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Abstract

We introduce a new axiom called bounded response which states that for each “small-

est” change of a preference profile, the change of the social choice must be the “small-

est”, if any, for the agent who induces the change of a preference profile. We show

that bounded response is weaker than strategy-proofness, and that bounded response and

efficiency imply dictatorship. This impossibility has a far-reaching negative implica-

tion. On the universal domain of preferences, it is hard to find a nonmanipulability

condition which leads to a possibility result.
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1 Introduction

We consider a society which is to choose one among a finite set of alternatives based on
the agents’ preferences. A social choice function (SCF) maps each profile of agents’ pref-
erences to an alternative. We propose an axiom called bounded response. A SCF satisfies
bounded response if for each “smallest” change of a preference profile, the change of the
social choice must be the “smallest”, if any, for the agent who induces the change of a
preference profile.

We explain bounded response in detail. Given a preference profile R = (R1, . . . , Rn),
let x be the alternative chosen at R. Suppose that one agent, say agent i, exchanges the
positions of two consecutively ranked alternatives in Ri. We regard this as the “smallest
change” of a preference profile. Let y be the social choice after the agent i’s preferences
changing. Then, bounded response requires that either x = y or x and y are consecutively
ranked in Ri. This implies that a small error in announcing preferences does not make a
big difference in the social choice. Also, it is possible that an agent wavers in deciding
which preference to report among similar ones. In such a case, bounded response ensures
that the agent’s decision on which preference to report is not very crucial in the sense that
the decision does not make a big difference in terms of the ranks of the social choices. In
these senses, bounded response is a property on stability of social choice and it would be
desirable from the viewpoint of agents. On the other hand, it would not be as desirable as
widely accepted axioms such as efficiency. Nevertheless, as we discuss shortly, our result
with bounded response has important implications.

Our main result is simple; A SCF satisfies bounded response and efficiency if and only if
it is dictatorial. This impossibility has interesting and important implications.

First, our main result shows that the impossibility of the Gibbard–Satterthwaite the-
orem (Gibbard, 1973; Satterthwaite, 1975) is not necessarily due to the incentive require-
ment of strategy-proofness. By the Gibbard–Satterthwaite theorem, it is well-known that
strategy-proofness and efficiency lead to dictatorship. It can be seen that bounded response is
weaker than strategy-proofness. Thus, bounded response, which is a “side effect” of strategy-
proofness, is sufficient for the impossibility. Note that bounded response is not a condition on
incentives to misreport preferences. It just limits the extent to which the social choice can
respond to changes in preferences. Thus, at an agent i’s preferences changing from Ri to
R′

i, it is possible under bounded response that the social choice at R′
i is preferable (according

to Ri) to the social choice at Ri.
Second, our result readily leads to a new interesting impossibility theorem. Following

recent researches on weaker conditions than strategy-proofness (for example, Reffgen, 2011;
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Carroll, 2012; Sato, 2013; Cho, 2016; Mishra, 2016), we consider a new incentive condition,
called weak AM-proofness. Assume that the options of misrepresentation are restricted to
preferences that are adjacent to the true one as in Sato (2013). Given a preference profile R,
let x be the chosen alternative at R, and R′

i be a false preference of agent i which is adjacent
to Ri. Let y and z be the alternatives whose ranks are exchanged in the passage from Ri to
R′

i. Weak AM-proofness requires that (i) if y and z are “near” x in Ri, then the social choice
at R′

i cannot be preferred to x according to Ri, and (ii) if y and z are “far” from x in Ri,
then the social choice at R′

i can be preferred to x according to Ri, but in that case, the social
choice at R′

i and x should be consecutively ranked in Ri. As a straightforward corollary of
our main result, we can see that weak AM-proofness and efficiency lead to dictatorship. Even
when we allow profitable misrepresentation, when the degree of the profit is restricted in
a different way from Reffgen (2011), we cannot deviate from the impossibility.

A few axioms in the existing literature are related to the ideas of how “close” with
each other the social choices are. Preference proximity introduced by Baigent (1987) re-
quires that if a preference profile R is “closer” to some status quo R0 than another one
R′, there should be the same relation in the values of the SCF f , that is, f (R) is “closer”
to f (R0) than f (R′). Our bounded response is distinguished from preference proximity in
that the metric in the set of alternatives is given exogenously in the definition of prefer-
ence proximity, while it is endogenous and depends upon the preference of the deviating
agent in bounded response. Topological social choice theory considers continuity of social
welfare functions, rather than social choice functions, where topology in the set of prefer-
ences can be defined in various ways.1 Muto and Sato (2016a) consider an axiom of social
welfare functions stating that each “smallest” change of a preference profile leads to the
“smallest” change, if any, of the social preference, and prove an impossibility result. In
a context of “claims problems”, Kasajima and Thomson (2016) consider axioms such that
the degree of a change of an outcome is bounded by the degree of a change of inputs to a
rule.

The remainder of the paper is organized as follows. In Section 2, we introduce nota-
tions and definitions, including our main axiom bounded response. In Section 3, we present
a number of results. In Section 3.1 we show our main theorem after introducing a tech-
nical condition called same-sidedness condition. In Section 3.2, we present an application
to weak AM-proofness. In Section 3.3, we discuss results when efficiency is weakened to
unanimity. In Section 3.4, we discuss whether our impossibility result holds on restricted
domains of preferences. In Section 4, we provide a complete proof of the main theorem.
Section 5 concludes.

1See Baigent (2010) for a survey of topological social choice.
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2 Model

We consider a society consisting of n agents in N = {1, . . . , n} where n ≥ 2. Let X be a
finite set of feasible alternatives with |X| = m ≥ 3, and L be the set of all linear orders on
X.2 By definition, x R x for each R ∈ L and each x ∈ X. Each agent i ∈ N has a preference
Ri ∈ L. For each pair of distinct alternatives x, y ∈ X, x Ri y means that i (strictly) prefers
x to y. If each agent i has a preference Ri ∈ L, the n-tuple (R1, . . . , Rn) is denoted by R,
and if some agent i changes preference from Ri to R′

i, the new preference profile is written
as (R′

i, R−i). For each preference R ∈ L and each integer k (1 ≤ k ≤ m), let rk(R) ∈ X be
the kth-ranked alternative according to R. For each preference R ∈ L and each alternative
x ∈ X, let ρR(x) be the rank of x with respect to R, i.e., ρR(x) =

∣∣{y ∈ X | y R x}
∣∣. Two

alternatives x and y are adjacent in R ∈ L if they are consecutively ranked in R, i.e.,
|ρR(x)− ρR(y)| = 1. Two preferences R and R′ are adjacent if the only difference between
them is the ranks of two adjacent alternatives. If R and R′ are adjacent and two distinct
alternatives x, y ∈ X satisfy x R y and y R′ x, the set {x, y} is denoted by A(R, R′).

A social choice function (SCF) f is a function from the set of preference profiles Ln to the
set of alternatives X. A SCF is dictatorship if there exists i ∈ N such that f (R) = r1(Ri) for
each R ∈ Ln. Agent i is called a dictator. We introduce a few properties of a SCF. A SCF f
satisfies

(i) strategy-proofness if f (R) Ri f (R′
i, R−i) for each R ∈ Ln, each i ∈ N, and each R′

i ∈ L.

(ii) monotonicity if f (R′
i, R−i) = f (R) for each R ∈ Ln, each i ∈ N, and each R′

i ∈ L such
that {x ∈ X | f (R) Ri x} ⊆ {x ∈ X | f (R) R′

i x}.

(iii) efficiency if f (R) ̸= x for each R ∈ Ln and each x ∈ X such that there exists y ∈
X \ {x} satisfying y Ri x for each i ∈ N.

(iv) bounded response if for each R ∈ Ln, each i ∈ N, and each R′
i ∈ L which is adjacent

to Ri, f (Ri, R−i) and f (R′
i, R−i) are adjacent in Ri or the same, i.e.,

∣∣ρRi( f (Ri, R−i))− ρRi( f (R′
i, R−i))

∣∣ ≤ 1.

Strategy-proofness ensures that reporting the true preference is always an optimal strategy
regardless of what the other agents report. Monotonicity says that expanding the lower
contour set of the social choice does not change the social choice. Muller and Satterth-
waite (1977) show that, as long as only strict preferences are allowed, monotonicity is a

2A binary relation is a linear order if it is complete, transitive, and antisymmetric.
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necessary and sufficient condition of strategy-proofness. Efficiency is the standard axiom
saying that an alternative cannot be a social choice if it is Pareto dominated by some
other alternative. Bounded response is our main axiom.3 It states that if an agent i’s prefer-
ences changing is the smallest in the sense that Ri and R′

i are adjacent, then the change of
the social choice must be the smallest, if any. This implies that when an agent makes an
error in announcing his preferences, as long as the error is “small”, the social choice at the
“incorrect” preference is near the social choice at the “correct” preference. In this sense,
bounded response is a normatively desirable property. On the other hand, we understand
that plausibility of bounded response, or more generally, continuity-like conditions, much
depends on one’s subjective opinion. Still, our result with bounded response has interesting
implications as discussed in the Introduction.

In the formulation of bounded response, the change of the social choice is measured
by the difference in the ranks according to the initial preference Ri of agent i, and thus
this condition imposes no requirement on the change of the ranks according to the other
agents’ preferences. Bounded response allows agent i to be either better off or worse off
after the agent i’s preferences changing. We will observe that bounded response is weaker
than strategy-proofness in the next section.

3 Result

In Section 3.1, we show our main theorem: bounded response and efficiency imply dicta-
torship. Then, in Section 3.2, we propose a new incentive condition and show that our
main theorem readily implies an impossibility involving the new incentive condition. In
Sections 3.3 and 3.4, we examine the robustness of our impossibility result.

3.1 Main theorem

First, we show that bounded response follows from strategy-proofness.

3Muto and Sato (2016b) introduce an axiom called individual bounded response: for each R ∈ Ln, each
i ∈ N, and each R′

i ∈ L which is adjacent to Ri,
∣∣ρRi ( f (Ri, R−i))− ρR′

i
( f (R′

i, R−i))
∣∣ ≤ 1. Note that the rank

of f (R′
i, R−i) is measured according to R′

i in individual bounded response whereas it is measured according
to Ri in bounded response. It is readily shown that individual bounded response follows from bounded response
in this paper, and there exists a nondictatorial SCF satisfying individual bounded response and efficiency. An
example of a nondictatorial SCF satisfying individual bounded response and efficiency is the following; For
each R ∈ Ln, f (R) = r1(R1) if r1(R1) R2 r2(R1), and f (R) = r2(R1) if r2(R1) R2 r1(R1).

In Muto and Sato (2016a), we introduce an axiom with the same name, but in the context of preference
aggregation. We note that although they have similar background motivations, there is no logical relation
between bounded response in this paper and the axiom in Muto and Sato (2016a).
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Figure 1: A partition of X given by a pair of adjacent preferences (Ri, R′
i).

Proposition 3.1. Strategy-proofness implies bounded response.

Proof. Suppose that a SCF f is strategy-proof . Let R ∈ Ln, i ∈ N, and R′
i ∈ L which is

adjacent to Ri. By strategy-proofness,

f (R) Ri f (R′
i, R−i), and (1)

f (R′
i, R−i) R′

i f (R). (2)

It is obvious that (at least) one of the following three conditions is true: (i) f (R) ̸∈
A(Ri, R′

i), (ii) f (R′
i, R−i) ̸∈ A(Ri, R′

i), or (iii) f (R) ∈ A(Ri, R′
i) and f (R′

i, R−i) ∈ A(Ri, R′
i).

We show
∣∣ρRi( f (R)) − ρRi( f (R′

i, R−i))
∣∣ ≤ 1 in each case. First, suppose (i). Then, the

lower contour set at f (R) is the same for Ri and R′
i. By (1), f (R) R′

i f (R′
i, R−i), and by

(2), we have f (R) = f (R′
i, R−i). Thus,

∣∣ρRi( f (R))− ρRi( f (R′
i, R−i))

∣∣ = 0 ≤ 1. Second,
suppose (ii). Then, the lower contour set at f (R′

i, R−i) is the same for Ri and R′
i. By

(2), f (R′
i, R−i) Ri f (R), and by (1), we have f (R) = f (R′

i, R−i). Thus,
∣∣ρRi( f (R)) −

ρRi( f (R′
i, R−i))

∣∣ = 0 ≤ 1. Third, suppose (iii). Then, the conclusion is immediate because
for each x, y ∈ X, if x ∈ A(Ri, R′

i) and y ∈ A(Ri, R′
i), then

∣∣ρRi(x)− ρRi(y)
∣∣ ≤ 1.

Next, we introduce a condition weaker than bounded response (and also strategy-proofness
by Proposition 3.1). For each pair of adjacent preferences Ri, R′

i ∈ L, the following parti-
tion of the set of alternatives is induced: (a) U(Ri, R′

i), the alternatives preferred to those
in A(Ri, R′

i) with respect to Ri or R′
i, (b) A(Ri, R′

i), the pair of alternatives whose ranks are
exchanged between Ri and R′

i, and (c) L(Ri, R′
i), the alternatives less preferred to those

in A(Ri, R′
i) with respect to Ri or R′

i. More formally, for each pair of adjacent prefer-
ences Ri, R′

i ∈ L, let U(Ri, R′
i) = {x ∈ X \ A(Ri, R′

i) | x Ri y for each y ∈ A(Ri, R′
i)}, and

L(Ri, R′
i) = {x ∈ X \ A(Ri, R′

i) | y Ri x for each y ∈ A(Ri, R′
i)}. (We note that U(Ri, R′

i) or
L(Ri, R′

i) may be empty.)
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This partition is illustrated by Figure 1, in which each column presents a preference,
and each column with dots represent parts of the orderings that are common to the two
preferences. The following condition, called same-sidedness condition, states that even if the
social choice changes by the agent i’s preferences changing from Ri to R′

i, these choices
should belong to the same partition element. Thus, two social choices should come on
the same side of A(Ri, R′

i).

Definition 3.1 (Same-sidedness condition). A SCF f satisfies same-sidedness condition if for
each R ∈ Ln, each i ∈ N, and each R′

i ∈ L such that Ri and R′
i are adjacent, the following

three conditions are true:

(a) f (R) ∈ U(Ri, R′
i) implies f (R′

i, R−i) ∈ U(Ri, R′
i),

(b) f (R) ∈ A(Ri, R′
i) implies f (R′

i, R−i) ∈ A(Ri, R′
i), and

(c) f (R) ∈ L(Ri, R′
i) implies f (R′

i, R−i) ∈ L(Ri, R′
i).

This condition is weak in that if f (R) ∈ U(Ri, R′
i) or f (R) ∈ L(Ri, R′

i), and the par-
tition element has more than two alternatives, then the difference in the ranks of f (R)

and f (R′
i, R−i) according to Ri may be larger than one. Indeed, we can show that same-

sidedness condition is implied by bounded response.4

Lemma 3.2. Bounded response implies same-sidedness condition.

Proof. Suppose that a SCF f satisfies bounded response. Let x ≡ f (R) and y ≡ f (R′
i, R−i).

By bounded response,

∣∣ρRi(y)− ρRi(x)
∣∣ ≤ 1, and (3)∣∣ρR′

i
(x)− ρR′

i
(y)

∣∣ ≤ 1. (4)

4Bounded response and same-sidedness condition are related to two conditions in the recent literature. First,
swap-monotonicity introduced by Mishra (2016) says that at an agent i’s preferences changing from Ri to an
adjacent R′

i, if f (R) ∈ A(Ri, R′
i), then f (R′

i, R−i) ∈ A(Ri, R′
i), and f (R) = f (R′

i, R−i) otherwise. Swap-
monotonicity is logically between strategy-proofness and bounded response. Although it is not explicitly stated,
it can be seen in Mishra (2016) that on the universal domain of preferences, swap-monotonicity and unanimity
imply dictatorship. Under bounded response, the social choice can change even if it is in the part which is
“irrelevant” from an agent’s preferences changing, while this cannot happen under swap-monotonicity. As
a result, bounded response and swap-monotonicity are distinct from each other in their normative meanings.
Also, as Example 3.1 in Section 3.3 will show, bounded response and unanimity do not necessarily imply
dictatorship.

Second, set-monotonicity introduced by Börgers (2015, Chapter 8) says that for each R ∈ Ln, i ∈ N, and
R′

i ∈ L (which may not be adjacent to Ri), if there exists a subset of alternatives Y ⊂ X such that f (R) ∈ Y,
and for each (x, x′) ∈ X2 with x ̸= x′, x Ri x′ and x′ R′

i x imply (x, x′) ∈ Y2, then f (R′
i, R−i) ∈ Y. It is

readily shown that set-monotonicity is logically equivalent to swap-monotonicity. Set-monotonicity (a necessary
condition of strategy-proofness) is used in the proof of the Gibbard–Satterthwaite theorem, but the proof
relies on other properties of strategy-proofness.
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First, suppose that x ∈ U(Ri, R′
i) and y ̸∈ U(Ri, R′

i). By inequality (3), y ∈ A(Ri, R′
i) and

ρRi(y)− ρRi(x) = 1. Then, ρR′
i
(x) = ρRi(x) and ρR′

i
(y) = ρRi(y) + 1, which contradicts

inequality (4). This shows (a). Second, suppose that x ∈ L(Ri, R′
i) and y ̸∈ L(Ri, R′

i). By
inequality (3), y ∈ A(Ri, R′

i) and ρRi(x)− ρRi(y) = 1. Then, ρR′
i
(x) = ρRi(x) and ρR′

i
(y) =

ρRi(y)− 1, which contradicts inequality (4). This shows (c). Finally, if x ∈ A(Ri, R′
i) and

y ∈ U(Ri, R′
i), (a) is violated when the roles Ri and R′

i are exchanged. If x ∈ A(Ri, R′
i)

and y ∈ L(Ri, R′
i), (c) is violated when the roles Ri and R′

i are exchanged. Therefore, (b)
holds.

Although same-sidedness condition might seem much weaker than strategy-proofness, it
is in fact unexpectedly strong. For example, the Borda rule fails to satisfy same-sidedness
condition on the universal domain of preferences. To see this, suppose that n = 2 and
m = 3 for simplicity. Let X = {x, y, z}. Let R ∈ L2 be such that y R1 x R1 z and
x R2 y R2 z. Two alternatives x and y have the same Borda count at this preference
profile. Assume that the tie-breaking rule chooses x without loss of generality. If agent
1’s preference changes from R1 to R′

1 such that y R′
1 z R′

1 x, the new social choice under
the Borda rule is y. Since R1 and R′

1 are adjacent and A(R1, R′
1) = {x, z}, same-sidedness

condition is violated.
The following Lemma reveals the strength of same-sidedness condition.

Lemma 3.3. If a SCF satisfies same-sidedness condition and efficiency then it is dictatorship.

The proof of Lemma 3.3 is given in Section 4. Our main theorem is an immediate
corollary of Lemmas 3.2 and 3.3:

Theorem 3.4. Bounded response and efficiency imply dictatorship.

Note that Theorem 3.4 (impossibility with bounded response) is logically weaker than
Lemma 3.3 (impossibility with same-sidedness condition). Nevertheless, we present the
impossibility with bounded response as our main result. This is because this axiom has a
transparent normative meaning, while same-sidedness condition is just a technical property
of SCFs.

3.2 Application

We consider a new condition related to incentives to misreport preferences. We assume
that the options for misrepresentation are restricted to the adjacent preferences to the true
one.
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In investigating an opportunity of profitable misrepresentation, it is natural to pay
particular attention to the alternatives whose ranks change by the misrepresentation. If
the social choice moves across such an alternative in terms of their ranks, then the agent
would find this change of the social choice significant or noticeable. Assume that agent
i does not have a time to consider every possible candidate of misrepresentation, or he
is reluctant to do so. Then, the agent misreports only when the misreport improves the
social choice significantly in the above sense.

We do not argue that the agents always behave in this way. However, we believe that
the above setting is plausible in some cases, and it is interesting to see whether we can
construct a SCF which prevents such misrepresentation. The condition ensuring that each
agent reports his true preference in such a setting is the following.

We say that a SCF f satisfies weak AM-proofness if for each R ∈ Ln, each i ∈ N, and
each R′

i ∈ L which is adjacent to Ri, there exists no x ∈ A(Ri, R′
i) such that f (R′

i, R−i) Ri

x Ri f (R) and f (R) ̸= f (R′
i, R−i).5

Since it can be readily seen that weak AM-proofness implies same-sidedness condition, we
have the following corollary of Lemma 3.3.

Corollary 3.5. If a SCF satisfies weak AM-proofness and efficiency, then it is dictatorship.

3.3 Unanimity

A SCF f satisfies unanimity if for each R ∈ Ln and each x ∈ X such that r1(Ri) = x for
each i ∈ N, f (R) = x. We note that unanimity follows from efficiency. Since the Gibbard–
Satterthwaite theorem shows that strategy-proofness and unanimity imply dictatorship, it
is of interest to ask whether bounded response and unanimity imply dictatorship. We have
a negative answer to this question, as the following counterexample shows.

Example 3.1. Suppose n = 3 and m = 4. Consider the following SCF f . For each R ∈ Ln,

(a) if
∣∣{r1(R1), r1(R2), r1(R3)}

∣∣ = 1, then f (R) = r1(R1).

(b) if
∣∣{r1(R1), r1(R2), r1(R3)}

∣∣ = 2, then f (R) = r1(Ri) where there exist i, j, k ∈ N such
that {i, j, k} = N and r1(Ri) ̸= r1(Rj) = r1(Rk).

(c) if
∣∣{r1(R1), r1(R2), r1(R3)}

∣∣ = 3, then f (R) = w where w is the unique alternative in
X \ {r1(R1), r1(R2), r1(R3)}.

5In Sato (2013), a SCF f satisfies AM-proofness if for each R ∈ Ln, each i ∈ N, and each R′
i ∈ L which

is adjacent to Ri, it is not the case that f (R′
i, R−i) Ri f (R) and f (R) ̸= f (R′

i, R−i). Here, “AM” stands for
Adjacent Manipulation.
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We explain this SCF in words. If the three agents agree on the best alternative, that alter-
native is chosen. If exactly two of them agree on the best alternative, the best alternative
for the remaining agent is chosen. If the best alternatives for the three agents are distinct
from each other, the alternative which is not the best for any of them is chosen.

By (a), f satisfies unanimity. Let us show that f satisfies bounded response.
For each preference profile R ∈ L3, let T(R) = {r1(R1), r1(R2), r1(R3)} ⊂ X be the set

of top alternatives. Let R ∈ L3 and i ∈ N. Since f depends only on the top alternatives, it
suffices to consider the flip between the top alternative and the second-best one. Let R′

i ∈
L be the preference adjacent to Ri obtained by flipping r1(Ri) and r2(Ri). We consider
three cases in order.

CASE a: Suppose that
∣∣T(R)

∣∣ = 1. Then,
∣∣T(R′

i, R−i)
∣∣ = 2, and f (R′

i, R−i) = r1(R′
i) =

r2(Ri), as required by bounded response.

CASE b: Suppose that
∣∣T(R)

∣∣ = 2.
SUBCASE b.1: If

∣∣T(R′
i, R−i)

∣∣ = 1, bounded response holds by Case a.
SUBCASE b.2: Suppose that

∣∣T(R′
i, R−i)

∣∣ = 2, that is, there exist j, k ∈ N \ {i} such
that r1(Ri) = r1(Rj) ̸= r1(Rk) = r1(R′

i). Then, f (R) = r1(Rk) = r1(R′
i) = r2(Ri), and

f (R′
i, R−i) = r1(Rj) = r1(Ri), as required by bounded response.
SUBCASE b.3: Suppose that

∣∣T(R′
i, R−i)

∣∣ = 3, that is, there exist j, k ∈ N \ {i} such
that r1(Ri) = r1(Rj) ̸= r1(Rk) and r1(R′

i) = r2(Ri) ∈ X \ T(R). Then, f (R) = r1(Rk) ∈
X \ {r1(Ri), r2(Ri)}, and f (R′

i, R−i) ∈ X \ {r1(R′
i), r1(Rj), r1(Rk)} ⊂ X \ {r1(Ri), r2(Ri)}.

Thus, { f (R), f (R′
i, R−i)} ⊆ {r3(Ri), r4(Ri)}, as required by bounded response.

CASE c: Suppose that
∣∣T(R)

∣∣ = 3. Then,
∣∣T(R′

i, R−i)
∣∣ ≥ 2.

SUBCASE c.1: If
∣∣T(R′

i, R−i)
∣∣ = 2. bounded response holds by Subcase b.3.

SUBCASE c.2: Suppose that
∣∣T(R′

i, R−i)
∣∣ = 3, that is, r1(R′

i) = r2(Ri) ∈ X \ T(R).
Then, f (R) = r2(Ri) and f (R′

i, R−i) = r2(R′
i) = r1(Ri), as required by bounded response.

Therefore, f satisfies bounded response.

Let X = {x, y, z, w}. In Example 3.1, if R = (R1, R2, R3) is such that r1(R1) = x,
r1(R2) = y, r1(R3) = z, and r4(R1) = r4(R2) = r4(R3) = w, then f (R) = w. This
is somewhat curious in that the worst alternative w is chosen even if the agents unani-
mously agree that the best three alternatives are x, y, and z. In fact, we can show that
a strengthened version of unanimity, which excludes such cases, is enough to obtain the
impossibility result.

We say that a SCF f satisfies strong unanimity if f satisfies unanimity, and for each
R ∈ Ln and each x, y, z ∈ X such that {r1(Ri), r2(Ri), r3(Ri)} = {x, y, z} for each i ∈ N,
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f (R) ∈ {x, y, z}. Strong unanimity follows from efficiency.6

Proposition 3.6. If a SCF satisfies same-sidedness condition and strong unanimity, then it
is dictatorship.

Proof. See the supplementary note Muto and Sato (2016c).

By the definition of strong unanimity, if m = 3, strong unanimity is trivially equivalent
to unanimity. Also, if n = 2, same-sidedness condition and unanimity imply strong unanimity.
Hence, we have the following corollary.

Corollary 3.7. Suppose that n = 2 or m = 3. If a SCF satisfies same-sidedness condition and
unanimity, then it is dictatorship.

Proof. It suffices to show that if n = 2, same-sidedness condition and unanimity imply strong
unanimity.

Suppose that n = 2. Let f be a SCF satisfying same-sidedness condition and unanimity.
Let (R1, R2) ∈ L2 be such that {r1(R1), r2(R1), r3(R1)} = {r1(R2), r2(R2), r3(R2)}, which
implies ρR1(r

1(R2)) ≤ 3. Let R′
1 ∈ L be the preference such that r1(R′

1) = r1(R2), and
x R′

1 y if and only if x R1 y for each pair x, y ∈ X \ {r1(R2)}. By unanimity, f (R′
1, R2) =

r1(R2). By Definition 3.1 (a) and (b), ρR1(r
1(R2)) = ρR1( f (R′

1, R2)) ≥ ρR1( f (R1, R2)).
Since ρR1(r

1(R2)) ≤ 3, we have ρR1( f (R1, R2)) ≤ 3. Hence, f satisfies strong unanimity.

3.4 Restricted domains

So far, we considered the universal domain of preferences L. It is natural to ask if the im-
possibility result of Theorem 3.4 holds on restricted domains. We provide two examples
of restricted domains on which the possibility result holds when n = 3 and m = 4.

The first example is a domain on which unanimity and strategy-proofness imply dictator-
ship. Thus, the possibility on this domain suggests a distance between strategy-proofness
and bounded response.

Example 3.2. Suppose that X is indexed as {x1, x2, . . . , xm}. For each pair of integers
ℓ, ℓ′, let xℓ′ = xℓ if ℓ′ ≡ ℓ mod m.7 Let D ⊂ L be the restricted domain of preferences

6Thus, Theorem 3.4 is a corollary of Proposition 3.6. We nevertheless place Theorem 3.4 as the main
theorem because efficiency is the standard axiom while strong unanimity is not. Moreover, the proof with
strong unanimity is more complicated than the proof with efficiency.

7For each pair of integers k, k′ and each positive integer K, k′ ≡ k mod K if and only if k′− k is a multiple
of K.
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R ∈ L such that there exists an integer ℓ satisfying r1(R) = xℓ and r2(R) ∈ {xℓ−1, xℓ+1}.
This domain D is a circular domain (Sato, 2010), and on a circular domain, unanimity and
strategy-proofness imply dictatorship.

Suppose that n = 3 and m = 4. Consider the SCF f defined as follows. For each
R = (R1, R2, R3) ∈ D3,

(a) if there exist i, j ∈ N such that i ̸= j and r1(Ri) = r1(Rj), then f (R) = r1(Ri), and

(b) otherwise, there exists an integer ℓ such that {r1(R1), r1(R2), r1(R3)} = {xℓ−1, xℓ, xℓ+1}.
We define f (R) = xℓ in this case.

This SCF f depends only on the profile of top alternatives (r1(R1), r1(R2), r1(R3)). If at
most two alternatives appear in this profile, then f (R) is defined by the plurality rule.
If not, f (R) is determined by the tie-breaking rule which picks the “middle” one among
three. Since for each R ∈ D3 there exists i ∈ N such that f (R) = r1(Ri), the SCF f satisfies
efficiency. Let us observe that f satisfies bounded response.

For each preference profile R ∈ D3, let T(R) = {r1(R1), r1(R2), r1(R3)} ⊂ X be the set
of top alternatives. Let R ∈ D3 and i ∈ N. Since f depends only on the top alternatives, it
suffices to consider for each agent a flip between the top alternative and the second-best
one. Let R′

i ∈ D be the preference adjacent to Ri given by flipping r1(Ri) and r2(Ri). We
consider two cases.

CASE a: Suppose that
∣∣T(R)

∣∣ ≤ 2.
SUBCASE a.1: If

∣∣T(R)
∣∣ = 1 or

∣∣T(R′
i, R−i)

∣∣ = 1, then f (R) = f (R′
i, R−i). Bounded

response is trivial in this case.
SUBCASE a.2: Suppose that

∣∣T(R)
∣∣ = ∣∣T(R′

i, R−i)
∣∣ = 2 and f (R) ̸= f (R′

i, R−i), that
is, there exist j, k ∈ N \ {i} such that r1(Ri) = r1(Rj) ̸= r1(Rk) = r1(R′

i). Then, f (R) =

r1(Ri), and f (R′
i, R−i) = r1(R′

i) = r2(Ri). Bounded response holds.
SUBCASE a.3: Suppose that

∣∣T(R)
∣∣ = 2 and

∣∣T(R′
i, R−i)

∣∣ = 3, that is, there exist
j, k ∈ N \ {i} such that r1(Ri) = r1(Rj) ̸= r1(Rk) and r1(R′

i) = r2(Ri) ∈ X \ T(R).
Then, f (R) = r1(Ri).

Let r1(Ri) = xℓ. By the definition of D, r1(R′
i) = r2(Ri) ∈ {xℓ−1, xℓ+1}. First, suppose

that r1(R′
i) = xℓ−1. Then, r1(Rk) = xℓ+1 or xℓ−2, and f (R′

i, R−i) = xℓ or xℓ−1. This implies
that f (R′

i, R−i) = r1(Ri), or f (R′
i, R−i) = r1(R′

i) = r2(Ri). Bounded response holds in either
case. Next, suppose that r1(R′

i) = xℓ+1. Then, r1(Rk) = xℓ+2 or xℓ−1, and f (R′
i, R−i) =

xℓ+1 or xℓ. This implies that f (R′
i, R−i) = r1(R′

i) = r2(Ri), or f (R′
i, R−i) = r1(Ri). Bounded

response holds in either case.

CASE b: Suppose that
∣∣T(R)

∣∣ = 3. Then,
∣∣T(R′

i, R−i)
∣∣ ≥ 2.
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SUBCASE b.1: If
∣∣T(R′

i, R−i)
∣∣ = 2, then bounded response holds by Subcase a.3.

SUBCASE b.2: Suppose that
∣∣T(R′

i, R−i)
∣∣ = 3, that is, r1(R′

i) = r2(Ri) ∈ X \ T(R).
Let r1(Ri) = xℓ. By the definition of D, r1(R′

i) = r2(Ri) ∈ {xℓ−1, xℓ+1}. First, suppose
that r1(R′

i) = xℓ−1. Then, {r1(Rj), r1(Rk)} = {xℓ+1, xℓ+2}. We have f (R) = xℓ+1 and
f (R′

i, R−i) = xℓ+2. Thus, { f (R), f (R′
i, R−i)} ⊆ {r3(Ri), r4(Ri)}. Bounded response holds in

this case. Next, suppose that r1(R′
i) = xℓ+1. Then, {r1(Rj), r1(Rk)} = {xℓ−1, xℓ−2}. We

have f (R) = xℓ−1 and f (R′
i, R−i) = xℓ−2. Thus, { f (R), f (R′

i, R−i)} ⊆ {r3(Ri), r4(Ri)}.
Bounded response holds in this case.

Therefore, f satisfies bounded response in all cases.

The second example is the single-peaked domain. On this domain, we provide a
nondictatorial SCF which satisfies bounded response and efficiency but violates strategy-
proofness. This also suggests a distance between strategy-proofness and bounded response.

Example 3.3. Suppose that n is odd, and m = 4. Let X = {x1, x2, x3, x4}, and D ⊂ L
be the single-peaked domain with respect to the above indexes, that is, D is the set of all
preferences R such that there exists k ∈ {1, 2, 3, 4} such that if 4 ≥ k > k′ > k′′ ≥ 1 or
1 ≤ k < k′ < k′′ ≤ 4, then xk′ R xk′′ . Consider the following SCF f . For each R ∈ Dn, if
there exists y ∈ X such that r1(Ri) = y for each i ∈ N, then f (R) = y. Otherwise,

(a) if
∣∣{i ∈ N | x1 Ri x4}

∣∣ ≥ (n + 1)/2, then

(i) if x2 is Pareto efficient at R, then f (R) = x2,

(ii) otherwise, x3 must be Pareto efficient at R,8 and f (R) = x3.

(b) if
∣∣{i ∈ N | x1 Ri x4}

∣∣ ≤ (n − 1)/2, then

(i) if x3 is Pareto efficient at R, then f (R) = x3,

(ii) otherwise, x2 must be Pareto efficient at R, and f (R) = x2.

This SCF f satisfies unanimity. Suppose that at a preference profile R, some agents dis-
agree with the most-preferred alternative. In this case, f (R) is defined by two steps.
Either x1 or x4 is the worst alternative at every preference in the single-peaked domain.
In the first step, agents determine the socially worst alternative by the plurality rule be-
tween x1 and x4. In the second step, the social alternative is chosen from {x2, x3} by the
rule which chooses the one “more distant” from the worst as long as it is efficient.

8If R ∈ Dn, either x2 or x3 is Pareto efficient at R. Suppose that neither x2 nor x3 is Pareto efficient. Then,
no agent ranks x2 or x3 at the top of his preference. Thus, for each i ∈ N, r1(Ri) = x1 or x4. Since the agents
do not agree on the best alternative, x2 Ri x3 Ri x4 for some i ∈ N, and x2 Rj x1 for some j ∈ N. Thus, x2 is
Pareto efficient, which is a contradiction.
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The SCF f satisfies efficiency by definition. f violates strategy-proofness because when
n = 3 and a preference profile R ∈ Ln satisfies x2 R1 x3 R1 x4 R1 x1, x2 R2 x3 R2 x1 R2 x4,
and x3 R3 x2 R3 x4 R3 x1, agent 1 may change the reported preference to R′

1 = R2 and can
manipulate the social choice from f (R) = x3 to f (R′

1, R−1) = x2.
Let us show that f satisfies bounded response. By symmetry, we can focus on the cases

in which f (R) ∈ {x1, x2}. First, suppose that f (R) = x1. By definition, r1(Ri) = x1 for
each i ∈ N. By the assumption of the single-peaked domain, x1 Ri x2 Ri x3 Ri x4 for each
i ∈ N. The only flip available in D is exchanging x1 and x2. This flip changes the social
choice to x2. Therefore, bounded response holds in this case.

Next, suppose that f (R) = x2. Let i ∈ N and R′
i ∈ L be adjacent to Ri. If f (R′

i, R−i) =

x1, then the flip between Ri and R′
i exchanges x1 and x2. Thus, bounded response holds in

this case. If f (R′
i, R−i) = x2 = f (R), then bounded response is trivial. If f (R′

i, R−i) = x4,
then x4 R′

i x3 R′
i x2 R′

i x1 and x4 Rj x3 Rj x2 Rj x1 for each j ∈ N \ {i}. The only flip
between Ri and R′

i available in D consists of exchanging x3 and x4, and thus f (R) = x3.
This contradicts the assumption f (R) = x2. Thus, we assume f (R′

i, R−i) = x3. We
consider three cases.

CASE 1: Suppose that either [x1 Ri x4 and x4 R′
i x1] or [x4 Ri x1 and x1 R′

i x4]. By the
assumption of the single-peaked domain, x1 and x4 are the bottom two alternatives at Ri

and R′
i. This implies that {r1(Ri), r2(Ri)} = {r1(R′

i), r2(R′
i)} = {x2, x3}. Thus, bounded

response holds. Therefore, in the following cases, we assume that either [x1 Ri x4 and
x1 R′

i x4] or [x4 Ri x1 and x4 R′
i x1].

CASE 2: Suppose that
∣∣{j ∈ N | x1 Rj x4}

∣∣ ≥ (n + 1)/2, x3 is inefficient at R, and x3

is efficient at (R′
i, R−i). If x4 Pareto dominates x3 at R, then x4 Rj x3 Rj x2 Rj x1 for each

j ∈ N. This contradicts f (R) = x2. If x1 Pareto dominates x3 at R, then x2 also Pareto
dominates x3 at R by the assumption of the single-peaked domain. Therefore, we assume
that x2 Pareto dominates x3 at R. Since x3 is efficient at (R′

i, R−i), x2 and x3 are exchanged
between Ri and R′

i, that is, x2 and x3 are consecutively ranked at Ri and R′
i. Thus, bounded

response holds.
CASE 3: Suppose that

∣∣{j ∈ N | x1 Rj x4}
∣∣ ≤ (n − 1)/2, x2 is efficient at R, and x2 is

inefficient at (R′
i, R−i). If x1 Pareto dominates x2 at (R′

i, R−i), then x1 R′
i x2 R′

i x3 R′
i x4

and x1 Rj x2 Rj x3 Rj x4 for each j ∈ N \ {i}. This contradicts f (R′
i, R−i) = x3. If

x4 Pareto dominates x2 at (R′
i, R−i), then x3 also Pareto dominates x2 at (R′

i, R−i) by the
assumption of the single-peaked domain. Therefore, we assume that x3 Pareto dominates
x2 at (R′

i, R−i). Since x2 is efficient at R, x2 and x3 are exchanged between Ri and R′
i, that

is, x2 and x3 are consecutively ranked at Ri and R′
i. Thus, bounded response holds.
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4 Proof

In this section, we prove Lemma 3.3 which immediately implies Theorem 3.4. We divide
the proof into several steps. Namely, we prove three Lemmas 4.1, 4.2, and 4.3 as mile-
stones of the proof, and then show Lemma 3.3. Each of Lemmas 4.1, 4.2, and 4.3 states
that there exists a dictator i∗ in a certain special situation.

Lemma 4.1. Suppose that a SCF f satisfies same-sidedness condition and efficiency. For each
R̄ ∈ L, there exists an agent i∗ ∈ N such that for each R̄−i∗ ∈ Ln−1 satisfying r1(R̄j) = r2(R̄)
and rm(R̄j) = r1(R̄) for each j ∈ N \ {i∗}, we have f (R̄, R̄−i∗) = r1(R̄).

We use figures to illustrate preference profiles. For example, the situation considered
in the statement of Lemma 4.1 is illustrated by Figure 2, which is interpreted as follows.
For each R̄ ∈ L, let x = r1(R̄), y = r2(R̄), and the cells with vertical dots represent
arbitrary alternatives. Then, Lemma 4.1 says that for each preference R̄ ∈ L, there exists
a dictator i∗ ∈ N when the top alternative in every other agent’s preference is y, and the
bottom alternative in every other agent’s preference is x. Since i∗ is the dictator in this
situation, the social choice is x. In Figure 2 and those in the subsequent proofs, the square
brackets indicate the social choice at the preference profile specified by the figure.

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

y · · · y [x] y · · · y
... · · · ... y

... · · · ...
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

[x] · · · [x]
... [x] · · · [x]

Figure 2:

To show Lemma 4.1, we basically follow the proof strategy of Steps 1–4 in Reny (2001)
who proved the Gibbard–Satterthwaite theorem. Since some manipulation in Reny (2001)
is not applicable under bounded response, we focus on the top three alternatives in steps 1–
3, and then consider every alternative in X. In the following proof, the numbers of the
steps correspond to those in Reny (2001).

Proof of Lemma 4.1. Fix a preference R̄ ∈ L arbitrary. Let x ≡ r1(R̄), y ≡ r2(R̄), and
z ≡ r3(R̄).

STEP 1: We start with a preference profile in which every agent’s preference is R ∈ L
such that r1(R) = x, r2(R) = z, r3(R) = y, and rk(R) = rk(R̄) for each k ≥ 4. By efficiency,
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the social choice is x. This setting is shown in Figure 3. Then, exchange x and z in agent

R · · · R R R · · · R

[x] · · · [x] [x] [x] · · · [x]
z · · · z z z · · · z
y · · · y y y · · · y
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 3:

1’s preference. By efficiency, the social choice is x or z. If it is x, exchange x and z in agent
2’s preference. If it is x, repeat the same procedure until for some i∗ ∈ N, the social choice
becomes z. We eventually obtain Figures 4 and 5.

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

z · · · z [x] [x] · · · [x]
[x] · · · [x] z z · · · z
y · · · y y y · · · y
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 4:

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

[z] · · · [z] [z] x · · · x
x · · · x x [z] · · · [z]
y · · · y y y · · · y
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 5:

STEP 2: In Figure 5, exchange z and y in the preferences of agents i∗ + 1 to n. By
Definition 3.1 (b), the social choice is z or y, and by efficiency, the social choice is z. We
have Figure 6. In Figure 6, exchange x and y in the preferences of agents 1 to i∗ − 1, and

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

[z] · · · [z] [z] x · · · x
x · · · x x y · · · y
y · · · y y [z] · · · [z]
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 6:

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

[z] · · · [z] [z] y · · · y
y · · · y x x · · · x
x · · · x y [z] · · · [z]
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 7:

also exchange x and y in the preferences of agents i∗ + 1 to n. By Definition 3.1 (a) and
(c), the social choice is neither x nor y, and by efficiency, the social choice is z. We have
Figure 7.
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In Figure 7, exchange z and x in agent i∗’s preference. By Definition 3.1 (b), the social
choice is x or z. We can show that it is x: If it is z, exchange y and x in the preferences of
agents i∗ + 1 to n, exchange y and x in the preferences of agents 1 to i∗ − 1, and exchange
y and z in the preferences of agents i∗ + 1 to n. Because of efficiency and Definition 3.1, the
social choice remains z. Since it returns to Figure 4 in which the social choice is x, this is a
contradiction. Therefore, we have Figure 8.

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

z · · · z [x] y · · · y
y · · · y z [x] · · · [x]
[x] · · · [x] y z · · · z
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 8:

STEP 3: In Figure 8, exchange z and y in the preferences of agents 1 to i∗ − 1, and also
i∗. The social choice is neither z nor y by Definition 3.1 (a) and (c), and by efficiency, the
social choice remains x. We have Figure 9.

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

y · · · y [x] y · · · y
z · · · z y [x] · · · [x]
[x] · · · [x] z z · · · z
... · · · ...

...
... · · · ...

... · · · ...
...

... · · · ...

Figure 9:

R1 · · · Ri∗−1 Ri∗ Ri∗+1 · · · Rn

y · · · y [x] y · · · y
z · · · z y z · · · z
... · · · ... z

... · · · ...
... · · · ...

...
... · · · ...

[x] · · · [x]
... [x] · · · [x]

Figure 10:

STEP 4: In Figure 9, lower the positions of x to the bottom in the preferences of the
agents except for i∗. By Definition 3.1 (b), the social choice cannot be y and by efficiency,
the social choice remains x. We have Figure 10.

In Figure 10, shuffle the alternatives in X \ {x, y} in the preferences except for that of
agent i∗, so that for each j ∈ N \ {i∗}, the preference of agent j becomes R̄j. By efficiency,
the social choice is either x or y in the entire process of shuffling, and by Definition 3.1 (c),
the social choice cannot be y. Hence, the resulting social choice is f (R̄, R̄−i∗) = x =

r1(R̄).
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The above proof of Lemma 4.1 has followed the proof strategy of Steps 1–4 in Reny
(2001). The proof of Reny (2001) proceeds to his last step, which cannot be directly applied
to the setting with bounded response. We instead prove the next lemma which states that
for each preference R̄ ∈ L, there exists a dictator i∗ ∈ N under an assumption that the
bottom alternative in every other agent’s preference is the top in i∗’s.

Lemma 4.2. Suppose that a SCF f satisfies same-sidedness condition and efficiency. For each
R̄ ∈ L, there exists an agent i∗ ∈ N such that for each R̄−i∗ ∈ Ln−1 satisfying rm(R̄j) = r1(R̄)
for each j ∈ N \ {i∗}, we have f (R̄, R̄−i∗) = r1(R̄).

Given Lemma 4.1, the above Lemma 4.2 says that in the situation of Figure 2, the
social choice remains the same if the position of y in the preference of agent j ∈ N \ {i∗}
is lowered while x stays at the bottom in the preference of j. If monotonicity is assumed as
in Reny (2001) (or swap-monotonicity in Mishra (2016)), Lemma 4.2 is immediate because
the upper contour set of the social choice is unchanged by such a manipulation. Under
bounded response, however, Lemma 4.2 is fairly nontrivial.

proof of Lemma 4.2. Fix R̄ ∈ L arbitrarily. Let x ≡ r1(R̄) and y ≡ r2(R̄). Let i∗ ∈ N be
the agent given in Lemma 4.1. For each preference profile R−i∗ ∈ Ln−1, let τ(R−i∗) =

∑j∈N\{i∗} ρRj(y).
We prove the lemma by induction. The following induction base is given by Lemma 4.1:

THE INDUCTION BASE: For each R̄−i∗ ∈ Ln−1, if rm(R̄j) = x for each j ∈ N \ {i∗}, and
τ(R̄−i∗) = n − 1, then f (R̄, R̄−i∗) = x.

The induction proceeds with the following hypothesis and step.

THE INDUCTION HYPOTHESIS: For each R̄−i∗ ∈ Ln−1, if rm(R̄j) = x for each j ∈ N \ {i∗},
and τ(R̄−i∗) = t (where n − 1 ≤ t ≤ (m − 1)(n − 1)− 1), then f (R̄, R̄−i∗) = x.

THE INDUCTION STEP: For each R̄−i∗ ∈ Ln−1, if rm(R̄j) = x for each j ∈ N \ {i∗}, and
τ(R̄−i∗) = t + 1, then f (R̄, R̄−i∗) = x.

Fix R̄−i∗ ∈ Ln−1 such that τ(R̄−i∗) = t+ 1, arbitrarily. We assume that f (R̄, R̄−i∗) ̸= x,
and derive a contradiction.

STEP 1: We show that f (R̄, R̄−i∗) ̸= y.
Assume f (R̄, R̄−i∗) = y. Since t + 1 ≥ (n − 1) + 1, there exist j ∈ N \ {i∗} and
k ≥ 2 such that y = rk(R̄j). Let Rj ∈ L be the preference obtained by exchang-
ing the ranks of rk−1(R̄j) and y = rk(R̄j) in R̄j. Since x = rm(R̄j) ̸= rk−1(R̄j), by
Definition 3.1 (b), we have f (R̄, Rj, R̄−(i∗,j)) ̸= x. Because τ(Rj, R̄−(i∗,j)) = t, this
contradicts the induction hypothesis.
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STEP 2: We show that for each j ∈ N \ {i∗}, ρR̄j
(y) < ρR̄j

(
f (R̄, R̄−i∗)

)
.

By Step 1, this inequality is immediate if ρR̄j
(y) = 1. Assume that there exists

j ∈ N \ {i∗} such that ρR̄j
(y) = k ≥ 2 and k ≥ ρR̄j

(
f (R̄, R̄−i∗)

)
. Let Rj ∈ L

be the preference obtained by exchanging the ranks of rk−1(R̄j) and y = rk(R̄j) in
R̄j. Then by Definition 3.1 (a) and (b), f (R̄, Rj, R̄−(i∗,j)) ̸= x (= rm(R̄j)). Because
τ(Rj, R̄−(i∗,j)) = t, this contradicts the induction hypothesis.

STEP 3: We derive a contradiction.
Since rm(R̄j) = x for each j ∈ N \ {i∗}, ρR̄j

(y) ≤ m − 1. By Step 2, ρR̄j
(y) <

ρR̄j

(
f (R̄, R̄−i∗)

)
for all j ∈ N \ {i∗}. Since we assumed f (R̄, R̄−i∗) ̸= x, we also have

ρR̄(y) < ρR̄
(

f (R̄, R̄i∗)
)
. These inequalities contradict efficiency.

Therefore, the induction step is shown. This completes the proof.

Next, we show the following lemma, which states that for each preference R̄ ∈ L,
agent i∗ given in Lemma 4.2 is the dictator when i∗’s preference is R̄.

Lemma 4.3. Suppose that a SCF f satisfies same-sidedness condition and efficiency. For each
R̄ ∈ L, there exists an agent i∗ ∈ N such that for each R̄−i∗ ∈ Ln−1, we have f (R̄, R̄−i∗) =

r1(R̄).

Given Lemma 4.2, the above Lemma 4.3 says that the social choice remains the same
if the position of the bottom alternative, which equals the social choice, in the preference
of agent j ∈ N \ {i∗} is raised. If monotonicity is assumed as in Reny (2001), Lemma 4.3 is
immediate because the upper contour set of the social choice is reduced by such a change.
Under bounded response, however, Lemma 4.3 needs an elaborate proof.

proof of Lemma 4.3. Fix a preference R̄ ∈ L arbitrarily. Let x = r1(R̄). Let i∗ ∈ N be the
agent given in Lemma 4.2. For each R−i∗ ∈ Ln−1, let σ(R−i∗) = ∑j∈N\{i∗} ρRj(x).

We prove the theorem by induction. The following induction base is given by Lemma 4.2:

THE INDUCTION BASE: For each R̄−i∗ ∈ Ln−1, if σ(R̄−i∗) = (n − 1)m, then f (R̄, R̄−i∗) =

x.

The induction proceeds with the following hypothesis and step.

THE INDUCTION HYPOTHESIS: For each R̄−i∗ ∈ Ln−1, if σ(R̄−i∗) = t (where n ≤ t ≤
(n − 1)m), then f (R̄, R̄−i∗) = x.

THE INDUCTION STEP: For each R̄−i∗ ∈ Ln−1, if σ(R̄−i∗) = t − 1, then f (R̄, R̄−i∗) = x.
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Fix R̄−i∗ ∈ Ln−1 such that σ(R̄−i∗) = t − 1 arbitrarily. Let y = f (R̄, R̄−i∗). Let J1 =

{j ∈ N \ {i∗} | ρR̄j
(x) ≤ m − 2}, J2 = {j ∈ N \ {i∗} | ρR̄j

(x) = m − 1}, and J3 = {j ∈
N \ {i∗} | ρR̄j

(x) = m}. Since σ(R̄−i∗) = t − 1 < m(n − 1), J1 ∪ J2 ̸= ∅.
We assume that y ̸= x and derive a contradiction.

STEP 1: We show that for each j ∈ J1 ∪ J2, if x = rk(R̄j), then y = rk+1(R̄j).
Assume not. Then, there exist j ∈ J1 ∪ J2 and z ̸= y such that x = rk(R̄j), and

z = rk+1(R̄j). Let Rj be the preference obtained by exchanging the ranks of x and z in
R̄j. Then, because of Definition 3.1 (a) and (c), f (R̄, Rj, R̄−(i∗,j)) ̸∈ {x, z}. This contra-
dicts the induction hypothesis Because σ(Rj, R̄−(i∗,j)) = t, this contradicts the induction
hypothesis.

Therefore, we have Figure 11. Since the choice of R̄−i∗ was arbitrary, we have shown
that for each j ∈ N \ {i∗} and each R−i∗ ∈ Ln−1 such that f (R̄, R−i∗) ̸= x and σ(R−i∗) =

t − 1, if there exists k ≤ m − 1 such that rk(Rj) = x, then rk+1(Rj) = f (R̄, R−i∗).

i∗ J1 J2 J3

x
... · · · ...

... · · · ...
... · · · ...

... x · · · ...
... · · · ...

... · · · ...
... [y] · · · x

... · · · ...
... · · · ...

...
... · · · [y]

... · · · ...
... · · · ...

...
... · · · ...

... · · · ...
... · · · ...

...
... · · · ... x · · · x

... · · · ...
...

... · · · ... [y] · · · [y] x · · · x

Figure 11:

i∗ J2 J3

x
... · · · ...

... · · · ...
...

... · · · ...
... · · · ...

... x · · · x
... · · · ...

... [y] · · · [y] x · · · x

Figure 12:

STEP 2: We show that J1 ̸= ∅.
Assume J1 = ∅. Since J1 ∪ J2 ̸= ∅, then J2 ̸= ∅. We have Figure 12. For each j ∈ J3,

lower the rank of y to the penultimate position in agent j’s preference. By Definition 3.1 (a)
and (b), the resulting social choice cannot be x. Since J2 ̸= ∅, Step 1 shows that the social
choice remains y. By efficiency, r2(R̄) = y. Letting z = r3(R̄), we have Figure 13. In
Figure 13, exchange the ranks of y and z in the preference of agent i∗. By Definition 3.1 (b),
the social choice is y or z, and by efficiency, it is z. We have Figure 14.

In Figure 14, exchange the ranks of x and y in R̄j for some j ∈ J2. By Definition 3.1 (a),
the resulting social choice cannot be x. Next, exchange the ranks of z and y in the pref-
erence of agent i∗. By Definition 3.1 (b) and (c), the resulting social choice cannot be x.
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i∗ J2 J3

x
... · · · ...

... · · · ...

[y]
... · · · ...

... · · · ...
z x · · · x [y] · · · [y]
... [y] · · · [y] x · · · x

Figure 13:

i∗ J2 J3

x
... · · · ...

... · · · ...

[z]
... · · · ...

... · · · ...
y x · · · x y · · · y
... y · · · y x · · · x

Figure 14:

Because the value of σ is t after the these manipulations, this contradicts to the induction
hypothesis. Therefore, J1 ̸= ∅.

STEP 3: We show that J2 = ∅ and there exists j∗ ∈ N \ {i∗} such that J1 = {j∗}
arbitrarily.

By Step 2, J1 ̸= ∅. Fix j∗ ∈ J1. Let rk(R̄j∗) = x and w = rk+2(R̄j∗). We have Figure 15,
in which the left column in J1 represents agent j∗’s preference. In Figure 15, exchange the
ranks of y and w in R̄j∗ . By Definition 3.1 (b), the social choice is y or w, and by Step 1, the
social choice is w. Assume that (J1 ∪ J2) \ {j∗} ̸= ∅, and fix j ∈ (J1 ∪ J2) \ {j∗}. Since the
social choice is not y, this contradicts Step 1. Therefore, J1 = {j∗} and J2 = ∅. We have
Figure 16.

i∗ J1 J2 J3

x
... · · · ...

... · · · ...
... · · · ...

... x · · · ...
... · · · ...

... · · · ...
... [y] · · · x

... · · · ...
... · · · ...

... w · · · [y]
... · · · ...

... · · · ...
...

... · · · ... x · · · x
... · · · ...

...
... · · · ... [y] · · · [y] x · · · x

Figure 15:

i∗ j∗ J3

x
...

... · · · ...
... x

... · · · ...
... [y]

... · · · ...
... w

... · · · ...
...

...
... · · · ...

...
... x · · · x

Figure 16:

STEP 4: We derive a contradiction.
In Figure 16, raise the rank of y until the rank of y exceeds the rank of w = rk+2(R̄j∗)

in the preference of each j ∈ J3. (If y’s rank exceeds w’s rank in the initial preference, then
do nothing.) By Step 1, the resulting social choice is y or x, and by Definition 3.1 (a) and
(b), the social choice is y. Next, lower the rank of w to the penultimate position in the
preference of each j ∈ J3. By Definition 3.1 (a), the resulting social choice cannot be x.
Step 1 implies that it remains y. As a result, we have Figure 17.
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i∗ j∗ J3

x
...

... · · · ...
... x

... · · · ...
... [y]

... · · · ...
... w

... · · · ...
...

... w · · · w
...

... x · · · x

Figure 17:

i∗ j∗ J3

x
...

... · · · ...
... x

... · · · ...
... [y]

... · · · ...
... w

... · · · ...
...

... x · · · x
...

... w · · · w

Figure 18:

i∗ j∗ J3

x
...

... · · · ...
... x

... · · · ...
... w

... · · · ...
... [y]

... · · · ...
...

... x · · · x
...

... w · · · w

Figure 19:

i∗ j∗ J3

x
...

... · · · ...
... x

... · · · ...
... w

... · · · ...
... y

... · · · ...
...

... w · · · w
...

... x · · · x

Figure 20:

In Figure 17, for each j ∈ J3, exchange the ranks of w and x in the preference of j. By
Definition 3.1 (a), the social choice cannot be x or w. We can show that it is y: Suppose
that the social choice changes to some alternative distinct from y. Then, exchange the
ranks of x and y in R̄j∗ . By Definition 3.1 (a) and (c), the social choice cannot be x, and by
efficiency, it cannot be w. Exchange the ranks of w and x in the preference of each j ∈ J3. By
Definition 3.1 (a), the social choice cannot be x. This contradicts the induction hypothesis.
Thus, the social choice must be y after the above changes. We have Figure 18.

In Figure 18, exchange the ranks of y and w in R̄j∗ . By Definition 3.1 (b), the social
choice is y or w, and by efficiency, the social choice y. We have Figure 19. In Figure 19, for
each j ∈ J3, exchange the ranks of x and w in the preference of j. By Definition 3.1 (b), the
resulting social choice should not be x or w. We have Figure 20. Since the value of σ in
the preference profile presented in Figure 20 is t − 1, this contradicts Step 1.

Hence, we have y = x.

Finally, we prove Lemma 3.3.

Proof of Lemma 3.3. By Lemma 4.3, for each R̄ ∈ L, there exists a dictator i∗ ∈ N at R̄, i.e.,
there exists an agent i∗ ∈ N such that f (R̄, R−i∗) = r1(R̄) for each R−i∗ ∈ Ln−1. We show
that such an agent i∗ is determined independent of the choice of R̄.

Suppose that i∗ ∈ N is the dictator at R̄ ∈ L, and j∗ ∈ N is the dictator at R ∈ L.
Assume i∗ ̸= j∗. Then for each R−(i∗,j∗) ∈ Ln−2, f (R̄, R, R−(i∗,j∗)) = r1(R̄) because i∗ is the
dictator, and also f (R̄, R, R−(i∗,j∗)) = r1(R) because j∗ is the dictator. Thus, r1(R̄) = r1(R).
Take a preference R′ ∈ L such that r1(R′) ̸= r1(R̄), and suppose that agent k∗ ∈ N is the
dictator at R′. Since r1(R′) ̸= r1(R̄), then k∗ = i∗, and also because r1(R′) ̸= r1(R), then
k∗ = j∗. This contradicts the assumption i∗ ̸= j∗.

Therefore, f is dictatorship.
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5 Concluding remarks

We have introduced a new axiom called bounded response, and proved that bounded response
and efficiency imply dictatorship. Since bounded response follows from strategy-proofness,
the Gibbard–Satterthwaite theorem is shown as a corollary of our impossibility result.
This result also suggests that even if profitable misrepresentation is permitted, the impos-
sibility is inevitable as long as the degree of the improvement due to the misrepresentation
is restricted.

On the universal domain, strategy-proofness is not a useful condition of nonmanipula-
bility in the sense that no plausible SCF satisfies it. As we mentioned in the Introduction,
there are recent researches investigating the result of weakening strategy-proofness in some
natural or interesting ways. Our result shows that as long as we want a deterministic SCF
on the universal domain, unfortunately, it is hard to find a useful nonmanipulability con-
dition except for some extreme ones.9 On the one hand, this might imply that we have
to be satisfied with SCFs satisfying necessary conditions for strategy-proofeness which are
not usually considered as nonmanipulability conditions. Examples of such conditions are
unanimity, efficiency, and weak monotonicity. On the other hand, this might imply the limit
of the classical social choice framework, and invite us to consider other models in which
the possibility of constructing nonmanipulable SCFs is not investigated very much. For
example, let us assume that agents have rankings over alternatives and evaluations, ei-
ther “acceptable” or “unacceptable”. This is the preference-approval model by Brams
and Sanver (2009). Among few papers considering nonmanipulability in the preference-
approval model, Erdamar et al. (2016) find some plausible rules satisfying an axiom called
evaluationwise strategy-proofness.
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