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Abstract

We present a possibility result on the existence of a random assignment rule satisfy-
ing sd-strategy-proofness, sd-efficiency, and equal treatment of equals. In particular, we
introduce a class of preference domains: sequentially dichotomous domains. On any such
domain, the probabilistic serial rule (Bogomolnaia and Moulin (2001)) is sd-strategy-proof.
Moreover, any sequentially dichotomous domain is maximal for this rule to be sd-strategy-
proof.
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1 Introduction

The random assignment problem (Bogomolnaia and Moulin (2001)) deals with the situation
where n indivisible objects are to be allocated to n agents. Each agent receives exactly one
object. Each agent reports to the planner a strict preference relation on objects. The planner
then assigns a lottery to each agent according to some prescribed random assignment rule.1

A preference relation on objects is extended to a preference relation on lotteries by first-order

∗I would like to thank Shurojit Chatterji, Huaxia Zeng, and William Thomson for their patient reviews and
detailed suggestions. I am very grateful to an associated editor and two anonymous referees for their constructive
suggestions. I also thank Takashi Kunimoto, Jingyi Xue, Jordi Massó, Hervé Moulin, John Weymark, and par-
ticipants of the Mechanism Design Workshop at Singapore Management University, the conference on Economic
Design at York, seminars at the University of Rochester and the Sun Yat-Sen University, the 4th Microeconomic
Workshop at Nanjing Audit University, the 14th meeting of the Society for SCW at Seoul, and ESAM 2018 at
Auckland.
†School of Economics, Singapore Management University, Singapore. E-mail: pengliu0618@gmail.com
1Examples include allocating houses to residents (Shapley and Scarf (1974)), tasks to workers (Hylland and

Zeckhauser (1979)), and college seats to applicants (Gale and Shapley (1962)).
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stochastic dominance. Specifically, a lottery is perceived to be at least as good as another if the
former first-order stochastically dominates the latter according to the given preference relation.2

Based on the extension of preference relations by first-order stochastic dominance, several
axioms of a rule are defined. The first deals with efficiency. A rule is sd-efficient if it always
specifies a random assignment which cannot be Pareto improved. The second deals with incen-
tive compatibility. A rule is sd-strategy-proof if, for each agent, reporting his true preference
relation always delivers a lottery which first-order stochastically dominates the lottery delivered
by any misrepresentation. The third deals with fairness. A rule satisfies equal treatment of
equals if whenever two agents report the same preference relation, they get the same lottery.
We call a rule desirable if it satisfies all three axioms.

Unfortunately, finding such a rule is an impossible mission in many economic environments.
Initially, Bogomolnaia and Moulin (2001) proved that there is no such rule on the universal
domain.3 This impossibility was strengthened to the single-peaked domain (Kasajima (2013)),
and to the subset of the single-peaked domain where agents have a common peak (Chang and
Chun (2017)). Recently, Liu and Zeng (2018) strengthened this impossibility to almost all
connected domains.4 These impossibilities raise the following question: Is there a desirable
rule on some reasonably restricted domains?

We answer this question by introducing a class of domains: sequentially dichotomous do-
mains. To define such a domain, we need some preliminary notions. A partition of the object
set is called a “dichotomous refinement” of another partition, if from the latter to the former,
exactly one block breaks into two smaller blocks and all the other blocks remain the same. A
sequence of partitions is then called a “dichotomous path” if it satisfies three conditions. First,
it starts from the coarsest partition. Second, it ends at the finest partition. Third, along the
sequence, each partition is a dichotomous refinement of its previous one.

A preference relation is said to “respect a partition” if, for every pair of blocks in this par-
tition, every object in one block is better than every object in the other. Further, a preference
relation “respects a dichotomous path” if it respects every partition on the path. A collection
of preference relations is a “sequentially dichotomous domain” if we can find a dichotomous
path such that a preference relation is included if and only if it respects this dichotomous path.
Hence the preference relations included in a sequentially dichotomous domain respect the same
dichotomous path. This requirement is analogous to the requirement, imposed when specifying
a single-peaked domain (Moulin (1980)), that all agents’ preference relations are single-peaked
with respect to the same linear order. Indeed, a sequentially dichotomous domain has the same
cardinality as a single-peaked domain. Given that the number of objects is n, a sequentially
dichotomous domain contains 2n−1 preference relations. Another interesting feature of sequen-
tially dichotomous domains is that every such domain turns out to be a maximal “Condorcet

2A lottery first-order stochastically dominates another if and only if the former gives an expected utility that is
at least as high as the expected utility delivered by the latter, according to every cardinal utility representing the
given preference relation.

3The universal domain in this paper refers to the collection of all strict preference relations, namely the linear
orders on object set. In addition, we assume n > 4. For the cases where n < 4, desirable rule exists.

4Connectedness is a domain richness condition due to Monjardet (2009). Many well-studied domains of prefer-
ence relations are connected, including the universal domain, the single-peaked domain, the single-dipped domain,
the maximal single-crossing domain, and so on.
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domain,” a well-studied domain in the classical social choice literature. We discuss this in
subsection 1.1.

Our first main result, Theorem 1, states that on any sequentially dichotomous domain, the
probabilistic serial rule (or the PS rule, see Bogomolnaia and Moulin (2001)) is sd-strategy-
proof. Note that the PS rule is sd-efficient and treats equals equally on any domain. Hence, we
have a possibility result: The PS rule is desirable on any sequentially dichotomous domain.

The next question we address is whether one can expand a sequentially dichotomous domain
while preserving the sd-strategy-proofness of PS rule? The answer is in the negative. Theorem 2
states that every sequentially dichotomous domain is maximal for the PS rule to be desirable. In
particular, whenever a new preference relation is added to a sequentially dichotomous domain,
the PS rule becomes manipulable.

The remainder of this section discusses in detail this paper’s relation and contribution to the
literature. Thereafter, section 2 defines the random assignment model. Section 3 formally de-
fines the sequentially dichotomous domains. Section 4 presents the results. Section 5 concludes.
Omitted proofs are gathered in the appendix.

1.1 Relation and Contribution to the literature

Following the series of impossibilities by Bogomolnaia and Moulin (2001), Kasajima (2013),
Chang and Chun (2017), and Liu and Zeng (2018), this paper provides a possibility result in the
literature on designing a desirable random assignment rule.

In the literature on random assignment problems, two random assignment rules have been
intensively studied: the random priority rule (or the RP rule, see Abdulkadiroğlu and Sönmez
(1998)) and the PS rule. The RP rule is the uniform randomization of serial dictatorship rules.
It is sd-strategy-proof and treats equals equally, but it is not sd-efficient. Quite a few papers are
devoted to understanding why the RP rule is sd-inefficient and under what conditions it becomes
sd-efficient (Abdulkadiroğlu and Sönmez (2003); Manea (2008); Kesten (2009); Manea (2009)).

The PS rule is sd-efficient and treats equals equally, but it is not sd-strategy-proof. Relative
to the investigation on why the RP rule is not sd-efficient, a study of why the PS rule is not
sd-strategy-proof, and under what conditions it becomes sd-strategy-proof, has been largely
neglected. The only paper on the subject, to the author’s knowledge, is Kojima and Manea
(2010). However they dealt with a variant of the model, where each object has sufficiently
many copies. For the baseline model discussed here, not much is known. By showing that a
sequentially dichotomous domain is maximal for the PS rule to be sd-strategy-proof, the current
paper helps in filling this gap.

This paper is also related to the literature on “Condorcet domains.”5 A set of preference
relations is called a Condorcet domain if the majority rule does not generate Condorcet cycles.
Classical papers in this literature include Black (1948), Black et al. (1958), Abello (1981),
Fishburn (1997), Fishburn (2002), and so on. An excellent survey is by Monjardet (2009). The
structure of sequentially dichotomous domains has been investigated by Danilov and Koshevoy
(2013), who describe such a structure in a much more abstract manner from the view point

5I thank Hervé Moulin and John Weymark for pointing out this link.
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of operations research. They proved that each sequentially dichotomous domain is a maximal
Condorcet domain. Moreover, the size of such a domain is the largest in a class of maximal
Condorcet domains. This class is called the symmetric domains, requiring that whenever a
preference relation is included, its reversal is also included. Moreover, due to the fact that a
sequentially dichotomous domain is a Condorcet domain, the sd-strategy-proofness of some
random voting rules is guaranteed, for example the maximal lotteries (see Fishburn (1984) and
Brandl et al. (2016)). This suggests that there may be some underlying link between the classical
voting problem and the assignment problem, which deserves further research.

2 The Random Assignment Model

Let A ≡ {a, b, c, d, . . . } be a finite set of objects and I ≡ {1, 2, . . . , n} a finite set of agents.
We assume |A| = |I| = n > 4. Each agent i has a strict preference Pi onA, namely a complete,
transitive and antisymmetric binary relation on A.6 Let P denote the set of all strict preferences
on A. The set of admissible preferences is a set D ⊆ P, referred to as the domain. In particular,
P is called the universal domain. Given Pi ∈ D and k ∈ {1, · · · , n}, let rk(Pi) denote the k-th
ranked object according to Pi. A preference profile P ≡ (P1, . . . , Pn) ∈ Dn is an n-tuple of
admissible preferences.

A random assignment is a bi-stochastic matrix, namely a non-negative square matrix
whose elements in each row and each column sum to one. Formally, a random assignment
is denoted as L ≡ [Lia]i∈I,a∈A satisfying (i) Lia > 0, ∀i ∈ I, a ∈ A, (ii)

∑
a∈A Lia = 1, ∀i ∈ I ,

and (iii)
∑

i∈I Lia = 1, ∀a ∈ A. Let L denote the set of all random assignments. The i-th row
of a random assignment L, denoted as Li, is the lottery assigned to agent i. Let ∆(A) denote
the set of lotteries on A. Then Li ∈ ∆(A) and Lia specifies the probability that agent i gets
a. The Birkhoff-von Neumann theorem guarantees that a random assignment can be decom-
posed as a lottery over permutation matrices, each of which in our setting can be interpreted as
a deterministic assignment which indicates who gets which object.

Agents compare lotteries by first-order stochastic dominance. A lottery Li ∈ ∆(A) first-
order stochastically dominatesL′i ∈ ∆(A) according to Pi, denoted asLi P sd

i L′i, if
∑k

l=1 Lirl(P0) >∑k
l=1 L

′
irl(P0) for all 1 6 k 6 n. Given P ∈ Dn, a random assignment L first-order stochasti-

cally dominates L′ according to P , denoted as L P sd L′, if Li P sd
i L′i for all i ∈ I .

A rule is a mapping ϕ : Dn → L which selects a random assignment for each profile of
admissible preferences. Given P ∈ Dn, ϕia(P ) denotes the probability of agent i receiving
object a, and thus ϕi(P ) denotes the lottery assigned to agent i.

A rule is called desirable if it satisfies the following three axioms.
First, for every agent, her lottery under truth-telling always first-order stochastically domi-

nates her lottery induced by any misrepresentation, according to her true preference. Formally,
ϕ : Dn → L is sd-strategy-proof (sd-SP) if for all i ∈ I , Pi, P ′i ∈ D, and P−i ∈ Dn−1,
ϕi(Pi, P−i) P sd

i ϕi(P
′
i , P−i).

Second, a rule always selects a random assignment that cannot be Pareto improved. For-
mally, ϕ : Dn → L is sd-efficient (sd-Eff) if, for all P ∈ Dn and all L′ ∈ L, [L′ P sd ϕ(P )]⇒

6Rigorously speaking, Pi should be called a preference relation. For short, we call it a preference.
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[L′ = ϕ(P )].
Last, whenever two agents report the same preference they receive the same lottery. For-

mally, a rule ϕ : Dn → L satisfies equal treatment of equals (ETE) if for all P ∈ Dn,
[Pi = Pj]⇒ [ϕi(P ) = ϕj(P )].7

3 Sequentially Dichotomous Domains

This section defines the sequentially dichotomous domains.
A partition A of the object set A is a set of nonempty subsets of A such that every object

is in exactly one of these subsets.8 Formally, A ⊂ 2A\{∅} such that
⋃
Ak∈AAk = A and

Ak ∩ Al = ∅ for all distinct Ak, Al ∈ A. A typical element of a partition is called a block and
it is denoted by Ak ∈ A. We denote the set of partitions by A, on which a binary relation is
defined. A partition is called a dichotomous refinement of another if exactly one block of the
latter partition breaks into two smaller blocks in the former partition and all the other blocks
remain the same.

Definition 1. A partition A′ ∈ A is a dichotomous refinement of another partition A ∈ A, if
there are blocks Ak ∈ A and A′i, A

′
j ∈ A′ such that Ak = A\A′ and {A′i, A′j} = A′\A.

A sequence (At)
T
t=1 ⊂ A is a dichotomous path if it satisfies (i) A1 = {A}, (ii) AT =

{{a} : a ∈ A}, and (iii) At+1 is a dichotomous refinement of At for every t = 1, · · · , T−1. Let
A′ be a dichotomous refinement of A, |A′| = |A| + 1 and hence T = n for any dichotomous
path. Henceforth we denote a dichotomous path as (At)

n
t=1.

For each t ∈ {1, · · · , n − 1}, let At∗ ≡ At\At+1 be the block in At that breaks into two
smaller blocks. For each t ∈ {2, · · · , n}, let {At1, At2} ≡ At\At−1 be the two blocks whose
union is a block in At−1. Hence from A1 to A2, A1∗ breaks into A21 and A22; from A2 to A3,
A2∗ breaks into A31 and A32, and so on.

Figure 1 below presents all dichotomous refinements when A contains four objects. In par-
ticular, two dichotomous paths are indicated, one by darkened arrows and the other by darkened
and dotted arrows.

We say a block Ak ⊂ A clusters in a preference Pi ∈ P, if the objects in Ak are ranked
next to each other in Pi. Formally, for all a, b ∈ Ak, there is no x ∈ A\Ak such that a Pi x
and x Pi b. By definition, the grand set A clusters in every preference Pi ∈ P. In addition,
every singleton set clusters in every preference. For these two extreme cases, the requirement
of clustering becomes vacuous. The example below presents another instance.

Example 1. Consider the preference Pi : o1 � o2 � a � b � c � x � y � o3 � o4. Let
A1 = {a, b, c}, A2 = {x, y}, and A3 = A1 ∪ A2. Then A1, A2, and A3 cluster in Pi. �

A preference Pi ∈ P respects a partition A ∈ A if every Ak ∈ A clusters in Pi. Given
A, let DA denote the set of preferences respecting it, namely, DA ≡ {Pi ∈ P|Pi respects A}.

7The abbreviations of the axioms are used as both adjectives and nouns. For example, we write “ϕ satisfies
ETE” as well as “ϕ is an ETE rule.”

8I denote a partition with bold A. Subscripts, superscripts, and accent symbols are used to differentiate partic-
ular instances. I denote subsets of objects by A with subscripts, superscripts, and accent symbols.
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Figure 1: Dichotomous refinement relation when A = {a, b, c, d}. A shaded collection of objects
represents a block containing these objects. A square containing shaded blocks represents a partition.
An arrow pointing from one partition to another indicates that the latter is a dichotomous refinement of
the former.

Let A1 = {A} and A2 = {{a} : a ∈ A} be respectively the coarsest and the finest partitions.
Then every preference respects both A1 and A2. Put otherwise, DA1 = DA2 = P. Consider
another partition A3 ≡ {{o1, o2}, {a, b, c}, {x, y}, {o3, o4}}. Then Pi in Example 1 respects
A3, denoted as Pi ∈ DA3 .

We say a preference respects a dichotomous path if it respects every partition along the
path. A sequentially dichotomous domain is hence defined as the set of preferences that respect
a common dichotomous path.

Definition 2. A domain D ⊂ P is a sequentially dichotomous domain (SDD) if there is a
dichotomous path (At)

n
t=1 such that Pi ∈ D if and only if Pi respects (At)

n
t=1.

Alternatively, a domain D is an SDD if there is a dichotomous path (At)
n
t=1 such that D =⋂n

t=1 DAt . Note that the definition of SDDs imposes a richness condition: every preference
respecting the path needs to be included. This facilitates our analysis because we focus on
verifying sd-SP of the PS rule and the fact that if a rule is sd-SP on a domain, it is sd-SP on
every sub-domain. When a domain D is defined as an SDD with respect to a dichotomous path
(At)

n
t=1, we say D is induced by (At)

n
t=1.

Remark 1. To define an SDD, a particular dichotomous path needs to be fixed. Hence the
preferences included respect the same dichotomous path. As mentioned in the introduction,
this is analogous to the assumption (all agents’ preferences are single-peaked with respect to
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the same linear order) that underlies the single-peaked domains. Continuing with the analogy
with the single-peaked domain, the cardinality of an SDD coincides with the cardinality of the
single-peaked domain. In particular, denoting by n the number of objects, both an SDD and
the single-peaked domain contain 2n−1 preferences. For instance, in Example 2, n = 4 and an
SDD includes 8 preferences. �

Fixing a dichotomous path, the induced SDD is identified as the intersection of the domains
respecting respectively the partitions in the path. The following are two examples of SDDs.

Example 2. Let A = {a, b, c, d}. We claim that the domain D ≡ {P1, · · · , P8} is an SDD,
where the preferences are as follows.

P1 P2 P3 P4 P5 P6 P7 P8

a c d d b b b b

c a a c a c d d

d d c a c a a c

b b b b d d c a

In particular, we verify D =
⋂4
t=1 DAt , where (At)

4
t=1 is a dichotomous path with A1 =

{{a, b, c, d}}, A2 = {{a, c, d}, {b}}, A3 = {{a, c}, {d}, {b}}, and A4 = {{a}, {c}, {d}, {b}}.
This path is indicated by the darkened arrows in Figure 1.

First, since every preference respects A1 and A4, DA1 = DA4 = P. Second, a preference
respects A2 if and only if b is ranked either at the top or at the bottom. Hence DA2 = {Pi ∈ P :

r1(Pi) = b or r4(Pi) = b}. Last, a preference Pi ∈ DA2 respects A3 if and only if {a, c} clusters
in Pi. Hence DA2 ∩ DA3 = {Pi ∈ DA2 : {a, c} clusters in Pi}. In summary, D =

⋂4
t=1 DAt .

Similarly, the domain D′ ≡ {P ′1, · · · , P ′8} is also an SDD. In particular, D′ is induced by
(A′t)

4
t=1, where A′1 = {{a, b, c, d}}, A′2 = {{a, c}, {b, d}}, A′3 = {{a}, {c}, {b, d}}, and

A′4 = {{a}, {c}, {b}, {d}}. This path is indicated by darkened and dotted arrows in Figure 1.

P ′1 P ′2 P ′3 P ′4 P ′5 P ′6 P ′7 P ′8

a c a c b d b d

c a c a d b d b

b b d d a a c c

d d b b c c a a

�

We provide in the following example an interpretation of the SDDs. One begins with a
set of attributes and a linear order of them. Given an attribute, each object can be classified
as either possessing the attribute or not. In particular, if an agent treats the first attribute as
desirable, every object possessing this attribute is better than every object that does not (and
vice versa), and so on using the lexicographic rationale with respect to the pre-specified order.
Thus, a dichotomous path is interpreted as the result of sequentially classifying the objects
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according to the fixed order of attributes and the induced SDD is interpreted as being generated
by lexicographically expressing the desirability of the attributes.9 Example 3 below illustrates.

Example 3. Let {a, b, c, d} be a collection of four cars. The cars will be judged based on
three attributes in the following order: first, whether or not it has an automatic transmission,
second,whether or not it is an SUV, and finally, whether its price is no higher than 20,000 US
dollars.

a b
c d

automatic
transmission
a c

manual
transmission
b d

non-SUV
c

SUV
a

manual
transmission
b d

non-SUV
c

SUV
a

price
6 $20, 000

b

price
> $20, 000

d

A dichotomous path, in particular (A′t)
4
t=1 in Example 2, can be identified as the result of

sequentially checking these three attributes in the given order. The figure above illustrates the
procedure. First, the grand set {a, b, c, d} is divided into {a, c} and {b, d} according to the first
attribute. Second, {a, c} is further divided into {a} and {c} according to the second attribute.
Last, {b, d} is further divided into {b} and {d} according to the third attribute.

The domain D′ in Example 2, which is induced by the dichotomous path above, can now be
interpreted as being generated by the lexicographic rationale with respect to varying attitudes
towards the fixed order of attributes. For instance, let an agent be one who treats all three
attributes as desirable. First, since she treats automatic transmissions as desirable, all the cars
with automatic transmissions are better than the ones with manual transmissions. Hence a and
c are better than b and d. Second, between a and c, since she treats SUVs as desirable, a is
better than c. Last, between b and d, since she treats the ones with prices no higher than 20,000
US dollars as desirable, b is better than d. Consequently, her preference would be P ′1 ∈ D′. The
reader can verify that, if an agent treats the last attribute as desirable but the other two not,
her preference would be P ′7 ∈ D′. By varying the combinations of desirable attributes, all eight
preferences in D′ can be constructed by the lexicographic rationale. �

Remark 2. The fixed dichotomous path that underlies an SDD corresponds to a fixed order on
the set of attributes. The multi-agent model we study hence implicitly assumes that all the agents
evaluate the importance of the attributes in the same way. This may appear to be somewhat de-
manding. For example, in situations where comparisons between objects require professional

9 Preferences generated by the lexicographic rationale have been studied by decision theorists. See, for instance,
Mandler et al. (2012).
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inputs, this assumption requires that the agents refer to the same professional expert. In the cen-
tralized allocation problems we consider, the authority who implements the assignment could
be such an expert. �

In the next section we will show that the PS rule is sd-SP on any SDD. The verification of
sd-SP for a random assignment rule is in general a difficult task. In the following, we present a
key feature of an SDD, which simplifies this task. In particular, it turns out that any deviation on
an SDD can be decomposed as a sequence of preferences, where, between every two successive
preferences, exactly two adjacently ranked blocks are flipped. Such block flippings are called
block-adjacent reversals and the preference resulting from a block-adjacent reversal is said to
be block-adjacent to the initial one.

Definition 3. A preference P̃i is block-adjacent to Pi if there are two nonempty and disjoint
subsets A1, A2 ⊂ A such that

1. A1, A2, and A1 ∪ A2 cluster in both Pi and P̃i,

2. ∀ a, b ∈ A such that a ∈ A1 and b ∈ A2, a P̃0 b if and only if b P0 a,

3. ∀ a, b ∈ A such that either a 6∈ A1 or b 6∈ A2, a P̃0 b if and only if a P0 b.

Block-adjacency can be seen as a generalization of “adjacency” by Monjardet (2009), which
refers to a pair of preferences which differ only in a flip between two adjacently ranked objects.
It is important to note that a block-adjacent reversal between A1 and A2 does not change the
ranking of objects contained in A1, nor the ranking of objects contained in A2. This is captured
by the third requirement in the above definition.

The following example illustrates a decomposition of a deviation as a sequence of block-
adjacent reversals.

Example 4. Consider the domain D = {P1, · · · , , P8} in Example 2. Let a deviation be from
P1 to P8. Such a deviation can be decomposed into the sequence of block-adjacent reversals
below.

P1 : a � c � d � b

↓
P5 : b � a � c � d

↓
P7 : b � d � a � c

↓
P8 : b � d � c � a

Recall that D is an SDD induced by (At)
4
t=1 where A1 = {{a, b, c, d}}, A2 = {{a, c, d}, {b}},

A3 = {{a, c}, {d}, {b}}, and A4 = {{a}, {c}, {d}, {b}}. First, P5 is block-adjacent to P1 with
respect to the block-adjacent reversal between {b} and {a, c, d}. Second, P7 is block-adjacent
to P5 with respect to the block-adjacent reversal between {a, c} and {d}. Third, P8 is block-
adjacent to P7 with respect to the block-adjacent reversal between {a} and {c}.
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Note that these three reversals correspond to the dichotomous divisions along the dichoto-
mous path. First, from A1 to A2, {a, b, c, d} breaks into {b} and {a, c, d}. Second, from A2 to
A3, {a, c, d} breaks into {a, c} and {d}. Third, from A3 to A4, {a, c} breaks into {a} and {c}.
In general, a deviation may not involve all the dichotomous divisions but a subset of them. For
example, the deviation from P1 to P4 involves only two reversals: one between {a, c} and {d}
and the other between {a} and {c}. �

The remainder of this section presents three remarks on the SDDs.

Remark 3. An SDD satisfies minimal richness, namely, for each a ∈ A, there is a preference
Pi in the domain such that r1(Pi) = a. This is illustrated by the domains in Example 2. �

Remark 4. Two different dichotomous paths may induce the same SDD. Consider the domain
D′ in Example 2. We have seen that this domain is an SDD induced by the dichotomous path
(A′t)

4
t=1. It turns out that D′ is also induced by (A′′t )

4
t=1, where A′′3 ≡ {{a, c}, {b}, {d}} and

A′′t ≡ A′t for t = 1, 2, 4. However this non-uniqueness turns out to be inconsequential for our
analysis. �

Remark 5. Liu and Zeng (2018) introduced the notion of a restricted tier domain and showed
that if a domain admits an sd-SP, sd-Eff, and ETE rule, then it is a subset of the union of
restricted tier domains. A well-known fact about the PS rule is that it satisfies sd-Eff and ETE
on any domain. We will show in Theorem 1 that the PS rule on an SDD is sd-SP. Then, as
a corollary, an SDD can always be expressed as a subset of the union of some restricted tier
domains. To see this, we first introduce restricted tier domains. An ordered partition of A,
denoted by P , is a restricted tier structure if each block contains at most two objects. The
corresponding restricted tier domain, denoted by D(P), is then defined as the collection of
preferences that respect the order of the blocks. Four restricted tier structures are listed below.

P1 P2 P3 P4

{a, c} {d} {b} {b}
{d} {a, c} {a, c} {d}
{b} {b} {d} {a, c}

The corresponding restricted tier domains are respectively D(P1) = {P1, P2}, D(P2) =

{P3, P4}, D(P3) = {P5, P6}, and D(P4) = {P7, P8}, where the involved preferences are from
Example 2. Recall that the set of these eight preferences is an SDD. Hence we have decomposed
it as the union of four restricted tier domains. Generally, this decomposition can be identified
by examining the dichotomous path that induces the given SDD. For details, see the extension
part of Liu and Zeng (2018).

In addition, Liu and Zeng (2018) introduced a condition called the local elevating property.
This condition requires the existence of three preferences, three objects, and three consecutive
positions such that (i) these three objects are ranked at these three positions in all three pref-
erences, (ii) the set of objects ranked higher than these three positions is the same in all three
preferences, (iii) one of the three objects takes three different positions in three preferences and
the other two are ranked in the same way. They proved that if a domain admits a desirable rule,
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it violates the local elevating property. By Theorem 1, an SDD admits a desirable rule. Thus it
violates the local elevating property. �

4 The PS Rule on Sequentially Dichotomous Domains

This section presents two main results. Theorem 1 shows that the PS rule is sd-strategy-
proof on a sequentially dichotomous domain. Theorem 2 shows that a sequentially dichotomous
domain is maximal for the PS rule to be sd-strategy-proof.

Theorem 1 is proved by means of two lemmas. Recall that a deviation in an SDD can
be decomposed as a sequence of block-adjacent reversals. Accordingly, we define an incen-
tive compatibility notion weaker than sd-SP, called block-adjacent sd-strategy-proofness. Let
Li be agent i’s lottery when she reports her true preference. Let L′i be her lottery when she
reports a different preference that is block-adjacent to the true one. Then block-adjacent sd-
strategy-proofness requires that Li first-order stochastically dominates L′i according to her true
preference. Lemma 1 shows that, on an SDD, a rule is sd-SP if and only if it is block-adjacent
sd-strategy-proof. Next, Lemma 2 implies block-adjacent sd-strategy-proofness of the PS rule.

We start the discussion from the formal definition of block-adjacent sd-strategy-proofness.

Definition 4. A rule ϕ : Dn → L is block-adjacent sd-strategy-proof (BA-sd-SP) if ∀ i ∈ I ,
Pi, P̃i ∈ D, and P−i ∈ Dn−1, such that P̃i is block-adjacent to Pi, ϕi(Pi, P−i) P sd

i ϕi(P̃i, P−i).

Although BA-sd-SP is a weaker condition than sd-SP, it turns out that these two conditions
are equivalent on an SDD. We present this fact below in Lemma 1. Example 5 illustrates the
idea of the proof.

Example 5. Consider the deviation from P1 to P8 in Example 4. We have shown that this
deviation can be decomposed as a sequence of block-adjacent reversals. Let L1, L5, L7, L8

denote respectively the deviating agent’s lottery when she reports P1, P5, P7, P8. Given BA-sd-
SP, what we need to establish is L1 P

sd
1 L8.

P1 : a � c � d � b

↓ L1 P
sd
1 L5 + L5 P

sd
1 L7 + L7 P

sd
1 L8 ⇒ L1 P

sd
1 L8

P5 : b � a � c � d ⇑ ⇑

↓ L5 P
sd
5 L7

L7 P
sd
7 L5

L7 P
sd
5 L8

L7b = L8b

L7d = L8d

P7 : b � d � a � c ⇑

↓ L7 P
sd
7 L8

L8 P
sd
8 L7

P8 : b � d � c � a

First, by BA-sd-SP, we have L5 P
sd
5 L7 and L7 P

sd
7 L5. These two statements together imply

L5b = L7b. Given this and the fact that P1 and P5 rank a, c, and d in the same way, L5 P
sd
5 L7

implies L5 P
sd
1 L7.
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Second, by the same argument as above, BA-sd-SP implies L7b = L8b, L7d = L8d, and
L7 P

sd
5 L8. By noting that P1 and P5 rank a and c in the same way, we have further L7 P

sd
1 L8.

Finally the transitivity of P sd
1 establishes L1 P

sd
1 L8. �

Lemma 1. On a sequentially dichotomous domain, a rule is sd-strategy-proof if and only if it
is block-adjacent sd-strategy-proof.

The proof, which follows the logic illustrated in Example 5, is in Appendix A.
Lemma 1 is related to the studies on the equivalence between local and global incentive com-

patibility. Sato (2013) focused on deterministic ordinal mechanisms, namely, mappings from
profiles of ordinal preferences on a set of deterministic outcomes to these outcomes. Instances
include the deterministic voting rules and the deterministic allocation rules. He identified a
condition, called non-restoration, and proved that if a domain satisfies this condition, a deter-
ministic ordinal mechanism is strategy-proof if and only if it satisfies a local notion of incentive
compatibility. This notion is called AM-strategy-proofness and requires that a flip between two
adjacently ranked objects not lead to a better outcome. Cho (2016a) studied random ordinal
mechanisms and proved that non-restoration is also sufficient for the equivalence between sd-
SP and AM-sd-strategy-proofness, which requires that a flip between two adjacently ranked
objects not lead to a lottery which is not first-order stochastically dominated by the lottery de-
livered by the original preference.10

The non-restoration property requires that between any two preferences, there is a sequence
of preferences connecting them such that (i) every pair of adjacent preferences differ only in a
flip of two adjacently ranked objects, and (ii) along the sequence no pair of objects are flipped
more than once. An SDD violates the condition (i). To see this, note that between P2 and P3

in Example 2, there is no sequence of preferences in the given SDD satisfying (i). Hence the
equivalence provided by Cho (2016a) cannot be used to simplify the verification of sd-SP on
SDDs.

Block-adjacent reversals include as special cases the flips between adjacently ranked ob-
jects. Hence BA-sd-SP is stronger than AM-sd-strategy-proofness. Although BA-sd-SP re-
quires more, it still helps in the verification of sd-SP on SDDs.

Due to Lemma 1, to show sd-SP of the PS rule on an SDD, it suffices to show BA-sd-SP.
Lemma 2 below asserts a slightly stronger property.

Lemma 2. Let P ∈ Pn, P̃i ∈ P, if there are two nonempty and disjoint subsets of objects
A1, A2 ⊂ A such that

1. for all j ∈ I , A1, A2, and A1 ∪ A2 cluster in Pj ,

2. P̃i is block-adjacent to Pi with respect to the reversal between A1 and A2,

3. ∀ a ∈ A1 and b ∈ A2, a P1 b and b P̃1 a,
10In addition to the first-order stochastic dominance extension, Cho (2016a) studied two other extension meth-

ods. Independently, Carroll (2012) studied also the equivalence between local and global incentive compatibility.
However, he examined the equivalence on specific preference domains, for instance, the single-peaked domain. In
addition, he also investigated cardinal mechanisms.
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then:

1. ∀ a ∈ A1, PS1a(P ) > PS1a(P̃1, P−1),

2. ∀ b ∈ A2, PS1b(P ) 6 PS1b(P̃1, P−1),

3. ∀ x ∈ A\A1 ∪ A2, PS1x(P ) = PS1x(P̃1, P−1).

The proof of Lemma 2 is in Appendix B.
Lemma 2 says that if one agent performs a block-adjacent reversal between A1, A2 ⊂ A and

it is known that in every other’s preference A1, A2, and A1 ∪ A2 cluster, then for every object
that has been moved downward in the deviator’s preference, the probability for the deviator to
get this object is non-increasing. Note that there is no requirement on how the objects in A1 (or
the objects in A2) are ranked in Pj for j 6= i. It is evident that this lemma implies BA-sd-SP on
an SDD.

The statement of Lemma 2 is stronger than the statement that the PS rule is BA-sd-SP on an
SDD for two reasons. First, the lemma does not require the preferences to be taken from a given
SDD. Rather, the requirement is that A1, A2, and A1 ∪ A2 cluster in the preferences involved.
Second, BA-sd-SP does not require the probability of every object that is moved downwards
to be non-increasing. Rather, it requires only the probability of every upper contour set to be
non-increasing. For example, consider the block-adjacent deviation from a � b � c � d to c �
a � b � d. BA-sd-SP requires that the probability of getting a, b combined be non-increasing.
In particular, the probability of getting b is allowed to increase as long as the decrease in a’s
probability exceeds the increase in b’s probability. Although Lemma 2 states more than what is
needed to show the theorem, we still present it, in the hope that it may prove useful for further
research.

We are now ready to present the theorem.

Theorem 1. The PS rule is sd-strategy-proof on a sequentially dichotomous domain.

The theorem follows directly from Lemma 1, and Lemma 2. By Lemma 2, the PS rule on
an SDD is BA-sd-SP. Then by Lemma 1 the PS rule is sd-SP.

Given Theorem 1, the next question we ask is: Can we expand an SDD while preserving the
sd-SP of PS rule? The answer is in the negative, as stated in Theorem 2.

Theorem 2. A sequentially dichotomous domain is maximal for the PS rule to be sd-strategy-
proof.

The proof of Theorem 2 is in Appendix C. In the proof, we fix an arbitrary SDD, denoted by
D, and an arbitrary preference P̃0 ∈ P\D. We first compare P̃0 with an arbitrary dichotomous
path which induces D. This allows us to identify two preferences in the SDD, P0, P̄0 ∈ D. We
then construct two preference profiles consisting of only P̃0, P0, P̄0. In these two preference
profiles, one agent deviates. Finally we calculate the relevant probabilities specified by the PS
rule and show that this deviation is profitable. The manipulability of the PS rule between the two
constructed preference profiles is essentially the same as illustrated by the following example,
although the proof is more complicated and involves the consideration of several cases.11

11This example is modified from the first example in Liu and Zeng (2018).
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Example 6. Let A = {a, b, c, d}. Let P ≡ (P−4, P4) and P ′ ≡ (P−4, P
′
4) be two preference

profiles below. The consumption procedures of the PS rule are depicted in Figure 2.

P =

 P1 : a � c � b � d
P2 : a � b � c � d
P3 : b � a � c � d
P4 : b � a � c � d

 P ′ =

 P1 : a � c � b � d
P2 : a � b � c � d
P3 : b � a � c � d
P ′4 : a � b � c � d



0 1
2

3
4 1

1

2

3

4

a c d
a c d

b c d

b c d

0 1
3

5
9

3
4 1

1

2

3

4

a c d
a b c d

b c d
a b c d

Figure 2: Consumption procedures under P and P ′ of the PS rule

Note that PS4a(P−4, P4) + PS4b(P−4, P4) = 1
2
< 5

9
= PS4a(P−4, P

′
4) + PS4b(P−4, P

′
4). In

other words, agent 4 gets a high probability to get an object that she prefers to c. This makes
the manipulation profitable. Agent 4 manipulates in the following way: by flipping a and b, a
reaches exhaustion earlier, at 1

3
instead of 1

2
. Then since agent 1 would start to consume c as

soon as a is exhausted, agent 4 excludes one agent from consuming a or b in the time period
(1

3
, 1

2
]. This means that she can enjoy a longer consumption of these two objects in combination.

In the proof of Theorem 2, a and b are replaced with two blocks but the idea illustrated here still
holds. �

The remainder of this section discusses two related questions. The first is related to Cho
(2016b). That paper identified a sufficient condition on a preference profile, called recursive
decomposability, which ensures that the PS assignment is uniquely sd-Eff and sd-envy-free.12

The sequential structure of an SDD then raises an question: Is the PS rule uniquely sd-Eff
and sd-EF on an SDD? The following example however shows that these two axioms are not
sufficient to pin down the PS assignments.

Example 7. Let a dichotomous path be (At)
4
t=1 such that A1 = {{a, b, c, d}}, A2 = {{a, b}, {c, d}},

A3 = {{a, b}, {c}, {b}}, and A4 = {{a}, {b}, {c}, {d}}. Let P be the preference profile as
follows. One can verify that the preferences are contained in the SDD induced by (At)

4
t=1.

We construct a continuum of random assignments, which are parameterized by a real num-
ber α ∈ [1/4, 3/4].

P =

 a � b � c � d
c � d � a � b
c � d � a � b
c � d � a � b

 Lα =


a b c d

1 : α 1− α 0 0
2 : (1− α)/3 α/3 1/3 1/3
3 : (1− α)/3 α/3 1/3 1/3
4 : (1− α)/3 α/3 1/3 1/3


12Sd-envy-freeness requires that an agent always weakly prefers her own lottery to any other’s. Formally, a rule

ϕ : Dn → L is sd-envy-free (sd-EF) if for all P ∈ Dn and all i, j ∈ I , ϕi(P ) P sd
i ϕj(P ).
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Note first that PS(P ) = L3/4. We show that an assignment L is sd-Eff and sd-EF at P if
and only if L ∈ {Lα : α ∈ [1/4, 3/4]}.

If: First, sd-EF can be verified by definition. We check sd-Eff. Suppose not, let L′ 6= L and
L′ P sd L. We derive a contradiction for each of the following two cases. Case 1: L′1 6= L1.
Then L′1 P sd

1 L1 implies L′1a > L1a = α and L′1c = L′1d = 0. Feasibility and L′i P
sd
i Li,

∀i = 2, 3, 4 then imply L′ic = Lic = 1/3, L′id = Lid = 1/3, and L′ia > Lia = (1 − α)/3, ∀
i = 2, 3, 4. We have hence a contradiction to feasibility:

∑
i∈I L

′
ia >

∑
i∈I Lia = 1. Case 2:

L′1 = L1. Then feasibility and L′i P
sd
i Li, ∀i = 2, 3, 4 imply L′i = Li, ∀i = 2, 3, 4, which is a

contradiction to L′ 6= L.
Only if: Let L be sd-Eff and sd-EF. First sd-Eff implies either L1c = L1d = 0 or Lia =

Lib = 0 for all i = 2, 3, 4. Feasibility rules out the later case. Given L1c = L1d = 0, feasibility
and sd-EF imply Lic = Lid = 1/3 for all i = 2, 3, 4. Given this, feasibility and sd-EF further
imply that L is in the form of Lα, with α ∈ [0, 1]. Finally, sd-EF requires α ∈ [1/4, 3/4]. In
particular, L1 P

sd
1 L2 implies α > 1/4 and L2 P

sd
2 L1 implies α 6 3/4. �

The second question is whether the class of SDDs is uniquely maximal. Put otherwise, if
we know that the PS rule is sd-SP on a given domain, can we structure it as a sub-domain of an
SDD? The example below proves this to be wrong.

Example 8. Let n = 4 and let a domain D consist of the following two preferences.

P0 : a � b � c � d

P̄0 : c � a � d � b

It is not difficult to check that the PS rule is sd-SP on D. However D can never be a sub-
domain of any SDD. The key is that we cannot find a binary partition that both P0 and P̄0

respect. �

Interestingly the pattern indicated by the preferences in the above example has been inves-
tigated, for example Rossin and Bouvel (2006). It seems that the exclusion of the above pattern
is crucial for the computer either to generate permutations fast or to compare two sets of per-
mutations fast. For CS studies, it is perfectly justified that the pattern is excluded artificially.
However, there is no economically reasonable excuse, to my understanding, for excluding such
a pattern. Hence, although by excluding such a pattern, we might be able to establish the
uniqueness of SDDs for the PS rule to be sd-SP, this exercise is of little economic interest.

5 Conclusion

We identified a class of domains, called sequentially dichotomous domains, and proved that
the PS rule is sd-strategy-proof on any such domain. In addition, each of these domains is
maximal for the PS rule to be sd-strategy-proof.

We close the discussion by listing three questions for future research. First, are there in-
teresting sets of axioms that characterize the PS rule on an SDD? Second, on an SDD, what is
the set of all sd-Eff and sd-EF rules? Finally, as mentioned in the introduction, there appears
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to be some connection between the voting problem and the random assignment problem, which
deserves further investigation.

Appendix

A Proof of Lemma 1

The necessity part is evident by definition. We prove the sufficiency part.
Let D be an SDD and let (At)

n
t=1 be a dichotomous path that induces D. In addition, let

ϕ : Dn → L be a BA-sd-SP rule. Let P ∈ Dn and P ′1 ∈ D\{P1}. In addition, let L ≡ ϕ(P )

and L′ ≡ ϕ(P ′1, P−1). It suffices to show L1 P
sd
1 L′1.

Along the dichotomous path from A1 to An, a block breaks into two smaller ones at each
step. A preference P0 respecting the dichotomous path figures the ranking between the two
blocks in each step t = 2, · · · , n. (For t = 1, there is only one major block.) Recall that for
each t = 2, · · · , n, A(t−1)∗ breaks into At1 and At2. Without loss of generality, suppose a P1 b

for all t = 2, · · · , n, a ∈ At1, b ∈ At2. Consequently P1 6= P ′1 implies the existence of a
subsequence {tγ}Γ

γ=1 ⊂ {t}nt=2 such that b P ′1 a for all γ = 1, · · · ,Γ, a ∈ Atγ1, b ∈ Atγ2.
Let P10 ≡ P1. We define a sequence of preferences (P1γ)

Γ
γ=1 such that for each γ, (i) b P1γ a

if and only if a P1γ−1 b for all a ∈ Atγ1 and b ∈ Atγ2; and (ii) a P1γ b if and only if a P1γ−1 b

otherwise. That is, for each γ ∈ {1, · · · ,Γ}, the difference between P1γ and P1γ−1 is only
a reversal between the blocks Atγ1 and Atγ2. Hence each P1γ results from a block-adjacent
reversal of P1γ−1. In addition, following this sequence of block-adjacent reversals, we approach
P ′1 and in the end P1Γ = P ′1. Note that for each γ ∈ {1, · · · ,Γ}, P1γ ∈ D.

Correspondingly we denote Lγ ≡ PS(P1γ, P−1) for each γ = 1, · · · ,Γ. In the following,
we fix γ and show Lγ−1

1 P sd
1 Lγ1 , in two steps.

Step 1: Lγ−1
1 P sd

1γ−1 L
γ
1 . Note that P1γ results from a block-adjacent reversal of P1γ−1. Then

BA-sd-SP establishes the step.
Step 2: ∀α = 2, · · · , γ, Lγ−1

1 P sd
1α−1 L

γ
1 ⇒ Lγ−1

1 P sd
1α−2 L

γ
1 .

First note that, since α 6 γ, Atγ1, Atγ2, and Atγ1 ∪ Atγ2 cluster respectively in both P1α−1

and P1α−2. Note in addition that P1α−1 and P1α−2 differ only in block-adjacent reversal between
Atα−11 and Atα−12. Note last that, by the definition of SDD, one of the following two cases
occurs.

Case 1:
(
Atγ1 ∪ Atγ2

)
⊂ Atα−11 or

(
Atγ1 ∪ Atγ2

)
⊂ Atα−12. We show Lγ−1

1 P sd
1α−1 L

γ
1 ⇒

Lγ−1
1 P sd

1α−2 L
γ
1 for the former sub-case and the argument applies to the latter sub-case as well.

Note that according to the definitions of (P1γ)
Γ
γ=1, a P1α−2 b and a P1α−1 b for all a ∈ Atγ1 and

b ∈ Atγ2. We illustrate the situation as follows.

P1α−2 : · · · · · · � · · · � Atγ1 � Atγ2 � · · ·︸ ︷︷ ︸
Atα−11

� Atα−12 � · · · · · ·

P1α−1 : · · · · · · � Atα−12 � · · · � Atγ1 � Atγ2 � · · ·︸ ︷︷ ︸
Atα−11

� · · · · · ·
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Recall that BA-sd-SP implies that Lγ−1
1 and Lγ1 differ only in the assignments of the objects

in Atγ1 and Atγ2. In addition, by construction, the ranking of the objects within these two
blocks is the same in P1α−2 and P1α−1. Then by definition of first-order stochastic dominance,
Lγ−1

1 P sd
1α−1 L

γ
1 ⇒ Lγ−1

1 P sd
1α−2 L

γ
1 .

Case 2:
(
Atγ1 ∪ Atγ2

)
∩
(
Atα−11 ∪ Atα−12

)
= ∅. We illustrate the situation as follows.

P1α−2 : · · · · · · � · · · � Atγ1 � Atγ2 � · · · � Atα−11 � Atα−12 � · · · · · ·
P1α−1 : · · · · · · � · · · � Atγ1 � Atγ2 � · · · � Atα−12 � Atα−11 � · · · · · ·

Recall that BA-sd-SP implies that Lγ−1
1 and Lγ1 differ only in the assignments of the objects

in Atγ1 and Atγ2. In addition, by construction, the ranking of the objects within these two
blocks is the same in P1α−2 and P1α−1. Then by definition of first-order stochastic dominance,
Lγ−1

1 P sd
1α−1 L

γ
1 ⇒ Lγ−1

1 P sd
1α−2 L

γ
1 , which verifies step 2.

Finally, by the transitivity of P sd
1 , L1 = L0

1 P
sd
1 L1

1 P
sd
1 · · · P sd

1 LΓ
1 = L′1.

B Proof of Lemma 2

For purpose of illustration, we start by introducing the definition of PS rule. Although
the objects are indivisible, the PS rule treats them as divisible and selects the assignment for
a given preference profile as follows. Starting from time 0, all agents consume their most
preferred object at unit speed until some objects reach exhaustion. Then agents reformulate
their preferences by removing the objects exhausted and resume consuming their most preferred
objects in the available set, until there are some other objects reach exhaustion. This procedure
is repeated until all objects reach exhaustion. The end time of this procedure is 1, since we have
n agents consuming n objects at unit speed. Finally, the share of an object consumed by an
agent is interpreted as the probability of this agent obtaining this object. Formally the PS rule
is defined as follows. We borrow the notation from Kojima and Manea (2010).

Definition 5. Fix a preference profile P ∈ Dn, PS(P ) is the random assignment [Lia]i∈I,a∈A ∈
L calculated as follows. For any a ∈ A′ ⊂ A, let N(a,A′) ≡ {i ∈ I|a Pi b,∀b ∈ A′\{a}} be
the set of agents whose most preferred object in A′ is a. Let A0 = A, t0 = 0, and L0

ia = 0 for
any i ∈ I and a ∈ A. For any v > 1, given tv−1, Av−1, and [Lv−1

ia ]i∈I,a∈A, we define

tv ≡ min
a∈Av−1

max

{
t ∈ [0, 1]|

∑
i∈I

Lv−1
ia + |N(a,Av−1)|(t− tv−1) 6 1

}

Av ≡ Av−1
∖{

a ∈ Av−1|
∑
i∈I

Lv−1
ia + |N(a,Av−1)|(tv − tv−1) = 1

}

Lvia ≡

{
Lv−1
ia + tv − tv−1 if i ∈ N(a,Av−1)

Lv−1
ia otherwise.

Since A is a finite set, there exists v̄ such that Av̄ = ∅. Let PS(P ) = Lv̄.
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Fix a preference profile P , we call the sequence generated by applying the PS rule to P ,
denoted by E ≡ (tv, Av, Lv)v̄v=0, the corresponding consumption procedure. Evidently, for
each v ∈ {0, · · · , v̄}, Av is the collection of objects which are still available at time tv. In other
words, if a ∈ Av−1\Av, then a is available at tv−1 and reaches exhaustion at tv. For each a ∈ A,
let ta ≡ tv where a ∈ Av−1\Av denote the time at which a reaches exhaustion.

Recall that an SDD is an intersection of domains, each of which respects a partition. Then
for a better understanding of the consumption procedure specified by the PS rule when the
preferences belong to an SDD, we investigate the consumption procedure subject to a given
partition.

Given a preference profile P ∈ Dn
A, every block in A clusters in every agent’s preference.

Let for instance {a, b} ∈ A be a block, then for every agent either a is ranked just above b
or b is ranked just above a. Hence if a reaches exhaustion before b (ta < tb), the agents who
prefer a to b switch from a to b at ta while all the others keep consuming b until tb. If instead
b reaches exhaustion before a (tb < ta), then the agents who prefer b to a switch from b to a
at tb and all the others keep consuming a until ta. Consequently, if we focus on only blocks
rather than objects, we can ignore the time at which a reaches exhaustion if this occurs before b
and ignore the time at which b reaches exhaustion if this occurs before a. In other words, what
we care about is only the time at which the whole block reaches exhaustion. For the example
here, we need only to identify max{ta, tb}. Formally, the consumption procedure subject to
A, denoted as E

∣∣
A
≡
(
tv
∣∣
A
, Av
∣∣
A
, Lv
∣∣
A

)
, is defined as follows.

Let V
∣∣
A
≡ {v ∈ {0, · · · , v̄}|∃Ak ∈ A s.t. tv = maxa∈Ak ta} be the collection of time

points at which a block reaches exhaustion.

• tv
∣∣
A

is the subsequence of (tv)v̄v=0 involving elements in V
∣∣
A

. We record only the time
points at which a block in A reaches exhaustion.

• Av
∣∣
A

is the subsequence of (Av)v̄v=0 involving elements in V
∣∣
A

.

• Lv
∣∣
A

is a matrix [LviAk ]i∈I,Ak∈A defined only for elements in V
∣∣
A

, whereLviAk ≡
∑

a∈Ak L
v
ia.

When we focus on the consumption procedure subject to a partition, an important obser-
vation is that the consumption procedure subject to A should not change when the preference
profile is changing in a way that the “ranking” of the blocks remain the same. That is, the change
involves only permutations within blocks won’t change the consumption procedure subject to
the partition. Here is an example.

Example 9. Let P ≡ (P1, P2, P5, P6) and P̄ ≡ (P3, P2, P5, P6) where the preferences are from
Example 2. The consumption procedures of two profiles are illustrated as follows.

1:

2:

3:

4:
0 1/2 3/4 1

a a d

c c d

b a d

b c d

1:

2:

3:

4:
0 1/2 3/4 1

d d d

c c a

b a a

b c a
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Recall that the involved preferences respect A2 = {{a, c, d}, {b}}. In addition the con-
sumption procedure subject to A2 = {{a, c, d}, {b}} is not changing: In time interval (0, 1/2]

agents 1 and 2 consume objects in block {a, c, d} and agents 3 and 4 consume {b}. Then in time
interval (1/2, 1] all agent consume objects in {a, c, d}. �

We formalize the observation illustrated in Example 9. Given a partition A, a preference
respecting it, P0 ∈ DA, induces a (strict) preference on A in a natural way: a block is said to
be ranked above another block if every object in the former is ranked above every object in the
latter. Given a partition A, P(A) denotes the collection of all strict preferences on A.

Definition 6. Fixing a partition A, a preference on blocks PA
0 ∈ P(A) is induced by P0 ∈ DA

if, ∀ Ak, Al ∈ A, [Ak P
A
0 Al]⇔ [∀a ∈ Ak, b ∈ Al, a P0 b].

Evidently, a preference P0 ∈ DA induces a unique preference PA
0 on A. However the

converse is not true: two different preferences P0, P
′
0 ∈ DA may induce the same preference

PA
0 on A. For example, preferences P1 and P3 in Example 2 induce the same preference on

A2: {a, c, d} � {b}.
Now we formalize the observation in Example 9 as the following lemma.

Lemma 3. For P, P̄ ∈ Dn
A such that PA

i = P̄A
i for all i ∈ I , the consumption procedures

subject to A for two preference profiles are the same, namely E
∣∣
A

= Ē
∣∣
A

. This implies also∑
a∈Ak PSia(P ) =

∑
a∈Ak PSia(P̄ ) for all i ∈ I and Ak ∈ A.

We are now ready to prove Lemma 2.
Let L ≡ PS(P ) and L̃ ≡ PS(P̃1, P−1). Let E ≡ (tv, Av, [Lvia]i∈I,a∈A)v̄v=0 and Ẽ ≡(

t̃v, Ãv, [L̃via]i∈I,a∈A

)¯̃v

v=0
be respectively consumption procedures for P and (P̃1, P−1). In addi-

tion, let B ≡ {a ∈ A|a P1 x,∀x ∈ A1 ∪ A2} and C ≡ A\ (A ∪ A1 ∪ A2) be respectively the
upper and lower contour sets of objects in A1 ∪ A2 according to P1. Evidently, these two sets
are the same for P̃1.

Before proceeding to the proof, we clarify some notation.

• For each a ∈ A, let ta and t̃a denote respectively the times at which a reaches exhaustion
in E and Ẽ .

• For each D ⊂ A, let tD ≡ max{ta : a ∈ D} and t̃D ≡ max{t̃a : a ∈ D} be respectively
the times at which D reaches exhaustion in E and Ẽ .

• For each a ∈ A and v ∈ {0, 1, · · · , v̄}, let Sa(tv) ≡ 1−
∑

i∈I L
v
ia be what remains of a at

time tv in E . Similarly, for each a ∈ A and ṽ ∈ {0, 1, · · · , ¯̃v}, let Sa(tṽ) ≡ 1−
∑

i∈I L
ṽ
ia

be what remains of a at time tṽ in Ẽ .

We prove the lemma in three steps.
Step 1: L1a = L̃1a for all a ∈ A\ (A1 ∪ A2).
Consider a partition A ≡ {A1 ∪ A2, {a} : a ∈ A\ (A1 ∪ A2)}. Since P1 and P̃1 differ only

in a flip between A1 and A2, PA
1 = P̃A

1 . Then, by Lemma 3, we are done. In addition, by
Lemma 3, we have the following facts.
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Fact 1. An agent starts to consume objects in A1 ∪ A2, if any, at the same time in E and Ẽ .

Fact 2. An agent stops consuming objects in A1 ∪ A2, if any, at the same time in E and Ẽ .

Fact 3. tB = t̃B, namely B reaches exhaustion at the same time in E and Ẽ . In addition,
Sa(tB) = S̃a(tB) for each a ∈ A1 ∪ A2, that is when B reaches exhaustion what remains of
each object in A1 ∪ A2 is the same in E and Ẽ .

Step 2: L1a > L̃1a for all a ∈ A1.
If
∑

a∈A1
Sa(tB) = 0, namely, when B reaches exhaustion and agent 1 is about to consume

objects in A1, A1 has already reached exhaustion, then Fact 3 implies L1a = L̃1a = 0 for all
a ∈ A1. In this case, the result holds trivially.

If
∑

a∈A2
Sa(tB) = 0, namely, when B reaches exhaustion, A2 has already reached exhaus-

tion, then E = Ẽ , which then implies L1a = L̃1a for all a ∈ A1. In this case, the result holds
trivially.

If
∑

a∈A1
L̃1a = 0, the result holds trivially.

Hence we show Step 2 given
∑

a∈A1
Sa(tB) > 0,

∑
a∈A2

Sa(tB) > 0, and
∑

a∈A1
L̃1a > 0.

Note that before deviation tB is the time when agent 1 starts to consume A1. After the
deviation, when B reaches exhaustion, agent 1 starts to consume A2 and will turn to A1 when
A2 reaches exhaustion. Hence t̃B∪A2 > t̃B = tB is the time at which agent 1 starts to consume
A1 after the deviation. In particular, the time at which agent 1 starts to consume A1 is latter
after the deviation.

Then to show Step 2, it suffices to show the following two Claims.

Claim 1. For each a ∈ A1, Sa(tB) > S̃a(t̃B∪A2).

In words, when agent 1 is about to consume objects in A1, after the deviation, she finds that
what remains of each object in A1 is less than that before the deviation.

Claim 2. For each i ∈
{
j ∈ I\{1} :

∑
a∈A1

Lja > 0
}

, tU(A1,Pi) > t̃U(A1,Pi), whereU(A1, Pi) ≡
{a ∈ A : a Pi x, ∀x ∈ A1} denotes the upper contour set of A1 according to Pi.

Recall that tU(A1,Pi) and t̃U(A1,Pi) denote respectively the points in time when agent i starts
to consume A1 before and after agent 1’s deviation. Hence this statement says that, at every
time point, all the agents who compete with agent 1 in consuming A1 will still do so after the
deviation.

Since t̃B∪A2 > tB, to show Claim 1, it suffices to show the following:
For each i ∈

{
j ∈ I\{1} :

∑
a∈A1

Lja > 0 and tU(A1,Pj)<tB

}
, tU(A1,Pi) > t̃U(A1,Pi).

In other words, every agent i ∈ I\{1} who started to consume A1 at a time before tB,
before agent 1’s deviation, starts to consume A1 at a time no latter than that time, after agent
1’s deviation. This new statement is implied by Claim 2. Hence what we need to show is just
Claim 2.

To show this, recall first Fact 1 which says that each agent starts to consume A1 ∪ A2 at the
same time before and after agent 1’s deviation. Then pick any i ∈ I\{1}with

∑
a∈A1

Lia > 0, if
a Pi b for all a ∈ A1 and b ∈ A2, we know that she starts to consumeA1 at the same time before
and after agent 1’s deviation. Suppose instead, b Pi a for all a ∈ A1 and b ∈ A2, since we know
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this agent starts to consume A1 immediately when all the objects in A2 reach exhaustion, what
we need to show is just tB∪A2 > t̃B∪A2 . This can be seen from the consumption procedures
for P and (P̃1, P−1) subject to the partition {A1, A2, {a ∈ A : a 6∈ A1 ∪ A2}}. Hence we
have shown that for each i ∈ I\{1} with

∑
a∈A1

Lia > 0, if she prefers A1 to A2, she starts to
consume A1 at the same time before and after the deviation; if she prefers A2 to A1, she starts
to consume A1 after the deviation at a time earlier than before deviation, which proves Step 2.

Step 3: L1a 6 L̃1a for all a ∈ A2.
By exchanging the roles of P1 and P̃1, Step 3 is implied by Step 2.

C Proof of Theorem 2

Let D be an SDD and let (At)
n
t=1 be a corresponding dichotomous path. Let P̃0 ∈ P\D be

an arbitrary preference not in D, we show that the PS rule defined on the union of D and P̃0 is
manipulable. Formally, the rule is a mapping PS :

(
D ∪ {P̃0}

)n
→ L.

Since D =
⋃n
t=1 DAt and P0 6∈ D, t ≡ min{t ∈ {1, · · · , n} : P̃0 6∈ DAt} is well-defined.

In addition, since P̃0 respects A1 = {A} trivially, t > 2. Recall that from At−1 to At, A(t−1)∗

breaks into At1 and At2. Let a ≡ r1(P̃0, A(t−1)∗) be the most preferred objects according to P̃0

in A(t−1)∗. Without loss of generality, let a ∈ At1. In addition, let c ≡ r1(P̃0, At2) be the most
preferred objects according to P̃0 in At2. Since P̃0 does not respect At, there is b ∈ At1\{a}
ranked below c. Let b ≡ r1(P̃0, {x ∈ At1 : c P̃0 x}) be the most preferred object in At1 that
is ranked below c. In addition, let C ≡ {x ∈ At1\{a} : x P̃0 c}. Note that C may be empty.
Hence P̃0 can be illustrated as follows.

P̃0 : · · · · · · �
A(t−1)∗︷ ︸︸ ︷

a � · · ·C · · ·︸ ︷︷ ︸
⊂At1

� c � · · ·︸ ︷︷ ︸
⊂At2

� b � · · ·︸ ︷︷ ︸
⊂At1

� · · · · · · � · · · · · ·

There is a unique t > t such that a, b ∈ A(t−1)∗, a ∈ At1, and b ∈ At2 In other words, from
At−1 to At, a and b are split into two separate blocks. Let B ≡ At1\{a} and D ≡ At2\{b}.
Note that B and D may be empty.

In the following, we identify two preferences P0, P̄0 ∈ D. Then we construct two preference
profiles consisting of only P̃0, P0 and P̄0 and show that there is a profitable manipulation. To
do this, we need to consider four cases.

Case 1: C = ∅ or r1(P̃0, C) 6∈ B ∪D.
Since P̃0 respects At−1, P̃At−1

0 is well-defined. Let PAt−1

0 = P̄
At−1

0 = P̃
At−1

0 . Second, let
A(t−1)∗ be the first-ranked block in At−1 according to both P0 and P̄0. Third, let At1P

At
0 At2 and

At2P̄
At
0 At1. Fourth, let a be the first-ranked object in At1 and b the first-ranked object in At2

according to both P0 and P̄0. Last, let P0 and P̄0 rank the objects contained in the same block
in the same way. It is evident that P0, P̄0 ∈ D. Hence, P0 and P̄0 are illustrated below.
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P0 : · · · · · · �
=At1︷ ︸︸ ︷

a � · · ·B · · · �
=At2︷ ︸︸ ︷

b � · · ·D · · · � · · ·︸ ︷︷ ︸
=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

P̄0 : · · · · · · �
=At2︷ ︸︸ ︷

b � · · ·D · · · �
=At1︷ ︸︸ ︷

a � · · ·B · · · � · · ·︸ ︷︷ ︸
=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

Let P ≡ (P̃1, P2, P3, · · · , Pn) and P ′ ≡ (P̃1, P̄2, P3, · · · , Pn). We calculate the probabilities
specified by the PS rule as follows.

PS(P ) : a B b D

1 : 1
n

0 0 0

2 · · ·n : 1
n

|B|
n−1

1
n−1

|D|
n−1

For P , all agents share a equally. Then agents 2 to n consume B ∪ {b} ∪D while agent 1

consumes c if C is empty and r1(P̃0, C) if not. Since the PS assignment is sd-Eff, PS(P )1x = 0

for all x ∈ B ∪ {b} ∪D. Then the ETE of PS assignment determines the other entries.

PS(P ′) : a B b D

1 : 1
n−1

0 0 0

2 : 0 0 1
n−1

+ |B|
n−2

+
1− 1

n−1
− |B|
n−2

n−1
|D|
n−1

3 · · ·n : 1
n−1

|B|
n−2

1− 1
n−1
− |B|
n−2

n−1
|D|
n−1

For P ′, agents other than 2 share a equally. By sd-Eff, PS(P )1x = 0 for all x ∈ B∪{b}∪D.
During the period when agents other than 2 consume a, agent 2 consumes b. When a reaches
exhaustion, agents 3 to n start to consume B if B is nonempty and b if not; agent 1 starts to
consume c if C is empty and r1(P̃0, C) if not; and agent 2 still consumes b. It is evident that B
will reach exhaustion before b or r1(P̃0, C). Then agents 3 to n join agent 2 in consuming b, so
they share equally what remains of b. In particular, 1− 1

n−1
− |B|

n−2
of b. Last, agents 2 to n share

D equally.
Now we have a contradiction to sd-SP:

sd-SP⇒
∑

x∈{a,b}∪B∪D

PS2x(P ) =
∑

x∈{a,b}∪B∪D

PS2x(P ′)

⇒ 1

n
+
|B|
n− 1

+
1

n− 1
+
|D|
n− 1

=
1

n− 1
+
|B|
n− 2

+
1− 1

n−1 −
|B|
n−2

n− 1
+
|D|
n− 1

⇒ 1

n(n− 1)2
= 0 : contradiction.

Case 2: r1(P̃0, C) ∈ B.
In order to identify a contradiction, we need to consider two sub-cases. Given r1(P̃0, C) ∈

B, there is an upper contour set in C contained in B. Let B1 be the largest such upper contour
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set. Formally, B1 ≡ maxk6|C|{Uk(P̃0, C) ⊂ B}13. Hence either B1 = C or r1(P̃0, C\B1)

exists. We consider the sub-cases: (i) B1 = C or r1(P̃0, C\B1) 6∈ D, or (ii) r1(P̃0, C\B1) ∈ D.
Sub-case 2.1: B1 = C or r1(P̃0, C\B1) 6∈ D.
For this sub-case, we use the same preferences P̃0, P0, and P̄0 as in Case 1 and the same

profiles P ≡ (P̃1, P2, P3, · · · , Pn) and P ′ ≡ (P̃1, P̄2, P3, · · · , Pn).
Given B1, we identify the largest lower contour set in B according to P0 such that no object

in B1 is contained. Let B̄1 denote the set B excluding this lower contour set. Formally, let
B̄1 ≡ mink6|B|{Uk(P0, B) : (B\Uk(P0, B)) ∩ B1 = ∅}. Then B1 ⊂ B̄1. The preferences are
illustrated below with B1 and B̄1 explicitly located.

P̃0 : · · · · · · �

A(t−1)∗︷ ︸︸ ︷
a � B1 � C\B1︸ ︷︷ ︸

⊂At1

� c � · · ·︸ ︷︷ ︸
⊂At2

� b � · · ·︸ ︷︷ ︸
⊂At1

� · · · · · · � · · · · · ·

P0 : · · · · · · �

=At1︷ ︸︸ ︷
a � B̄1 � B\B̄1 �

=At2︷ ︸︸ ︷
b � · · ·D · · · � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

P̄0 : · · · · · · �
=At2︷ ︸︸ ︷

b � · · ·D · · · �

=At1︷ ︸︸ ︷
a � B̄1 � B\B̄1 � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

We calculate the probabilities specified by the PS rule as follows.

PS(P ) : a B b D

1 : 1
n

|B̄1|
n

0 0

2 · · ·n : 1
n

|B̄1|
n

+ |B\B̄1|
n−1

1
n−1

|D|
n−1

For P , all agents share a equally. By construction, after a reaches exhaustion agent 1 con-
sumes B1 and all others consume B̄1. Note that the time at which agent 1 stops consuming
B1 is exactly the time when the other agents stop consuming B̄1. Hence all the agents start
consuming B̄1 at the same time and stop consuming B̄1 also at the same time. Then each agent
consumes exactly |B̄1|

n
share of B̄1. Then agent 1 consumes c if B1 = C and C\B1 if not while

all the others consume B\B̄1 and then b and D. Note that sd-Eff implies that agent 1 consumes
no share of b or D.

PS(P ′) : a B b D

1 : 1
n−1

|B̄1|
n−1

0 0

2 : 0 0 1
n−1

+ |B̄1|
n−1

+ |B\B̄1|
n−2

+
1− 1

n−1
− |B̄1|
n−1
− |B\B̄1|

n−2

n−1
|D|
n−1

3 · · ·n : 1
n−1

|B̄1|
n−1

+ |B\B̄1|
n−2

1− 1
n−1
− |B̄1|
n−1
− |B\B̄1|

n−2

n−1
|D|
n−1

13Uk(P̃0, C) denotes the collection of the most preferred k objects inC according to P̃0. Formally, Uk(P̃0, C) ≡
{r1(P̃0, C), · · · , rk(P̃0, C)}
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For P ′, all agents other than 2 share a equally and at the same time agent 2 consumes b.
Then agents other than 2 share B̄1 equally and agent 2 still consumes b. Then agent 1 starts to
consume c if C = B1 and C\B1 if not and agents 3 to n share B\B̄1 equally. During this time
period agent 2 is still consuming b. Then all agents other than 1 share equally what remains of
b, and D after b reaches exhaustion. The zero entries in the above table are implied by sd-Eff.

Now we have a contradiction to sd-SP:

sd-SP⇒
∑

x∈{a,b}∪B∪D

PS2x(P ) =
∑

x∈{a,b}∪B∪D

PS2x(P ′)

⇒ 1

n
+
|B̄1|
n

+
|B\B̄1|
n− 1

+
1

n− 1
+
|D|
n− 1

=
1

n− 1
+
|B̄1|
n− 1

+
|B\B̄1|
n− 2

+
1− 1

n−1 −
|B̄1|
n−1 −

|B\B̄1|
n−2

n− 1
+
|D|
n− 1

⇒ 1 + |B̄1|
n(n− 1)2

= 0 : contradiction.

Sub-case 2.2: r1(P̃0, C\B1) ∈ D.
Given r1(P̃0, C\B1) ∈ D, let D1 be the largest upper contour set in C\B1 contained in D.

Formally, D1 ≡ maxk6|C\B1|{Uk(P̃0, C\B1) ⊂ D}. Similarly, let D̄1 ≡ mink6|D|{Uk(P0, D) :

(D\Uk(P0, D)) ∩ D1 = ∅}. For this sub-case, we use the same preferences and profiles as in
the previous sub-case except a small change in P0: D is ranked above b.

The preferences are illustrated below with B1, B̄1, D1 and D̄1 explicitly located.

P̃0 : · · · · · · �

A(t−1)∗︷ ︸︸ ︷
a � B1 � D1 � C\(B1 ∪D1)︸ ︷︷ ︸

⊂At1

� c � · · ·︸ ︷︷ ︸
⊂At2

� b � · · ·︸ ︷︷ ︸
⊂At1

� · · · · · · � · · · · · ·

P0 : · · · · · · �

=At1︷ ︸︸ ︷
a � B̄1 � B\B̄1 �

=At2︷ ︸︸ ︷
D̄1 � D\D̄1 � b � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

P̄0 : · · · · · · �
=At2︷ ︸︸ ︷

b � · · ·D · · · �

=At1︷ ︸︸ ︷
a � B̄1 � B\B̄1 � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

We calculate the probabilities specified by the PS rule as follows.

PS(P ) : a B b D

1 : 1
n

|B̄1|
n

0 |B\B̄1|
n−1

+
|D̄1|− |B\B̄1|

n−1

n

2 · · ·n : 1
n

|B̄1|
n

+ |B\B̄1|
n−1

1
n−1

|D̄1|− |B\B̄1|
n−1

n
+ |D\D̄1|

n−1

For P , all agents share a and B̄1 equally. Then agent 1 consumes D1 and all the others
consumes B\B̄1. It is evident that B\B̄1 reaches exhaustion faster and then agents 2 to n join
agent 1 in consuming D̄1. When D̄1 reaches exhaustion, agent 1 starts consume c if C\(B1 ∪
D1) = ∅ and C\(B1 ∪D1) is otherwise. Agents 2 to n share D\D̄1 equally.
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PS(P ′) :

a B b D

1 : 1
n−1

|B̄1|
n−1 0 |B\B̄1|

n−2 +
|D̄1|− |B\B̄1|

n−2

n−1

2 : 0 0 α+ 1−α
n−1 0

3 · · ·n : 1
n−1

|B̄1|
n−1 + |B\B̄1|

n−2
1−α
n−1

|D̄1|− |B\B̄1|
n−2

n−1 + |D\D̄1|
n−2

where α = 1
n−1 + |B̄1|

n−1 + |B\B̄1|
n−2 +

|D̄1|− |B\B̄1|
n−2

n−1 + |D\D̄1|
n−2 .

For P ′, agents other than 2 share a equally. When they consume a, agent 2 consumes b.
After a reaches exhaustion, agents other than 2 share B̄1 equally and agent 2 still consumes
b. After B̄1 reaches exhaustion, agent 1 consumes D1, agents 3 to n share B\B̄1 equally, and
agent 2 still consumes b. It is evident that B\B̄1 reaches exhaustion faster. Then agents other
than 2 share equally what remains of D̄1 and agent 2 still consumes b. Then agent 1 consumes
c if C\(B1 ∪ D1) = ∅ and C\(B1 ∪ D1) if otherwise, agents 3 to n share D\D̄1 equally, and
agent 2 still consumes b. Then agents other than 1 consume what remains of b.

Now we have a contradiction to sd-SP:

sd-SP⇒
∑

x∈{a,b}∪B∪D

PS2x(P ) =
∑

x∈{a,b}∪B∪D

PS2x(P ′)

⇒ 1

n
+
|B̄1|
n

+
|B\B̄1|
n− 1

+
1

n− 1
+
|D̄1| − |B\B̄1|

n−1

n
+
|D\D̄1|
n− 1

= α+
1− α
n− 1

⇒|B̄1|+ |B\B̄1|+ |D̄1|+ 1

n(n− 1)2
= 0 : contradiction.

Case 3: r1(P̃0, C) ∈ D and B 6= ∅.
Given r1(P̃0, C) ∈ D, letD1 be the largest upper contour set in C contained inD. Formally,

D1 ≡ maxk6|C|{Uk(P̃0, C) ⊂ D}. Similarly, let D̄1 ≡ mink6|D|{Uk(P0, D) : (D\Uk(P0, D))∩
D1 = ∅}. For this sub-case, we use the same preferences and profiles as in Case 1.

For the reader to understand the consumption procedure better, preferences are illustrated
below and D1 and D̄1 are explicitly located.

P̃0 : · · · · · · �

A(t−1)∗︷ ︸︸ ︷
a � D1 � C\D1︸ ︷︷ ︸

⊂At1

� c � · · ·︸ ︷︷ ︸
⊂At2

� b � · · ·︸ ︷︷ ︸
⊂At1

� · · · · · · � · · · · · ·

P0 : · · · · · · �
=At1︷ ︸︸ ︷

a � · · ·B · · · �

=At2︷ ︸︸ ︷
b � D̄1 � D\D̄1 � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

P̄0 : · · · · · · �

=At2︷ ︸︸ ︷
b � D̄1 � D\D̄1 �

=At1︷ ︸︸ ︷
a � · · ·B · · · � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·
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P = (P̃0, P2, P3, · · · , Pn) and P ′ = (P̃1, P̄2, P3, · · · , Pn)

PS(P ) : a B b D

1 : 1
n

0 0 |B|
n−1

+ 1
n−1

+
|D̄1|− |B|n−1

− 1
n−1

n

2 · · ·n : 1
n

|B|
n−1

1
n−1

|D̄1|− |B|n−1
− 1
n−1

n
+ |D\D̄1|

n−1

For P , all agents share a equally. Then agent 1 consumes D1 and all the others share B
and b equally. It is evident that B ∪ {b} reaches exhaustion faster. Then all agents share what
remains of D̄1. Then agent 1 consumes c if C\D1 = ∅ and C\D1 if otherwise and all the other
agents share D\D̄1.

PS(P ′) :

a B b D

1 : 1
n−1 0 0 |B|

n−1 +
1− 1

n−1
− |B|
n−1

n−1 +
|D̄1|− |B|n−1

−
1− 1

n−1−
|B|
n−1

n−1

n

2 : 0 0 1
n−1 + |B|

n−1 +
1− 1

n−1
− |B|
n−1

n−1

|D̄1|− |B|n−1
−

1− 1
n−1−

|B|
n−1

n−1

n + |D\D̄1|
n−1

3 · · ·n : 1
n−1

|B|
n−1

1− 1
n−1
− |B|
n−1

n−1

|D̄1|− |B|n−1
−

1− 1
n−1−

|B|
n−1

n−1

n + |D\D̄1|
n−1

For P ′, all agents except 2 share a equally and during they do this agent 2 consumes b. After
a reaches exhaustion, agent 1 consumesD1, agent 2 still consumes b, and all the others consume
B. It is evident that B reaches exhaustion faster. Then agents 3 to n join agent 2 in consuming
what remains of b and agent 1 still consumes D1. After b reaches exhaustion, all agents share
equally what remains of D̄1. Then agent 1 consumes c if C\D1 = ∅ and C\D1 if otherwise and
all the other agents share D\D̄1.

Now we have a contradiction to sd-SP:

sd-SP⇒
∑

x∈{a,b}∪B∪D

PS2x(P ) =
∑

x∈{a,b}∪B∪D

PS2x(P ′)

⇒ 1

n
+
|B|
n− 1

+
1

n− 1
+
|D̄1| − |B|

n−1 −
1

n−1

n
+
|D\D̄1|
n− 1

=
1

n− 1
+
|B|
n− 1

+
1− 1

n−1 −
|B|
n−1

n− 1
+
|D̄1| − |B|

n−1 −
1− 1

n−1
− |B|
n−1

n−1

n
+
|D\D̄1|
n− 1

⇒ |B|
n(n− 1)

= 0 : contradiction.

Case 4: r1(P̃0, C) ∈ D and B = ∅.
In this caseAt1 = {a}. We use the same preferences and profiles as in Case 3 except a small

change in P0: D is ranked above b.
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P̃0 : · · · · · · �

A(t−1)∗︷ ︸︸ ︷
a � D1 � C\D1︸ ︷︷ ︸

⊂At1

� c � · · ·︸ ︷︷ ︸
⊂At2

� b � · · ·︸ ︷︷ ︸
⊂At1

� · · · · · · � · · · · · ·

P0 : · · · · · · �
=At1︷︸︸︷
a �

=At2︷ ︸︸ ︷
D̄1 � D\D̄1 � b � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

P̄0 : · · · · · · �
=At2︷ ︸︸ ︷

b � · · ·D · · · �
=At1︷︸︸︷
a � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

P = (P̃0, P2, P3, · · · , Pn) and P ′ = (P̃1, P̄2, P3, · · · , Pn)

PS(P ) : a D b

1 : 1
n

|D̄1|
n

0

2 · · ·n : 1
n

|D̄1|
n

+ |D\D̄1|
n−1

1
n−1

For P , all agents share a equally. Then they share D̄1 equally. Then agent 1 consumes c if
C\D1 = ∅ and C\D1 if otherwise and all the others share D\D̄1 and then b equally.

PS(P ′) :

a D b

1 : 1
n−1

|D̄1|
n−1 0

2 : 0 0 |D̄1|
n−1 + |D\D̄1|

n−2 +
1− |D̄1|

n−1
− |D\D̄1|

n−2

n−1

3 · · ·n : 1
n−1

|D̄1|
n−1 + |D\D̄1|

n−2

1− |D̄1|
n−1
− |D\D̄1|

n−2

n−1

For P ′, all agents other than 2 share a equally and during they do this agent 2 consumes b.
After a reaches exhaustion, agents other than 2 share D̄1 equally and agent 2 still consumes b.
It is evident that D̄1 reaches exhaustion faster. Then agent 1 consumes c if C\D1∅ and C\D1

if otherwise, agent 3 to n share D\D̄1 equally, and agent 2 still consumes b. It is evident that
D\D̄1 reaches exhaustion faster. Then agents 3 to n join agent 2 in consuming b so they share
equally what remains of b.

Now we have a contradiction to sd-SP:

sd-SP⇒
∑

x∈{a,b}∪D

PS2x(P ) =
∑

x∈{a,b}∪D

PS2x(P ′)

⇒ 1

n
+
|D̄1|
n

+
|D\D̄1|
n− 1

+
1

n− 1

=
|D̄1|
n− 1

+
|D\D̄1|
n− 2

+
1− |D̄1|

n−1 −
|D\D̄1|
n−2

n− 1

⇒(n− 1)2 + |D̄1|
n(n− 1)2

= 0 : contradiction.
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