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Abstract

We address the uniform inference problem for high-frequency data that includes prices, vol-

umes, and trading flows. Such data is modeled with a general state-space framework, where

latent state process is the corresponding risk indicators, e.g., volatility, price jump, average

order size, and arrival of events. The functional estimators are formed as the collection of local-

ized estimates across different time points. Although the proposed estimators do not admit a

functional central limit theorem, a Gaussian strong approximation, or coupling, is established

under in-fill asymptotics to facilitate feasible inference. We apply the proposed methodology

to distinguish the informative part from the Federal Open Market Committee speeches, and to

analyze the impact of social media activities on cryptocurrency markets.
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1 Introduction

As high-frequency financial data becomes increasingly accessible, development of inference methods

tailored for such data emerges as a trending topic. In particular, inference for volatility or jumps

using high-frequency prices has been extensively studied (see, e.g., Jacod and Protter (2012), Aı̈t-

Sahalia and Jacod (2014)). However, the workhorse model for price data used by most researchers,

an Itô semimartingale plus noise, is evidently unsuitable for other market indicators, such as

volumes and trading flows.1,2 To accommodate a broader range of high-frequency data, Li and Xiu

(2016) proposed a continuous-time state-space model, in which the observed data approximately

equals a general transformation of the state process and some random disturbance. Special cases

include price, volume, and trading flow, with the corresponding states being volatility, average order

size, and trading intensity. Without specific restrictions on the state dynamics and the functional

form of transformations, this framework exhibits great versatility to accommodate various model

specifications, such as the Poisson volume-volatility model (Andersen (1996)) and Cox trading flow

model (Christensen and Kolokolov (2023)).

In this paper, we adopt the general state-space framework proposed by Li and Xiu (2016).

Our emphasis lies in the uniform inference, which speaks to global properties of the entire state

process. Specifically, we develop functional estimators and associated inference procedures for dis-

tributional features of the transformed state process. These functional estimators are constructed

by collecting all localized estimates across different time points. The major challenge in uniform in-

ference stems from the asymptotic independence of estimation errors between distinct time points.

Consequently, the functional estimators do not admit a functional central limit theorem. Recent

literature shed light on such non-Donsker problems, highlighting the use of strong approximation,

or coupling (see, e.g., Chernozhukov et al. (2013), Belloni et al. (2015), and Li and Liao (2020)).

Building on this insight, our contribution in this paper is to establish a Gaussian coupling theory

for functional estimators of both the conditional mean process (Theorem 1) and the conditional

1In contrast to prices, volumes and trading flows are discrete-valued and may not exhibit long-memory properties.

Consequently, they cannot be accommodated within the conventional Itô semimartingale model.
2Other market indicators deserve their own analysis. It is widely acknowledged that price and volumes may

carry different aspects of information. For example, Kandel and Pearson (1995) argued that certain news may not

significantly alter investors’ average opinion, resulting in small price movement. However, it can lead to a substantial

divergence of opinions among investors, prompting disagreements and subsequent trading activity between these

disagreeing investors. Consequently, a surge in volume is observed but no significant change in price. Conversely,

Kyle (1985) demonstrated that in the presence of asymmetric information, even a small trade can trigger a notable

price change if the market impact is significant. In a nutshell, price reflects the average opinion, while trading

activity also reflects the dispersion of opinion.
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quantile process (Theorem 2). These results are formulated within the general state-space model

aligned with various high-frequency data, accommodating dependencies and nonstationarity in

both state processes and observations.

A large body of literature has evolved around estimations of volatility using high-frequency

returns, a specific case of our general state-space model. In particular, the nonparametric esti-

mation of the stochastic volatility at some fixed time point, referred to as spot estimation (see,

e.g., Foster and Nelson (1996) and Comte and Renault (1998)), and the semiparametric estimation

of integrated volatility functionals (see, e.g., Andersen et al. (2003), Barndorff-Nielsen and Shep-

hard (2004), Mykland and Zhang (2009)) have been extensively explored.3,4 However, the uniform

inference for the entire volatility process is an emerging concern, as recently explored by Jacod

et al. (2021) and Bollerslev et al. (2021). In line with this literature, spot estimation for the state

process under general state-space model is developed in Bollerslev et al. (2018). Setting against

this background, the strong approximation result regarding conditional mean process in this paper

can be contextualized as an extension of Jacod et al. (2021) to a more general state-space setting.5

Meanwhile, inference concerning quantiles is relatively underexplored in high-frequency litera-

ture. In a recent paper, Shephard (2022) introduced an estimator of integrated variance based on

in-fill medians. The use of quantiles becomes notably significant when returns display heavy tails,

a common feature observed in cryptocurrency markets (see, e.g., Kolokolov (2022)). Our Gaus-

sian strong approximation for conditional quantile process is derived, in part, by a novel uniform

Bahadur representation for all in-fill quantiles (Lemma A.1). While such representation has been

established for i.i.d. data (Bahadur (1966), Ghosh (1971)) and weakly dependent stationary data

(Hesse (1990), Wu (2005)), our observations are nonstationary and may exhibit strong dependen-

cies due to the persistence within the state process. Notably, as a special case, our results can be

applied to capture volatile level of Lévy-driven price. To the best of our knowledge, this is the first

paper that contributes to the uniform inference of these processes.

The established strong approximation results have broader applications in tackling other econo-

3These problems are closely related to each other, in the sense that nonparametric spot volatility estimators can

be used to construct semiparametrically efficient estimators of integrated volatility functionals (see, e.g., Jacod and

Rosenbaum (2013), Li et al. (2017), and Renault et al. (2017)).
4Another problem, which is orthogonal to the nonparametric setting, involves estimating parameters within

specified volatility dynamics. Such models are suggested by Nelson (1990) and Heston (1993), with associated

estimation methods proposed in Harvey et al. (1994), Andersen and Sørensen (1996), Durbin and Koopman (1997),

and Knight and Yu (2002), among others.
5An extension under fixed-k framework akin to Bollerslev et al. (2021) is feasible with additional information

about the transformation and the distribution of random disturbances.
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metric problems. As a byproduct, we provide an application involving constructing confidence sets

for ranks of spot values of the studied process, which is typically useful in determining arrivals of

certain events. Specifically, we leverage insights from Mogstad et al. (2023), reframing the con-

struction as a multiple hypotheses testing problem. Notably, our strong approximation results aid

in determining the valid critical value required for this purpose. The paper is also related to prior

studies in Gaussian coupling, such as Chernozhukov et al. (2013), Belloni et al. (2015), Li and Liao

(2020), our work stands out due to its emphasis on a nonstationary time series setting, a departure

from the high-dimensional context typically explored in previous studies.

As a concrete empirical illustration of the proposed methodology, we conduct a sentence-by-

sentence study to discern the informative part of the Federal Open Market Committee (FOMC)

press conference speeches. In light of the more accurate volatility estimations, recent observations

by Bollerslev et al. (2023) highlight that press conferences sometimes trigger more pronounced

market impact than the initial release of FOMC statements. We employ the uniform inference

procedure to analyze trading intensity processes, aiming to identify additional information arrivals

during these press conferences. Our comparison of results to stand-alone textual analysis reveals

that the latter tends to inappropriately smooth out information flow. In view of the growing

attention towards generative AI tools and large language models, primarily leveraging in-context

learning for tasks, our method serves as a complement, enabling the deployment of supervised

learning for higher accuracy. Additionally, we provide another empirical application to highlight

the importance of employing quantiles in addressing specific problems. Due to the heavy-tailedness

of Bitcoin returns, realized variances computed in the usual way become diverging, rendering the

detection of abnormal returns invalid. Comparing to the outcomes of mean-based t-test in Ante

(2023), results using quantile-based measurements of volatile levels indicate more substantial price

impact over an extended time window following social media activities.

The rest of the paper is organized as the following. We present the theory in Section 2. In

Section 3, a Monte-Carlo experiment analysis is conducted. Two empirical studies are presented in

Section 4, where the proposed inference methodology is applied to discern information flows during

the FOMC press conference speeches, and to analyze the price impact of Elon Musk’s twitter on

Bitcoin. Section 5 concludes. The appendix contains all the proofs.

Notation. We use | · | to denote the absolute value of a real scalar or the cardinality of a set, ∥ · ∥ to
denote the vector ℓ2-norm. For any p ≥ 1, ∥ · ∥Lp denotes the Lp-norm for random variables. We

use L(·) to denote the law of random objects, use 1{·} to denote the indicator function. For two

real numbers a and b, we write min{a, b} as a ∧ b and max{a, b} as a ∨ b. For two real sequences
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an and bn, we write an ≍ bn if an/C ≤ bn ≤ Can for some finite constant C ≥ 1.

2 Theory

In Section 2.1, we introduce the state-space model employed in our research. In Section 2.2, three

running examples are provided to illustrate adaptability of our framework for modeling different

market indicators. Sections 2.3 and 2.4 present constructions and strong approximation results for

the functional estimators of both conditional mean processes and conditional quantile processes,

respectively. Section 2.5 provides an application in constructing confidence sets for ranks of spot

values of the investigated process.

2.1 State-space Model for High-Frequency Data

We observe a data sequence (Yi∆n) at some regular sampled times where 1 ≤ i ≤ n ≡ ⌊T/∆n⌋,
within a fixed time span [0, T ]. In what follows, we consider in-fill asymptotics, i.e., ∆n → 0. It is

assumed that the data is generated based on the following state-space model

Yi∆n = Y (ζi∆n , εn,i) +Rn,i, for 1 ≤ i ≤ n, (2.1)

where (ζt)t∈[0,T ] is a càdlàd state process which takes value in an open set Z and is defined on some

filtered probability space satisfying the usual conditions, denoted as
(
Ω(0),F (0), (F (0)

t )t≥0,P(0)
)
.

The function Y (·, ·) represents a deterministic noisy transform of the current state ζi∆n through

a random disturbance εn,i which takes value in some Polish space D. Additionally, Rn,i denotes

a residual term, which is defined on an extended probability space that will be elaborated upon

later.6 This residual term can be considered uniformly negligible in comparison with the dominant

term, as per the requirement provided in subsequent sections.

We will make the assumption that the random disturbance (εn,i)1≤i≤n is a F (0)-conditionally

independently and identically distributed (i.i.d.) sequence.7 This is not a necessary condition,

as the framework presented here can be extended to accommodate conditionally stationary and

weakly dependent disturbances by employing methodologies developed in Zhang and Cheng (2014),

Li and Liao (2020), and Cattaneo et al. (2022). However, it is worth mentioning that, in many

empirical scenarios illustrated in the examples provided in Section 2.2, the disturbance exhibits

6The incorporation of residual term is first proposed in Bugni et al. (2023), and is assumed to be zero in Li and

Xiu (2016) and Bollerslev et al. (2018).
7There is no loss of generality to impose independence between disturbances and state processes here. One can

always select an appropriate normalization of the representation to let Y (·, ·) account for the dependence structure

such that εn,i is independent from ζi∆n .
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conditional independence. Hence, in order to avoid unnecessary technical complexities, our primary

focus lies on conditional independent disturbances, whereas the extension to dependent case will

be discussed in A.4 of the Appendix. In order to formally describe the framework, we introduce

another probability space denoted as (Ω(1),F (1),P(1)) endowed with an i.i.d. sequence (εn,i)1≤i≤n

with its marginal distribution denoted by Pε. Additionally, we denote

Ω ≡ Ω(0) × Ω(1), F ≡ F (0) ⊗F (1), Ft ≡
∩
s>t

F (0)
s ⊗ σ(εs : s ≤ t), P ≡ P(0) ⊗ P(1).

In this context, processes defined in each individual space, whether Ω(0) or Ω(1), can be extended in

the usual way to product space
(
Ω,F , (Ft)t≥0,P

)
, which serves as the probability space underlying

our analysis.

We highlight that the seeming Markovian assumption that observation Yt solely relies on cur-

rent state ζt through the function Y (·, ·) is not overly restrictive owing to the inclusion of additional

residual term Rn,i. Although, from an intuitive standpoint, Yt could potentially depend on histor-

ical states. Given that state processes exhibit sufficient smoothness, information encapsulated in

the difference between past state and current state could be effectively captured within the resid-

ual term. For example, when the observation Yt depends on a local window of historical states

(ζs)s∈[t−h,t] through some noisy functional, this approximation holds when (i) the functional has a

bounded partial Fréchet derivative with respect to (ζs)s∈[t−h,t]; (ii) the state process ζ is smooth

enough in a proper sense, e.g., sups,r∈[t−h,t] ∥ζs − ζr∥ = Op(h); and (iii) window size is shrinking,

i.e., h = o(1). In the meantime, this additional residual term can also absorb the dependence of

observations on some nuisance process when its effect is negligible. Consequently, the incorpora-

tion of residual Rn,i renders our framework to an essentially “approximately Markovian” setting,

which is more general comparing with simpler Markov state-space models employed in Li and Xiu

(2016) and Bollerslev et al. (2018).

2.2 Motivating Examples

To facilitate a better understanding of broad implications of the general model (2.1), it is beneficial

to outline a discussion using some empirically relevant running examples. In this section, we provide

three motivating examples, showing how commonly used financial econometric models align with

our state-space framework.

Example 1 (Location-Scale Model). First, consider a simple model with an additive structure

Yi∆n = µi∆n + σi∆nεn,i, for 1 ≤ i ≤ n.
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In this model, µt represents the local mean at time t and σ captures potential heteroskedasticity

in time. This additive structure directly fits in model (2.1) by setting

ζt = (µt, σt), Y
(
(µ, σ), ε

)
= µ+ σε, Rn,i = 0.

Note that this elementary model has found applications in various important contexts, as we do

not need to specify dynamics of state processes. For example if Yi∆n is the observed price of some

derivative contract, then µi∆n represents the efficient price and σi∆nεn,i could be the pricing error.

Liu and Tang (2013) employ this additive state-space model to devise an expectation-maximization

algorithm tailored for estimating integrated volatility matrices, particularly when asset prices are

observed with microstructure noise. In their model, Yi∆n is observed price, µi∆n is the associated

latent efficient price and is assumed to have a VAR dynamics, σi∆nεn,i is a microstructure noise

component where σi∆n captures time-varying heterogeneity in the magnitude of noise. Bugni

et al. (2023) also used this additive state-space model to describe trading volume processes, where

µi∆n is the local mean of volume, and σi∆n captures time-varying heterogeneity in order size. A

particularly fitting application of this additive state-space model emerges when the observation

is, in itself, a spot estimation of state process. This specification aligns closely with the fixed-

k estimation framework introduced in Bollerslev et al. (2021). Specifically, let log(σ̂n,i) be the

logarithm of fixed-k estimator for spot variance at time i∆n, and log(σn,i) be the logarithm of true

value. Bollerslev et al. (2021) proved that log(σ̂n,i) = log(σn,i) + εn,i + opu(1) where εn,i follows

a scaled log chi-square distribution with degree of freedom k. Based on this formulation, such

additive state-space model is adaptable to various volatility dynamics, for example Hull–White

log-normal short-term stochastic volatility. □

Example 2 (Lévy-driven Asset Returns). The proposed state-space model can be applied to

characterize a wide range of price dynamics studied in the high-frequency financial econometrics

literature. Consider the log price which has a drift component and a jump-diffusion component

driven by a Lévy martingale L, i.e., log price process Pt takes the following form

Pt =

∫ t

0
µsds+

∫ t

0
σsdLs, for t ∈ [0, T ],

where µ is the drift process, σ is the stochastic volatility process, L is a stable process with
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Blumenthal–Getoor index β ∈ (0, 2] and is assumed to be independent with σ.8,9 The exten-

sion to general stable Lévy process is motivated by empirical evidence that jump index of cryp-

tocurrency prices (see, e.g., Kolokolov (2022)) is strictly smaller than 2, i.e., price is driven by

a pure jump process. We treat the value of β as known, then the normalized squared return

Yi∆n = ∆
−2/β
n (P(i+1)∆n

− Pi∆n)
2 over each observation window (i∆n, (i+ 1)∆n] can be written as

Yi∆n = ∆−2/β
n

(∫ (i+1)∆n

i∆n

µsds+

∫ (i+1)∆n

i∆n

σsdLs

)2

.

In light of the property of stable processes, scaled Lévy increments ∆
−1/β
n (L(i+1)∆n

− Li∆n) are

i.i.d. across 1 ≤ i ≤ n and have a non-degenerate distribution. Therefore, upon expanding above

display and collecting dominant terms, the normalized squared return can be rewritten in the form

of model (2.1) by setting

ζt = σt, εn,i = ∆−1/β
n (L(i+1)∆n

− Li∆n), Y (σ, ϵ) = (σε)2,

Rn,i = ∆−2/β
n

(∫ (i+1)∆n

i∆n

µsds+

∫ (i+1)∆n

i∆n

(σs − σi∆n)dLs

)2

+2∆−2/β
n

(∫ (i+1)∆n

i∆n

µsds+

∫ (i+1)∆n

i∆n

(σs − σi∆n)dLs

)
×σi∆n(L(i+1)∆n

− Li∆n).

Distinct with preceding examples, here we encounter the presence of a non-zero residual term

Rn,i. This inclusion stresses the notion that even though Yi∆n may not adhere strictly to Marko-

vian properties with respect to the filtration engendered by current volatility σi∆n and remains

dependent on the ancillary drift process µ, it may still conform to an “approximate Markovian”

characterization involving only the current volatility. As discussed in subsequent sections 2.3

and 2.4, the residual term can be proved to be uniformly negligible providing processes µ and σ

satisfying some fairly weak regularity conditions. □

8Note that for a stable process, Blumenthal–Getoor index and stability index agree. A general stable process has

a characteristic triple (0, c, F ) where F (dx) = 0 if β = 2, i.e., L is a scaled Brownian motion
√
cW , or c = 0 and

F (dx) = aβ/|x|1+βdx for some positive constant a > 0 if β ∈ (0, 2). In particular, if β = 1, L is a Cauchy process.

Also note that for positive constant K, KL remains a stable process, along with σ/K, generates the same price

process. Therefore, to avoid non-identification issues between σ and the “scale” of L, we make additional restriction

that c = 1 if β = 2 and a = 1/π if β ∈ (0, 2).
9The independence assumption between L and σ rules out the interaction between price and volatility, i.e., the

so-called “leverage” effect. Note that in this explicit configuration, the transformation has a multiplicative structure,

hence it is easy to separate volatility and Lévy increments. That being said, the independence requirement can be

dropped here, for the case when L is a Brownian motion, see Jacod et al. (2021).
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Example 3 (Cox Trading Flows). Consider the number of trades during time [0, t], as denoted

by Nt. It is cogent to model trading flows as a Cox process — or referred to as doubly stochastic

Poisson process — which was originally introduced by Cox (1955) for modeling the neps over fibrous

threads, i.e., conditional on the process µ, (Nt)t∈[0,T ] behaves as an inhomogeneous Poisson process

with an intensity function (µt)t∈[0,T ]. Let Yi∆n = N(i+1)∆n
−Ni∆n denote number of transactions

during each observation window (i∆n, (i+1)∆n]. According to the sparseness property of Poisson

process (see, e.g., Section 5.4.1 in Ross (1995)), we have (i) P(Yi∆n ≥ 2|µ) = o(∆n) and (ii)

P(Yi∆n = 1|µ) = ∆nµi∆n +o(∆n). This naturally suggest a compelling approximation of Yi∆n by a

mixed Bernoulli random variable with parameter ∆nµi∆n .
10 Consequently, there exists a sequence

of independent, uniformly distributed variables (εn,i)1≤i≤n on [0, 1] which are also independent of

process µ such that

Yi∆n = 1{εn,i < ∆nµi∆n}+Rn,i, for 1 ≤ i ≤ n,

where the residual takes value in {−1} ∪ N and satisfies P(Rn,i ̸= 0|µ) = o(∆n) according to

property (i) and (ii).11 Note that increments over disjoint intervals can be in general dependent in

a Cox process through the µt part, as contrasted with the postulated independence in conventional

Poisson processes. Above display shows the increment of trading flow process can be expressed in

the form of model (2.1) by setting

ζt = ∆nµt, Y (ζ, ε) = 1{ε < ζ}, εn,i ∼ Uniform(0, 1).

We stress the importance of analyzing trading flow process for following reasons. In the Trade

and Quote (TAQ) database, each trade is recorded with a precision of nanoseconds (10−9 sec-

onds).12 Consequently, our mixed Bernoulli approximation exactly matches with empirical data:

a binary sequence is observed indicating whether a trade has transpired within each preceding

nanosecond window. Comparing with volume processes which are noisier, as they may also oscil-

10The approximation has been explored from a different direction as well, see, e.g., Section 1.6 of Karr (1991)

where they discuss the optimal approximation of a Bernoulli point process by a Poisson process.
11In some cases, this approximation holds in a stronger sense. Specifically, let Nn

t ≡
∑⌊t/∆n⌋

i=1 1{εn,i < ∆nµi∆n}
denote the partial sum process of these Bernoulli random variables. Under some strong regularity conditions on

the intensity function, Theorem 2 in Ruzankin (2004) implies ∥L(N) − L(Nn)∥TV ≤ K∆n supt∈[0,T ] |µ2
t |, where

∥ ·∥TV denotes the total variation norm of measures. This result aligns with the asymptotic equivalence of statistical

experiments in Le Cam’s sense, see, e.g., Le Cam (1986) and Le Cam and Yang (2000), whereas the statistical

equivalence between estimating Poisson intensity with a Gaussian shift model is of more theoretical importance, see,

e.g., Grama and Nussbaum (1998) and Genon-Catalot et al. (2002).
12Timestamps in TAQ database have evolved over time. For Consolidated Tape Association (CTA) trade and

quote feeds, the accuracy of timestamps is milliseconds (10−3 seconds) since October 2003; microseconds (10−6

seconds) since August 3, 2015; nanoseconds since September 18, 2017.
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late due to unobserved trader-specific heterogeneity; and price processes which are often contam-

inated by microstructure noises, trading flows allow to be analyzed at a much higher frequency

and are more closely related to information flows. That being said, as a compliment to the price

movement, which contains consensual decisions and viewpoints of market participants, trading

frequency also reflects the speed at which market participants react to and incorporate new infor-

mation into their idiosyncratic trading strategies. As discussed in Du and Zhu (2017), a surge in

trading intensity usually indicates higher level of information flow and potentially reflects real-time

changes in market sentiment or news announcements that influence trading activity. □

Aforementioned examples show the general state-space model (2.1) can be cast to model various

market indicators such as high-frequency volumes, returns, and trading flows. In the following

sections, we will construct functional estimators and associated inference procedure for conditional

mean process and conditional quantile process of transformed states, and provide further practical

implementation details of these examples.

2.3 Uniform Inference on Conditional Mean Process

Although our primary interest lies in unobservable states, we do not target on estimating the

state process per se, we estimate instead some specific distributional features of transformed state

process. Following Li and Xiu (2016) and Bollerslev et al. (2018), in this section, we focus on

estimating the instantaneous conditional mean process g.13 Formally, we define

gt ≡
∫
D

Y (ζt, ε)Pε(dε), for t ∈ [0, T ].

Note that conditional mean processes may not always be well-defined, especially when the distur-

bance exhibits heavy tails. As a supplementary measure, we discuss estimation and inference of

conditional quantile processes in the next section, which always exist. The precise implications of

these processes, along with the identification procedure of state process ζ from them, intrinsically

depend on specific properties of transformation Y (·, ·) and the distribution Pε. These aspects

should be analyzed on a meticulous case-by-case basis.

In preparation for a deep dive into the estimation procedure, we first introduce some additional

notations concerning a block sampling scheme which is particularly useful in uniform inference

for high-frequency data. This scheme divides the observation window into distinct, manageable

blocks, facilitating the construction of local estimates, and paving the way for localized analysis.

13In particular, inference regarding the integrated conditional mean process and spot conditional mean process

has been studied in Li and Xiu (2016) and Bollerslev et al. (2018), respectively.
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Formally, we divide the sample into mn nonoverlapping blocks by partitioning the whole index

set {1, . . . , n} = ∪mn
j=1In,j , where In,j denote the set of kn,j consecutive indices contained in the

jth block. Specifically, we define ι(i, j) ≡ min In,j + i − 1 as the ith index in the jth block, and

τ(i, j) ≡ ι(i, j)∆n as the associated time. In particular, we set τ(1,mn + 1) ≡ T . Consequently,

we have In,j ≡ {ι(i, j) : 1 ≤ i ≤ kn,j}, which spans time interval Tn,j ≡ [τ(1, j), τ(1, j + 1)) for

1 ≤ j ≤ mn.

Given that gt is simply the conditional mean of transformed state ζt, it naturally suggests

forming an estimator by taking local average within the block which contains time t, while keeping

block size shrinking. To fix ideas, we first consider conducting spot inference on gt at some given

time point t. Then there exists a block j such that t ∈ Tn,j , define ĝt as the local average of

observations Yi∆n over this block ĝn,t ≡ k−1
n,j

∑
i∈In,j

Yi∆n . Theorem 1 in Bollerslev et al. (2018)

shows that when Rn,i = 0, under fairly weak conditions on the local smoothness of ζ and bounded

second conditional moments of Y (·, ε), as kn,j →∞ and kn,j∆n → 0,√
kn,j(ĝn,t − gt)

L-s−→MN (0, σ2t ), (2.2)

where σ2t ≡
∫
D Y (ζt, ε)

2Pε(dε) −
(∫

D Y (ζt, ε)Pε(dε)
)2

denotes conditional variance,
L-s−→ denotes

stable convergence in law, andMN denotes mixed Gaussian distribution. The choice of block size

corresponds to the trade-off between utilizing enough data to form an asymptotically Gaussian

estimate and ensuring this estimate not to suffer from the bias due to local dynamics of state

process. Consequently, noting that σ̂2n,t ≡ k−1
n,j

∑
i∈In,j

Y 2
i∆n
−
(
k−1
n,j

∑
i∈In,j

Yi∆n

)2
is a consistent

estimator of conditional variance σ2t , we have the feasible central limit theorem√
kn,j(ĝn,t − gt)

σ̂n,t

L→ N (0, 1).

Therefore, with z1−α/2 denoting the (1− α/2) quantile of a standard Gaussian distribution, let

Ĉ±
n,t(α) ≡ ĝn,t ± z1−α/2 × k

−1/2
n,j σ̂n,t, (2.3)

then Ĉn,t(α) ≡ [Ĉ−
n,t(α), Ĉ

+
n,t(α)] is an asymptotic (1− α) confidence interval of gt, i.e.,

P
(
gt ∈ Ĉn,t(α)

)
→ 1− α, for every t ∈ [0, T ].

Above results can be easily extended to the case when Rn,i ̸= 0 yet remains uniformly negligible,

and furthermore, joint convergence of ĝn,· on a finite set of time points {t1, . . . , tℓ} ⊂ [0, T ]. By

a classic Bonferroni approach, the hyperrectangle C±
n,t1

(α/ℓ) × · · · × C±
n,tℓ

(α/ℓ) serves as a valid

confidence set for vector (gt1 , . . . , gtℓ). However, difficulty arises in extending this to estimation of
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the entire process g on a continuum set of indices, which is primarily due to the absence of functional

central limit theorems. To better illustrate this limitation, we define blockwise estimator for the

jth block similar as before

ĝn,j ≡
1

kn,j

∑
i∈In,j

Yi∆n =
1

kn,j

kn,j∑
i=1

Yτ(i,j), for 1 ≤ j ≤ mn.

Given block size kn,j∆n keeps shrinking, the block scheme becomes ever finer. Therefore, we can

form a functional estimator for the entire process (gt)t∈[0,T ] as a collection of all blockwise estimates

(ĝn,j)1≤j≤mn . Namely, we set

ĝn,t ≡ ĝn,j , for t ∈ Tn,j and 1 ≤ j ≤ mn.

Note that the blocks are non-overlapping, estimation errors within different blocks are asymptoti-

cally independent. Consequently, pointwise central limit theorem (2.2) shows that process of spot

estimators have a path structure similar to a Gaussian white noise, hence is not asymptotically

equicontinuous in probability on [0, T ] (see, e.g., Section 1.5 in van der Vaart and Wellner (1996)).

The uniform inference problem based on this type of functional estimators is non-Donsker in na-

ture. That being said, such non-Donsker problems that commonly arise from uniform inference in

nonparametric settings, can be addressed using strong approximation of the functional estimators

by variables with known finite-sample distributions, see, e.g., Chernozhukov et al. (2013) for the

independent data and Li and Liao (2020) for generalization to time series data.14 To help fix ideas,

we define the sup-t statistic as

T̂ ∗
n ≡ sup

t∈[0,T ]
|T̂n,t|, where T̂n,t ≡

√
kn,j(ĝn,t − gt)

σ̂n,t
for t ∈ Tn,j and 1 ≤ j ≤ mn,

where σ̂n,t ≡ σ̂n,j for t ∈ Tn,j and 1 ≤ j ≤ mn, and σ̂
2
n,j ≡ k

−1
n,j

∑
i∈In,j

Y 2
i∆n
−
(
k−1
n,j

∑
i∈In,j

Yi∆n

)2
.

Theorem 1 below, shows the sup-t statistic can be strongly approximated, or coupled, by maximum

of a growing dimensional folded Gaussian variables, whose distribution is well-understood in finite

sample. First, we introduce some regularity conditions.

Assumption 1. The observation process (Yi∆n)1≤i≤n is given by (2.1). There exist a sequence

(Tm)m≥1 of stopping times increasing to infinity, a sequence of compact subsets (Km)m≥1 of Z,
and a sequence (Km)m≥1 of positive constants such that for each m ≥ 1 such that:

(i) ζt∧Tm takes value in Km; for all s, t ∈ Tn,j where 1 ≤ j ≤ mn, and for each p > 0,

E[∥ζt∧Tm − ζs∧Tm∥p] ≤ Km,p|t− s|p/2 for some constant Km,p;

14A Yurinskii-type coupling for the entire t-statistic process does not hold in general case, unless the state process

is very smooth or the transformations take special forms (e.g., Jacod et al. (2021)).
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(ii) for all z, z′ ∈ Km with z ̸= z′, Var
(
Y (z, ε)

)−1
+ ∥Y (z, ε)− Y (z′, ε)∥L2/∥z − z′∥ ≤ Km;

(iii) for all x > 0 and z ∈ Km, Pε
(
|Y (z, ε)| ≥ x

)
≤ Km exp{−(x/Km)

1/η} for some η > 0;

(iv) max1≤i≤n |Rn,i| = op(∆
r
n) for some r > 0.

Assumption 1 imposes some regularity conditions on the state process, the transformation of

random disturbance, and the residual term, which allow for essentially unrestricted nonstationary

state process and heavy-tailed disturbance. Specifically, condition (i) requires state process to

be locally taken value in compact set. Condition (i) also imposes the smoothness of state process

within each block. Namely, it requires state process to be 1/2-Hölder continuous under the Lp-norm

for any positive p. This condition is stronger than that needed for conducting pointwise inference,

see Bollerslev et al. (2018). It holds if the state process is a continuous Itô semimartingale or long-

memory process within each block, and it also allows state process to have jumps on the boundary

time points between blocks. Condition (ii) requires the variance of Y (z, ε) to be locally bounded

away from zero, and the random mapping z 7→ Y (z, ε) to be Lipschitz on compact set Km under

the L2 norm, which is a minor restriction and can be easily verified for aforementioned examples.

Condition (iii) requires transformed disturbance to have a sub-Weibull tail with parameter η > 0,

which is a generalization of sub-Gaussian and sub-Exponential families to potentially heavier-

tailed distributions including Exponential distribution and Poisson distribution, see Vladimirova

et al. (2020) and Kuchibhotla and Chakrabortty (2022) for a detailed discussion of sub-Weilbull

tails. This condition holds for any η ≥ 1/2 (resp. η ≥ 1) if Y (z, ε) has sub-Gaussian (resp. sub-

Exponential) tail, and can be verified even for the disturbance arises from machine learning models,

see Hayou et al. (2019) for a proof under deep neural networks. We highlight that condition (iii)

also ensures the existence of conditional mean process. Condition (iv) is a high-level condition

which requires residual term to be uniformly negligible in the sense that it shrinks at a polynomial

rate uniformly for all 1 ≤ i ≤ n.

Before state the strong approximation result of sup-t statistic, we provide some additional

implementation details by revisiting three examples outlined in the preceding section. Discussion

of implementation details primarily aims to shed light on the interplay between conditional mean

process and state process, together with a validation of Assumption 1 (especially condition iv),

under those specific models.

Example 1 (Location-Scale Model, continued). In the simple location-scale model with

additive structure, suppose that disturbance is centered. Then by definition, the conditional mean

process inherently translates into local mean process, i.e., gt = µt for all t ∈ [0, T ]. Consequently,

the first state process µ can be directly identified from g. Assumption 1(i) is satisfied if (µt, σt)t∈Tn,j

12



is a two dimensional continuous Itô semimartingale or long-memory process within each block.

Suppose in addition that Pε has a sub-Weilbull tail, Assumption 1(iii) is met. This, combined with

σ maintaining bounded away from zero, leads to the fulfillment of Assumption 1(ii). Recall that

in this example residual terms Rn,i = 0 for all 1 ≤ i ≤ n, Assumption 1(iv) trivially holds for any

r > 0. □

Example 2 (Lévy-driven Asset Returns, continued). Recall the characteristic triple of

stable Lévy process described in footnote 8, conditional mean process is coherently well-defined

only when β = 2, i.e., L is a Brownian motion.15 Therefore, subsequent discussion in this section

is confined to the case where β = 2, scenarios regarding β ∈ (0, 2) will be addressed in Section

2.4. Assumption 1(i) is satisfied if the volatility (σt)t∈Tn,j is a continuous Itô semimartingale or

long-memory process within each block, which is congruent with most popular stochastic volatility

models. Note that in this example, the disturbance is a sequence of i.i.d. standard Gaussian

variables, indicating the transformed disturbance (σε)2 follows a scaled χ2(1) distribution. As a

result, the conditional mean process translates into variance process, i.e., gt = σ2t for all t ∈ [0, T ].

Also, Assumption 1(iii) holds for any η ≥ 1, Assumption 1(ii) is satisfied provided that volatility

is bounded away from zero. Suppose in addition that the drift process µ is locally bounded, by

a combined use of the Burkholder–Davis–Gundy inequality, the Hölder inequality, and a maximal

inequality, we can deduce for all p ≥ 1,

E
[
max
1≤i≤n

|Rn,i|p
]
≤ ∆−1

n E
[

sup
|t−s|≤∆n

|σt − σs|2p
]
≤ Kp∆

p−1
n ,

confirming that Assumption 1(iv) holds for any 0 < r < 1. □

Example 3 (Cox Trading Flows, continued). In the context of Cox trading flow model,

recall that state process is ∆nµt. Assumption 1(i) and (ii) hence requires the scaled intensity ∆nµt

to be 1/2-Hölder continuous within each block, and more critically, to be both bounded from above

and away from zero,16 which alludes to the “high traffic” assumption, as introduced in Kingman

(1961). As a complement elaboration, Christensen and Kolokolov (2023) provides an alternative

justification for this assumption by modeling trading flow as a sum of n independent copies of Cox

processes with conditional intensity ∆nµt. This “heavy traffic” assumption is a natural precursor

for econometric analysis of high-frequency financial data, in the sense that a Cox process endowed

with “high traffic” intensity can generate the class of valid stochastic sampling schemes studied

15The instantaneous conditional mean diverges at a rate of ∆
2/β−1
n by the definition of Blumenthal–Gatoor index.

16This is not surprising since the intensity of a Poisson process is not consistently estimable over a fixed time

window, not even in the homogeneous case (see, e.g., Brillinger (1975), Karr (1991), and Helmers and Zitikis (1999)).
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in Hayashi et al. (2011).17 Note that the transformation takes binary values, Assumption 1(iii) is

automatically satisfied for any η > 0. For the residual term, recall P(Rn,i ̸= 0|µ) = o(∆n), by the

law of iterated expectation we have for any r > 0,

P
(
max
1≤i≤n

|Rn,i| > ∆r
n

)
≤

n∑
i=1

P(Rn,i ̸= 0) = no(∆n) = o(1),

confirming that Assumption 1(iv) also holds for any r > 0. □

We are now ready to formally state our strong approximation result for sup-t statistics.

Theorem 1. Suppose that (i) Assumption 1 is satisfied; (ii) kn,j ≍ ∆−ρ
n uniformly for all 1 ≤ j ≤

mn such that ρ ∈ (0, 2r ∧ 1/2). Let (Z1, Z2, . . . , Zmn)
⊤ be a standard Gaussian random vector in

Rmn. Then for some positive constant ϵ,

sup
x∈R

∣∣∣P(T̂ ∗
n ≤ x)− P

(
max

1≤j≤mn

|Zj | ≤ x
)∣∣∣ ≤ K∆ϵ

n.

Comment 1. Theorem 1 shows the sup-t statistic can be strongly approximated by maximum

of a increasing dimensional folded standard Gaussian random variables, in the sense that their

Kolmogorov–Smirnov distance shrinks to zero at a polynomial rate. A similar result holds under

the Kantorovich–Monge–Rubinstein metric.18 In that case, there exist sequences on a common

probability space T̂ ′
n

L
= T̂ ∗

n and Z ′
n

L
= max1≤j≤mn |Zj | such that T̂ ′

n = Z ′
n + op(1). However,

here it is not straightforward that convergence under the Kantorovich–Monge–Rubinstein metric

implies convergence under the Kolmogorov–Smirnov metric, since the density of Z ′
n is unbounded.

19

Consequently, due to the particular usefulness in making inference, Theorem 1 and other strong

approximation results in this paper, are presented under the Kolmogorov–Smirnov distance.

Comment 2. We emphasize that distribution of coupling variable max1≤j≤mn |Zj | is known in

finite sample, which renders Theorem 1 particularly useful for inferential purposes. Formally, given

any α ∈ (0, 1/2), let cvn(α) ≡ inf{x ∈ R : P(max1≤j≤mn |Zj | ≤ x) ≥ 1 − α} denote the (1 − α)
17We assume additionally the trading flow process to have refractoriness, see, e.g., Citi et al. (2014).
18The Kantorovich–Monge–Rubinstein metric between two measures P1 and P2 is defined as sup{|

∫
fdP1−

∫
fdP2| :

∥f∥Lip ≤ 1}, Theorem 2 in Szulga (1983) shows it is equivalent to the Wasserstein 1-metric inf{E[∥X−Y ∥] : L(X) =

P1,L(Y ) = P2}.
19The density of max1≤j≤mn |Zj | is given by f(x) ≡ 2mn

(
2Φ(x) − 1

)mn−1
ϕ(x)1{x ≥ 0}, where ϕ(·) and Φ(·)

denote the density and distribution functions of standard Gaussian distribution, respectively. Note that the Mills

ratio
(
1−Φ(x)

)
/ϕ(x) → 1/x, by verifying a Von Mises type condition and applying Corollary 1.7 in Resnick (2008),

we can show f(x) ≃ 4
√
logmn/e as x →

√
2 logmn +

(
2 log 2− log logmn − log(4π)

)
/
√
8 logmn and mn → ∞.
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Figure 1: Comparison of Confidence Bands under Different Numbers of Blocks. In each

panel, we mark spot estimates in red squares, 90% pointwise confidence interval in black vertical

segments, 90% uniform confidence band in red dashed lines, and the true process in blue lines.

The pointwise confidence band is constructed by connecting each confidence interval computed

using (2.3), the uniform confidence band is computed using (2.4). Three panels from left to right

show results for the case where mn equals 6, 8, and 12, respectively, corresponding to the tuning

sequence kn being 40, 30, and 20.

quantile of max1≤j≤mn |Zj |, which can be easily computed for any mn.
20 Then Theorem 1 implies∣∣P(T̂ ∗

n ≤ cvn(α)
)
− P

(
max1≤j≤mn |Zj | ≤ cvn(α)

)∣∣ ≤ K∆ϵ
n. Consequently, let

B̂±
n,t(α) ≡ ĝn,t ± cvn(α)× k

−1/2
n,j σ̂n,t, for all t ∈ Tn,j , and 1 ≤ j ≤ mn, (2.4)

then B̂n,t(α) ≡ [B̂−
n,t(α), B̂

+
n,t(α)] constitutes an asymptotic (1− α) confidence band for the entire

process (gt)t∈[0,T ], i.e.,

P
(
gt ∈ B̂n,t(α) for all t ∈ [0, T ]

)
= P

(
T̂ ∗
n ≤ cvn(α)

)
→ 1− α.

Observing that the uniform confidence band (2.4) is generally wider than pointwise confidence

intervals (2.3), this difference magnifies as the number of blocks mn becomes larger. To better

illustrate the intuition behind this difference, we present a simple comparative visualization for

uniform confidence bands and pointwise confidence intervals under different numbers of blocks in

Figure 1. Given that total number of observations is typically fixed in application, the number of

blocks is intrinsically determined by the block size. Consequently, mn stands inversely proportional

to kn. When the number of blocks is small, each block becomes wide, leading to a large time vari-

ation effect which undermines the coverage of pointwise confidence interval. In contrast, when the

number of blocks is large, probability of committing type I error across distinct blocks accumulates.

Such accumulating errors are not accommodated for in pointwise confidence intervals.

20For instance, use one-line command fsolve(@(x)(2*normcdf(x)-1).^m-(1-alpha), log(m)) in MATLAB.
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2.4 Uniform Inference on Conditional Quantile Process

As we mentioned in the previous section, if the disturbance exhibits exceedingly heavy tails,

instantaneous conditional mean process is not well-defined. This section pivots to explore an

alternative method of analyzing these heavy-tailed models, centering on instantaneous conditional

quantile of the transformed state as a supplemental measure. In contrast to conditional mean

process, the conditional quantile process remains well-defined, regardless of the nature of Pε.21 To

be precise, for some pre-determined level χ ∈ (0, 1), we define the conditional quantile process as

a version of càdlàg inverse of conditional distribution function of Y (ζt, x), i.e.,

qt(χ) ≡ inf
{
x ∈ R : Pε

(
Y (ζt, ε) ≤ x

)
≥ χ

}
, for t ∈ [0, T ].

The analysis of quantile has developed rapidly since the foundational Koenker and Bassett Jr

(1978). It has been highlighted that quantile is the unique solution of minimizing expected loss

utilizing the check function uχ(y) ≡ y(χ−1{y < 0}). Based on this insight, it is natural to define an

estimator through the sample analogue, which also offers a heuristic method of deriving asymptotic

behaviors through the monotonicity of first order conditions, see, e.g., Section 3.2 in Koenker

(2005). Alternatively, although essentially equivalent in most cases, some statisticians opt to

define quantile estimators directly through its corresponding order statistics. Here, its asymptotic

properties and optimalities are extensively explored via the elegant Bahadur representation. In the

pioneered paper, Bahadur (1966) first established almost sure bound of representing the difference

between population quantile and corresponding order statistics as a sample average of some i.i.d.

auxiliary variables. Ghosh (1971) provided a simple proof for a weaker but sufficiently useful

bound. The result has been extended to nonparametric quantile regression by Chaudhuri (1991),

and to weakly dependent stationary data by Hesse (1990) and Wu (2005).

We adopt the idea from classic statistic methodology to define each spot estimator as local “in-

fill order statistic” of observations inside the shrinking block, instead of through the convention

of minimization problem. Namely, within each block, we reindex the sequence (Yi∆n)i∈In,j in the

non-decreasing order and denoted as Y o
1,j ≤ · · · ≤ Y o

kn,j ,j
. The spot estimator for conditional

quantile, in this scheme, is defined as ⌈kn,jχ⌉-order statistic.22 Analogous to the previous section,

we form a functional estimator as the collection of all blockwise estimates

q̂n,j(χ) ≡ Y o
⌈kn,jχ⌉,j , q̂n,t(χ) ≡ q̂n,j(χ) for t ∈ Tn,j and 1 ≤ j ≤ mn.

21Sample quantiles has other applications, see, e.g., Coeurjolly (2008) for estimating the Hurst parameter of

fractional Brownian motion using a convex combination of sample quantiles.
22Note that the results presented in this section hold for all ℓn,j-order statistics with ℓn,j−kn,jχ = o(k

1/2
n,j log kn,j).

We focus on ⌈kn,jχ⌉-order statistic to avoid unnecessary complexity.
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Although observations from model (2.1) are neither independent nor stationary, in the appendix

we show that a uniform Bahadur representation holds for all blockwise in-fill χ-sample quantiles

given some regularity conditions (Lemma A.1), which forms the bedrock for deriving strong ap-

proximation results for the functional conditional quantile process estimator. To the best of our

knowledge, this is the first paper to consider uniform (over time) inference of quantile process

under in-fill setting. We first introduce some regularity conditions.

Assumption 2. The observation process (Yi∆n)1≤i≤n is given by (2.1). There exists a sequence

(Tm)m≥1 of stopping times increasing to infinity, a sequence of compact subsets (Km)m≥1 of Z,
and a sequence (Km)m≥1 of positive constants such that:

(i) ζt∧Tm takes value in Km; for all s, t ∈ Tn,j where 1 ≤ j ≤ mn, and for each p > 0,

E[∥ζt∧Tm − ζs∧Tm∥p] ≤ Km,p|t− s|p/2 for some constant Km,p;

(ii) for each x ∈ R, for all z, z′ ∈ Km, |F (z, x)−F (z′, x)|∨|∂xF (z, x)−∂xF (z′, x)| ≤ Km∥z−z′∥
where F (·, x) ≡ Pε

(
Y (·, ε) ≤ x

)
;

(iii) for each t ∈ [0, Tm] and x in some neighborhood of qt(χ), ft(x)+ft(x)
−1+ |∂xft(x)| < Km

where ft(·) ≡ ∂(·)F (ζt, ·);
(iv) max1≤i≤n |Rn,i| = op(∆

r
n) for some r > 0.

Condition (i) remains the same as in Assumption 1, i.e., it requires state process to be locally

taken value in compact set and 1/2-Hölder continuous under the Lp-norm for any positive p.

Likewise, it is satisfied if the state process is a continuous Itô semimartingale or long-memory

process within each block and does not exclude jumps on the boundary time points between

blocks. Condition (ii) necessitates that, for a given value of x, the function F (·, x) and its derivative

∂xF (·, x) to be Lipschitz over the set Km. This condition can be verified if F (·, ·) ∈ C2,1(Km,R).
Condition (iii) is a local requirement that conditional density function at true state ζt evaluated at

a neighborhood of the quantile is positive and not too concentrate around that point, which holds

if ft(·) is continuous and has no point mass.23 Condition (iv) is the same high-level requirement

as in Assumption 1, which requires residual terms to shrink uniformly at a polynomial rate.

Example 2 (Lévy-driven Asset Returns, continued). Recent advances in high-frequency

financial data analysis have accentuated the significance of inference using sample order statis-

tics.24 Specifically, in a special case when β = 2 and choosing χ = 1/2, Shephard (2022) consider

23Observe that this requirement excludes the case where random disturbances are discretely distributed. This

is not surprising since even the classic Bahadur representation for i.i.d. data requires absolute continuity of the

distribution. Analysis of sample quantiles for discretely distributed data deserves its own research.
24The use of extreme order statistics, although beyond the scope of this paper as we assume χ ∈ (0, 1), has been

utilized in estimating volatility even earlier, see, e.g., Garman and Klass (1980), Parkinson (1980).
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estimating integrated volatility over [0, T ] through the normalized sum of “in-fill median” in each

block. Asymptotic properties of this estimator are derived via the monotonicity of first order

condition of minimization problems in the spirit of Koenker and Bassett Jr (1978). Although inte-

grated volatility estimators constructed using median are asymptotically less efficient than realized

variance in the Brownian motion case, it remains robust to abnormal returns which often arise

when the price contains jumps. As a complement to Shephard (2022), in this example, our focus is

on uniform inference for the entire volatility process even in the case when β < 2, a setting wherein

conditional mean process becomes not well-defined and Assumption 1(iii) no longer holds. Con-

sequently, return-based estimation procedure becomes invalid. Nevertheless, recall the state-space

formation of Lévy-driven returns, it is evident that for all t ∈ [0, T ],

qt(χ) = σ2tQ(L, χ),

where Q(L, χ) denote the χ-quantile of εn,i = ∆
−2/β
n (L(i+1)∆n

− Li∆n)
2, hence is free of nuisance.

This proportional structure between q(χ) and σ suggests that conditional quantile process can serve

as a feasible proxy for volatility. Note that formally defining the volatility process in a heuristic

way via quadratic variation of continuous part is impossible in this case,25 whereas interquantile

range effectively captures the volatile level of price. Although for the cases β ̸= 1. closed-form

densities of εn,i is almost never known, we do have explicit closed-form characteristic functions.

This facilitates the numerical computation of Q(L, χ) and validation of condition (ii) and (iii)

in Assumption 2, see, e.g., Zolotarev (1986).26 Moreover, noting that [L]t =
∑

s≤t |∆Ls|2 < ∞
almost surely for any t > 0, a similar argument as in the previous section yields that condition

(iv) remains valid for all 0 < r < 1. □

Analogous to Theorem 1, we present Theorem 2 below, which states the strong approximation

result for our functional quantile estimator using the Kolmogorov–Smirnov metric.

Theorem 2. Suppose that (i) Assumption 2 is satisfied; (ii) kn,j ≍ ∆−ρ
n uniformly for all 1 ≤

j ≤ mn such that ρ ∈ (0, 2r ∧ 1/2). Let (Z1, Z2, . . . , Zmn)
⊤ ∼ MN (0,diag{ν21 , . . . , ν2mn

}) be a

mixed Gaussian random vector in Rmn such that ν2j ≡ χ(1− χ)/fτ(1,j)
(
qτ(1,j)(χ)

)2
. Then for any

χ ∈ (0, 1), for some positive constant ϵ,

sup
x∈R

∣∣∣∣P( max
1≤j≤mn

sup
t∈Tn,j

√
kn,j |q̂n,t(χ)− qt(χ)| ≤ x

)
− P

(
max

1≤j≤mn

|Zj | ≤ x
)∣∣∣∣ ≤ K∆ϵ

n.

25Namely, the quadratic variation of continuous part of P is zero when β < 2.
26Note that semi-closed-form expressions of densities of stable distributions are available, for example in the form of

an one-dimensional integral or a convergent infinite series. Various numerical computation procedures and associated

error bounds are discussed in Ament and O’Neil (2018).
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Comment. In contrast to Theorem 1, the coupling variable max1≤j≤mn |Zj | here is not pivotal

as the variance matrix remains unknown, which is not surprising in quantile-related inference.

This problem can be addressed, since the density function ft(·) is nonparametrically estimable.

Alternatively, a practically more convenient choice is to employ the bootstrap method to get an

asymptotically valid critical value, as justified by Zuo (2015) who derived a Bahadur representation

for empirical bootstrap quantiles. We stress that in certain scenarios, the distribution can indeed

be pivotalized. For instance the multiplicative transformation (see Example 2) where conditional

quantile estimation is extremely useful, we have for all t ∈ [0, T ] that

ft
(
qt(χ)

)
=

1

σ2t
f̄

(
qt(χ)

σ2t

)
=
Q(L, χ)2f̄

(
Q(L, χ)

)
qt(χ)2

,

where f̄(·) denotes the density of ∆
−2/β
n (L(i+1)∆n

− Li∆n)
2 which is free of nuisance hence can

be computed numerically. Let ν̂2n,j ≡ χ(1 − χ)Q(L, χ)2f̄
(
Q(L, χ)

)2
/q̂n,j(χ)

2 for all 1 ≤ j ≤ mn.

Given that f̄(·) is Lipschitz in the neighborhood of Q(L, χ) by Assumption A.2(iii), Theorem 2

then implies that max1≤j≤mn |ν̂2n,j − ν2j | = Op
(
∆
ρ/2
n log(∆−1

n )1/2
)
. Consequently, let cvn(α) be

defined identically as in (2.4), denote

B̂′±
n,t(α) ≡

(
q̂n,t(χ)± cvn(α)× k−1/2

n,j ν̂n,j
)
/Q(L, χ), for all t ∈ Tn,j , and 1 ≤ j ≤ mn, (2.5)

Then B̂′
n,t(α) ≡ [B̂′−

n,t(α), B̂
′+
n,t(α)] constitutes an asymptotic (1−α) confidence band for the entire

variance process (σ2t )t∈[0,T ], i.e.,

P
(
σ2t ∈ B̂′

n,t(α) for all t ∈ [0, T ]
)
→ 1− α.

2.5 Application: Inference for Ranks

The strong approximation results established in this paper can be used to tackle other econometric

problems. As a byproduct, we discuss the problem of doing inference for ranks in this section.

Namely, given a path of certain stochastic process, rankings of the values at a set of time points are

often of great interest. Notably, such interest stems when the process indicates some time-varying

signals, while quantifying these signals is challenging hence we are interested instead in their relative

magnitudes. These rankings illuminate which segments of the process possess comparatively higher

signal level in relation to others. For instance, vigors of trading intensities can shed light on the

real-time information level that affects the market (see, e.g., Du and Zhu (2017)).

Usually, the realized path is unobservable. Thus, rankings are invariably deduced using func-

tional estimators instead of the true process. Such procedure inevitably introduces uncertain-

ties, necessitating careful considerations before drawing definitive conclusions regarding rankings
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of the true process. To illustrate this inherent uncertainty, consider a simple example where
√
kn(ĝti−gti) ∼ N (0, 1) for i ∈ {1, 2}, then we have P(ĝt1 > ĝt2 |gt1 < gt2) = 1−Φ

(√
kn(gt2−gt1)/2

)
,

i.e., in finite samples, there is a nonzero probability that estimated rankings do not coincide with

their true rankings. While the probability of such misranking tends to zero with a increasing

number of observations, it conversely accumulates with a increasing number of candidates under

comparison.

In a recent paper, Mogstad et al. (2023) provided a comprehensive framework for inferring ranks

via the introduction of confidence sets for ranks. This methodology is congruent with the problem

at hand. Given a designated set of inspected time points, observe that the length of blocks shrinks

to zero. Consequently, as ∆n becoming small enough, each time point in that set falls exactly in

one distinct block. Therefore, we may assume without loss of generality that the set of inspected

time points takes the form of {t1, . . . , tmn} where tj ∈ Tn,j for all 1 ≤ j ≤ mn. To give a detailed

illustration, we focus on the case investigating conditional mean process (gt)t∈[0,T ]. Analogues

results can be formulated for conditional quantile process via uniform Bahadur representation and

Theorem 2. To avoid double subscripts, with a slight abuse of notation, we denote gn,j ≡ gtj for

1 ≤ j ≤ mn. Following Mogstad et al. (2023), we define ranks of (gn,j)1≤j≤mn and the entire rank

vector as

Rankn(j) ≡ 1 +

mn∑
j′=1

1{gn,j′ > gn,j} and Rankn ≡
(
Rankn(1), . . . ,Rankn(mn)

)⊤
.

Then a joint (1−α) confidence set for ranks at all time points is defined as a random set R̂ankn ⊂
Rmn such that

lim inf
∆n→0

P
(
Rankn ∈ R̂ankn

)
≥ 1− α.

Let Salln ≡ {(j, j′) : 1 ≤ j, j′ ≤ mn and j ̸= j′} denote the set of all paired indices. Based on the

insight of Theorem 3.4 in Mogstad et al. (2023), the confidence level of a joint confidence set for

all ranks is bounded below by one minus the familywise error rate, denoted as FWERn, for testing

following family of multiple one-sided hypotheses

Hj,j′ : gn,j ≤ gn,j′ against Kj,j′ : gn,j > gn,j′ , where (j, j′) ∈ Salln . (2.6)

According to which null hypotheses hold true, we can partition all paired indices into two subsets

Sall,−n ≡ {(j, j′) ∈ Salln : gn,j ≤ gn,j′}, Sall,+n ≡ {(j, j′) ∈ Salln : gn,j ≥ gn,j′}. We also denote the

set of rejected hypotheses as Rej−n (j) ≡ {(j, j′) ∈ Salln : Hj′,j is rejected} and Rej+n (j) ≡ {(j, j′) ∈
Salln : Hj,j′ is rejected}. Moreover, define Rej±n ≡

∪mn
j=1Rej

±
n (j). Then the familywise error rate for
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testing family (2.6) can be formally expressed as

FWERn ≡ P(reject at least one true hypothesis Hj,j′)

= P(Sall,−n ∩ Rej+n ̸= ∅ or Sall,+n ∩ Rej−n ̸= ∅).

Our goal is to find a valid test such that lim sup∆n→0 P(FWERn) ≤ α. We will describe the

detailed testing procedure in the rest of this section. Before presenting the procedure, we highlight

that our setting here differs from that of Mogstad et al. (2023) in two aspects. Firstly, note

that Mogstad et al. (2023) focus on the rankings across different populations, which implies their

rankings are deterministic. On the contrary, we consider ranks that defined for a single realized

path of the investigated process at different time points. Consequently, rankings Rankn hence

the partition Sall,±n are both random in nature. Secondly, we allow the number of evaluated time

points to diverge as ∆n → 0 at a rate identical to number of blocks mn, contrasting with the case

in Mogstad et al. (2023) where the total number of populations remains fixed.

For the sake of notational simplicity, we assume for the moment that kn,j = kn for 1 ≤ j ≤ mn,

i.e., we partition observations into blocks with equal length. For each elementary null hypothesis

Hj,j′ where (j, j′) ∈ Salln , we construct tests statistic concerning the difference ĝn,j − ĝn,j′ . Denote

the corresponding variance estimator as ς̂n(j, j
′)2 ≡ σ̂2n,j+ σ̂2n,j′ . Then we reject Hj,j′ whenever the

associated t-statistic

d̂n(j, j
′) ≡

√
kn(ĝn,j − ĝn,j′)
ς̂n(j, j′)

,

is sufficiently large, say, exceeds some carefully selected threshold. To determine the proper value of

critical value that controls FWERn, we define the sup-t statistics as D̂n ≡ max(j,j′)∈Sall
n
d̂n(j, j

′).27

A direct application of Theorem 1 indicates a similar strong approximation result holding for

D̂n. Nonetheless, additional difficulty arises since the distribution of coupling variable becomes

more complicated. This stems from the fact that covariance matrix becomes non-identity since

off-diagonal components can be non-zero given that Salln contains pairs with coinciding indices. In

light of this, we propose an employment of a Gaussian multiplier bootstrap technique to determine

the requisite confidence value. Namely, we generate i.i.d. standard Gaussian variables (ei)1≤i≤kn

27Existing literature offers alternative test statistic formulations. For example Bai et al. (2019) suggest using D̂′
n ≡

max(j,j′)∈Sall
n

d̂n(j, j
′) ∨ 0, which leads to a better power if many elementary nulls Hj,j′ are violated simultaneously.

On the contrary, our emphasis is on detecting deviations when at least one Hj,j′ is violated too much. Observing

that Theorem 2.1(i) and 2.2(ii) in Lehmann et al. (2005) indicate the impossibility of maximizing power across both

cases even when total number of nulls are limited to be 2, we use D̂n instead of D̂′
n here.
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independent of (Yi∆n)1≤i≤n. Denote

ĝBn,j ≡
1

kn

kn∑
i=1

ei(Yτ(i,j) − ĝn,j).

Repeat this step to generate a large number of Bootstrap sample of (ĝBn,j)1≤j≤mn . Then we can

compute the conditional (1− α) quantile of the maximum of studentized bootstrap statistics via

cvBn (α,Salln ) ≡ inf

{
x ∈ R : P

(
max

(j,j′)∈Sall
n

√
kn(ĝ

B
n,j − ĝBn,j′)

ς̂n(j, j′)
≤ x

∣∣∣∣(Yi∆n)1≤i≤n

)
≥ 1− α

}
, (2.7)

The following theorem provides validity of this Gaussian multiplier bootstrap procedure.

Theorem 3. Suppose that (i) Assumption 1 is satisfied; (ii) kn ≍ ∆−ρ
n such that ρ ∈ (0, 2r∧1/2),

then for some positive ϵ,

(i) P
(
D̂n > cvBn (α,Salln )

)
≤ α +K∆ϵ

n if max(j,j′)∈Sall
n
(gn,j − gn,j′) ≤ 0. In addition,

∣∣P(D̂n >

cvBn (α,Salln )
)
− α

∣∣ ≤ K∆ϵ
n if gn,j − gn,j′ = 0 for all (j, j′) ∈ Salln ;

(ii) P
(
D̂n > cvBn (α,Salln )

)
≥ 1−K∆ϵ

n if max(j,j′)∈Sall
n
(gn,j − gn,j′) ≥ Υ for some positive Υ.

Comment 1. Theorem 3 ensures the test ϕ̂n ≡ 1{D̂n > cvBn (α,Salln )} achieves asymptotic size

control in detecting whether at least one of alternative Kj,j′ holds where (j, j′) ∈ Salln . Based on

this result, we can show the test

ϕ̂n(j, j
′) ≡ 1{d̂n(j, j′) > cvBn (α,Salln )},

provides a strong control of the familywise error rate, in the sense that P(FWERn) ≤ α +K∆ϵ
n.

Furthermore, the theorem also shows proposed test is consistent against any (non-local) alter-

natives. Lemma 5.1 in Chernozhukov et al. (2019) indicates, under a simplified case where ζ is

constant within each blocks and Rn,i = 0, no test can be uniformly consistent against all local

alternatives with max(j,j′)∈Sall
n
(gn,j − gn,j′) = o

(
∆
ρ/2
n log(∆−1

n )1/2
)
.

Comment 2. The test ϕ̂n(j, j
′) proposed above is a straightforward one-step procedure that

controls the familywise error rate, which could be conservative in application with finite sample.

In the appendix, we prove that Theorem 3 remains valid even when Salln in formulations of D̂n

and cvBn (α,Salln ) are replaced by any arbitrary subset Sn ⊆ Salln with |Sn| ≥ 3. This stronger result

facilitates the incorporation of a stepdown improvement akin to those provided in Romano and

Wolf (2005). We summarize the ultimate testing procedure in the following steps contained in

Algorithm 1.

The corollary below shows the validity of confidence sets generated by this stepdown procedure.
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Algorithm 1 Stepdown Procedure

Step 1. Set S(0) = Salln and i = 0.

Step 2. Compute the critical value cv
(i)
n = cvBn (α,S(i)) using (2.7).

Step 3. For all (j, j′) ∈ S(i), reject Hj,j′ according to ϕ̂
(i)
n (j, j′) = 1{d̂n(j, j′) > cv

(i)
n }. For 1 ≤ j ≤

mn, form Rej
(i),−
n (j) and Rej

(i),+
n (j) by the sets of nulls Hj,· and H·,j rejected in this step,

respectively. Let Rej
(i),±
n =

∪mn
j=1Rej

(i),±
n (j).

If |Rej(i),−n | = |Rej(i),+n | = 0, form Rej±n (j) =
∪i
ℓ=0Rej

(ℓ),±
n (j), then stop.

Else, set S(i+1) = S(i) \ {(j, j′) : (j, j′) ∈ Rej
(i),−
n ∪ Rej

(i),+
n }, i← i+ 1, return to Step 2.

Corollary 1. Under the same setting as Theorem 3. For 1 ≤ j ≤ mn, let

R̂ankn(j) ≡ {|Rej−n (j)|+ 1, . . . ,mn − |Rej+n (j)|},

where Rej±n (j) is computed according to Algorithm 1. Then R̂ankn ≡
∏mn
j=1 R̂ankn(j) constitutes a

joint (1− α) confidence set for ranks of process (gt)t∈[0,T ] at all evaluated time points.

3 Monte Carlo Simulations

3.1 Data Generating Processes

We conduct a Monte Carlo experiment to evaluate the performance of proposed inference proce-

dures. Our simulation is anchored in the setting of motivating examples mentioned in Section 2.2.

In each example, parameters used in data generating processes (DGP) and sampling schemes are

selected to closely resemble the real data encountered in empirical application.

We first consider the location-scale model discussed in Example 1. Specifically, we focus on the

following two data generating processes:

DGP 1 : Yi∆n = µi∆n + εn,i, where εn,i ∼i.i.d. N (0, 1),

DGP 2 : Yi∆n = µi∆n + σi∆nεn,i, where εn,i ∼i.i.d. t(3).

DGP 1 and 2 align with the conventional additive state-space model, wherein the state process of

interest is (µt)t∈[0,T ] and will be estimated through conditional mean process analyzed in Section

2.3. Notably, in DGP 1, the random disturbance is assumed to follow an i.i.d. standard Gaussian

distribution, so that each spot estimator retains its Gaussianity even when the number of obser-

vations in each block is small. In contrast, DGP 2 introduces both heteroskedasticity in time and

non-Gaussian disturbance. Regarding the Lévy driven returns discussed in Example 2, we simulate

price processes with Blumenthal–Getoor index β ∈ {2, 1.5, 1}, which correspond to instances of
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Cauchy process C, a general Lévy process L, and a Brownian motion W . Specifically, we focus on

the following three data generating processes:

DGP 3 : Yi∆n = ∆−1
n

(∫ (i+1)∆n

i∆n

µsds+

∫ (i+1)∆n

i∆n

σsdWs

)2

,

DGP 4 : Yi∆n = ∆−4/3
n

(∫ (i+1)∆n

i∆n

µsds+

∫ (i+1)∆n

i∆n

σsdLs

)2

,

DGP 5 : Yi∆n = ∆−2
n

(∫ (i+1)∆n

i∆n

µsds+

∫ (i+1)∆n

i∆n

σsdCs

)2

.

In forming these processes, we adopt a truncation technique analogous to the one employed in Bugni

et al. (2023) for stable distributions such that the normalized increment takes value in [−30, 30]
to avoid unrealistic price paths. The state process of interest is variance process (σ2t )t∈[0,T ], which

is estimated through conditional mean process for DGP 3, or through conditional median process

(i.e. χ = 1/2) analyzed in Section 2.4 for DGP 4 and 5. Additionally, we focus on DGP 6 which

serves as a representative illustration of Cox trading flow process discussed in Example 3:

DGP 6 : Yi∆n = N(i+1)∆n
−Ni∆n , where (Nt)t∈[0,T ] is a Cox process with intensity (µt)t∈[0,T ].

The state process of interest is the normalized intensity (µt)t∈[0,T ], which will be estimated through

conditional mean process.

Recall that we have two auxiliary processes µ and σ which serve as state processes in our

specified DGPs. In alignment with the conventional setting in existing literature, see, e.g., Jacod

et al. (2017) and Li and Linton (2022), we assume µ and c ≡ σ2 to follow these Ornstein–Uhlenbeck-

type processes

dµt = ρ(µ̄t − µt)dt+ ςdBt,

dct = κ(αt − ct)dt+ γ
√
ctdB

′
t,

where B and B′ are two independent Brownian motions. Following empirical results calibrated in

the literature, we choose two parameter configurations summarized in Table 1. Setting (a) is more

conservative comparing with setting (b), in the sense that µ is stationary, and c follows a Cox–

Ingersoll–Ross (CIR) model which has been extensively utilized to capture the volatility dynamics,

see, e.g., Cox et al. (1985) and Heston (1993). The parameters are chosen in accordance to Li and

Linton (2022). Setting (b) differs from the previous configuration in two aspects. First, the mean

processes µ̄ and α are time variant and exhibit systematic moves in time, which the literature

identifies as diurnal features. Namely, a nearly U-shaped pattern has been documented for both

intraday trading volume and volatility in real data, see Ito (2013), Christensen et al. (2018), and
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Table 1: Parameter Specification for the Simulation Study

Setting µ̄t ρ ς αt κ γ

(a) 1.2 8/252 1.25/252 0.04/252 5/252 0.05/252

(b) 1.2h(t) 4/252 2.5/252 0.04/252h(t) 4/252 0.1/252

Note: The table displays parameter configurations used in the simulation study. All

parameters are in their daily value as the fixed time span T = 1 has been normalized

to one trading day. Here h(t) ≡ 1 + 0.1 cos(2πt) is a U-shaped function to mimic the

diurnal feature.

Andersen et al. (2019).28 Moreover, state processes under setting (b) are more volatile than those

under the previous configuration, attributable to smaller mean reverting parameters and larger

variance magnitude. In summary, we have six types of DGPs in conjunction with two sets of

parameter configurations. The combination yields 6× 2 = 12 different DGPs for examination. For

notation clarity, we use DGP 1(a) to indicate DGP 1 equipped with parameter setting (a), and

similarly for other combinations.

For the observation scheme, we normalize T = 1 trading day, and consider two sampling

frequency, ∆n ∈ {1/390, 1/23400}, which correspond to 1-minute and 1-second data, respectively.

We stress that 1-second sampling frequency is not practically feasible for DGP 3-5 to hold in reality,

wherein the observed price in such high-frequency is contaminated by the so-called microstructure

noise, see, e.g., the discussion in Zhang et al. (2005). Empirical evidence such as a signature plot of

the realized volatility in relation to sampling frequency shows that noise component overshadows

when sampling scheme is “too fine,” typically less than 1 minute. Therefore, for DGP 3-5 we

exclusively consider 1-minute data, in which the effect of noise is inconsequential with respect to

returns of efficient price. Conversely, given our application of DGP 6 in empirical illustrations

wherein trading flow data is recorded at an ultra-high-frequency and where approximations could

falter with coarser sampling frequency, we exclusively consider 1-second data for DGP 6. The

selection of tuning parameter kn,j is described as follows. We partition observations into equal-

sized blocks, i.e. kn,j = kn for all 1 ≤ j ≤ mn. For 1-minute data, we adopt kn ∈ {20, 30, 40},
representing blocks of {20, 30, 40} minutes, respectively. The corresponding number of blocks

is mn ∈ {19, 13, 9}. For 1-second data, we adopt kn ∈ {300, 600, 1200}, representing blocks of

28The rationale from economic theory concerning these observed intraday pattern is provided in Admati and

Pfleiderer (1988) and Hong and Wang (2000), among others.
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{5, 10, 20} minutes, respectively. The corresponding number of blocks is mn ∈ {78, 39, 19}. All

the “continuous-time processes” are simulated using a Euler scheme with mesh size being 10−4

minute. The simulation is based on 10000 Monte Carlo draws. We examine the coverage rate

of 90% confidence bands constructed in accordance with (2.4) and (2.5) for conditional mean

processes and conditional median processes, respectively.

3.2 The Results

Table 2 shows the coverage rate of confidence bands (2.4) and (2.5) under our specified DGPs. In

the case where ∆n = 1/390, i.e. data is observed every one minute, not surprisingly, proposed

confidence bands perform bad when the number of observation in each block is small, say kn = 20,

especially for DGP 2(a) and 2(b). This is particularly due to the poor approximation of Gaussian

distribution for spot estimators in small sample. As kn becomes larger, coverage rates elevate

remarkably. For instance, when kn = 40, coverage rates are above 80% for all DGPs, with the

exception of 2(a) and 2(b). In the meantime, there is a considerable increment in time-variation

effects of state processes within each block as block size expands. Notably, coverage rates for

DGPs equipped with parameter setting (b) are generally lower than the same DGPs equipped

with parameter setting (a) when kn becomes larger. Intriguingly, coverage rates under DGP 5(a)-

5(b) are higher than those under 3(a) and 4(b), suggesting that the employment of conditional

quantile processes is particularly efficient when driving processes of price markedly deviate from

Brownian motions. For a higher sampling frequency, ∆n = 1/23400, where data is observed

every one second, coverage rates are above 85% for all DGPs when kn ≥ 600. Drawing a parallel

between results for DGP 1(a)-1(b) under column 1 and 7, both scenarios have a block length of 20

minutes and same number of blocks, i.e., time-variation effects are same. There is a substantial

improvement in convergence rate from ∆n = 1/390 to ∆n = 1/23400. Recall the Gaussian nature

of disturbance terms, each spot estimator maintains its Gaussianity in finite samples, hence the

only difference lies in sampling frequency. A similar comparison for 2(a)-2(b) indicates pointwise

approximation errors and time variation effects can be controlled simultaneously by adapting a

finer sampling scheme.

In summary, above simulation results show that proposed confidence bands aptly cover true

processes across all data generating processes aligned with an appropriate sampling frequency.

Although under certain DGPs they appear to have poor performance when the number of ob-

servations in each block is insufficient, this problem can be effectively addressed by adapting a

larger block size with a finer sampling scheme. These simulation results stress that the proposed
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Table 2: Coverage Rate of Uniform Confidence Band

∆n = 1/390 ∆n = 1/23400

DGP kn = 20 kn = 30 kn = 40 kn = 300 kn = 600 kn = 1200

1(a) 0.7253 0.8257 0.8113 0.8907 0.8933 0.8937

1(b) 0.7166 0.8254 0.8058 0.8824 0.8834 0.8841

2(a) 0.6271 0.7339 0.7212 0.8115 0.8654 0.8829

2(b) 0.6223 0.7303 0.7191 0.7996 0.8580 0.8792

3(a) 0.7268 0.8311 0.8308 − − −

3(b) 0.7295 0.8339 0.8290 − − −

4(a) 0.7744 0.8147 0.8304 − − −

4(b) 0.7858 0.8044 0.8282 − − −

5(a) 0.8823 0.8916 0.8949 − − −

5(b) 0.8809 0.8912 0.8915 − − −

6(a) − − − 0.8585 0.8868 0.8905

6(b) − − − 0.8628 0.8782 0.8890

Note: The table reports the coverage rates of a 90%-level confidence band computed

according to (2.4) for DGP 1(a)-4(b), DGP 7(a), and 7(b), according to (2.5) for

DGP 5(a)-6(b). Column 2-4 correspond to 1-minute data, column 5-7 correspond

to 1-second data. Note that some results are omitted with dash signs (−), which
indicates the sampling frequency is not practically appropriate for certain models

to hold true in real observed data.
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inference method remains robust in contexts analogous to market settings. Moreover, in order

to achieve better performance of proposed inference procedures, one should employ the highest

justifiable sampling frequency and choose block sizes carefully in a suitable range to mitigate time

variation effects in state processes.

4 Empirical Illustration

4.1 Detecting Information Flows during FOMC Speeches

The Federal Open Market Committee (FOMC) announcement, accompanied by the subsequent

press conference held by chair of the Federal Reserve, currently Jerome Powell, plays a pivotal role

in disseminating Fed decisions and conveying information pertinent to future financial policy. On

each pre-scheduled date and time, Fed issues an official statement that summarizes the committee’s

assessment of U.S. economy, its policy decisions, and the rationale behind those decisions. In

particular, the statement provides insights into committee’s outlook on inflation, employment,

and other economic indicators. The release of this official document usually has a significant

market impact, see, e.g., Cochrane and Piazzesi (2002), Rigobon and Sack (2004), Bernanke and

Kuttner (2005), and Nakamura and Steinsson (2018). In addition, Savor and Wilson (2014), Lucca

and Moench (2015), and Bollerslev et al. (2021) also found evidence of pre-announcement effects

of the initial release. On the other hand, with more accurate volatility estimation, Bollerslev

et al. (2023) found that announcements of new policy decision may not cause the most substantial

shocks during FOMC days, especially when corresponding policy changes are well anticipated by

the market.29 In that case, information embedded with forward guidance, which can be used to

forecast future financial policies, tends to have a more pronounced market impact.

In conjunction with FOMC statements, Fed holds a press conference which usually starts

30 minutes after the initial release and lasts about 60 minutes. The press conference provides

an opportunity for Powell to elaborate on FOMC’s decision-making process, provide additional

context, and address questions from media. It allows for a more in-depth discussion of committee’s

views on the economy and financial policy. During press conferences, Powell inevitably reveals

some (possibly subtle) forward guidance, more precisely, information about the expected path of

monetary policy in the future. Such information may include hints about potential changes in

interest rates, the balance sheet, or other policy tools. The aim is to offer transparency and help

29For instance, market predicted probabilities of changes to the Fed rate and monetary policy are reported

on FedWatch website (https://www.cmegroup.com/markets/interest-rates/cme-fedwatch-tool.html), which is

provided by CME Group and updated at a daily frequency.
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market participants anticipate Fed’s future actions.

Pinpointing the exact sentences in press conferences that provide additional information regard-

ing forward guidance, however, is a challenging task. Since each sentence in the press conference

is typically spoken within a few seconds, this rapid succession of sentences and limited time span

of each sentence makes it difficult to isolate their individual impact on market volatility. Namely,

analyzing volatility changes at second level requires examining ultra-high-frequency data, such

as tick-by-tick price. That being said, ultra-high-frequency price data is often subject to mi-

crostructure noise, which distorts the identification of precise volatility patterns, see, e.g., Zhang

et al. (2005). To mitigate the impact of noise on volatility analysis, existing procedures such as

Barndorff-Nielsen et al. (2008), Jacod et al. (2009), and Kristensen (2010) often use increasing

number of return observations, hence have to employ wider estimation windows. This, however,

makes it more involved to detect specific volatility patterns within seconds.

Utilizing textual analysis on the conference scripts is another approach to studying FOMC

press conferences. With developing natural language processing (NLP) methods, textual analysis

algorithms have found prevalent application in economics and finance, as discussed in Gentzkow

et al. (2019) and Loughran and McDonald (2020). Nonetheless, in the formal announcing scenario

like FOMC meetings, conventional NLP methods based on experiences might exhibit consider-

able inaccuracies. To better understand this possible limitation of stand-alone textual analysis,

we deploy an algorithm to score each sentence by the level of forward guidance it carries. The

assessment of forward guidance levels is based on a combination of factors such as the presence

of specific trigger keywords and phrases that are commonly associated with forward guidance, the

clarity of future policy intentions, and the level of details provided about future actions. To this

end, we use Generative Pre-trained Transformer (ChatGPT) 3.5,30 an expansive language model

pioneered by OpenAI, to extract features that could be essential signals indicating a high level of

forward guidance.31 Below is a brief overview of features the algorithm takes into account:

Trigger Keywords and Phrases: Certain keywords and phrases are strong indicators of for-

ward guidance, including words that refer to future actions, intentions, or plans, such as “expect,”

“anticipate,” “will be appropriate,” “likely,” “plan,” and so on.

Level of Detail: Sentences that provide specific details about future policy actions are more

30ChatGPT 3.5 was trained with data up to September 2021, hence has no knowledge beyond that cutoff. This

ensures that extracted features are intrinsically rooted in the in-context learning procedure, without “sneak peek” at

contemporaneous market activities. Even so, the same analysis performed with ChatGPT 4 yields a similar result.
31Recently, Hansen and Kazinnik (2023) showed GPT models deliver a considerable improvement in determining

sentences in FOMC statements as “dovish” or “hawkish”, over other commonly used classification methods.
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informative, including the announcement of specific interest rate changes, plans for balance sheet

reduction, or discussions about future meetings.

Clarity and Directness: Sentences that clearly state the course of future monetary policy

are given higher scores. The more direct and unambiguous the statement is, the more likely it is

to be a clear form of forward guidance.

Contextual Analysis: The overall context of each sentence and how it fits within the whole

speech matters. This includes patterns and consistency in the language used to convey future

policy intentions.

Quantitative and Qualitative Aspects: Both quantitative aspects (e.g., specific percent-

ages or values) and qualitative aspects (e.g., intentions, expectations) are assessed.

Comparative Analysis: The comparison of each sentence with other sentences within the

speech is considered to obtain a relative ranking of strength in forward guidance. This takes into

account the range of guidance provided throughout the speech.

For illustrative purposes, we present the following two sentences extracted from May 4, 2022

speech, offering contrasting levels of forward guidance based on above features.

Against the backdrop of the rapidly evolving economic environment, our policy has been

adapting, and it will continue to do so. 14:34:15-14:34:23

Assuming that economic and financial conditions evolve in line with expectations, there

is a broad sense on the Committee that additional 50-basis-point increases should be on

the table at the next couple of meetings. 14:34:50-14:35:04

The algorithm then computes a weighted averaged scores of aforementioned aspects. Note that

this algorithm is designed to identify potential forward guidance purely based on linguistic patterns

and context, where scores are indicative rather than definitive. The assessment also accounts for

variations in language and communication styles, so it may represent a nuanced interpretation of

forward guidance strength in the given context. Based on this algorithm, we can partition each

speech into five groups, indicates the possible level of forward guidance contained in each sentence:

Very Low No forward guidance or very limited forward guidance

Low General mention of current economic situation, no clear future policy intentions

Medium Some specific indications about future policy intentions, but not very clear

High Clear and specific forward guidance about future policy intentions

Critical Very strong and specific forward guidance about future policy intentions
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Figure 2: Trading Intensities and Relative Information Levels during FOMC Press

Conference Speeches. The figure plots one-second trading intensities during eight FOMC press

conference speeches in 2022. The horizontal axis is colored according to the relative information

level embedded in potential forward guidance contained in each sentence, which is computed using

the algorithm described in this section. The color bar is shown at the bottom, and is determined

by RGBα =
(
s/5, 1− s/5, 1− s/5, (s/5)1.25

)
where s denotes the information level in the scale of

1 to 5, with 1 being “very low,” 5 being “critical.”
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We apply the above textual analysis procedure to eight press conference speeches on the FOMC

announcement days last year. The proportion of sentences marked as “very low,” “low,” “medium,”

“high,” and “critical” information level are 8.4%, 10.3%, 43.7%, 37.4%, 0.2%, respectively. This

indicates that there are about 80% of speeches has been designated to carry medium or high level of

information. To gain a direct insight on the accuracy of this procedure, we mark relative informa-

tion level and estimated trading intensities in the same timeline, to conduct a visual comparison.

For trading flows, we use nanosecond-level data of S&P 500 ETF (ticker: SPY), downloaded from

Trade and Quote (TAQ) database. We estimate second-level trading intensities during each FOMC

press conference speech, i.e. ∆n = 1/(2.34× 1013), kn = 109 so that kn∆n = 1 sec corresponds to

one-second block. In Figure 2, we plot estimated trading intensities during the press conference

speeches, and colored each horizontal line in the gradient spectrum such that sentences with low-

est information level (i.e., labeled “very low”) tend to be transparent green, where sentences with

highest information level (i.e., labeled “critical”) tend to be red. As Figure 2 shows, there are large

amount of informative sentences following by barely no intensity variation, indicating the market

has no reactions to them.

Next, we delve deeper into the textual analysis outcomes, exploring trading intensities across

categorized groups. Considering potential reactive latency between information arrivals and corre-

spondent trading actions, we shift observation windows to the right, spanning lags as {0, 1, . . . , 19}
seconds. Figure 3 illustrates the dispersion of trading intensities across different groups for various

lags, together with medians and means with each group. We further conduct Welch’s t-tests to

determine if sentences identified with a higher information level truly exhibit an elevated trading

intensity. The results indicate that, even under the best case (i.e., a 14 seconds lag), where the

group labeled “critical” has significantly higher intensity than other groups, we cannot conclusively

negate the possibility of no significant distinctions among all other four groups.

The main inherent challenge of pure textual analysis approaches stems from the carefully crafted

nature of speech scripts and potential overlaps between successive press conferences. The language

used in FOMC press conference scripts is often meticulously chosen to avoid causing sudden market

shocks. Consequently, detecting specific keywords or phrases that could potentially trigger market

reactions may not yield significant insights, given the scripts are designed to convey information

while maintaining stability and avoiding unnecessary shocks. Moreover, press conference speeches

tend to have recurring themes and structures, resulting in similarities between successive scripts,

as visually shown in Figure 4. Namely, we characterize the speech at time ti as a set Ati of

individual sentences, and gauge similarities by computing Jaccard similarity coefficients (Jaccard
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Figure 3: Distribution of Intensity with Different Information Levels. The figure plots the

kernel density estimation of trading intensities with different relative information level embedded in

the potential forward guidance contained in each sentence, which is determined using the algorithm

described in this section. In each panel, we shift the window by several seconds to take account

the effect of market reaction time between information arrivals and tradings. The color of each

line follows the same rule as in Figure 2, the median and the mean of each group are marked in ×
and ◦ sign, respectively.
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Figure 4: Similarity of FOMC Press Conference Speeches. The figure plots the overlapping

ratio between different speeches. The overlapping ratio is defined as logStype
i,j , where type ∈

{pw, cm}. In the left panel, Spw
i,j is the pairwise Jaccard similarity index, defined as the number

of pairwise overlapping sentences between speeches at date ti and tj divided by the total number

of sentences. In the right panel, Scm
i,j is the cumulative Jaccard similarity index, defined as the

number of cumulative overlapping sentences between speeches within {ti, . . . , tj} divided by the

total number of sentences. Exact numbers of pairwise and cumulative overlapping sentences are

displayed in each square.

(1912)) between these sets,32

S(At1 , . . . , Atn) ≡
|
∩n
i=1Ati |

|
∪n
i=1Ati |

.

The repetition of certain phrases or topics have two-sided effects. Obviously, it will diminish

their impact on market expectations over time. On a flip side, a nuance in language of these

topics could result in a considerable market effect. Textual analysis techniques that focus solely

on keyword detection might identify familiar terms without considering market’s prior knowledge

of their significance, hence tend to overestimate the market impact of those sentences.

To establish a reference for the “true” information level predicated on actual market reactions,

we partition speeches in accordance with estimated trading intensities. Specifically, on each day,

we conduct the joint testing procedure proposed in Section 2.5, and construct a 90% confidence

set for ranks of all second-level intensities. Based on this results, we can partition each speech

into groups G ∈ {1, . . . , G} via the following algorithm: First, we permute indices such that

ĝπ(1) ≤ ĝπ(2) ≤ · · · ≤ ĝπ(mn). Starting from π(1), which initiates the first group G = 1, if

R̂ankn
(
π(j +1)

)
∩ R̂ankn

(
π(1)

)
̸= ∅, then π(j +1) belongs to the same group as π(1); otherwise,

32Alternatively, one can use Szymkiewicz–Simpson coefficient S′(At1 , . . . , Atn) ≡ |
∩n

i=1 Ati |/
∧n

i=1 |Ati |, the re-

sults are similar given that the lengths of speeches under consideration do not exhibit significant difference.
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π(j + 1) initiates a new group G ← G + 1. Repeats until the last second j = mn. In Figure 5,

we present a heatbar of speeches according to the trading intensity and color it in the same way

such that groups with lowest intensity tends to be transparent light green, groups with highest

intensity tends to be red. The resulting pieces marked as “very low,” “low,” “medium,” “high,”

and “critical” information level are 51.1%, 34.6%, 11.6%, 2.3%, 0.4%, respectively. Comparing

with the outcomes given by pure textual analysis, around 80% of these speeches actually impart

minimal information, as evidenced by low trading intensities. Most of them are repeated sentences

across consecutive speeches, which theoretically, should not disseminate any novel information after

their debut. Meanwhile, on the contrary, we detect more sentences that are markedly informative.

In conclusion, the comparison result suggests stand-alone NLP methods overstates the in-

formation level of individual sentence, and in the meantime fails to accurately identify the most

informative parts, indicating that NLP methods tend to smooth out true information flows. This is

driven by the in-context learning nature of our task, i.e., no “training sample” is provided. There-

fore, the classification is solely based on ChatGPT’s pre-existing knowledge, hence the intrinsic

Bayes classifier method gives mediocre scores to most sentences based on its inherent prior, which

is improper for analyzing these scripts. On the other hand, our intensity-based analysis based on

proposed uniform inference procedure offers a compliment to NLP methods. One can refine textual

analysis procedures by deploying a supervised learning, i.e., utilize the intensity-level-labeled text

as training samples in order to obtain a more accurate classification.33

4.2 Case Study

Next, we conduct a case study to better illustrate preceding findings, opting for specific sentences

from these speeches that stand out as high level of information about forward guidance and followed

with considerable intensity spikes. The first sentence is a shift in tone about longer-term inflation

expectations that presents a double twist, first mentioned in the September conference:

[A] Despite elevated inflation, longer-term inflation expectations appear to remain

well anchored, as reflected in a broad range of surveys of households, businesses, and

forecasters as well as measures from financial markets. But that is not grounds for

complacency; the longer the current bout of high inflation continues, the greater the

chance that expectations of higher inflation will become entrenched.

The first twist offers an optimistic note: even though the prevailing inflation remains not fully

33See, e.g., Table 4 in Hansen and Kazinnik (2023), where the mean-absolute-error of fine-tuned model (supervised

learning) is nearly half of that of zero-shot model (in-context learning) in classifying the policy stances of Fed speeches.
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controlled, there exists empirical evidence suggesting that longer-term inflation is effectively an-

chored. After that, a second twist makes additional comments that this situation is not yet ripe

for complacency, rendering the entire statement more balanced. Top panel of Figure 5 illustrates

there are two succeeding trading intensity spikes a few seconds after these twist indications. The

second sentence of interest sounds more assertive and supports the second twist of sentence [A],

which is also first mentioned during the September conference:

[B] The historical record cautions strongly against prematurely loosening policy.

Another intensity spike is observed several seconds after sentence [B]. Interestingly, aforementioned

sentences [A] and [B] recur in both November and December conferences. On the contrary, these

repetitions do not elicit similar intensity spikes. In fact, the bottom panel of Figure 5 indicates

an overall absence of significant trading spikes during the December conference. This observation

aligns with the result shown in Figure 4 that approximately half of the December speech mirrors

exact content from preceding conferences. This coincides with the intuition that new information

occurs only when it is introduced for the first time. After this immediate reaction, market quickly

accepts it and subsequent repetitions of the same sentence are lack of novelty.

During the September conference, inquiries emerged concerning Fed’s consideration of variable

lags in inflation. This stemmed from the apprehensions that reported inflation was not accurately

reflecting real-time economic conditions, and that the prevailing interest rate was overly elevated.

In response to these concerns, Fed incorporates specific remarks about such lags in both the official

statement and press conference speech:

[C] That’s why we say in our statement that in determining the pace of future increases

in the target range, we will take into account the cumulative tightening of monetary

policy and the lags with which monetary policy affects economic activity and inflation.

As shown in the middle panel of Figure 5, there is also a considerable intensity spike shortly after

sentence [C]. In the same speech, upon mentioning short-term appropriateness of decelerating the

pace of rate hikes as it is near a level sufficiently restrictive to realign inflation with the 2 percent

target, Powell acknowledged the uncertainty about that specific interest rate level and concludes

with:

[D] Even so, we still have some ways to go, and incoming data since our last meeting

suggest that the ultimate level of interest rates will be higher than previously expected.

Above sentence [D], although not definitive, is followed by a substantial intensity shock, as shown

in the middle panel of Figure 5. Given projections released in the September meeting, market
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anticipation was an additional 75bps increase in November, followed by a deceleration in December.

The shock stems from the revelation that incoming data after September might imply a trajectory

towards a higher level than market initially expects.

4.3 Impact of Twitter on Cryptocurrency Markets

We provide another empirical application to highlight the importance of employing quantiles in

addressing specific problems. As an active participant in cryptocurrency market,34 the impact of

Elon Musk’s tweets on cryptocurrency market has been extensively examined, see, e.g., Shen et al.

(2019), Tandon et al. (2021), and Ante (2023). Notably, while these studies reveal substantial

effects of tweets on the trading volumes of various cryptocurrencies, price effects are statistically

significant only in the case of Dogecoin-related tweets, with barely no considerable impact on Bit-

coin. Recent evidence in Kolokolov (2022) shed light on this phenomenon, showing that estimated

jump activity index of Bitcoin is strictly less than 2, i.e., Bitcoin price is driven primarily by a pure

jump process. Consequently, realized variances computed in the usual way becomes diverging,35

and the detection of abnormal returns, as well as associated t-tests, would be invalid.

As discussed in Section 2.4, a feasible measurement for price volatile level can be constructed

using quantile. To better illustrate this point further, we conduct an event study employing the

same set of tweets investigated by studied in Ante (2023). These tweets, posted by Elon Musk

between January 2020 and July 2021, are either directly or indirectly related to Bitcoin. For

each event, we estimate the blockwise level of volatile Vj of (log) BTC/USD prices in the same

day. We consider two proxies for this volatile level: Vj,1 ≡ qj(0.5), representing the median, and

Vj,2 ≡ qj(0.75) − qj(0.25), representing the interquantile range. To assess the price impact, we

jointly test whether price volatile level in the block immediately following the tweet significantly

deviates from those in other blocks. Formally, the null hypotheses and associated alternatives are

defined as

H
(i)
j : Vj∗,i = Vj,i against K

(i)
j : Vj∗,i ̸= Vj,i,

where i ∈ {1, 2}, 1 ≤ j ≤ mn with j ̸= j∗, and j∗ indexes the first block starting at the time when

the tweet is posted. The length of each block was selected to be one and two hours, corresponding

to mn = 24 and 12, receptively. The test is performed using pairwise t-type statistics similar to

the method outlined in Section 2, and the critical value is computed using Bootstrap.

34Namely, Tesla invested $1.5 billion in Bitcoin during the first quarter of 2021, as indicated in the annual report

of Tesla, Inc., U.S. Securities and Exchange Commission (https://www.sec.gov/Archives/edgar/data/1318605/

000156459021004599/tsla-10k_20201231.htm).
35Recall the second moment of normalized Lévy increments has an order of ∆

2/β−1
n .
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Figure 5: Trading Intensity during FOMC Press Conference Speeches. The figure shows

the heatbar of estimated trading intensities during FOMC press conference speeches on September

21, November 2, and December 14 in 2022, arranged from the top panel to the bottom panel,

respectively. On each of these dates, a 90% confidence set of joint ranks is constructed using

Algorithm 1 proposed in section 2.5. Further, each speech was partitioned into groups using the

strategy described in this section. The heatbar is colored according to group structure by the rule

RGBα =
(
G/G, 1 − G/G, 1 − G/G, (G/G)1.25

)
so that the color of each group remains the same

as in Figure 2. The duration of target sentences are shaded light gray in each panel, where primes

in the label indicate repetitions.
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Table 3 presents the test statistics along with their corresponding significance levels. Comparing

to the results obtained from the conventional mean-based t-test as presented in Ante (2023), we

find evidence that a larger number of events exhibit a significant impact on the Bitcoin price.

Namely, within a 2-hour horizon, twelve out of the fourteen tweets yield a significant price impact,

in contrast to only four that can be identified using the t-test based on abnormal returns. As

mentioned before, this disparity can be attributed to the potential divergence in return variance,

rendering the conventional t-test invalid. Meanwhile, we stress that the result remains robust when

considering different proxies for measuring the volatile level, highlighting the significance of our

quantile-based inference procedure.
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Table 3: Event Study Results for BTC/USD Price

1 Hour (mn = 24) 2 Hours (mn = 12)

No. Time & Date Tweet t-stat. Med. IQR t-stat. Med. IQR

1 07:53 Jan 10, 2020 Bitcoin is not my safe word -0.88 1.81 0.01 -0.78 8.82*** 6.02***

2 09:21 Dec 20, 2020 Bitcoin is my safe word -0.46 0.20 1.10 -1.18 1.43 1.49

3 09:22 Jan 29, 2021 In retrospect, it was inevitable (Twitter bio change) 1.94* 1.24 2.98** 1.76 9.87*** 4.68***

4 08:18 Feb 10, 2021 This is true power haha (picture about Bitcoin) -0.51 0.80 1.14 0.36 0.92 1.58

5 00:42 Feb 21, 2021 Cryptocurrency explained (link to a video) 1.62 1.89 1.04 2.16* 6.13*** 2.50*

6 18:50 Mar 02, 2021 Scammers & crypto should get a room 0.43 0.99 2.45 0.56 11.04*** 7.48***

7 19:58 Mar 12, 2021 BTC (Bitcoin) is an anagram of TBC (The Boring Company) -0.95 0.29 0.15 -1.18 6.26*** 11.72***

8 08:02 Mar 24, 2021 You can now buy a Tesla with Bitcoin 1.17 0.46 0.14 1.63 4.55*** 3.07**

9 00:06 May 13, 2021 Tesla & Bitcoin (picture about suspending Bitcoin) -0.91 3.03** 3.11** -1.84* 2.95** 4.14***

10 11:54 May 13, 2021 Energy usage trend over past few months (picture for Bitcoin) -0.12 0.98 3.87*** 0.46 6.45*** 4.30***

11 16:42 May 19, 2021 Tesla has [diamond] [hands] 1.83* 2.12 1.31 2.69** 2.35* 6.90***

12 21:42 May 24, 2021 Spoke with North American Bitcoin miners 0.74 0.97 0.49 0.42 3.23** 3.60***

13 03:07 Jun 04, 2021 #Bitcoin [brokenheart] (picture of a couple’s conversation) -1.50 0.39 1.42 -1.58 3.46*** 5.88***

14 04:10 Jun 25, 2021 How many Bitcoin maxis does it take to screw in a lightbulb? -0.21 0.57 0.96 0.28 4.75*** 3.06**

Note: The table includes mean-based t-statistics of abnormal returns in 1- and 2-hour window after 14 Bitcoin-related tweets by Elon Musk studied in

Ante (2023). For each window, associated statistic of testing whether there is significant change in volatile level of price with the rest windows in the

same trading day, computed using median squared return qj(0.5) (resp. interquantile range qj(0.75)− qj(0.25)) is reported in the second (resp. third)

column, where *, **, *** indicate significance at 10%, 5% and 1% level.
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5 Concluding Remarks

We introduce a valid methodology for conducting inference on a general continuous-time state-

space model over a fixed time span. Through the inclusion of a residual term, we allow the model

to be “approximately Markovian.” Notably, this model accommodates Lévy-driven returns and

Cox trading flow processes. We allow for undefined dynamics in state processes, and propose

uniform inference procedure for both entire conditional mean processes and entire conditional

quantile processes of transformed states.

To construct functional estimators for the investigated processes, we gather all spot estimates

with the local block size that shrinks to zero. The challenge of conducting uniform inference for

these functional estimators arises from their non-Donsker nature. To address this, we establish

Gaussian strong approximation, enabling valid uniform inference. These results can also be applied

to tackle other econometric problems, such as constructing confidence sets for the ranks of spot

values of studied processes.

We apply the proposed inference procedure to analyze trading flow processes and detect infor-

mative sentences from the FOMC press conference speeches. Our method allows for a comparison

of trading intensity at a one-second level, enabling precise identification of speech segments con-

taining valuable information. This inference procedure complements existing methodologies, such

as volatility-based detection mechanisms and traditional textual analysis tools. Additionally, we

apply this procedure to assess the impact of Elon Musk’s tweets on cryptocurrency markets, a sce-

nario where mean-based tests might falter due to heavy-tailed returns. Results obtained through

quantile-based measurements of volatility levels indicate a substantial price impact over an ex-

tended time window following tweet postings.
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Appendix: Proofs

Throughout the proofs, we use K and K ′ to denote some positive constants that may change

from line to line, and write Kp to emphasize its dependence on some parameter p. In order to

make a distinction, we use M to denote some positive constant defined in the context which is

hold fixed across lines. For notation simplicity, we denote Ln ≡ log(∆−1
n ).

A.1 Proofs for Section 2.3

Proof of Theorem 1. By a standard localization procedure (see, e.g., Section 4.4.1 in Jacod and

Protter (2012) for a detailed discussion of localization procedure), we can strengthen Assumption

1 by assuming T1 =∞, Km = K, and Km = K for some fixed compact set K and constant K > 0.

That is, it suffices to prove the results under Assumption A.1.

Assumption A.1. There exist a positive constant K, and a compact subset K ⊂ Z such that:

(i) ζ takes value in K; for all s, t ∈ Tn,j where 1 ≤ j ≤ mn, and for each p > 0, E[∥ζt − ζs∥p] ≤
Kp|t− s|p/2 for some constant Kp; (ii) for all z, z′ ∈ K with z ̸= z′, Var

(
Y (z, ε)

)−1
+ ∥Y (z, ε)−

Y (z′, ε)∥L2/∥z − z′∥ ≤ K; (iii) for all x > 0 and z ∈ K, Pε
(
|Y (z, ε)| ≥ x

)
≤ K exp{−(x/K)1/η}

for some η > 0; (iv) max1≤i≤n |Rn,i| = op(∆
r
n) for some r > 0.

Consequently, we have ζ globally takes values in the compact set K and is 1/2-Hölder continuous

under the Lp norm within each block. Denote Gp(·) ≡
∫
D Y (·, ε)pPε(dε), we have for all z ∈

K, Var
(
Y (z, ε)

)
= G2(z) − G2

1(z) is bounded away from zero. Note that by Theorem 2.1 in

Vladimirova et al. (2020), Assumption A.1(iii) implies for all p ≥ 1, Gp(z) is bounded from above

by Kp uniformly over z ∈ K, and by a maximal inequality (see, e.g., Lemma 2.2.2 in van der Vaart

and Wellner (1996)),

sup
z∈K

∥∥∥ max
1≤j≤mn

Y (z, εj)
∥∥∥
Lp

≤ Kp(logmn)
η ≤ KpL

η
n. (A.1)

We prove the validity of the assertion in the theorem for all positive ϵ satisfying

ϵ <
ρ

6
∧
(1
6
− ρ

3

)
∧
(r
3
− ρ

6

)
.

Note that such values of ϵ exist due to the assumption that ρ ∈ (0, 2r ∧ 1/2). Correspondingly, we
fix some positive γ constant satisfying

2ε < γ <
(1
2
− ρ− ϵ

)
∧
(
r − ρ

2
− ϵ
)
,
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which is possible given the requirement of ϵ. To facilitate our analysis, we introduce some additional

notations. For 1 ≤ j ≤ mn and 1 ≤ i ≤ kn,j , denote

Ỹi,j ≡ Y (ζτ(i,j), εn,ι(i,j))− gτ(i,j),

σ2n,j ≡
1

kn,j

kn,j∑
i=1

(
G2(ζτ(i,j))− g2τ(i,j)

)
Note that by the above construction, the variables Ỹi,j are F (0)-conditionally independent across

different values of i and j, with zero mean and conditional variance given by G2(ζτ(i,j)) − g2τ(i,j).
Furthermore, we define the infeasible sup-t statistic as

T̃ ∗
n ≡ max

1≤j≤mn

∣∣∣∣ 1√
kn,j

kn,j∑
i=1

Ỹi,j
σn,j

∣∣∣∣.
The proof is divided into three parts. In Step 1, we establish that T̂ ∗

n can be strong approximated

by T̃ ∗
n in the following sense:

P(|T̂ ∗
n − T̃ ∗

n | > δn) ≤ K∆ϵ
n, (A.2)

for some real sequence satisfying δn → 0 and δn
√
Ln ≤ K∆ϵ

n. In Step 2, we construct (Zj)1≤j≤mn

and prove the validity of the following inequality for T̃ ∗
n :

sup
x∈R

∣∣∣P(T̃ ∗
n ≤ x)− P

(
max

1≤j≤mn

|Zj | ≤ x
)∣∣∣ ≤ K∆ϵ.

n (A.3)

Step 3 concludes the proof by establishing the asserted statement.

Step 1. Note that we can rewrite T̂ ∗
n = max1≤j≤mn supt∈Tn,j

|
√
kn,j(ĝn,j − gt)/σ̂n,j |. By simple

algebra we can verify that |(a− b)/c− a/d| ≤ |d/c− 1| × |(a− b)/d|+ |b/d|. Recall equation (2.1),

the proof of this step thus relies on the following decomposition

|T̂ ∗
n − T̃ ∗

n | ≤ max
1≤j≤mn

∣∣∣∣σn,jσ̂n,j
− 1

∣∣∣∣× max
1≤j≤mn

∣∣∣∣ 1√
kn,j

kn,j∑
i=1

Ỹi,j
σn,j

∣∣∣∣+ max
1≤j≤mn

|An,j |, (A.4)

where for 1 ≤ j ≤ mn, An,j ≡ A
(I)
n,j + A

(II)
n,j with

A
(I)
n,j ≡

1√
kn,j

kn,j∑
i=1

Rn,ι(i,j)

σn,j
,

A
(II)
n,j ≡ sup

t∈Tn,j

1√
kn,j

kn,j∑
i=1

gτ(i,j) − gt
σn,j

.
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Note that by Assumption A.1(ii) and the definition of σn,j , we have 1/K ≤ σn,j ≤ K for all

1 ≤ j ≤ mn. Then Assumption A.1(iv), together with kn,j ≍ ∆−ρ
n , implies that

max
1≤j≤mn

|A(I)
n,j | ≤ K∆−ρ/2

n max
1≤i≤n

|Rn,i| = op(∆
r−ρ/2
n ) = op(∆

ϵ+γ
n ). (A.5)

Note that Assumption A.1(ii) implies function G1(·) is Lipschitz since by the triangle inequality

and the Hölder inequality |G1(z) − G1(z
′)| ≤ ∥Y (z, ε) − Y (z′, ε)∥L2 . Also note that mn ≍ ∆ρ−1

n

by kn,j ≍ ∆−ρ
n , applying a maximal inequality, we have∥∥∥ max
1≤j≤mn

A
(II)
n,j

∥∥∥
Lp

≤ Kpm
1/p
n max

1≤j≤mn

√
kn,j(kn,j∆n)

1/2 ≤ Kp∆
(ρ−1)/p+1/2−ρ
n . (A.6)

Taking p > (1− ρ)/(1/2− ρ− ϵ− γ), the right-hand side becomes o(∆ϵ+γ
n ). Then combining (A.5)

and (A.6), it follows the triangle inequality and the Hölder inequality that

max
1≤j≤mn

|An,j | ≤ max
1≤j≤mn

|A(I)
n,j |+ max

1≤j≤mn

|A(II)
n,j | = op(∆

ϵ+γ
n ). (A.7)

For 1 ≤ j ≤ mn and 1 ≤ i ≤ kn,j , denote

σ̃2n,j ≡
1

kn,j

kn,j∑
i=1

Ỹ 2
i,j −

(
1

kn,j

kn,j∑
i=1

Ỹi,j

)2

.

Equation (A.5) and (A.6) also yield max1≤j≤mn |σ̂n,j − σ̃n,j | = op(∆
ϵ+γ
n ). Recall σn,j is bounded

below by 1/K uniformly for all 1 ≤ j ≤ mn, by the triangle inequality, this implies

max
1≤j≤mn

∣∣∣∣ σ̂n,jσn,j
−1
∣∣∣∣ ≤ max

1≤j≤mn

∣∣∣∣ σ̃n,jσn,j
−1
∣∣∣∣+K max

1≤j≤mn

|σ̂n,j−σ̃n,j | ≤ max
1≤j≤mn

∣∣∣∣ σ̃n,jσn,j
−1
∣∣∣∣+op(∆ϵ+γ

n ). (A.8)

Let k̄n ≡ max1≤j≤mn kn,j , then k̄n ≍ ∆−ρ
n and 1/K ≤ k̄n/kn,j ≤ K uniformly for all 1 ≤ j ≤ mn.

For each 1 ≤ i ≤ k̄n and 1 ≤ j ≤ mn, define Ũi,j and vi,j as follows:

Ũi,j ≡

√
k̄n
kn,j

Ỹi,j
σn,j

1{1 ≤ i ≤ kn,j},

vi,j ≡
k̄n(G2(ζτ(i,j))− g2τ(i,j))

kn,jσ2n,j
1{1 ≤ i ≤ kn,j}.

By construction the variables Ũi,j remain F (0)-conditionally independent across different values of

1 ≤ i ≤ k̄n and 1 ≤ j ≤ mn with zero mean and conditional variance vi,j . Note that

σ̃2n,j
σ2n,j
− 1 =

(
1

kn,j

kn,j∑
i=1

Ỹ 2
i,j

σ2n,j
− 1

)
−
(

1

kn,j

kn,j∑
i=1

Ỹi,j
σn,j

)2

=

(
1

k̄n

k̄n∑
i=1

Ũ2
i,j − 1

)
−
(

1

k̄n

k̄n∑
i=1

Ũi,j

)2

.
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Also note that by simple algebra we can verify that for positive a, |
√
a− 1| = |a− 1|/(

√
a+ 1) ≤

|a− 1|, then we can deduce

P

(
max

1≤j≤mn

∣∣∣∣ σ̃n,jσn,j
− 1

∣∣∣∣ > x

∣∣∣∣∣F (0)

)
≤ P

(
max

1≤j≤mn

∣∣∣∣ 1k̄n
k̄n∑
i=1

Ũ2
i,j − 1

∣∣∣∣ > x

2

∣∣∣∣∣F (0)

)

+P

(
max

1≤j≤mn

∣∣∣∣ 1k̄n
k̄n∑
i=1

Ũi,j

∣∣∣∣ >√x

2

∣∣∣∣∣F (0)

)
. (A.9)

For the first term, noting that by Assumption A.1(ii), we have

max
1≤j≤mn

kn,j∑
i=1

E[Ũ4
i,j |F (0)] ≤ K max

1≤j≤mn

kn,j∑
i=1

G4(ζτ(i,j)) ≤ K∆−ρ
n .

By (A.1), we can further deduce for each 1 ≤ i ≤ k̄n,

E
[

max
1≤j≤mn

Ũ4
i,j

∣∣∣F (0)
]
≤ K sup

z∈K
E
[

max
1≤j≤mn

Y (z, εn,ι(i,j))
4
]
≤ KL4η

n . (A.10)

Then by a maximal inequality, we obtain

E
[
max

1≤i≤k̄n
max

1≤j≤mn

Ũ4
i,j

∣∣∣F (0)
]
≤ K∆−ρ

n L4η
n .

Observing that by the definition of vi,j and σn,j , we can verify k̄−1
n

∑k̄n
i=1 E[Ũ2

i,j |F (0)] = k̄−1
n

∑k̄n
i=1 vi,j =

σn,j/σn,j = 1. Then by Lemma 8 in Chernozhukov et al. (2015), we obtain

E

[
max

1≤j≤mn

∣∣∣∣ 1k̄n
k̄n∑
i=1

Ũ2
i,j − 1

∣∣∣∣
∣∣∣∣∣F (0)

]
≤ K(∆ρ/2

n

√
Ln +∆ρ/2

n L1+2η
n ).

Therefore, a Fuk–Nagaev type inequality (see Theorem 4 in Einmahl and Li (2008)) implies that

for every x > 0,

P

(
max

1≤j≤mn

∣∣∣∣ 1k̄n
k̄n∑
i=1

Ũ2
i,j − 1

∣∣∣∣ > K∆ρ/2
n L1+2η

n + x

∣∣∣∣∣F (0)

)
≤ exp{−K ′x2∆−ρ

n }+K ′x−2∆ρ
nL

4η
n .

Taking x ≍ ∆
ρ(1−ϖ)/2
n L2η

n where 0 < ϖ < 1, the right-hand side is bounded by exp{−K∆−ρϖ
n L4η

n }+
K∆ρϖ

n ≤ K ′∆ρϖ
n . Consequently, we have

P

(
max

1≤j≤mn

∣∣∣∣ 1k̄n
k̄n∑
i=1

Ũ2
i,j − 1

∣∣∣∣ > K∆ρ(1−ϖ)/2
n L1+2η

n

∣∣∣∣∣F (0)

)
≤ K ′∆ρϖ

n . (A.11)

45



Similarly, noting that k̄−1
n

∑k̄n
i=1 E[Ũi,j |F (0)] = 0 and by (A.10) together with a maximal inequality,

we have E[max1≤i≤kn max1≤j≤mn Ũ
2
i,j |F (0)] ≤ K∆

−ρ/2
n L2η

n . Applying Lemma 8 in Chernozhukov

et al. (2015) again, we can obtain

E

[
max

1≤j≤mn

∣∣∣∣ 1k̄n
k̄n∑
i=1

Ũi,j

∣∣∣∣
∣∣∣∣∣F (0)

]
≤ K(∆ρ/2

n

√
Ln +∆3ρ/4

n L1+η
n ). (A.12)

Then the Fuk–Nagaev type inequality implies that for every x > 0,

P

(
max

1≤j≤mn

∣∣∣∣ 1k̄n
k̄n∑
i=1

Ũi,j

∣∣∣∣ > K(∆ρ/2
n L1+η

n ) + x

∣∣∣∣∣F (0)

)
≤ exp{−K ′x2∆−ρ

n }+K ′x−4∆3ρ
n L

4η
n .

Taking x ≍ ∆
ρ/4
n Lηn, the right-hand side is bounded by exp{−K∆

−ρ/2
n L2η

n } + K∆2ρ
n ≤ K ′∆2ρ

n .

Consequently, we have

P

(
max

1≤j≤mn

∣∣∣∣ 1k̄n
k̄n∑
i=1

Ũi,j

∣∣∣∣ > K∆ρ/4
n L1+η

n

∣∣∣∣∣F (0)

)
≤ K ′∆2ρ

n . (A.13)

Combining (A.9), (A.11) and (A.13), noting that ρ(1−ϖ)/2 < ρ/2, by the law of iterated expec-

tation, for all ϖ ≥ ϵ/ρ, we obtain

P
(

max
1≤j≤mn

∣∣∣∣ σ̃n,jσn,j
− 1

∣∣∣∣ > K∆ρ(1−ϖ)/2
n L1+2η

n

)
≤ K ′∆ϵ

n.

Also note that |a − 1| ≤ x/(x + 1) implies |a−1 − 1| ≤ x, combining the above inequality with

(A.8), we conclude that for ϖ > (ϵ/ρ) ∨ (1− 2γ/ρ),

P
(

max
1≤j≤mn

∣∣∣∣σn,jσ̂n,j
− 1

∣∣∣∣ > K∆ρ(1−ϖ)/2
n L1+2η

n

)
≤ K ′∆ϵ

n. (A.14)

Moreover, recall (A.12) and the definition of Ũi,j , by the law of iterated expectation and the Markov

inequality, for all ϖ < 1− 4ϵ/ρ, we can show

P
(

max
1≤j≤mn

∣∣∣∣ 1√
kn,j

kn,j∑
i=1

Ỹi,j
σn,j

∣∣∣∣ > K∆p(ϖ−1)/4
n

√
Ln

)
≤ K ′∆ϵ

n, (A.15)

Combining (A.4), (A.7), (A.14), and (A.15), by the Markov inequality, the desired inequality (A.2)

follows by taking

δn ≍ ∆ρ(1−ϖ)/2
n L1+2η

n ×∆ρ(ϖ−1)/4
n

√
Ln = ∆ρ(1−ϖ)/4

n L3/2+2η
n ,

where (ϵ/ρ) ∨ (1 − 2γ/ρ) < ϖ < 1 − 4ϵ/ρ, such ϖ exists since ϵ/ρ < 1/6 and 2ϵ < γ. Note that

the choice of sequence δn satisfies δn → 0 and δn
√
Ln ≤ K∆ϵ

n. This completes the proof of Step 1.
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Step 2. For each 1 ≤ i ≤ k̄n and 1 ≤ j ≤ 2mn, we define Ũ †
i,j as

Ũ †
i,j ≡ Ũi,j1{1 ≤ j ≤ mn} − Ũi,j−mn1{mn + 1 ≤ j ≤ 2mn}.

Observing that by the definition of T̃ ∗
n and Ũ †

i,j , we can rewrite

T̃ ∗
n ≡ max

1≤j≤mn

∣∣∣∣ 1√
kn,j

kn,j∑
i=1

Ỹi,j
σn,j

∣∣∣∣ = max
1≤j≤mn

∣∣∣∣ 1√
k̄n

k̄n∑
i=1

Ũi,j

∣∣∣∣ = max
1≤j≤2mn

1√
k̄n

k̄n∑
i=1

Ũ †
i,j .

Recall that (Ũi,j)1≤i≤k̄n,1≤j≤mn
are F (0)-conditionally independent, centered random variables. Let

(Z̃i,j)1≤i≤k̄n,1≤j≤mn
be a sequence of F (0)-conditionally independent, centered Gaussian random

variables with conditional variance E[Z̃2
i,j |F (0)] = E[Ũ2

i,j |F (0)] = vi,j . Further, for each 1 ≤ i ≤ k̄n

and 1 ≤ j ≤ 2mn, let

Z̃†
i,j ≡ Z̃i,j1{1 ≤ j ≤ mn} − Z̃i,j−mn1{mn + 1 ≤ j ≤ 2mn},

which implies E[Z̃†
i,jZ̃

†
i′,j |F

(0)] = E[Ũ †
i,jŨ

†
i′,j |F

(0)] for all 1 ≤ i, i′ ≤ k̄n and 1 ≤ j ≤ 2mn. The proof

of this part relies on a conditional version of Gaussian approximations for maxima of sums, see

Chernozhukov et al. (2013).

Generally, the bound in the conditional approximation may depend on ζ, hence some specific

random variable K(0) involved in F (0). In our case, since by Assumption A.1(i), ζ takes value

in a compact set, the bound obtained in the approximation can be universal. This universality

property ensures that, after applying the law of iterated expectation, the bound obtained from the

Gaussian approximation remains the same.

Note that Assumption A.1(ii) implies, for p ∈ {3, 4}, and 1 ≤ j ≤ 2mn,

1

k̄n

k̄n∑
i=1

E[|Ũ †
i,j |

p|F (0)] ≤ Kp
1

kn,j

kn,j∑
i=1

Gp(ζτ(i,j))/σ
p
n,j ≤ Kp.

Combining with Assumption A.1(iii) and (A.10), by Proposition 2.1 in Chernozhukov et al. (2017),

we obtain for all ϵ < ρ/6 that

sup
x∈R

∣∣∣∣∣P(T̃ ∗
n ≤ x|F (0))− P

(
max

1≤j≤2mn

1√
k̄n

k̄n∑
i=1

Z̃†
i,j ≤ x

∣∣∣∣F (0)

)∣∣∣∣∣
≤ K(∆ρ/6

n L7/6+η/3
n +∆ρ/6

n L1+2η/3
n ) ≤ K∆ϵ

n.

For 1 ≤ j ≤ mn, define Zj ≡ k̄−1/2
n

∑k̄n
i=1 Z̃i,j . Recalling the definition of Z̃i,j and σn,j , we conclude

(Z1, Z2, . . . , Zmn)
⊤|F (0) ∼ N (0, Imn).
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Since the right hand side is a pivot, (Zj)1≤j≤mn remains standard Gaussian unconditionally, hence

satisfies the requirement in the assertion. Note that by construction we have

max
1≤j≤2mn

1√
k̄n

k̄n∑
i=1

Z̃†
i,j = max

1≤j≤mn

∣∣∣∣ 1√
k̄n

k̄n∑
i=1

Z̃i,j

∣∣∣∣ = max
1≤j≤mn

|Zj |.

Equation (A.3) then follows by applying the law of iterated expectation. This completes the proof

of our second step.

Step 3. We are now ready to prove the assertion of Theorem 1. Combining the results in

(A.2) and (A.3), we observe that

sup
x∈R

(
P(T̂ ∗

n ≤ x)− P
(

max
1≤j≤mn

|Zj | ≤ x
))

≤ P(|T̂ ∗
n − T̃ ∗

n | > δn) + sup
x∈R

(
P(T̃ ∗

n ≤ x+ δn)− P
(

max
1≤j≤mn

|Zj | ≤ x+ δn

))
+sup
x∈R

P
(
x < max

1≤j≤mn

|Zj | ≤ x+ δn

)
≤ K∆ϵ

n,

where the last term is bounded by K∆ϵ
n using the anti-concentration inequality (see Corollary 2.1

in Chernozhukov et al. (2015)), together with the fact that

E
[

max
1≤j≤mn

|Zj |
]
≤ K

√
Ln,

and δn
√
Ln ≤ K∆ϵ

n by construction of δn. Similarly, we can show

sup
x∈R

(
P
(

max
1≤j≤mn

|Zj | ≤ x
)
− P(T̂ ∗

n ≤ x)
)
≤ K∆ϵ

n.

This competes the proof of required statement. Q.E.D.

A.2 Proofs for Section 2.4

For notation simplicity, we suppress the dependence on χ and write q̂n,j(χ) as q̂n,j and qt(χ) as

qt. Further denote qn,j ≡ qτ(1,j) and fn,j(x) ≡ fτ(1,j)(x). By a standard localization procedure, we

can strengthen Assumption 2 by assuming T1 =∞, Km = K, and Km = K for some fixed compact

set K and positive constant K > 0. That is, it suffices to prove the results under Assumption A.2.

Assumption A.2. There exist a positive constant K, and a compact subset K ⊂ Z such that:

(i) ζ takes value in K; for all s, t ∈ Tn,j where 1 ≤ j ≤ mn, and for each p > 0, E[∥ζt − ζs∥p] ≤
Kp|t − s|p/2 for some constant Kp; (ii) for each x ∈ R, for all z, z′ ∈ K, |F (z, x) − F (z′, x)| ∨
|∂xF (z, x) − ∂xF (z′, x)| ≤ K∥z − z′∥; (iii) for each t ∈ [0, T ] and x in some neighborhood of qt,

ft(x) + f−1
t (x) + |∂xft(x)| < K; (iv) max1≤i≤n |Rn,i| = op(∆

r
n) for some r > 0.
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The proof of Theorem 2 is based on a uniform Bahadur type representation of infill sample

quantiles, where the approximation error can be controlled uniformly, as shown in the following

lemma.

Lemma A.1 (Uniform Bahadur Representation). Suppose Assumption A.2 holds. For 1 ≤ j ≤
mn, denote

q̃n,j ≡ qn,j +
√
χ(1− χ)
fn,j(qn,j)

1

kn,j

kn,j∑
i=1

F (ζτ(i,j), qn,j)− 1{Y (ζτ(i,j), εn,ι(i,j)) ≤ qn,j}√
F (ζτ(i,j), qn,j)

(
1− F (ζτ(i,j), qn,j)

) .

Then we have for each χ ∈ (0, 1), and for some positive ϵ and γ,

P
(

max
1≤j≤mn

√
kn,j |q̂n,j − q̃n,j | > K∆γ

n

)
≤ K ′∆ϵ

n.

Proof of Lemma A.1. We prove the validity of the assertion for all positive ϵ and γ such that

ϵ+ γ <
ρ

4
∧
(1
2
− ρ
)
∧
(
r − ρ

2

)
.

Let Ỹi,j ≡ Y (ζτ(i,j), εn,ι(i,j)), within each block j reindex the sequence (Ỹi,j)1≤i≤kn,j
in the non-

decreasing order and denote as Ỹ o
1,j ≤ · · · ≤ Ỹ o

kn,j ,j
. Note that in each block, there are at least

⌈kn,jχ⌉ of Ỹi,j no larger than Y o
⌈kn,jχ⌉,j + maxi∈In,j |Rn,i|, which implies Ỹ o

⌈kn,jχ⌉,j ≤ Y o
⌈kn,jχ⌉,j +

maxi∈In,j |Rn,i|. Similarly, there are at least kn,j − ⌈kn,jχ⌉ of Ỹi,j no smaller than Y o
⌈kn,jχ⌉,j −

maxi∈In,j |Rn,i|, which implies Ỹ o
⌈kn,jχ⌉,j ≥ Y

o
⌈kn,jχ⌉,j−maxi∈In,j |Ri|. Therefore, assumption A.2(iv)

implies that

max
1≤j≤mn

√
kn,j |ĝn,j − Ỹ o

⌈kn,jχ⌉,j | ≤ K∆−ρ/2
n max

1≤i≤n
|Rn,i| = op(∆

r−ρ/2
n ) = op(∆

ϵ+γ
n ). (A.16)

For each 1 ≤ j ≤ mn, let F̃n,j(x) ≡ k−1
n,j

∑kn,j

i=1 1{Ỹi,j ≤ x} be the empirical distribution function of

(Ỹi,j)1≤i≤kn,j
. The rest of the proof is divided into three steps. In Step 1, we show that the averaged

distribution function k−1
n,j

∑kn,j

i=1 F (ζτ(i,j), ·) can be well approximated by the empirical distribution

function F̃n,j(·) in some small neighborhood of true quantile qn,j , uniformly over 1 ≤ j ≤ mn. In

Step 2, we show that with large probability, the sample quantile Ỹ o
⌈kn,jχ⌉,j falls in the neighborhood

described in Step 1 for all 1 ≤ j ≤ mn. Step 3 derives the asserted statement.

Step 1. For 1 ≤ j ≤ mn, denote

Sn,j(x) ≡ F̃n,j(x)− F̃n,j(qn,j)−
1

kn,j

kn,j∑
i=1

(
F (ζτ(i,j), x)− χ

)
. (A.17)
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For any set A ⊆ R, denote Sn,j(A) ≡ supx∈A |Sn,j(x)|. Let κ1,n ≍ ∆
ρ/2
n Ln be a positive real

sequence, and let κ2,n ≍ ∆
−ρ/4
n be a positive integer sequence, denote interval In,j ≡ (qn,j −

κ1,n, qn,j + κ1,n). For any integer ℓ, let ψn,j(ℓ) ≡ qn,j + κ1,nκ−1
2,nℓ, denote interval In,j(ℓ) ≡

[ψn,j(ℓ), ψn,j(ℓ + 1)], then we have In,j ⊆
∪κ2,n−1
ℓ=−κ2,n

In,j(ℓ). Note that both F̃n,j(·) and F (z, ·) are
nondecreasing functions, we have for x ∈ In,j(ℓ),

Sn,j(x) ≤ F̃n,j
(
ψn,j(ℓ+ 1)

)
− F̃n,j(qn,j)−

1

kn,j

kn,j∑
i=1

(
F (ζτ(i,j), ψn,j(ℓ))− χ

)
≤ Sn,j

(
ψn,j(ℓ+ 1)

)
+ ϑn,j(ℓ),

where

ϑn,j(ℓ) ≡
1

kn,j

kn,j∑
i=1

F
(
ζτ(i,j), ψn,j(ℓ+ 1)

)
− 1

kn,j

kn,j∑
i=1

F
(
ζτ(i,j), ψn,j(ℓ)

)
.

Similarly, we also have Sn,j(x) ≥ Sn,j
(
ψn,j(ℓ)

)
− ϑn,j(ℓ). Denote ϑ̄n,j ≡ max−κ2,n≤ℓ≤κ2,n−1 ϑn,j(ℓ).

Then it follows the definition of In,j that

Sn,j(In,j) ≤ Sn,j
( ψ2,n−1∪
ℓ=−ψ2,n

In,j(ℓ)

)
≤ max

−κ2,n≤ℓ≤κ2,n

∣∣Sn,j(ψn,j(ℓ))∣∣+ ϑ̄n,j . (A.18)

For the second term, note that |ψn,j(ℓ) − qn,j | ≤ κ1,n → 0 for |ℓ| ≤ κ2,n. Then by Assumption

A.2(iii) and the mean value theorem, recall that γ < ρ/4− ϵ, we have for n sufficiently large,

max
1≤j≤mn

√
kn,jϑ̄n,j ≤ K max

1≤j≤mn

max
−κ2,n≤ℓ≤κ2,n−1

√
kn,j |ψn,j(ℓ+ 1)− ψn,j(ℓ)|

= Kκ1,nκ−1
2,n max

1≤j≤mn

√
kn,j

≤ K∆ρ/4
n Ln ≤ K∆ϵ+γ

n . (A.19)

For the first term in the right-hand side of (A.18), first consider a fixed 1 ≤ j ≤ mn. For each

−κ2,n ≤ ℓ ≤ κ2,n, let
(
ξi,j(ℓ)

)
1≤i≤kn,j

be a sequence of F (0)-conditionally independent, Bernoulli

random variables with parameter
(
|F (ζτ(i,j), ψn,j(ℓ)) − F (ζτ(i,j), qn,j)|

)
1≤i≤kn,j

respectively. Let

Ξn,j(ℓ) ≡
∑kn,j

i=1 ξi,j(ℓ) denote their convolution. Note that by construction and (A.17),

kn,j
∣∣Sn,j(ψn,j(ℓ))∣∣ L|F(0)

=

∣∣∣∣Ξn,j(ℓ)− kn,j∑
i=1

(
F (ζτ(i,j), ψn,j(ℓ))− χ

)∣∣∣∣.

50



In view of above equation, by the triangle inequality, we have for all x ∈ R,{
max

1≤j≤mn

max
−κ2,n≤ℓ≤κ2,n

√
kn,jSn,j

(
ψn,j(ℓ)

)
≥ x

}
⊆
{

max
1≤j≤mn

max
−κ2,n≤ℓ≤κ2,n

1√
kn,j

∣∣∣∣Ξn,j(ℓ)− kn,j∑
i=1

(
F (ζτ(i,j), ψn,j(ℓ))− F (ζτ(i,j), qn,j)

)∣∣∣∣ ≥ x

2

}

∪
{

max
1≤j≤mn

1√
kn,j

kn,j∑
i=1

|F (ζτ(i,j), qn,j)− χ| ≥
x

2

}
=
{

max
1≤j≤mn

max
−κ2,n≤ℓ≤κ2,n

B
(I)
n,j(ℓ) ≥

x

2

}
∪
{

max
1≤j≤mn

B
(II)
n,j ≥

x

2

}
, (A.20)

where for 1 ≤ j ≤ mn and −κ2,n ≤ ℓ ≤ κ2,n,

B
(I)
n,j(ℓ) ≡

1√
kn,j

∣∣∣∣Ξn,j(ℓ)− kn,j∑
i=1

(
F (ζτ(i,j), ψn,j(ℓ))− F (ζτ(i,j), qn,j)

)∣∣∣∣,
B

(II)
n,j ≡ 1√

kn,j

kn,j∑
i=1

|F (ζτ(i,j), qn,j)− χ|.

For the second term, note that Assumption A.2(iii) implies for each t ∈ [0, T ], ft(x) is Lipschitz in

some neighborhood of qt, and F (ζt, ·) has no mass at qt, hence F (ζt, qt) = χ by the definition of

qt. Therefore, we deduce

P(|qt − qs| > x) ≤ P(qt − qs > x) + P(qs − qt > x)

≤ P
(
F (ζt, qs + x) < χ

)
+ P

(
F (ζs, qt + x) < χ

)
≤ P

(
F (ζs, qs + x)−K∥ζs − ζt∥ < χ

)
+ P

(
F (ζt, qt + x)−K∥ζs − ζt∥ < χ

)
≤ 2P

(
∥ζs − ζt∥ > Kx

)
, (A.21)

where the second line is by the fact that F (z, x) is increasing in x, the third line is by Assumption

A.2(ii). Also note that by Fubini’s theorem E[Xp] =
∫∞
0 pxp−1P(X > x)dx for nonnegative random

variable X. Therefore, it follows Assumption A.2(i) and (A.21) that the instantaneous conditional

quantile process q is also 1/2-Hölder continuous under the Lp-norm. Then by a maximal inequality,

we have ∥∥∥ max
1≤j≤mn

B
(II)
n,j

∥∥∥
Lp

≤ Kpm
1/p
n max

1≤j≤mn

√
kn,j(kn,j∆n)

1/2 ≤ Kp∆
(ρ−1)/p+1/2−ρ
n .

Taking p > (1 − ρ)/(1/2 − ρ − ϵ − γ), the right-hand side becomes o(∆ϵ+γ
n ). Therefore, by the

Markov inequality and the law of iterated expectation, we conclude that

P
(

max
1≤j≤mn

B
(II)
n,j ≥ K∆γ

n

)
≤ K ′∆ϵ

n. (A.22)
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For the first term inside the max operator in the right-hand side of (A.20), by the Bernstein

inequality (see, e.g., bound (2.13) under Theorem 3 of Hoeffding (1963)), we have for all x ∈ R+,

P
(√

kn,jB
(I)
n,j(ℓ) ≥ x

∣∣F (0)
)
≤ 2 exp

{
− x2/2∑kn,j

i=1

∣∣F (ζτ(i,j), ψn,j(ℓ))− F (ζτ(i,j), qn,j)∣∣+ x

}
. (A.23)

According Assumption A.2(iv), we can choose and fix a positive constantM1 such that ∂xF (ζt, qt) <

M1 for all t ∈ [0, T ]. Then by the definition of ψn,j(ℓ), we have

kn,j∑
i=1

∣∣F (ζτ(i,j), ψn,j(ℓ))− F (ζτ(i,j), qn,j)∣∣ ≤M1kn,jκ1,n. (A.24)

Note that the right-hand side bound of above equation is deterministic and does note depend on

ℓ. Therefore, combining (A.23) and (A.24), we can conclude that

P
(

max
−κ2,n≤ℓ≤κ2,n

B
(I)
n,j(ℓ) ≥M2∆

ρ/4
n Ln

∣∣∣F (0)
)
≤

κ2,n∑
ℓ=−κ2,n

P
(
B

(I)
n,j(ℓ) ≥M2∆

ρ/4
n Ln

∣∣F (0)
)

≤ 4κ2,n exp

{
− M2

2kn,j∆
ρ/2
n L2

n/2

M1kn,jκ1,n +M2

√
kn,j∆

ρ/4
n Ln

}
.

Let On(M1,M2) denote the right-hand side bound of the above display. Note that by the definition

of κ1,n, as ∆n → 0 (or equivalently, as n→∞), we have

log
(
On(M1,M2)

)
log n

→ ρ

4
− M2

2

2M1
.

Taking M2 >
√
2M1(1 + ρ/4), the above limit is less than −1. By the property of Harmonic

p-series, this implies
∑∞

n=1 O(M1,M2) <∞. Then by the Borel–Cantelli lemma, we conclude that

P
(
lim sup
n→∞

max
−κ2,n≤ℓ≤κ2,n

B
(I)
n,j(ℓ) ≥M2∆

ρ/4
n Ln

∣∣∣F (0)
)
= 0.

Note that γ < ρ/4− ϵ, then by the law of iterated expectation, we have for n sufficiently large

P
(

max
1≤j≤mn

max
−κ2,n≤ℓ≤κ2,n

B
(I)
n,j(ℓ) ≥ K∆γ

n

)
≤

mn∑
j=1

P
(

max
−κ2,n≤ℓ≤κ2,n

B
(I)
n,j(ℓ) ≥M2∆

ρ/4
n Ln

)
= 0. (A.25)

Combining (A.18)-(A.22), and (A.25), we conclude that

P
(

max
1≤j≤mn

√
kn,j Sn,j(In,j) ≥ K∆γ

n

)
≤ K ′∆ϵ

n. (A.26)
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Step 2. Recall the definition of Ỹ o
⌈kn,jχ⌉,j and F̃n,j(·), for each 1 ≤ j ≤ mn, we have Ỹ

o
⌈kn,jχ⌉,j ≤

pn,j − κ1,n if and only if kn,jF̃n,j(qn,j − κ1,n) ≥ ⌈kn,jχ⌉. Therefore,

{∃1 ≤ j ≤ mn such that Ỹ o
⌈kn,jχ⌉,j ≤ pn,j − κ1,n}

=
{

max
1≤j≤mn

(
kn,jF̃n,j(qn,j − κ1,n)− ⌈kn,jχ⌉

)
≥ 0
}
. (A.27)

Let (ξ′i,j) be a sequence of F (0)-conditionally independent, Bernoulli random variables with pa-

rameter
(
F (ζτ(i,j), qn,j−κ1,n)

)
1≤i≤kn,j

respectively. Let Ξ′
n,j ≡

∑kn,j

i=1 ξ
′
i,j denote their convolution.

By the construction, we have

kn,jF̃n,j(qn,j − κ1,n)
L|F(0)

= Ξ′
n,j . (A.28)

Note that Assumption A.2(i)-(iii) imply that

max
1≤i≤kn,j

|F (ζτ(i,j), qn,j − κ1,n)− χ| ≤M
(

max
1≤i≤kn,j

∥ζτ(i,j) − ζτ(1,j)∥+ κ1,n

)
.

Observe that in the right-hand side of above display, by Assumption A.2(i), we have∥∥∥ max
1≤j≤mn

max
1≤i≤kn,j

(ζτ(i,j) − ζτ(1,j))
∥∥∥
Lp

≤ Kpm
1/p
n max

1≤j≤mn

(kn,j∆n)
1/2 ≤ Kp∆

(ρ−1)/p+(1−ρ)/2
n . (A.29)

Taking p > (1 − ρ)/(1/2 − ρ − ϵ), the right-hand side becomes o(κ1,n∆
ϵ
n). Let En,1 be the event

such that

En,1 ≡
{

max
1≤j≤mn

max
1≤i≤kn,j

∥ζτ(i,j) − ζτ(1,j)∥ < κ1,n

}
.

Therefore, from (A.29), by the Markov inequality and the law of iterated expectation, we conclude

that P(E∁
n,1) ≤ K∆ϵ

n. In view of (A.28), and noting that max1≤j≤mn(⌈kn,jχ⌉ − kn,jχ) < 1, we can

rewrite {
max

1≤j≤mn

(
kn,jF̃n,j(qn,j − κ1,n)− ⌈kn,jχ⌉

)
≥ 0
}
∩ En,1

⊆
{

max
1≤j≤mn

(
Ξ′
n,j −

kn,j∑
i=1

F (ζτ(i,j), qn,j − κ1,n)

)
≥ 1− (M +K∆−ρ

n )κ1,n

}
∩ En,1

⊆
{

max
1≤j≤mn

(
Ξ′
n,j −

kn,j∑
i=1

F (ζτ(i,j), qn,j − κ1,n)

)
≥ −K∆−ρ

n κ1,n

}
∩ En,1.

For the term inside the max operator of above display, it follows the Bernstein inequality that

P
({

Ξ′
n,j −

kn,j∑
i=1

F (ζτ(i,j), qn,j − κ1,n) ≥ −K∆−ρ
n κ1,n

}
∩ En,1

∣∣∣∣F (0)

)

≤ exp

{
− (−K∆−ρ

n κ1,n)
2

2
(∑kn,j

i=1 F (ζτ(i,j), qn,j − κ1,n)−K∆−ρ
n κ1,n

)}.
≤ exp

{
−
K∆−2ρ

n κ2
1,n

2kn,jχ

}
,
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where the last line is by the fact that
∣∣∑kn,j

i=1 F (ζτ(i,j), qn,j − κ1,n) − kn,jχ
∣∣ ≤ K∆−ρ

n κ1,n on En,1.

Note that the expression inside the exponential operator has an order of ∆−2ρ
n κ2

1,n/∆
−ρ
n ≍ L2

n,

observing that
∫∞
0 exp{− log(x)2}dx < ∞, which implies the right-hand side is summable. Then

by the Borel–Cantelli lemma, we conclude that on the event En,1,

P
({

lim sup
n→∞

kn,jF̃n,j(qn,j − κ1,n) ≥ ⌈kn,jχ⌉
}
∩ En,1

∣∣∣F (0)
)
= 0.

Then by the law of iterated expectation, we have for n sufficiently large

P
({

max
1≤j≤mn

(
F̃n,j(qn,j − κ1,n)− ⌈kn,jχ⌉

)
≥ 0
}
∩ En,1

)
≤

mn∑
j=1

P
(
{(F̃n,j(qn,j − κ1,n)− ⌈kn,jχ⌉) ≥ 0} ∩ En,1

)
= 0. (A.30)

Combining (A.27) and (A.30) yields for n sufficiently large,

P({∃1 ≤ j ≤ mn such that Ỹ o
⌈kn,jχ⌉,j ≤ pn,j − κ1,n})

≤ P
({

max
1≤j≤mn

(
F̃n,j(qn,j − κ1,n)− ⌈kn,jχ⌉

)
≥ 0
}
∩ En,1

)
+ P(E∁

n,1)

≤ K∆ϵ
n. (A.31)

Following a similar argument as driving (A.31), we can also show

P(∃1 ≤ j ≤ mn such that Ỹ o
⌈kn,jχ⌉,j ≥ pn,j + κ1,n) ≤ K∆ϵ

n. (A.32)

Combining (A.31) and (A.32), recall the definition of In,j , we conclude that

P(Ỹ o
⌈kn,jχ⌉,j ∈ In,j for all 1 ≤ j ≤ mn) ≥ 1−K∆ϵ

n. (A.33)

Now, let En,2 be the event such that

En,2 ≡
{

max
1≤j≤mn

√
kn,j Sn,j(In,j) ≤ K∆γ

n

}
∩ {Ỹ o

⌈kn,jχ⌉,j ∈ In,j for all 1 ≤ j ≤ mn}.

Then (A.26) and (A.33) imply P(E∁
n,2) ≤ K ′∆ϵ

n. Recall that Assumption A.2(iii) implies ∂xfn,j(x)

is uniformly bounded over x ∈
∪mn
j=1 In,j for n sufficiently large. On the event En,2, by the second

order Taylor expansion, we have

max
1≤j≤mn

max
1≤i≤kn,j

√
kn,j

∣∣∣F (ζτ(i,j), Ỹ o
⌈kn,jχ⌉,j)− F (ζτ(i,j), qn,j)

− (Ỹ o
⌈kn,jχ⌉,j − qn,j)fτ(i,j)(qn,j)

∣∣∣ ≤ K∆−ρ/2
n κ2

1,n ≤ K∆γ
n. (A.34)

It follows Assumption A.2(ii) and (A.29) that

max
1≤j≤mn

max
1≤i≤kn,j

√
kn,j

(
|F (ζτ(i,j), qn,j)− χ|+ |fτ(i,j)(qn,j)− fn,j(qn,j)|

)
= op(∆

ϵ+γ
n ). (A.35)
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Combining (A.34) and (A.35) yields

P
({

max
1≤j≤mn

max
1≤i≤kn,j

√
kn,j

∣∣∣F (ζτ(i,j), Ỹ o
⌈kn,jχ⌉,j)− F (ζτ(i,j), qn,j)

− (Ỹ o
⌈kn,jχ⌉,j − qn,j)fn,j(qn,j)

∣∣∣ ≥ K∆γ
n

}
∩ En,2

)
≤ K ′∆ϵ

n. (A.36)

On the event En,2, by the definition of Sn,j , we have

max
1≤j≤mn

√
kn,j

∣∣∣∣⌈kn,jχ⌉kn,j
− F̃n,j(qn,j)−

1

kn,j

kn,j∑
i=1

(
F (ζτ(i,j), Ỹ

o
⌈kn,jχ⌉,j)

−F (ζτ(i,j), qn,j)
)∣∣∣∣ ≤ max

1≤j≤mn

√
kn,jSn,j(In,j) ≤ K∆γ

n. (A.37)

By simple algebra we have
√
kn,j |⌈kn,jχ⌉/kn,j − χ| ≤ k

−1/2
n,j ≤ K∆

ρ/2
n ≤ K∆γ

n. Combing with

(A.35)-(A.37), by the triangle inequality, we conclude that

P
(

max
1≤j≤mn

√
kn,j

∣∣∣∣Ỹ o
⌈kn,jχ⌉,j − qn,j −

1

fn,j(qn,j)

(
1

kn,j

kn,j∑
i=1

F (ζτ(i,j), qn,j)− F̃n,j(qn,j)
)∣∣∣∣ ≥ K∆γ

n

)
≤ P

({
max

1≤j≤mn

√
kn,j

∣∣∣∣Ỹ o
⌈kn,jχ⌉,j − qn,j −

1

fn,j(qn,j)

×
(

1

kn,j

kn,j∑
i=1

F (ζτ(i,j), qn,j)− F̃n,j(qn,j)
)∣∣∣∣ ≥ K∆γ

n

}
∩ En,2

)
+ P(E∁

n,2)

≤ K∆ϵ
n. (A.38)

Step 3. Combining (A.16) and (A.38), by the triangle inequality and the Markov inequality,

we obtain

P
(

max
1≤j≤mn

√
kn,j

∣∣∣∣q̂n,j − qn,j − 1

fn,j(qn,j)

1

kn,j

kn,j∑
i=1

(
F (ζτ(i,j), qn,j)− 1{Ỹi,j ≤ qn,j}

)∣∣∣∣ ≥ K∆γ
n

)
≤ P

(
max

1≤j≤mn

√
kn,j

∣∣∣∣Ỹ o
⌈kn,jχ⌉,j − qn,j −

1

fn,j(qn,j)

×
(

1

kn,j

kn,j∑
i=1

F (ζτ(i,j), qn,j)− F̃n,j(qn,j)
)∣∣∣∣ ≥ K∆γ

n

)
+P
(

max
1≤j≤mn

√
kn,j |ĝn,j − Ỹ o

⌈kn,jχ⌉,j | ≥ K∆γ
n

)
≤ K∆ϵ

n. (A.39)
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Recall |
√
a− 1| ≤ |a− 1| for positive a, note that by (A.29) and Assumption A.2(ii), we have

max
1≤j≤mn

max
1≤i≤kn,j

∣∣∣∣
√

χ(1− χ)
F (ζτ(i,j), qn,j)

(
1− F (ζτ(i,j), qn,j)

) − 1

∣∣∣∣
≤ max

1≤j≤mn

max
1≤i≤kn,j

∣∣∣∣F (ζτ(1,j), qn,j)
(
1− F (ζτ(1,j), qn,j)

)
F (ζτ(i,j), qn,j)

(
1− F (ζτ(i,j), qn,j)

) − 1

∣∣∣∣
≤ K max

1≤j≤mn

max
1≤i≤kn,j

∥ζτ(i,j) − ζτ(1,j)∥ = op(∆
ϵ+γ
n ). (A.40)

Combining (A.39) and (A.40) completes the proof of Lemma A.1. Q.E.D.

Proof of Theorem 2. We are now ready to prove strong approximation result for the functional

quantile estimator (q̂n,t)t∈[0,T ]. With a sightly stronger restriction on ϵ than in the proof of Lemma

A.1, we prove the validity of the assertion for all positive ϵ satisfying

ϵ <
ρ

6
∧
(1
2
− ρ
)
∧
(
r − ρ

2

)
.

Correspondingly, let γ be a positive constant satisfying

γ <
(ρ
4
− ϵ
)
∧
(1
2
− ρ− ϵ

)
∧
(
r − ρ

2
− ϵ
)
.

By the triangle inequality, we have

max
1≤j≤mn

sup
t∈Tn,j

√
kn,j |q̂n,t − qn,t| ≤ max

1≤j≤mn

sup
t∈Tn,j

√
kn,j |qn,j − qt|+ max

1≤j≤mn

√
kn,j |q̂n,j − q̃n,j |

+ max
1≤j≤mn

|q̃n,j − qn,j |. (A.41)

For the first term, by (A.21) and (A.29), we have

max
1≤j≤mn

sup
t∈Tn,j

√
kn,j |qn,j − qt| = op(∆

ϵ+γ
n ). (A.42)

Let k̄n ≡ max1≤j≤mn kn,j , then k̄n ≍ ∆−ρ
n and 1/K ≤ k̄n/kn,j ≤ K uniformly for all 1 ≤ j ≤ mn.

For each 1 ≤ i ≤ k̄n and 1 ≤ j ≤ mn, define Ũ i,j and νi,j as follows:

Ũ i,j ≡

√
k̄n
kn,j

√
χ(1− χ)
fn,j(qn,j)

F (ζτ(i,j), qn,j)− 1{Y (ζτ(i,j), εn,ι(i,j)) ≤ qn,j}√
F (ζτ(i,j), qn,j)

(
1− F (ζτ(i,j), qn,j)

) 1{1 ≤ i ≤ kn,j},

ν̃2i,j ≡
k̄n
kn,j

χ(1− χ)
fn,j(qn,j)2

1{1 ≤ i ≤ kn,j}.
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By construction the variables Ũ i,j are F (0)-conditionally independent across different values of

1 ≤ i ≤ k̄n and 1 ≤ j ≤ mn with mean zero and conditional variance ν̃2i,j . Note that

√
kn,j(q̃n,j − qn,j) =

1√
k̄n

k̄n∑
i=1

Ũ i,j , for 1 ≤ j ≤ mn.

Therefore, for each 1 ≤ i ≤ k̄n and 1 ≤ j ≤ 2mn, define Ũ
†
i,j as

Ũ
†
i,j ≡ Ũ i,j1{1 ≤ j ≤ mn} − Ũ i,j−mn1{mn + 1 ≤ j ≤ 2mn}.

We can thus rewrite

max
1≤j≤mn

√
kn,j |q̂n,j − qn,j | = max

1≤j≤2mn

1√
k̄n

k̄n∑
i=1

Ũ
†
i,j .

Let (Z̃i,j)1≤i≤k̄n,1≤j≤mn
be a sequence of centered mixed Gaussian variables with F (0)-conditional

variance E[Z̃
2

i,j |F (0)] = E[Ũ
2

i,j |F (0)] = ν̃2i,j . Further, for each 1 ≤ i ≤ k̄n and 1 ≤ j ≤ 2mn, let

Z̃
†
i,j ≡ Z̃i,j1{1 ≤ j ≤ mn} − Z̃i,j−mn1{mn + 1 ≤ i ≤ 2mn},

which implies E[Z̃i,jZ̃i′,j |F (0)] = E[Z̃i,jZ̃i′,j |F (0)] for all 1 ≤ i, i′ ≤ k̄n and 1 ≤ j ≤ 2mn. Recall

that the variables Ũ i,j are bounded, by Proposition 2.1 in Chernozhukov et al. (2017), we obtain

for all ϵ < ρ/6 that

sup
x∈R

∣∣∣∣∣P( max
1≤j≤mn

√
kn,j |q̃n,j−qn,j | ≤ x

∣∣∣F (0)
)
−P
(

max
1≤j≤2mn

1√
k̄n

k̄n∑
i=1

Z̃
†
i,j ≤ x

∣∣∣∣F (0)

)∣∣∣∣∣ ≤ K∆ϵ
n. (A.43)

For 1 ≤ j ≤ mn, define Zj ≡ k̄
−1/2
n

∑k̄n
i=1 Z̃i,j . Recalling the definition of Z̃i,j and ν̃i,j , we have

E[Z2
j |F (0)] = χ(1− χ)/fn,j(qn,j)2 ≡ ν2j for 1 ≤ j ≤ mn, hence

(Z1, . . . , Zmn)
⊤ ∼MN (0,diag{ν21 , . . . , ν2mn

}).

Also note that by construction we have

max
1≤j≤2mn

1√
k̄n

k̄n∑
i=1

Z̃
†
i,j = max

1≤j≤mn

∣∣∣∣ 1√
k̄n

k̄n∑
i=1

Z̃i,j

∣∣∣∣ = max
1≤j≤mn

|Zj |. (A.44)
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Therefore, it follows (A.41) and the triangle inequality that

sup
x∈R

(
P
(

max
1≤j≤mn

sup
t∈Tn,j

√
kn,j |q̂n,t − qt| ≤ x

)
− P

(
max

1≤j≤mn

|Zj | ≤ x
))

≤ P
(

max
1≤j≤mn

sup
t∈Tn,j

√
kn,j |qn,j − qt| > K∆γ

n

)
+ P

(
max

1≤j≤mn

√
kn,j |q̂n,j − q̃n,j | > K∆γ

n

)
+ sup

x∈R

(
P
(

max
1≤j≤mn

√
kn,j |q̃n,j − qn,j | ≤ x+ 2K∆γ

n

)
− P

(
max

1≤j≤mn

|Zj | ≤ x+ 2K∆γ
n

))
+ sup

x∈R
P
(
x < max

1≤j≤mn

|Zj | ≤ x+ 2K∆γ
n

)
≤ K∆ϵ

n,

where the first term is bounded by K∆ϵ
n using (A.42) and the Markov inequality, the second

term uses Lemma A.1, the third term is bounded by K∆ϵ
n using (A.43), (A.44) and the law of

iterated expectation, the last term is bounded by K∆ϵ
n using the anti-concentration inequality (see

Corollary 2.1 in Chernozhukov et al. (2015)), together with the fact that

E
[

max
1≤j≤mn

|Zj |
]
≤ K

√
Ln.

Similarly, we can show

sup
x∈R

(
P
(

max
1≤j≤mn

|Zj | ≤ x
)
− P

(
max

1≤j≤mn

sup
t∈Tn,j

√
kn,j |q̂n,t − qt| ≤ x

))
≤ K∆ϵ

n.

This competes the proof of required statement. Q.E.D.

A.3 Proofs for Section 2.5

Proof of Theorem 3. As mentioned in the main text, we prove a stronger result that the

statement in Theorem 3 holds for all Sn ⊂ Salln with |Sn| ≥ 3. Let Gn ≡ F (0) ∨ σ(Yi∆n : 1 ≤ i ≤ n)
denote the smallest σ-algebra contains F (0)∪σ(Yi∆n : 1 ≤ i ≤ n). Also, we strengthen Assumption

1 to Assumption A.1 by a using of Localization procedure. We prove assertions of the theorem for

positive ϵ satisfying

ϵ <
ρ

7
∧
(1
6
− ρ

3

)
∧
(r
3
− ρ

6

)
.

To facilitate our analysis, we adopt the notations from the proof of Theorem 1, and introduce some
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additional notations. For 1 ≤ i ≤ kn and (j, j′) ∈ Sn, denote

Vn,i(j, j
′) ≡ Yτ(i,j) − Yτ(i,j′),

Ṽn,i(j, j
′) ≡ Y (ζτ(i,j), εn,ι(i,j))− Y (ζτ(i,j′), εn,ι(i,j′)),

µn,i(j, j
′) ≡ gτ(i,j) − gτ(i,j′),

µ̄n(j, j
′) ≡ gn,j − gn,j′ ,

ςn(j, j
′)2 ≡ σ2n,j + σ2n,j′ .

Using above notations, we further define

Dn ≡ max
(j,j′)∈Sn

1√
kn

kn∑
i=1

Vn,i(j, j
′)− µn,i(j, j′)
ς̂n(j, j′)

,

D̃n ≡ max
(j,j′)∈Sn

1√
kn

kn∑
i=1

Ṽn,i(j, j
′)− µ̄n(j, j′)
ςn(j, j′)

,

D̂B
n ≡ max

(j,j′)∈Sn

1√
kn

kn∑
i=1

ei
(
Vn,i(j, j

′)− (ĝn,j − ĝn,j′)
)

ς̂n(j, j′)
= max

(j,j′)∈Sn

√
kn(ĝ

B
n,j − ĝBn,j′)

ς̂n(j, j′)
,

D̃B
n ≡ max

(j,j′)∈Sn

1√
kn

kn∑
i=1

ei
(
Ṽn,i(j, j

′)− (ĝn,j − ĝn,j′)
)

ςn(j, j′)
.

First, we compute the approximation bounds of these variables and their conditional quantiles.

Our analysis relies on the following decomposition of |Dn − D̃n|,

|Dn−D̃n| ≤ max
(j,j′)∈Sn

∣∣∣∣ ςn(j, j′)ς̂n(j, j′)
−1

∣∣∣∣×( max
(j,j′)∈Sn

∣∣∣∣ 1√
kn

kn∑
i=1

Ṽn,i(j, j
′)− µn,i(j, j′)
ςn(j, j′)

∣∣∣∣)+ max
(j,j′∈Sn)

|Cn(j, j′)|,

where for (j, j′) ∈ Sn, Cn(j, j′) ≡ C
(I)
n (j, j′) + C

(II)
n (j, j′) with

C(I)
n (j, j′) ≡ 1√

kn

kn∑
i=1

Rn,ι(i,j) −Rn,ι(i,j′)
ςn(j, j′)

,

C(II)
n (j, j′) ≡ 1√

kn

kn∑
i=1

µn,i(j, j
′)− µ̄n(j, j′)
ςn(j, j′)

.

By the triangle inequality and (A.6), for p > (1− ρ)/(1/2− ρ− ϵ− γ), we have∥∥∥∥ max
(j,j′)∈Sn

1√
kn

kn∑
i=1

(
µn,i(j, j

′)− µ̄n(j, j′)
)∥∥∥∥
Lp

≤ Kpm
1/p
n ∆1/2−ρ

n = o(∆ϵ+γ
n ). (A.45)

Then combing (A.5) and (A.45), it follows the triangle inequality again that

max
(j,j′)∈Sn

|Cn(j, j′)| ≤ max
(j,j′)∈Sn

|C(I)
n (j, j′)|+ max

(j,j′)∈Sn

|C(II)
n (j, j′)| = op(∆

ϵ+γ
n ). (A.46)
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Note that for positive a, b, c, d, we have a/b ≤ c/d implies a/b ≤ (a + c)/(b + d) ≤ c/d. Combing

with (A.14), we obtain that for ϵ/ρ ≤ ϖ < 1− 2γ/ρ,

P
(

max
(j,j′)∈Sn

∣∣∣∣ ςn(j, j′)ς̂n(j, j′)
− 1

∣∣∣∣ > K∆ρ(1−ϖ)/2
n L2η

n log(|Sn|)
)
≤ K ′∆ϵ

n. (A.47)

Combining (A.46) and (A.47), following the similar procedure as deriving (A.2), we can show that

P(|Dn − D̃n| > Kϱn) ≤ K ′∆ϵ
n, (A.48)

for some sequence ϱn ≍ ∆
ρ(1−ϖ)/4
n L2η

n log(|Sn|)3/2 where (ϵ/ρ) ∨ (1− 2γ/ρ) < ϖ < 1− 4ϵ/ρ. Note

that |Sn| ≤ mn(mn− 1) by construction. On the other hand, we have the following decomposition

of |D̂B
n − D̃B

n | as

|D̂B
n−D̃B

n | ≤ max
(j,j′)∈Sn

∣∣∣∣ ςn(j, j′)ς̂n(j, j′)
−1
∣∣∣∣×( max

(j,j′)∈Sn

1√
kn

kn∑
i=1

ei
(
Ṽn,i(j, j

′)− (ĝn,j − ĝn,j′)
)

ςn(j, j′)

)
+ max

(j,j′)∈Sn

|Dn(j, j
′)|,

(A.49)

where for (j, j′) ∈ Sn, Dn(j, j
′) ≡ k−1/2

n
∑kn

i=1 ei(Rn,ι(i,j)−Rn,τ(i,j′))/ςn(j, j′). Recall that (ei)1≤i≤kn
follows i.i.d. standard Gaussian distribution, hence max1≤i≤kn |ei|2 = Op(Ln) by the maximal

inequality. Applying the Cauchy–Schwartz inequality and combining with (A.46), we have

max
(j,j′)∈Sn

|Dn(j, j
′)| ≤

√
max

1≤i≤kn
|ei|2 × max

(j,j′)∈Sn

|C(I)
n (j, j′)|2 = op(∆

ϵ+γ
n

√
Ln). (A.50)

Let En,3 be the event such that

En,3 ≡
{

max
(j,j′)∈Sn

∣∣∣∣ ςn(j, j′)ς̂n(j, j′)
− 1

∣∣∣∣ ≤ ∆ρ(1−ϖ)/2
n L2η

n log(|Sn|)
}
∩
{

max
(j,j′)∈Sn

|Dn(j, j
′)| ≤ ∆γ/2

n

}
,

by (A.47), (A.50) and the Markov inequality, we have shown P(En,3) > 1−K ′∆ϵ
n. Note that con-

ditional on Gn, the normalized t-statistics
(
k
−1/2
n

∑kn
i=1 ei(Ṽn,i(j, j

′)−(ĝn,j− ĝn,j′))/ςn(j, j′)
)
(j,j′)∈Sn

follow a Gaussian distribution with bounded variance, which implies E[D̃B
n |Gn] ≤ K

√
log(|Sn|).

Therefore, it follows the Markov inequality and (A.49) that

P({|D̂B
n − D̃B

n | > ϱn} ∩ En,3|Gn)

≤ ϱ−1
n

(
max

(j,j′)∈Sn

∣∣∣∣ ςn(j, j′)ς̂n(j, j′)
− 1

∣∣∣∣× (E[D̃B
n |Gn] + 2 max

(j,j′)∈Sn

|Dn(j, j
′)|
))

≤
∆
ρ(1−ϖ)/2
n L2η

n log(|Sn|)
(
K
√
log(|Sn|) + ∆

γ/2
n

)
K ′∆

ρ(1−ϖ)/4
n L2η

n log(|Sn|)3/2
≤ K∆ρ(1−ϖ)/4

n .

With K denoting the same constant as in the above display, by the law of iterated expectation,

we can conclude that

P
(
P(|D̂B

n − D̃B
n | > ϱn|Gn) > K∆ρ(1−ϖ)/4

n

)
≤ P(E∁

n,3) ≤ K ′∆ϵ
n. (A.51)
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Let X̃n(j, j
′) be centered mixed Gaussian variables indexed by (j, j′) with F (0)-conditional covari-

ance matrix such that for all (j, j′), (ℓ, ℓ′) ∈ Sn,

E[X̃n(j, j
′)X̃n(ℓ, ℓ

′)|F (0)]

= E
[(

1√
kn

kn∑
i=1

Ṽn,i(j, j
′)− µn,i(j, j′)
ςn(j, j′)

)(
1√
kn

kn∑
i=1

Ṽn,i(ℓ, ℓ
′)− µn,i(ℓ, ℓ′)
ςn(ℓ, ℓ′)

)∣∣∣∣F (0)

]
.

Then by Proposition 2.1 in Chernozhukov et al. (2017), we have for all ϵ < ρ/6,

sup
x∈R

∣∣∣∣∣P
(

max
(j,j′)∈Sn

1√
kn

kn∑
i=1

Ṽn,i(j, j
′)− µn,i(j, j′)
ςn(j, j′)

≤ x
∣∣∣∣F (0)

)
− P

(
max

(j,j′)∈Sn

X̃n(j, j
′) ≤ x

∣∣∣F (0)
)∣∣∣∣∣

≤ K
(
∆ρ/6
n Lη/3n (Ln + log(|Sn|))7/6 +∆ρ/6

n L2η/3
n (Ln + log(|Sn|))

)
≤ K∆ϵ

n. (A.52)

By Corollary 4.2 in Chernozhukov et al. (2017), for all ϵ < ρ/7, with probability at least 1−K∆ϵ
n,

sup
x∈R

∣∣∣∣P(D̃B
n ≤ x|Gn)− P

(
max

(j,j′)∈Sn

X̃n(j, j
′) ≤ x

∣∣∣F (0)
)∣∣∣∣

≤ K ′(∆ρ/6
n L(1+η)/3

n (Ln + log(|Sn|))5/6 +∆(ρ−ϵ)/6
n L2η/3

n (Ln + log(|Sn|))
)
≤ K ′∆ϵ

n.

(A.53)

Let c̃vn(·,Sn) denote the F (0)-conditional 1− (·) quantile of max(j,j′)∈Sn
X̃n(j, j

′), i.e.,

c̃vn(·,Sn) ≡ inf
{
C ∈ R : P

(
max

(j,j′)∈Sn

X̃n(j, j
′) ≤ C

∣∣∣F (0)
)
≥ 1− (·)

}
.

Note that E[max(j,j′)∈Sn
X̃n(j, j

′)|F (0)] ≤ K
√
log(|Sn|). Also note that Assumption A.1(i) implies

the bounds obtained in the previous equation and in the approximation (A.52), (A.53) are uni-

versal. Therefore, we can fix a positive universal constant M satisfying the previous equation.

Therefore, for α ∈
(
0, 1−Mϱn

√
log(|Sn|)

)
, by the anti-concentration inequality, we have

P
(

max
(j,j′)∈Sn

X̃n(j, j
′) ≤ c̃vn

(
α+Mϱn

√
log(|Sn|),Sn

)
+ ϱn

∣∣∣F (0)
)
≤ 1− α. (A.54)

Let En,4 be the event such that

En,4 ≡ {P(|D̂B
n − D̃B

n | > ϱn|Gn) ≤M∆ρ(1−ϖ)/4
n }

∩
{
sup
x∈R

∣∣∣∣P(D̃B
n ≤ x|Gn)− P

(
max

(j,j′)∈Sn

X̃n(j, j
′) ≤ x

∣∣∣F (0)
)∣∣∣∣ ≤M∆ϵ

n

}
,

by (A.51) and (A.53), we have shown P(En,4) ≥ 1−K ′∆ϵ
n. Therefore, we have

P
(
{D̂B

n ≤ c̃vn(α+M(∆ϵ
n + ϱn

√
log(|Sn|)),Sn)} ∩ En,4

∣∣Gn)
≤ P

(
{D̃B

n ≤ c̃vn(α+M(∆ϵ
n + ϱn

√
log(|Sn|)),Sn) + ϱn} ∩ En,4

∣∣Gn)+M∆ρ(1−ϖ)/4
n

≤ P
(

max
(j,j′)∈Sn

X̃n(j, j
′) ≤ c̃vn

(
α+M(∆ϵ

n + ϱn
√

log(|Sn|)),Sn
)
+ ϱn

∣∣∣F (0)
)
+M∆ϵ

n

≤ 1− α−M∆ϵ
n +M∆ϵ

n = 1− α,
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where the third line uses the fact that ρ(1 −ϖ)/4 > ϵ, and the fourth line is by (A.54). By the

law of iterated expectation and the definition of cvBn (α,Sn), we can conclude that

P
(
cvBn (α,Sn) < c̃vn(α+M(∆ϵ

n + ϱ
√

log(|Sn|)),Sn)
)
≤ P(E∁

n,4) ≤ K ′∆ϵ
n. (A.55)

By the anti-concentration inequality, for α ∈
(
Mϱn

√
log(|Sn|), 1

)
, we have P

(
max(j,j′)∈Sn

X̃n(j, j
′) ≤

c̃vn(α−Mϱn
√

log(|Sn|),Sn)− ϱn
∣∣F (0)

)
≥ 1− α. Similarly, we can show

P
(
cvBn (α,Sn) > c̃vn(α−M(∆ϵ

n + ϱn
√

log(|Sn|)),Sn)
)
≤ P(E∁

n,4) ≤ K ′∆ϵ
n. (A.56)

We are now ready to prove the asserted statements in the theorem, starting from assertion (i).

Assume that max(j,j′)∈Sn
(gn,j − gn,j′) ≤ 0, this implies µ̄n(j, j

′) ≤ 0 for all (j, j′) ∈ Sn. Combing

with (A.45) yields

P
(

max
(j,j′)∈Sn

1√
kn

kn∑
i=1

µn,i(j, j
′) > Kϱn

)
≤ K ′∆ϵ

n.

Therefore, by (A.47) and the Markov inequality, this gives P(D̂n −Dn > ϱn/2) ≤ K∆ϵ
n. Hence

P
(
D̂n > cvBn (α,Sn)

)
≤ P

(
Dn > cvBn (α,Sn)− ϱn/2

)
+ P(D̂n −Dn > ϱn/2)

≤ P
(
D̃n > cvBn (α,Sn)− ϱn/2− ϱn/2

)
+K∆ϵ

n

≤ P
(
D̃n > c̃vn(α+M(∆ϵ

n + ϱn
√

log(|Sn|)),Sn)− ϱn
)
+K∆ϵ

n,

(A.57)

where the second line is by (A.48), and the last line is by (A.55). For the first term, we have

P
(
D̃n > c̃vn(α+M(∆ϵ

n + ϱn
√

log(|Sn|)),Sn)− ϱn
∣∣∣F (0)

)
≤ P

(
max

(j,j′)∈Sn

X̃n(j, j
′) > c̃vn(α+M(∆ϵ

n + ϱn
√

log(|Sn|)),Sn)− ϱn
∣∣∣F (0)

)
+K∆ϵ

n

≤ P
(

max
(j,j′)∈Sn

X̃n(j, j
′) > c̃vn(α+ 2M(∆ϵ

n + ϱn
√

log(|Sn|)),Sn)
∣∣∣F (0)

)
+K∆ϵ

n

≤ α+ 2M(∆ϵ
n + ϱn

√
log(|Sn|)) +K∆ϵ

n ≤ α+K∆ϵ
n, (A.58)

where the second line is by (A.45), (A.52), and the law of iterated expectation, the third line is

by (A.54), the last line is by the definition of c̃vn(·,Sn) and the fact that Sn ⊂ {1, . . . ,mn} ×
{1, . . . ,mn} hence

ϱn
√

log(|Sn|) ≤ Kϱn
√
Ln ≤ K ′∆ϵ

n.

Combing (A.57), (A.58), and applying the law of iterated expectation again, we can conclude that

P
(
D̂n > cvBn (α,Sn)

)
≤ α+K∆ϵ

n, if max
(j,j′)∈Sn

(gn,j − gn,j′) ≤ 0, (A.59)
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which is the first part of assertion (i). For the second part, assume µ̄n(j, j
′) = 0, then (A.45) yields

P
(

max
(j,j′)∈Sn

∣∣∣∣ 1√
kn

kn∑
i=1

µn,i(j, j
′)

∣∣∣∣ > Kϱn

)
≤ K ′∆ϵ

n.

Therefore, by (A.47) and the Markov inequality, this gives P(Dn − D̂n > ϱn/2) ≤ K∆ϵ
n. Hence

P
(
D̂n > cvBn (α,Sn)

)
≥ P

(
Dn > cvBn (α,Sn) + ϱn/2

)
− P(Dn − D̂n > ϱn/2) (A.60)

≥ P
(
D̃n > c̃vn(α−M(∆ϵ

n + ϱn
√

log(|Sn|)),Sn) + ϱn
)
−K∆ϵ

n,

where the second line is by (A.48) and (A.56). For the first term, we have

P
(
D̃n > c̃vn(α−M(∆ϵ

n + ϱn
√

log(|Sn|)),Sn) + ϱn

∣∣∣F (0)
)

≥ P
(

max
(j,j′)∈Sn

X̃n(j, j
′) > c̃vn(α− 2M(∆ϵ

n + ϱn
√

log(|Sn|)),Sn)
∣∣∣F (0)

)
−K∆ϵ

n

≥ α− 2M(∆ϵ
n + ϱn

√
log(|Sn|))−K∆ϵ

n ≥ α−K∆ϵ
n, (A.61)

where the second line is by (A.45), (A.52), and (A.54). Combing (A.59)-(A.61), and the law of

iterated expectation completes the proof of assertion (i).

For assertion (ii), assume that max(j,j′)∈Sn
µ̄n(j, j

′) ≥ Υ for some positive Υ. Combining with

(A.45) and (A.47) gives P(Dn − D̂n +∆
−ρ/2
n Υ > ϱn/2) ≤ K∆ϵ

n. Therefore, we have

P
(
D̂n > cvBn (α,Sn)

)
≥ P

(
Dn +∆−ρ/2

n Υ > cvBn (α,Sn) + ϱn/2
)
− P(Dn − D̂n > ϱn/2)

≥ P
(

max
(j,j′)∈Sn

X̃n(j, j
′) + ∆−ρ/2

n Υ > c̃vn
(
α− 2M(∆ϵ

n + ϱn
√
log(|Sn|)),Sn

))
−K∆ϵ

n

≥ P
(

max
(j,j′)∈Sn

X̃n(j, j
′) + ∆−ρ/2

n Υ > K
(√

log(|Sn|) +
√
Ln
))
−K∆ϵ

n

≥ 1−K∆ρ/2
n −K ′∆ϵ

n ≥ 1−K∆ϵ
n,

where the second line is by (A.45), (A.48), (A.52), (A.54), and (A.56). The third line is by Borell’s

concentration inequality (see, e.g., Proposition A.2.1 in van der Vaart and Wellner (1996)), which

gives P
(
|max(j,j′)∈Sn

X̃n(j, j
′) −M

√
log(|Sn|)| ≥ λ

)
≤ K exp{−λ2/2K ′}, setting the right hand

side equaling to α− 2M
(
∆ϵ
n + ϱn

√
log(|Sn|)

)
yields

c̃vn
(
α− 2M(∆ϵ

n + ϱn
√
log(|Sn|)),Sn

)
≤M

√
log(|Sn|) +K

√
2 log

(
1

α− 2M
(
∆ϵ
n + ϱn

√
log(|Sn|)

))
≤ K

(√
log(|Sn|) +

√
Ln
)
.
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This competes the proof of required statement. Q.E.D.

Proof of Corollary 1. The corollary is a direct consequence of Theorem 3.3 in Mogstad et al.

(2023) and Theorem 3. Q.E.D.

A.4 Extension to Dependent Disturbance

The strong approximation results derived in this paper can be extended to the case without

assuming disturbances to be conditionally independent. In particular, we outline the main steps in

constructing a similar approximation result of max1≤j≤mn supt∈Tn,j

√
kn,j |ĝn,t − gt| for stationary

β-mixing disturbance. For any sub σ-fields A,B of F , denote

β(A,B) ≡ 1

2
sup

{ I∑
i=1

J∑
j=1

|P(Ai ∩Bj)− P(Ai)P(Bj)|
}
,

where the supremum is taken over all pairs of finite partitions {A1, . . . , AI} and {B1, . . . , BJ} of
Ω such that Ai ∈ A for each i and Bj ∈ B for each j. Define the kth β-mixing coefficient of

(εn,i)1≤i≤n as β(k) ≡ max1≤ℓ≤n−k β(Hℓ1,Hnℓ+k) where Hi,j ≡ σ(εn,i, . . . , εn,j) for 1 ≤ i ≤ j ≤ n.

Moreover, for each 1 ≤ q ≤ n, and E ⊂ Z define

σ̄2(E , q) ≡ sup
z∈E

1

q

q∑
i=1

q∑
j=1

Cov
(
Y (z, εn,i),Y (z, εn,j)

)
,

σ2(E , q) ≡ inf
z∈E

1

q

q∑
i=1

q∑
j=1

Cov
(
Y (z, εn,i),Y (z, εn,j)

)
.

We follow the notations used in the proof of Theorem 1. Note that the derivation of (A.5) and

(A.6) does not depend on conditional independence of (εn,i)1≤i≤n, hence we have

P

(∣∣∣∣∣ max
1≤j≤mn

sup
t∈Tn,j

√
kn,j |ĝn,t − gt| − max

1≤j≤mn

∣∣∣∣ 1√
kn,j

kn,j∑
i=1

Ỹi,j

∣∣∣∣
∣∣∣∣∣ > K∆γ

n

)
≤ K ′∆ϵ

n.

For 1 ≤ i ≤ k̄n and 1 ≤ j ≤ 2mn, denote

Ỹ †
i,j ≡

√
k̄n
kn,j

(Ỹi,j1{1 ≤ i ≤ kn,j , 1 ≤ j ≤ mn} − Ỹi,j−mn1{1 ≤ i ≤ kn,j ,mn + 1 ≤ j ≤ 2mn}).

Then we can rewrite

max
1≤j≤mn

∣∣∣∣ 1√
kn,j

kn,j∑
i=1

Ỹi,j

∣∣∣∣ = max
1≤j≤2mn

1√
k̄n

k̄n∑
i=1

Ỹ †
i,j .
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The key step is to reduce the summation on the right hand side of above display into an independent

sum. To establish this, we need the following assumption which specifies the rate of convergence

of β-mixing coefficient and boundedness of long-run variance.

Assumption A.3. There exists a positive constant K such that (i) β(n) ≤ Kn−υ for some positive

υ; (ii) 1/K ≤ σ2(K, q) ≤ σ̄2(K, q) ≤ K for all 1 ≤ q ≤ n.

The construction is based on the method of “Bernstein sums,” which is widely used for analyzing

dependent processes, see, e.g., Bernstein (1927) and Davidson (1992). Namely, let q1,n ≍ ∆−2κ
n and

q2,n ≍ ∆−κ
n where ρ/(2 + υ) < κ < ρ/2 and q1,n + q2,n < k̄n/2. Denote ℓ̄n ≡ ⌊k̄n/(q1,n + q2,n)⌋ ≍

∆2κ−ρ
n . For 1 ≤ j ≤ 2mn and 1 ≤ ℓ ≤ ℓ̄n, define

S̃ℓ,j ≡
(ℓ−1)(q1,n+q2,n)+q1,n∑
i=(ℓ−1)(q1,n+q2,n)+1

Ỹ †
i,j , and S̊ℓ,j ≡

ℓ(q1,n+q2,n)∑
i=(ℓ−1)(q1,n+q2,n)+q1,n+1

Ỹ †
i,j .

Then we have the following decomposition

1√
k̄n

k̄n∑
i=1

Ỹ †
i,j =

1√
k̄n

ℓ̄n∑
ℓ=1

S̃ℓ,j +
1√
k̄n

ℓ̄n∑
ℓ=1

S̊ℓ,j +
1√
k̄n

k̄n∑
i=ℓ(q1,n+q2,n)

Ỹ †
i,j .

Therefore, by the triangle inequality,∣∣∣∣ max
1≤j≤2mn

1√
k̄n

k̄n∑
i=1

Ỹi,j − max
1≤j≤2mn

1√
k̄n

ℓ̄n∑
ℓ=1

S̃ℓ,j

∣∣∣∣
≤ max

1≤j≤2mn

∣∣∣∣ 1√
k̄n

ℓ̄n∑
ℓ=1

S̊ℓ,j

∣∣∣∣+ max
1≤j≤2mn

∣∣∣∣ 1√
k̄n

k̄n∑
i=ℓ(q1,n+q2,n)+1

Ỹ †
i,j

∣∣∣∣. (A.62)

Moreover, let (S̃′
ℓ,j)1≤ℓ≤ℓ̄n and (S̊′

ℓ,j)1≤ℓ≤ℓ̄n be two F (0)-conditionally independent sequences

such that S̃′
ℓ,j

L
= S̃ℓ,j and S̊

′
ℓ,j

L
= S̊ℓ,j . Since the projection mapping is continuous, hence the Borel

σ-algebra of R2mn is equivalent to the σ-algebra generated by the Cartesian product of Borel sets

of R. Therefore, by Assumption A.3(i), it follows Corollary 2.7 of Yu (1994) that

sup
x∈R

∣∣∣∣P( max
1≤j≤2mn

ℓ̄n∑
ℓ=1

S̃ℓ,j ≤ x
∣∣∣∣F (0)

)
− P

(
max

1≤j≤2mn

ℓ̄n∑
ℓ=1

S̃′
ℓ,j ≤ x

∣∣∣∣F (0)

)∣∣∣∣ ≤ Kℓ̄nq−υ2,n ≤ K∆(2+υ)κ−ρ
n ,

(A.63)

sup
x∈R

∣∣∣∣P( max
1≤j≤2mn

ℓ̄n∑
ℓ=1

S̊ℓ,j ≤ x
∣∣∣∣F (0)

)
− P

(
max

1≤j≤2mn

ℓ̄n∑
ℓ=1

S̊′
ℓ,j ≤ x

∣∣∣∣F (0)

)∣∣∣∣ ≤ Kℓ̄nq−υ1,n ≤ K∆(2+2υ)κ−ρ
n .

(A.64)

65



Taking positive constants ϵ and γ such that ϵ+ γ <
(
(2 + υ)κ− ρ

)
∧ (κ/2) ∧ (ρ/2− κ). Combing

(A.62)-(A.64) and by the law of iterated expectation, we have

P
(

max
1≤j≤2mn

1√
k̄n

k̄n∑
i=1

Ỹ †
i,j < x

)

≤ P
(

max
1≤j≤2mn

1√
k̄n

ℓ̄n∑
ℓ=1

S̃′
ℓ,j ≤ x+K∆γ

n

)
+ P

(
max

1≤j≤2mn

E
(I)
n,j ≤

K

2
∆γ
n

)
+P
(

max
1≤j≤2mn

E
(II)
n,j >

K

2
∆γ
n

)
+K ′∆ϵ

n, (A.65)

where for 1 ≤ j ≤ 2mn, E
(I)
n,j ≡

∣∣k̄−1/2
n

∑ℓ̄n
ℓ=1 S̊

′
ℓ,j

∣∣ and E
(II)
n,j ≡

∣∣k̄−1/2
n

∑k̄n
i=ℓ(q1,n+q2,n)+1 Ỹ

†
i,j

∣∣. For the
second term, by Assumption A.1(iii) and Assumption A.3(ii), it follows Lemma 8 in Chernozhukov

et al. (2015) that

E
[

max
1≤j≤2mn

E
(I)
n,j

∣∣∣F (0)
]
≤ K

(
q
−1/2
1,n q

1/2
2,n

√
Ln + k̄−1/2

n q2,nL
3/2
n

)
≤ K∆(κ/2)∧(ρ/2−κ)

n L3/2
n .

Then by the Markov inequality and the law of iterated expectation, we obtain

P
(

max
1≤j≤2mn

E
(I)
n,j ≤ K∆γ

n

)
≤ K ′∆ϵ

n. (A.66)

For the third term in the right hand side of (A.65), note that Assumption A.3(i) implies α-mixing

and hence, combining with Assumption A.1(iii) and A.3(ii) yields condition (1.3) in Rio (1995).

Therefore, it follow the law of iterated logarithm for stationary mixing sequence (see Theorem 2

in Rio (1995)) that for each 1 ≤ j ≤ 2mn,

P(E(II)
n,j > K∆γ

n|F (0)) ≤ P(E(II)
n,j > Kk̄−1/2

n q
1/2
1,n

√
Ln|F (0)) = 0.

Then by the law of iterated expectation, we have

P
(

max
1≤j≤2mn

E
(II)
n,j > K∆γ

n

)
≤

2mn∑
j=1

P(E(II)
n,j > K∆γ

n) = 0. (A.67)

Combining (A.65)-(A.67) yields

P
(

max
1≤j≤2mn

1√
k̄n

k̄n∑
i=1

Ỹ †
i,j < x

)
≤ P

(
max

1≤j≤2mn

1√
k̄n

ℓ̄n∑
ℓ=1

S̃′
ℓ,j ≤ x+K∆γ

n

)
+K ′∆ϵ

n.

Following a similar argument, we can also show that

P
(

max
1≤j≤2mn

1√
k̄n

k̄n∑
i=1

Ỹ †
i,j < x

)
≥ P

(
max

1≤j≤2mn

1√
k̄n

ℓ̄n∑
ℓ=1

S̃′
ℓ,j ≤ x−K∆γ

n

)
−K ′∆ϵ

n.

Recall for each 1 ≤ j ≤ 2mn, the summand (S̃′
ℓ,j)1≤ℓ≤ℓ̄n is F (0)-conditionally independent, then a

similar strong approximation result can be established following the same proof as in Theorem 1.
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