) ∈
[0, 1]2. Hence, for any k ≥ K:

Ui(σ
k; θ

′
) =

p1p2

k
[ui(a; θ

′
) + ui(b; θ

′
)] + (1− p1)(1− p2)ui(c; θ

′
)

≤ p1p2

k(p1, p2)
[ui(a; θ

′
) + ui(b; θ

′
)] + (1− p1)(1− p2)ui(c; θ

′
)

(∵ k ≥ K ≥ k(p1, p2) ∀(p1, p2) ∈ [0, 1]2)

= ui(c; θ
′)[1− (1− p1)(1− p2)] + (1− p1)(1− p2)ui(c; θ

′
)

= ui(c; θ
′
).

This completes the proof of Lemma 3. ■

Combining Lemmas 1, 2, and 3 together, we complete the proof of Proposition
1. ■
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5 The Main Result When n ≥ 3

Throughout this section, we assume that there are at least three agents, i.e., n ≥ 3.
We refer the reader to Section 7 where we extend the main result of this section
to the case of two agents.

5.1 Acceptability and Forums

Let G be a pair of agents in I. We call C : G ⇒ ∆(A) a choice correspondence
if it maps each agent in G into a nonempty, finite subset of lotteries in ∆(A).
Given a pair of agents G and a choice correspondence C, we define the concept of
C-acceptability:

Definition 2 Let G ⊆ I be a pair of agents, C a choice correspondence, θ ∈ Θ a
state, and u ∈ Û a representation. We say that lottery x ∈ ∆(A) is C-acceptable
at state θ and representation u if the following two conditions are satisfied:

• x ∈
⋃

i∈G C(i);

• For every i ∈ G and y ∈ C(i), ui(x, θ) ≥ ui(y, θ).

Remark: Strictly speaking, the definition of C-acceptability depends upon G.
However, since such G is always clear from the context whenever we discuss C-
acceptability, we omit C’s dependence on G. Thus, we simply say C-acceptability
without mentioning G. If there are only two agents, i.e., n = 2, then there is
no ambiguity about G so that we always take G = {1, 2} in the definition of C-
acceptability.

We say that F = (G, w, C, z) constitutes a forum if it satisfies the following
properties:

1. G is a pair of agents in I;

2. w : {0, 1} → G is a bijection, where we denote w−1 by its inverse function so
that w(w−1(i)) = i;

3. C : G ⇒ ∆(A) is a choice correspondence; and

4. z ∈ ∆(A) is a lottery such that z ∈
⋂

i∈G C(i).

14



For each θ̂ ∈ Θ, we write Fθ̂ = (Gθ̂, wθ̂, Cθ̂, zθ̂) as a forum indexed by the state

θ̂ ∈ Θ. In the forum Fθ̂, we have zθ̂ ∈ Cθ̂(i) for each i ∈ Gθ̂. If the forum Fθ̂ is
used when θ is the true state, we define

C∗
θ̂
(j, θ) ≡ arg max

y∈Cθ̂(j)
uj(y, θ)

as the set of agent j’s best lotteries in state θ within Cθ̂(j).

5.2 Condition COM

Definition 3 The environment E =
(
I, A,Θ, (⪰θ

i )i∈I,θ∈Θ
)
satisfies Condition

COM with respect to the SCF f and Û if there exists a collection of forums
{Fθ̃}θ̃∈Θ = {Gθ̃, wθ̃, Cθ̃, zθ̃}θ̃∈Θ with the following properties:

1. This property has two parts:

1-i. For every θ ∈ Θ and u ∈ Û , f(θ) is Cθ-acceptable at state θ and repre-
sentation u.

1-ii. For every θ, θ̂ ∈ Θ, f(θ) ∈ Cθ̂(i) ⇔ f(θ) ∈ Cθ̂(j), where i = wθ̂(0) and

j = wθ̂(1). When θ̂ = θ, we have f(θ) ∈ Cθ(i) ∩ Cθ(j) for all θ ∈ Θ.

2. For every θ, θ̂ ∈ Θ and u ∈ Û , if x ∈ ∆(A) is Cθ̂-acceptable at state θ and
representation u, then x = f(θ).

3. There exists ε > 0 such that for each θ ∈ Θ, ui(f(θ), θ)− ui(z, θ) ≥ ε for all
i ∈ I, all u ∈ Û , and all z ∈

⋃
θ̃∈Θ{zθ̃}.

4. For all θ, θ̂ ∈ Θ, u ∈ Û , i ∈ Gθ̂, if f(θ) is Cθ̂-acceptable at state θ and
representation u, then ui(x, θ) = ui(f(θ), θ) implies x = f(θ) for all x ∈
Cθ̂(i).

Remark: There is a redundancy in Property 1. We do not need to assume f(θ) ∈
Cθ(i) ∩ Cθ(j) for all θ ∈ Θ in Property 1-ii because it follows from f(θ) is Cθ-
acceptable at state θ and representation u in Property 1-i and f(θ) ∈ Cθ(i) ⇔
f(θ) ∈ Cθ(j) when we set θ̂ = θ in Property 1-i. Nevertheless, for the convenience
of writing the proofs in the paper, we explicity add this property to part of Property
1-ii.

Property 2 admits a possibility that agent i ∈ Gθ̂ is indifferent between f(θ)
and some x ̸= f(θ), while agent j ∈ Gθ̂\{i} prefers f(θ) to x. However, Property 4
excludes this very possibility. This shows that Property 2 does not imply Property
4.

We present now an example of an environment with three players in which
Condition COM is satisfied.
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Example 1 There are three agents, i.e., I = {1, 2, 3}. Let A = {a, b, c, d, z} be
the set of pure alternatives, Θ = {θa, θb, θc, θd} be the set of states, and f be the
SCF such that f(θx) = x for any x ∈ A\{z}. Agents’ preferences over A\{z} =
{a, b, c, d} are summarized in Table 5. In addition, for any x ∈ A\{z}, any i ∈ I,
and any θ ∈ Θ, we assume x ≻θ

i z, so z is the common worst outcome across
states.

State Agent 1 Agent 2 Agent 3

θa a ≻θa
1 b ≻θa

1 d ≻θa
1 c a ≻θa

2 b ≻θa
2 d ≻θa

2 c a ≻θa
3 b ≻θa

3 c ≻θa
3 d

θb a ≻θb
1 b ≻θb

1 c ≻θb
1 d b ≻θb

2 a ≻θb
2 c ≻θb

2 d b ≻θb
3 a ≻θb

3 d ≻θb
3 c

θc a ≻θc
1 b ≻θc

1 c ≻θc
1 d b ≻θc

2 a ≻θc
2 c ≻θc

2 d a ≻θc
3 b ≻θc

3 c ≻θc
3 d

θd d ≻θd
1 a ≻θd

1 b ≻θd
1 c b ≻θd

2 a ≻θd
2 c ≻θd

2 d a ≻θd
3 b ≻θd

3 d ≻θd
3 c

Table 5: Agents’ Preferences over A\{z}

Fix ε > 0 as an arbitrary small number. For each i ∈ I and θ̃ ∈ Θ, we define

U θ̂,ε
i =

{
ui(·, θ̃) ∈ [0, 1]5

∣∣∣ ui(z, θ̃) = 0,max
ã∈A

ui(ã, θ̃) = 1, and ui(ã, θ̃) ≥ ε,∀ã ∈ A\{z}
}
,

as the set of all possible cardinal representations ui(·, θ̃) that are consistent with

ordinal preferences ⪰θ̃
i given in Table 5. Let U θ̃,ε ≡ ×i∈IU θ̃

i and U ε ≡ ×θ̃∈ΘU θ̃,ε.
We construct the following collection of forums {Fθ̃}θ̃∈Θ = {Gθ̃, wθ̃, Cθ̃, zθ̃}θ̃∈Θ with
the following properties:

• for each θ ∈ Θ, we set zθ = z.

• At state θa we set Gθa = {1, 2}, wθa(0) = 1, wθa(1) = 2, and Cθa(1) =
Cθa(2) = {a, b, c, d, z}.

• At state θb, we set Gθb = {2, 3}, wθb(0) = 2, wθb(1) = 3, and Cθb(2) =
Cθb(3) = {a, b, c, d, z}.

• At state θc, we set Gθc = {2, 3}, wθc(0) = 2, wθc(1) = 3, and Cθc(2) =
Cθc(3) = {c, d, z}.

• Finally, at state θd, we set Gθd = {1, 3}, wθd(0) = 1, wθd(1) = 3, and Cθd(1) =
Cθc(3) = {c, d, z}.

• Property 1-i

f(θa) = a is Cθa-acceptable at θa and any u ∈ U ε because a is the best
outcome within Cθa(i) = A for each i ∈ {1, 2}. f(θb) = b is Cθb-acceptable
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at θb and any u ∈ U ε because b is the best outcome within Cθb(i) = A for
each i ∈ {2, 3}. f(θc) = c is Cθc-acceptable at θc and any u ∈ U ε because c
is the best outcome within Cθc(i) = {c, d, z} for each i ∈ {2, 3}. f(θd) = d
is Cθd-acceptable at θd and any u ∈ U ε because d is the best outcome within
Cθd(i) = {c, d, z} for each i ∈ {1, 3}.

• Property 1-ii

By construction, we set Cθ̃(i) = Cθ̃(j) for all θ̃ ∈ Θ and i, j ∈ Gθ̃. This
guarantees that f(θ) ∈ Cθ(i) ∩ Cθ(j) for all θ ∈ Θ and i, j ∈ Gθ.

When θ = θa and θ̂ = θb, it follows that f(θa) = a ∈ Cθb(i) = A for

all i ∈ {2, 3}. When θ = θa and θ̂ = θc, it follows that f(θa) = a /∈
Cθc(i) = {c, d, z} for all i ∈ {2, 3}. When θ = θa and θ̂ = θd, it follows
that f(θa) = a /∈ Cθd(i) = {c, d, z} for all i ∈ {1, 3}.

When θ = θb and θ̂ = θa, it follows that f(θb) = b ∈ Cθa(i) = A for all i ∈
{1, 2}. When θ = θb and θ̂ = θc, it follows that f(θb) = b /∈ Cθc(i) = {c, d, z}
for all i ∈ {2, 3}. When θ = θb and θ̂ = θd, it follows that f(θb) = b /∈
Cθd(i) = {c, d, z} for all i ∈ {1, 3}.

When θ = θc and θ̂ = θa, it follows that f(θc) = c ∈ Cθa(i) = A for all
i ∈ {1, 2}. When θ = θc and θ̂ = θb, it follows that f(θc) = c ∈ Cθb(i) = A

for all i ∈ {2, 3}. When θ = θc and θ̂ = θd, it follows that f(θc) = c ∈
Cθd(i) = {c, d, z} for all i ∈ {1, 3}.

When θ = θd and θ̂ = θa, it follows that f(θd) = d ∈ Cθa(i) = A for all
i ∈ {1, 2}. When θ = θd and θ̂ = θb, it follows that f(θc) = c ∈ Cθb(i) = A

for all i ∈ {2, 3}. When θ = θd and θ̂ = θc, it follows that f(θd) = d ∈
Cθc(i) = {c, d, z} for all i ∈ {2, 3}.

• Property 2

When θ = θa, for any θ̂ ∈ {θa, θb} and u ∈ U ε, it follows that a is the unique
outcome in ∆(A) that is Cθ̂-acceptable at θa and u. Then, we have f(θa) = a.

When θ = θa and θ̂ = θc, for any u ∈ U ε, it follows that there is no x ∈ ∆(A)
that is Cθc-acceptable at θa and u because u2(d, θa) > u2(c, θa) and u3(d, θa) <
u3(c, θa) and Cθc(i) = {c, d, z} for each i ∈ Gθc.

When θ = θa and θ̂ = θd, for any u ∈ U ε, it follows that there is no x ∈ ∆(A)
that is Cθd-acceptable at θa and u because u1(d, θa) > u1(c, θa) and u3(d, θa) <
u3(c, θa) and Cθd(i) = {c, d, z} for each i ∈ Gθd.

When θ = θb, for any θ̂ ∈ {θa, θb} and u ∈ U ε, it follows that b is the unique
outcome in ∆(A) that is Cθ̂-acceptable at θb and u. Then, we have f(θb) = b.
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When θ = θb and θ̂ = θc, for any u ∈ U ε, it follows that there is no x ∈ ∆(A)
that is Cθc-acceptable at θb and u because u2(d, θb) < u2(c, θb) and u3(d, θb) >
u3(c, θb) and Cθc(i) = {c, d, z} for each i ∈ Gθc.

When θ = θb and θ̂ = θd, for any u ∈ U ε, it follows that there is no x ∈ ∆(A)
that is Cθd-acceptable at θb and u because u1(d, θa) < u1(c, θa) and u3(d, θa) >
u3(c, θa) and Cθd(i) = {c, d, z} for each i ∈ Gθd = {1, 3}.

When θ = θc and θ̂ = θa, for any u ∈ U ε, it follows that there is no x ∈ ∆(A)
that is Cθa-acceptable at θc and u because u1(a, θc) > u1(b, θc) and u2(a, θc) <
u2(b, θc) and Cθa(i) = A for each i ∈ Gθa = {1, 2}.
When θ = θc and θ̂ = θb, for any u ∈ U ε, it follows that there is no x ∈ ∆(A)
that is Cθb-acceptable at θc and u because u2(a, θc) < u2(b, θc) and u3(a, θc) >
u3(b, θc) and Cθb(i) = A for each i ∈ Gθb = {2, 3}.

When θ = θc and θ̂ = θd, for any u ∈ U ε, it follows that c ∈ ∆(A) is the
unique outcome that is Cθd-acceptable at θc and u. Then, we have f(θc) = c.

When θ = θd and θ̂ = θa, for any u ∈ U ε, it follows that there is no x ∈ ∆(A)
that is Cθa-acceptable at θd and u because d is agent 1’s best outcome within
Cθa(1) in state θd, while b is agent 2’s best outcome within Cθa(2) in state θb
and Cθa(i) = A for each i ∈ Gθa = {1, 2}.
When θ = θd and θ̂ = θb, for any u ∈ U ε, it follows that there is no x ∈ ∆(A)
that is Cθb-acceptable at θd and u because b is agent 2’s best outcome within
Cθb(2) in state θd, while a is agent 3’s best outcome within Cθb(3) in state θd
and Cθb(i) = A for each i ∈ Gθb = {2, 3}.

When θ = θd and θ̂ = θc, for any u ∈ U ε, it follows that d ∈ ∆(A) is the
unique outcome that is Cθc-acceptable at θc and u. Then, we have f(θd) = d.

• Property 3

This property is satisfied due to the very construction of U ε.

• Property 4

When θ = θa and θ̂ = θb, for any u ∈ U ε, it follows that f(θa) = a is Cθb-
acceptable at θa and u. Since a is the best outcome for both agents 2 and 3
in state θa and Gθb = {2, 3}, this property holds.

When θ = θa, for any θ̂ ∈ {θc, θd} and u ∈ U ε, it follows that f(θa) is not
Cθ̂-acceptable at θa and u. Hence, the property holds.

When θ = θb and θ̂ = θa, for any u ∈ U ε, it follows that f(θb) = b is not Cθa-
acceptable at θb and u because u1(a, θb) > u1(b, θb), while u2(a, θb) < u2(b, θb)
and Cθa(i) = A for each i ∈ Gθa = {1, 2}. Hence, this property holds.
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When θ = θb, for any θ̂ ∈ {θc, θd} and u ∈ U ε, it follows that f(θb) is not
Cθ̂-acceptable at θb and u. Hence, the property holds.

When θ = θc, for any θ̂ ∈ {θa, θb} and u ∈ U ε, it follows that f(θc) = c is
not Cθ̂-acceptable at θc and u. Hence, the property holds.

When θ = θc and θ̂ = θd, for any u ∈ U ε, it follows that f(θc) = c is Cθd-
acceptable at θc and u. Since c is the best outcome within {c, d, z} for both
agents 1 and 3 in state θc and Cθd(i) = {c, d, z} for each i ∈ Gθd = {1, 3},
the property holds.

When θ = θd, for any θ̂ ∈ {θa, θb} and u ∈ U ε, it follows that f(θd) = d is
not Cθ̂-acceptable at θc and u. Hence, the property holds.

When θ = θd and θ̂ = θc, for any u ∈ U ε, it follows that f(θd) = d is Cθc-
acceptable at θd and u. For any ã ∈ {c, z}, we have ui(ã, θd) ̸= ui(f(θd), θd)
for each i ∈ {2, 3}. Hence, the property holds.

Therefore, this environment satisfies Condition COM with respect to the SCF
f and U ε.

5.3 The Canonical Mechanism

Condition COM is utilized to construct our canonical mechanism that achieves
compelling implementation. By Condition COM , we can fix a collection of forums
{Fθ̃}θ̃∈Θ that satisfies all the properties in Condition COM . Recall that we assume
that there are at least three agents, i.e., n ≥ 3. Fix θ∗ ∈ Θ and k ≥ 2 as a state
and an integer, respectively. We write Γk = (Mk, gk) as a mechanism. We define
Mk

i ≡ M1
i × M2

i × M3
i as agent i’s message space in the mechanism Γk. Let

mi = (m1
i ,m

2
i ,m

3
i ) ∈ Mi be agent i’s generic message such that (i) m1

i ∈ M1
i = Θ;

(ii) m2
i = (m2

i [θ̃])θ̃∈Θ ∈ M2
i = ×θ̃∈ΘM

2
i [θ̃] where m2

i [θ̃] ∈ {0, . . . , k − 1}; and (iii)

m3
i = (m3

i [θ̃])θ̃∈Θ ∈ M3
i ≡ ×θ̃∈ΘM

3
i [θ̃] where, for all i ∈ I, M3

i [θ̃] = Cθ̃(i) if i ∈ Gθ̃

and M3
i [θ̃] = {∅} if i /∈ Gθ̃. In words, each agent i announces a state, a collection of

state-contingent integers between 0 and k− 1, and a collection of state-contingent
outcomes such that each outcome in state θ̃ is required to be chosen from Cθ̃(i).
We thus define M = ×i∈IMi as the set of message profiles in the mechanism Γk.
For any m ∈ M , we define θm ∈ Θ as follows:

θm =

{
θ
′

if there exists θ
′ ∈ Θ such that |{j ∈ I|m1

j = θ
′}| > n/2,

θ∗ otherwise.

Note that θm is well defined because we assume n ≥ 3.

For any m ∈ M , gk(m) induces the following two rules:
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Rule 1: If
∑

j∈Gθm
m2

j [θ
m] mod k is either 0 or 1, then

gk(m) = m3
i∗ [θ

m],

where i∗ = wθm

(∑
j∈Gθm

m2
j [θ

m] mod k
)
.

Rule 2: If
∑

j∈Gθm
m2

j [θ
m] mod k > 1, then

gk(m) = zθm .

5.4 Main Theorem

Theorem 1 Let f be an SCF. Suppose that the finite environment E =
(
I, A,Θ, (⪰θ

i )i∈I,θ∈Θ
)

satisfies Condition COM with respect to f and Û . Then, the SCF f is C-implementable
with respect to Û .

Proof : Suppose that E satisfies Condition COM with respect to the SCF f
and the set of representations Û . Therefore, throughout the proof of the theorem,
we fix a collection of forums (Fθ̃)θ̃∈Θ = (Gθ̃, wθ̃, Cθ̃, zθ̃) that satisfies Properties 1

through 4 of Condition COM with respect to f and Û . We prove this theorem
through a series of steps.

Step 1: For any k ≥ 2, the SCF f is pure Nash implementable by the mechanism
Γk.

Proof of Step 1: Let θ ∈ Θ be a true state. Fix u ∈ Û arbitrarily. By
Property 1, f(θ) ∈ Cθ(i) for some i = wθ(0). Let m ∈ M be a message profile with
the following properties:

• m1
j = θ for all j ∈ I;

• m2
j [θ] = 0 for all j ∈ Gθ;

• m3
i [θ] = f(θ).

Since i∗ = wθ(
∑

j∈Gθ
m2

j [θ] mod k) = wθ(0) under Rule 1, and we assume
i = wθ(0), it follows that g(m) = f(θ). We next claim that m is a pure strategy
Nash equilibrium in the game Γk(θ). First, since there are at least three agents
(i.e., n ≥ 3), no agent can unilaterally change θm = θ. Thus, every agent i cannot
find any profitable deviation from m when restricting her deviation strategy to
M1

i . Hence, any profitable unilateral deviation of agent i from m, if any, must
involve the change of her message in either M2

i , M
3
i , or both. By construction of

the mechanism Γk, the only agents who can unilaterally change the outcome from
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gk(m) are those who are in Gθ. We also know that each agent j ∈ Gθ can only
induce outcomes within Cθ(j) by her unilateral deviation from m. The first part
of Property 1 ensures that any agent j ∈ Gθ finds f(θ) as her best outcome within
Cθ(j) in state θ. Therefore, no agent j ∈ Gθ can find any profitable unilateral
deviation by inducing Rules 1 or 2. Thus, m is indeed a pure strategy Nash
equilibrium in the game Γk(θ).

Now we show that m ∈ pureNE(Γk(θ)) implies g(m) = f(θ). We assume by
way of contradiction that there exists m ∈ pureNE(Γ(θ)) such that g(m) ̸= f(θ).

Since g(m) ̸= f(θ), it follows from Property 2 that, for any θ̃ ∈ Θ, g(m)
is “not” Cθ̃-acceptable at state θ. In particular, we have that g(m) is not Cθm-
acceptable at state θ. This implies that there exist i ∈ Gθm and x ∈ Cθm(i)
such that ui(x, θ) > ui(g(m), θ). We define m̂i to be identical to mi except that
m̂3

i [θ
m] = x and m̂2

i [θ
m] such that agent i is the modulo game winner, i.e.,

wθm
((
m̂2

i [θ
m] +m2

j [θ
m]
)

mod k
)
= i.

Then, agent i has a profitable unilateral deviation from m. This shows that m
is not a pure strategy Nash equilibrium in the game Γk(θ), which is a desired
contradiction. Thus, f is pure Nash implementable by mechanism Γk. ■

Throughout the proof, we denote by θ the true state and by θ̂ the state de-
termined by the agents’ announcement in the mechanism. Let Γk = (Mk, gk)
be our canonical mechanism where k ≥ 3. We define Cθ̂ ≡

⋃
i∈I Cθ̂(i) for each

θ̂ ∈ Θ, and C ≡
⋃

θ̂∈ΘCθ̂. Note that Cθ̂ and C are both finite. For each θ̂ ∈ Θ,
q ∈ {0, . . . , k − 1}, i ∈ I, and x ∈ C, we define

M∗(θ̂, q, x) =

m ∈ Mk

∣∣∣∣∣ θm = θ̂,
∑
j∈Gθ̂

m2
j [θ̂] (mod k) = q, gk(m) = x


as a subset of Mk. Notice that as M∗(θ̂, q, x) requires a lot structure on itself, it
may well be empty; in particular, it is empty for all (θ̂, q, x) with q ≥ 2 and x ̸= zθ̂.
By construction, we have⋃

θ̂∈Θ

⋃
q∈{0,...,k−1}

⋃
x∈C

M∗(θ̂, q, x) = Mk.

Let σ be a mixed strategy profile in the mechanism Γk. For any θ̂ ∈ Θ, q ∈
{0, . . . , k − 1}, and x ∈ C, we define

P σ(θ̂, q, x) ≡
∑

m∈M∗(θ̂,q,x)

σ(m).
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For each θ̂ ∈ Θ and q ∈ {0, . . . , k − 1}, we define

M∗(θ̂, q) =
⋃
x∈C

M∗(θ̂, q, x) and P σ(θ̂, q) =
∑

m∈M∗(θ̂,q)

σ(m).

For any θ̂ ∈ Θ, we define

M∗(θ̂) =
⋃

q∈{0,...,k−1}

M∗(θ̂, q) and P σ(θ̂) =
∑

m∈M∗(θ̂)

σ(m).

We can now define conditional probabilities as well:

P σ(q, x|θ̂) =
{

P σ(θ̂, q, x)/P σ(θ̂) if P σ(θ̂) > 0,

0 if P σ(θ̂) = 0.

P σ(q|θ̂) =
{

P σ(θ̂, q)/P σ(θ̂) if P σ(θ̂) > 0,

0 if P σ(θ̂) = 0.

P σ(x|q, θ̂) =
{

P σ(q, x|θ̂)/P σ(q|θ̂) if P σ(q|θ̂) > 0,

0 if P σ(q|θ̂) = 0.

We define the set of message profiles in which θ̂ is the agreed-upon state chosen
by the mechanism and agent i sends m2

i [θ̂] = q:

M∗(θ̂, q, i) =

{
m ∈ Mk

∣∣∣∣∣ θm = θ̂, m2
i [θ̂] = q

}
.

Using this set, we define P σ
i (q|θ̂) as the probability that agent i sends q under

σ conditional on M∗(θ̂, q, i):

P σ
i (q|θ̂) =

{ ∑
mi:(mi,m−i)∈M∗(θ̂,q,i) σi(mi)/P

σ(θ̂) if P σ(θ̂) > 0,

0 if P σ(θ̂) = 0.

Lastly, for each θ̂ ∈ Θ and each q ∈ {0, 1}, define the following lottery:

ℓkq(θ̂, σ) ≡
∑
x∈C

P σ(x|q, θ̂)x.
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Step 2: For any mixed strategy profile σ in the mechanism Γk = (Mk, gk), gk(σ)
can be represented by the following multiple forms:

gk(σ) =
∑
θ̂∈Θ

∑
x∈C

 ∑
q∈{0,1}

P σ(θ̂, q, x)x+
∑

q∈{2,...,k−1}

P σ(θ̂, q, x)zθ̂


=

∑
θ̂∈Θ

P σ(θ̂)
∑
x∈C

 ∑
q∈{0,1}

P σ(q, x|θ̂)x+
∑

q∈{2,...,k−1}

P σ(q, x|θ̂)zθ̂


=

∑
θ̂∈Θ

P σ(θ̂)ℓk(θ̂, σ),

where, for each θ̂ ∈ Θ,

ℓk(θ̂, σ) ≡
∑
x∈C

 ∑
q∈{0,1}

P σ(q, x|θ̂)x+
∑

q∈{2,...,k−1}

P σ(q, x|θ̂)zθ̂


=

∑
q∈{0,1}

∑
x∈C

P σ(q, x|θ̂)x+
∑

q∈{2,...,k−1}

∑
x∈C

P σ(q, x|θ̂)zθ̂

=
∑

q∈{0,1}

P σ(q|θ̂)ℓkq(θ̂, σ) +
∑

q∈{2,...,k−1}

P σ(q|θ̂)zθ̂

= P σ(q = 0|θ̂)ℓk0(θ̂, σ) + P σ(q = 1|θ̂)ℓk1(θ̂, σ) +

1−
∑

q∈{0,1}

P σ(q|θ̂)

 zθ̂

= P σ(q = 0|θ̂)(ℓk0(θ̂, σ)− zθ̂) + P σ(q = 1|θ̂)(ℓk1(θ̂, σ)− zθ̂) + zθ̂

Proof of Step 2: This comes from the construction of our mechanism. ■

Step 3: Let σ ∈ NE(Γk(θ, u)) for some u ∈ Û . Then, for any m ∈ supp(σ),
q ∈ {0, 1}, and θ̂ ∈ Θ, if m ∈ M∗(θ̂, q), then m3

i [θ̂] ∈ C∗
θ̂
(i, θ), where i = w−1

θ̂
(q).

Proof of Step 3: Fix u ∈ Û . Let σ ∈ NE(Γk(θ, u)). Fix m ∈ supp(σ),
q ∈ {0, 1}, and θ̂ ∈ Θ. Assume that m ∈ M∗(θ̂, q), and let i = w−1

θ̂
(q). Suppose,

by way of contradiction, that m3
i [θ̂] /∈ C∗

θ̂
(i, θ). We define m̄i to be identical to mi

except that m̄3
i [θ̂] = c∗

θ̂
(i, θ), for some c∗

θ̂
(i, θ) ∈ C∗

θ̂
(i, θ). By construction, we know

that m̄i weakly dominates mi. We next define σ̄i to be the following deviation
strategy: for any m̃i ∈ Mi,

σ̄i(m̃i) =


σi(m̄i) + σi(mi) if m̃i = m̄i,

0 if m̃i = mi,
σi(m̃i) otherwise.
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We compute the following utility difference:

ui(g
k(σ̄i, σ−i), θ)− ui(g

k(σi, σ−i), θ)

=
∑
m̃−i

σi(mi)
[
ui(g

k(m̄i, m̃−i), θ)− ui(g
k(mi, m̃−i), θ)

]
= σ(m)

[
ui(g

k(m̄i,m−i), θ)− ui(g
k(mi,m−i), θ)

]
+

∑
m̃−i ̸=m−i

σ(mi, m̃−i)
[
ui(g

k(m̄i, m̃−i), θ)− ui(g
k(mi, m̃−i), θ)

]
≥ σ(m)

[
ui(g

k(m̄i,m−i), θ)− ui(g
k(mi,m−i), θ)

]
= σ(m)

[
ui(c

∗
θ̂
(i, θ), θ)− ui(m

3
i [θ̃], θ)

]
> 0,

where the weak inequality follows because m̄i weakly dominates mi, and the strict
inequality follows because σ(m) > 0 and ui(c

∗
θ̂
(i, θ)) > ui(m

3
i [θ̂], θ), as c∗

θ̂
(i, θ) ∈

C∗
θ̂
(i, θ). This shows that σ is not a Nash equilibrium in the game Γk(θ, u), which

is the desired contradiction. Thus, we complete the proof. ■

Step 4: Let σ be a mixed strategy profile in the mechanism ΓK , where we later
choose K ≥ 3 large enough, and fix θ̂ ∈ Θ such that P σ(θ̂) > 0. Assume that
P σ(q = 0|θ̂)+P σ(q = 1|θ̂) ≤ 2/K . Then, there exists K ∈ N large enough so that
ui(ℓ

K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I and u ∈ Û .

Proof of Step 4: Fix θ̂ ∈ Θ with P σ(θ̂) > 0, u ∈ Û , and i ∈ I arbitrarily.
Since the utility achievable is bounded above from 1 and the compound lottery
lK(θ̂, σ) induces zθ̂ with probability equal to at least 1− 2/K, we have

ui(ℓ
K(θ̂, σ), θ) ≤ 2

K
· 1 + K − 2

K
ui(zθ̂, θ)

= ui(zθ̂, θ) +
2 (1− ui(zθ̂, θ))

K

≤ ui(zθ̂, θ) +
2

K

By Property 3 of Condition COM , for any i ∈ I and u ∈ Û ,

ui(zθ̂, θ) ≤ ui(f(θ), θ)− ε.

Hence, we combine this with the previous inequality obtained so that

ui(l
K(θ̂, σ), θ) ≤ ui(f(θ), θ)− ε+

2

K
.
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If we choose K to be the smallest integer such that K ≥ 4/ε, we have

ui(ℓ
K(θ̂, σ), θ) ≤ ui(f(θ), θ)−

ε

2
,

for any i ∈ I and u ∈ Û . Since ε > 0, we have that ui(ℓ
K(θ̂, θ)) < ui(f(θ), θ) for

any i ∈ I and u ∈ Û , as desired. This completes the proof. ■

From here till the end of the proof of Step 7, we fix u ∈ Û , θ̂ ∈ Θ, and adopt
the convention that wθ̂(0) = i and wθ̂(1) = j. We focus now on the lotteries that
emerge from the remaining components of a strategy profile σ after a particular
state θ̂ is selected by the mechanism, which we denote by ℓk(θ̂, σ). Steps 5, 6 and
7 are all used to show that if σ is a Nash equilibrium of the game ΓK(θ, u) and
f(θ) ̸= ℓK(θ̂, σ), all agents must prefer f(θ) to ℓK(θ̂, σ) where we choose K large
enough.

Let mj ∈ supp(σj), m̄j be agent j’s arbitrary message sent, and σ−j be other
players’ strategy profile. Let (mj, σ−j) denote the strategy profile in which agent j
plays mj and other agents play σ−j, and (m̄j, σ−j) be the strategy profile in which
agent j plays m̄j and other agents play σ−j. These two strategy profiles will induce

different lotteries, ℓk(θ̂, (mj, σ−j)) and ℓk(θ̂, (m̄j, σ−j)), respectively. Using Step 2,
we can compute the difference in expected payoff for agent j at state θ between
these two lotteries as:

uj(ℓ
k(θ̂, (m̄j, σj)), θ)− uj(ℓ

k(θ̂, (mj, σj)), θ)

= P (m̄j ,σ−j)(q = 0|θ̂)
(
uj(ℓ

k
0(θ̂, (mj, σ−j)), θ)− uj(zθ̂, θ)

)
+ P (m̄j ,σ−j)(q = 1|θ̂) (ū1 − uj(zθ̂, θ)) + uj(zθ̂, θ)

−
[
P (mj ,σ−j)(q = 0|θ̂)

(
uj(ℓ

k
0(θ̂, (mj, σ−j)), θ)− uj(zθ̂, θ)

)
+ P (mj ,σ−j)(q = 1|θ̂)

(
uj(m

3
j [θ̂], θ)− uj(zθ̂, θ)

)
+ uj(zθ̂, θ)

]
To ease the notation, we will adopt the following set of conventions:
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P (mj ,σ−j)(q = 0|θ̂) = p0

P (m̄j ,σ−j)(q = 0|θ̂) = p̄0

P (mj ,σ−j)(q = 1|θ̂) = p1

P (m̄j ,σ−j)(q = 1|θ̂) = p̄1

uj(ℓ
k
0(θ̂, (mj, σ−j)), θ) = u0

uj(m
3
j [θ̂], θ) = u1

uj(m̄
3
j [θ̂], θ) = ū1

uj(zθ̂, θ) = uz

This introduced notation allows us to simply the previous expression to

uj(ℓ
k(θ̂, (m̄j, σj)), θ)− uj(ℓ

k(θ̂, (mj, σj)), θ)

= p̄0(u0 − uz) + p̄1(ū1 − uz) + uz − [p0(u0 − uz) + p1(u1 − uz) + uz.]

For any x ∈ {0, 1} and q ∈ {0, . . . , K − 1}, we define bx(q) ∈ {0, . . . , K − 1}
such that q + b1(q) (mod K) = 1.

Step 5: Let σ ∈ NE(ΓK(θ, u)), where we later choose K large enough. For
any θ̂ ∈ Θ with P σ(θ̂) > 0, we assume that there exists q ∈ {0, 1} such that
P σ(q|θ̂) = 0. Then, there exists K ∈ N large enough so that, for any θ̂ ∈ Θ with
P σ(θ̂) > 0, if ℓK(θ̂, σ) ̸= f(θ), then ui(ℓ

K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I.

Proof of Step 5: Fix σ ∈ NE(ΓK(θ, u)), and θ̂ ∈ Θ with P σ(θ̂) > 0 arbitrarily.
We assume that there exists q ∈ {0, 1} such that P σ(q|θ̂) = 0. We further assume
that ℓK(θ̂, σ) ̸= f(θ). We divide the proof into each of the following two cases.

Case 1: P σ(q|θ̂) = 0 for all q ∈ {0, 1}

This implies that ℓK(θ̂, σ) induces zθ̂ with probability one. It follows from

Property 3 of Condition COM that ui(ℓ
K(θ̂, σ), θ) < ui(f(θ), θ) for any i ∈ I,

u ∈ Û , and K ≥ 3.

Case 2: P σ(q = 0|θ̂) > 0 and P σ(q = 1|θ̂) = 0

The argument we provide below regarding Case 2 will make it clear that we
can handle the case that P σ(q = 1|θ̂) > 0 and P σ(q = 0|θ̂) = 0 in a similar fashion.
So we omit this case. With the help of Step 2, we can write

ℓK(θ̂, σ) = P σ(q = 0|θ̂)(ℓK0 (θ̂, σ)− zθ̂) + zθ̂
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Fix c∗
θ̂
(j, θ) ∈ C∗

θ̂
(j, θ). We further divide Case 2 into four sub-cases:

Case 2-1: u0 ≥ uj(c
∗
θ̂
(j, θ), σ), θ) ≥ uz

This implies that some c∗
θ̂
(i, θ) ∈ supp (ℓK0 (θ̂, σ)) is Cθ̂-acceptable at state θ. It

then follows from Property 2 of Condition COM that c∗
θ̂
(i, θ) = f(θ). From Step 4,

we also have that supp (ℓk0(θ̂, σ)) ⊆ Cθ̂(i, θ). Thus, f(θ) ∈ C∗
θ̂
(i, θ), which further

implies that ui(c, θ) = ui(f(θ), θ) for all c ∈ C∗
θ̂
(i, θ). Finally, by Property 4 of

Condition COM , we have C∗
θ̂
(i, θ) = {f(θ)}, which further implies ℓk0(θ̂, σ) = f(θ).

Since we assume that ℓK(θ̂, σ) ̸= f(θ), we must have P σ(q = 0|θ̂) < 1. By Property
3 of Condition COM , there exists ε > 0 such that uj(f(θ), θ) − uj(zθ̂, θ) ≥ ε for

all j ∈ I and u ∈ Û . Due to the construction of ℓK(θ̂, θ) and the fact that
ℓk0(θ̂, σ) = f(θ), we conclude that uj(ℓ

K(θ̂, σ), θ) < uj(f(θ), θ) for all j ∈ I.

Case 2-2: uj(c
∗
θ̂
(j, θ), θ) > uz > u0.

In this case, we will show that there is no Nash equilibrium σ in the game
ΓK(θ, u) such that P σ(q = 0|θ̂) > 0 and P σ(q = 1|θ̂) = 0. Suppose, on the
contrary, that such σ constitutes a Nash equilibrium in the game ΓK(θ, u).

Fixm ∈ supp(σ) as a message profile such that θm = θ̂. The existence of suchm
is guaranteed because we have P σ(θ̂) > 0. Note that P σ(q = 1|θ̂) = 0 implies that
P (mj ,σ−j)(q = 1|θ̂) = p1 = 0. Our goal is to find a message m̄j, which together with

σ−j induces a lottery ℓK(θ̂, (m̄j, σ−j)) that first-order stochastically dominates the
lottery induced by (mj, σ−j), showing that σ is not a Nash equilibrium of the game

ΓK(θ, u). To achieve this, we need to find m̄2
j [θ̂] ∈ {0, . . . , K − 1}, which together

with σ−j guarantees that p̄1 > 0 and p̄0 = 0. We shall propose an algorithm

selecting such m̄2
j [θ̂].

Recall the following notation:

M∗(θ̂, q, i) =

{
m ∈ MK

∣∣∣∣∣ θm = θ̂, m2
i [θ̂] = q

}
.

and
P σ
i (q|θ̂) =

∑
mi:(mi,m−i)∈M∗(θ̂,q,i)

σi(mi)/P
σ(θ̂).

We also use this notation in Case 2-3 later. Start the algorithm by setting q0 =
b1(m

2
j [θ̂]), where, for any q ∈ {0, . . . , K− 1}, we define b1(q) ∈ {0, . . . , K− 1} such

that q + b1(q) (mod K) = 1. It follows from P σ(q = 1|θ̂) = 0 that P σ
i (q0|θ̂) = 0.

27



Next, for any h ∈ {1, · · · , K − 1} and qh−1 ∈ {0, . . . , K − 1}, we define

qh =

{
qh−1 + 1 if qh−1 ≤ K − 2,

0 if qh−1 = K − 1.

Since
∑K−1

q=0 P σ
i (q|θ̂) = 1, we can choose h ∈ {1, . . . , K − 1} uniquely in such a

way that P σ
i (qh|θ̂) > 0 and P σ

i (qh′ |θ̂) = 0 for all h
′ ∈ {0, . . . , h− 1}. Then, we set

m̄2
j [θ̂] = b1(qh). Define m̄3

j [θ̂] as follows:

m̄3
j [θ̂] =

{
c∗
θ̂
(j, θ) if m3

j [θ̂] /∈ C∗
θ̂
(j, θ),

m3
j [θ̂] if m3

j [θ̂] ∈ C∗
θ̂
(j, θ).

Thus, we define m̄j to be identical to mj except that m2
j [θ̂] is replaced by m̄2

j [θ̂]

and m3
j [θ̂] is replaced by m̄3

j [θ̂]. By the algorithm to find qh and construction of

m̄2
j [θ̂], we have the following properties:

p̄1 ≡ P (m̄j ,σ−j)(q = 1|θ̂) = P (m̄j ,σ−j)
(
qh + b1(qh) (mod K)

∣∣θ̂)
= P

(m̄j ,σ−j)
i (qh|θ̂) > 0,

p̄0 ≡ P (m̄j ,σ−j)(q = 0|θ̂) = P (m̄j ,σ−j)
(
qh−1 + b1(qh) (mod K)

∣∣θ̂)
= P

(m̄j ,σ−j)
i (qh−1|θ̂) = 0.

It follows from P σ(q = 1|θ̂) = 0 that p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = 0, implying
p̄1 − p1 > 0. Since p̄0 = 0, we also have

p0 ≡ P (mj ,σ−j)(q = 0|θ̂) ≥ P (m̄j ,σj)(q = 0|θ̂) ≡ p̄0,

which implies p0−p̄0 ≥ 0. Due to the construction of m̄3
j [θ̂], we obtain the following

inequalities:

uj(m̄
3
j [θ̂], θ) = uj(c

∗
θ̂
(j, θ), θ) > uj(zθ̂, θ) ⇒ ū1 − uz > 0,

uj(m̄
3
j [θ̂], θ) = uj(c

∗
θ̂
(j, θ), θ) ≥ uj(m

3
j [θ̂], θ) ⇒ ū1 − u1 ≥ 0.

Now, we claim that uj(g(m̄j, σj), θ)−uj(g(mj, σj), θ) > 0. Since P σ(θ̂) > 0, by

Step 2 and the construction of m̄j, it suffices to show that uj(ℓ
K(θ̂, (m̄j, σj)), θ)−

uj(ℓ
K(θ̂, (mj, σj)), θ) > 0. Thus, we compute

uj(ℓ
K(θ̂, (m̄j, σj)), θ)− uj(ℓ

K(θ̂, (mj, σj)), θ)

= p̄0(u0 − uz) + p̄1(ū1 − uz) + uz − [p0(u0 − uz) + p1(u1 − uz) + uz]

= (p̄1 − p1)(ū1 − uz) + (p0 − p̄0)(uz − u0) + p1(ū1 − u1)

> 0,
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where the strict inequality follows because (p0 − p̄0)(uz − u0) ≥ 0, p1(ū1 − u1) ≥ 0,
and (p̄1 − p1)(ū1 − uz) > 0. This contradicts the hypothesis that σ is a Nash
equilibrium in the game ΓK(θ, u). ■

Case 2-3: uj(c
∗
θ̂
(j, θ), θ) > u0 > uz

In this case, we will show that there is no Nash equilibrium σ in the game
ΓK(θ, u) such that P σ(q = 0|θ̂) > 0 and P σ(q = 1|θ̂) = 0. Suppose, on the
contrary, that such σ constitutes a Nash equilibrium in the game ΓK(θ, u).

Fixm ∈ supp(σ) as a message profile such that θm = θ̂. The existence of suchm
is guaranteed because we have P σ(θ̂) > 0. Note that P σ(q = 1|θ̂) = 0 implies that
P (mj ,σ−j)(q = 1|θ̂) = p1 = 0. Our goal here is to find a message m̄j, which together

with σ−j induces a lottery ℓK(θ̂, (m̄j, σ−j)) that first-order stochastically dominates
the lottery induced by (mj, σ−j), showing that σ is not a Nash equilibrium of the

game ΓK(θ, u). To achieve this, we need to find m̄2
j [θ̂] ∈ {0, . . . , K − 1}, which

together with σ−j guarantees that p̄1 > 0 and p̄0 + p̄1 > p0 + p1. Such m̄2
j [θ̂] will

be found by the following algorithm:
Start the algorithm by setting q0 = b1(m

2
j [θ̂]). It follows from P σ(q = 1|θ̂) = 0

that P σ
i (q0|θ̂) = 0. Next, for any h ∈ {1, · · · , K − 1} and qh−1 ∈ {0, . . . , K − 1},

we define

qh =

{
qh−1 − 1 if qh−1 ≥ 1
K − 1 if qh−1 = 0.

Since
∑K−1

q=0 P σ
i (q|θ̂) = 1, we can choose h ∈ {1, . . . , K − 1} uniquely in such a

way that P σ
i (qh|θ̂) > 0 and P σ

i (qh′ |θ̂) = 0 for all h
′ ∈ {0, . . . , h− 1}. Then, we set

m̄2
j [θ̂] = b1(qh). Define also m̄3

j [θ̂] as follows:

m̄3
j [θ̂] =

{
c∗
θ̂
(j, θ) if m3

j [θ̂] /∈ C∗
θ̂
(j, θ),

m3
j [θ̂] if m3

j [θ̂] ∈ C∗
θ̂
(j, θ),

Thus, we define m̄j to be identical to mj except that m2
j [θ̂] is replaced by m̄2

j [θ̂]

and m3
j [θ̂] is replaced by m̄3

j [θ̂].

By the algorithm to find qh and construction of m̄2
j [θ̂], we have the following
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properties:

p̄1 ≡ P (m̄j ,σ−j)(q = 1|θ̂) = P (m̄j ,σ−j)(qh + b1(qh) (mod K)|θ̂)
= P

(m̄j ,σ−j)
i (qh|θ̂) > 0,

≥ P
(m̄j ,σ−j)
i (q1|θ̂)

=

{
P (mj ,σ−j)(q0 − 1 +m2

j [θ̂] (mod K)|θ̂) if q0 ≥ 1

P (mj ,σ−j)(K − 1 +m2
j [θ̂] (mod K)|θ̂) if q0 = 0

= P (mj ,σ−j)(q = 0|θ̂) ≡ p0 (∵ q0 +m2
j [θ̂] (mod K) = 1)

P (m̄j ,σ−j)(q = 2|θ̂) = P (m̄j ,σ−j)(qh−1 + b1(qh) (mod K)|θ̂)
= P

(m̄j ,σ−j)
i (qh−1|θ̂) = 0,

which implies p̄1 − p0 ≥ 0. Since p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = 0 and P (m̄j ,σ−j)(q =
0|θ̂) ≥ 0, we have P (m̄j ,σ−j)(q = 0|θ̂) ≥ P (mj ,σ−j)(q = 1|θ̂), which implies that p̄0 −
p1 ≥ 0. In addition, since p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = 0, we also have P (m̄j ,σ−j)(q =
1|θ̂) > P (mj ,σ−j)(q = 1|θ̂), which implies that p̄1 − p1 > 0.

Since uj(c
∗
θ̂
(j, θ), θ) > u0 > uz, due to the construction of m̄3

j [θ̂], we have the
following inequality:

ū1 ≡ uj(m̄
3
j [θ̂], θ) = uj(c

∗
θ̂
(j, θ), θ) > uj(ℓ

K
0 (θ̂, (mj, σ−j)), θ) ≡ u0

Thus, ū1 − u0 > 0.
We claim now that uj(g(m̄j, σj), θ) − uj(g(mj, σj), θ) > 0. Since P σ(θ̂) > 0,

by Step 2, it suffices to show that uj(ℓ
k(θ̂, (m̄j, σj)), θ)− uj(ℓ

k(θ̂, (mj, σj)), θ) > 0.
Thus, we compute the following:

uj(ℓ
k(θ̂, (m̄j, σj)), θ)− uj(ℓ

k(θ̂, (mj, σj)), θ)

= p̄0(u0 − uz) + p̄1(ū1 − uz) + uz − [p0(u0 − uz) + p1(u1 − uz) + uz]

= (p̄1 − p1)(ū1 − u0) + (p̄1 − p0)(u0 − uz) + (p̄0 − p1)(u0 − uz) + p1(ū1 − u1)

> 0,

where the strict inequality follows because (p̄1−p0)(u0−uz) ≥ 0, (p̄0−p1)(u0−uz) ≥
0, p1(ū1 − u1) ≥ 0, and (p̄1 − p1)(ū1 − u0) > 0. This contradicts the hypothesis
that σ is a Nash equilibrium in the game ΓK(θ, u). ■

Case 2-4: uj(c
∗
θ̂
(j, θ), θ) = uz > u0

We will show that P σ(q = 0|θ̂) ≤ 1/K. Suppose not, that is, P σ(q = 0|θ̂) >
1/K. We construct σ̄j to be identical to σj except that P

(σ̄j ,σ−j)
i (q|θ̂) = 1/K for
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all q ∈ {0, · · · , K − 1} and m̄3
j [θ̂] = c∗

θ̂
(j, θ) for all mj ∈ supp (σ̄j). Then, since we

have uj(c
∗
θ̂
(j, θ), θ) = uz, we compute agent j’s payoff difference between (σ̄j, σ−j)

and σ:

uj(g
K(σ̄j, σ−j), θ)− uj(g

K(σ), θ)

= P σ(θ̂)

[
K − 1

K
uz +

1

K
u0

]
−P σ(θ̂)

[
P σ(q = 0|θ̂)u0 + (1− P σ(q = 0|θ̂))uz

]
= P σ(θ̂)

(
P σ(q = 0|θ̂)− 1

K

)
[uz − u0]

> 0,

where the strict inequality follows because P σ(θ̂) > 0; P σ(q = 0|θ̂) > 1/K; and
uz > u0. This implies that σ is not a Nash equilibrium in the game ΓK(θ, u), which
is the desired contradiction. Thus, we have P σ(q = 0|θ̂) + P σ(q = 0|θ̂) ≤ 1/K.
We can then use Step 4 to conclude that there exists K ∈ N large enough so that
ui(ℓ

K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I. ■

Step 6: Let σ ∈ NE(ΓK(θ, u)), where we later choose K large enough. Assume
that there exists θ̂ ∈ Θ with P σ(θ̂) > 0 such that P σ(q|θ̂) > 0 for all q ∈ {0, 1}. If
f(θ) is not Cθ̂-acceptable at state θ, then there exists K ∈ N large enough so that

ui(ℓ
K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I.

Proof of Step 6: Fix σ ∈ NE(ΓK(θ, u)) and θ̂ ∈ Θ such that P σ(θ̂) > 0 and
P σ(q|θ̂) > 0 for all q ∈ {0, 1}. We take the contrapositive statement of Property
2 of Condition COM : for any x ∈

⋃
i∈Gθ̂

Cθ̂(i), if x ̸= f(θ), x is not Cθ̂-acceptable

at state θ and representation u ∈ Û . Let Gθ̂ = {i, j} in the rest of the proof. In
addition, we know that either

f(θ) ∈ Cθ̂(i) ∪ Cθ̂(j) or f(θ) /∈ Cθ̂(i) ∪ Cθ̂(j)

holds. Since f(θ) is not Cθ̂-acceptable at state θ and representation u ∈ Û , we
therefore have the following property: for any x ∈ Cθ̂(i) ∪ Cθ̂(j), x is not Cθ̂-

acceptable at state θ and representation u ∈ Û . This implies that for any c∗
θ̂
(i, θ) ∈

C∗
θ̂
(i, θ) and any c∗

θ̂
(j, θ) ∈ C∗

θ̂
(j, θ), we have ui(c

∗
θ̂
(i, θ), θ) > ui(c

∗
θ̂
(j, θ), θ) and

uj(c
∗
θ̂
(j, θ), θ) > uj(c

∗
θ̂
(i, θ), θ).

If either ui(c
∗
θ̂
(i, θ), θ) = ui(zθ̂, θ) or uj(c

∗
θ̂
(j, θ), θ) = uj(zθ̂, θ) holds, then we

can appeal to an argument identical to the one employed in Case 2-4 of Step 5 to
conclude that there exists K ∈ N large enough so that ui(ℓ

K(θ̂, σ), θ) < ui(f(θ), θ)
for all i ∈ I.
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Therefore, we can assume that both ui(c
∗
θ̂
(i, θ), θ) > ui(zθ̂, θ) and uj(c

∗
θ̂
(j, θ), θ) >

uj(zθ̂, θ) ≡ uz hold. We define πmin
i and πmax

i as follows:

πmin
i = min{P σ

i (q|θ̂) ∈ [0, 1]|q ∈ {0, . . . , K − 1}},
and πmax

i = max{P σ
i (q|θ̂) ∈ [0, 1]|q ∈ {0, . . . , K − 1}}.

We can also define πmin
j and πmax

j in a similar fashion. We will show that
πmin
i = πmax

i and πmin
j = πmax

j , which implies that both agents randomize uniformly
in their choice of integer. We shall prove this through Steps 6.a and 6.b below.

Step 6.a: For any q∗ ∈ {0, . . . , K − 1}, if P σ
i (q

∗|θ̂) = πmin
i and πmin

i < πmax
i , then

P σ
j (b1(q

∗)|θ̂) = 0, where b1(q
∗) ∈ {0, . . . , K−1} such that q∗+b1(q

∗) (mod K) = 1.

Proof of Step 6.a: Fix q∗ ∈ {0, . . . , K−1} such that P σ
i (q

∗|θ̂) = πmin
i < πmax

i .
Assume, by way of contradiction, that P σ

j (b1(q
∗)|θ̂) > 0. This implies that there

exists m ∈ supp (σ) such that θm = θ̂ and m2
j [θ̂] = b1(q

∗). This further implies

p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = P (mj ,σ−j)(q∗ + b1(q
∗)|θ̂) = P

(mj ,σ−j)
i (q∗|θ̂) = πmin

i .

We claim that mj is not a best response to σ−j, contradicting the hypothesis that σ
is a Nash equilibrium in the game ΓK(θ, u). To prove this, we consider two possible
cases:

Case 1: uj(c
∗
θ̂
(j, θ), θ) > uz > u0.

Our goal here is to find a message m̄j, which together with σ−j induces a lottery

ℓK(θ̂, (m̄j, σ−j)) that first-order stochastically dominates the lottery induced by
(mj, σ−j), hence showing that σ is not a Nash equilibrium of the game ΓK(θ, u).

To achieve this, we need to find m̄2
j [θ̂] ∈ {0, . . . , K − 1}, which together with σ−j

guarantees that p̄1 > πmin
i and p̄0 = πmin

i . We shall propose an algorithm selecting
such m̄2

j [θ̂].
Recall the following notation:

M∗(θ̂, q, i) =

{
m ∈ MK

∣∣∣∣∣ θm = θ̂, m2
i [θ̂] = q

}
,

and
P σ
i (q|θ̂) =

∑
mi:(mi,m−i)∈M∗(θ̂,q,i)

σi(mi)/P
σ(θ̂).
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We also use this notation in Case 2 later. Start the algorithm by setting q0 = q∗.
Next, for any h ∈ {1, · · · , K − 1} and qh−1 ∈ {0, . . . , K − 1}, we define

qh =

{
qh−1 + 1 if qh−1 ≤ K − 2,

0 if qh−1 = K − 1.

Since πmin
i < πmax

i , we can choose h ∈ {1, . . . , K − 1} uniquely in such a way that
P σ
i (qh|θ̂) > πmin

i and P σ
i (qh′ |θ̂) = πmin

i for all h
′ ∈ {0, . . . , h − 1}. Then, we set

m̄2
j [θ̂] = b1(qh). Define m̄3

j [θ̂] as follows:

m̄3
j [θ̂] =

{
c∗
θ̂
(j, θ) if m3

j [θ̂] /∈ C∗
θ̂
(j, θ),

m3
j [θ̂] if m3

j [θ̂] ∈ C∗
θ̂
(j, θ).

Thus, we define m̄j to be identical to mj except that m2
j [θ̂] is replaced by m̄2

j [θ̂]

and m3
j [θ̂] is replaced by m̄3

j [θ̂]. By the algorithm selecting qh and construction of

m̄2
j [θ̂], we have the following properties:

p̄1 ≡ P (m̄j ,σ−j)(q = 1|θ̂) = P (m̄j ,σ−j)
(
qh + b1(qh) (mod K)

∣∣θ̂)
= P

(m̄j ,σ−j)
i (qh|θ̂) > πmin

i ,

p̄0 ≡ P (m̄j ,σ−j)(q = 0|θ̂) = P (m̄j ,σ−j)
(
qh−1 + b1(qh) (mod K)

∣∣θ̂)
= P

(m̄j ,σ−j)
i (qh−1|θ̂) = πmin

i .

It follows from p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = πmin
i that p̄1−p1 > 0. Since p̄0 = πmin

i ,
we also have

p0 ≡ P (mj ,σ−j)(q = 0|θ̂) ≥ P (m̄j ,σj)(q = 0|θ̂) ≡ p̄0,

which implies p0−p̄0 ≥ 0. Due to the construction of m̄3
j [θ̂], we obtain the following

inequalities:

uj(m̄
3
j [θ̂], θ) = uj(c

∗
θ̂
(j, θ), θ) > uj(zθ̂, θ) ⇒ ū1 − uz > 0,

uj(m̄
3
j [θ̂], θ) = uj(c

∗
θ̂
(j, θ), θ) ≥ uj(m

3
j [θ̂], θ) ⇒ ū1 − u1 ≥ 0.

We claim now that uj(g(m̄j, σj), θ)− uj(g(mj, σj), θ) > 0. Since P σ(θ̂) > 0, by

Step 2 and the construction of m̄j, it suffices to show that uj(ℓ
K(θ̂, (m̄j, σj)), θ)−

uj(ℓ
K(θ̂, (mj, σj)), θ) > 0. Thus, we compute

uj(ℓ
K(θ̂, (m̄j, σj)), θ)− uj(ℓ

K(θ̂, (mj, σj)), θ)

= p̄0(u0 − uz) + p̄1(ū1 − uz) + uz − [p0(u0 − uz) + p1(u1 − uz) + uz]

= (p̄1 − p1)(ū1 − uz) + (p0 − p̄0)(uz − u0) + p1(ū1 − u1)

> 0,
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where the strict inequality follows because (p0 − p̄0)(uz − u0) ≥ 0, p1(ū1 − u1) ≥ 0,
and (p̄1 − p1)(ū1 − uz) > 0. This contradicts the hypothesis that σ is a Nash
equilibrium in the game ΓK(θ, u). ■

Case 2: uj(c
∗
θ̂
(j, θ), θ) > u0 > uz.

Our goal here is to find a message m̄j, which together with σ−j induces a

lottery ℓk(θ̂, (m̄j, σ−j)) that first-order stochastically dominates the lottery induced
by (mj, σ−j), showing that σ is not a Nash equilibrium of the game ΓK(θ, u). To

achieve this, we need to find m̄2
j [θ̂] ∈ {0, . . . , K − 1}, which together with σ−j

guarantees that p̄1 > πmin
i and p̄0 + p̄1 > p0 + p1. Such m̄2

j [θ̂] will be found by the
following algorithm:

Start the algorithm by setting q0 = q∗. Next, for any h ∈ {1, · · · , K − 1} and
qh−1 ∈ {0, . . . , K − 1}, we define

qh =

{
qh−1 − 1 if qh−1 ≥ 1,
K − 1 if qh−1 = 0.

Since πmin
i < πmax

i , we can choose h ∈ {1, . . . , K − 1} uniquely in such a way that
P σ
i (qh|θ̂) > πmin

i and P σ
i (qh′ |θ̂) = πmin

i for all h
′ ∈ {0, . . . , h − 1}. Then, we set

m̄2
j [θ̂] = b1(qh). Define also m̄3

j [θ̂] as follows:

m̄3
j [θ̂] =

{
c∗
θ̂
(j, θ) if m3

j [θ̂] /∈ C∗
θ̂
(j, θ),

m3
j [θ̂] if m3

j [θ̂] ∈ C∗
θ̂
(j, θ).

Thus, we define m̄j to be identical to mj except that m2
j [θ̂] is replaced by m̄2

j [θ̂]

and m3
j [θ̂] is replaced by m̄3

j [θ̂].

By the algorithm selection qh and construction of m̄2
j [θ̂], we have the following

properties:

p̄1 ≡ P (m̄j ,σ−j)(q = 1|θ̂) = P (m̄j ,σ−j)(qh + b1(qh) (mod K)|θ̂)
= P

(m̄j ,σ−j)
i (qh|θ̂) > πmin

i ,

≥ P
(m̄j ,σ−j)
i (q1|θ̂)

=

{
P (mj ,σ−j)(q0 − 1 +m2

j [θ̂] (mod K)|θ̂) if q0 ≥ 1

P (mj ,σ−j)(K − 1 +m2
j [θ̂] (mod K)|θ̂) if q0 = 0

= P (mj ,σ−j)(q = 0|θ̂) ≡ p0 (∵ q0 +m2
j [θ̂] (mod K) = 1)

P (m̄j ,σ−j)(q = 2|θ̂) = P (m̄j ,σ−j)(qh−1 + b1(qh) (mod K)|θ̂)
= P

(m̄j ,σ−j)
i (qh−1|θ̂) = πmin

i ,
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which implies p̄1 − p0 ≥ 0. Since p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = πmin
i and P (m̄j ,σ−j)(q =

0|θ̂) ≥ πmin
i , we have P (m̄j ,σ−j)(q = 0|θ̂) ≥ P (mj ,σ−j)(q = 1|θ̂), which implies that

p̄0 − p1 ≥ 0. In addition, since p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = πmin
i , we also have

P (m̄j ,σ−j)(q = 1|θ̂) > P (mj ,σ−j)(q = 1|θ̂), which implies that p̄1 − p1 > 0.
Since we have uj(c

∗
θ̂
(j, θ), θ) > u0 > uz, due to the construction of m̄3

j [θ̂], we
have the following inequality:

ū1 ≡ uj(m̄
3
j [θ̂], θ) = uj(c

∗
θ̂
(j, θ), θ) > uj(ℓ

K
0 (θ̂, (mj, σ−j)), θ) ≡ u0

Thus, ū1 − u0 > 0.
Now, we claim that uj(g(m̄j, σj), θ) − uj(g(mj, σj), θ) > 0. Since P σ(θ̂) > 0,

by Step 2, it suffices to show that uj(ℓ
k(θ̂, (m̄j, σj)), θ)− uj(ℓ

k(θ̂, (mj, σj)), θ) > 0.
Thus, we compute the following:

uj(ℓ
k(θ̂, (m̄j, σj)), θ)− uj(ℓ

k(θ̂, (mj, σj)), θ)

= p̄0(u0 − uz) + p̄1(ū1 − uz) + uz − [p0(u0 − uz) + p1(u1 − uz) + uz]

= (p̄1 − p1)(ū1 − u0) + (p̄1 − p0)(u0 − uz) + (p̄0 − p1)(u0 − uz) + p1(ū1 − u1)

> 0,

where the strict inequality follows because (p̄1−p0)(u0−uz) ≥ 0, (p̄0−p1)(u0−uz) ≥
0, p1(ū1 − u1) ≥ 0, and (p̄1 − p1)(ū1 − u0) > 0. This contradicts the hypothesis
that σ is a Nash equilibrium in the game ΓK(θ, u). ■

Step 6.b: πmin
i = πmax

i .

Proof of Step 6.b: Assume, by way of contradiction, that πmin
i < πmax

i . We
then use Step 6.a to conclude that, for each q ∈ {0, · · · , K − 1}, P σ

i (q|θ̂) = πmin
i

implies P σ
j (b1(q)|θ̂) = 0. This implies πmin

j = 0 so that πmin
j < πmax

j . We then
establish the counterpart of Step 6.a by swapping the roles of i and j and replacing
the function b1(q) with the function b0(q), where we define b0(q) ∈ {0, . . . , K − 1}
such that q + b0(q) (mod K) = 0. Therefore, we conclude that, for each q ∈
{0, · · · , K − 1}, if P σ

j (q|θ̂) = πmin
j , then P σ

i (b0(q)|θ̂) = 0. Hence, πmin
i = 0.

Then, we can set q ∈ {0, . . . , K − 1} such that P σ
i (q|θ̂) = 0. By Step 6.a, we

have

P σ
j (b1(q)|θ̂) =

{
P σ
j (1− q (mod K)|θ̂) = 0 if q ≤ 1,

P σ
j (K + 1− q (mod K)|θ̂) = 0 if q > 2.

By Step 6.a, we also have

P σ
i (b0(b1(q))|θ̂) =

{
P σ
i (q − 1 (mod K)|θ̂) = 0 if q ≥ 1,

P σ
i (K − 1 (mod K)|θ̂) = 0 if q = 0.
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We use Step 6.a repeatedly to conclude that P σ
i (q|θ̂) = P σ

j (q|θ̂) = 0 for each

q ∈ {0, . . . , K−1}. However, this is simply impossible, as we have
∑K−1

q=0 P σ
i (q|θ̂) =∑K−1

q=0 P σ
j (q|θ̂) = 1. Therefore, we must have πmin

i = πmax
i . ■

Since we can replace the role of agent i with that of agent j in the entire
argument, we conclude that πmin

i = πmax
i and πmin

j = πmax
j . Thus, we have

P σ
i (q|θ̂) = P σ

j (q|θ̂) = 1/K for each q ∈ {0, . . . , K − 1}. This implies that

P σ(q = 0|θ̂) + P σ(q = 1|θ̂) ≤ 2/K. By Step 4, we conclude that there exists
K ∈ N large enough so that ui(ℓ

K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I. This com-
pletes the proof. ■

Step 7: Let σ ∈ NE(ΓK(θ, u)), where we later choose K large enough. Assume
that there exists θ̂ ∈ Θ such that P σ(θ̂) > 0 and P σ(q|θ̂) > 0 for all q ∈ {0, 1}.
If ℓK(θ̂, σ) ̸= f(θ) and f(θ) is Cθ̂-acceptable at state θ and representation u ∈ U ,
then there exists K ∈ N large enough so that ui(ℓ

K(θ̂, σ), θ) < ui(f(θ), θ) for all
i ∈ I.

Proof of Step 7: Fix σ ∈ NE(ΓK(θ, u)). Assume that there exists θ̂ ∈ Θ such
that P σ(θ̂) > 0 and P σ(q|θ̂) > 0 for all q ∈ {0, 1}. Assume further that f(θ) is
Cθ̂-acceptable at state θ and representation u ∈ U . Then, there exist q ∈ {0, 1} and
i ∈ Gθ̂ such that f(θ) ∈ Cθ̂(i), where i = wθ̂(q). We write Gθ̂ = {i, j} in the rest
of the proof. By Property 1-ii of Condition COM , we have f(θ) ∈ Cθ̂(i)∩Cθ̂(j).

12

By Property 4 of Condition COM , f(θ) is agent i’s unique maximal element in
Cθ̂(i) so that C∗

θ̂
(i, θ) = {f(θ)}. Similarly, by Property 4 of Condition COM , f(θ)

is also agent j’s unique maximal element in Cθ̂(j) so that C∗
θ̂
(j, θ) = {f(θ)}. Step

3 implies that for each q ∈ {0, 1}, we have supp(ℓKq (θ̂, σ)) ∈ C∗
θ̂
(wθ̂(q), θ), hence we

can conclude that both ℓK0 (θ̂, σ) = f(θ) and ℓK1 (θ̂, σ) = f(θ). Using the notation
developed in Step 2, we can write

ℓK(θ̂, σ) = P σ(q = 0|θ̂)(ℓK0 (θ̂, σ)− zθ̂) + P σ(q = 1|θ̂)(ℓK1 (θ̂, σ)− zθ̂) + zθ̂

=
(
P σ(q = 0| θ̂) + P σ(q = 1| θ̂)

)
(f(θ)− zθ̂) + zθ̂.

Moreover, since we assume ℓK(θ̂, σ) ̸= f(θ), zθ̂ is induced with positive prob-
ability. By Property 3 of Condition COM , we have ui(f(θ), θ) − ui(zθ̂, θ) ≥ ε

12When there are only two agents, we do not need to assume f(θ) ∈ Cθ̂(i) ∩ Cθ̂(j). The

hypothesis that f(θ) is Cθ̂-acceptable at state θ and representation u ∈ U and f(θ) ̸= ℓK(θ̂, σ)

implies that both agents must strictly prefer f(θ) to lottery ℓK(θ̂, σ). When there are only two

agents, this implies that ℓK(θ̂, σ) is strictly Pareto dominated by f(θ). Hence, we can conclude
that we can ignore σ because it is “uncompelling” without the help of Property 1-ii of Condition
COM .
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for all i ∈ I and u ∈ Û . By the continuity of expected payoff, this implies that
ui(ℓ

K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I and u ∈ Û . ■

By Step 2, we have the following expressions:

gK(σ) =
∑
θ̂∈Θ

P σ(θ̂)ℓK(θ̂, σ) and ui(g
K(σ), θ) =

∑
θ̂∈Θ

P σ(θ̂)ui(ℓ
K(θ̂, σ), θ).

Steps 5, 6 and 7 show that, for a fixed u ∈ Û , we can find a value of K such
that, for every θ, θ̂ ∈ Θ and every i ∈ I, if P σ(θ̂) > 0 and ℓK(θ̂, σ) ̸= f(θ),
then we have ui(ℓ

K(θ̂, σ), θ) < ui(f(θ, θ). By Property 3 of Condition COM , we
have that there exists ε > 0 such that ui(f(θ), θ) − ui(zθ̂, θ) ≥ ε for all possible

representations u ∈ Û . Therefore, we can choose K ∈ N large enough such that
ui(ℓ

K(θ̂, σ), θ) < ui(f(θ), θ) hold for all u ∈ Û (and all θ, θ̂ ∈ Θ, i ∈ I). We
summarize this into the following step:

Step 8: There exists K ∈ N large enough such that, for any u ∈ Û and σ ∈
NE(ΓK(θ, u)), it follows that either gK(σ) = f(θ) or ui(g

K(σ), θ) < ui(f(θ), θ) for
all i ∈ I.

Combining Steps 1 and 8, we conclude that there exists K ∈ N large enough
such that the SCF f is C-implementable with respect to Û by the mechanism ΓK .
This completes the proof of the theorem. ■

6 Indispensability of Condition COM

We show in this section that each of the properties in Condition COM is indis-
pensable for the results in Theorem 1. We show this by arguing that Property
2 and the first part of Property 1 in Condition COM are in fact implied by the
existence of a mechanism in our class capable of C-implementing f , while for each
of Properties 3 and 4, as well as the second part of Property 1 we will give an
example in which all properties are satisfied, and yet the mechanisms in our family
still fail at C-implementing f .

Proposition 2 If f is C-implementable with respect to Û by a Γk mechanism, then
the finite environment ε satisfies Property 2 and the first part of Property 1 with
respect to f and Û .

Proof: To verify Properties 1 and 2, we must first define a collection of forums.
We define this collection of forums based on the mechanism as follows: for each
state θ, there must exist a message profile m such that g(m) = f(θ) and m is a

37



Nash equilibrium in the game Γk(θ). Let then Fθ = {Gθm , wθm , Cθm , zθm}, where
θm is the forum implied by m, as described in Step 1 of the mechanism.

Assume now that for some θ ∈ Θ and some u ∈ U ε we have that f(θ) is not Cθ-
acceptable at state θ and representation u. This means that there exists a player
i ∈ Gθ and a lottery l ∈ Cθ(i) such that ui(l, θ) > ui(f(θ), θ). But that implies that
we can then find a profitable unilateral deviation for agent i at the message profile
that yields g(m) = f(θ), contradicting the hypothesis that this message profile
was a Nash equilibrium 13. This proves that the first part of Property 1 must be
satisfied if Γk C-implements f .

Next, assume that for some pair θ, θ̂ ∈ Θ and some u ∈ U ε we can find a lottery
l ̸= f(θ) with the property that l is Cθ̂-acceptable at state θ and representation
u. Then we can construct a message profile m′ such that g(m′) = l and m′ is a
Nash equilibrium for Γk(θ), contradicting the hypothesis that Γk C-implements f .
Hence, Property 2 is also indispensable. This shows that the first part of Property
1 and Property 2 are implied by C-implementation using a mechanism of the Γk

class. ■

We now show an example of an environment in which all properties in Condition
COM are satisfied, except Property 3, and show that C-implementation fails in
this environment.

Consider the environment described in section 3.1. As Condition COM requires
three agents, we include a third agent in this environment, whose preferences are
equal to agent 1’s preferences at state θ, and equal to agent 2’s preferences at
state θ′. Take now the following collection of forums: for all θ̂ ∈ Θ, Gθ̂ = {1, 2},
wθ̂(0) = 1, wθ̂(1) = 2, zθ̂ = c. Then take Cθ(1) = Cθ(2) = {a, b, c, d} and
Cθ(1) = Cθ(2) = {c, d}.

It can be easily verified that the forums above satisfy Properties 1, 2, and 4 of
Condition COM , while violating Property 3. We will show now that when using
this collection of forums to construct mechanisms of the class Γk C-implementation
fails in a similar way to the mechanism in that section. Consider a strategy profile
σ∗ with the following characteristics:

• m1
i = θ for all i ∈ I;

• σ2
i [θ

′](k) = 1/K for all i ∈ {1, 2};

• m3
1[θ] = a, m3

2[θ] = b.

It can be verified that σ∗ is a Nash equilibrium at state θ′ for any mechanism
from the class Γk constructed from the collection of forums described above. The

13The deviation is fairly straightforward to obtain, requiring only agent i to adjust his integer
sent so that it induces Rule 1 with i∗ = i and then selecting xθ

i = l.
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outcome, g(σ∗), will yield a with probability 1/k, b with probability 1/k and c with
the remaining probability. This is strictly preferable to c = f(θ′) for all agents at
state θ′. Thus, C-implementation fails in this example. ■

For the next two examples, we will first present an environment in which
Condition COM holds, then modify it in a specific way in each example, so
that only a specific property is violated. Consider the following environment
ε∗, with I = {1, 2, 3, 4}, Θ = {θ, θ′}, A = {a, b, c}, f(θ) = (0.1, 0.8, 0.1), in
which (0.1, 0.8, 0.1) denotes the lottery whic yields a with probability 0.1, b with
probability 0.8 and c with probability 0.1. Using the same notation, we have
f(θ′) = (0.8, 0.1, 0.1). Preferences are given by table 6.

Agent ui(a, θ) ; ui(a, θ
′) ui(b, θ) ; ui(b, θ

′) ui(c, θ) ; ui(c, θ
′)

Agent 1 1 ; 0.8 0.8 ; 0 0 ; 1
Agent 2 0 ; 1 1 ; 0 0.8 ; 0.8
Agent 3 0 ; 0.8 0.8 ; 1 1 ; 0
Agent 4 0 ; 1 1 ; 0 0.8 ; 0.8

Table 6: The environment E∗

This environment satisfy Condition COM with the following two forums: at
θ, we have Gθ = {2, 3}, wθ(0) = 2, wθ(1) = 3, Cθ(2) = {zθ; a; c; f(θ)} and
Cθ(3) = {zθ; f(θ)}, with zθ = (1/3, 1/3, 1/3). At θ′, we have Gθ′ = {2, 1},
wθ′(0) = 2, wθ′(1) = 1, Cθ′(2) = {zθ′ ; b; c; f(θ′)} and Cθ′(1) = {zθ′ ; f(θ′)}, with
zθ′ = (1/3, 1/3, 1/3).

To construct an environment in which only Property 4 is violated, we modify
the environment above in one way: we include the lottery (0.16, 0.5, 0.34) in Cθ(3).
Under representation u, we have that u3((0.16, 0.5, 0.34), θ) = 0.74 = u3(f(θ), θ),
hence violating Property 4. With this modification, we claim that a strategy profile
σ∗ with the following characteristics is a Nash equilibrium:

• m1
i = θ for all i ∈ I;

• P σ∗
2 (0|θ) = 1, P σ∗

3 (0|θ) = P σ∗
3 (1|θ) = 1/2, meaning that half of the time

agent 2 wins the modulo game and the other half the winner is agent 3;

• P σ∗
(f(θ)|q = 0, θ) = 1, P σ∗

(f(θ)|q = 1, θ) = 0.99, and P σ∗
((0.16, 0.5, 0.34)|q =

1, θ) = 0.01, meaning that whenever agent 2 wins the modulo game, he al-
ways selects f(θ), but when agent 3 is the winner f(θ) will be chosen with
probability 0.99 and (0.16, 0.5, 0.34) will be chosen with the remaining prob-
ability.
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The key reason why this strategy profile is a Nash equilibrium is that agent
3 is indifferent between (0.16, 0.5, 0.34) and f(θ), so he can randomize between
sending each of them. At the same time, agent 2 has no profitable deviations,
since sending any other integer increases the probability of a punishment and the
outcome of this equilibrium is close enough to f(θ). Thus, σ∗ is a Nash equilibrium,
with u3(g(σ

∗), θ)) = u3(f(θ), θ)), showing that C-implementation also fails in this
example. ■

Lastly, we need to construct an environment in which only the second part of
Property 1 is violated. To do so, we modify environment ε∗ by removing f(θ) from
Cθ(2), thus violating the second part of Property 1. We also replace c in Cθ(2) for
the following lottery (2/9, 7/18, 7/18). Finally, we modify agent 4’s preferences at
state θ to be u4(a, θ) = 0, u4(b, θ) = 0.51, and u4(c, θ) = 1. With this modification,
we claim that a strategy profile σ∗ with the following characteristics is a Nash
equilibrium:

• m1
i = θ for all i ∈ I;

• P σ∗
2 (0|θ) = 7/9, P σ∗

2 (1|θ) = 2/9, P σ∗
3 (0|θ) = 14/23, P σ∗

3 (1|θ) = 9/23, which
induce P σ∗

(0|θ) = 98/207, P σ∗
(1|θ) = 91/207 P σ∗

(2|θ) = 18/207;

• P σ∗
((2/9, 7/18, 7/18)|q = 0, θ) = 1 and P σ∗

(f(θ)|q = 1, θ) = 1, meaning that
whenever agent 2 wins the modulo game, he always selects (2/9, 7/18, 7/18),
and when agent 3 is the winner f(θ) will always be chosen.

In this equilibrium, while both agents prefer agent 3 to be the winner of the
modulo game, the lack of coordination causes agent 2 to win with positive proba-
bility. When that happens, he picks the lottery in his choices set that offers him the
highest utility at state θ, (2/9, 7/18, 7/18), a lottery that agent 4 strictly prefers
to f(θ) at that state. At the same time, while the lack of coordination does induce
zθ with positive probability, the miscoordination is not strong enough to induce zθ
with a high probability. Thus, g(σ) is still preferred to f(θ) to agent 4, showing
that C-implementation fails in this example.

7 The Main Result When n = 2

Given that each forum essentially determines a subgame with only two agents, it is
natural to ask if that Condition is also sufficient to achieve compelling implemen-
tation in environments with n = 2. Unfortunately, as compelling implementation
is a stronger form of Nash implementation, the same difficulties that arise for pure
Nash implementation with only two agents are also present here. The main diffi-
culty has to do with how θm is chosen. With three agents or more, if all players
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announce the same state θ̂, then no individual player is capable of changing θm.
This, in turn, limits the possible outcomes that a player might achieve through a
unilateral deviation to be restricted to the outcomes in Cθ̂ alone. However, with
only two agents, this argument fails, as a single agent can always force a change
in θm by changing his own message. As a result, the set of outcomes that agent
can achieve through an unilateral deviation becomes (potentially) larger than Cθ̂.
Thus, in order to adjust for that, we need to modify both our class of mechanisms
as well as the objects we use to specify them.

Our first step is to modify the notion of forum that we used in the definition
of our class of mechanisms, as well as in Condition COM . With I = {0, 1},
both Gθ̂ and wθ̂ become redundant. At the same time, instead of having a single
lottery zθ̂ associated with each state, we will have a lottery associated with each
combination of θ0 and θ1 reported by the agents. We will represent this through
a function z : Θ × Θ → δ(A), with its image denoted by Z. As before, the
values of this function assumes must be contained in the intersections of values
of Cθ̂: for all θ0, θ1 ∈ Θ, we must have z(θ0, θ1) ∈ Cθ1(0) ∪ Cθ0(1). Because of
this interdependence between z and the collection {Cθ}θ∈Θ, we will call the set
F2 = ({Cθ}θ∈Θ, z) a forum-2 if the values of z are contained in those intersections
in the manner we just described.

We now define our new condition, called Condition COM2

Definition 4 The environment E =
(
{0, 1}, A,Θ, (⪰θ

i )i∈{0,1},θ∈Θ
)
satisfies Con-

dition COM2 with respect to the SCF f and Û if there exists a forum2 F2 =
({Cθ}θ∈Θ, z) such that:

1. For every θ ∈ Θ and u ∈ Û , f(θ) is Cθ-acceptable at state θ and representa-
tion u.

2. For every θ, θ̂ ∈ Θ and u ∈ Û , if x ∈ A is is Cθ̂-acceptable at state θ and
representation u, then x = f(θ).

3. There exists an ε > 0 such that for each θ, θ0, θ1 ∈ Θ, ui(f(θ), θ)−ui(z(θ0, θ1), θ) ≥
ε for all i ∈ {0, 1} and all u ∈ Û .

4. For all θ, θ̂ ∈ Θ, u ∈ Û , i ∈ {0, 1}, and x ∈ Cθ̂, if f(θ) is Cθ̂-acceptable at
state θ and representation u, then ui(x, θ) = ui(f(θ), θ) implies x = f(θ).

5. For each θ, θ0, θ1 ∈ Θ and each u ∈ Û , there exists either a(θ0,θ1) ∈ Cθ1(0) such
that u0(a(θ0,θ1), θ) > u0(z(θ0, θ1), θ) or b(θ0,θ1) ∈ Cθ0(1) such that u1(b(θ0,θ1), θ) >
u1(z(θ0, θ1), θ);

We use these sets to build a new class of mechanisms, Γk = (Mk, gk). For
each agent i ∈ {0, 1}, the message space is given by Mk

i ≡ M1
i × M2

i × M3
i .
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Each component of the message space is defined in a similar fashion as before: let
mi = (m1

i ,m
2
i ,m

3
i ) ∈ Mi be agent i’s generic message such that (i) m1

i ∈ M1
i = Θ;

(ii) m2
i = (m2

i [θ̃])θ̃∈Θ ∈ M2
i = ×θ̃∈ΘM

2
i [θ̃] where m2

i [θ̃] ∈ {0, . . . , k − 1}; and (iii)

m3
i = (m3

i [θ̃])θ̃∈Θ ∈ M3
i ≡ ×θ̃∈ΘM

3
i [θ̃] where M3

i [θ̃] = Cθ̃(i).
The outcome function is also similar as before, with two rules:

Rule 1: If there is a θm ∈ Θ such that m1
0 = m1

1 = θm and an i∗ ∈ {0, 1} such
that m2

0[θ
m] +m2

1[θ
m] mod k = i∗, then

gk(m) = m3
i∗ [θ

m]

Rule 2: For all other cases,

gk(m) = z(θ1, θ2)

.
With this mechanism, we have our second theorem:

Theorem 2 Let f be an SCF. Suppose that the finite environment E =
(
{1, 2}, A,Θ, (⪰θ

i )i∈I,θ∈Θ
)

satisfies Condition COM2 with respect to f and Û and I = {1, 2}. Then, the SCF
f is C-implementable with respect to Û .

As Properties 1, 2, 3 and 4 of Condition COM2 imply Properties 2, 3, 4, and
the first part of Property 1 of Condition COM , many of the arguments established
in the proof of Theorem 1 can be readily applied to prove Theorem 2. The main
difference between the two proofs lies on the fact that the outcome function gk(σ) is
now slightly different from the previous function. This requires modified arguments
for Steps 1 and 2, as the proof for pure implementation with only 2 agents is
different, as is the decomposition of the outcome function into a series of associated
lotteries. Therefore, we first need to establish counterparts for these two steps.
Once that is done, we will show that the rest of the argument follows from the
argument in Theorem 1.

Step 1: Let f be an SCF and I = {0, 1}. Suppose that the finite environment E
satisfies Properties 1, 2 and 5 of Condition COM2 with respect to f and Û . Then,
f is implementable in pure strategies by Γk,θ̄.

Proof of Step 1:
Fix θ, θ̄ ∈ Θ and some u ∈ Û . By Property 1 f(θ) is Cθ-acceptable at state θ.

Thus, f(θ) ∈ Cθ(i) for some i ∈ I. For simplicity, assume that i = 0. Let m be a
message profile with the following characteristics:

• m1
j = θ for both agents;
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• m2
j [θ] = 0 for all j ∈ {0, 1};

• m3
0[θ] = f(θ).

It is easy to verify that g(m) = f(θ). We will now check that m is indeed a
Nash equilibrium for the game at state θ. First, notice that any possible deviation
strategy for either agent will yield a lottery that is in either Cθ(0) (if agent 0 is
deviating) or Cθ(1) (if the deviation is done by agent 1). This is immediate for
the case in which the deviating strategies preserve m1

i = θ, but even a deviation
involving a different choice for either θ0 or θ1 will result in z(θ0, θ) or z(θ, θ1),
respectively, both of which are in the sets Cθ(0) and Cθ(1). Then Property 1
ensures that no lottery in {Cθ(i)}i∈{0,1} can be a profitable unilateral deviation,
which includes all possible outcomes under Rules 1 and 2. Thus, m is indeed a
pure strategy Nash equilibrium in the game induced by Γk at state θ, regardless of
the choices of k.

Fix θ ∈ Θ. We shall show that m ∈ pureNE(Γk(θ)) implies g(m) = f(θ).
We assume by way of contradiction that there exists m ∈ pureNE(Γk) such that
g(m) ̸= f(θ). There are two cases to consider. The first one is when there is some
θ̂ ∈ Θ such that g(m) ∈ Cθ̂(0)∪Cθ̂(1). The second is when no such θ̂ exists, which
implies that g(m) = z(θ0, θ1).

Suppose that the first case is true. By Property 2, we know that g(m) is not
Cθ̂-acceptable at state θ, regardless of the choice of θ̂. Thus, there must exist some
agent i ∈ {0, 1} and some choice x ∈ Cθ̂(i) such that ui(x, θ) > ui(g(m), θ). Then,

agent i has a profitable deviation by sending message m̂i in which m3
i [θ̂] = x and

m2
i [θ̂] = −m2

j [θ̂] + i mod k. Thus, g(m) cannot be a Nash equilibrium at state θ.
Now suppose that the second case is true. Then, by Property 5, one of the

agents has a profitable deviation: either agent 0 is better off by announcing m1
0 =

m1
1 = θ1, m

3
0[θ1] = a(θ0,θ1) and m2

0[θ1] = −m2
1[θ1] (mod k) or agent 1 is better off by

announcing m1
1 = m1

0θ0, m
3
1[θ0] = b(θ0,θ1) and m2

1[θ0] = −m2
0[θ0] + 1 (mod k) This

concludes the argument. ■

As the message space of the mechanism for two agents is identical to the message
space of the mechanism for three or more agents, we can define the sets M∗(θ̂, q, x),
M∗(θ̂, q), M∗(θ̂), andM∗(θ̂, q, i) in the same way as we did in Theorem 1. Likewise,
we can also define the probabilities P σ(θ̂, q, x), P σ(q, x|θ̂), P σ(q|θ̂), P σ(x|q, θ̂), and
P σ
i (q|θ̂), as well as lottery ℓkq(θ̂, σ).
To proceed, we need to define a new set,M∗(θ0, θ1), a new probability, P σ(θ0, θ1),

and a new lottery, ℓkz(σ). We do so as follows:

M∗(θ0, θ1) ≡
{
m ∈ Mk

∣∣ m1
0 = θ0 and m1

1 = θ1
}
;
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P σ(θ0, θ1) ≡
∑

m∈M∗(θ0,θ1)

σ(m);

ℓkz(σ) =
∑
θ0 ̸=θ1

P σ(θ0, θ1)z(θ0, θ1)

(
1−

∑
θ∈Θ

P σ(θ)

)−1

.

With this notation, we establish a counterpart for Step 2 of Theorem 1’s proof:
Step 2: For any mixed strategy profile σ in the mechanism Γk = (Mk, gk), gk(σ)
can be represented as:

gk(σ) =
∑
θ̂∈Θ

P σ(θ̂)ℓk(θ̂, σ) +

1−
∑
θ̂∈Θ

P σ(θ̂)

 ℓkz(σ),

where, for each θ̂ ∈ Θ,

ℓk(θ̂, σ) = P σ(0|θ̂)(ℓk0(θ̂, σ)− z(θ̂, θ̂)) + P σ(1|θ̂)(ℓk1(θ̂, σ)− z(θ̂, θ̂)) + z(θ̂, θ̂).

Proof of Step 2:
This comes from how we construct our mechanism and the way the lotteries

were defined above. For each θ̂ ∈ Θ, we will have m1
0 = m1

1 = θ̂ with probability
P σ(θ̂). When that happens, following the steps outlined in Step 2 of Theorem
1, we can show that the outcome must be given by ℓk(θ̂, σ). With the remaining
probability, 1 −

∑
θ̂∈Θ P σ(θ̂), we will have that m1

0 ̸= m1
1 and the mechanism will

default to Rule 2, which will yield z(θ0, θ1) for each pair θ0 ̸= θ1, happening with
probability P σ(θ0, θ1). This is represented by lottery ℓkz(σ). ■

With these counterparts established, we will now show how the rest of the
argument follows from Steps 3 to 8 developed in Theorem 1.

First, we note that Property 3 of Condition COM2 implies that ui(ℓ
k
z(σ), θ) <

ui(f(θ), θ) for all i ∈ {0, 1}, as ℓkz(σ) is just a weighted average of different punish-
ment outcomes. In turn, this allows us to focus on the set of lotteries ℓk(θ̂, σ), just
as we did in Theorem 1, since it follows from Step 2 that if each of these lotteries
is dominated by f(θ), then g(σ) will also be dominated. From here, once we take
Gθ = {0, 1} for all θ ∈ Θ, wθ(q) = q for all q ∈ {0, 1}, and zθ̂ = z(θ̂, θ̂), we can
replicate all of the arguments in the remaining steps of Theorem 1. We will briefly
go over each of them.

Step 3 does not require any of the properties in Condition COM . It relies
purely on the fact that whenever an agent has a positive chance of dictating the
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outcome, he must choose pick one of his favourite alternatives in his choice set.
The same logic applies to the modified mechanism of the two-agent case.

Step 4 uses Property 3 of Condition COM to show that if lottery ℓk(θ̂, σ)
puts sufficient weight on the punishment zθ, it will be dominated by f(θ). As
the lotteries ℓk(θ̂, σ) are defined exactly the same way in Step 2 of Theorem 2
as they were in Theorem 1 and as Property 3 of Condition COM2 has the same
implications of Property 3 of Condition COM , we can reach the same results from
Step 4 as well.

Steps 5 and 6 deal with showing that if σ is a Nash equilibrium and ℓk(θ̂, σ) ̸=
f(θ), then ℓk(θ̂, σ) is dominated by f(θ). To do so, we often rely on showing that if
this is not the case, we can prove that σ is not a Nash equilibrium by constructing
an alternative message for an agent that constitutes a profitable deviation from his
prescribed strategy in σ. We can replicate these arguments in the case of two agents
because the two mechanisms work in the same way regarding changes in the second
and third components of a message m2

j [θ̂] and m3
j [θ̂]. In particular, P σ(q|θ̂) and

P σ
i (q|θ̂) both work in the same way in each of the mechanisms regarding changes

in m2
j [θ̂], as both mechanisms have a sum in modulo k to determine the outcome

once the mechanism selects θm = θ̂. This, along with the fact that Properties 2, 3
and 4 of Condition COM2 imply the same Properties in Condition COM allows
us to replicate the same arguments for those steps in Theorem 1.

Step 7 is also similar to Steps 5 and 6, but with one difference: it requires
the second part of Property 1 in its proof. This second part of Property 1 is
absent in Condition COM2. However, as we explain in that Step, that property
is not needed for the case of only two agents. With only two agents, the proof
for Step 7 is greatly simplified, as lottery ℓk(θ̂, σ) must only contain lotteries that
are dominated by f(θ), besides f(θ) itself. This comes from the assumption that
f(θ) is Cθ̂-acceptable at state θ, which implies that no agent has any lottery better
than f(θ) in his choice set. Thus, even if one of the agents - say, agent 0 - does
not have f(θ) in his own choice set, whichever lotteries agent 0 considers the best
in his choice set, agent 1 must also prefer f(θ) to them, otherwise those lotteries
would also be Cθ̂-acceptable, violating Property 2. If there were more than two
agents, we would need to check if any of these choices by agent 0 is still preferred
to f(θ) by any of the remaining agents, which is why the second part of Property 1
is needed. However, with only two agents, this is enough to establish that ℓk(θ̂, σ)
is dominated by f(θ). Hence, the result from Step 7 also holds for the case of two
agents.

This allows us to conclude with Step 8 much in the same way as in Theorem 1.
When combined with the counterpart of Step 1 above, this proves our result. ■
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8 Relation with pure Nash Implementation

In Lemma 1, we show that our canonical mechanism achieves pure Nash imple-
mentation under Properties 1 and 2 of Condition COM . These properties are,
therefore, sufficient for pure Nash implementation by our mechanism. It is then
natural to ask how they compare to the necessary and sufficient conditions in
Moore and Repullo (1990).

It turns out that Properties 1 and 2 are more restrictive than the condition in
Moore and Repullo 14. The reason for this is that our mechanism is different from
the mechanism used in M-R: essentially, some of the features the mechanism has
in order to achieve C-implementation in environments satisfying Condition COM
end up compromising pure implementation in the environments that satisfy M-R,
but not Properties 1 and 2 of Condition COM .

We will show an example of an environment which does not satisfy Properties
1 (first part) and 2 of Condition COM , but in which pure implementation is still
possible:

• I = {1, 2, 3}, Θ = {θ, θ′}, f(θ) = a, f(θ′) = c.

• ≻θ
1= a ≻θ

1 b ≻θ
1 d ≻θ

1 c;

• ≻θ′
1 = a ≻θ′

1 b ≻θ′
1 c ≻θ′

1 d;

• ≻θ
2= a ≻θ

1≻θ
2 b ≻θ

2 d ≻θ
2 c;

• ≻θ′
2 = b ≻θ′

2 a ≻θ′
2 c ≻θ′

2 d;

• ≻θ
3=≻θ

1, ≻θ′
3 =≻θ′

2 ;

We claim that for this environment any Cθ′ that satisfies the first part of Prop-
erty 1 of Condition COM will violate Property 2. To verify this, notice that
Property 1 requires Cθ′(i) to be contained in the lower contour set of c at state
θ′. For all three agents, this lower contour set is equal to {c, d}. At the same
time, at state θ, all three agents have identical preferences over {c, d}, so one of
these alternatives will be Cθ′-acceptable at state θ

15. This violates Property 2, as
f(θ) ̸= c, d. In particular, if we tried to implement this function using a mechanism
of the Γθ̄,k class, this would result in a pure m at state θ yielding g(m) ∈ {c, d}.

14This still holds true even if we consider only the first part of Property 1. Though our proof
of Step 1 does make use of the second part of that property, it is possible to prove it with only
the first part of Property 1. Nonetheless, when combined with Property 2, they are still more
restrictive than the condition in Moore and Repullo.

15If d ∈ Cθ′(i) for some i = 1, 2, 3, we will have that d is Cθ′ -acceptable at state θ; otherwise,
if Cθ′(i) = c for all i, then c is Cθ′ -acceptable at state θ.
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Despite not satisfying Properties 1 and 2 of Condition COM , pure implemen-
tation is still possible in this environment, if we use other kinds of mechanisms.
Consider this 2-agent mechanism, using only agents 1 and 2:

g(m) Agent 2
m1

2 m2
2 m3

2

m1
1 c d d

Agent 1 m2
1 d a b

m3
1 d b a

This is the same mechanism featured in Example 4 of Jackson (as well as the
same SCF, for the matter). Indeed, the example above features preferences that
are very similar to the ones in Jackson. The main reason why pure implementation
is possible, even though Property 2 is violated, is that in this mechanism the set
Cθ′(i) does not represent the set possible outcomes from unilateral deviations for
agent i, given that forum θ′ was selected. Thus, even if d is the best alternative in
set Cθ′(i) at state θ, this does not imply that d is a Nash equilibrium outcome at
that state. Indeed, both agents can unilaterally deviate to a at any message profile
that yields d in the mechanism above. This is not the case for the mechanisms
in the class Γθ̄,k. As mentioned, in these mechanisms, the set Cθ′(i) represents
all possible outcomes agent i can achieve through an unilateral deviation given
that forum θ′ was selected. This is important, because it helps us to narrow down
what that agent can achieve through a mixed strategy once that forum has been
selected. The cost we pay for this is that it makes it easier for pure equilibria with
undesirable results to arise, so we need to be more restrictive with the preferences
of the agents.

9 Conclusion

We present a concept of compelling implementation, which strengthens the re-
quirement of pure-strategy Nash implementation with an additional property that
every mixed strategy equilibrium is either socially desirable or “uncompelling” in
the sense that its outcome is strictly Pareto dominated by the socially desirable
outcome. The main contribution of this paper is to propose Condition COM under
which compelling implementation is possible by finite mechanisms in environments
with at least three agents. We construct an example that satisfies Condition COM
and show that Condition COM is indispensable for our result. We also propose
Condition COM2 to extend our compelling implementation result to the case of
two agents. Our implementing mechanism has desirable properties: transfers are
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not needed at all; only finite mechanisms are used; integer games are not invoked;
and agents’ risk attitudes do not matter.

10 Appendix

In this appendix, we provide the proofs we omitted in the main body of the paper.

10.1 Proof of Lemma 2

Proof of Step 1a: Assume by way of contradiction that there exists an integer
x ∈ {0, . . . , k − 1} such that σ1(x) > 0 and σ2(x) = 0. Then, there are two
possibilities: either there exists x

′ ∈ {0, . . . , k − 1}\{x} such that σ2(x
′
) > 0 or

σ2(k) = 1.
In the first case, let x

′ ∈ argmaxx′′∈{0,...,k−1}\{x} σ2(x
′′
). The expected payoff

for agent 1 when sending message x is

U1(x, σ2; θ
′
) =

{
σ2(x+ 1)u1(b; θ

′
) if x < k − 1

σ2(0)u1(b; θ
′
) if x = k − 1,

where we take into account that ui(d; θ
′
) = 0. On the other hand, the expected

payoff for agent 1 when sending message x
′
is given by

U1(x
′
, σ2; θ

′
) =

{
σ2(x

′
)u1(a; θ

′
) + σ2(x

′
+ 1)u1(b; θ

′
) if x

′
< k − 1

σ2(x
′
)u1(a; θ

′
) + σ2(0)u1(b; θ

′
) if x

′
= k − 1

As u1(a, θ
′
) > u1(b, θ

′
) and σ2(x

′
) ≥ σ2(x + 1), sending message x

′
is strictly

better for agent 1 than sending x against σ2, thus contradicting the hypothesis
that message x is played with positive probability in the Nash equilibrium σ.

Consider the second possibility where agent 2 sends k with probability 1. Then,
agent 1’s expected payoff of sending message x is U1(x, σ2; θ

′
) = 0, while agent 1’s

expected payoff of sending message k is U1(σ2; k; θ
′
) = u1(c, θ

′
) > 0, contradicting

the hypothesis that message x is played with positive probability in the Nash
equilibrium σ. ■

Proof of Step 1b: Assume by way of contradiction that there exists x ∈
{0, . . . , k − 1} such that σ2(x) > 0 and σ1(x − 1) = 0 if x ≥ 1 and σ1(k − 1) = 0
if x = 0. Then we decompose our argument into the following two cases: (i) there
exists x

′ ∈ {0, . . . , k − 1} such that σ1(x
′
) > 0 or (ii) σ1(k) = 1.

We first consider Case (i). We assume without loss of generality that x
′ ∈

argmaxx′′∈{0,...,k−1} σ1(x
′′
). Agent 2’s expected payoff of sending message x against

σ1 in the game Γ(θ
′
) is given by

U2(σ1, x; θ
′
) = σ1(x)u2(a; θ

′),
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while agent 2’s expected payoff of sending message (x
′
+ 1 mod k) against σ1 in

the game Γ(θ
′
) is given by

U2(σ1, x
′
+ 1 mod k; θ

′
) =

{
σ1(x

′
)u2(b; θ

′
) + σ1(x

′
+ 1)u2(a; θ

′
) if x

′
< k − 1

σ1(x
′
)u2(b; θ

′
) + σ1(0)u2(a; θ

′
) if x

′
= k − 1,

where we take into account that u2(d; θ
′
) = 0. Since u2(b; θ

′
) > u2(a; θ

′
) > 0, due

to the way x
′
is defined, we have U2(σ1, x

′
+ 1 mod k; θ

′
) > U2(σ1, x; θ

′
), which

contradicts the hypothesis that message x is sent with positive probability in the
Nash equilibrium σ.

We next consider Case (ii). Agent 2’s expected payoff of sending message x
against σ1 in the game Γ(θ

′
) is given by

U2(σ1, x; θ
′
) = 0,

where we take into account that u2(d; θ
′
) = 0. On the contrary, agent 2’s expected

payoff of sending message k against σ1 in the game Γ(θ
′
) is given by

U2(σ1, k; θ
′
) = u2(c; θ

′
).

Since u2(c; θ
′
) > u2(d; θ

′
) = 0, we have U2(σ1, k; θ

′
) > U2(σ1, x; θ

′
), contradict-

ing the hypothesis that message x is sent with positive probability in the Nash
equilibrium σ in the game Γ(θ

′
). ■

Proof of Step 1c: Assume first that i = 1; that is, there exists x
′ ∈ {0, . . . , k−

1} such that σ1(x
′
) > 0. By Step 1a, we first have that σ2(x

′
) > 0. Second, by

Step 1b, σ2(x
′
) > 0 implies σ1(x

′ − 1) > 0 if x
′ ≥ 1 and σ1(k) > 0 if x

′
= 0. Third,

using Step 1a once again, we conclude that σ2(x
′ − 1) > 0 if x

′ ≥ 1 and σ2(k) > 0
if x

′
= 0. Finally, iterating this argument, we are able to conclude that σ1(x) > 0

and σ2(x) > 0 for all x ∈ {0, . . . , k − 1}.
The case where i = 2 is analogous to the previous one, only that we start the

loop by applying Step 1b first, before Step 1a. This completes the proof of Step
1c. ■

Proof of Step 2: Assume by way of contradiction that there exist i ∈ N and
x, x

′ ∈ {0, . . . , k − 1} such that σi(x) > σi(x
′
) > 0. By Step 1c, we know that

σi(x̃) > 0 for all x̃ ∈ {0, . . . , k − 1}. Then, we can choose x and x
′
satisfying the

following property:

x ∈ arg max
x̃∈{0,...,k−1}

σi(x̃) and x
′ ∈ arg min

x̃∈{0,...,k−1}
σi(x̃).

By Step 1c, we also know that σj(x̃) > 0 for each x̃ ∈ {0, . . . , k − 1}, where
j ∈ {1, 2}\{i}.

49



Assume that i = 2. The expected payoff for agent 1 of sending message x
′

against σ2 in the game Γ(θ
′
) is given by

U1(x
′
, σ2; θ

′
) =

{
σ2(x

′
)u1(a; θ

′
) + σ2(x

′
+ 1)u1(b; θ

′
) if x

′
< k − 1

σ2(x
′
)u1(a; θ

′
) + σ2(0)u1(b; θ

′
) if x

′
= k − 1

On the other hand, The expected payoff for agent 1 of sending message x against
σ2 in the game Γ(θ

′
) is given by

U1(x, σ2; θ
′
) =

{
σ2(x)u1(a; θ

′
) + σ2(x+ 1)u1(b; θ

′
) if x < k − 1

σ2(x)u1(a; θ
′
) + σ2(0)u1(b; θ

′
) if x = k − 1.

We compute

U1(x, σ2; θ
′
)− U1(x

′
, σ2; θ

′
)

= [σ2(x)− σ2(x
′
)]u1(a; θ

′
) + [σ2(x+ 1 mod k)− σ2(x

′ + 1 mod k)]u1(b; θ
′
)

≥ [σ2(x)− σ2(x
′
)]u1(a; θ

′
)− [σ2(x)− σ2(x

′
)]u1(b; θ

′
)

(∵ [σ2(x+ 1 mod k)− σ2(x
′ + 1 mod k)] ≥ −[σ2(x)− σ2(x

′
)], u1(b; θ

′
) > 0)

= [σ2(x)− σ2(x
′
)](u1(a; θ

′
)− u1(b; θ

′
)

> 0.

This implies that message x is a strictly better response for agent 1 against σ2 than
x

′
in the game Γ(θ

′
), contradicting the hypothesis that σ1(x

′
) > 0.

We next assume i = 1. The expected payoff for agent 2 of sending message
x

′
+ 1 against σ1 in the game Γ(θ

′
) is given by

U2(σ1, x
′
+ 1; θ

′
) =

{
σ1(x

′
+ 1)u2(a; θ

′
) + σ1(x

′
)u1(b; θ

′
) if x

′
< k − 1

σ1(0)u2(a; θ
′
) + σ1(x

′)u1(b; θ
′
) if x

′
= k − 1

On the other hand, The expected payoff for agent 2 of sending message x + 1
against σ1 in the game Γ(θ

′
) is given by

U2(σ1, x+ 1; θ
′
) =

{
σ1(x+ 1)u1(a; θ

′
) + σ1(x)u2(b; θ

′
) if x < k − 1

σ1(0)u1(a; θ
′
) + σ1(x)u2(b; θ

′
) if x = k − 1.

We compute

U2(σ1, x+ 1; θ
′
)− U2(σ1, x

′
+ 1; θ

′
)

= [σ1(x+ 1)− σ1(x
′
+ 1)]u2(a; θ

′
) + [σ1(x)− σ1(x

′)]u2(b; θ
′
)

≥ [σ1(x+ 1)− σ1(x
′
+ 1)]u2(b; θ

′
)− [σ1(x)− σ1(x

′
)]u2(a; θ

′
)

(∵ [σ1(x+ 1 mod k)− σ1(x
′ + 1) mod k)] ≥ −[σ1(x)− σ1(x

′
)], u2(a; θ

′
) > 0)

= [σ1(x)− σ1(x
′
)](u2(b; θ

′
)− u2(a; θ

′
))

> 0.
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This implies that message x+1 is a strictly better response for agent 2 against σ2

than x
′
+ 1 in the game Γ(θ

′
), contradicting the hypothesis that σ2(x

′
+ 1) > 0.

This completes the proof of Step 2. ■
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