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1. Motivation

What is dynamic programming? Consider the following “Maximum Path Sum I” problem

listed as problem 18 on website Project Euler. The task at hand is to find a path, which con-

nects adjacent numbers from top to bottom of a triangle, with the largest sum. An example

of such a path is

The example above with 4 rows may be easy. But the following with 15 rows is not. Al-

though one can crack the problem by brute force (16384 routes in total), the problem will be

geometrically more complicated if the number of rows extends to hundreds or thousands.

So is there any intelligent solution to this problem? Instead of working out the solution

from top to bottom, an alternative is to work out the solution from backwards. Starting

from the second last row, say number 63, conditional on the path already reaches 63, there

are only two choices left: 04 and 62. Given the past, history already doesn’t matter. What

matters is which number in the last row will give the largest payoff. Clearly, between 04

and 62, the choice should be 62. Thus the payoff of reaching 63 in the second last row is

63 + 62 = 125. Hence, we can erase 63 from the row and replace it with 125.
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Repeating this logic for every number in the second last row, we can update it to, from

left to right, “125, 164, 102, 95, 112, 123, 165, 128, 166, 109, 122, 147, 100, 54”. The new

row will be the expected sum of future payoffs for reaching corresponding position in the

second last row. From this, we also know the direction of the path in the next period to

achieve such future payoffs. Deleting the last row and treating the updated second last row

as the terminal row, we can iterate this “algorithm” and find the corresponding path with

the largest total sum. Instead of comparing among 16384 paths, we can finish the problem

in 15+14+13+...+1 = 120 steps. This solution method is called backward induction.

This problem, although elementary and abstract, is central to our discussions of dy-

namic programming. It is inherently dynamic. Each row can be seen as one time period

and the starting point is from the top. The numbers are the payoffs corresponding to dif-

ferent states in each period. Maximizing a simple total sum along the path is then equiva-

lent to saying that the discount factor is 1. There are two choices in each period, either to

choose the number on the left or to choose the number on the right. If you remember what

you have learnt about Arrow-Debreu equilibrium in your PhD Microeconomics II class, the

16384 possible routes then correspond to 16384 possible histories.

The fact that a minimalist dynamic problem, with only 15 periods and 2 choices, has

16384 possible histories reveals the complex nature of any dynamic model. Any exhaustive

algorithm that compares payoffs along each history from forwards is inefficient. In con-

trast, a simple backward induction is useful because although the set of histories is huge,

the number of states is limited. Working from backwards, one can ignore the past payoffs

or the past histories and instead focus on the one-period payoffs at hand. Iterating this

logic, one can then easily solve for any dynamic problem in principle, even if the number

of states is infinite. This approach is also useful in many areas. We can apply it to solve for

macroeconomic models, structural labor models, or even microeconomic dynamic games.

Now I should introduce dynamic programming in more formal settings.

Recap: Dynamic problems are all about backward induction, as we usually do not have

enough computing power to tackle the problem using an exhaustive search algorithm.1

Remark: In fact, backward induction is not the accurate phrase to characterize dynamic pro-

gramming. A more precise description should be ”solve suboptimal problems first and store

it, so that you don’t have to solve it again for multiple times”.

Exercise: How does backward induction in “Maximum Path Sum” problem relate to ”solve

suboptimal problems first and store it, so as to avoid solving it for multiple times”?

1This is true, even one uses modern metaheuristic algorithms such as differential evolution or particle swarm
optimization. More importantly, we are interested in the analytical properties most of the time, so that we can
offer some principles on how to solve a “Maximum Path Sum” problem in general, not just numerically.
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2. A First Look

The “Maximum Path Sum” problem introduced earlier is essentially a dynamic problem

with finite number of states. There are many applications for this class of dynamic mod-

els. One classic example would be the structural occupational choice model in Keane and

Wolpin (1997). However, the state space in the class of dynamic models that we are going to

see in the Macroeconomic classes is usually infinite. More formally, consider the following

canonical neoclassical growth model,

max
{ct,kt+1}Tt=0

T∑
t=0

βtU(ct)

s.t. ct + it ≤ yt = f(kt), ∀t = 0, . . . , T ;

kt+1 = (1− δ)kt + it, ∀t = 0, . . . , T − 1;

k0 > 0 is given.

(1)

where kt is the capital stock at time t, it is the amount of investment, ct is the quantity of

consumption, and the usual regularity conditions apply2. Readers with a quick eye should

immediately see that, a naive backward induction is no longer feasible. Unlike the “Maxi-

mum Path Sum” problem, where the cardinality of state space is 10 in its maximum, in each

period the cardinality of state space is infinite. It is almost impossible to compare all the

possible values of {ct, nt, kt+1} even if one works from backwards.

So how should we tackle this class of problems? In what follows, I will first offer a method

which utilizes Kuhn-Tucker conditions to solve the problem. Then I will introduce another

method or, more precisely, another formulation called “Principle of Optimality” which es-

sentially generalizes the intuition of backward induction for this class of problems. The

final section of this lecture is then dedicated to “UTDs” (unnecessary technical details)3 to

establish that, formulations under “Principle of Optimality” is really equivalent to the for-

mulation in (1).

3. Kuhn-Tucker Solution Methods

Finite horizon

I will skip most of the UTDs. Readers who demand a higher-level of mathematical rigour

may follow the reasoning in chapter 2.1 of SLP (Stokey et al., 1989). After eliminating it, the

2f(0) = 0, f ′(k) > 0, limk→0 f
′(k) =∞, limk→∞ f ′(k) = 1− δ

3This is a phrase borrowed from Prof. Steven Durlauf’s Social Interaction class.
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Lagrangian of the problem in section 2 is as follows,

L =

T∑
t=0

βtU(ct)−
T∑

t=0

λt[ct + kt+1 − (1− δ)kt − f(kt)]

The relevant first-order conditions are

βtU ′(ct) = λt

λt = [(1− δ) + f ′(kt+1)]λt+1

Note that how the second FOC is obtained by using both kt+1 in the term λt[ct + kt+1 −
(1− δ)kt − f(kt)] and the term λt+1[ct+1 + kt+2 − (1− δ)kt+1 − f(kt+1)]. Furthermore, since

we know that U is strictly increasing and U ′(0) = ∞, λt must be greater than 0 for every t.

Hence, by the complementary slackness condition λt[ct + kt+1 − (1− δ)kt − f(kt)] = 0, the

inequality constraint ct + kt+1 − (1− δ)kt − f(kt) ≤ 0 must be binding, i.e.,

ct + kt+1 − (1− δ)kt − f(kt) = 0

Substituting this equation back into the FOCs to eliminate ct, we have that

βtU ′[f(kt) + (1− δ)kt − kt+1] = λt (2)

λt = [(1− δ) + f ′(kt+1)]λt+1 (3)

Taking the inter-temporal ratio of (2), we have that

β
λt
λt+1

U ′[f(kt+1) + (1− δ)kt+1 − kt+2] = U ′[f(kt) + (1− δ)kt − kt+1]

From (3), we have that λt/λt+1 = (1− δ) + f ′(kt+1). Substituting this back into the previous

equation, gives the following

β [(1− δ) + f ′(kt+1)]U
′[f(kt+1)+(1−δ)kt+1−kt+2] = U ′[f(kt)+(1−δ)kt−kt+1], for t = 0, 1, . . . , T−1

which is essentially equation (5) on page 11 of SLP. We also know that kT+1 must be zero,

since there is no need to invest if there is no future. Combine these with the initial condition

k0, we have a system of T equations (not necessarily linear) with T unknowns. Solving this

system of equations shall give us a path of {kt}Tt=1. We can then utilize this and obtain the

corresponding paths of {ct}Tt=0 and {it}Tt=0. To solve this system of second-order difference

equations, readers are required to do Exercise 2.2 on page 12 of SLP. You can use Irigoyen et

al. (2003) to check your answer.



5

Infinite horizon

With infinite horizon, everything is similar except for that the terminal condition kT+1 = 0

is now replaced by a transversality condition. We will come back to this later.

4. Principle of Optimality

The above example is essentially a “sequence problem” (SP), that is, given the objective and

the constraints, we want to find a sequence of {kt} to maximize (or to find the supremum

of) the objective. This is almost analogous to the forward exhaustive search algorithm that

we used in the “Maximum Path Sum” problem. One may argue that we have turned the

previous neoclassical dynamic model into a system of second-order difference equations,

so unlike the “Maximum Path Sum” problem, it is not that hard to solve for the solutions.

However, this approach is not optimal in general. As you can already see in the “Maximum

Path Sum” problem, there is no way that you can write the problem in difference equations.

In what follows, I will introduce a second approach called “Principle of Optimality” to tackle

the issue. This will be the cornerstone in our study of dynamic programming.

Before we start, it is always good to hear from the man who invented “Principle of Opti-

mality” himself, Richard Bellman.

Principle of Optimality. An optimal policy has the property that whatever

the initial state and initial decisions are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the

first decision.

The above definition is an intuitive quotation from page 83 of Bellman (1957). To under-

stand this sentence, we should first understand what a “state” is.

State variables

To paraphrase Bellman, a state variable is essentially a small set of parameters or variables

that characterize the system at any stage. We need these state variables because they pro-

vide all the necessary information we need to make a decision at any stage. For example, in

the neoclassical growth model the relevant choice variables are {kt+1}, the amount of cap-

ital stock we have in the next period.The relevant state variables are then {kt}, because we

need to know the situations we are in, we need to know how much capital stock we already

have in order to choose what’s optimal for the future. In the “Maximum Path Sum” example,

the state variable is essentially the current node or number your are in, because this num-

ber tells you what your future payoffs are, whether you choose left or right, so as to inform

you on which decisions are optimal conditional on you are already in that node.
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Policy and contingency plans

After knowing what a “state” is, it comes down to interpret the sentence that “the remain-

ing decisions must constitute an optimal policy with regard to the state resulting from the

first decision.” To understand this sentence, we must first define what constitutes “an op-

timal policy”. Broadly speaking, an optimal policy is a “contingency plan” which defines

what you should do in every possible scenario or in any possible state. For example, if your

breakfast choice depends on the weather, then a policy function or a contingency plan is

a complete list of what you should eat tomorrow morning in every possible weather sce-

nario. In our example, a policy is a function k∗t+1(kt) that defines what amount of capital

you should achieve in the next period given any possible state kt which is the amount of

capital you already have.

Sub-problems and sub-optimality

To finish interpreting the definition, we need to look at another slightly more modern defi-

nition of “Principles of Optimality”, which is adapted from the definition in Bertsekas (2017)

and modified for our purpose. Consider the canonical neoclassical growth model. Suppose

that we are at state where kt = k̃ for some particular k̃ at particular time t0, then a sub-

problem is to maximize lifetime utility for the remaining life cycle starting from time t0,

conditional on kt0 = k̃, i.e.,

max
{ct,kt+1}Tt=t0

T∑
t=t0

βtU(ct)

s.t. ct + it ≤ yt = f(kt), ∀t = t0, . . . , T ;

kt+1 = (1− δ)kt + it, ∀t = t0, . . . , T − 1;

kt0 = k̃ is given.

(4)

To paraphrase Bertsekas (2017), Principle of Optimality states that if {k∗t+1} = {k̃1, k̃2, . . . , k̃T }
is an optimal policy to the original problem, then the truncated policy {k̃t0+1, . . . , k̃T } is op-

timal for the subproblem (4). We will delegate the formal proof to the later section.

Intuition

An intuitive proof is that if the truncated policy is not optimal for the subproblem and there

is an alternative optimal policy {k̂t+1}T−1t0 , then there must be an alternative policy {kt+1}
where kt+1 = k̃t+1 for t = 0, . . . , t0 − 1 and kt+1 = k̂t+1 for t = t0, . . . , T − 1 such that this

policy beats the optimal policy {k∗t+1}. This would be a contradiction. To supply some real-



7

life intuitions, the best example is found in Bertsekas (2017), which I quote here, “[S]uppose

that the fastest route from Los Angeles to Boston passes through Chicago. The principle of

optimality translates to the obvious fact that the Chicago to Boston portion of the route is

also the fastest route for a trip that starts from Chicago and ends in Boston”. The intuition

of this example is that, ...

In essence, Principle of Optimality (henceforth PO) lays a foundation for dynamic pro-

gramming, which is a more efficient way to solve dynamic optimization problem. The cor-

nerstone of this approach is to formalize the “backward induction” intuition that we have

seen earlier. If PO holds, then we can always start from the last period T and consider the

associated subproblem. By PO, the optimal policy to this subproblem will also be part of

the optimal policy to the global problem. As a byproduct, we will also know about payoffs

associated to reaching each possible state in the terminal period. Hence, we can substitute

these payoffs into the subproblem associated with period T − 1 and solve for the optimal

policy to this subproblem. Iterating this logic, we will eventually find the optimal policies

to each subproblem for each time period t = 2, . . . , T . By PO, they are all part of the optimal

policy to the global problem. Combining them returns us the optimal policy of the entire

dynamic optimization problem.

How much more efficiency does this dynamic programming give us? In the context of

problems with finite state space such as the “Maximum Path Sum” problem, dynamic pro-

gramming only requires to solve the subproblems T times. Brute force approach that eval-

uates every possible ‘path’ would require compare payoffs of T ! different paths. In general,

the computational burden for brute force approaches is exponential in T while dynamic

programming approach is polynomial in T . That is, the computational time for brute force

is O(nT ) and that of dynamic programming is O(Tn). We can see that dynamic program-

ming is clearly superior than a brute force approach for larger values of T (for n = 2),

Figure 1: Computational burden of different approaches
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5. Functional Equation Formulation

So how does this definition of Principle of Optimality relate to the one in SLP? To see the

comparison clearly, I will first reproduce the definition of Principle of Optimality on page

67, with slight modifications to cater our notations. For any sequence problem (SP) such as

problem (1), there is a functional equation representation (FE) such that,

vt(kt) = max
ct,kt+1

[U(ct) + βvt+1(kt+1)]

s.t. ct + kt+1 − (1− δ)kt ≤ f(kt)

where vt(·) is the “value function” at time t and vt(kt) is the value of the optimal program

from period t at state kt,4

vt(kt) ≡ max
{cs,ks+1}Ts=t

T∑
s=t

βs−tU(ks)

s.t. cs + ks+1 − (1− δ)ks ≤ f(ks), ∀s ≥ t

such that vt(·) maps all the possible values of kt to the corresponding maximized objective

function starting from kt. SLP’s version of Principle of Optimality then states that a solution

v attains the maximum in a SP problem if and only if it is an optimal solution to the FE

problem in every t. We shall discuss the intuition of this statement first while delegating a

more rigorous mathematical proof that operates in the metric space to later lectures. Two

remarks are in order.

First, the definition of value function exactly maps to the PO definition in Bertsekas

(2017). The version of PO in Bertsekas (2017) states that an optimal policy to a subprob-

lem must also be part of the optimal policy to the global problem. This is exactly what vt(kt)

is, that is, it is the maximum value to the subproblem starting from kt. Hence, the functional

equation formulation says that, an optimal policy attains a maximum in the global problem

if and only if it also attains a maximum for each subproblem.

Second, if the definition of vt(kt) is exactly the optimal policy to a SP formulation of sub-

problem, then what is the difference between the FE formulation and the SP formulation?

The answer is that the FE formulation is a recursive representation of the problem. That is,

the value function v(·) will appear on both sides of the function equation. To see how this

is a recursive representation, we can substitute the definition for vt+1 into the FE problem

4Note that in this example the value function has a time subscript, because the life cycle is finite and the envi-
ronment is not stationary. If the problem is infinite and stationary, then we should drop the time subscript.
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such that it becomes

vt(kt) = max
ct,kt+1

[
U(ct) + max

{cs,ks+1}Ts=t+1

T∑
s=t+1

βs−(t+1)U(ks+1)

]

s.t. ct + kt+1 − (1− δ)kt ≤ f(kt)

cs + ks+1 − (1− δ)ks ≤ f(ks), ∀s ≥ t+ 1.

We can quickly prove that this is further equivalent to the following problem,

vt(kt) = max
cs,ks+1

T∑
s=t

βs−tU(ks)

s.t. cs + ks+1 − (1− δ)ks ≤ f(ks), ∀s ≥ t,

which is not surprising since this is precisely the definition of the “value function” start-

ing from kt. Furthermore, this problem is also the SP formulation of the subproblem start-

ing from kt. To conclude, despite that this reasoning seems cyclic and tautological, it il-

lustrates an important point, that the FE formulation is a recursive representation of the SP

formulation for the same subproblem.

So why should we care about recursive formulation or a FE formulation when the SP for-

mulation is available? One reason is that it is simple and often supplies useful economic in-

tuitions. Another, perhaps a more important reason, is related to computational efficiency.

Going back to the “Maximum Path Sum” problem, there is another key insight that maps

exactly to the FE or the recursive formulation. When we do the backward induction, the

payoffs of each state in the last period is computed first and then attached to the payoffs in

the second last period. Then, we iterate this logic until the first period. By doing this, we are

only considering one period forward in each step. That is, the payoffs in each step has been

amended so as to include all future payoffs along the optimal path of the corresponding

subproblems. This maps precisely to the definition of the value function. Furthermore, this

one-period forward value function is constructed recursively by our iteration of the logic.

This is the reason that we prefer FE formulation to the SP formulation of the problem

in the language of dynamic programming. By PO, we can incorporate the idea of backward

induction both into SP and FE formulation. However, the FE formulation is more efficient

than the SP formulation.5 Because by solving the problem recursively, we have essentially

“stored” the optimal policy to each subproblem because the payoffs are added up recur-

5While this statement is in principle true, in practice it is more complicated. When the discount factor ap-
proaches 1, value function iteration becomes very slow and the SP formulation or the Euler Methods become
more appealing. There are also other more efficient methods for certain class of dynamic problems. However, the
discussion of such methods should be delegated to a second-year numerical courses and is beyond the purpose of
the current course. Interested readers may search for Prof. Violante’s second-year course at NYU.
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sively. This saves additional effort to compute the optimal policies again when solving a

larger subproblem in the earlier time period.

Recap: Principle of Optimality allows us to do backward induction in dynamic optimization.

The FE formulation of the problem then further saves computational efforts because by con-

sidering the problem recursively, the results from the subproblems are stored instead of being

recomputed in every step.

6. Conclusion

In this lecture, we have briefly introduced and explained the key concepts in dynamic pro-

gramming which is the basic mathematical language to analyze models in macroeconomics.

As a language, it has two advantages. First, it is simple and provides economic intuition on

the tradeoffs that agents facde in each period. Second, it is computationally efficient and

incorporates both the ideas of backward induction and recursive storing of information.

Principle of Optimality is introduced so that we can safely do backward induction in the

optimization. The FE formulation then helps us to formulate the question recursively, so as

to store the optimal policies already computed and to avoid unnecessary recomputations.

In the subsequent lectures, we will first go through the mathematics behind dynamic

programming and formally prove SLP’s version of Principle of Optimality. Then, we will use

the FE or the recursive formulation of the problem to write down an equilibrium and discuss

how to solve it. We will do this for both finite and infinite horizons, also with and without

uncertainty. Finally, we will move on to search and matching models which supplies even

more microfoundations to macroeconomic problems. Interested readers can directly skip

the mathematical proof of Principle of Optimality in lecture 2, as it is mostly adapted from

the SLP textbook and also in my view, not essential.
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Lecture 2: Mathematics of Dynamic Programming

Xin Yi

December 23, 2018

Disclaimer

This lecture is largely adapted from Chapter 3 of Stokey et al. (1989) with many parts be-

ing identical. I do not claim any credit to this notes and forbid redistribution beyond the

purpose of the course. All errors are mine.1

1. Space

The first set of mathematical definitions we will study is associated with the concept of

space. In general, a space is just a set of numbers with certain structures (properties) on the

set. We are interested in the concept of space, because we want to operate on a restricted set

of numbers where the properties/structures of these numbers help us to establish certain

theorems that will be useful for our purposes. For example, a commonly used technique

in dynamic optimization is called “Value Function Iteration” which iterates on the Bellman

equation until a fixed point is found. However, to ensure that this iteration procedure actu-

ally converges, we will want to operate on a space called Banach space because the prop-

erties in that space helps us to establish an assurance for convergence. In what follows, we

will introduce some basic definitions and gradually arrive at the definition of Banach space.

Definition 1. A real vector space X is a set of vectors with the following properties. For any

two vectors x, y ∈ X, real numbers α, β ∈ R, and a zero vector θ ∈ X,

a. x+ y ∈ X.

b. αx ∈ X.

c. x+ y = y + x.

d. (x+ y) + z = x+ (y + z).

e. α(x+ y) = αx+ αy.

1Readers may want to skip this lecture as most of the material is already covered in Math Camp 1B under the
section of “Banach Fixed Point Theorem”. Nevertheless, I will try my best to supply as much intuition as possible
to the mathematics, so that it may help the readers to refresh theor understandings.

1
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f. x+ θ = x.

g. 0x = θ.

h. 1x = x.

The first notion of space that we will encounter is the real vector space. This space oper-

ates over the set of vectors that satisfy a number of properties. First of all, this vector space

satisfy the usual rules for addition (items a.). Second, the vector in this space can be scaled

by a real number α ∈ R (item b.). Furthermore, the addition and scaling operation must

satisfy some normal behaviors (addition: items c. d. f.; scaling: items e. g. h.).

As the name suggests, we call this space a real vector space because the scalar we used

for scaling is a real number. In contrast, a complex vector space is a space where the scalar

is a complex number.

Definition 2. A metric space is a set S, together with a metric ρ : S × S → R, such that for

all x, y, z ∈ S,

a. ρ(x, y) ≥ 0, with equality if and only if x = y.

b. ρ(x, y) = ρ(y, x).

c. ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

In general, we can interpret a metric as a way of measuring distances between any two

points. There can be any sorts of metric. One example could be that we have three points

on the Cartesian coordinates, such that (a, b, c) = {(2, 5), (3, 2), (13, 7)}. In this example, the

set S corresponds to all points in the Cartesian coordinates. However, one is free to define

any sort of metric he wants. He can assign the distance between a and b to be 1, the distance

between b and c to be 2, and so on. What this definition says is that, for the (S, ρ) pair to be

a metric space, the metric we define has to satisfy some regularity conditions. These con-

ditions are that, the distance must be nonnegative and only be zero if and only if the two

points are identical; the distance must be symmetric; and if we stop somewhere in between

the two points, it can at best be located along the shortest path such that there is no way

we can find a shortcut to beat the direct path connecting the two points. If these regularity

condition are satisfied for the distance measure (metric) ρ we defined, then the (S, ρ) pair

will be a metric space.

Definition 3. A normed vector space is a vector space S, together with a norm ‖·‖ : S → R,

such that for all x, y ∈ S, α ∈ R, zero vector θ ∈ R,

a. ‖x‖ ≥ 0, with equality if and only if x = θ.

b. ‖αx‖ = |α| · ‖x‖.
c. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
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For the normed vector space, we can interpret the “norm” as a measure for the length of

the vector. In general we can assign any length we want for a given vector. For example, we

can just define the length of the vector a = (1, 2) to be 100. What this definition says is that

given a vector spaceS and a length measure ‖·‖, we will only call the (S, ‖·‖) a normed vector

space if the norm measure satisfies some regularity conditions. The conditions are that the

length must be nonnegative (equals zero iff the vector itself is 0); the vector is “scalable”

such that if it is multiplied by a constant, the length will also be scaled up by the constant

without changing the direction of the vector; and that the sum of lengths of the two vectors

must be no smaller than the length of a vector that is the addition of the two vectors (with

equality iff the two vectors are heading the same direction).

One example of such a norm is the “`1 norm” where the length of the vector is defined as

the sum of absolute values of the coordinates, ‖x‖1 =
∑
i |xi|. Another example of a norm

is the “`2 norm” where the length of the vector is defined as the the square root of sum of

squares of the coordinates, ‖x‖2 =
√∑

i x
2
i . In terms of the language of econometrics, a

variant of `1 norm can be interpreted as a “Absolute Value Deviation” criterion while a vari-

ant of `2 norm is a “Least Squares” criterion. The key difference between the two criterion

is that a `2 loss function penalizes high-value elements more. (as it is quadratic). As for the

definition of “variants”, readers are invited to do the following exercise and connect the dots.

Exercise 1. Suppose that (S, ‖·‖) with a norm ‖·‖ : S → R is a normed vector space and

define a distance ρ : S × S → R with ρ(a, b) = ‖a− b‖. Prove that (S, ρ) is a metric space.

Definition 4. A sequence {xn}∞n=0 converges to x ∈ S, if for each ε > 0, there exists Nε such

that ρ(xn, x) < ε,∀n > Nε.

The interpretation is as follows. We have a sequence {xn}∞n=0 that we want to show it

converges. What this definition essentially says is that, given a correct guess of the limit x,

the sequence converges to this limit if it satisfies the ε-δ criterion. The criterion says, for any

choice of small distance ε, there will be a “turning point”Nε such that the numbers after this

turning point will be sufficiently close to the prespecified limit x; and the distance between

the numbers and the limit is within the prespecified distance ε. Since we can arbitrarily

choose a small enough ε, this definition then depicts a picture that satisfies what we want

for a definition of “convergence”.

However, this definition is not perfect. The problem is that it requires a prespecified

“guess” of what the limit x is. What if we have a sequence, we don’t now what the limit is,

and we still want to show that it converges? The following definition of the “Cauchy se-

quence” fills this gap.
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Definition 5. A sequence {xn}∞n=0 in S is a Cauchy sequence (satisfies the Cauchy crite-

rion) if for each ε > 0, there exists Nε such that ρ(xn, xm) < ε,∀n,m ≥ Nε.

As discussed previously, Cauchy sequence aims to provide a definition of convergence

without knowing where the limit is. Unlike the previous definition, Cauchy sequence says

that it is sufficient to demand that any two numbers after the turning point are sufficiently

close to each other and the distance must be smaller than the prescribed (arbitrary) dis-

tance ε. In this sense, we don’t have to know what the limit is. In fact, we are pining down

the limit by the relative position of the numbers in the sequence. The previous definition

works by setting a “target” (the limit) and tries to show that a convergence sequence will be

staying infinitesimally near that target in the limit. What Cauchy says is that, we don’t have

to set up a target, in order to show that the sequence converges, all we need to do is to show

that the numbers stay infinitesimally near to each other, so that they stay infinitesimally

near to something.

Exercise 2. Show that a sequence converges if and only if it is a Cauchy sequence.

Definition 6. A metric space (S, ρ) is complete if every Cauchy sequence in S converges to

an element in S. A complete normed vector space is called a Banach Space.

Definition 6 contains two definitions. The first definition is about completeness of a

metric space. The motivation of this definition is that we want a notion that says the metric

space is “dense” and has no “holes”. For example, if we consider the set of positive numbers,

R+, this set is not “dense” as we can add the zero number next to it. Hence, a natural char-

acterization of such space is that every sequence of numbers in this set must converge to a

point that belongs to the same set. You may check that over the realm of positive numbers,

the sequence yn = 1
n converges to zero which is not in the set. Hence, R+ is not complete.

In fact, if we think about the number line that represents positive numbers (0,∞), there is

literally a “hole” on the position of 0.

The second definition is about Banach Space. It is just defined as a normed vector space

where every Cauchy sequence in it converges to a point that is also in the space. Banach

Space is important for our purposes, because later when we prove the Contraction Map-

ping Theorem, we can show that the numbers mapped by the contraction form a Cauchy

sequence and hence they will converge to a point inside the same space, which is the fixed

point for the contraction mapping.
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2. The Contraction Mapping Theorem

Theorem 1. Let X ⊆ Rl, and let C(X) be the set of bounded continuous functions f : X →
R with the sup norm, ‖f‖ = supx∈X |f(x)|. Then C(X) is a complete normed vector space.

Before we begin to prove it, perhaps it’s better to first discuss why we need this theorem.

Previously we claimed that completeness in a normed vector space is important because we

want the mapping based on the Bellman equation to be a Cauchy sequence and we want it

to converge to a fixed point. However, what Bellman equation does is to map a value func-

tion to another value function. That is, the mapping operates over the domain of functions

instead of set of numbers. Hence, in order for us to apply the properties of a Banach space,

we must first prove that the set of bounded continuous function is a Banach space.

Proof. We can show thatC(X) is a normed vector space. It suffices to show that this normed

vector space is complete, that is, to show that if {fn} is a Cauchy sequence, then there exists

f ∈ C(X) such that for any ε > 0 there exists Nε such that ‖fn − f‖ ≤ ε, ∀n ≥ Nε. SLP then

proceeds to prove this claim in three steps.

Step 1. Find a “candidate” function f . Fix x ∈ X, then the sequence of real numbers

{fn(x)} satisfies |fn(x) − fm(x)| ≤ supy∈X |fn(y) − fm(y)| = ‖fn − fm‖, where the first in-

equality is obvious and the second equality follows from the sup norm definition. Obviously,

this sequence satisfies the Cauchy criterion. By the completeness of the real numbers, it

converges to a limit point, we can denote it by f(x). This will be our candidate function f .

Step 2. Show that {fn} converges to f in the sup norm. Hence, we need to show that

‖fn − f‖ → 0 as n → ∞. Let ε > 0 be given, we can choose Nε so that n,m ≥ Nε implies

‖fn − fm‖ ≤ ε/2. This can be done, because {fn} satisfies the Cauchy criterion. Then for

any fixed x ∈ X and all m ≥ n ≥ Nε,

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)|

≤ ‖fn − fm‖+ |fm(x)− f(x)|

≤ ε/2 + |fm(x)− f(x)|

Since {fm(x)} converges to f(x), we can choosem separately for each fixed x ∈ X so that

|fm(x) − f(x)| ≤ ε/2. Since the choice of x was arbitrary, it follows that ‖fn − f‖ ≤ ε, ∀n ≥
Nε. Since ε > 0 was arbitrary, the convergence claim follows.

Step 3. Show that f is bounded and continuous. Boundedness is obvious. The definition

of continuity requires that for every ε > 0 and x ∈ X, there exists δ > 0 such that |f(x) −
f(y)| < ε if ‖x− y‖E < δ, where ‖·‖E denotes the Euclidean norm on Rl. Let ε and x be

given. Choose k so that ‖f − fk‖ < ε/3. This can be done because fn → f in the sup norm.
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Then we can choose δ such that ‖x− y‖E < δ implies |fk(x) − fk(y)| < ε/3. This can be

done, because fk is continuous. Then

|f(x)− f(y)| ≤ |f(x)− fk(x)|+ |fk(x)− fk(y)|+ |fk(y)− f(y)|

≤ 2 ‖f − fk‖+ |fk(x)− fk(y)|

< ε.

Definition 7. Let (S, ρ) be a metric space and T : S → S be a function mapping S into itself.

T is a contraction mapping (with modulus β) if for some β ∈ (0, 1), ρ(Tx, Ty) ≤ βρ(x, y),

for all x, y ∈ S.

Recall that our strategy is to show that the Bellman operator over the Banach space maps

to a Cauchy sequence and hence it converges to a fixed point. To establish this argument, we

also need a concept called contraction mapping. Literally, contraction mapping means that

it is a “contraction”. The definition suggests that the distance ρ between the set elements (x

and y) after the mapping (Tx and Ty) would “shrink” or “contract” (ρ(Tx, Ty) ≤ βρ(x, y))

since β < 1. This is perhaps best illustrated in the following figure which is Figure 3.1 in

Hunter and Nachtergaelem (2001).

Before we talk about a sufficient condition characterizing the set of mappings that are

contractions, it is perhaps best to state and explain the Contraction Mapping Theorem first.

The reason is that this theorem brings more intuition on the concept of contraction and

why we need them.

Theorem 2. (Contraction Mapping Theorem) If (S, ρ) is a complete metric space and T :

S → S is a contraction mapping with modulus β, then
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a. T has exactly one fixed point v in S.

b. for any v0 ∈ S, ρ(Tnv0, v) ≤ βnρ(v0, v), n = 0, 1, 2, . . .

The Contraction Mapping Theorem (CMT) has two parts. The first part claims that if

we iterate on the contraction mapping operator, then we will reach an unique fixed point as

long as we are in a complete metric space. This is in fact very intuitive given our explanation

on the contraction mapping that it shrinks distance between points. Imagine ourselves

starting from a point, v0, in a Banach space. Iterate the contraction mapping operator T

over this point we will get a sequence {vn}∞n=1 where vn = Tn(v0). Because a contraction

maps the points in a space into another point in the same space, we know that vn must

also belong to the same Banach space. Furthermore, we know that the distance between

any two points over the mapping process is getting smaller and smaller by the property of a

contraction. If we take n to the limit, then it must be that vn+1 is arbitrarily close to vn and

we know that limn∞ vn must converge to a point in the same space by the property of the

Banach space. Thus, this limit will be a fixed point of the contraction mapping.

The above explanation, while intuitive, is merely a verbal representation of the math-

ematical proof in Stokey et al. (1989) which we reproduce in below. Another, perhaps the

best, analogy that explains the intuition of the CMT proceeds as follows. Suppose we are

holding a map of Singapore and we lay it on the ground of a seminar room at SMU. Then

there must be a point in the map that is lying exactly on top of the point in Singapore it rep-

resents. If we continue to do the “mapping of maps” and lay the new map on top of the old

map, this is still the case. Iterate over this mapping process infinitely, we will reach a fixed

point.

Proof. To prove (a), we need to find a unique v such that Tv = v. Define the mappings

{Tn} such that T 0x = x and Tnx = T (Tn−1x), for n = 1, 2, . . .. Choose v0 ∈ S and define

{vn}∞n=0 by vn+1 = Tvn. It follows that vn = Tnv0. Since by assumption T is a contraction

mapping with modulus β, ρ(v2, v1) = ρ(Tv1, T v0) ≤ βρ(v1, v0). By induction, ρ(vn+1, vn) ≤
βnρ(v1, v0), for n = 1, 2, . . .. Hence, for any m > n,

ρ(vm, vn) ≤ ρ(vm, vm−1) + · · ·+ ρ(vn+2, vn+1) + ρ(vn+1,vn)

≤ [βn−1 + · · ·+ βn+1 + βn]ρ(v1, v0)

= βn[βm−n−1 + · · ·+ β + 1]ρ(v1, v0)

≤ βn

1− β
ρ(v1, v0),

where the first inequality follows from triangle inequality and the second inequality fol-

lows from the previous induction that ρ(vn+1, vn) ≤ βnρ(v1, v0). It follows that {vn} is a
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Cauchy sequence. Since S is complete, it follows that vn → v ∈ S for some v. This is our

candidate v. We now show that Tv = v and that v is unique. First, note that for all n and

v0 ∈ S,

ρ(Tv, v) ≤ ρ(Tv, Tnv0) + ρ(Tnv0, v)

≤ βρ(v, Tn−1v0) + ρ(Tnv0, v).

Notice that since limn→∞ ρ(vm, vn) ≤ limn∞
βn

1−β ρ(v1, v0) = 0, it follows that ρ(Tv, v) = 0 and

Tv = v.

Second, suppose there exists another v̂ 6= v such that T v̂ = v̂. Then,

0 < a = ρ(v̂, v) = ρ(T v̂, Tv) ≤ βρ(v̂, v) = βa.

This is a contradiction since β < 1.

To prove part (b), observe that for any n ≥ 1,

ρ(Tnv0, v) = ρ[T (Tn−1v0), T v] ≤ βρ(Tn−1v0, v).

(b) then follows by induction.

Corollary 1. Let (S, ρ) be a complete metric space, and let T : S → S be a contraction map-

ping with fixed point v ∈ S. If S′ is a closed subset of S and T (S′) ⊆ S′, then v ∈ S′. If in

addition T (S′) ⊆ S′, then v ∈ S′. If in addition T (S′) ⊆ S′′ ⊆ S′, then v ∈ S′′.

Corollary 2. (N-Stage Contraction Theorem) Let (S, ρ) be a complete metric space, let T :

S → S, and suppose that for some integer N , TN : S → S is a contraction mapping with

modulus β. Then

a. T has exactly one fixed point in S.

b. for any v0 ∈ S, ρ(T kNv0, v) ≤ βkρ(v0, v), k = 0, 1, 2, . . ..

Theorem 3. (Blackwell’s sufficient conditions for a contraction) LetX ⊆ Rl, and letB(X) be

a space of bounded functions f : X → R, with the sup norm. Let T : B(X) → B(X) be an

operator satisfying

a. (monotonicity) f, g ∈ B(X) and f(x) ≤ g(x), for all x ∈ X, implies (Tf)(x) ≤ (Tg)(x),

for all x ∈ X.

b. (discounting) there exists some β ∈ (0, 1) such that

[T (f + a)](x) ≤ (Tf)(x) + βa, all f ∈ B(X), a ≥ 0, x ∈ X.
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[Here (f +a)(x) is the function defined by (f +a)(x) = f(x) +a.] Then T is a contraction

with modulus β.

3. Principle of Optimality

Suppose we have the following [more general] sequence problem (SP),

sup
{xt+1}∞t=0

∞∑
t=0

βtF (xt, xt+1)

s.t. xt+1 ∈ Γ(xt), t = 0, 1, 2, . . . ,

and x0 ∈ X is given. Then Principle of Optimality claims that a sequence {xt+1}∞t=0 attains

the supremum of SP if and only if it satisfies the functional equation (FE) representation,

v(x) = sup
y∈Γ(x)

[F (x, y) + βv(y)] .

Let us look into the details of the general problem. xt+1 corresponds to the choice vari-

able. F (xt, xt+1) corresponds to the utility function. It has two arguments in it, because it

depends on both the state variable xt in the current period and also the [dynamic] choice

of x in the next period. xt is the state variable because it summarizes all the information

relevant regarding the state we are in in period t. The Γ(xt) notation then corresponds to

the set of possible values of the choice variables (which will also be the state variables in

the next period) given that the current state variable is xt; we can interpreted it as a feasi-

bility constraint. In particular, for our neoclassical models, xt+1 corresponds to the choice

of capital in the next period, kt+1. F (xt, xt+1) then corresponds to the utility function, only

with consumption being substituted by the binding constraint, ct +kt+1 = f(kt) + (1− δ)kt,
such that

U(ct) = U [f(kt) + (1− δ)− kt+1] ≡ F (xt, xt+1).

The feasibility constraint Γ(xt) then corresponds to the range of possible kt+1 in the next

period which is [(1 − δ)kt, f(kt) + (1 − δ)kt] in this problem. We will now state a set of as-

sumptions under which Principle of Optimality holds.

Definition 8. A plan is a sequence {xt}∞t=0 in X. Given x0 ∈ X, the set of plans that are

feasible from x0 is then defined as

Π(x0) = {{xt}∞t=0 : xt+1 ∈ Γ(xt), t = 0, 1, . . .} .
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Assumption 1. Γ(x) is nonempty, for all x ∈ X.

This assumption is rather trivial and standard. It implies that the set of feasible plans are

non-empty.

Assumption 2. For all x0 ∈ X and x ∈ Π(x0), limT→∞
∑T
t=0 β

tF (xt, xt+1) exists.

This assumption says that we can evaluate the utility for all kinds of feasible plans. There

are several sufficient conditions that ensure Assumption 2 hold. Readers are required to

read page 69-70 on Stokey et al. (1989). The basic message is that the usual functional forms

we see in macroeconomics satisfy these sufficient conditions and hence Assumptions 1 and

2 will hold. We are now ready to prove the Principle of Optimality by showing that SP im-

plies FE and FE implies SP.

Definition 9. The supreme function v∗ : X → R̄ is defined as

v∗(x0) = sup
x∈Π(x0)

u(x)

where u : Π(x0)→ R̄ is

u(x) = lim
T→∞

T∑
t=0

βtF (xt, xt+1).

The interpretation of this definition is just that v∗(x0) is the supreme of the SP function.

Theorem 4 (SP implies FE). Let X,Γ, F, and β satisfy Assumption 1 and 2. Let x∗ ∈ Π(x0) be

a feasible plan that attains the supremum in SP for initial state x0. Then

v∗(x∗t ) = F (x∗t , x
∗
t+1) + βv∗(x∗t+1), t = 0, 1, 2, . . .

Theorem 5 (FE implies SP). X,Γ, F, and β satisfy Assumption 1 and 2. Let x∗ ∈ Π(x0) be a

feasible plan that satisfies

v∗(x∗t ) = F (x∗t , x
∗
t+1) + βv∗(x∗t+1), t = 0, 1, 2, . . .

and with

lim sup
t→∞

βtv∗(x∗t ) ≤ 0,

then x∗ attains the supremum in SP for initial state x0.

Since the proofs for these theorems including the ones following are mechanical and fol-
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low similar arguments to what I have covered previously, I list them as take-home exercises.

4. SP: Euler Equation and Transversality

Exercise 3. Show that the Euler equation for SP is

0 = Fy(x∗t , x
∗
t+1) + βFx(x∗t+1, x

∗
t+2), t = 0, 1, 2, . . .

Exercise 4. Prove the sufficiency of the Euler conditions and transversality condition

lim
T→∞

βtFx(x∗t , x
∗
t+1)x∗t = 0

as being the optimal solution for the SP problem.

5. FE: Bellman Equation and Functional Euler Equation

Deterministic Environment

Exercise 5. Show that the functional Euler equation for FE is

0 = Fy[x, g(x)] + βFx[x, g(x)].

Exercise 6. Show that the Bellman equation for the FE under deterministic environment is

v(x) = max
y∈Γ(x)

[F (x, y) + βv(y)].

Stochastic Environment

Exercise 7. Show that the Bellman equation for the FE problem under stochastic environ-

ment with transition function Q(z, z′) is as follows,

v(x, z) = sup
y∈Γ(x,z)

{
F (x, y, z) + β

∫
z

v(y, z′)Q(z, dz′)

}

Interested readers should read Chapter 8 of Stokey et al. (1989) on the transition func-

tions. It will be beneficial for you when studying the materials covered in Macroeconomics

2. However, I will not cover them in details here as this should have been the content of the

other math camp on Macroeconomics 2. The computational aspect of this should also be

covered by the lecture on numerical methods in Macroeconomics 2.
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Lecture 3: Dynamic Optimization Under Certainty

Xin Yi

1. Introduction

In this lecture, we will study deterministic dynamic optimization in greater details. Al-

though the absence of uncertainty may be unrealistic, it serves as an useful benchmark be-

cause a stochastic equilibrium can be interpreted as a deterministic one. We will talk about

two approaches to solve dynamic optimization problems. The first approach will be se-

quential optimization while the second approach uses dynamic programming. We will dis-

cuss each method for both finite and infinite horizon. Note that the context of these prob-

lems is from an agent’s perspective, as it should be. Later in the Macroeconomics course,

you are required to define and characterize general equilibrium. Second, readers need to

be clear on the nature of the optimization. In some context, it is a planning problem. In

other contexts, prices are involved and it is a partial equilibrium. Third, for the sequential

methods, we will derive a system of equations that precisely characterize the equilibrium.

Solving this system of equations using a computer will be straightforward. However, for dy-

namic programming, we are interested in optimal policies where close form solutions are

usually unavailable. We will try to introduce cases with analytical solutions and also some

[but not exhaustive] algorithms that explain how to numerically solve for the policy.

2. Sequential Optimization: Finite Horizon

Consider the optimization problem presented in lecture 1,

max
{ct,kt+1}Tt=0

T∑
t=0

βtU(ct)

s.t. ct + it ≤ yt = f(kt), ∀t = 0, . . . , T ;

kt+1 = (1− δ)kt + it ≥ 0, ∀t = 0, . . . , T ;

ct ≥ 0, ∀t = 0, . . . , T ;

k0 > 0 is given.

(1)

1
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The Lagrangian is then

L =

T∑
t=0

βtU(ct)−
T∑
t=0

λt[ct + kt+1 − (1− δ)kt − f(kt)] + µtct + νtkt+1

The corresponding Kuhn-Tucker conditions consist of the First-Order Conditions (FOC),

∂L
∂ct

: βtU ′(ct)− λt + µt = 0

∂L
∂kt+1

: −λt + λt+1(1− δ) + λt+1f
′(kt+1) + νt = 0

the Complementary-Slackness Conditions (CS),

λt[ct + kt+1 − (1− δ)kt − f(kt)] = 0

µtct = 0

νtkt+1 = 0

and the Non-Negativity constraints (NN),

λt ≥ 0, µt ≥ 0, νt ≥ 0.

Since it cannot be that ct = 0 for any t, then by CS, µt = 0 for all t. In addition, since

U ′(c) > 0 ∀c, it must be that λt > 0 by the FOC with respect to ct. Hence, by CS, ct =

f(kt)−kt+1 + (1− δ)kt. Substituting this expression for ct and µt = 0 back to the FOC yields,

βtU ′ [f(kt)− kt+1 + (1− δ)kt] = λt.

Manipulating this equation gives an inter-temporal expression

βU ′[f(kt+1 − kt+2 + (1− δ)kt+1)]

U ′[f(kt)− kt+1 + (1− δ)kt]
=
λt+1

λt
.

Furthermore, it is easy to show that kt+1 > 0 for all t except for T . It follows that µt = 0 for

all t = 0, . . . , T and kT+1 = 0. Hence, from the FOC with respect to kt+1, we can obtain,

1

f ′(kt+1) + (1− δ)
=
λt+1

λt
.

Combining these expressions then yields

U ′[f(kt) + (1− δ)kt − kt+1] = βU ′[f(kt+1) + (1− δ)kt+1 − kt+2][(1− δ) + f ′(kt+1)].
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This is the Euler equation. Given this equation for each period t = 0, . . . , T , we have a system

of second-order difference equations with T + 1 unknowns. Since k0 is given and kT+1 = 0,

the above system is exactly identified. To interpret this equation, note that it is equivalent

to

U ′(ct)︸ ︷︷ ︸
marignal cost

= βU ′(ct+1)︸ ︷︷ ︸
marginal benefit

[(1− δ) + f ′(kt+1)]︸ ︷︷ ︸
investment return

U ′(ct) is essentially the marginal cost of investing, since by investing it amount of capital

for the future, the agent forgoes some consumption in the present. The marginal utility is

then the utility that would be lost if the agent invested one more unit of capital. βU ′(ct+1)

is the discounted marginal benefit of investing, since by investing it amount the agent is

able to consume more goods in the future. The marginal utility is the [discounted] utility

that would be enjoyed if the agent increases his consumption by one more unit in the next

period. (1− δ) + f ′(kt+1) then summarizes the state of investing technology. It governs how

much consumption will increase in the next period, by investing one more unit of capital in

the present.

Therefore, this Euler equation essentially describes the intertemporal relationship be-

tween the future and the present for optimal decisions. It is intertemporal because it con-

nects future with the present through the time subscript, the discounted utility, and the

intertemporal transformation of input to output (capital to consumption). It also describes

the optimal decisions because this expression is equating marginal benefits with marginal

costs. Furthermore, since the utility function u(·) is strictly concave, agents also prefer “con-

sumption smoothing”.

Recap 1: For sequential optimization with finite horizon, the optimal choice of capital {kt}is
solved from the system of Euler equations with boundary conditions k0 given and kT+1 = 0.

3. Recursive Formulation: Finite Horizon

Characterization of Optimal Policies

We now consider solving the problem using dynamic programming or to formulate the

problem recursively. To formulate this problem recursively, first we define the value of the

optimal program from period t at state kt as

vt(kt) ≡ max
{cs,ks+1}Ts=t

T∑
s=t

βs−tU(ks)

s.t. cs + ks+1 − (1− δ)ks ≤ f(ks), ∀s ≥ t
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As discussed in lecture 1, this can be further broke down to a “maximization-by-step”

formulation,

vt(kt) = max
ct,kt+1

[
U(ct) + max

{cs,ks+1}Ts=t+1

T∑
s=t+1

βs−(t+1)U(ks+1)

]

s.t. ct + kt+1 − (1− δ)kt ≤ f(kt)

cs + ks+1 − (1− δ)ks ≤ f(ks), ∀s ≥ t+ 1.

By definition of vt(kt), this is equivalent to

vt(kt) = max
ct,kt+1

[U(ct) + βvt+1(kt+1)]

s.t. ct + kt+1 − (1− δ)kt ≤ f(kt)

This is called the “Bellman Equation”. It is also a functional equation because the op-

timal policy, which is the “variable” of interest, is a function. Suppose that function gt(·)
denotes the optimal policy at time t. Then given a state kt, gt(·) will map kt to a choice of

capital in the next period, kt+1. Now it is useful to stop and make comparisons between

the recursive formulation and the sequence optimization method. In sequential optimiza-

tion methods, we are only solving for the optimal path of capital. However, with recursive

formulation, we are solving a contingency plan for every possible state of affair. That is,

even if the current state is not along the global optimal path, the policy function gt(·) still

solves an optimal path for the subproblem. This is the key distinction between sequential

optimization method and the recursive method.1

We now proceed to characterize the optimal policy gt(·). First, the functional equation

can be further written as

vt(kt) = max
kt+1

{U [f(kt)− kt+1 + (1− δ)kt] + βvt+1(kt+1)}

The first-order condition to this problem is then

−U ′[f(kt)− k∗t+1(kt) + (1− δ)kt] + βv′t+1(k∗t+1(kt)) = 0

We can denote the optimal policy as gt(·) such that the optimal choice at state kt is k∗t+1(kt) =

1Readers may wonder that from this perspective, sequential method seems to be computationally more effi-
cient than the recursive method, since the sequential method only requires solving for the optimal path char-
acterized by the second-order difference equations while recursive method does much more and solve for every
subproblem. While it is true for this model, however in practice, researcher often, if not always, do not encounter
such nice characterizations of the optimal path. Then the power of dynamic programming kicks in and this is why
it is dominant in economic research.
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gt(kt). Then the FOC evaluates to,

−U ′[f(kt)− gt(kt) + (1− δ)kt] + βv′t+1(gt(kt)) = 0

Note that this equation already supplies some intuition about the intertemporal tradeoff of

the problem. U ′(·) is the marginal cost of forgoing consumption in the present while v′t+1(·)
is the marginal benefit of increasing consumption in all future. To derive the complete func-

tional Euler equation, note that after substituting the optimal policy for kt+1, the Bellman

equation can be written as

vt(kt) = U [f(kt)− gt(kt) + (1− δ)kt] + βvt+1(gt(kt))

Taking derivative with respect to kt, we can obtain

v′t(kt) = U ′[f(kt)− gt(kt) + (1− δ)kt][f ′(kt)− g′t(kt) + (1− δ)] + βv′t+1(gt(kt))g
′
t(kt).

which is further equivalent to

v′t(kt) = U ′[f(kt)− gt(kt) + (1− δ)kt][f ′(kt) + (1− δ)]︸ ︷︷ ︸
first-order effect of kt

+ g′t(kt)[βv
′
t+1(gt(kt))− U ′(·)]︸ ︷︷ ︸

indirect effect of k∗t+1(kt)=gt(kt)

This expression can be interpreted as follows. v′(kt) is the changes in the value from now

and all future. It can be decomposed into two components. The first component is the

direct, first-order effect of changes in kt. It is essentially the change in utility due to the

changes in current consumption. This effect is further magnified by the changes in the

marginal amount of capital in the next period due to the changes in kt. The second com-

ponent is then the indirect effect through the optimal adjustment of k∗t+1(kt) in response to

changes in kt. Substituting the FOC that U ′[f(kt) − gt(kt) + (1 − δ)kt] = βv′t+1(gt(kt)) into

the this expression, we can eliminate the indirect effect and obtain

v′t(kt) = U ′[f(kt)− gt(kt) + (1− δ)kt][f ′(kt) + (1− δ)].

The reason that the indirect term disappears is a consequence of the Envelope Theorem.

The indirect effect of kt through kt+1 will change two things, the value function in the future

and the current utility. However, since the agent chooses k∗t+1(kt) to optimize intertemporal

tradeoff, it is necessary that the agent will balance the marginal cost of current utility and

the marginal benefit of future payoffs which is also characterized by the FOC. Hence, the

indirect term will be canceled out.

To make a more transparent comparison between the functional Euler equation under

recursive method and the Euler equation under sequential method, note that we can update
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the previous expression to time t+ 1 so that

vt+1(gt(kt)) = U ′[f(gt(kt))− gt+1(gt(kt)) + (1− δ)gt(kt)][f ′(gt(kt)) + (1− δ)].

Substituting this expression into the FOC, we can obtain the functional Euler equation. We

also list the Euler equation under the sequential method in the second row for comparison

purposes

U ′[f(kt)− gt(kt) + (1− δ)kt] = βU ′[f(gt(kt))− gt+1(gt(kt)) + (1− δ)gt(kt)][f ′(gt(kt)) + (1− δ)]
(FE)

U ′[f(kt)− kt+1 + (1− δ)kt] = βU ′[f(kt+1)− kt+2 + (1− δ)kt+1][f ′(kt+1) + (1− δ)] (SP)

It is straight forward to see that under sequential method, the variable of interest is the

optimal path of capital {kt+1} and it is determined by the system of second-order difference

equations which are the Euler equations. However, for recursive method, the unknown is

the sequence of functions or the optimal policies {gt(·)} and it is determined by the sys-

tem of functional Euler equations. Each functional Euler equation is also of “second or-

der” since it involves both gt(·) and gt+1(·) as unknowns. For the purpose of the Macroeco-

nomics course, it is sufficient to characterize the optimal solution by the Euler equations or

the functional Euler equations without actually describing how to solve them. Only in rare

cases, you will be asked to actually solve for the analytical expression of the functional Euler

equation. In most cases, there is no close-form solution and we have to rely on numerical

algorithms in solving them. I will come back and explain both the analytical example and

the numerical algorithm after we have studied recursive methods under infinite horizon.

Recap 2: For recursive method with finite horizon, the optimal policies {gt(·)} is characterized

by the system of functional Euler equations.

4. Sequential Optimization: Infinite Horizon

Transversality conditions

Now consider the previous sequence optimization problem in infinite horizon,

max
{ct,kt+1}∞t=0

∞∑
t=0

βtU(ct)

s.t. ct + it ≤ yt = f(kt), ∀t = 0, . . . ;

ct, kt+1 = (1− δ)kt + it > 0, ∀t = 0, . . .

(2)
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One can set up the Lagrangian similarly which and derive the [identical] Kuhn-Tucker

conditions and the the corresponding Euler equations that characterize the optimal path,

U ′[f(kt)− kt+1 + (1− δ)kt] = βU ′[f(kt+1)− kt+2 + (1− δ)kt+1][f ′(kt+1) + (1− δ)] ∀t

However, instead of having kT+1 = 0, there is no terminal period under infinite horizon.

In this case, we rely on a similar condition, the transversality condition, to pin down the

behavior of the optimal path in the limit. Note that for the case of finite horizon, the FOC

conditions with respect to ct and kT+1 imply,

βtU ′(ct) = λt > 0

−λT + νT = 0

Hence, by complementary slackness, kT+1 = 0 and

βTU ′(cT )kT+1 = 0.

Extending this to infinite horizon gives the transversality condition,

lim
t→∞

βtU ′(ct)kt+1 = 0.

The intuition to this expression is as follows. Under finite-horizon settings, kT+1 = 0

because there shouldn’t be any “savings” in the terminal period. For otherwise, the agent

could have opted for a different path of capital and consumed the “saving” in the terminal

period to achieve a higher level of utility. Similarly in infinite horizon, the generalized in-

tuition is that βtU ′(ct)kt+1 represents how much marginal utility of consumption one can

have by shifting one unit of capital to the next period at time t. If this term is positive in the

limit, that is, the agent has some “excess” marginal utility in infinity, then potentially he can

be better by consuming that “savings of utility” instead.

I now state a more general version of it, which is copied word-for-word from Per Krusell’s

lecture notes, “Real Macroeconomic Theory”. Consider the optimization problem,

max
{kt+1}∞t=0

∞∑
t=0

βtF (kt, kt+1)

s.t. kt+1 ≥ 0 ∀t

If {k∗t+1}∞t=0 and {µ∗t }∞t=0 satisfy

(i) k∗t+1 ≥ t ∀t;

(ii) Euler Equation: F2(k∗t , k
∗
t+1) + βF1(k∗t+1, k

∗
t+2) + µ∗t = 0 ∀t;
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(iii) Non-negativity constraints and complementary slackness: µ∗t ≥ 0 and µ∗t k
∗
t+1 = 0 ∀t;

(iv) Transversality condition: limt→∞ βtF1(k∗t , k
∗
t+1)k∗t+1 = 0;

and F (kt, kt+1) is concave in (kt, kt+1) and increasing in its first argument, then {k∗t+1}∞t=0

maximizes the objective. The proof of this is straightforward and can be found on Per Krus-

sell’s textbook.

No Ponzi-Game Condition

Besides transversality conditions, we will also encounter another condition for a certain

class of problems, called “No Ponzi-Game” condition. This condition does not appear in ev-

ery dynamic optimization problem and it is conceptually very different from the transver-

sality condition. Suppose that the economy is as follows. In each period, the agents are

endowed with a fixed amount of income ω. The agents then decide how much to consume

for each period. Besides the consumption decisions, agents can also borrow and lend at an

interest rate r. Denote the amount of bond an individual is holding at time t as bt, then the

optimization problem of the individual is

max
ct,bt+1

∑
t

βtU(ct)

s.t. ct + bt+1 ≤ (1 + r)bt + ω

To see why a “no-Ponzi game” condition is necessary, I will borrow an example as pre-

sented in Krussell (2014). Suppose that the optimal stream of consumption is {c∗t }. Then

absent the no-Ponzi game condition, an individual can do the following to improve his util-

ity without violating budget constraint in any period,

1. Consume c̃0 = c∗0 + 1. Then the asset holding in period 1 will be b̃1 = b∗1 − 1, since a

negative bt indicates borrowing.

2. In the subsequent period, consume c̃t = c∗t in each t and hold b̃t+1 = b∗t+1 − (1 + r)t

amount of assets.

It is easy to see that {c̃t} yields a higher level of utility for the agent. To see why this

arrangement does not violate any budget constraint, we should first acknowledge that as a

set of optimal decisions, {c∗t , b∗t+1}must satisfy the budget constraint period by period such

that,

c∗t + b∗t+1 ≤ (1 + r)b∗t + ω

For the new arrangement {c̃t, b̃t+1}, the budget constraint in period 0 is satisfied because

c̃0 + b̃1 = c∗0 + b∗1 ≤ (1 + r)b∗0 + ω = (1 + r)b̃0 + ω
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since the initial level of asset endowment b̃0 remains the same. Second, the new arrange-

ment does not violate the budget constraint in any subsequent period because,

c̃t + b̃t+1 = c∗t + b∗t+1 − (1 + r)t

≤ (1 + r)b∗t + ω − (1 + r)t

= (1 + r)
[
b̃t + (1 + r)t−1

]
+ ω − (1 + r)t

= (1 + r)b̃t + ω + (1 + r)t − (1 + r)t

= (1 + r)b̃t + ω.

Intuitively, this is true because in period 1, the agent will purchase b̃2 = b∗2 − (1 + r)

amount of asset. This means that he is borrowing (1 + r) of monies in comparison to that

of the original decisions b∗2. The agent needs to do so, because he has to count on the new

borrowing to finance the interest incurred on the extra debt of $1 he borrowed in period 0

(b̃1 = b∗1 − 1). This requires the agent to borrow exactly an amount of (1 + r) in the second

period, for otherwise he will violate the budget constraint. Then in the third period, the

agent will have to borrow (1+r) · (1+r) amount of monies to pay back the principal and the

interest on the (1 + r) amount he borrowed in period 2. If he iterates on this logic, then the

agent can be better off than the optimal decisions {c∗t , b∗t+1} because he is borrowing more

monies in each period to finance the debt from the last period. By doing so, the individual

will accumulate a larger and larger amount of debt, but he never has to really pay it back.

This is the precise definition of Ponzi Scheme.

Note that while it is in principle possible for one agent to use the Ponzi Scheme to better

his utility, it will be impossible for everyone to do this. The reason is Ponzi games involve

with more and more borrowing, and someone has to lend the monies.

To rule out such behavior, we need to invoke a “no-Ponzi” game condition which states

that,

lim
t→∞

bt
(1 + r)t

≥ 0.

This expression simply says that in the limit, the growth of asset held by the individual must

exceed the rate debt is accumulating in the economy. So that an agent is forbidden to bor-

row more debt than what’s necessary.

I should emphasize on an important point before moving on to recursive formulation.

The transversality condition is conceptually different from the no-Ponzi condition. Transver-

sality condition is an optimality condition while no-Ponzi condition is just a constraint for

the economy to behave regularly and it does not say anything about the optimality of the

solution.
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5. Recursive Formulation: Infinite Horizon

Suppose the problem is stationary and the value of the optimal program from period t is

v(kt) ≡ max
{cs,ks+1}∞s=t

∞∑
s=t

βs−tU(ks)

s.t. cs + ks+1 − (1− δ)ks ≤ f(ks), ∀s ≥ t

Note that we get rid of the t subscript in the value function v(·), since the problem is sta-

tionary by assumption and the value will be the same for all t. Following the same steps as

in the finite horizon case, the Bellman equation is then

v(k) = max
k′

{
U [f(k)− k′ + (1− δ)k] + βv(k′)

}
where we adopt the prime notation to denote values in the next period. The corresponding

Euler equation is

U ′[f(k)− g(k) + (1− δ)k] = βU ′[f(g(k))− g(g(k)) + (1− δ)g(k)][f ′(g(k)) + (1− δ)]

We are interested in solving for either the policy functions g(k) or the value functions

v(k). Knowing one function is sufficient to solve for the other, since g(k) is the maximizer for

solving v(k) using the Bellman equations. However, only under rare circumstances we can

solve for analytical solutions. In the sections that follow, we will first introduce a special case

where analytical solution is available and then discuss how we can solve for the values and

policies numerically. Both approaches utilize a mathematical concept called “contraction

mapping” which we will discuss in length during the last lecture.

6. Analytical Solutions

Consider a special case where U(c) = log(c) and f(k) = Akα for some constants A and

α < 1. For simplicity, we can assume that capital is perishable and there is full depreciation

such that δ = 1. Hence, the Bellman equation to this problem is as follows,

v(k) = max
k′
{log[Akα − k′] + βv(k′)}

To solve for the associated policy function, we want to first solve for the value functions

since the policies are just the maximizer to the Bellman equation. To do this, we need to

invoke a mathematical concept called “contraction mapping theorem”. We will only discuss

it in details later. For now, all we need to know is that given the functional form assumptions,

if we iterate over the Bellman equation starting from an initial guess of the value function,



11

it is guaranteed that we will find an unique fixed point. This fix point will be the desired

solution.

Let’s first specify our initial guess of the value function. Suppose that we guess v0(k) = 0

for all k. Then we can write the Bellman equation as follows,

v1(k) = max
k′

{
log[Akα − k′] + βv0(k′)

}
= max

k′
{log[Akα − k′]}

Clearly, the maximizer to this problem is to choose k′ = 0 regardless the value of k. Hence,

the associated value function is

v1(k) = log (Akα) = log(A) + α log(k).

We can substitute this value function into the Bellman equation again to solve for v2(k),

v2(k) = max
k′

{
log[Akα − k′] + βv1(k′)

}
= max

k′
{log[Akα − k′] + β log (Akα)}

The solution to this problem is then

k′ =
αβAkα

1 + αβ

and the associated value function is

v2(k) = (α+ α2β) log k + log

(
A− αβA

1 + αβ

)
+ β logA+ αβ log

αβA

1 + αβ
.

Notice that a pattern has emerged during the iterations. Each value function is written

in a specific form such that,

vn(k) = an + bn log k

To see this, for the first iteration, we have a1 = logA and b1 = α. For the second iteration,

we have

a2 = log

(
A− αβA

1 + αβ

)
+ β logA+ αβ log

αβA

1 + αβ

b2 = α+ α2β

Then without loss of generality, we can guess that the “fixed point” of the value function,

in which the sequence vn(k) converges to v(k) is of the following functional form,

v(k) = a+ b log k.
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We can substitute this into the Bellman equation and obtain

v(k) = a+ b log k = max
k′
{log(Akα − k′) + β(a+ b log k′)}

Solving this optimization problem we can obtain the policy function as

k′ =
βb

1 + βb
Akα

Substituting this policy function back into the Bellman equation, we can obtain two sep-

arate expressions for the LHS and the RHS of the Bellman equation. The left-hand side is

simply

LHS = a+ b log k

and the right-hand side is

RHS = (1 + bβ) logA+ log

(
1

1 + bβ

)
+ aβ + bβ log

(
βb

1 + βb

)
+ (α+ αβb) log k.

By comparing coefficients, we then know that the following relationships must be true

a = (1 + bβ) logA+ log

(
1

1 + bβ

)
+ aβ + bβ log

(
βb

1 + βb

)
b = α+ αβb

This is system of linear equations with two unknowns a and b. The solution to this system

of equations is

a =
1

1− β
1

1− αβ
[logA+ (1− αβ) log(1− αβ) + αβ log(αβ)]

b =
α

1− αβ

Substituting these values back to the expression for policy function, we obtain that

k′ =
bβ

1 + bβ
Akα = αβAkα.

7. Numerical Solutions

We have shown how to solve for the analytical solutions of dynamic programming prob-

lems. However, for many classes of dynamic programming problem, this is infeasible. In

this section, we introduce two approaches to numerically solve for dynamic programming

problems: value function iteration and policy function iteration.
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Value Function Iteration

Consider the deterministic growth model. The unknowns we are interested in are {ct, kt+1, v(·)}.
Notice that to solve for all these unknowns, it is sufficient to solve for the value function v(·).

Given the value function and an initial capital stock k0, we can substitute the value function

back to the Bellman equation and solve for the optimal path of capital recursively. To be

more specific, to solve for the choice of capital stock in period 1, we can substitute the value

function v∗(·) such that k∗1 is the argument max to the Bellman equation,

k∗1 = arg max
k1

{
U [f(k0)− k1 + (1− δ)k0] + βv∗(k1)

}
Knowing k∗1 , we can then substitute it back to the Bellman equation and find k∗2 .

k∗2 = arg max
k2

{
U [f(k∗1)− k2 + (1− δ)k∗1 ] + βv∗(k2)

}
Applying this logic recursively, we can solve for the optimal path of capital ad infinitum.

Hence, the problem reduces to finding the value function v∗(·). The conventional method

to achieve this is through value function iteration.

As literally suggested by its name, value function iteration operates by iterating on the

value function. To start, we should guess for an initial value function v(k) for any k and call

this guess v0(k). Given every value of the state variable k, we can substitute the associated

value v0(k) and compute the value v1(k) as implied by the Bellman equation, such that

v1(k) = max
k′

{
U [f(k)− k′ + (1− δ)k] + βv0(k′)

}
Collecting all the values of v1(k) for every value of state variable k, we then have another

value function v1(·). We can substitute this value function for every possible state k and

compute again the implied values by the Bellman equation as,

v2(k) = max
k′

{
U [f(k)− k′ + (1− δ)k] + βv1(k′)

}
Iterating this logic recursively, we will stop the iteration until the vn+1(k) is close enough

to vn(k) for every state k, such that the `1 distance (sum of differences)
∥∥vn+1(k)− vn(k)

∥∥
1

between the values is smaller than a prescribed error criterion ε. The following pseudo-code

provides a summary of this algorithm. (See “Algorithm 1” on next page).

A Practical Version of Value Function Iteration

The algorithm that we outlined earlier is valid in principle, yet it is not practical. One reason

is that the choice of kt+1 is continuous and involves an +infinite number of possible kt+1. To
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Algorithm 1: Value Function Iteration

1 Guess an initial value function v0(k), e.g., v0(k) = 0 for all k.
2 Specify a stopping criterion ε, set n = 0, and set Error > ε.
3 while Error >= ε, do

foreach k ∈ [0,∞] do

Compute vn+1(k) = maxk′
{
U [f(k)− k′ + (1− δ)k] + βvn(k′)

}
.

Error =
∥∥vn+1(k)− vn(k)

∥∥
1
.

Update n = n+ 1.

circumvent this problem, a technique that is often invoked is to discretize the state space.

Instead of evaluating infinitely many states, we can set up a grid as a discretization of the

state space. In particular, assuming that the value of k can only be between the interval

of [k, k̄], we can set up a grid with a step value ∆k. Then the grid consists of points {k, k +

∆k, k+2∆k, . . . , k̄} and there will be a total of (k̄−k)/∆k elements in the grid.2 The modified

algorithm will evaluate the value function only at these points on the grid.3 The pseudo-

code is as follows,

Algorithm 2: Value Function Iteration – Discretization

1 Specify a step size ∆k.
2 Given that k falls in the range of [k, k̄], set up a vector/grid consists of [k : ∆k : k̄].
3 Guess an initial value function v0(k), e.g., v0(k) = 0 for all k ∈ [k : ∆k : k̄].
4 Specify a stopping criterion ε, set n = 0, and set Error > ε.
5 while Error >= ε, do

foreach k ∈ [k : ∆k : k̄] do

Compute vn+1(k) = maxk′
{
U [f(k)− k′ + (1− δ)k] + βvn(k′)

}
.

Error =
∥∥vn+1(k)− vn(k)

∥∥
1
.

Update n = n+ 1.

The modified algorithm is not without flaws. Readers will quickly realize that to update

value function based on the Bellman equation, we have to evaluate vn(k′) for a continuum

of k′. However, we only have v(·) for a finite number of k given the discretization of state

space. The technique employed by most economists to address this concern is called inter-

polation. We will introduce linear interpolation which is the simplest interpolation method.

For other more advanced and more practical methods such as Schumaker splines, inter-

ested readers may refer to Violante (2015) for further information.

2The interpretation is that if ∆k becomes small enough, the grid will converge to a continuous one.
3The grid we introduced here is essentially a uniform grid. For non-uniform grid, quadrature grid, and stochas-

tic grid, readers may refer to...
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Linear Interpolation of Value Function

Suppose that we have a grid of points k(i) for i = 1, ..., (k̄ − k)/∆k. Then in each step where

we update the value function vn(k), we need to know the values of vn(k) for some k lies

between say k(i) and k(i + 1), in order to find the maximizer to the LHS of the Bellman

equation. Linear interpolation method says that we can interpolate the value of v(k) as

follows,

v(k) ≈ v(k(i)) +
v(k(i+ 1))− v(k(i))

k(i+ 1)− k(i)
[k − k(i)]

The intuition of the linear interpolation method is simple. As the name suggests, it is

a method that interpolates the values between two points via a linear, straight line. Sup-

pose we have two points, (x0, f(x0)) and (x1, f(x1)), on a Cartesian plane. Then geometry

dictates that for any point (x, y) that lies on the linear interpolant,

y − f(x0)

x− x0
=
f(x1)− f(x0)

x1 − x0
⇒ f(x) = y = f(x0) +

f(x1)− f(x0)

x1 − x0
(x− x0)

Value Function Iteration: Limitations

While value function iteration is considered as an accurate method, in practice it can be very

slow. One reason is that if we choose a finer grid, there will be too many grid points/states

to evaluate for each iteration. To deal with this problem, researchers typically utilize the

power of modern computers and resort to parallel computations using Central Process-

ing Units (CPU) or Graphical Processing Units (GPU). Modern CPUs are usually equipped

with multiple cores/nodes. The CPU on your personal laptop may carry two nodes, while

the High Performance Computing Cluster at SMU carries 272 cores.4 If one is willing to

compromise on the nature of the operation (i.e., arithmetic vs logical), a GPU may be even

more powerful and cost-effective as one consumer-grade GPU could carry more than 2,000

CUDA cores. Given these computational power, one way to circumvent the computational

burden of evaluating every grid point is simply to divide the grid points equally among the

CPUs. These CPUs will then simultaneously evaluate the value functions at those points.

Very loosely speaking, if there are n cores available, we can naively expect an n-times speed

up. (though this is an inaccurate characterization).

The second reason why value function iteration is slow, is that it is in particular slow

to find a maximizer/optimal policy for the Bellman equation. This is especially true when

the functional forms are non-linear. To address this concern, we will introduce Howard’s

Improvement Algorithm (Howard, 1960) in the next subsection. Later on, we will also intro-

duce Policy Function Iteration which can also be interpreted as an application of Howard’s

algorithm.

4This is considered as a small HPC cluster. Many universities have multiple HPC cluster each equipped with
more than tens of thousands cores.
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Howard’s Improvement Step

The basic idea of Howard’s Improvement Step, is that instead of finding a maximizer for

each iteration, we should use the same maximizer repeatedly for some number of itera-

tions and then update the maximizer. To be more specific,suppose that we have an initial

maximizer k′ = k̃ when we update the value function from vn(k) to vn+1(k),

gn+1(k) = k̃(k) ≡ arg max
k′

U [f(k)− k′ + (1− δ)k] + βvn(k′)

Notice that this k̃ should be a function (a sequence of values) instead of a scalar value.

The reason is that we are finding the argument max for every single value of k. Hence, we

need a corresponding k̃ for every k. For the sake of accuracy, we denote this function to be

gn+1(k) and the corresponding vn+1(k) to be vn+1
0 (k), such that by the Bellman equation,

vn+1
0 (k) ≡ U

[
f(k)− gn+1(k) + (1− δ)k

]
+ βvn(gn+1(k))

Howard (1960)’s idea is that instead of straight away jumping from vn+1(k) to vn+2(k), we

should exploit gn+1(k) repeatedly for many times before updating to vn+2(k). Specifically,

we should update vn+1
0 (k) for H times using the Bellman equation and the same policy

function gn+1(k) [every time],

vn+1
h+1(k) = U

[
f(k)− gn+1(k) + (1− δ)k

]
+ βvn+1

h (gn+1(k))

Given the updated vn+1
H (k), we can then find the maximizer gn+2(k) again and update vn+2(k).

(it will be used as vn+2
0 (k)). The following pseudo-code summarizes the algorithm.

Algorithm 3: Value Function Iteration - Howard’s Improvement

1 Specify a step size ∆k.
2 Given that k falls in the range of [k, k̄], set up a vector/grid consists of [k : ∆k : k̄].
3 Guess an initial value function v0(k), e.g., v0(k) = 0 for all k ∈ [k : ∆k : k̄].
4 Specify a stopping criterion ε, set n = 0, and set Error > ε.
5 while Error >= ε, do

foreach k ∈ [k : ∆k : k̄] do

Compute vn+1
0 (k) = maxk′

{
U [f(k)− k′ + (1− δ)k] + βvn(k′)

}
.

Store the maximizer gn+1(k) in a vector.

Set h = 0.
while h < H , do

foreach k ∈ [k : ∆k : k̄] do
Compute vn+1

h+1(k) = U
[
f(k)− gn+1(k) + (1− δ)k

]
+ βvn+1

h (gn+1(k)).

Update h = h+ 1.

Set vn+1(k) = vn+1
H (k) and compute Error =

∥∥vn+1(k)− vn(k)
∥∥
1
.

Update n = n+ 1.
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Several observations are in order. First, the fact that we add more intermediate steps

in updating vn+1
h (k) does not mean that there are more computational burden. The pur-

pose of these improvement steps are meant to cut down the number of iterations needed

for vn+1(k) to converge, that is N will become smaller. Hence, total computational burden

is smaller. This is true because we are facing a tradeoff between adding more intermediate

steps updating from vn+1
h (k) to vn+1

h+1(k) and cutting down the number of iterations needed

to update from vn(k) to vn+1(k). The computational burden of the latter trumps the for-

mer, as for the intermediate steps we are evaluating the Bellman equation using a given

maximizer gn+1(k) repeatedly,

vn+1
h+1(k) = U

[
f(k)− gn+1(k) + (1− δ)k

]
+ βvn+1

h (gn+1(k))

whereas for the latter steps we are trying to find a maximizer which is time-consuming,

vn+1(k) = max
k′

{
U [f(k)− k′ + (1− δ)k] + βvn(k′)

}
.

Second, for the intermediate steps or the “Howard’s improvement steps”, the value func-

tion is “improving” for each iteration. This is true because U [·] at the policy (maximizer)

gn+1(k) is positive. The improvement comes from a tendency that the policy functions usu-

ally converge faster that the value functions. By using the policy functions as a proxy re-

peatedly, we are “fine-tuning” or “improving” the value function so that it “catches up” with

the current policy function, in the sense that the value function will become closer to the

true value. (Because the improvement step is also a contraction mapping hence bound to

converge).

Policy Function Iteration

An alternative to value function iteration is to iterate over the policy functions. The basic

idea is to start with a guess of the policy function g0(k) and then solve for the associated

value functions based on the system of [linear] Bellman equations,

v(k) = U
[
f(k)− g0(k) + (1− δ)k

]
+ βv(g0(k)).

Note that that there are in total of N unknown v(k) in N equations, where N is the number

of grid points for k. Denote these solved values to be v0(k). After solving for these v0(k), the

next step is to find a new policy function based on the value functions, such that

g1(k) = arg max
k′

{
U [f(k)− k′ + (1− δ)k] + βv0(k′)

}
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Given the new policy function g1(k), one can iterate over these steps until the policy func-

tion converges. The following pseudo-code summarizes the algorithm for policy function

iteration.

Algorithm 4: Policy Function Iteration

1 Specify a step size ∆k.
2 Given that k falls in the range of [k, k̄], set up a vector/grid consists of [k : ∆k : k̄].
3 Guess an initial policy function g0(k), e.g., g0(k) = 0 for all k ∈ [k : ∆k : k̄].
4 Specify a stopping criterion ε, set n = 0, and set Error > ε.
5 while Error >= ε, do

Solve the system of linear equations with (k̄ − k)/∆k unknown vn(k), where the
system of equations is vn(k) = U [f(k)− gn(k) + (1− δ)k] + βvn(gn(k)).

foreach k ∈ [k : ∆k : k̄] do
Compute gn+1(k) = arg maxk′{U [f(k)− k′ + (1− δ)k] + βvn(k′)}.

Error =
∥∥gn+1(k)− gn(k)

∥∥
1
.

Update n = n+ 1.

The advantage of policy function iteration over value function iteration is that, it usu-

ally takes less number of iterations for the algorithm to converge. However, it is unclear

how computational time for each round of iteration compares with that of value function

iteration; it can go either way.

8. Parallelization of Value Function Iteration (Optional)

We have briefly discussed that one way to speed up the computation time is through parallel

programming. In this section, we discuss it in greater details. Interested readers may also

refer to Fernández-Villaverde and Valencia (2018), Aldrich (2014), and Aldrich et al. (2011)

for further information.

Parallelization via CPU

One way to implement parallelization is to utilize the multi-node CPUs in our personal

desktops or the HPC cluster at SMU. Recall that the algorithm for value function iteration

with discretization is as follows (Algorithm 5 on next page). The difficulty arises because we

need to compute the value function vn+1(k) for each grid point k in the grid
[
k : ∆k : k̄

]
.

Now, suppose that we have N = 16 cores available in the HPC cluster. We can assign

(k̄ − k)/16∆k grid points to each core in the CPU. This is easy to implement in Matlab, as

one need only to change “for” to “parfor” during the iteration over grid points, which cor-

responds to the “foreach k ∈
[
k : ∆k : k̄

]
do” in the pseudo-code. Matlab will automatically

divide the grid points among each node/core/processor and compute the value function

simultaneously. Theoretically, though inaccurately, we could achieve a speed up close to
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N times. This is a huge improvement for the feasibility of a research project. Suppose that

originally without parallelization, the program converges in 3 months. If one can speed it

up by 16 times, then it will converge within 1 week.5

Algorithm 5: Value Function Iteration – Discretization

1 Specify a step size ∆k.
2 Given that k falls in the range of [k, k̄], set up a vector/grid consists of [k : ∆k : k̄].
3 Guess an initial value function v0(k), e.g., v0(k) = 0 for all k ∈ [k : ∆k : k̄].
4 Specify a stopping criterion ε, set n = 0, and set Error > ε.
5 while Error >= ε, do

foreach k ∈ [k : ∆k : k̄] do

Compute vn+1(k) = maxk′
{
U [f(k)− k′ + (1− δ)k] + βvn(k′)

}
.

Error =
∥∥vn+1(k)− vn(k)

∥∥
1
.

Update n = n+ 1.

One problem commonly seen among researchers new to HPC is that, they think their

program will automatically run much faster on a HPC cluster. Therefore, they do not utilize

parallelization in their programs. While it is true to some extent the HPC cluster is better

than the personal desktops, without parallelization, the computing power is often unex-

ploited. To establish this point, we run an experiment where a computationally-intensive

program is implemented with and without parallelization on a 6-core CPU. The following

figure is a snapshot from a CPU-monitoring software that records the utilization of each

core/node.

Figure 1: Utilization of CPU with and without parallelization.

5However, one should not take parallelization as a silver bullet. First of all, there are many bottlenecks that
limits the extent of parallelization, such as hardware optimization and programming optimization. Second, paral-
lelizaton should not be used as a substitute for bad programming.
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The top panel records the activities in all 6 cores under the program that there is no

parallelization. It is clear that only 1 core is being used intensively by the computer where

the level of utilization is around 50% and all other 5 cores are idle. In contrast, for the bottom

panel where parallelization is employed (i.e., change “for” to “parfor”), all 6 cores are being

used heavily for the computation. The key message that I wish to convey is that, while it is

true HPC cluster helps us to speed up the computation [to a small extent] as many built-in

Matlab command already utilizes the multi-thread architecture, the HPC cluster will only

be most useful when an explicit parallelization structure is present in the program.

Parallelization via GPU

Another approach to implement parallel computing is to use the Graphical Processing Units

(GPU). The basic idea is that NVIDIA GPUs are usually equipped with hundreds and thou-

sands of GPUs. If we can reduce the parallel operations to arithmetic operations (the ba-

sic matrix computations) instead of logical operations (true or false operations), then each

GPU core will be as good as a CPU core for our purposes. However, the unit price is much

cheaper. The current price of a GTX 1080Ti GPU with 3,500 CUDA cores is about $600 USD

whereas for a 16-core CPU the cost will be about $800 USD. This implies that the per-core

unit price of CPU is 3,000 times higher than that of GPU.

To make a comparison of running parallelization using CPU and GPU, I reproduce the

following table, which is part of Table 3 in Aldrich et al. (2011).6 7 8

Number of grid points 16 32 64 128 256 512 1,024

CPU time in seconds 0.03 0.08 0.19 0.5 1.36 3.68 10.77

GPU time in seconds 1.42 1.45 1.49 1.52 1.57 1.69 1.93

Number of grid points 2,048 4,096 8,192 16,384 32,768 65,536

CPU time in seconds 34.27 117.32 427.50 1615.40 6270.37 24588.50

GPU time in seconds 2.45 3.65 6.37 11.86 23.56 48.32

Table 1: Comparison of running time, adapted from Aldrich et al. (2011) Table 3

The CPUs they used are two 2.66 GHz Intel Xeon E5345 CPUs with a total of 8 cores,

whereas the GPU they used is a 1.30 GHz NVIDIA GeForce GTX 280 with 240 CUDA cores. It

is clear from this comparison that GPU really speeds up computation especially for a finer

6The number of grid points represents the grid points for capital alone.
7Both parallelization implementations are written in C language, so this is a fair comparison.
8The authors set the precision to double precision, that is the number as accurate up to 15 or 16 decimal digits.

However, many GPUs, including the GPU used by the authors, are optimized for single precision computations.
If one is willing to compromize on the level of precision and accept an accuracy of 6 to 7 decimal digits, then the
performance of the GPU could double.
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grid, which is often demanded in quantitative work. For the finest grid with 65,536 grid

points, the amount of time for CPU parallelization is about 7 hours. With parallelization

using an entry-level consumer-grade GPU, the computational time is reduced to under 1

minute.

I wish to further mention two more observations. The first observation is that if we con-

sider a case without any parallelization, the difference is even more pronounced. By my

experiences, an 8-core CPU in general will only achieve a speed-up of factor of 4 in compar-

ison to a case without any parallel programming. This means that without parallelization,

even if we write down the program in C, the computation time is about 28 hours or a whole

day.

The second observation is that, although the performance of GPU is already impressive,

there are more room for improvement. The GPU that Aldrich et al. (2011) used is only an

entry level GPU. More recent consumer-grade GPU such as NVIDIA GeForce GTX 1080Ti

comes with more than 3,500 CUDA cores. This implies the computational power is about

11.3 TFLOPS for 1080Ti which is about 20 times that of GTX 280 used by Aldrich et al. (2011).

So what’s the general rule of thumb? Which computational approach should we follow

in practice? My answer consists of two parts. The first part is whether we should use par-

allelization to solve for value function iteration. The answer is yes. There is virtually no

cost associated with learning parallelization using CPU. In Matlab, all you need is “parfor”.

This is similar in other languages. The second part then relates to the question on whether

we should use CPU or GPU. For this part, my answer is, it depends. There is an inherent

tradeoff between saving the computational time and spending the time to grasp the extra

techniques. Learning to code in CUDA C is not an trivial experience. My personal take is

that, we should only use GPU when the parallel program using CPU takes more than 1 week

to finish running (in total). It may take you perhaps a month to fully apply CUDA C in your

own research. If all it gets for you is to reduce the computation from 1 day to 1 minute, it is

not very worthwhile.

9. Conclusion

In this lecture, we discussed dynamic optimization in a deterministic environment. We

first introduce different ways to characterize the solution system. The first method exploits

the Euler equations using the sequence problem. The second method which is dynamic

programming characterize the optimal policies using Bellman equations. We then explain

on how we can solve the dynamic programs both analytically and numerically. For the next

lecture, we will talk more about how to characterize dynamic optimization in a stochastic

environment.
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Lecture 4: Dynamic Optimization with Uncertainty

Xin Yi

1. Introduction

In this lecture, we will study dynamic optimizations in stochastic environments where there

are random shocks in the economy. However, the presence of random shocks does not

necessarily complicate the picture. If you think about random shocks in an Arrow-Debreu

environment, then all stochastic models are static.1 Therefore, the techniques presented

here can be seen as a generalization from what we are doing in the previous lecture.

It is worthwhile to emphasize again that, the models presented here are all partial equi-

librium models. That is, we only focus on the behavior from the perspective of an individual

and we do not think about market clearing conditions. A large part of these lectures will be

dedicated to solving the model. In the PhD Macroeconomics 1 class, you will need to apply

the techniques from this class to construct a model that describes the general equilibrium

for the whole economy. Then in the PhD Macroeconomics 2 class, you will [partly] learn

about how to solve the general equilibrium model numerically. It is also important to keep

in mind on the difference between a planning problem and a market economy. Though

this is an obvious distinction to all economics students, people do sometimes get confused

when they first touch dynamic macroeconomic theory.

2. Common Stochastic Processes in Macroeconomics

By now you should have a rigorous understanding about stochastic processes from your

Econometrics class and previous math camps. In this section, we will briefly revisit some

stochastic environments that are commonly seen in macroeconomics.

Markov Chains

A formal definition of stationary Markov chains is omitted in here as it is already covered in

the previous courses. The most important thing to know about Markov chains for our pur-

1We must also assume that agents are risk-neutral. Otherwise, there will be an additional second-moment effect
for the stochastic models.

1
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pose, is the properties of a first-order Markov chain, where only the previous state matters

for the current state, and any histories beyond that will not matter. Formally, we define a

history at time t as a sequence of states reversely ordered by time,

zt = (zt, zt−1, . . . , z)

where zt ∈ Z is the state at time t. A first-order Markov chain then satisfies the following

properties,

π[(zt+1, z
t)|zt] = π[(zt+1, zt)|zt]

as opposed to higher-order models where an n-th order Markov model satisfies the follow-

ing

π[(zt+1, z
t)|zt] = π[zt+1|(zt, zt−1, . . . , zt−n+1)].

Linear Stochastic Difference Equations

As the name suggests, linear stochastic difference equation is the class of processes that

are recursively defined by linear functional forms in a random environment. Readers who

are interested in a more formal definition may refer to Krussell (2014). The most common

linear stochastic difference equation that we will see in macroeconomics is the first-order

autoregressive process, i.e., the AR(1) process. In the context of a neoclassical growth model,

suppose now that At represents a random Hicks-neutral productivity shock that follows an

AR(1) process, then

At+1 = ρ0 + ρ1At + εt+1

where it is assumed that

Et[εt+1] = 0, Et[ε
2
t+1] = σ2, and Et[εt+kεt+k+1] = 0.

and we can show that given a A0, we will have a stationary process so long as |ρ1| < 1.

3. Sequential Optimization under Stochastic Environments

The following example is largely drawn from Krussell (2014). Consider the neoclassical

growth model under stochastic environments. Suppose that the production function now

has an extra element, the productivity shock zt, and it is random,

yt = ztf(kt).
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Further assume that zt ∈ Z follows a first order Markov process such that

π
[
(zt+1, z

t)|zt
]

= π [(zt+1, zt)|zt]

where zt is a history of realizations of productivity shocks at time t such that zt = (zt, zt−1, . . . , z0).

(zt, z
t−1) is another way to denote the history at time t, zt. π [(zt+1, z

t)|zt] then denotes the

probability of observing state zt+1 at time t + 1 conditional on the past history is zt. This

is a first-order Markov process because history beyond the previous time period does not

matter.

Given these assumptions, the optimization problem for a stochastic neoclassical growth

model is as follows

max
ct(zt),kt+1(zt)

E

[ ∞∑
t=0

βtU(ct)

]
≡
∞∑
t=0

∑
zt∈Zt

βtπ(zt)U
[
ct(z

t)
]

s.t. ct(z
t) + kt+1(zt) ≤ ztf

[
kt(z

t−1)
]

+ (1− δ)kt(zt−1) ∀t,∀zt,

where Zt is the set of possible history at time t. The Lagrangian to this problem is,

L =

∞∑
t=0

∑
zt∈Z

βtπ(zt)U
[
ct(z

t)
]
−
∞∑
t=0

∑
zt∈Zt

λt(z
t)
{
ct(z

t)+kt+1(zt)−ztf
[
kt(z

t−1)
]
−(1−δ)kt(zt−1)

}

The associated first-order conditions with respect to ct(zt) and kt+1(zt) are

βtπ(zt)U ′[ct(z
t)] = λt(z

t)

λt(z
t) =

∑
zt+1∈Z

λt+1(zt+1, z
t)
{
zt+1f

′ [kt+1(zt)
]

+ (1− δ)
}
.

The second FOC with respect to kt+1(zt) may be a bit difficult to comprehend. The rea-

son we are summing over zt+1 is as follows. When we differentiate with respect to kt+1(zt),

we need to do this for the term λt+1(zt+1)
{
zt+1f [kt+1(zt)− (1− δ)kt+1(zt)]

}
in the La-

grangian. Notice that this term involves with both zt+1 and zt. However, we are only dif-

ferentiating with respect to kt+1(zt) for one particular history zt at time t. Given zt, we can

reach different histories zt+1 at time t+ 1, depending on the particular value of productivity

shock zt+1 at time t+ 1. Hence, a summation sign is necessary.

Given the FOCs, we should first use the FOC with respect to consumption to yield an

inter-temporal expression,

β
π(zt+1)U ′

[
ct+1(zt+1)

]
π(zt)U ′ [ct(zt)]

=
λt+1(zt+1)

λt(zt)
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which is equivalent to

β
π(zt+1, z

t)U ′ [ct+1(zt+1, z
t)]

π(zt)U ′ [ct(zt)]
=
λt+1(zt+1, z

t)

λt(zt)

Multiplying both sides of the equation by zt+1f
′ [kt+1(zt)] + (1− δ) and summing it over all

possible zt+1 yields

∑
zt+1∈Z

β
π(zt+1, z

t)U ′ [ct+1(zt+1, z
t)]

π(zt)U ′ [ct(zt)]

{
zt+1f

′ [kt+1(zt)
]

+ (1− δ)
}

=
∑

zt+1∈Z

λt+1(zt+1, z
t)

λt(zt)

{
zt+1f

′ [kt+1(zt)
]

+ (1− δ)
}
.

But the RHS of this equation is just 1, based on the FOC with respect to kt+1(zt). Hence, we

have that

π(zt)U ′
[
ct(z

t)
]

=
∑

zt+1∈Z
βπ(zt+1, z

t)U ′
[
ct+1(zt+1, z

t)
] {
zt+1f

′ [kt+1(zt)
]

+ (1− δ)
}
.

Furthermore, by the definition of conditional probability thatπ [(zt+1, z
t)|zt] = π(zt+1, z

t)/π(zt),

we can change the above to the final expression of stochastic Euler equation,

U ′
[
ct(z

t)
]

=
∑

zt+1∈Z
βπ
[
(zt+1, z

t)|zt
]
U ′
[
ct+1(zt+1, z

t)
] {
zt+1f

′ [kt+1(zt)
]

+ (1− δ)
}
.

Readers may compare this with the deterministic Euler equation and see that the func-

tional form is really identical, except that stochastic Euler equation is written in expectation

terms. The interpretation of the stochastic Euler equation is that an optimal solution to the

dynamic optimization problem must be balance the inter-temporal trade off. The marginal

utility of consuming one more unit of goods in the present state must be equal to the ex-

pected discounted marginal utility of consumption foregone in the next period, given that

saving one more unit of consumption in the present yields zt+1f
′ [kt+1(zt)] + (1 − δ) more

goods available in a future state zt+1.

Back to the optimization itself, the quantities of interest from this dynamic optimization

are the contingent consumption plans and investment plans, {ct(zt), kt+1(zt)}. Notice that

we can use the binding budget constraint and substitute the contingent consumption plans

by the contingent investment plans,

U ′
[
ztf
[
kt(z

t−1)
]

+ (1− δ)kt(zt−1)− kt+1(zt)
]

=
∑

zt+1∈Z
βπ
[
(zt+1, z

t)|zt
]
U ′
[
zt+1f

[
kt+1(zt)

]
+ (1− δ)kt+1(zt)− kt+2(zt+1, z

t)
] {
zt+1f

′ [kt+1(zt)
]

+ (1− δ)
}

This is a system of second-order stochastic difference equations, where the unknowns
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are {kt+1(zt)}, ∀t,∀zt. The functional form of U [·] and f(·) would often make it nonlinear.

The fact it is both stochastic and nonlinear may make it difficult to solve. The conventional

approach to solve this system of equations is to log-linearize (first order Taylor expansion)

around the deterministic steady state. As this is rather tedious and mechanical, interested

readers may refer to page 100-104 in Krussell (2014).

4. Recursive Formulation under Stochastic Environments

For the recursive formulation of the problem, we first define the value of the optimal pro-

gram starting from period t, given a history zt as,

v(kt, z
t) ≡ max

{cs(zs),ks+1(zs)}∞s=t

E

[ ∞∑
s=t

βs−tU [cs(z
s)] | zt

]

s.t. cs(z
s) + ks+1(zs) ≤ f

[
ks(z

s−1)
]

+ (1− δ)ks(zs−1)

Notice that the value is now expressed in conditional expectations because we are given

with a particular history zt. This is equivalent to

v(kt, z
t) = max

{cs(zs),ks+1(zs)}∞s=t

∞∑
s=t

βs−tπ(zs|zt)U [cs(z
s)]

= max
{cs(zs),ks+1(zs)}∞s=t

{
U
[
ct(z

t)
]

+

∞∑
s=t+1

∑
zs∈Zs

βs−tπ(zs|zt)U [cs(z
s)]

}

s.t. cs(z
s) + ks+1(zs) ≤ f

[
ks(z

s−1)
]

+ (1− δ)ks(zs−1)

We can invoke the first-order Markov process assumption thatπ [(zt+1, z
t)|zt] = π [(zt+1, zt)|zt] =

π [zt+1|zt] and write the value as,

v(kt, zt) = max
{cs(zs),ks+1(zs)}∞s=t

{
U [ct(zt)] +

∞∑
s=t+1

∑
zs∈Zs

βs−tπ(zs|zt)U [cs(z
s)]

}

= max
ct(zt),kt+1(zt)

{
U [ct(zt)] + max

{cs(zs),ks+1(zs)}∞s=t+1

∞∑
s=t+1

∑
zs∈Zs

βs−tπ(zs|zt)U [cs(z
s)]

}
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The second term on the RHS can be further written as

max
{cs(zs),ks+1(zs)}∞s=t+1

β

∞∑
s=t+1

∑
zs∈Zs

βs−(t+1)π(zs|zt)U [cs(z
s)]

= max
{cs(zs),ks+1(zs)}∞s=t+1

β

{ ∑
zt+1∈Zt+1

π(zt+1|zt)U
[
ct+1(zt+1)

]
+

∞∑
s=t+2

∑
zs∈Zs

βs−(t+1)π(zs|zt)U [cs(z
s)]

}

= max
{cs(zs),ks+1(zs)}∞s=t+1

β

{ ∑
zt+1∈Z

π(zt+1|zt)U [ct+1(zt+1)] +

∞∑
s=t+2

∑
zs∈Zs

βs−(t+1)π(zs|zt)U [cs(z
s)]

}

= max
{cs(zs),ks+1(zs)}∞s=t+1

β

{ ∑
zt+1∈Z

π(zt+1|zt)

[
U [ct+1(zt+1)] +

∞∑
s=t+2

∑
zs∈Zs

βs−(t+1)π(zs|zt+1)U [cs(z
s)]

]}

≡β
∑

zt+1∈Z
π(zt+1|zt)v(kt+1, zt+1)

where the second last equality is true because by the property of first-order Markov pro-

cesses, for any s ≥ t+ 2, π(zs|zt) = π(zs|zt) = π(zs|zt+1)
∑

zt+1∈Zt+1 π(zt+1|zt); hence,

∞∑
s=t+2

∑
zs∈Zs

βs−(t+1)π(zs|zt)U [cs(z
s)]

=

∞∑
s=t+2

∑
zs∈Zs

βs−(t+1)π(zs|zt+1)
∑

zt+1∈Zt+1

π(zt+1|zt)U [cs(z
s)]

=
∑

zt+1∈Zt+1

π(zt+1|zt)
∞∑

s=t+2

∑
zs∈Zs

βs−(t+1)π(zs|zt+1)U [cs(z
s)] .

Given these derivations, the stochastic Bellman equation is then

v(kt, zt) = max
ct(zt),kt+1(zt)

{
U [ct(zt)] + β

∑
zt+1∈Z

π(zt+1|zt)v(kt+1, zt+1)

}

s.t. cs(zs) + ks+1(zs) ≤ f [ks(zs−1)] + (1− δ)ks(zs−1)

Without loss of generality, we can use “prime” to denote the value in next period and rewrite

the Bellman equation as follows,

v(k, z) = max
c,k′

{
U(c) + β

∑
z′

π(z′|z)v(k′, z′)

}

s.t. c+ k′ ≤ f(k) + (1− δ)k

Stochastic Bellman Equation without Markov

So far we have exploited the Markov properties in order to derive at the stochastic Bellman

equation. In this subsection, I will present a more general derivation that exploits the law
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of iterated expectation in order to show the stochastic Bellman equation.

Recall that we can define the value as (I omitted the constraints),

v(kt, zt) = max
cs,ks+1

Et

[ ∞∑
s=t

βs−tU(cs)

]

Notice that by having a subscript t for the expectation operation, we move all the zt nota-

tions to the subscript which is the information set available at time t. Expanding the sum-

mation for the initial period, we arrive at

v(kt, zt) = max
cs,ks+1

Et

[
U(ct) +

∞∑
s=t+1

βs−tU(cs)

]

By the law of iterated expectation,

Et[x] ≡ E(x|It) = E(E(x|It+1)|It) ≡ Et(Et+1(x)),

where the equality is true by LIE because we know that the information set at time t is a

subset of the information set at time t+ 1, i.e., It ⊆ I2.2 Hence, we have

v(kt, zt) = max
cs,ks+1

Et

[
U(ct) + Et+1

∞∑
s=t+1

βs−tU(cs)

]
.

This can be further written as

v(kt, zt) = max
cs,ks+1

Et

[
U(ct) + Et+1

(
βU(ct+1) + β

∞∑
s=t+2

βs−(t+1)U(cs)

)]

= max
cs,ks+1

Et

[
U(ct) + βEt+1

(
U(ct+1) +

∞∑
s=t+2

βs−(t+1)U(cs)

)]

= max
ct,kt+1

Et

[
U(ct) + β max

cs,ks+1

Et+1

(
U(ct+1) +

∞∑
s=t+2

βs−(t+1)U(cs)

)]
= max

ct,kt+1

Et [U(ct) + βv(kt+1, zt+1)]

= max
ct,kt+1

U(ct) + βEtv(kt+1, zt+1)

The resultant equation will be general form for stochastic Bellman equation.

2The generalized law of iterated expectation states that if G1 ⊆ G2, then E[E[X|G2]|G1] = E[X|G1]. Readers
interested in a rigorous proof may read page 208 of Stokey et al. (1989).
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5. Solving Stochastic Dynamic Programs

Given the stochastic Bellman equation, the next step is to study how we can actually solve

for the optimal policies. The strategy is much similar to the deterministic case, in that we

aim to solve for the value functions through iteration over Bellman equations. Once we

know the value functions, the policies are automatically solved as the maximizer to the Bell-

man equation.

However, there is another issue that is how we should model stochastic shocks in prac-

tice. This depends on the nature of the underlying stochastic processes. For our purpose,

suppose that z can take three values, (1, 2, 3). zH = 3 would represent the case that there is

a high productivity shock; zM = 2 and zL = 1 would represent cases there are medium and

low productivity shock. Further suppose that the transition probabilities are represented

by a matrix P where rows represent the initial states in a period and columns represent the

end states. The first column and row represent the high state; the second column and row

represent the medium state; and the third represents the low state. Each element of the ma-

trix Pij is then the probability of transitioning from state i to state j. For example, P11 = 0.7

means that the probability of starting from a high state and ending also in the high state is

0.7. In terms of the notations of our Bellman equation, this is just P11 = π(zH |zH) = 0.7.

Notice that this matrix has the property that each state tends to perpetuate in itself. But

there are also some small chances for state switching.

P =


0.7 0.2 0.1

0.2 0.7 0.1

0.1 0.2 0.7


Value function iteration under this stochastic environment works as follows. We should

start with a guess of value function v0(k, z) for each combination of (k, z). Given this guess,

we can use the Bellman equation and the transition probabilities to find v1(k, z).

v1(k, z) = max
c,k′

{
U(c) + β

∑
z′

π(z′|z)v0(k′, z′)

}

s.t. c+ k′ ≤ f(k) + (1− δ)k

Iterating this logic recursively, by Contraction Mapping Theorem, we will find a fixed point

where the value function converges under some regularity conditions. The following pseudo-

code summarizes the algorithm.
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Algorithm 1: Value Function Iteration – Stochastic Environment

1 Specify a step size ∆k.
2 Given that k falls in the range of [k, k̄], set up a vector/grid consists of [k : ∆k : k̄].
3 Guess an initial v0(k, z), e.g., v0(k, z) = 0 for all k ∈ [k : ∆k : k̄] and z ∈ [zH , zM , zL].
4 Specify a stopping criterion ε, set n = 0, and set Error > ε.
5 while Error >= ε, do

foreach k ∈ [k : ∆k : k̄] do
foreach z ∈ [zH , zM , zL] do

Compute v(k, z) = maxc,k′

{
U(c) + β

∑
z′ π(z′|z)v(k′, z′)

}
,

subject to c+ k′ ≤ f(k) + (1− δ)k.

Error =
∥∥vn+1(k, z)− vn(k, z)

∥∥
1
.

Update n = n+ 1.

6. Conclusion

In this lecture, we briefly introduce dynamic programming under stochastic environments.

Solutions are characterized for both sequential optimization and dynamic programs, with

a follow up discussions on how to solve them in practice.
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Lecture 5: Search and Matching

Xin Yi

1. Introduction

In this lecture, we will be applying dynamic programming to labor market models. In par-

ticular, we will go through the basic algebras that will be useful for these models. We will first

start with a partial equilibrium model first studied by McCall (1970). Then, we will move on

to a more complete equilibrium matching model as presented in Pissarides (1990). How-

ever, I will be refrained from discussing the economic intuition behind the models, as this

will be the central task in the Macroeconomics 1 class. The materials presented here are

meant to lay a foundation, so that you will make more efficient use of your time in term 2.

A standard reference to this literature is Rogerson et al. (2005).

2. The McCall-Mortensen Search Model

Consider the problem for an unemployed worker searching for jobs, which I imported from

Prof. Jacquet’s lecture notes. Each period, the worker will find a job offer with wage w ∈
[w, w̄] drawn from some cumulative distribution F (w). The worker may choose to reject

the offer if w falls below his reservation wage w̄. In this case, the worker will receive an

unemployment benefit b. This timeline of events will repeat in every period until the worker

finds a job. The model also does not allow any possibility of quitting or firing after the

worker has accepted a job. That is, once he starts working the worker will continue to do so

in perpetuity. The problem is then, to solve for the level of reservation wage,wR. We further

assume that the utility of having an income w is simply u(w) = w.

First, we should note that the worker in this scenario is making discrete choices, i.e.,

whether he should accept or reject an offer. Second, the worker can only be in two scenarios,

that is either he is employed or he is not. Hence, we can write down the value of accepting

a job offer w as

V (w) =

∞∑
t=0

βtw =
w

1− β

1
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and the value of being unemployed as

U = b+ βEmax
{
U, V (w)

}
By the definition of reservation wage wR, that the worker is indifferent between working

and not working, it must be that the values under the two scenarios be equalized,

V (wR) = U

Hence, we can expand the value function for U as follows

wR
1− β

= V (wR) = U = b+ βEmax
{
U, V (w)

}
= b+ βEmax

{ wR
1− β

,
w

1− β

}
= b+ β

{∫ wR

w

wR
1− β

dF (w) +

∫ w̄

wR

w

1− β
dF (w)

}

This equation then characterizes the reservation wage wR. I wouldn’t go further to discuss

any economic intuition as it is beyond the scope of this mini-course. For a detailed exposi-

tion on this topic, readers may refer to Ljungqvist and Sargent (2012).

Alternative Solution: the Dynamic Program

In this model, it is sufficient to solve for the reservation wage, as this wage level governs all

economic behaviors. However, for the sake of technical interest, I will also present a solu-

tion, where we do not solve for the reservation wage. Instead, we are interested in solving a

decision rule, or a policy function for the individual facing an offer w. Note that such policy

function is inherently equivalent to a cutoff criterion. That is, there will be a cutoff wage

such that for every w above the cutoff, the individual will accept the offer. This is just the

reservation wage we characterized previously. But again for the sake for technicality, we

should learn how to solve a dynamic program for such labor market models.

Let’s define another type of value function v(w). Previously, we define V (w) as the life-

time utility of a worker who has already accepted an offer w. In contrast, we will define v(w)

as the value of an individual facing an offer w and he is making a decision on whether he

should accept the offer. Under this scenario, if the individual accepts the offer, then his

value would be V (w) = w
1−β . If he does not accept the offer, then his value would be the

unemployment benefit for this period, b, and the discounted expected value of a wage offer
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in the future βE[v(w′)],

b+ β

∫ w̄

w

v(w′) dF (w′).

Hence, the Bellman equation of this problem is,

v(w) = max
accept, reject

{
w

1− β
, b+ β

∫ w̄

w

v(w′) dF (w′).

}

Given the Bellman equation, we should again solve for the value function and hence the

associated policy function through value function iteration. The algorithm is essentially

identical to the problems we discussed in lecture 2 and 3. You can also find a Julia code

solving a similar dynamic program in Sargent and Stachurski (2017).

3. Continuous Time Search

We now move on to study search and matching models in continuous time. The basic strat-

egy for deriving value function in continuous time, is to start with a small time interval ∆

in discrete time and takes the limit when the time interval become infinitesimally small. In

this sense, we will start with discrete time which we are comfortable with and then approach

continuous time in the limit. Before we start to study the algebra in continuous time, it is

useful to first study a basic concept called “arrival rate”.

Arrival Rate

Let’s first think about why we need an arrival rate of job offers. Suppose that we stay in the

previous environment and workers will draw a job offer in each period, say the time interval

for each period is ∆. Recall that the basic strategy for continuous time is to take the time

interval ∆ to the limit ∆→ 0. By this logic, in the limit, the individual is constantly drawing

an offer at every instant. This is clearly not realistic and it may cause many troubles in our

modeling. Hence, we want to have an environment in which the individual will only receive

a job offer from time to time, and an “arrival rate” of job offers is called for.

The standard way of modeling arrival rate is to exploit the properties of Poisson distri-

bution. Suppose that instead of drawing a job offer every period, the individual now will

draw n (which is random) job offers in each period. This changes everything because n is

can be zero, whereas in the previous environment, n is fixed at 1. In particular, we assume

that n is random and follows a Poisson distribution. Denote p(n,∆) be the probability that

an individual receives n offers in an interval of length ∆. Then, by the property of Poisson

distribution, we can write the probability in terms of some constant α, the time interval ∆,

and the number of offers n.

p(n,∆) =
(α∆)ne−α∆

n!
.
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The expected number of job offer the worker will receive in the time interval ∆ is

E[N ] =

∞∑
n=0

np(n,∆) =

∞∑
n=0

n
(α∆)ne−α∆

n!
= α∆e−α∆

∞∑
n=1

(α∆)n−1

(n− 1)!
= α∆e−α∆eα∆ = α∆.

Given that we have derived α∆ to be the expected number of job offers in time interval

∆, the natural interpretation of α is that it is the arrival rate of job offers. In Prof. Jacquet’s

lecture slides, you will encounter an alternative derivation where the average time of waiting

until the arrival of next offer is shown to be 1/α and hence the arrival rate of jobs is α. These

two approaches are essentially equivalent.

Continuous-Time Algebra

Suppose now that the discount factor between a time interval ∆ is β(∆) = 1/(1 + r∆), so

that β(∆)(1 + r∆) = 1. Then the value of unemployed is

U = b∆ +
1

1 + r∆

[
Q(0,∆)U +Q(1,∆)Emax{V (w), U}+

∞∑
n=2

p(n,∆)Emax{V (w), U}

]

⇔ (1 + r∆)U = b∆(1 + r∆) +Q(0,∆)U +Q(1,∆)Emax{V (w), U}+

∞∑
n=2

p(n,∆)Emax{V (w), U}

⇔ r∆U = b∆(1 + r∆) + [Q(0,∆)− 1]U +Q(1,∆)Emax{V (w), U}+

∞∑
n=2

p(n,∆)Emax{V (w), U}

⇔ rU = b(1 + r∆) +
Q(0,∆)− 1

∆
U +

Q(1,∆)

∆
Emax{V (w), U}+

∞∑
n=2

p(n,∆)

∆
Emax{V (w), U}

Note that as ∆ approaches 0, the followings is true,

lim
∆→0

Q(1,∆)

∆
= lim

∆→0
αe−α∆ = α; lim

∆→0

p(n,∆)

∆
= lim

∆→0

αn∆n−1e−α∆

n!
= 0, ∀n > 1.

Furthermore, since lim∆→0Q(0,∆)− 1 = 0 and lim∆→0 ∆ = 0, by L’Hôpital’s rule,

lim
∆→0

Q(0,∆)− 1

∆
= lim

∆→0

d[Q(0,∆)−1]
d∆
d∆
d∆

= lim
∆→0

d[e−α∆−1]
d∆
d∆
d∆

= lim
∆→0

−αe−α∆

1
= −α.

Hence, the expression for rU is further equivalent to the following as ∆ approaches 0,

rU = b− αU + αEmax{V (w), U} = b+ αEmax {V (w)− U, 0}

= b+ α

∫ w̄

wR

V (w)− U dF (w),
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where the value of being employed with wage w can be derived as follows,

V (w) = w∆ +
1

1 + r∆
V (w)

⇔ (1 + r∆)V (w) = (1 + r∆)∆w + V (w)

⇔ rV (w) = (1 + r∆)w

⇔ rV (w) = w, as ∆ approaches 0.

Hence, we have the continuous-time version of values of being employed and being un-

employed, or the continuous-time Bellman equations,

rU = b+ α

∫ w̄

wR

V (w)− U dF (w)

rV (w) = w.

To characterize the reservation wage wR, we need only follow the same strategy under dis-

crete time and invoke the condition that wR/r = V (wR) = U . Substituting this expression

into the value of unemployed yields the following analytical expression that characterizes

wR,

wR = b+ α

∫ w̄

wR

w − wR
r

dF (w).

4. Basic Diamond-Mortensen-Pissarides

In this section, we will study the basic algebra behind an equilibrium labor market model,

called the Diamond-Mortensen-Pissarides model (DMP), which has won the triple a shared

Nobel Prize. This model starts from the assumption that there are in total mass of v vacant

jobs and mass of u unemployed workers in the economy. The key feature of this model is

that, at any point in time, there will be a matching between some vacant jobs and unem-

ployed workers, such that the unemployed will find a job and fill the vacant position. In

particular, they assume that the number of matching is a function of the number of vacant

positions and unemployed workers, m(u, v). m(u, v) is called the matching function. It is

assumed to be CRS and increasing & concave in each of the two arguments.

Given this assumption, the probabilities for an unemployed person to find a job and for

a vacant position to be filled are

p(θ) =
m(u, v)

u
= m(1,

v

u
) ≡ m(1, θ); q(θ) =

m(u, v)

v
=
m(1, v/u)

v/u
≡ m(1, θ)

θ

where θ ≡ v
u can be interpreted as “market tightness”. These probabilities can be inter-

preted as the parameters to a Poisson process such that the probabilities that a vacant po-
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sition meets n unemployed workers, or an unemployed worker meets n vacant positions in

an interval of length ∆ are,

P (n,∆) =
(p(θ)∆)

n
e−p(θ)∆

n!

Q(n,∆) =
(q(θ)∆)

n
e−p(θ)∆

n!
.

We should also assume that a firm pay pc units of cost per unit time to maintain the opening

of a vacant position and once it is filled the productivity of the filled position (the employed

worker) is p. Furthermore, there is an exogenous rate of destruction δ, which is also a pa-

rameter to a Poisson process such that the probability of n worker-position pairs being de-

stroyed in an interval of length ∆ is Prob(n,∆) = (δ∆)ne−δ∆

n! . Denote the values of an vacant

position, a filled position, an unemployed worker, and an employed worker as J, V, U,W

respectively. Then, the value functions are

rV = −pc+ q(θ)(J − V )

rJ = p− w − δ(J − V )

rU = b+ p(θ)(W − U)

rW = w − δ(W − U).

We will derive the first continuous-time Bellman function step-by-step. The rest follows

a similar procedure. First, we know that the discrete time version of the Bellman equation

for the vacant position is,

V = −pc∆ +
1

1 + r∆

[
Q(0,∆)V +Q(1,∆)J +

∞∑
n=2

Q(n,∆)J

]

⇔ (1 + r∆)V = −pc∆(1 + r∆) +Q(0,∆)V +Q(1,∆)J +

∞∑
n=2

Q(n,∆)J

⇔ r∆V = −pc∆(1 + r∆) + [Q(0,∆)− 1]V +Q(1,∆)J +

∞∑
n=2

Q(n,∆)J

⇔ rV = −pc(1 + r∆) +
Q(0,∆)− 1

∆
V +

Q(1,∆)

∆
J +

∞∑
n=2

Q(n,∆)

∆
J

⇔ rV = −pc− q(θ)V + q(θ)J, as ∆ approaches 0

⇔ rV = −pc+ q(θ)(J − V )

5. Quickly Writing Continuous-Time Bellman Equations

This section is copied from a recitation note I wrote when I was a TA for the Macroeco-

nomics 1 course. However, only Bellman equations for the simplest continuous-time model
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has been covered in this math camp. You may want to refer back to this section again after

finishing the relevant lectures of the Macroeconomics 1 class.

Up to now we have had the following continuous-time Bellman equations. First, for the

basic model, we have

rV (w) = w

rU = b+ α

∫ w̄

wR

V (w)− U dF (w)

For models with exogenous job destruction, the Bellman equations are

rV (w) = w + δ [U − V (w)]

rU = b+ α

∫ w̄

wR

V (w)− U dF (w)

I claim that all similar Bellman equations, in the context of our labor market models, can

be written in the following way.

Flow(≡ r × Value) = Instantaneous flow + Hazard rate× Capital Change in Values

Hence, for the basic model, the continuous-time equations can be interpreted as

r · V (w)︸ ︷︷ ︸
value︸ ︷︷ ︸

flow

= w︸︷︷︸
instantaneous flow

+ No Change in State

r · U︸︷︷︸
value

= b︸︷︷︸
instantaneous flow

+ α︸︷︷︸
hazard rate

·
∫ w̄

wR

V (w)− U dF (w)︸ ︷︷ ︸
capital change in value when the event occurs

Similarly for the exogenous job destruction model, we have,

r · V (w)︸ ︷︷ ︸
value︸ ︷︷ ︸

flow

= w︸︷︷︸
instantaneous flow

+ δ︸︷︷︸
hazard rate

· [U − V (w)]︸ ︷︷ ︸
capital change in value when the event occurs

The equation for unemployment remains the same. For the models on endogenous job

destruction with quits, δ becomes the rate of wage shocks. Hence, the continuous-time
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equation for the value of employment now becomes

rV (w) = w︸︷︷︸
instantaneous flow

+ δ︸︷︷︸
hazard rate

·
∫ wR

w

U − V (w) dF (w′)︸ ︷︷ ︸
capital change in the event of endogenous quit facing the wage shockw′

+ δ︸︷︷︸
hazard rate

·
∫ w̄

wR

V (w′)− V (w) dF (w′)︸ ︷︷ ︸
capital change in the event of staying on the job despite the wage shock

The equation for the value of unemployment is more or less the same. And for the models of

on-the-job search, α0 and α1 are the rate of job offer arrivals for unemployed and employed

workers, δ is the rate of exogenous destruction. Hence, the continuous-time equation Bell-

man equation for employment with current wage w is

rV (w) = w + δ︸︷︷︸
hazard rate for exogenous job destruction

· (U − V (w))︸ ︷︷ ︸
capital change in the event of exogenous job destruction

+ α1︸︷︷︸
hazard rate for a new job offer

·
∫ w̄

w

V (w′)− V (w) dF (w′)︸ ︷︷ ︸
capital change in the event of a more lucrative job offer

Again, the equation for the value of unemployment is similar to the previous cases.
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