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1 Real Line

Definition 1. We use the following traditional notations:
Natural numbers: N = {1, 2, 3, · · · }.
Integers: Z = {· · · ,−2,−1, 0, 1, 2, · · · }.
Rational numbers: Q =

{
x|x = p

q
, p, q ∈ Z, q 6= 0

}
.

This section will review the introduction of real line as an ordered field.

Definition 2. A field is a set F with two operations, called addition and multiplication, which
satisfy the following so-call ”field axioms” (A), (M), and (D):

(A) Axioms for addition
(A1) If x ∈ F and y ∈ F , then their sum x+ y ∈ F . (Closedness for addition.)
(A2) Addition is commutative: x+ y = y + x for all x, y ∈ F .
(A3) Addition is associative: (x+ y) + z = x+ (y + z) for all x, y, z ∈ F .
(A4) F contains an element 0 such that 0 + x = x for every x ∈ F . (Existence of identity

elements.)
(A5) To every x ∈ F corresponds an element−x ∈ F such that x+(−x) = 0. (Existence

of inverse elements.)
(M) Axioms for multiplication

(M1) If x ∈ F and y ∈ F , then their product x · y ∈ F . (Closedness for multiplication.)
(M2) Multiplication is commutative: x · y = y · x for all x, y ∈ F .
(M3) Multiplication is associative: (x · y) · z = x · (y · z) for all x, y, z ∈ F .
(M4) F contains an element 1 6= 0 such that 1 ·x = x for all x ∈ F . (Existence of identity

elements.)
(M5) If x ∈ F and x 6= 0 then their exists an element 1/x ∈ F such that x · (1/x) = 1.

(Existence of inverse elements.)
(D) The distributive law
x · (y + z) = x · y + x · z holds for all x, y, z ∈ F .

Question 1. Is (N,+, ·) a field? (Z,+, ·)? (Q,+, ·)?

Definition 3. Let S be a set. An order on S is a relation, denoted by <, with the following two
properties:

(i) Completeness: If x ∈ S and y ∈ S then one and only one of the statements x < y,
x = y, y < x is true.

(ii) Transitivity: If x, y, z ∈ S, then x < y and y < z imply x < z.
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The statement x < y may be read as ”x is smaller than y”. The notation 6 indicates that
x < y or x = y, without specifying which of these two is to hold. In other words, x 6 y is the
negation of y < x.

Definition 4. An ordered set is a set S in which an order is defined.

Example 1. Q is an ordered set if r < s is defined to mean that s − r is a positive rational
number.

Definition 5. Suppose S is an ordered set, E ⊂ S. If there exists a β ∈ S such that β > x for
every x ∈ E, we say that E is bounded above, and call β an upper bound of E.

Definition 6. Suppose S is an ordered set, E ⊂ S, and E is bounded above. We call α ∈ S
the least upper bounded of E or the supremum of E if (i) α is an upper bound of E, and (ii) if
γ < α then γ is not an upper bound of E. We write γ = supE.

Theorem 1. There exists an ordered field (R,+, ·;<) which has the least-upper-bound prop-
erty: for any E ⊂ R, E is nonempty and bounded above, supE exists in R. Moreover, R
contains Q as a subfield.

Remark 1. The ordered field (Q,+, ·;<) does not satisfy the least-upper-bound property. Here
is a loose proof by providing a counter example.

Notice that any decimal number with finitely many digits after the decimal point is a rational
number. In addition, we know that

√
2 is not a rational number. Hence, written in decimal for-

mat,
√
2 must involve infinitely many digits after the decimal point:

√
2 = 1.41421356237 . . . .

Let’s define a sequence {an} such that an rounds
√
2 to its n decimal places. It’s clear

that an ∈ Q and an →
√
2 6∈ Q: rational number set does not satisfy the least-upper-bound

property.

2 Metric Space

Definition 7. A set V is said to be a metric space if with any two elements x and y of V there
is an associated real number d(x, y) ∈ R, called the distance between x and y, such that

(a) Positivity: d(x, y) > 0, with equality iff x = y.
(b) Symmetry: d(x, y) = d(y, x).
(c) Triangle Inequality: d(x, z) 6 d(x, y) + d(y, z).
Any function with these three properties is called a distance function, or a metric.

Example 2. Let V be any nonempty set. A trivial way of making V a metric space is to use the
metric d : V × V → R, which is defined by

d(x, y) =

{
1, x 6= y

0, x = y
(1)

It’s easy to check that (V, d) is indeed a metric space. Here d is called the discrete metric
on V , and (V, d) is called a discrete space.
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Example 3. Let V = Rn. Define the metric dp on V by

dp(x, y) =

(
n∑
i=1

|xi − yi|p
)1/p

for 1 6 p <∞ (2)

dp is called the p−metric on Rn. When n = 1, x and y are both scalars and dp(x, y) =

|x−y|. When p = 2, the p-metric dp on Rn is called the Euclidian metric. Accordingly, (R2, d2)

is called the n-dimensional Euclidian space. The Euclidian metric is related to the Euclidian
norm || · || through the identity d(x, y) = ||x− y||. 1

Throughout this and the following four lectures, when we refer to Rn without specifying a
metric, you should understand that we view this set as the Euclidian space.

3 Limit and Complete Metric Space

A sequence in a set S is the specification of a point xk ∈ S for each integer k ∈ {1, 2, · · · }.
The sequence is usually written as x1, x2, x3, · · · or, more compactly, simply as {xk}.

Definition 8. Let (V, d) be a metric space. A sequence of points {xk} in V is said to converge
to a limit x, denoted limk→∞ xk = x, if the distance d(xk, x) tends to zero as k goes to infinity,
i.e., if for all ε > 0, there exists an integer δ(ε) such that for all k > δ(ε), we have d(xk, x) < ε.

We investigate some properties of limits.

Theorem 2. A sequence can have at most one limit.

Proof. Let {xk} be a sequence in Rn converging to x ∈ Rn. Suppose the statement is not true,
i.e., the sequence converges also to y ∈ Rn and x 6= y.

By the definition of convergence, for any ε > 0, there exists a δ such that d(x, xk) < ε/2

and d(y, xk) < ε/2 hold at the same time for any k > δ. Then triangle inequality gives

d(x, y) 6 d(x, xk) + d(y, xk) < ε (3)

This contradicts with positivity, which gives d(x, y) > 0. (What is exactly the contradic-
tion?)

A sequence {xk} in Rn is called bounded if there exists a real number M such that ||xk|| 6
M for all k.

Theorem 3. Every convergent sequence in Rn is bounded.

1The Euclidian norm of an arbitrary x ∈ Rn, denoted ||x||, is defined as a function from Rn into R:

||x|| =

(
n∑

i=1

x2
i

)1/2

.
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Proof. Let {xk} be a sequence in Rn converging to x ∈ Rn. There exists a δ such that ||xk −
x|| < 1 for all k > δ. Let

M = max{||x1||, ||x2||, · · · , ||xδ||, ||x||+ 1}. (4)

We have ||xk|| 6M for all k. (What guarantees the existence of M?)

Theorem 4. Let {xk} be a sequence in R converging to a limit x. Suppose that for every k, we
have a 6 xk 6 b. Then we have a 6 x 6 b.

Proof. Left as an exercise.

We now discuss briefly a major property that we often consider for a metric space, the
property of completeness. A quick review of Cauchy sequences is a prerequisite for this, so
we start with that.

Definition 9. A sequence {xk} in a metric space V is called a Cauchy sequence if for any
ε > 0, there exists an M ∈ R such that d(xm, xn) < ε for all m,n >M .

Theorem 5. Let {xk} be a sequence in a metric space V .

1. If {xk} is convergent, then it is Cauchy.

2. If {xk} is Cauchy, then it is bounded, but it needs not converge in V

Proof. 1: d(xm, xn) 6 d(xm, limxk) + d(xn, limxk)→ 0 as m,n→∞.
2: Consider a counter example: let V = (0, 1], and the sequence be {1, 1

2
, 1
3
, · · · }. This

sequence is a Cauchy sequence, but it does not converge in this space.

Definition 10. A metric space V is said to be complete if every Cauchy sequence in V converges
to a point in X .

Example 4. As we have seen, the sequence {1, 1
2
, 1
3
, · · · } makes metric space (0, 1] incomplete.

Example 5. As shown in Remark 1, rational number set Q is incomplete. When the ”gaps”
between rational numbers are filled by irrational numbers, R is complete.

4 Continuity and Differentiability

Definition 11. Let S ⊂ Rn and T ⊂ Rl. Then, f : S → T is said to be continuous at x ∈ S if
for all sequences {xk} in S such that limk→∞ xk = x, we have limk→∞ f(xk) = f(x).

The function f : S → T is said to be continuous on S if it is continuous at all points in S.

Definition 12. Let S ⊂ Rn and T ⊂ Rl. Then, f : S → T is said to be differentiable at a point
x ∈ S if there exists an l × n matrix A such that for all ε > 0, there is δ > 0 such that t ∈ S
and ||t− x|| < δ implies ||f(t)− f(x)− A(t− x)|| < ε||t− x||.

Equivalently, f is differentiable at x ∈ S if

lim
t→x

(
||f(t)− f(x)− A(t− x)||

||t− x||

)
= 0.
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The matrix A in this case is called the derivative of f at x, and is denoted Df(x). If f is
differentiable at all points in S, then f is said to be differentiable on S. When f is differentiable
on S, the derivative Df itself forms a function from S to Rl×n. If Df : S → Rl×n is a
continuous function, then f is said to be continuously differentiable on S, and we call f is C1.

The difference between differentiability and continuous differentiability is non-trivial. The
following example shows that a function may be differentiable everywhere, but may still not be
continuously differentiable.

Example 6. Let f : R→ R be given by

f(x) =

{
0, if x = 0

x2sin(1/x2), if x 6= 0
(5)

For x 6= 0, we have

f ′(x) = 2x sin

(
1

x2

)
−
(
2

x

)
cos

(
1

x2

)
(6)

Since | sin(·)| 6 1 and | cos(·)| 6 1, but (2/x) → ∞ as x → 0, it is clear that the limit as
x→ 0 of f ′(x) is not well defined. However, f ′(0) does exist! Indeed,

f ′(0) = lim
x→0

(
f(x)− f(0)

x− 0

)
= lim

x→0
x sin

(
1

x2

)
(7)

Since | sin(1/x2)| 6 1, we have |x sin(1/x2)| 6 |x|, so x sin(1/x2)→ 0 as x→ 0. This means
f ′(0) = 0. Thus, f is not C1.

Most of functions in economics are continuous. In addition, most of them are real-valued,
say utility functions and cost functions. Characterizing real-valued continuous function is hence
of special interest for us. The intermediate value theorem gives part of the characterization.

Theorem 6. (Intermediate Value Theorem) Let D = [a, b] be an interval in R and let f : D →
R be a continuous function. If f(a) < f(b), and if c is a real number such that f(a) < c < f(b),
then there exists x ∈ (a, b) such that f(x) = c. A similar statement holds if f(a) > f(b).

Remark 2. It might appear at first glance that the intermediate value theorem actually char-
acterize continuous functions, i.e., that a function f : [a, b] → R is continuous if and only if
for any two points x1 < x2 and for any real number c lying between f(x1) and f(x2), there is
x ∈ (x1, x2) such that f(x) = c. The intermediate value theorem shows that the ”only if” part
is true. It is left as an exercise to show that the converse, namely the ”if” part, is actually false.

Theorem 7. Intermediate Value Theorem for the Derivative Let D = [a, b] be an interval in
R, and let f : D → R be a function that is differentiable everywhere on D. If, and if c is a real
number such hat f ′(a) < c < f ′(b), then there is a point x ∈ (a, b) such that f ′(c). A similar
statement holds if f ′(b) < f ′(a).

It is very important to emphasize that the above Theorem does no assume that f is C1. In-
deed, if f wereC1, the result would be a trivial consequence of the Intermediate Value Theorem,
since the derivative function f ′ would be a continuous function on [a, b].
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Figure 1: The Intermediate Value Theorem

Theorem 8. (Intermediate Value Theorem in Rn) Let D ⊂ Rn be a convex set, and let f :

D → R be continuous on D. Suppose that a and b are points in D such that f(a) < f(b).
Then, for any c such that f(a) < c < f(b), there is λ̂ ∈ (0, 1) such that f((1− λ̂)a+ λ̂b) = c.

5 Implicit Function Theorem

Theorem 9. (Implicit Function Theorem) Let F : S ⊂ Rm+n → Rn be aC1 function, where S
is open. Let (x∗, y∗) ∈ S such that DFy(x∗, y∗) is invertible, and let F (x∗, y∗) = c. Then, there
is a neighborhood U ⊂ Rm of x∗ and a C1 function g : U → Rn such that (i) (x, g(x)) ∈ S for
all x ∈ U , (ii) g(x∗) = y∗, and (iii) F (x, g(x)) ≡ c for all x ∈ U . The derivative of g at any
x ∈ U may be ontained from the chain rule:

Dg(x) = −(DFy(x, y))−1 ·DFx(x, y). (8)

Let m = n = 1 and F (x, y) = c on a neighborhood of (x∗, y∗), the total derivative is
∂F
∂x
(x, y) · dx+ ∂F

∂y
(x, y) · dy = 0. Then we have y′(x) = −∂F/∂x

∂F/∂y
(x, y).

6 Weierstrass’ Extreme Value Theorem

Theorem 10. Weierstrass’ Extreme Value Theorem Let D ⊂ Rn be compact, and let f : D →
R be a continuous function on D. Then f attains a maximum and minimum on D.

Example 7. Let D = R, and f(x) = x3 for all x ∈ R. Then f is continuous, but D is not
compact (it is closed, but not bounded). It’s clear that f attains neither a maximum nor a
minimum.
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Example 8. Let D = (0, 1) and f(x) = x for all x ∈ (0, 1). Then f is continuous, but D is
again noncompact (it is bounded, but not closed). Again, f attains neither a maximum nor a
minimum.

Example 9. Let D = [0, 1], and let f be given by

f(x) =

{
x, if − 1 < x < 1

0, otherwise
(9)

Note that D is compact, but f fails to be continuous at just two points -1 and 1. In this
case, f(D) is the open interval (−1, 1); consequently, f fails to attain either a maximum or a
minimum on D.

Example 10. Let D = (0,∞), and let f : D → R be defined by

f(x) =

{
1, ifx ∈ Q
0, otherwise

(10)

Then D is not compact (it is neither bounded nor closed), and f is discontinuous at every
point in D. Nonetheless, f attains a maximum (at every rational number) and a minimum (at
every irrational number).

Example 11. Consider the utility maximization problem

max u(x)

s.t. x ∈ {x ∈ Rn
+|p · x 6 I}

(11)

where p = {p1, · · · , pn} � 0 is a price vector and I > 0 denotes the income available for
consumption.

Throughout the example, the utility function u : Rn
+ → R is assumed to be continuous on its

domain. Then according to Weierstrass’ Extreme Value Theorem, a solution to the maximization
problem exists as long as the budget set B(p, I) ≡ {x ∈ Rn

+|p · x 6 I} is compact.
First, B(p, I) being bounded is evident. (Verify!) The remaining is to check closedness.

Suppose not, i.e., there exists a sequence {xk} in B(p, I) converging to x 6∈ B(p, I). Given
x > 0, x 6∈ B(p, I) implies p · x > I . Then there exists ε > 0 such that ||xk − x|| < ε and
p · xk > I: contradiction.

Example 12. Consider a problem of identifying a social optimal division of a given quantity of
resources between two agents.

max αu1(x1) + (1− α)u(x2)
s.t. (x1, x2) ∈ F (w)

(12)

where f(w) ≡ {(x1, x2) ∈ Rn
+×Rn

+|x1 + x2 = w} represents the set of possible divisions, and
ui is agent i’s utility function, i = 1, 2.
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The parameters of this problem are α ∈ (0, 1) and w ∈ Rn
+. It’s easy to see that F (w)

is compact for any w ∈ Rn
+. Moreover, the weighted utility function αu1(x1) + (1 − α)u(x2)

is continuous as a function of (x1, x2) whenever the underlying utility functions u1 and u2 are
continuous on Rn

+. Thus provided only that the utility functions u1 and u2 are continuous, the
Weierstrass’s Theorem assures us of the existence of a solution to this division problem.

Proof: (Weierstrass’ Extreme Value Theorem).

Lemma 1. If f : D → R is continuous on D, and D is compact, then f(D) is also compact.

Proof. Pick any sequence {yk} in f(D). The lemma will be proved if we can show that {yk}
has a convergent subsequence, which converges to a point y ∈ f(D).

For each yk, there must be a xk ∈ D such that yk = f(xk). Since D is compact, there must
be a convergent subsequence xm(k) such that limk→∞ xm(k) = x and x ∈ D. Then f being
continuous implies that limxm(k)→x f(xm(k)) = f(x). Let f(xm(k)) = ym(k) and f(x) = y, we
have limk→∞ ym(k) = y and y ∈ f(D).

Lemma 2. IfA ⊂ R is compact, then supA ∈ A and inf A ∈ A, so the maximum and minimum
of A are well defined.

Proof. SinceA is bounded, supA ∈ R. For k = 1, 2, · · · , letNk represent the interval (supA−
1
k
, supA], and let Ak = Nk ∩ A. Then Ak must be nonempty for each k. Pick any point from
Ak, and label it xk.

We claim that xk → supA as k →∞. This follows simply from the observation that since
xk ∈ (supA − 1

k
, supA] for each k, it must be the case that d(xk, supA) < 1

k
. Therefore,

d(xk, supA)→ 0 with k, establishing the claim.
But xk ∈ Ak ⊂ A for each k, and A is a closed set, so the limit of the sequence {xk} must

be on A, establishing one part of the result. The other part of the result, inf A ∈ A, can be
established analogously.

Then the theorem is an immediate consequence of these lemmata.

7 Exercise

1. Verify that the discrete metric is well-defined.

2. Verify that the p−metric on Rn is well-defined. (Hint: refer to the famous Minkowski’s
inequality.)

3. Check ”||xk|| 6M for all k” in the proof of Theorem 3.

4. Prove: The Euclidian metric d2 is continuous on Rn.

8



5. Show that the converse of the intermediate value theorem is false.

Answer Consider the function f : [0, 2]→ R defined by

f(x) =


10, x = 0
1
x
, 0 < x 6 1

2− x, 1 < x 6 2

(13)

For any two points x1 < x2 and for any real number c lying between f(x1) and f(x2),
there is x ∈ (x1, x2) such that f(x) = c. But f is not continuous at x = 0.

6. Prove Theorem 4.

Answer If a = b, {xk} is a constant sequence. Hence x = a = b. If instead a < b, we
prove a 6 x. (The same argument gives x 6 b.) Suppose x < a, we have ε ≡ a− x > 0.
Then there exist infinitely many xk such that |xk − x| < ε. Then xk < a: contradiction.

7. Show that it is possible for two functions f : R→ R and g : R→ R to be discontinuous,
but for their product f · g to be continuous. What about their composition f ◦ g?

8. A consumer, who lives for two periods, has the utility function v(c(1), c(2)), where c(t) ∈
Rn denotes the consumer’s consumption bundle in period t, t = 1, 2. The price vector in
period t is given by p(t) ∈ Rn

+, p(t) = (p1(t), · · · , pn(t)). The consumer has an initial
wealth of W0, but has no other income. Any amount not spent in the first period can be
saved and used for the second period. Savings earn interest at a rate r > 0. (Thus, a dollar
saved in period 1 becomes (1 + r) in period 2.)

(a) Assume the usual nonnegativity constraints on consumption and set up the con-
sumer’s utility-maximization problem.

(b) Show that the feasible set in this problem is compact if and only if p(1) � 0 and
p(2)� 0.

9. A fishery earns a profit of π(x) from catching and selling x units of fish. The firm owns
a pool which currently has y1 fish in it. If x ∈ [0, y1] fish are caught this period, the
remaining i = y1 − x fish will frow to f(i) fish by the begining of the next period, where
f : R+ → R+ is the growth function for the fish population. The fishery wishes to set
the volume of its catch in each of the next three periods so as to maximize the sum of its
profits over this horizon. That is, it solves:

maxπ(x1) + π(x2) + π(x3)

s.t.x1 6 y1

x2 6 y2 = f(y1 − x1)
x3 6 y3 = f(y2 − x2)

(14)

and the nonnegativity constraints that xt > 0, t = 1, 2, 3.
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Show that if π and f are continuous on R+, then he Weierstrass’ Theorem may be used
to prove that a solution exists to this problem. (This is immediate if one can show that the
continuity of f implies the compactness of the set of feasible triples (x1, x2, x3).)
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Lecture 2: Separation Theorems and Unconstrained
Optimization

Liu Peng
August 3, 2015

1 Separation Theorems

Definition 1. Let p 6= 0 be a vector in Rn, and let a ∈ R. The set H defined by

H = {x ∈ Rn|p · x = a} (1)

is called a hyperplane in Rn, and will be denoted H(p, a).

Example 1. A hyperplane in R2 is simply a straight line: if p ∈ R2 and a ∈ R, the hyperplane
H(p, a) is simply the set of points (x1, x2) that satisfy p1x1 + p2x2 = a. Similarly, a hyperplane
in R3 is a plane.

Definition 2. Two sets D and E are said to be separated by the hyperplane H(p, a) in Rn if D
and E lie on the opposite sides of H(p, a), i.e., if we have

p · y 6 a, for all y ∈ D
p · z > a, for all z ∈ E

(2)

Figure 1: Separating hyperplane in R2.

Theorem 1 gives sufficient conditions for separating a point from a set.

Theorem 1. Let D be a nonempty convex set in Rn, and let x∗ be a point in Rn that is not in D.
Then, there is a hyperplane H(p, a) in Rn with p 6= 0 which separates D and x∗. We may, if we
desire, choose p to also satisfy ||p|| = 1.
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Figure 2: Being convex is a sufficient condition.

Proof. We prove the result for the case where D is closed. (For the case where D is open, refer
to Sundaram(1996).)

Let B̄(x∗, r) = {x ∈ Rn s.t. ||x− x∗|| 6 r}, i.e., B̄(x∗, r) is the closed ball with center x∗

and radius r. Pick r sufficiently large so that Y = B̄(x∗, r)∩D is nonempty. Since B̄(x∗, r) and
D are both closed, so is Y . Since B̄(x∗, r) is bounded and Y ⊂ B̄(x∗, r), Y is also bounded.
Therefore Y is compact. The metric function f : Y → R defined by f(y) = d2(x

∗, y) is clearly
continuous on Y since the metric function d2 is continuous. Thus, by the Weierstrass’ Theorem,
there exists a minimum y∗ on Y , i.e., there exists y∗ in Y such that

d2(x
∗, y∗) 6 d2(x

∗, y), for all y ∈ Y. (3)

If y ∈ D\Y , then we have y 6∈ B̄(x∗, r) and hence d2(x∗, y) > r. While, d2(x∗, y∗) 6 r.
Therefore, we have

d2(x
∗, y∗) 6 d2(x

∗, y), for all y ∈ D. (4)

Let p = y∗ − x∗ and let a = p · y∗. We will show that the hyperplane separates D and x∗.
Notice first that

p · x∗ = (y∗ − x∗) · x∗

= −(y∗ − x∗) · (y∗ − x∗) + y∗ · (y∗ − x∗)
= −||p||2 + a < a

(5)

Next we show p · y > a for all y ∈ D. Given arbitrary y ∈ D, since D is convex, it is the
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Figure 3: Proof of separating theorem when the set is closed.

case that for all λ ∈ (0, 1), the point y(λ) = λy + (1− λ)y∗ is also in D. Then we have

d2(x
∗, y∗) 6 d2(x

∗, y(λ))

⇔ ||x∗ − y∗||2 6 ||x∗ − y(λ)||2

= ||x∗ − λy − (1− λ)y∗||2

= ||λ(x∗ − y) + (1− λ)(x∗ − y∗)||2

= λ2||x∗ − y||2 + 2λ(1− λ)(x∗ − y) · (x∗ − y∗)
+ (1− λ)2||x∗ − y∗||2.

(6)

Rearranging terms, this gives us

0 6 λ2||x∗ − y||2 + 2λ(1− λ)(x∗ − y) · (x∗ − y∗)− λ(2− λ)||x∗ − y∗||2. (7)

Dividing both sides by λ > 0, we get

0 6 λ||x∗ − y||2 + 2(1− λ)(x∗ − y) · (x∗ − y∗)− (2− λ)||x∗ − y∗||2. (8)

Taking limit as λ→ 0 and dividing the result by 2, we have

0 6 (x∗ − y) · (x∗ − y∗)− ||x∗ − y∗||2

= (x∗ − y∗) · (x∗ − y − x∗ + y∗)

= (x∗ − y∗) · (x∗ − y).

(9)

Rearranging terms again, we have what we want

p · y = (y∗ − x∗) · y > (y∗ − x∗) · y∗ = a. (10)

Thus, we have shown that there is a hyperplane H(p, a) that separates D and x∗ when D is
closed.
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It remains to be shown that we may, without loss of generality, take ||p|| to be unity. Suppose
||p|| 6= 1. We will show the existence of (p̃, ã) such that H(p̃, ã) also separates D and x∗, which
further satisfies ||p̃|| = 1. Since p 6= 0, we have ||p|| > 0. Define p̃ = p/||p|| and ã = a/||p||.
Then we have ||p̃|| = 1 and

p̃ · x∗ =
p · x∗

||p||
<

a

||p||
= ã

p̃ · y =
p · y
||p||

>
a

||p||
= ã

(11)

for all y ∈ D. This completes the proof of the theorem for the case where D is closed.

We can easily generate the above theorem to the case where two sets are separated.

Theorem 2. Let D and E be convex sets in Rn such that D ∩ E = ∅. Then, there exists a
hyperplane H(p, a) in Rn which separates D and E. We may, if we desire, choose p to also
satisfy ||p|| = 1.

2 Unconstrained Optimization

We now turn to a study of optimization theory under assumption of differentiability. Our
principal objective here is to identify necessary conditions that the derivative of f must satisfy
at an optimum.

Consider a real-valued function f : D ⊂ Rn → R. We define the interior of D by

intD = {x ∈ D| there is r > 0 such that B(x, r) ⊂ D}. (12)

A point x where f achieves a maximum will be called an unconstrained maximum of f if
x ∈ intD. Unconstrained minima are defined analogously.

One observation is important before proceeding to the analysis. The concepts of maxima
and minima are global concepts, i.e., they involve comparisons between the value of f at a
particular point x and all other feasible points z ∈ D. On the other hand, the differentiability is
a local property: the derivative of f at a point x tells us something about the behavior of f in a
neighborhood of x, but nothing at all about the behavior of f elsewhere on D. This observation
motivates the following definitions.

Definition 3. A point x ∈ D is a local maximum of f on D if there is r > 0 such that
f(x) > f(y) for all y ∈ D ∩B(x, r).

A point x ∈ D is an unconstrained local maximum of f on D if there is r > 0 such that
B(x, r) ⊂ D, and f(x) > f(y) for all y ∈ B(x, r).

2.1 First-Order Condition

Theorem 3. Suppose x∗ ∈ D is an unconstrained local maximum of f on D and f is differen-
tiable at x∗. Then Df(x∗) = 0. The same result is true if, instead, x∗ is an unconstrained local
minimum of f on D

4



Figure 4: Global and Local Optima

Proof. See Sundaram (1996), section 4.5.

Example 2. Let D = R, and let f : R → R be given by f(x) = x3 for all x ∈ R. Then, we
have f ′(0) = 0, but 0 is neither a local maximum nor a local minimum of f on R. This is an
example to show that the Theorem 3 provides only a necessary condition rather than a sufficient
condition.

2.2 Second-Order Conditions

The first-order conditions for unconstrained local optima do not distinguish between max-
ima and minima. To obtain such a distinction in the behavior of f at an optimum, we need
to examine the behavior of the second derivative D2f . Usually, we call the points satisfying
Df(x) = 0 critical points.

A preliminary definition first: A local maximum x of f on D is called a strict local maxi-
mum if there is r > 0 such that f(x) > f(y) for all y ∈ B(x, r) ∩D, y 6= x.

Theorem 4. Suppose f is a C2 function on D, and x is an interior point.

1. If f has a local maximum at x, then D2f(x) is negative semidefinite.

2. If f has a local minimum at x, then D2f(x) is positive semidefinite.

3. If Df(x) = 0 and Df (x) is negative definite at some x, then x is a strict local maximum.

4. If Df(x) = 0 and Df (x) is positive definite at some x, then x is a strict local minimum.

Proof. See Sundaram (1996), section 4.6.
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Notice that, as necessary conditions, part 1 and 2 identify only semidefiniteness of D2f at
the optimal points. But the sufficient conditions, part 3 and 4, require definiteness. Two natural
questions could be: Can we strengthen the part 1 and 2 by identifying definiteness? and Can
we strengthen the part 3 and 4 by requiring only semidefiniteness? The following two examples
answer the questions negatively.

Example 3. Let D = R and let f : R → R and g : R → R be defined by f(x) = x4 and
g(x) = −x4, respectively. Since x4 > 0 everywhere, and f(0) = g(0) = 0, it is clear that 0 is a
global minimum of f , and a global maximum of g. However, f ′′(0) = g′′(0) = 0, so viewed as
1 × 1 matrices, f ′′(0) is positive semidefinite, but not positive definite, while g′′(0) is negative
semidefinite, but not negative definite.

Example 4. Let D = R and let f : R → R be given by f(x) = x3. Then f ′(x) = 3x2

and f ′′(x) = 6x, so f ′(0) = f ′′(0) = 0. Thus, viewed as a 1 × 1 matrix, f ′′(0) is both
positive semidefinite and negative semidefinite. If part 3 and 4 of Theorem 4 requires only
semidefiniteness, f ′′(0) will pass boh tests; however, 0 is neither a local maximum nor a local
minimum.

2.3 Using the First- and Second-Order Conditions

In application, we usually use first-order necessary conditions to identify all candidates for
local optima and use the second-order sufficient conditions to check them one by one in order
to decide which ones are local maxima, which ones are local minima, and which ones can not
be justified to be local optima.

But notice that the usefulness of Theorems 3 and 4 is limited for at least two reasons. First,
the conditions apply to only interior points. In many applications, optima happen on the bound-
aries. Second, using Theorems 3 and 4 gives only local optima rather tan global optima. The
latter should be our final target.

The following two examples are used to show limitations of Theorems 3 and 4.

Example 5. Consider the problem of maximizing f(x) = 4x3−5x2+2x over the interval [0, 1].
Since [0, 1] is compact, and f is continuous on this interval, the Weierstrass’ Theorem shows
that f has a maximum on this interval. There are two possibilities: either the maximum occurs
at one of the boundary points 0 or 1, or it is an unconstrained maximum. In the latter case, it
must meet the first-order conditions: f ′(x) = 12x2 − 10x+ 2 = 0. The only points that satisfy
this condition are x = 1/2 and x = 1/3. Evaluating f at the four points 0, 1/3, 1/2, and 1
shows that x = 1 is the point where f is maximized on [0, 1].

Example 6. Let D = R, and let f : D → R be given by f(x) = 2x− 3x2. It is easily checked
that f is a C2 function on R, and that there are precisely two points at which f ′(x) = 0:
namely, at x = 0 and x = 1. Invoking the second-order conditions, we get f ′′(0) = −6,
while f ′′(0) = 6. Thus, the point 0 is a strict local maximum, while the point 1 is a strict local
minimum.

However, there is nothing in the first- or second-order conditions that will help determine
whether these points are global optima. In fact,they are not: global optima do not exist in this
problem, since limx→+∞ f(x) = +∞ and limx→−∞ f(x) = −∞.
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3 Exercise

1. Find and classify all critical points(local minimum, local maximum, neither) of each of
the following functions. Are any of the local optima also global optima?

(a) f(x, y) = 2x3 + xy2 + 5x2 + y2.

(b) f(x, y) = e2x(x+ y2 + 2y).

(c) f(x, y) = xy(a− x− y).

(d) f(x, y) = x sin y.

(e) f(x, y) = x4 + x2y2 − y.

(f) f(x, y) = x4 + y4 − x3.

(g) f(x, y) = x
1+x2+y2

.

(h) f(x, y) = (x4/32) + x2y2 − x− y2.
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Lecture 3: Equality Constraints and the Theorem
of Lagrange

Liu Peng
August 13, 2015

1 Constrained Optimization Problems

Many problems of interest in economic theory can be written in the form

max f(x)

s.t. x ∈ D
(1)

Where D = U ∩ {x ∈ Rn|g(x) = 0, h(x) > 0}, U ⊂ Rn is open, g : Rn → Rk, and
h : Rn → Rl.

We call functions g = (g1, · · · , gk) equality constraints and functions h = (h1, · · · , hl)
inequality constraints. In this lecture, we study the case where all the constraints are equality
constraints, i.e., where the constraint set D can be represented as

D = U ∩ {x ∈ Rn|g(x) = 0}. (2)

2 First-Order Conditions and the Theorem of Lagrange

The Theorem of Lagrange provides a powerful characterization of local optima of equality-
constrained optimization problems in terms of the behavior of the objective function f and the
constraint functions g at these points. The conditions the theorem describes may be viewed as
the first-order necessary conditions for local optima in these problems.

Theorem 1. The Theorem of Lagrange Let f : Rn → R, and gi : Rn → Rk be C1 functions,
i = 1, · · · , k. Suppose x∗ is a local maximum or minimum of f on the set D = U ∩ {x ∈
Rn|g(x) = 0}, where U ⊂ Rn is open. Suppose also that the rank r(Dg(x∗)) = k. Then, there
exists a vector λ∗ = (λ∗1, · · · , λ∗k) ∈ Rk such that

Df(x∗) +
k∑

i=1

λ∗iDgi(x
∗) = 0. (3)

It must be stressed that the Theorem of Lagrange only provides necessary conditions for lo-
cal optima x∗, and only for those local optima x∗ which also meet the condition that r(Dg(x∗)) =
k. 1 The next example shows clearly that these conditions are not sufficient, even if x meets the
rank condition.

1A point satisfying this rank condition is usually called a non-degenerated point.
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Example 1. Let f and g be functions on R2 defined by f(x, y) = x3 + y3 and g(x, y) = x− y.
Consider the equality-constrained optimization problem of maximizing and minimizing f(x, y)
over the set D = {(x, y) ∈ R2|g(x, y) = 0}.

Let (x∗, y∗) be the point (0, 0), and let λ∗ = 0. Then, g(x∗, y∗) = 0, so (x∗, y∗) is a
feasible point. Moreover, since Dg(x, y) = [1,−1] for any (x, y), it is clearly the case that
r(Dg(x, y)) = 1. Finally, since Df(x, y) = [3x2, 3y2], we have

Df(x∗, y∗) + λ∗Dg(x∗, y∗) = (0, 0) + 0 · (1, 1) = (0, 0). (4)

Thus, if the conditions of the Theorem of Lagrange were also sufficient, then (x∗, y∗) would
be either a local maximum of a local minimum of f on D. It is, quite evidently, neither. For
every ε > 0, we have (−ε,−ε) ∈ D and f(−ε,−ε) = −2ε3 < 0 = f(x∗, y∗); (ε, ε) ∈ D and
f(−ε,−ε) = 2ε3 > 0 = f(x∗, y∗).

Proof. (Theorem of Lagrange) Assume, without loss of generality, that the k × k submatrix of
Dg(x∗) that has full rank is the k×k submatrix consisting of the first k rows and k columns. In
addition, we will denote the first k coordinates of a vector x by w and the last n− k coordinates
by z, i.e., we write x = (w, z). In this notation, we are given the data that (w∗, z∗) is a local
maximum of f on D = U ∩{(w, z) ∈ Rn|g(w, z) = 0} and that r(Dg(w∗, z∗)) = k. We are to
prove that there exists λ∗ such that

Dfw(w
∗, z∗) + λ∗Dgw(w

∗, z∗) = 0

Dfz(w
∗, z∗) + λ∗Dgz(w

∗, z∗) = 0
(5)

Since r(Dg(w∗, z∗)) = k, the Implicit Function Theorem shows that there exists an open
set V in Rn−k containing z∗, and a C1 function h : V → Rk such that h(z∗) = w∗ and
g(h(z), z) ≡ 0 for all z ∈ V . Differentiating the identity g(h(z), z) ≡ 0 with respect to z by
using chain rule, we ontain

Dgw(h(z), z)Dh(z) +Dgz(h(z), z) = 0. (6)

At z = z∗, we have h(z∗) = w∗. Since Dgw(w∗, z∗) is invertible, we have

Dh(z∗) = −[Dgw(w∗, z∗)]−1Dgz(w∗, z∗). (7)

Now define
λ∗ = −Dfw(w∗, z∗)[Dgw(w∗, z∗)]−1. (8)

We will show that λ∗ defined in this way meets the required conditions. Indeed, it follows from
the definition of λ∗ that

λ∗Dgw(w
∗, z∗) = −Dfw(w∗, z∗)[Dgw(w∗, z∗)]−1Dgw(w∗, z∗)

= −Dfw(w∗, z∗),
(9)

which is the same as
Dfw(w

∗, z∗) + λ∗Dgw(w
∗, z∗) = 0. (10)
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Thus it remains to show that

Dfz(w
∗, z∗) + λ∗Dgz(w

∗, z∗) = 0. (11)

Define a function F : V → R by F (z) = f(h(z), z). Since f has a local maximum at
(w∗, z∗), it is clear that F has a local maximum at z∗. Since V is an open set, z∗ is an un-
constrained local maximum of F , and the first-order conditions for an unconstrained maximum
imply that DF (z∗) = 0, which is

Dfw(w
∗, z∗)Dh(z∗) +Dfz(w

∗, z∗) = 0. (12)

Substituting for Dh(z∗), we obtain

−Dfw(w∗, z∗)[Dgw(w∗, z∗)]−1Dgz(w∗, z∗) +Dfz(w
∗, z∗) = 0, (13)

which, according to definition of λ∗, is the same as

Dfz(w
∗, z∗) + λ∗Dgz(w

∗, z∗) = 0. (14)

2.1 The Constraint Qualification

The condition in the Theorem of Lagrange that the rank of Dg(x∗) be equal to the number
of constraints k is called the constraint qualification under equality constraints. It plays a
central role in the proof of the theorem; essentially, it ensures thatDg(x∗) contains an invertible
k × k submatrix, which may be used to define the vector λ∗.

More importantly, it turns out to be the case that if the constraint qualification is violated,
then the conclusions of the theorem may also fail. That is, if x∗ is a local optimum at which

r(Dg(x∗)) < k, then there need not exist a vector λ∗ such thatDf(x∗)+
k∑

i=1

λ∗iDgi(x
∗) = 0. The

following example, which involves seemingly well-behaved objective and constraint functions,
illustrates this point.

Example 2. Let f : R2 → R and g : R2 → R be given by f(x, y) = −y, and g(x, y) = y3−x2,
respectively. Consider the equality-constrained optimization problem

max f(x, y)

s.t. (x, y) ∈ D = {(x, y) ∈ R2|g(x, y) = 0}.
(15)

Since x2 > 0 for any real number x, and the constraint requires that y3 = x2, we must have
y > 0 for any (x, y) ∈ D; moreover, y = 0 if and only if x = 0. It easily follows that f attains
a unique global maximum on D at the origin (x, y) = (0, 0), so r(Dg(0, 0)) = 0 < 1. Thus,
the constraint qualification is violated. Moreover, Df(x, y) = (0,−1) at any (x, y), which
means that there cannot exist any λ ∈ R such that Df(0, 0) + λDg(0, 0) = (0, 0). Thus, the
conclusions of the Theorem of Lagrange also fail.
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2.2 The Lagrangean Multipliers

The vector λ∗ = (λ∗1, · · · , λ∗k) described in the Theorem of Lagrange is called the vector of
Lagrangean Multipliers according to the local optimum x∗. The i-th multiplier λ∗i measures,
in a sense, the sensitivity of the value of the objective function at x∗ to a small relaxation of the
i-th constraint gi. We demonstrate this interpretation of λ∗ under some assumptions designed to
simplify the exposition.

We begin with a clarification of the notion of the ”relaxation” of a constraint. To this end, we
will suppose in the rest of this subsection that he constraint function g are given in parametric
form as

g(x; c) = g(x) + c, (16)

where c = (c1, · · · , ck) is a vector of constants. This assumption enables a formal definition of
the concept we need: a relaxation of the i-th constraint may now be thought of as an increase in
the value of the constant ci.

Now let C be some open set of feasible values of c. Suppose that for each c ∈ C, there is a
global optimum, denoted x∗(c), of f on the constrained set

D = U ∩ {x ∈ Rn|g(x; c) = 0}. (17)

Suppose further that, for each c ∈ C, the constraint qualification holds at x∗(c), so there exists
λ∗(c) ∈ Rk such that

Df(x∗(c)) +
k∑

i=1

λ∗iDgi(x
∗(c)) = 0. (18)

Finally, suppose that x∗(·) is a differentiable function on C, that is, that the optimum changes
smoothly with changes in the underlying parameters. Let

F (c) = f(x∗(c)) (19)

be the value of the objective function at the optimum given the parameter c. Since f is C1 and
x∗(·) has been assumed to be differentiable on C, F (·) is also differentiable on C. We will show
that

DF (c) = λ∗(c), (20)

that is, that ∂F (c)/∂ci = λ∗i . In words, this states precisely that λ∗i represents the sensitivity of
the objective function at x∗ to a small relaxation in the i-th constraint.

First, note that from the definition of F (·), we have

DF (c) = Df(x∗(c))Dx∗(c), (21)

where Dx∗(c) is the n× k matrix whose (i, j)-th entry is ∂x∗i (c)/∂cj . By the first-order condi-
tion at each c, we also have

Df(x∗(c)) = −
k∑

i=1

λ∗i (c)Dgi(x
∗(c)). (22)
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By combining the last two expressions, we obtain

DF (c) = −

(
k∑

i=1

λ∗i (c)Dgi(x
∗(c))

)
Dx∗(c) = −

k∑
i=1

λ∗i (c)Dgi(x
∗(c))Dx∗(c). (23)

Since x∗(c) must be feasible at all c, it must be identically be true for each i and for all c that
gi(x

∗(c)) + ci = 0. Differentiating with respect to c, and rearranging, we obtain

Dgi(x
∗(c))Dx∗(c) = −ei, (24)

where ei is the i-th unit vector in Rk, that is, the vector that has a 1 in the i-th place and zeros
elsewhere. It follows that

DF (c) = −
k∑

i=1

λ∗i (c)(−ei) = λ∗(c), (25)

and the proof is complete.
An economic interpretation of the result we have just derived bears mention. Since λ∗(c) =

∂f(x∗(c))/∂c, a small relaxation in constraint i will raise the maximized value of the objective
function by λ∗i (c). Therefore, λ∗i (c) also represents the maximum amount the decision-maker
will be willing to pay for a marginal relaxation of constraint i, and is the marginal value or
the ”shadow price” of constraint i at c.

3 Second-Order Conditions

The Theorem of Lagrange gives us the first-order conditions for optimization problems with
equality constraints. In this section, we describe second-order conditions for such problems.
We will assume in this section that f and g are both C2 functions. The following notation will
come in handy: given any λ ∈ Rk define the function L : Rn → R by

L(x, λ) = f(x) +
k∑

i=1

λigi(x). (26)

Note that the second derivative D2L(x, λ) of L(x, λ) with respect to x is the n × n matrix
defined by

D2L(x, λ) = D2f(x) +
k∑

i=1

λiD
2gi(x). (27)

Since f and g are both C2 functions of x, so is L(·, λ) for any λ ∈ Rk. Thus, D2L(x, λ) is a
symmetric matrix and defines a quadratic form on Rn.

Theorem 2. Suppose there exist points x∗ ∈ D and λ∗ ∈ Rk such that r(Dg(x∗)) = k, and

Df(x∗) +
k∑

i=1

λ∗iDgi(x
∗) = 0. Define

Z(x∗) = {z ∈ Rn|Dg(x∗)z = 0}, (28)

and let D2L∗ denote the n× n matrix D2L(x∗, λ∗) = D2f(x∗) +
k∑

i=1

λ∗iD
2gi(x

∗).
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1. If f has a local maximum on D at x∗, then z′D2L∗z 6 0 for all z ∈ Z(x∗).

2. If f has a local minimum on D at x∗, then z′D2L∗z > 0 for all z ∈ Z(x∗).

3. If z′D2L∗z < 0 for all z ∈ Z(x∗) with z 6= 0, then x∗ is a strict local maximum of f on
D.

4. If z′D2L∗z > 0 for all z ∈ Z(x∗) with z 6= 0, then x∗ is a strict local minimum of f on
D.

Proof. See Sundaram (1996), section 5.7.

4 A ”Cookbook” Procedure with an Example in Consumer
Theory

Let an equality-constrained optimization problem of the form

max f(x)

s.t. x ∈ D
(29)

Where D = U ∩ {x ∈ Rn|g(x) = 0}, U ⊂ Rn is open, g : Rn → Rk. Assume that functions f
and g are both C1. We describe here a ”cookbook” procedure for using Theorem of Lagrange
to solve this maximization problem. This procedure, usually called the Lagrangean method,
involves three steps.

In the first step, we set up a function L : D × Rk → R, called the Lagrangean, defined by

L(x, λ) = f(x) +
k∑

i=1

λigi(x). (30)

The vector λ = (λ1, · · · , λk) is called the vector of Lagrange multipliers.
As the second step, we find all critical points (x, λ) solving the equation systemDL(x, λ) =

0 and x ∈ U . This equation system involves a system of (n + k) equations in the (n + k)

unknowns:

∂L

∂xj
(x, λ) = 0, j = 1, · · · , n

∂L

∂λi
(x, λ) = 0, i = 1, · · · , k

(31)

As the third and the last step, what we do depends on whether the problem is numerical or
theoretical (parameterized). For a numerical problem, we evaluate f at all critical points and
then find the maximum by comparing the function values. For a parameterized problem we need
first to verify whether f and g are both C2. If this is true, then we need to employ the sufficient
conditions in Theorem 2 to judge whether a critical point is a maximum or a minimum.

Next, we illustrate the method by solving a consumer’s utility maximization problem.
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Example 3. The consumer has an income I > 0, and the price of commodity i is pi > 0. The
problem is to solve

max x1x2

s.t. I − p1x1 − p2x2 > 0

x1 > 0, x2 > 0

(32)

First, it’s evident that the utility function is continuous on the budget set

B(p, I) = {(x1, x2)|I − p1x1 − p2x2 > 0, x1 > 0, x2 > 0}, (33)

and that the budget set is compact. Then, by the Weierstrass’ Theorem, a solution (x∗1, x
∗
2) does

exist.
In addition, notice that if either x1 = 0 or x2 = 0, u(x1, x2) = 0. But we can easily find a

feasible consumption bundle which gives strictly positive utility, say (x1, x2) = (I/2p1, I/2p2).
Then we know that positivity constraints are not binding. Moreover, the optima must satisfy the
equality constraint I = p1x1 + p2x2, since, if otherwise, utility can be increased.

Hence the problem is reformed in a standard equality-constraint maximization problem

max x1x2

s.t. (x1, x2) ∈ B∗(p, I),
(34)

where the budget set B∗(p, I) = R2
++ ∩ {(x1, x2)|p1x1 + p2x2 = I}. In notations we use in the

previous sections, U = R2
++, and g(x1, x2) = I − p1x1 − p2x2.

Next, we can establish the Lagrangean and find the critical points. The Lagrangean is

L(x1, x2, λ) = x1x2 + λ(I − p1x1 − p2x2). (35)

The critical points are the solutions (x∗1, x
∗
2, λ
∗) ∈ R2

++ × R to

x2 − λp1 = 0

x1 − λp2 = 0

I − p1x1 − p2x2 = 0.

(36)

The unique solution is (x∗1, x
∗
2, λ
∗) = ( I

2p1
, I
2p2
, I
2p1p2

).
Finally, we use Theorem 2 to judge whether (x∗1, x

∗
2, λ
∗) is a local maximum. Note that

Dg(x∗1, x
∗
2) = (−p1,−p2), so the set Z(x∗) = {z ∈ R2|Dg(x∗)z = 0} is simply

Z(x∗) = {z ∈ R2|z1 = −
p2z2
p1
}. (37)

Defining D2L∗ = D2u(x∗) + λ∗D2g(x∗), we have

D2L∗ =

[
0 1
1 0

]
+ λ∗

[
0 0
0 0

]
=

[
0 1
1 0

]
. (38)

So for any z ∈ Z(x∗) with z 6= 0, we have z′D2L∗z = −2p2z22/p1 < 0. Thus (x∗1, x
∗
2) =

( I
2p1
, I
2p2

) is a local maximum.
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5 Exercise

1. Find the consumption bundle that maximizes the Cobb-Douglas Utility function.

max xa1x
b
2

s.t. I − p1x1 − p2x2 > 0

x1 > 0, x2 > 0

(39)

where a > 0, b > 0, p1 > 0, p2 > 0, I > 0.
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Lecture 4: Inequality Constraints and the Theo-
rem of Kuhn and Tucker

Liu Peng
August 16, 2015

1 Constrained Optimization Problems with Inequality Con-
straints

The constraint set is now assumed to be

D = U ∩ {x ∈ Rn|hi(x) > 0, i = 1, · · · , l} (1)

where U ⊂ Rn is open, and hi : Rn → R, i = 1, · · · , l.

2 The Theorem of Kuhn and Tucker

In the statement of the theorem, we say that an inequality constraint hi(x) > 0 is effective
at a point x∗ if the constraint holds with equality at x∗, that is, we have hi(x∗) = 0. We will also
use the expression |E| to denote the cardinality of a finite set E, i.e., the number of elements
in the set E.

Theorem 1. (Theorem of Kuhn and Tucker) Let f : Rn → R and hi : Rn → R be C1

functions, i = 1, · · · , l. Suppose x∗ is a local maximum of f on

D = U ∩ {x ∈ Rn|hi(x) > 0, i = 1, · · · , l}, (2)

where U ⊂ Rn is open. Let E ⊂ {1, · · · , l} denote the set of effective constraints at x∗, and let
hE = (hi)i∈E . Suppose r(DhE(x∗)) = |E|. Then, there exists a vector λ∗ = (λ∗1, · · · , λ∗l ) ∈ Rl

such that the following conditions are met:

[KT − 1] λ∗i > 0 and λ∗ihi(x
∗) = 0 i = 1, · · · , l.

[KT − 2] Df(x∗) +
l∑

i=1

λ∗iDhi(x
∗) = 0.

(3)

Condition [KT − 1] in Theorem 1 is called the condition of ”complementary slackness”.
The terminology arises simply from the fact that we must have λ∗i = 0 if hi(x∗) > 0, and
hi(x

∗) = 0 if λ∗i > 0. That is, if one inequality if ”slack”, the other cannot be. As the remark
following the Lagrange Theorem, we have to assert here that the Theorem of Kuhn and Tucker
provides conditions that are only necessary for local optima, at which constraint qualification is
met.
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Proof. (Theorem of Kuhn and Tuker) To simplify notation in the proof, we will denote |E| by
k; we will also assume that the effective constraints at x∗ are the first k constraints:

hi(x
∗) = 0, i = 1, · · · , k

hi(x
∗) > 0, i = k + 1, · · · , l.

(4)

There is no loss of generality in this assumption, since this can be done by renumbering the
constraints.

For each i ∈ {1, · · · , l}, define

Vi = {x ∈ Rn|hi(x) > 0}. (5)

Let V = ∩li=k+1Vi. By the continuity of hi, Vi is open for each i, and so, therefore, is V . Now,
let D∗ ⊂ D be the equality-constrained set defined through k equality constraints and given by

D∗ = U ∩ V ∩ {x ∈ Rn|hi(x) = 0, i = 1, · · · , k}. (6)

By construction, we have x∗ ∈ D∗. Since x∗ is a local maximum of f on D, it is certainly
a local maximum of f on D∗. Moreover, we have r(DhE(x∗)) = k, by hypothesis. Therefore,
by the theorem of Lagrange, there exists a vector µ = (µ1, · · · , µk) ∈ Rk such that

Df(x∗) +
k∑
i=1

µiDhi(x
∗) = 0. (7)

Now define λ ∈ Rl by

λi =

{
µi, i = a, · · · , k
0, i = k + 1, · · · , l.

(8)

We will show that the vector λ satisfies the properties stated in the theorem.
First, observe that for i = k + 1, · · · , l, we have λi = 0, and, therefore, λiDhi(x∗) = 0.

Therefore,

Df(x∗) +
l∑

i=1

λiDhi(x
∗) = Df(x∗) +

k∑
i=1

λiDhi(x
∗)

= Df(x∗) +
k∑
i=1

µiDhi(x
∗) = 0.

(9)

which establishes [KT − 2].
Now, for any i ∈ {1, · · · , k}, we have hi(x∗) = 0, so certainly it is the case that λihi(x∗) =

0 for i ∈ {1, · · · , k}. For i ∈ {k + 1, · · · , l}, we have λi = 0, so it is also the case that
λihi(x

∗) = 0 for i ∈ {k + 1, · · · , l}.
It remains to show λi > 0 for all i. Since λi = 0 for i ∈ {k + 1, · · · , l}, we are required

to show only λi > 0 for i ∈ {1, · · · , k}. We will establish λ1 > 0. A similar argument will
establish λi > 0 for i ∈ {2, · · · , k}.
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Define for x ∈ Rn and η ∈ R, the function H = (H1, · · · , Hk) by

H1(x, η) = h1(x)− η
Hi(x, η) = hi(x), i = 2, · · · , k.

(10)

Notice that, since hE = (h1, · · · , hk), we have DHx(x, η) = DhE(x) and we also have
DHη(x, η) = (−1, 0, · · · , 0) at any (x, η).

By the definition of H , we have H(x∗, 0) = 0. Moreover, r(DHx(x
∗, 0)) = r(DhE(x∗)) =

k. Therefore, by the Implicit Function Theorem, there is a neighborhood of 0, and a C1 function
ξ(0) = x∗, and

H(ξ(η), η) = 0, η ∈ N. (11)

Differentiating this expression with respect to η and evaluating the derivative at η(0) = x∗, we
have

DHx(x
∗, 0)Dξ(0) +DHη(x

∗, 0) = 0. (12)

Since DHx(x, η) = DhE(x) and DHη(x, η) = (−1, 0, · · · , 0) at any (x, η), this implies

DhE(x∗)Dξ(0) = (1, 0, · · · , 0). (13)

or, equivalently, that

Dh1(x
∗)Dξ(0) = 1,

Dhi(x
∗)Dξ(0) = 0, i = 1, · · · , k.

(14)

Since λi = 0 for i = k + 1, · · · , l, we now have

Df(x∗)Dξ(0) = −

(
l∑

i=1

λiDhi(x
∗)

)
Dξ(0)

= −

(
k∑
i=1

λiDhi(x
∗)Dξ(0)

)
= −λ1.

(15)

To complete the proof, we will show that Df(x∗)Dξ(0) 6 0. To this end, we first show
that there is an η∗ > 0 such that for all η ∈ [0, η∗), we must have ξ(η) ∈ D, where D is the
constraint set of the original problem.

If η > 0, then Hi(ξ(η)) for i = 1, · · · , k, and from the definition of the functions Hi, this
means

h1(ξ(η)) = η > 0,

hi(ξ(η)) = 0, i = 2, · · · , k.
(16)

For i = k + 1, · · · , l, we have hi(ξ(0)) = hi(x
∗) > 0. Since both hi and ξ are continuous,

it follows that by choosing η sufficiently small, we can ensure that hi(ξ(η)) > 0, for i =

k + 1, · · · , l.
Finally, by shrinking the value of η∗ if need be, we can evidently ensure that ξ(η) ∈ U for

all η ∈ [0, η∗), as claimed.
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Now, since ξ(0) = x∗ is a local maximum, and ξ(η) is in the feasible set for η ∈ [0, η∗), it
follows that for η > 0 and sufficiently close to zero, we must have f(x∗) > f(ξ(η)).

Therefore, (
f(ξ(0))− f(ξ(η))

η

)
6 0 (17)

for all η > 0 and sufficiently small. Taking limit as η → 0, we obtain Df(x∗)Dξ(0) 6 0. The
proof is complete.

2.1 The Constraint Qualification

As with the analogous condition in the Theorem of Lagrange, the condition in the Theorem
of Kuhn and Tuker that the rank of DhE(x∗) be equal to |E| is called the constraint qualifica-
tion. This condition plays a central role in the proof of the theorem. Moreover, if the constraint
qualification fails, the theorem itself could fail.

2.2 The Kuhn-Tuker Multipliers

The vector λ∗ in the Theorem of Kuhn and Tuker is called the vector of Kuhn-Tuker multi-
pliers corresponding to the local maximum x∗. As with the Lagrangean multipliers, the Kuhn-
Tucker multipliers may also be thought of as measuring the sensitivity of the objective function
at x∗ to relaxations of the various constraints. Indeed, this interpretation is particularly intuitive
in the context of inequality constraints. To wit, if hi(x∗) > 0, then the i-th constraint is already
slack, so relaxing it further will not help raise the value of the objective function in the maxi-
mization exercise, and λ∗i must be zero. On the other hand, if hi(x∗) = 0, then relaxing the i-th
constraint may help increase the value of the maximization exercise, so we have λ∗i > 0.

3 A ”Cookbook” Procedure with a numerical example

Consider a problem of

max f(x)

s.t. x ∈ D = U ∩ {x|h(x) > 0}.
(18)

As the first step, we form the Lagrangean

L(x, λ) = f(x) +
l∑

i=1

λihi(x). (19)

The second step is to find all solutions (x, λ) to the following set of equations:

∂L

∂xj
(x, λ) = 0, j = 1, · · · , n,

∂L

∂λi
(x, λ) > 0, λi > 0, λi

∂L

∂λi
(x, λ) = 0, i = 1, · · · , l.

(20)
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All solutions to this system of equations are called ”critical points”.
At the last step, we compute the value of f at each x which is a part of a critical point and

an element in U . Then, by comparing those values of f , we can find the optima.

Example 1. Let g(x, y) = 1− x2 − y2. Consider the problem of maximizing f(x, y) = x2 − y
over the set

D = {(x, y)|g(x, y) > 0}. (21)

We claim first here that there exists a maximum of f on D, by the Weierstrass’ extreme
theorem. Note first that Dg(x, y) = (−2x,−2y) at all points. Note also that at any point where
the single constraint is effective, we must have either x 6= 0 or y 6= 0. Thus, the constraint
qualification holds if the optimum occurs at a point (x, y) where g(x, y) = 0.

We establish the Lagrangean L(x, y, λ) = x2 − y + λ(1− x2 − y2). The critical points are
the solutions (x, y, λ) to

2x− 2λx = 0

−1− 2λy = 0

λ > 0, (1− x2 − y2) > 0, λ(1− x2 − y2) = 0.

(22)

For the first equation to hold, we must have x = 0 or λ = 1. If λ = 1, then from the second
equation, we must have y = −1

2
, while from the third equation, we must have x1 + y2 = 1. This

gives us two critical points of L, which differ only in the value of x:

(x, y, λ) =

(
±
√

3

2
,−1

2
, 1

)
. (23)

Note that at either of these two critical points, we have f(x, y) = 5
4
.

This leaves the case x = 0. If we also have λ = 0, then the second equation cannot be
satisfied, so we must have λ > 0. This implies from the third equation that x2 + y2 = 1, so
y = ±1. Since y = 1 is inconsistent with a positive value for λ from the second equation, the
only possible critical point in this case is

(x, y, λ) =

(
0,−1,

1

2

)
. (24)

At this critical point, we have f(0,−1) = 1 < 5
4
, which means this point cannot be a solution

to the original maximization problem.
Since here does not exist any more critical point, we know that there are exactly two solu-

tions to the optimization problem, namely the points (x, y) = (±
√
3
2
,−1

2
).

4 The General Case: Mixed Constraints

A constrained optimization problem with mixed constraints is a problem where the con-
straint set D has the form

D = U ∩ {x ∈ Rn|g(x) = 0, h(x) > 0}, (25)
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where U ⊂ Rn is open, g : Rn → Rk, and h : Rn → Rl. For notational ease, define
φi : Rn → Rk+l, where

φi =

{
gi, i = 1, · · · , k
hi−k, i = k + 1, · · · , k + l.

(26)

The following theorem is a simple consequence of combining the Theorem of Lagrange with
the Theorem of Kuhn and Tuker.

Theorem 2. Let f : Rn → R, and φi : Rn → R, i = 1, · · · , k + l be C1 functions. Suppose x∗

maximizes f on

D = U ∩ {x ∈ Rn|φi(x) = 0, i = 1 · · · , k, φj(x) > 0, j = k + 1, · · · , k + l}, (27)

where U ⊂ Rn is open. Let E ⊂ {1, · · · , k + l} denote the set of effective constraints at x∗,
and let φE = (φi)i∈E . Suppose r(DφE(x∗)) = |E|. Then, there exists λ ∈ Rk+l such that

1. λj > 0 and λjφj(x∗) = 0 for j ∈ {k + 1, · · · , k + l}.

2. Df(x∗) +
k+l∑
i=1

Dφi(x
∗) = 0.

5 Convexity and Optimization

Definition 1. A set D ∈ Rn is called convex if the convex combination of any two points inD is
itself inD, that is, if for all x and y inD and all λ ∈ (0, 1), it is the case that λx+(1−λ)y ∈ D.

Definition 2. A function f : D → R is concave on D if for all x, y ∈ D and λ ∈ (0, 1), it is the
case that

f(λx+ (1− λ)y) > λf(x) + (1− λ)f(y). (28)

Similarly, f : D → R is convex on D if for all x, y ∈ D and λ ∈ (0, 1), it is the case that

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y). (29)

Strict concavity and strict convexity are defined, respectively, with the strict inequality holding.

5.1 Some General Observations

This subsection presents two results which indicate the importance of convexity for op-
timization theory. The first result establishes that in convex optimization problems, all local
optima must also be global optima; and, therefore, that to find a global optimum in such prob-
lems, it always suffices to locate a local optimum. The second result shows that if a strictly
convex optimization problem admits a solution, the solution must be unique.

Theorem 3. Suppose D ⊂ Rn is convex, and f : D → R is concave. Then,

1. Any local maximum of f is a global maximum of f .
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2. The set arg max{f(x)|x ∈ D} of maximizers of f on D is either empty or convex.

Proof. Suppose f admits a local maximum x that is not also a global maximum. Since x is a
local maximum, there is r > 0 such that f(x) > f(y) for all y ∈ B(x, r) ∩ D. Since x is not a
global maximum, there is z ∈ D such that f(z) > f(x). SinceD is convex, (λx+(1−λ)z) ∈ D
for all λ ∈ (0, 1). Pick λ sufficiently close to unity so that (λx + (1 − λ)z) ∈ B(x, r). By the
concavity of f ,

f(λx+ (1− λ)z) > λf(x) + (1− λ)f(z) > f(x). (30)

But λx + (1 − λ)z is in B(x, r) by construction, so f(x) > f(λx + (1 − λ)z): contradiction,
which establishes part 1.

To see part 2, suppose x1 and x2 are both maximizers of f on D. Then, we have f(x1) =

f(x2). Further, for λ ∈ (0, 1), we have

f(λx1 + (1− λ)x2) > λf(x1) + (1− λ)f(x2) = f(x1), (31)

and this must hold with equality or x1 and x2 would not be maximizers. Thus, the set of
maximizers must be convex, completing the proof.

Theorem 4. SupposeD ⊂ Rn is convex, and f : D → R is strict concave. Then arg max{f(x)|x ∈
D} either is empty or contains a single point.

Proof. Suppose the maximizer set is nonempty. We have already shown in the last theorem that
the maximizer set is convex. Suppose this set contains two distinct points x and y. Pick any
λ ∈ (0, 1) and let z = λx+ (1− λ)y. Then, the concavity of f gives

f(z) = f(λx+ (1− λ)y) > λf(x) + (1− λ)f(y) = f(x), (32)

which gives the contradiction.

5.2 Convexity and Unconstrained Optimization

The following result shows that the first-order condition for unconstrained optima (i.e., the
condition that Df(x) = 0) is both necessary and sufficient to identify global unconstrained
maxima, when such maxima exist.

Theorem 5. Let D ⊂ Rn be convex, and f : D → R be a concave and differentiable function
on D. Then, x is an unconstrained maximum of f on D if and only if Df(x) = 0.

Proof. We have known that the condition Df(x) = 0 must hold whenever x is any uncon-
strained local maximum. It must evidently also hold, therefore, if x is an unconstrained global
maximum.

The inverse comes from a characterizing property of concavity. Suppose x and y are two
points in D. Function f being concavity implies

f(y)− f(x) 6 Df(x)(y − x). (33)

If Df(x) = 0, this property is exactly the same as stating f(x) > f(y). Since y is arbitrary, x
is global maximum of f on D.
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5.3 Convexity and the Theorem of Kuhn and Tuker

The following result states that the first-order conditions of the Theorem of Kuhn and Tuker
are both necessary and sufficient conditions to identify optima of convex inequality-constrained
optimization problems, provided a mild regularity condition is met.

Theorem 6. Theorem of Kuhn and Tucker under Convexity Let f : Rn → R and hi : Rn → R
be concave C1 functions, i = 1, · · · , l. Suppose there is some x̄ ∈ U such that hi(x̄) > 0 for all
i ∈ 1 · · · , l. Suppose also that U ⊂ Rn is convex and open. Then x∗ maximizes f on

D = {x ∈ U |hi(x) > 0, i = 1, · · · , l}, (34)

if and only if there exists a vector λ∗ = (λ∗1, · · · , λ∗l ) ∈ Rl such that the following conditions
are met:

[KT − 1] λ∗i > 0 and λ∗ihi(x
∗) = 0 i = 1, · · · , l.

[KT − 2] Df(x∗) +
l∑

i=1

λ∗iDhi(x
∗) = 0.

(35)

Proof. See Sundaram (1996), page 194-198.

The condition that there exist a point x̄ at which hi(x̄) > 0 for all i is called Slater’s
condition. There are two points about this condition that bear stressing.

First, Slater’s condition is used only in the proof that [KT−1] and [KT−2] are necessary at
an optimum. It plays no role in proving sufficiency. That is, the condition [KT−1] and [KT−2]

are sufficient to identify an optimum when f and the functions hi are concave, regardless of
whether Slater’s condition is satisfied or not.

Second, the necessity of conditions [KT − 1] and [KT − 2] at any local maximum was
established in Theorem 1, but under a different hypothesis, namely, that the rank condition de-
scribed in the Theorem 1 held. Effectively, the necessity part of the Theorem 6 states that this
rank condition can be replaced with the combination of Slater’s condition and concave con-
straint functions. However, both parts of this combination are important: just as the necessity of
[KT −1] and [KT −2] could fail if the rank condition is not met, the necessity of [KT −1] and
[KT − 2] could also fail if either Slater’s condition or the concavity of the functions hi fails.

6 Exercise

1. Solve the following maximization problem

max lnx+ ln y

s.t. x2 + y2 = 1

x, y > 0.

(36)
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Lecture 5: Fixed Point Theorems
Liu Peng

August 16, 2015

Definition 1. Let X be a metric space, and let T : X → X be a function that maps X into
itself, a fixed point of T is an element x ∈ X for which T (x) = x. In addition, we call a
function mapping a set into itself a self-map.

1 Contraction and Banach Fixed Point Theorem

Definition 2. Let X be a metric space. A self-map Φ on X is said to be a contraction if there
exists a real number 0 < K < 1 such that

d(Φ(x),Φ(y)) 6 Kd(x, y) for all x, y ∈ X. (1)

In this case, the infimum of the set of all such K is called the contraction coefficient of Φ.

Why are contractions of interest? Because, when it is defined on a complete metric space,
a contraction must map a point to itself, that is, it must have a fixed point. In fact more is
true, it must have a unique fixed point. It is actually rather easy to give an intuition of this fact
in the case of real functions - a geometric description is provided in Figure 1. The idea is to
pick any point x in the domain of a given contraction f : R → R, and observe the behavior
of the sequence (x, f(x), f(f(x)), · · · ). The contraction property tells us that this is a Cauchy
sequence, and since R is complete, it must converge.

Figure 1: Contraction and Fixed Point

We now generalize this heuristic argument to the case of contraction defined on an arbitrary
complete metric space.
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Theorem 1. (The Banach Fixed Point Theorem) Let X be a complete metric space. If Φ :

X → X is a contraction, then there exists a unique x∗ ∈ X such that Φ(x∗) = x∗.

Proof. Let us first prove the existence of a fixed point. Pick any x0 ∈ X and define {xk}
recursively as xk+1 = Φ(xk) for all k = 0, 1, · · · . We claim that this sequence is Cauchy. To see
this, let K be the contraction coefficient of Φ, and notice that, by the Principle of Mathematical
Induction, we have d(xk+1, xk) 6 Kkd(x1, x0) for all k = 1, 2, · · · . Thus, for any k > l,

d(xk, xl) 6 d(xk, xk−1) + · · ·+ d(xl+1, xl)

6 (Kk−1 + · · ·+K l)d(x1, x0)

=
K l(1−Kk−l)

1−K
d(x1, x0)

(2)

so that d(xk, xl) < Kl

1−Kd(x1, x0). Then {xk} being Cauchy follows immediately from this
inequality.

Since X is complete, {xk} must has a limit x∗ ∈ X . Then, for any ε > 0, there exists M
such that d(x∗, xm) < ε

2
for all m = M,M + 1, · · · and hence

d(Φ(x∗), x∗) 6 d(Φ(x∗), xm+1) + d(xm+1, x∗)

= d(Φ(x∗),Φ(xm)) + d(xm+1, x
∗)

6 Kd(x∗, xm) + d(xm+1, x
∗)

<
ε

2
+
ε

2
.

(3)

Since ε is arbitrarily small, we have d(Φ(x∗), x∗) = 0, which implies Φ(x∗) = x∗.
To prove the uniqueness. Observe that if x ∈ X was another fixed point of Φ, we would

then have d(x, x∗) = d(Φ(x),Φ(x∗)) 6 Kd(x, x∗), which is possible only if x = x∗.

Example 1. (Cournot Equilibrium) Two firms compete in a market by choosing their produc-
tion levels, q1 and q2, respectively. Each firm responds to the other firm’s production level by
choosing its own level of output. Specifically

q1 = r1(q2) = a1 − b1q2
q2 = r2(q1) = a2 − b2q1

(4)

where a1, a2, b1, b2 are all positive and qi = 0 if the above expression for qi is negative. The
function ri : R+ → R+ is called firm i-th reaction function. Define r : R2

+ → R2
+ by r(q1, q2) =

(r1(q2), r2(q1)).
The function r is a contraction if b1, b2 < 1:

d(r(q), r(q′)) = d((r1(q2), r2(q1)), (r1(q
′
2), r2(q

′
1)))

=
√

(r1(q2)− r1(q′2))2 + (r2(q1)− r2(q′1))2

=
√
b21(q2 − q′2)2 + b22(q1 − q′1)2

6 max(b1, b2)d((q1, q2), (q
′
1, q
′
2))

= max(b1, b2)d(q, q′).

(5)
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Therefore, we have an existence and uniqueness result for Cournot Equilibrium: r has a unique
fixed point q∗, if b1, b2 < 1.

In addition, knowing that the unique fixed point exists, we can easily calculate out the equi-
librium production from

q∗1 = a1 − b1q∗2
q∗2 = a2 − b2q∗1.

(6)

It’s easy to verify q∗1 = a1−a2b1
1−b1b2 and q∗2 = a2−a1b2

1−b1b2 .

Remark 1. Being a contraction is a sufficient condition for a self map to have a fixed point,
rather than necessary. Consider a function f : [0, 1]→ [0, 1] defined as follows

f(x) =


1, 0 6 x < 1

4

3
2
− 2x, 1

4
6 x < 3

4

0, 3
4
6 x 6 1.

(7)

It is evident that this function is not a contraction: d(f(1
4
), f(3

4
)) = d(1, 0) = 1 > d(1

4
, 3
4
) = 1

2
.

But it has a fixed point: f(1
2
) = 1

2
.

1.1 The Method of Successive Approximations

For any ”initial” point x0 ∈ X , the sequence xk = Φ(xk−1) that we constructed in the proof
of the Banach Fixed Point Theorem not only converges to a fixed point x∗, it converges to the
fixed point monotonically: each successive term is closer to x∗ than its predecessor was. This
is shown is the next theorem.

Theorem 2. If Φ is a contraction on a complete metric space X and K is the corresponding
contraction coefficient, then for any x ∈ X ,

d(Φn(x), x∗) 6 Knd(x, x∗), (8)

where x∗ is the unique fixed point and Φn(x) = Φn−1(Φ(x)) = Φn−2(Φ(Φ(x))) = · · · =

Φ(Φ(· · ·Φ(x))).

Proof.

d(Φn(x), x∗) = d(Φ(Φn−1(x)),Φ(x∗))

6 Kd(Φn−1(x), x∗)

6 · · ·
6 Kn−1d(Φ(x),Φ(x∗))

6 Knd(x, x∗).

(9)
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Example 2. Suppose the response functions in out Cournot example become

q1 = r1(q2) =
1

2(1− q2)
, q2 = r2(q1) =

1

2
e−q1 . (10)

Now it’s not so easy to calculate the equilibrium production levels as the case where the re-
sponse functions are both linear.

However, it’s possible to show that the function r : R2
+ → R2

+ defined in the last example is
a contraction (so a Cournot equilibrium exists and is unique), and one can use the Method of
Successive Approximations to compute an approximation to the equilibrium.

2 Brouwer Fixed Point Theorem

The example in Remark 1 above shows that the Banach Theorem seems somewhat limited.
It seems intuitively clear that any C1 function mapping the unit interval into itself will have a
fixed point, but the Banach Theorem applies only to functions that satisfies |f ′(x)| 6 K for
some K < 1.

The fixed point theorem due to Brouwer covers this case as well as a great many others that
the Banach Theorem fails to cover because the relevant functions are not contractions.

Theorem 3. (Brouwer Fixed Point Theorem) Let X be a nonempty, compact, convex subset of
Rn. Every continuous self map f : X → X has a fixed point.

Remark 2. Instead of proving the theorem rigorously, we show the case where n = 1. In R, X
being a nonempty, compact, and convex subset is equivalent to say that X is a closed interval,
say X = [0, 1]. Hence, what’s to be verified is that any continuous function f : [0, 1] → [0, 1]

has a fixed point. To this end, define a new function on [0, 1] as g(x) = x− f(x). Evidently, we
have f(0) = 0− f(0) 6 0 and g(1) = 1− g(1) > 0. Then, by the Intermediate Value Theorem
and the fact that g is continuous, there exists a point x∗ ∈ [0, 1] such that g(x∗) = 0, which is
equivalently to say f(x∗) = x∗.

Remark 3. The Brouwer Theorem requires only that the function be continuous, not that it
be a contraction, so there are lots of situations in which the Brouwer Theorem applies but the
Banach Theorem doesn’t, an illustration is in Remark 1. But conversely, the Banach Theorem
doesn’t require compactness or convexity, as Brouwer Theorem does. So there are also lots of
situations where Banach Theorem applies but Brouwer Theorem does not.

3 Kakutani Fixed Point Theorem

By a correspondence F from a nonempty set X into another nonempty set Y , we mean a
map from X into 2Y \{∅}. Thus, for each x ∈ X , F (x) is a nonempty subset of Y . We write
F : X ⇒ Y to denote that F is a correspondence from X into Y . If ∪x∈XF (x) ⊂ X , we refer
to F as a self-correspondence.
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Example 3. For any n ∈ N, p ∈ Rn
++ and I > 0, define

B(p, I) = {x ∈ Rn
+ : p · x 6 I}. (11)

which is called the budget set of a consumer with income I at price p. If we treat (p, I) as
variables, then it would be necessary to treatB as a correspondence. We haveB : Rn+1

++ ⇒ Rn
+.

Example 4. Consider a parameterized maximization problem

max u(x; θ)

s.t. x ∈ Rn
+ ∩ D(θ).

(12)

Fixing a value of θ, we have a collection of solutions. If we treat θ as a variable from some
given set Θ, we can express the parameterized solution as a correspondence x∗ : Θ ⇒ Rn

+. A
classical example is a Cobb-Douglas utility function with varying coefficients.

In most applications, the correspondences we deal with have some additional structures.
Some important ones are summarized as follows.

Definition 3. For any two metric spaces X and Y , a correspondence F : X ⇒ Y is said to
be convex-valued if F (x) is convex for each x ∈ X . Similarly, F is said to compact-valued if
F (x) is a compact subset of Y for each x ∈ X . In addition, F is said to closed-valued if F (x)

is a closed subset of Y for each x ∈ X .

3.1 Continuity of Correspondences

Since correspondences are generalizations of functions, it seems reasonable to ask if we
can extend the notion of ”continuity” which we originally defined for functions, to the realm of
correspondences. Of cause, we should be consistent with our original definition in the sense that
the notion of ”continuity” that we might define for a correspondence should reduce to ordinary
continuity when that correspondence is single-valued. The following is a such definition.

Definition 4. For any two metric spaces X and Y , a correspondence F : X ⇒ Y is said to
be upper hemi-continuous at x ∈ X if, for every open subset O ⊂ Y with F (x) ⊂ O, there
exists a δ > 0 such that F (B(x, δ)) ⊂ O, where B(x, δ) = {y ∈ X s.t. ||y − x|| < δ}. F
is called upper hemi-continuous if it is upper hemi-continuous at all points in X .

Intuitively speaking, upper hemicontinuity at x says that a small perturbation of x does not
cause the image set F (x) to suddenly get large. What we mean by this is illustrated in Figure
3.1, which depicts three correspondences mapping R+ into R+. According to the definition of
upper hemicontinuity, Γ1 and Γ3 are upper hemicontinuous everywhere but x1 and x2. While,
Γ2 is upper hemicontinuous everywhere.

While upper hemi-continuity of a correspondence F : X ⇒ Y guarantees that the image
set F (x) of a point x ∈ X does not ”explode” due to a small perturbation of x, in some sense it
allows for it to ”implode”. For instance, Γ2 in Figure 3.1 is upper hemi-continuous at x1, even
though there is an intuitive sense in which Γ2 is not continuous at this point because the ”value”
of Γ2 changes dramatically when we perturb x1 marginally. The following definition deals with
this concern formally.
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Figure 2: Upper and Lower Hemicontinuity

Definition 5. For any two metric spaces X and Y , a correspondence F : X ⇒ Y is said to be
lower hemi-continuous at x ∈ X if, for every open subset O ⊂ Y with F (x) ∩ O 6= ∅, there
exists a δ > 0 such that

F (y) ∩O 6= ∅ for all y ∈ {x ∈ X : ||y − x|| < δ}. (13)

F is called lower hemi-continuous on X if it is lower hemi-continuous at every point in X .

By applying the definition on the correspondences in Figure 3.1, we know that Γ2 and Γ3

are lower hemi-continuous everywhere except x1 and x2 and that Γ1 is lower hemi-continuous.
A correspondence is said to be continuous when it is both upper and lower hemi-continuous.

This behavior of such a correspondence is nicely regular in that small perturbations in its state-
ment do not cause the image sets of nearby points to show drastic, upward or downward, alter-
nations.

3.2 Kakutani Fixed Point Theorem

For a self-correspondence F : X ⇒ X , a fixed point is defined as a point which satisfies
x∗ ∈ F (x∗). With respect to the existence of a fixed point for a self-correspondence, The
Kakutani Theorem gives positive answer under verifiable conditions.

Theorem 4. (Kakutani Fixed Point Theorem) Let X ⊂ Rn be a compact convex set. Let
F : X ⇒ X be an upper hemicontinuous convex valued correspondence. Then there exists a
point x∗ ∈ X such that x∗ ∈ F (x∗).

The Kakutani Theorem generalizes the Brouwer Theorem in a straightforward way. It is
thus not surprising that this result finds wide applicability in the theory of games the competitive
equilibrium.

Example 5. Every game with finitely many strategies has a mixed-strategy Nash equilibrium.
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4 Exercise

1. In Brouwer Fixed Point Theorem, the sufficient conditions are X be closed, bounded,
convex, and f be continuous. Provide one example for each of these four conditions to
show their usefulness.
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