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Abstract

Educational resources are distributed unevenly across space and could contribute to spatial in-

equality. We develop a dynamic spatial model with life-cycle elements to study the impacts

of location-specific educational resources. In the model, individuals determine whether and

where to attend college, weighing on the distance to home, the expected option value of edu-

cation, and the educational resources in the destination. Locations with more colleges attract

more students. Moreover, as mobility costs increase with age, many college graduates stay in

the city of their alma mater, leading to long-term changes in skill composition. We quantify the

model to the context of China and structurally estimate the cost of obtaining a college degree

in each location. We show that the college expansion between 2005 and 2015 had minimal

impacts on welfare and skill composition, as it diverts resources towards the locations already

well-endowed with colleges. More evenly distributed colleges could improve aggregate wel-

fare and reduce spatial inequality at the same time.
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1 Introduction

The spatial distribution of colleges is highly uneven within a country. For example, in the con-
text of China, educational hubs such as Beijing could host as many as 77 universities, while the
average Chinese city only has 6 universities. Even worse, the bottom quarter of the cities, many
with millions of population, has no more than a single college. The uneven distribution of educa-
tional resources could lead to dire consequences for both individuals and society at large. Access
to colleges shapes the fate of students: those born in unlucky locations with scarce resources must
endure the ordeal of long-term migration at a young age to seek a higher education; deterred by
such costs, many of the talented students forgo such opportunities and remain as unskilled workers
throughout their lifetime. The impacts of colleges do not stop at the student population either.
Seeking higher education is one of the main motivations for migration (see, e.g., Dustmann and
Glitz, 2011). In fact, it is the only migration spell for many college graduates in their lifetime: they
settle in the city of their alma mater. As a result, access to educational resources could influence
one’s lifetime location choices. At the aggregate level, the forces mentioned above affect the skill
composition of a location in the long run, exerting their impacts on skill premium, population, and
economic prosperity for many years to come. To what extent is the uneven distribution of edu-
cational resources responsible for the observed spatial inequality? Are there any aggregate losses
coming from the over-concentration of colleges? What is the optimal distribution of colleges
across space? The answers to these questions not only arouse academic interests but also carry
long-lasting policy implications. Answering these questions, however, requires careful modeling
of individuals’ educational and location choices over one’s life cycle. Such a model is currently
lacking in the literature, and we seek to fill the gap with this paper.

We developed a general equilibrium dynamic spatial model with life-cycle elements to analyze
the impact of educational resources. The model consists of overlapping generations of individuals
that live for many periods. Upon entry into the model, individuals endogenously choose education
levels, weighing the expected return to higher education against the costs of doing so. Conditional
on seeking higher education, they then determine where to attend college. The locational choice
of students depends on the distance to home, the option value of being a skilled worker in the
destination, and the costs of obtaining a degree. Upon graduation, individuals enter the labor
market as skilled workers. The young workers who forgo higher education directly enter the labor
market as unskilled workers. In each period, all the skilled and unskilled workers supply labor,
consume, and move to other labor markets subject to age-specific migration frictions throughout
their life cycle until their retirement and exit from the model.

Educational resources exert their long-run spatial impacts through several channels in the
model. First, locations with better educational resources feature lower costs of education and
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directly benefit the local students. Moreover, the abundance of colleges also attracts potential stu-
dents from all over the country, particularly individuals in nearby locations with relatively low
migration costs. The locational advantages of educational resources are also long-lasting. Given
the considerable migration costs, many college students choose to stay in the location of their alma
mater throughout their lifetime, pushing up the skill ratio of these locations persistently. The pos-
itive supply of skilled workers could also spill over to the nearby areas. Lastly, the distribution of
colleges also affects unskilled workers through general equilibrium effects: a relative abundance
of skilled workers in one area pushes up the demand for unskilled workers, indirectly benefiting
them.

We quantify and estimate the model in the context of China. China is an exciting case to focus
on in our context: it is a country with highly concentrated educational resources, as highlighted
earlier. The large spatial variations in educational resources are particularly valuable econometri-
cally, as they allow us to structurally estimate the costs of higher education through the lens of our
model. Moreover, China also offered an interesting policy experiment. Along with rapid economic
development and urbanization, China initiated a large-scale college expansion program rarely seen
worldwide. Between 2005 and 2015, the spending on college education increased by 466 percent,
and the number of college teachers expanded by 84%. As a result, college enrollment increased
from 5 million to around 14 million during a short period. We use our model to evaluate the aggre-
gate and distributional impacts of the policy change; we also carry out counterfactual simulations
to study if better aggregate results could be achieved with a more even distribution of educational
resources.

To understand the aggregate and the distributional effects of college distribution, the core em-
pirical question is how to map the observed distributions of resources (number of colleges, teach-
ers, etc) to the unobserved costs of attending college in a location. To this end, we exploit the
prediction of our model to discipline the education costs with the observed student distribution
structurally. In particular, the predicted migration probability matrix of the students summarizes
the attractiveness of a location to college seekers that depends on the underlying transportation
network, migration policy, expected option value, and educational resources. Conditional on all
the other elements shaping the migration probability, our model provides a natural mapping from
location-specific educational costs to the observed distribution of college seekers. Together with
some functional form assumptions that map the observed resources to the educational costs, we can
infer the location-specific educational costs as a function of resources and estimate the parameters
using non-linear least squares.

The estimated education cost suggests diminishing returns to college concentration. In the
median city in terms of educational resources, a 10 percent increase in teachers leads to a 2.34
percent reduction in education costs. However, the return to more colleges quickly recedes in
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better-endowed locations. For example, at the 90th percentile of cities, a 10 percent increase in
teachers only reduces costs by 0.06 in level, while at the 10th percentile, the same increment leads
to a 5 times larger reduction. The shape of the cost function is identified through the distribution
of students. In the data, the number of college students increases significantly with a small in-
crement of colleges in the left-tail of the distribution. This pattern directly suggests the existence
of a sizeable latent student population that would seek higher education had the resources been
available. Subsequently, the data pattern also implies that the educational costs associated with a
scarcity of colleges must be exceedingly high in those locations. The shape of the cost function
also foreshadows many of our quantitative results: educational investment has a higher return in
places that are relatively lacking in educational resources, and therefore, an over-concentration of
colleges might carry a sizable negative consequence.

We find that college expansion between 2005 and 2015 led to a limited increase in the welfare
level at the aggregate level and had a negligible effect on the aggregate skill ratio. To evaluate the
effects of college expansion, we compare the baseline simulation of a transition path with the ob-
served expansion to a counterfactual one without the college expansion. The comparison suggests
that aggregate welfare only changed by 0.02 percent, while the aggregate skill ratio only increased
by 0.29 percent by 2015. The lukewarm response to college expansion comes as no surprise. The
expansion program favored locations already well-endowed with educational resources while leav-
ing the initially poorly-endowed locations behind. Given the high curvature of the education cost
function, the average costs of attending college barely changed.

How can we better allocate educational resources across space? We answer this question in
several ways. We first compute the welfare elasticity of college expansion prefecture-by-prefecture
and find that the return to college investment is substantially higher in poorly endowed locations.
The aggregate return to a 10% increase in college teachers is 0.41% higher at the bottom 10% of
the prefectures than those at the top 10%. We then simulate another counterfactual in which we
allocate all the additional educational resources observed in the actual expansion program equally

among all the prefectures. In this case, all prefectures receive an additional 2600 college teacher.
We find that the aggregate welfare effects of this simple “equal growth” scheme are roughly five
times larger, and the impacts on skill ratio more than ten times higher than the observed expansion
at 3.57%.

Lastly, we show that the unequal distribution of educational resources is responsible for up
to 20% of the observed spatial inequality in skill composition. Moreover, equalizing educational
resources is roughly 25% as effective as equalizing fundamental productivity in reducing spatial
inequality. To understand the impact of college distribution on the observed spatial inequality, we
first simulate one counterfactual called “equal college”, in which we eliminate all spatial variation
in educational resources and redistribute the existing stock equally across locations. Compared to
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the baseline result, the skill ratio dispersion across locations drops by around 6% to 20% along the
transition path towards the long-run steady state. To benchmark the effect of equalization of educa-
tional access, we compute another counterfactual in which the location fundamental productivity,
the usual culprit of spatial inequality (and structural residual that absorbs locational differences)
in the quantitative models, is equalized across locations. In the productivity-equalizing world, the
dispersion of skill ratio declines by 31% to 80% along the transition path to the steady state, as
compared to the baseline model. In this sense, an evenly distributed educational resource is 25%
as effective in reducing spatial inequality as an evenly distributed productivity.

This paper is related to several strands of the literature. Firstly, our study is closely related
to a broad literature on quantitative spatial and dynamic discrete choice models, such as Artuç,
Chaudhuri, and McLaren (2010); Allen and Arkolakis (2014); Ahlfeldt, Redding, Sturm, and Wolf
(2015); Caliendo, Dvorkin, and Parro (2019); Caliendo, Opromolla, Parro, and Sforza (2021);
Kleinman, Liu, and Redding (2023), as surveyed in Redding and Rossi-Hansberg (2017). We
contribute to this literature in several ways. We are the first to introduce educational choice into
the dynamic spatial framework to highlight the interlinkages between educational resources, trans-
portation infrastructure, and geographical fundamentals. We show that the distribution of colleges
not only directly affects student distribution but also shapes long-term skill composition in general
equilibrium. We also introduce a structural interpretation to map the observed student distribution
to the educational resources; through our estimation, we highlight the curvature of the education
cost function, which could inform policymaking and researchers interested in educational issues.

Our research relates to the recent dynamic models with life-cycle assumptions, including Allen
and Donaldson (2022), Eckert and Peters (2022), Takeda (2022), Komissarova (2022), and Suzuki
(2023). We contribute to this literature by modeling and examining the impact of inter-generational
linkages on decisions made over one’s lifespan, specifically focusing on education attainment. We
are also the first to estimate age-specific migration costs using these models, and our results, as
discussed later, reveal a shape increase in migration costs as people age.

Our work is also broadly related to the quantitative spatial works that focus on China, such as
Tombe and Zhu (2019), Fan (2019), Ma and Tang (2020). While this strand of work focuses on
elements specific to the context of China, such as the hukou restrictions, we are among the first to
introduce a dynamic structure to study the migration decisions over one’s lifetime. In contrast to
Fan (2019), where skill type is taken as given, and migration is primarily driven by wage incentives
and amenities, our approach introduces a nuanced perspective.

Finally, a few works have studied the impact of college expansion, including the impacts on
innovation and trade (Ma, 2023), the impacts on knowledge spillovers (Li, Liu, and Wu, 2020),
and the impact on human capital on productivity (Che and Zhang, 2018). This paper contributes
to the literature on the impacts of college expansion by estimating the education cost in each
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location and simulating the counterfactual college expansion scenarios and their economic impacts.
Specifically, we estimate the education cost of China in all prefectures using a detailed migration
matrix and uncover the highly uneven educational costs that lead to a suppression of the talents
who can otherwise become skilled workers.

The remainder of this paper proceeds as follows. In Section 2, we present the quantitative
spatial model. In Section 3, we calibrate the model parameters. In particular, we estimate the
education cost base on the endogenous education migration model. In Section 4, we present the
counterfactual simulations. In Section 5, we conclude.

2 Model

We develop a life-cycle model within a dynamic spatial framework where we model individ-
uals’ educational choices endogenously. The goal of our research is to examine the impacts of
unevenly distributed educational resources on individuals’ migration choices, the composition of
the labor market in each region, and its overall impact on inequality over time.

The model builds on the quantitative model introduced by Caliendo et al. (2019). In their
work, they examine how equilibrium allocations are influenced by factors such as individual mo-
bility frictions, trade costs, geographical variables, and input-output linkages. It’s worth noting
that, in their model, agents are assumed to be immortal and make labor market decisions every
period. In contrast, our model introduces heterogeneous cohorts. In our model, individuals make
education decisions in the early stages and persist with their chosen skill type throughtout the
model’s duration.

We will first introduce our main quantitative framework to characterize endogenous migration
and educational choice. Following this, we will outline the equations that define our equilibrium
conditions.

2.1 Setup

The economy has N locations, separated by bilateral migration costs D j
n′n, which depend on the

origin n and destination n′ of migration. Migration costs increase with individuals’ age, aligning
with the observed decrease in migration rates for various reasons. These migration costs are time-
invariant and are perceived as a disutility. Labor markets are local in each location, but labor is
mobile. Our focus is on solving for the equilibrium labor distribution and examining individuals’
education decisions.

Demographics The economy is inhabited by successive generations, each spanning J periods.
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Initially, each cohort comprises L̃ individuals and is replaced by a new cohort every J periods.
The new cohort mirrors the distribution of the old cohort, ensuring that the labor force distribution
remains unaffected by cohort replacement. However, the labor force distribution will be influenced
by the migration decisions of the new cohort during their first period. The entire population in this
economy equals JL̃.

Individuals go through two life stages: "young adulthood," which lasts for one period, and
"late adulthood," spanning J − 1 periods. Individuals are identified by their skill level, which can
be either skilled or unskilled (e = {l, h}), as well as their current location (n) and cohort ( j). Each
individual experiences origin-specific educational shocks denoted as z(i) and destination preference
shocks denoted as ϵn′(i). In the first stage, individuals make choices between pursuing education
and entering the labor force. Those who enter the labor force are all employed. Those who pursue
education consume home production. An individual with skill type e in location n supplies a unit
of labor inelastically and earns a competitive market wage we

n. These individuals spend their entire
wage income on consumption and decide how to distribute their income across a basket of goods
from all locations.

We denote the indirect flow utility for an individual in cohort j, with an education level of e

and location n, as U j(e, n).

Technology The production technology in our model closely follows the framework outlined
by Armington (1969) and is combined with Constant Elasticity of Substitution (CES) preferences.
We make the assumption that each location specializes in the production of a different good, and
consumers have a preference for consuming a variety of goods. In each location, a perfectly
competitive market prevails. The production technology is assumed to be constant elasticity of
substitution, and it requires both skilled and unskilled workers. The output for location n is given
by:

ynt = an

[
χ

1
η

(
a−ωn ll

nt

) η−1
η
+ (1 − χ)

1
η

(
aωn lh

nt

) η−1
η

] η
η−1

,

where an denotes the productivity in location n. We allow productivity complementarity in the
production process, denoted by ω, as introduced by Burstein and Vogel (2017). Productivity
complementarity implies that employing high-skilled labor is more effective in production. The
coefficient governing this productivity difference between skilled and unskilled labor serves as a
proxy for capital complementarity in the model. It’s worth noting that we abstract the model from
capital’s direct role in production, making our setup parsimonious yet versatile. Wage in each
location for each skill level, denoted as we

nt, is determined endogenously through local labor mar-
ket clearing. Wage disparities between locations are one of the factors that drive labor migration.
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Additionally, individuals’ migration decisions are influenced by the expected future wages, which
contribute to the option value of migration.

Timeline and Decisions At the start of each cohort’s lifetime, individuals in the new cohort
born in location n make sequential decisions regarding education and study location during their
“young adult” stage. These forward-looking individuals, after observing education preference
shocks {z}, make decisions about education. Following their education choice, they select the
location from the set of all possible locations n ∈ N , considering bilateral migration costs specific
to their cohort group D j

n′n, education cost {Fn} (if they choose to study) and personal preference.
After making these decisions, individuals move to their chosen location at the start of the period,
where they either study or work and consume. In subsequent periods, they draw location choice
shocks to make migration decisions and move at the start of the next period.

Figure 1 shows the timeline for individual entering and exiting the model. Individuals enter the
model at age 18 and exit at age 61, spanning 11 periods with 4-year intervals. In the first period, an
agent who is born in location n draws an preference for education and choose whether to become a
skilled worker or not. After this decision, the agent also draws preference shocks for all locations,
and selects a place. Those who opt to work remain as unskilled workers and earn corresponding
wages. Those who decide to study consume home production and incur costs to attend college
Fn, with costs varying across locations based on the availability of educational resources. If the
location is rich in educational resources, it takes less effort for a student to get to the same level
of skill. Apart from the cost of education, individuals also bear the disutility of migration. The
decision of where to go to school affects the future payoff. Individuals weigh the decision to
attend a local school, which offers post-graduation opportunities in their immediate area, against
the option of studying in other locations. Opting for the latter involves paying additional migration
costs, but it has potential to result in better job prospects and closer proximity to labor markets.

The location of the school affects their payoff in three ways, firstly, locations with better ed-
ucational resources feature lower costs of education. Secondly, the distance between home and
the chosen location affects migration costs in the first period, influencing their immediate payoff.
Thirdly, the labor market conditions in the destination city and the proximity to major labor mar-
kets influence the expected value in the future and in turn affect today’s decision. In later periods,
individuals can make migration decisions at the beginning of each period. These decisions depend
on real wage in the destination labor market, migration cost, the preference shock drawn by the
individual at the beginning of this period, and the future option value in the destination. When indi-
vidual reaches the last period of their working life, they base their decision solely on current utility,
moving or staying in the place where they can maximize the utility from consumption U J

t (n, e) and
preference shock ϵn′ .
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Work/School Work ... Work

18 61
Enter Exit

- Education decision e
- Migration decision n′ for school or work
- Earn unskilled wage / home-production
- Utility from consumption with disutility of
migration

- Birth location n
- Education preference shock z
- Vector of location preference shock ϵn′

- Migration decisions
- Earn wage according to types
- Utility from consumption with
disutility of migration

- Replaced by a new cohort

Figure 1: Estimated Education Costs
Note: This figure shows the timeline of individual decisions. The detailed description can be found
in the text.

Dynamic Choice Problem In the model, individuals make education decisions and select their
migration destinations while they are in the model. These forward-looking individuals discount
the future at rate β ≥ 0. We start with the cohorts in the middle and present the value function. The
value function for an individual in cohort j, with education level e, living in location n, is equal to
the current flow of utility in that location plus the option value to move into any other location in
the next period, we have

V j
t (n, e) = U j

t (n, e) + Eϵn′ max
n′

{
βV j+1

t+1 (n′, e) − D j+1
n′n + κϵn′

}
,

when 1 < j < J. The migration costs are differed by each cohort denoted by D j
n′n. In the last

period, the value function does not include the option value since individual can no longer move
after this period. Thus, we have when j = J,

V J
t = U J

t (n, e)

At the very beginning, individuals who were born in location n, make education decisions and then
make migration decisions. Here we use V1

t (n, e) to denote the first period utility omitting education
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cost and migration cost1.

V1
t (n, e) = U1

t (n, e) + Eϵn′ max
n′

{
βV2

t+1(n′, e) − D2
n′n + κϵn′

}
,

Conditional on the education choice e, individual chose the optimal location n′ as the destination
of the first period.

V0
t (n′, e) = max

{n′}
{V1

t (n′, e) − D1
n′n − 1{e=h}Fn′ + κϵn′}

max
{e}
{V0

t (n, e) + ψz}

where Fn′ is the cost of education in terms of utility. This cost only occurs when the individual
chooses to become a skilled labor later in their life. This nested discrete choice allows us to
disentangle the heterogeneous preference of location and skill level. Individuals make decisions
sequentially, they first decide on the skill type given the ability shock they receive. The education
preference shock, z, only enters the value function in the first period. In our model, the preference
shock for education can be viewed as the ability of deriving joy from learning. This preference
shock, which contributes to an individual’s utility, can also help explain why some individuals
choose to study in the first period despite facing high opportunity costs. The preference shock
captures an individual’s intrinsic joy or inclination for learning, providing an additional layer of
insight into their choices.

Individuals derive utility from consumption:

U j
t (n, e) ≡ ln C j

t (n, e),

where C j
t (n, e) is consumption index for workers with education level e in location n at time t. The

consumption index is over a basket of goods from all locations

C j
t (n, e) =

∑
i∈N

(ce
int)

σ
σ−1


σ
σ−1

, σ > 1, e ∈ {l, h},

where ce
int is the consumption of i’s good in destination n at time t and σ is the constant elasticity of

substitution (CES) between each varieties. We denote the ideal price index by Pnt =
(∑

i p1−σ
nit

) 1
1−σ ,

where pnit is the price of goods purchased from location n for consumption in location i at time t.

1Omitting migration and education cost can simplify the notation, since we won’t need to track the destination at
this point, but they do present when the agent make choices
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Workers’ indirect utility depends on the income(Ie
nt) and the price index(Pnt):

U j
t (n, e) =

bnt if j = 1 and e = h

ln I j
e,nt − ln Pnt, otherwise

I j
ent = we

nt

"For individuals who are working, their income is derived from the wage they earn by inelastically
supplying one unit of labor. However, if an individual is studying in the first period (e = h and
j = 1), their consumption is sourced from home production. Due to the Armington assumption,
the share of income at location n spent on goods supplied by location i at time t is given by,

αnit ≡
(pnit)1−σ∑N

o=1(pnot)1−σ
,

where pnit equals to the marginal cost of producing plus the transportation cost τni at time t, pni =

τni
1
ai

[
a−ωηi χwl

it
1−η
+ aωηi (1 − χ)wh

it
1−η] 1

1−η , ai is location-specific productivity.
The market clearing condition can be written in labor income, the sum of labor income earned by
both skilled and unskilled labor at all ages in location n at time t can be written as the total income
spent on goods from all location, given by,∑

j

∑
e

1{ j,1ande,h}L
j
t (n, e)we

nt =
∑

j

∑
e

∑
o

1{ j,1ande,h}αontL
j
t (o, e)we

ot.

we relabel the working labor as L, and rewrite the condition,∑
e

Lt(n, e)we
nt =
∑

o

∑
e

αontLt(o, e)we
ot (1)

Solving education and migration decisions We assume the idiosyncratic shocks of the location
taste ϵ ≥ 0 and education taste z ≥ 0 are drawn from type-I extreme distributions, with κ and ψ
parameterize the importance of the shocks. The shocks are measured in terms of utility and are
additive. The location preference ϵ is standard in dynamic discrete choice models, such as in (Artuç
et al., 2010) and (Caliendo et al., 2019). The taste shock for education is a new shock introduced
by our model. The assumption on the distribution of the ability shocks allow as to include two
shocks and construct the value function by summing up the two shocks sequentially and still yield
a closed form solution to the migration probability.

Under this assumption, we can solve the aggregate migration flow and the probability of edu-
cational choice.The expected life time value for worker with skill e ∈ l, h being in location n, in
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period j is given by,

V j
t (n, e) = U j

t (n, e) + κ log
∑
o∈N

exp
(
βV j+1

t+1 (o, e) − D j+1
on

)1/κ
. (2)

Therefore, the probability of the migration decisions for individuals at period j, with education
level e, live in location n, moving to location n′ is given by,

π
j
t (n
′|n, e) =

exp(βV j+1
t+1 (n′, e) − D j+1

n′n )1/κ∑
o∈N exp(βV j+1

t+1 (o, e) − D j+1
on )1/κ

(3)

At the very beginning, the probability of individual’s migration and education level choice can be
written as

π0
nt(n

′, e|n) = (1) × (2) (4)

(1) =
exp(V1

t (n′, e) − D1
n′n − 1e=hFn′t)1/κ∑

o∈N exp
(
V1

t (o, e) − D1
n′n − 1e=hFot

)1/κ
(2) =

exp(V0
t (n, e))1/ψ∑

e′ exp
(
V0

t (n, e′)
)1/ψ .

The first part summarizes the choices between locations conditional on education decision, e.
The second part summarizes the decision to study and become a skilled labor later in life.

The movement of labor and its composition is summarized by migration probabilities and the
initial distribution. Formally, the migration flows are expressed as:

L0
nt = LJ

nt−1

L1
t (n′, e) =

∑
n

L0
ntπt(n′, e|n)

L j
t (n
′, e) =

∑
n

L j−1
t−1 (n, e)π j−1

t−1 (n′, e|n) j = 2, ..., J

Lt(n, e) =
J∑

j=2

L j
t (n, e) + 1e=lL1

t (n, e)

We assume that the last cohort exiting the model is replaced in all locations by a new young
cohort entering. The migration probability vary by age denoted by j. Furthermore, individuals
who opt to become skilled workers do not work during the first period; instead, they participate in
home production and consume their own produce.
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2.2 Market clearing and Equilibrium

Profit maximization firms in each location n determine labor input by skill type. Individuals’
education level choice and migration choice determine labor supply. Wage at each location, for
each individual type are adjusted to clear the labor market.

Equilibrium Given the path of exogenous parameters, including location-specific productiv-
ities An, and an initial distribution of workers L(n, e; 0), the recursive competitive equilibrium is
defined by the paths of: (i) individuals’ migration and educational choices for each location, edu-
cation level, and age: {πt(n′, e′|n) and π j

t (n′|n, e)}∞t=0

(ii) value functions for each location, education type and age {V j
t (n, e)}∞t=0

(iii) the distribution of workers across location, educational type and ages {L j
t (n, e)}∞t=0, and

(iv) wages {we
nt}
∞
t=0, such that:

The value function 2, the population flow condition 3, the educational level condition 4 and the
goods market clearing condition 1 are satisfied.

Steady State of the Equilibrium A steady state in this economy suggests no aggregate vari-
ables change over time. The labor composition in all locations stay unchanged, the individual
migration still exists, while the net inflows by cohorts and skill types equal to zero.

We solve the model in levels2, the equations that characterizes the steady state are in the ap-
pendix.

3 Parameterization

3.1 Data Description

We conduct the quantitative exercise on prefecture cites in China. The number of cities is an
intersect between the set of cities with available educational resource data (number of teachers
in higher education) and the set of cities with available estimates of bilateral transportation cost
from Ma and Tang (2022). The quantitative analysis of our model requires the following sets
of data for each location: the initial distribution of labor by age, skill-type and location; wages
and employment of skilled and unskilled workers in all regions; to calibrate share of high-skilled
labor input in the production function, we need to calculate the share of the aggregate labor income
earned by skilled labor; we need the bilateral trade costs and migration costs to address the bilateral
frictions in the model; to calibrate the magnitude of the migration cost, we need the migration
probability cognitional on age, skill-type, origin, and destination in 2015; to estimate parameters

2The model can be solved using hat algebra, but due to the lack of available data on internal trade flows in China,
we have to solve the model in levels.
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describing individual’s education choice, we need the overall skill-ratio of individuals who are
currently in higher education institutes in 2015.

The primary source of our data is the 2005 One Percent Population Survey (also known as the
mini-census). The Survey was conducted by the National Bureau of Statistics of China, covering
1.31 percent of the total population of China. This survey provides a comprehensive view of the
population’s demographic and socioeconomic characteristics. We use the 2005 One Percent Popu-
lation Survey as our starting point to construct the initial labor distribution in the model. However,
the 2005 One Percent Population Survey lacks a proportional representation of observations for
the population size in each city. Since we allow the initial population to iterate in the model, the
distribution significantly affects the simulation. To address this issue, we use only the educational
level and age distribution data from each city and scale the prefecture’s total population using the
prefecture-level population data from the 2005 statistical yearbook. This approach allows us to
establish a population distribution by age, education level, and location that closely represents the
Chinese demography. We further standardize the distribution by creating a grid based on age and
educational level. We only include individuals who are relevant to the model, specifically those
aged between 18 and 61. These individuals are then disaggregated into 11 cohorts. We assume
that individuals with an education level below high school, or including high school, are catego-
rized as unskilled workers, while individuals with degrees above high school are considered skilled
workers. To maintain a stable labor supply, we simplify the distribution of each age group within
the population by assuming that each cohort has an equal total population. At this point, we have
obtained comprehensive information on the labor distribution within 273 prefecture cities, broken
down into 11 cohorts and two skill types.

China Statistical Yearbook (Yearbook hereafter) is a valuable resource for accessing detailed
location-specific data. Published annually by the National Bureau of Statistics of China, it provides
essential information, including gross domestic product (GDP) and data on education resources. In
our analysis, we specifically utilize GDP data from the year 2005 and information on the number
of teachers in higher educational institutions for the years 2005 and 2015.

The geographic linkages in the model are summarized by bilateral trade costs and migration
costs, which are from Ma and Tang (2022). They comprehensively document the quality of trans-
portation infrastructure in China overtime and estimate trade costs and migration costs from a
spatial model. We use their estimations for year 2015, and keep the costs unchanged.

Finally, we utilize data from the 2015 mini-census to gather detailed information on migration
probabilities. This mini-census covers 1.55% of the population in mainland China. Survey par-
ticipants are asked about their previous residential locations 5 years ago if they did not currently
reside at the surveyed address. By combining this information with their current residential data
and individual characteristics such as age and educational level, we can create a bilateral migration
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flow between cities in China that represents a snapshot of labor movement within the economy.

3.2 Parameters in the model

In Table 1, we show 2 sets of parameters: The upper panel includes parameters that are either
taken from the literature or calibrated directly from the data. The lower panel includes parameters
that are calibrated by solving the model to match the observed data.

Table 1: Parameters

Symbol Description Value Source
β Discount rate 0.85
σ Elasticity of substitution 4
κ Elsaticity of migration 2.55 3 × β
ω Productivity skill comple-

mentarity
0.5 Burstein and Vogel

(2017)
{τmn|m, n = 1, ...,N} Bilateral transportation cost Ma and Tang (2022)
{Dmn|m, n = 1, ...,N} Bilateral migration cost Ma and Tang (2022)
χ Weight of input share for low

skilled labor
0.93 Calibrated using 2005

wage bill
{An|n = 1, ...,N} Productivity in each location Calibrated using 2005

GDP
ψ Elasticity of educational mi-

gration
5.74 Calibrated with col-

lege share
β1 and β2 Parameters transform educa-

tional cost
β1 = −5.36
β2 = 2

Calibrated with migra-
tion probability using
NLS

D j Magnitude of migration cost
by cohort

Calibrated using 2015
migration matrix

D̄ Magnitude of migration cost 0.92 Calibrated using 2015
stay rate

Notes: This table displays the parameters’ estimated values along with the source materials used in
calibration or relevant literature. The first and second columns show the symbolic representations used
in the model and their respective descriptions. The third column provides the parameter values when
available, and the last column describes the source citation or the estimation methods used.

We directly assign the following parameters of the model: we use a four-yearly discount factor
β of 0.85, implying a yearly interest rate of roughly 4% 3. We assume a elasticity of substitution,
σ, equals to 4, as in Tombe and Zhu (2019). We choose κ equals to 2.55 as our baseline, suggested
by Kleinman et al. (2023), where they suggest the elasticity of migration should be three times to
the discount rate. We assume a value for the productivity skill complementarity of ω = 0.5 as in

3The discount rate is 0.85: 0.964 ≈ 0.85
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Burstein and Vogel (2017). We use the set of estimated trade costs and migration costs directly
from Ma and Tang (2022).

We utilize the employment data in the 2005 mini-census, along with the 2005 prefectural-
level GDP data from the China Statistical Yearbook to calibrate the productivity for each location.
Specifically, we first guess productivity levels for each location and the weight of input share for
skilled and unskilled labor. Then we compute the output in the model, using the information of
labor distribution and wage bills. We iterate on the productivity, An, and input share, χ, until our
model estimated disaggregated output is matched with the local GDP data.

Education is costly, we estimate the education cost using the data on educational resources. We
obtain the number of teachers as a proxy for the abundance of educational resource. The number
of teachers in each locations along with the conditional migration flow will be used to estimate the
education costs.

To better suit our model, we assign a scalar uniformly to scale the migration costs. We estimate
the migration cost scalar by matching the share of individuals choose to stay in their current loca-
tion from the 2015 census and the model predicted value. Furthermore, to address the observed
decreasing migration probability over ages, we utilize the migration flow by age from the 2015
mini-census and calibrate the migration cost scalar by different cohorts. We discuss the estimation
process below.

3.3 Estimation

The remaining parameters are estimated using a two-step process. Firstly, we structurally es-
timate the migration costs for each cohort, and education costs. Following this, we employ the
selected parameters and the estimated costs to simulate the model, aligning it with the population’s
stay rate and skill ratio in 2015, thereby backing out the migration cost scalar that applies to all
agents in the model and the parameter related to education preferences shocks.

Estimation of migration cost by cohort We estimate the migration cost for each cohort to
account for the observed decrease in migration probability as individuals age. Migration is costly
in the model; we assume different bilateral costs of migration. Furthermore, we allow the bilateral
migration cost to be different for different cohorts, by adding a cohort-specific migration cost
scalar. Recall the value function and migration flow for individual of cohort j, with skill type e, in
location n.

V j
t (n, e) = U j

t (n, e) + κ log
∑
o∈N

exp
(
βV j+1

t+1 (o, e) − D̄ jDon

)1/κ
.
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π
j
t (n
′|n, e) =

exp(βV j+1
t+1 (n′, e) − D̄ jDn′n)1/κ∑

o∈N exp(βV j+1
t+1 (o, e) − D̄ jDon)1/κ

We rearrange the value function, and write it into a function of migration flow.

V j
t (n, e) = U j

t (n, e) − κ log π j
t (n
′|n, e) + βV j+1

t+1 (n′, e) − D̄ jDn′n (5)

We arrange Equation 5, and take difference between the log probability of migrating to other
location n′ from n and the log probability of staying in location n given cohort j and skill type e.

log
π j

t (n′|n, e)

π
j
t (n|n, e)

 = β
κ

(
V j+1

t+1 (n, e) − V j+1
t+1 (n′, e)

)
−

D̄ jDn′n

κ

We observe that if we switch n with n′, it can further eliminate the expected value and leave us
with migration cost.

log
π j

t (n′|n, e)

π
j
t (n|n, e)

 + log
 π j

t (n|n′, e)

π
j
t (n′|n′, e)

 = − D̄ j (Dn′n + Dnn′)
κ

Lastly, we take difference of the equation between each cohort and cohort j = 1. We observe
the data on migration flows from the 2015 mini-census. In this way, the migration cost for each
cohort can be estimated.

log
(
π

j
t (n′ |n,e)

π
j
t (n|n,e)

)
+ log

(
π

j
t (n|n′,e)

π
j
t (n′ |n′,e)

)
log
(
π

j′
t (n′ |n,e)

π
j′
t (n|n,e)

)
+ log

(
π

j′
t (n|n′,e)

π
j′
t (n′ |n′,e)

)
︸                                ︷︷                                ︸

data

=
D̄ j

D̄ j′

Figure 2 shows the estimated migration cost shifters by cohort where the first cohort serves as a
reference point and is normalized to 1. The confidence intervals are computed using bootstrapping.
The migration cost for the last cohort in the model is 1.4 times higher than the youngest cohort,
suggesting it is harder for older cohort to migrate unless the destination has high real income
despite the large migration cost. The right panel of Figure 2 shows the data and model simulated
migration probability by cohort. Generally speaking, the model does well, particularly for cohorts
in their later ages. The estimated migration cost shifters can well replicate the reality. Consistent
with the data, the migration probability decrease for the first cohort to slightly above 3 percent just
before the agent exiting the model. The model slightly over predicts the migration rate for agents
between 18-21, suggesting a close to 27 percent migration rate for the first cohort.
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(a) Cost of Migration by Cohort (b) Probability of Migration by Cohort

Figure 2: Migration by Cohort
Note: Figure 2a shows estimated migration cost shifters by cohort with 95% bootstrapped confi-
dence interval. Figure 2b shows the migration probability by cohort from both the model and the
data. The migration probabilities from the data are plotted in red with confidence intervals com-
puted by bootstrapping. The migration probabilities by cohort predicted by model are plotted in
blue with confidence intervals calculated using weighted standard deviation.

Estimation of education cost outside of the model We estimate the education cost using
number of teachers in each location. The cost function is estimated structurally using non-linear
least square. We assume the cost function to be a function of a location’s number of teachers in
higher educational institutes, with εn being the error term.

Fn = β2 × exp(β1 × Num.teachern) + εn.

We derive the relationship between education costs and conditional migration probability using
the migration flow and value functions in the model. The log difference between the probability
of individuals migrating from location n to location n′ and the probability of individuals staying in
location n conditional on getting higher education can be written into a function of expected value
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function and origin-destination migration costs.

π0(1)
t (n′, e′|n) =

exp
(
V1

t (n′, e) − D1
n′n − Fn′t

)
∑

o∈N exp
(
V1

t (o, e) − D1
on − Fot

)1/κ
V0

t (n, e) = κ log
∑
o∈N

exp
(
V1

t (o, e) − Don − Fo

)1/κ
log
πo(1)

t (n′, h|n)

πo(1)
t (n, h|n)

 = 1
κ

(
V1

t (n′, h) − V1
t (n, h) − D̃n′n − D̃nn

)
,

where D̃n′n = Dn′n + Fn′t.

Applying the same trick, the expected value can be eliminated from the equation by switching n

and n′. We lose some observations in this process, since for some location pairs we do not observe
bilateral migration flows given the age and education level. But the rest of the observations is
sufficient for us to estimate the cost function. We are able to estimate parameters in educational
cost function using:

log
πo(1)

t (n′, h|n)

πo(1)
t (n, h|n)

 + log
 πo(1)

t (n, h|n′)

πo(1)
t (n′, h|n′)

 = −1
κ

(2Fn′t + 2Fnt + Dnn′ + Dn′n)

We plug in the functional form and solve for β1 and β2.
The cost function we estimated shows diminishing returns with respect to college concentra-

tion. Figure 3 illustrates the estimated educational cost and the number of teachers in 2015. The
estimated educational cost decreases drastically when the number of teachers is low, while as re-
sources concentrate, the educational cost changes minimally. The median city, in terms of number
of teachers hired in higher education institutes, has approximately 2,000 teachers, while the city in
the top 10% has 7.4 times as many teachers. In an average city with 2,000 teachers, a 10 percent
increase in teachers leads to a 2.34 percent reduction in education costs. However, the return on
investment in additional colleges quickly diminishes in better-endowed locations, as indicated by
the curvature of the education cost function. For example, at the 90th percentile of cities in terms
of education resources, a 10 percent increase in teachers only reduces costs by 0.06 in level, while
at the 10th percentile, the same increment leads to a reduction as large as 0.3. This pattern strongly
indicates the presence of a substantial number of potential students who would pursue higher edu-
cation if resources were more accessible. Additionally, the data pattern suggests that in areas with
a limited number of colleges, educational costs are likely to be very high. The form of the cost
function also anticipates several of our numerical findings: investing in education yields a greater
benefit in areas with relatively fewer educational resources. Therefore, having an excessive con-
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Figure 3: Estimated Education Costs
Note: This figure shows the estimated educational costs and number of teachers in 2015. The esti-
mated education costs are plotted on the y-axis. The number of teachers hired in higher education
institutes are plotted on the x-axis. Each dot represents a location in the model. The number of
teachers in higher education institutes comes from China Statistical Yearbook. The dotted blue
line indicates the 90th percentile cities in terms of the number of teachers.

centration of colleges could have a notable negative impact. We elaborate this point in a general
equilibrium framework in the counterfactual exercise.

Estimation Procedure Lastly, we are left with two parameters that need to be estimated in
the model. We use a two-layer nested Nonlinear Least Squares procedure. In the outer loop, we
choose the overall migration cost shifter,D̄, to match the overall stay rate∑

e

∑
j>1

∑
n∈N

(π j(n|n, e) ∗ L j
n) +
∑

e

∑
n∈N

(π0(n, e|n) ∗ L0
n),

in the data. We calculate the 5-year stay rate from the One Percent Population Survey in 2015,
and transform it into a 4-year stay rate4, assuming the same stay rate each year. In the inner
loop conditional on D̄, we choose {ψ}, education elasticity, to match the share of individuals go to

4Five-year stay rate is 91%, we transform it by assuming the same one-year stay rate: Four-year stay rate =
(Five-year stay rate)4/5
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college when they are young. We borrow migration cost directly from Ma and Tang (2022), but we
scale up the migration cost for different cohorts and adjust the benchmark cohort. The identification
of the benchmark adjustment scalar {D̄} rely on the stay rate of individuals. Migration costs can
affect the value one can get from moving. Intuitively, the higher the migration cost, the higher
the portion of individuals choose to stay in the current location instead of pursuing higher wages
in other places. The identification of parameter {ψ} governs the education choices. We match the
model predicted share of college students at the steady state to the ones we observed in the 2015
mini-census. The share of college student in the first cohort is given by∑

n′∈N

∑
n∈N

(π0
n(n′, h|n) ∗ L0

n)/
∑
n∈N

L0
n.

We simulate the model at the steady state to estimate the parameters, D̄ and ψ. The estimation
strategy yields an estimate for the migration cost shifter, D̄ = 0.92, and education elasticity, ψ =
5.745.

Figure 4 illustrates the destination choices of individuals attending college. The estimated cost
of obtaining education is plotted on the x-axis. We focus on the age group 18-21 who have chosen
to attend college away from their hometown, and compute the distribution of this group of people.
The percentage of each location chosen as the migration destination is plotted on the y-axis. When
the cost of education is lower, there is a greater likelihood that individuals will choose that location
for college, given that they are part of the population pursuing higher education and moving. Our
model can well generate this pattern without directly targeting the distribution of migrant college
student when estimating the model parameters.

4 Counterfactual Simulations

We employ our model to analyze the distribution of educational resources and assess the im-
pacts of college expansion. Additionally, we carry out counterfactual policy experiments to eval-
uate the results, with a specific focus on changes in the overall skill composition and spatial in-
equality.

4.1 College Expansion

We first examine both the aggregate and distributional impacts of allocation of education re-
sources through the lify-cycle model. The first experiment examines directly the impact of the

5Appendix A.3 displays the objective function for estimating D̄ and ψ with each parameter varying while keeping
the other parameters at their estimated values.
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Figure 4: Migrants Destination Percentage
Note: This figure shows the binned scatter plot of estimated education cost and the destination
choice for both data and model prediction. The number of bins is 30. The education cost is plotted
on the x-axis, the percentage of students chose the place as the destination conditional on going to
college in a place different than the home location is plotted on the y-axis. Each dot represents a
group of observations with similar estimated education costs.

college expansion which happened in the beginning of this century. We set the college resources
fixed at the beginning year of our analysis (2005), such that the cost of obtaining higher education
does not vary over time. By comparing the scenario when there is no expansion with the factual
scenario, we shed light on the distributional impact of college expansion. Figure 5 shows the ac-
tual expansion happened in place in 2005 to 2015 where we observe a disproportional allocation
of resources in those places that already have a higher share of resources. Using the estimated
cost, Figure 5b indicates that the concentration of the resources does not significantly reduce costs.
The most significant change in education costs occurs in cities with median educational resources.
Furthermore, the cost function we estimated suggests that a slight increase in areas with fewer
resources leads to a substantial drop in the education cost. However, in the factual expansion,
these areas receive minimal new resources. The increase of the top 10 percent of cities in terms
of number of teachers is approximately 29 times higher than the bottom 10 percent. Overall, there
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(a) Education Resources (b) Estimated Education Costs

Figure 5: Factual College Expansion
Note: Figure 5a shows the factual educational resources in terms of number of teachers hired in
higher education institutes by locations. Figure 5b shows estimated education costs by locations.
The number of teachers hired in higher education institutes comes from China Statistical Yearbook
in 2005 and 2015. The red line represents the 45 degree line.

is an 84.23% increase in the number of teachers, which leads to a 12.77% reduction in estimated
education cost.

Table 2 panel A reports the overall welfare impact and distributional impact of college expan-
sion. By the year 2015, the population-weighted welfare gains are around 0.02% and the skill ratio
increased 0.29%. Both skilled and unskilled workers experience welfare loss. The overall welfare
slightly increased, due to the level of welfare of skilled worker is higher than the unskilled worker.
We see the labor composition shifts more to skilled labor, even though the welfare level of skilled
labor decreased. The college expansion decreases the cost of becoming a skilled worker, attracting
more individuals choose to go to college. Thus, the expansion creates a supply shock of skilled
worker. The impact of the shock would eventually leads to a 0.16% welfare loss of the skilled
worker and a 0.16% gains of unskilled worker, when the economy transits to steady state. The im-
pact of college expansion does not evenly affect all locations. The dispersion of overall welfare by
locations measured by the coefficient of variation increased by 0.16% compared to no expansion.

Figure 6 and Figure 7 further present the impacts by locations. Each bubble represents a lo-
cation, the size of the bubble represents the initial value of the educational resources before the
college expansion. The welfare impact are mainly driven by the welfare change of skilled work-
ers, as shown in Figure 6b, where the welfare change for unskilled workers is close to 0. Welfare
improvement is greatest in areas that start with a moderate level of resources. In these locations,
the reduction in education costs is most significant and, as a result, they can attract more high-skill
workers.
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(a) Change in Welfare (b) Change in Welfare by skill level

Figure 6: College Expansion Impacts
Note: Figure 6a shows the welfare change by locations. Figure 6b shows the welfare change of
skilled and unskilled by loations. All changes are compared against the scenario without college
expansion. Each dot represents a location. The size of the dots indicates the initial level of educa-
tion resources, in terms of number of teachers in higher education institutes.

The limited response to college expansion is expected. This is due to the diminishing returns
associated with the concentration of educational resources, resulting in minimal changes in the av-
erage cost of attending college. Thus, we seek alternative allocations to better allocate educational
resources across space.

4.2 Alternative Allocations

The factual college expansion results suggests that the allocation of educational resources has
varying effects on different locations. To analyze this, we first calculate the elasticity of welfare
with respect to college expansion, examining each prefecture individually. More specifically, we
increment the actual number of college teachers by 10% in each location and then assess the change
in welfare compared to a scenario with no expansion. We categorize the prefectures based on their
initial educational resources. Notably, the overall impact of a 10% increase in college teachers is
0.41% greater in the bottom 10% of prefectures than in the top 10%, when compared to the no
expansion scenario.

We then conduct another simulation where we keep the total increment of education resources
unchanged and distribute the increment evenly across all locations. We call this simulation "equal

growth". In this case, all prefectures equally receive an additional 2600 college teachers. Figure 8
shows the counterfactual cost of education in this scenario. The evenly distributed resources keeps
the relative rank of education costs untouched while substantially lower the cost of the prefectures
where the costs are originally high. Unsurprisingly, the "equal growth" scheme leads to a even
higher skill ratio change. Since the average education cost is 27% lower, comparing to the no
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(a) Change in Skill Ratios (b) Change in Output

Figure 7: College Expansion Impacts
Note: Figure 7a shows the skill ratio change by locations. Figure 7b shows the output chage by
loations. All changes are compared against the scenario without college expansion. Each dot
represents a location. The size of the circle indicates the initial level of education resources, in
terms of number of teachers in higher education institutes.

expansion case, and 16.4% lower than the factual expansion case. Table 2 Panel B shows the
aggregate welfare of this scheme is five times higher than the actual expansion program and the
skill ratio is more that 10 times higher than the observed expansion at 3.57%.
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Table 2: Summary of Counterfactual Exercises: Welfare Change and Skill Ratio

Panel A: Impacts of College Expansion
∆Welfare ∆Dispersion 10th percentile 90th percentile

Overall T = 3 0.02% 0.16% -0.08% 0.10%
S.S. 0.03% 0.17% -0.07% 0.02%

Skilled T = 3 -0.02% 0.11% -0.18% 0.05%
S.S. -0.16% 0.88% -0.52% -0.08%

Unskilled T = 3 -0.01% 0.11% -0.04% 0%
S.S. 0.16% 0.10% 0.12% 0.14%

∆Skill Ratio ∆Dispersion 10th percentile 90th percentile
Overall T = 3 0.29% 0.07% -0.13% 0.69%

S.S. 1.65% 0.82% 0.59% 2.68%
Panel B: Impacts of Equal Growth

∆Welfare ∆Dispersion 10th percentile 90th percentile
Overall T = 3 0.17% 1.08% -0.26% 0.36%

S.S. 0.16% 3.11% -0.61% 0.03%
Skilled T = 3 0.23% -0.95% -0.46% 0.04%

S.S. -1.00% 2.15% -1.54% -1.11%
Unskilled T = 3 -0.13% 1.97% -0.75% 0.28%

S.S. 0.95% 3.71% 0.05% 0.84%
∆Skill Ratio ∆Dispersion 10th percentile 90th percentile

Overall T = 3 3.57% -3.65% 2.28% 5.82%
S.S. 8.34% -17.37% 5.59% 13.09%

Notes: This table illustrates the changes in the levels and dispersion of both welfare and
labor composition in both 2015 and the steady state, compared to the no-expansion bench-
mark. In Panel A, we present scenarios reflecting factual college expansion, while Panel B
depicts a situation where educational resources grow equally in all locations. The changes
are calculated in comparison to a scenario in which we maintain educational resources at
the 2005 level. Welfare is weighted by the population, and we also present a dispersion
measure using the coefficient of variation.
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Figure 8: Factual College Expansion
Note: This figure shows the estimated education costs for college expansion and counterfactual
"Equal Growth" in 2005 and 2015. The additional education resources are distributed evenly across
all locations. Each dot represents a location.

Equal growth generates a bigger supply shock of skilled worker. This benefits unskilled work-
ers, thus generating a higher welfare impact than college expansion. Since unskilled workers are
a large share of labor force. Figure 8 demonstrates this point by showing the welfare impact by
skilled type and location, with the size of the dots indicating the population. On the x-axis, we
show the estimated educational cost under this "equal growth" scenario.

4.3 Equalization

The final counterfactual exercise we conduct involves equalizing all educational resources to
examine the impact of this even distribution of resources on spatial inequality in skill composition.

In the ’Equal college’ scenario, we demonstrate that the unequal distribution of educational
resources contributes to as much as 20% of the observed spatial inequality in skill composition.
In this exercise, educational costs are standardized across all locations while keeping the overall
resource level constant. Consequently, skill ratios are adjusted accordingly. As indicated in Table
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Figure 9: Euqal Growth
Note: This figure shows the welfare change in the "Equal Growth" scenario by skill level in each
location comparing to the no expansion scenario.
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(a) Skill Ratios by location (b) Change in Skill Ratios

Figure 10: Education resources equalization
Note: Figure 10a shows the skill ratio by locations. Figure 10b shows the skill ratio chage by loa-
tions. All changes are compared against the scenario with college expansion. Each dot represents
a location.

3, the skill ratio dispersion decreases by approximately 6% to 20% compared to the baseline results
along the transition path. Figure 10 illustrates the changes in skill ratios in various locations under
this equalization scenario. In Figure 10a, the x-axis represents the number of teachers in the actual
college expansion scenario, while the y-axis depicts skill ratios across locations in the equalization
scenario. The dashed vertical line indicates the number of teachers in the ’Equal college’ scenario.
Meanwhile, Figure 10b displays the changes in skill ratios in comparison to the college expan-
sion scenario, plotted on the y-axis. Clearly apart from the educational resources, fundamental
productivity also determines the labor compositions.

To assess the impact of this hypothetical resource equalization, we also standardize fundamen-
tal productivity across all locations. We set the fundamental productivity to the average estimated
level across all locations. Table 3 demonstrates that equalizing productivity can significantly re-
duce skill ratio dispersion. The dispersion of skill ratio declines by 31% to 80% along the transition
path to the steady state. Figure 11 illustrates the skill ratio change dispersion relative to the base-
line college expansion over time for both educational equalization and productivity equalization.
An evenly distributed educational resource is 25% as effective at reducing spatial inequality as an
evenly distributed productivity.
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Table 3: Summary of Counterfactual Exercises: Skill Ratio

Panel A: Impacts of Education Equalization
∆Skill Ratio ∆Dispersion 10th percentile 90th percentile

Overall T = 3 3.27% -6.48% 0.53% 8.18%
S.S. 6.33% -19.07% 2.86% 12.48%

Panel B: Impacts of Productivity Equalization
∆Skill Ratio ∆Dispersion 10th percentile 90th percentile

Overall T = 3 1.04% -31.43% -7.65% 37.85%
S.S. 1.73% -79.88% -0.95% 33.40%

Notes: This table illustrates the changes in the levels and dispersion of labor composition in
both 2015 and the steady state, compared to the college expansion benchmark. In Panel A,
we present scenarios reflecting educational resources equalization, while Panel B depicts a
situation where productivity are equalized to the average in all location. The changes are
calculated in comparison to a scenario in which we maintain the factual college expansion.
Welfare is weighted by the population, and we also present a dispersion measure using the
coefficient of variation.

(a) Overtime Skill Ratios (b) Overtime Skill Ratio dispersions

Figure 11: Education Equalization and Productivity Equalization
Note: Figure 11a shows the overtime overall skill ratios. Figure 11b shows the dispersion of skill
ratios overtime. All changes are compared against the scenario with college expansion.

5 Concluding Remarks

This paper integrates educational choices into a dynamic spatial model to examine how location-
specific educational resources affect spatial inequality. We build a dynamic spatial model with
overlapping generations. The individuals in the model make decisions on education, including,
whether and where to attend college. We use the model to estimate the cost of higher educa-
tion in each prefecture and perform counterfactual policy experiments to determine if more evenly
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distributed resources could lead to better outcomes. We quantify the model to mirror China and
structurally estimate the cost of obtaining a college degree in each prefecture.

We find diminishing returns to college concentration in estimated education costs. Initially, ed-
ucational costs decrease significantly with a small increase in resources. However, as resources
continue to concentrate, the reduction in costs becomes less proportional compared to earlier
stages. This suggests an over-concentration of colleges might carry a sizable negative conse-
quences.

We also find that the real college expansion has a negligible effect on overall welfare and the
skill ratio. This expansion disproportionately allocates resources to already well-endowed loca-
tions, with little impact on less-endowed areas. When we simulate a scenario in which additional
resources are evenly distributed across regions, we observe a five-fold increase in the welfare im-
pact, and the impact on skill ratio is more than ten times higher than the observed expansion.

Furthermore, we show that the unequal distribution of educational resources accounts for as
much as 20% of the observed spatial disparity in skill composition. Equalizing educational re-
sources is roughly 25% as effective as equalizing fundamental productivity.

This study abstracts government’s decisions on investment in educational resources. Allow-
ing local government optimizing investment in educational investment, the model could explore
intriguing topics such as the competition among local governments and the evaluation of policies
aimed at attracting skilled talent. An important direction for future work is to incorporate govern-
ment’s role into analyses.
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A Appendix

A.1 Steady State in Levels

The steady state of the equilibrium is described by the following system of equations:

pni = τni
1
ai

[
a−ω(η−1)

i χwl
it

1−η
+ aω(η−1)

i (1 − χ)wh
it

1−η] 1
1−η
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ni∑
o p1−σ

no
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∑
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∑
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L j(n′, e) =
∑
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L j−1(n, e)π j−1(n′, e|n) j = 2, ..., J

L(n, e) = Ln,h + Ln,l

A.2 Algorithm to solve for the path

The economy evolves according to the law of motion of labor distribution. The following
algorithm describe the process.

1. Guess {L j
t (n, e)} for a long enough period.

2. Solve for {wh
nt,w

l
nt} using the market clearing condition along with the relationship between

wh
nt and wl

nt.
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3. Compute recursively the value functions {V j
t (n, e)} at each location and time period for each

individual type using equation 2.

4. Compute migration probability {πtn′, e′|n} and {π j
t (n′|n, e)} using equation 4 and equation 3.

5. Update {L j(n, e)} using the law of motion, repeat until converge.

A.3 Additional figures

(a) D̄ Objective function (b) ψ Objective function

Figure A.1: Local plot for Nested NLS Estimation
Note:This figure displays the objective function for estimating D̄ and ψ with each parameter vary-
ing while keeping the other parameters at their estimated values. The dotted line indicates the
estimated value for D̄ andψ.
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Figure A.2: Welfare change overtime
Note: This figure shows the population-weighted welfare
change overtime for college expansion and equal growth
scenarios comparing to the no expansion scenario.
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Figure A.3: Skill ratio change overtime
Note: This figure shows the skill ratio change overtime for college expansion and equal growth
scenarios comparing to the no expansion scenario.
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Figure A.4: Skill ratio dispersion change overtime
Note: This figure shows the dispersion change of skill ratio overtime for college expansion and
equal growth scenarios comparing to the no expansion scenario.
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Figure A.5: Welfare change overtime
Note: This figure shows the population-weighted welfare change overtime for education equaliza-
tion and productivity equalization scenarios comparing to the no expansion scenario.
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Figure A.6: Skill ratio change overtime
Note: This figure shows the skill ratio change overtime for education equalization and productivity
equalization scenarios comparing to the no expansion scenario.
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Figure A.7: Skill ratio dispersion change overtime
Note: This figure shows the dispersion change of skill ratio overtime for education equalization
and productivity equalization scenarios comparing to the no expansion scenario.
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