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Abstract

Network interoperability between platforms often comes in various possible con-
figurations, including industry-wide, coalition-based, and pairwise interoperability
arrangements. We present an approach to incorporate generalized configurations of
network interoperability into the analysis of price competition among any number
of symmetric platforms. Specifically, the network benefit received by consumers on
each platform increases with the effective network size of the platform, which is
determined by an interoperability matrix reflecting the connections between plat-
forms. Four key factors—the strength of interoperability, the shape of the network
externality function, the interoperability configuration, and the number of plat-
forms—jointly determine the equilibrium prices. Our findings show, among other
things, that increased interoperability strength tends to reduce prices and benefit
consumers when: (i) the network externality function exhibits strong increasing re-
turns to scale, or (ii) the interoperability configuration includes multiple coalitions.
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1 Introduction

Many industries are characterized by competing platform services that exhibit network
effects and network interoperability across platforms. In such settings, users who are
exclusively using a given platform exert network externalities to fellow users on the same
platform and, at a weaker extent, to users on other platforms.1 To fix idea, consider the
following examples:

• Interoperability mandates. Regulators may impose interoperability mandates such
that users on different platforms can directly interact and communicate with each
other. Examples include telecommunications, internet services (ISPs), and other
communication protocols.2

• Interface and format standardizations. Some platforms may adopt a set of stan-
dardized protocols of service provision, which allow network effects to be shared
within each coalition of platforms adopting the same standard. Examples include
the VHS-Betamax videotape format rivalry, and hardware interface standardization
(e.g., USB ports, audio jacks, and charging ports) for competing electronic devices.

• Data sharing arrangements. Data-driven network effects refer to virtuous cycles
whereby a firm learns from its customer usage data to improves its product, which
attracts more customers and allows it to collect even more data, and so on. In
this context, network interoperability occurs when data collected by one firm par-
tially allows another firm to improve its product, e.g., due to pairwise data sharing
agreements between firms.3

This article analyzes the implications of network interoperability on the price com-
petition outcome between platforms. There is by now a large literature on platforms
and interoperability, which we will briefly review later. The existing works focus on
the industry-wide interoperability, which is a reasonable description of some regulator-
imposed interoperability mandates, but arguably less so for other commonly observed
interoperability arrangements that arise from platforms engaging in coalition-based stan-
dardization or bilateral data sharing agreements. We develop a flexible modelling frame-
work that captures these by incorporating arbitrary configurations of interoperability
arrangements in a oligopolistic platform competition.

1Other existing terminologies include interconnectedness (Crémer et al., 2000), compatibility (Katz
and Shapiro, 1985), and horizontal interoperability (Bourreau and Krämer, 2022).

2A recent case in point is the EU Digital Market Act (DMA), which includes an interoperability obli-
gation for messenger services such as WhatsApp for basic communication functionalities (Scott Morton
et al., 2023; Hovenkamp, 2023). In the context of social media platforms such as Facebook and Twitter,
Scott Morton et al. (2023) also provide detail suggestions on how interoperability requirement can be
implemented for a set of standard functionalities (e.g., exchange of text, images, video, or calendar).

3For example, Everis et al. (2018) reveals a growing practice of B2B data-sharing between firms.
There are also several start-up firms that facilitate and support B2B data sharing (e.g., Bobsled, Priviti,
Vivli, and iGrant.io) and policy efforts in fostering such data sharing between businesses (e.g., GAIA-X
initiative in Europe).
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Our framework is built upon the seminal price competition model pioneered by Arm-
strong (2006) and recently enriched by Tan and Zhou (2021). There are n ≥ 2 one-sided
ex-ante symmetric platforms that compete for singlehoming users by setting participa-
tion prices in a fully covered market.4 Users on each platfom i enjoys network benefits
that is increasing (and possibly non-linear) in the effective network size they have access
to, which is a weighted sum of participation mass on platform i and also on other plat-
forms. We specify such weights by introducing an n-by-n interoperability matrix: each
of its entry specifies the strength of the interoperability connection between a given pair
of platform. Moreover, the formulation nests various natural interoperability configura-
tions as special cases, including zero interoperability, industry-wide, coalition-based, or
pairwise interoperability arrangements.

Our first result shows that the symmetric equilibrium price that emerges from platform
competition is conceptually similar to those obtained by Armstrong (2006) and Tan and
Zhou (2021), despite our generalization in network interoperabilities. Specifically, the
price equals a mark-up, due to market power associated with product differentiation,
minus a subsidy, reflecting the marginal network externalities with respect to changes in
effective network size. The key twist is our setting is that the subsidy term is augmented
by a translation ratio coefficient: it measures by how much a unit change in a platform’s
participation mass (as a result of own price change) translate into a change in its effective
network size. Intuitively, a smaller translation ratio means that the participation mass of
a platform is less relevant in determining the effective network size enjoyed by its users,
and so each platform has weaker incentives to subsidize and attract users, resulting in a
higher equilibrium price.

Our second set of results show that an increase in interoperability strength influ-
ence the equilibrium price via two distinct channels of effects: (i) changes in marginal
externalities, which depends on the shape of externality function; and (ii) changes in
the translation ratio, which depends on the connectivity structure of the interoperabil-
ity configuration considered. All else equal, if marginal externalities or translation ratio
decreases, it implies less subsidization by platforms so that equilibrium price increases.

To gain further insights, we first specialize to the standard case of an industry-wide
configuration, whereby the translation ratio is always decreasing in the interoperability
strength. This simplicity allows us to focus on the role played by the shape of externality
function. When the externality function is linear or concave, the marginal externality is
weakly decreasing: the two channels of effects are aligned so that equilibrium price in-
creases with interoperability strength. Conversely, when the externality function is highly
convex, the two channels have opposing effects so that the equilibrium price can decrease
with interoperability strength. We discuss how these findings relate to applications in
data-driven network effects and data learning curve.

4For clarity and notational simplicity, the main bulk of our analysis focuses on a one-sided setting
(with same-side network effects). We explain in Appendix A on how our analysis and insights easily
extend to multi-sided settings with cross-side network effects.
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We then specialize to the contrasting case of coalition-based configurations, whereby
the translation ratio is instead increasing in the interoperability strength, provided that
the network effect strong. When this happens, the equilibrium price will decrease with
interoperability strength, even if the network externality is linear (i.e., constant marginal
externality). Intuitively, a stronger interoperability within each coalition enhances the
extent of product complementarity between member platforms in the same coalition (given
the network effect is shared among themselves, and not with the rival coalitions). The
stronger this complementarity is, the greater the translation ratio is, thus resulting in
stronger incentives for each platform to cut price and expand its effective network size.

Our final set of results consider a comprehensive comparative statics by parameter-
izing all interoperability configurations that are admissible in our framework. For clar-
ity, we focus on the setting of four platforms and yield the following findings. First,
holding the total interoperability strength fixed, a more “narrow” allocation of the total
strength across potential interoperability connections leads to a lower equilibrium price.
As a case in point, the coalition and industry-wide configurations are respectively the
most narrow and the least narrow configurations, meaning that the equilibrium prices
in all other configurations are bounded between these two cases. Second, the results on
coalition interoperability stated in the previous paragraph is robust to the presence of
weak interoperability connections across coalitions. Finally, other pairwise interoperabil-
ity configurations lead to similar conceptual insights as the industry-wide and coalition
configurations.

1.1 Related Literature

This article contributes to the literature on one-sided and two-sided platform compe-
tition, which has examined the importance of network effects in driving the competition
outcome. Prominent early works include Caillaud and Jullien (2003), Rochet and Tirole
(2003, 2006), and Armstrong (2006), which has provided basic foundations for studying
pricing by monopoly and duopoly platforms. Jullien et al. (2021) provide a recent survey
on this literature. Our price competition model is built upon oligopolistic platform com-
petition model with singlehoming users as recently contributed by Tan and Zhou (2021).5

They provide important insights on the equilibrium pricing patterns and the impact of
platform entry, but they do not allow for network interoperability, which is our focus.

Our study also relates to the literature on network interoperability or compatibility,
pioneered by Katz and Shapiro (1985); Farrell and Saloner (1985, 1992). They use a static
Cournot model to examine the competitive effects of compatibility and firms’ incentives
for compatibility. Subsequent work extend this Cournot-based framework to consider

5Other recent competition models involving singlehoming users on both sides include Jullien and Pavan
(2019) and Karle et al. (2020), among others, while models featuring oligopolistic platform competition
include Correia-da Silva et al. (2019); Anderson and Peitz (2020); Tremblay et al. (2023); Teh et al.
(2023). We opt for the framework by Tan and Zhou (2021) primarily due to its tractability and flexibility
in terms of the network externality functions allowed.
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dynamic scenarios (Amir et al., 2021), asymmetric duopoly (Crémer et al., 2000), and
varied business models (Shekhar et al., 2022).

The most closely related to our study is the branch of the network interoperability
literature that is based on price competition (Doganoglu and Wright, 2006; Bourreau and
Krämer, 2022; Ekmekci et al., 2023; Peitz and Sato, 2023). Doganoglu and Wright (2006)
develop a one-sided Hotelling model, showing that symmetric firms have excessive incen-
tives for compatibility due to reduced price competition. Bourreau and Krämer (2022)
use a multi-period one-sided model to examine the trade-off between enhanced network
effects resulting from compatibility and diminished contestability due to decreased incen-
tives for multihoming. Two notable recent contributions are Ekmekci et al. (2023) and
Peitz and Sato (2023), who introduce oligopolistic models with asymmetric platforms to
study how does the extent of asymmetry affect the implications of interoperability on
user participation, price, and platform profit.6

A recurring reasoning in these existing studies is that an industry-wide interoperability
in a relatively symmetrical setting makes it less attractive for each individual platform to
subsidize and attract consumers, thus resulting in a higher price. Our results show that,
even in a symmetrical setting, this line of reasoning may be reversed in richer environments
involving non-linear network externalities and general interoperability configurations that
are not necessarily industry-wide. We then identify the mechanisms and conditions for
such reversal to occur. In terms of methodological contributions, we introduce a flexible
matrix-based approach to model arbitrary interoperability configurations. The interop-
erability matrix in our model is akin to an adjacency matrix in the analysis of social and
economic networks (see e.g., Jackson, 2008), which allows us to apply the concepts and
tools from that literature to obtain tractable results.

At a more general level, our application of data sharing between platforms also re-
lates to the growing literature on data-driven network effects and data-enabled learning.
Farboodi et al. (2019), Prüfer and Schottmüller (2021), and Hagiu and Wright (2023)
consider dynamic competition when data accumulation over time serves as competitive
advantage (in terms of either cost efficiency or product improvement) and examine the
tendency of market tipping.7 Bhargava et al. (2024) points out how an incumbent special-

6There are a few key differences in terms of how we capture network interoperability compared to
these two papers. Ekmekci et al. (2023) adopt the “net-fee” conduct approach in analyzing their model,
that is, the price charged to each user is such that the net utility is independent of the number of
users, which differs from the Nash-in-prices conduct adopted by, e.g., Armstrong (2006) and Tan and
Zhou (2021). Consequently, in their model all benefits of interoperability are accrued to the platforms.
Peitz and Sato (2023) focus on logarithmic externalities to operationalize the aggregative-game modelling
approach. They formulate interoperability as an additive sum of the values of network benefits across
platforms, as opposed to our formulation based on effective network sizes.

7In a different vein, another branch of the literature studies negative implications of firms collecting
and having access to more consumer data. Among others, recent contributions have examined privacy
concern from selling data to third parties (e.g., Choi et al., 2019; Bergemann et al., 2022), ad-targeting
(e.g., Athey and Gans, 2010; Bergemann and Bonatti, 2011; De Cornière and De Nijs, 2016), and price
discrimination (e.g., Choe et al., 2024; Rhodes and Zhou, 2024). De Cornière and Taylor (2023) provide
a comprehensive framework to show how different uses of data is pro- or anti-competitive, and briefly
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ist firm can strategically commit ex-ante to data sharing to soften competitive pressure
from a potential generalist entrant. Our broader framework abstracts away from these
considerations and instead provide generalizations in terms of considering oligopolistic
settings and richer interoperability configurations in the workhorse platform competition
model of Armstrong (2006).

The remainder of this article is organized as follows: Section 2 presents the main
model, the equilibrium of which is characterized in Section 3. Section 4 examines the
implications of network interoperability. Section 5 concludes. All proofs and omitted
derivations are relegated to the Appendix.

2 Benchmark model

There is a set N ≡ {1, 2, · · · , n} of n ≥ 2 symmetric platforms with a continuum of
heterogenous consumers (of measure 1).8 Denote pi as the membership prices charged
by platform i ∈ N , and xi ∈ [0, 1] as the mass of consumers joining platform i. Each
consumer knows her idiosyncratic match values (or membership benefits) ϵ = (ϵ1, · · · , ϵn)
with n platforms, where ϵ is drawn from a joint distribution G(·). We assume single-
homing and full market coverage: each consumer joins one and only one platform.9

□ Participation utility and interoperability. The participation utility of a con-
sumer from joining a platform i ∈ N is:

ϵi − pi + ϕ (zi) , (1)

which consists of match values, membership prices, and the network externality func-
tion ϕ : [0, 1] → R that indicates how a consumer benefits from interacting with other
consumers. We assume ϕ(·) is continuously differentiable with ϕ(0) = 0 (normalization)
and its first derivative is ϕ′(·) ≥ 0 (positive network externalities). Meanwhile, zi is the
effective network size that a consumer on platform i can access and interact with.

In standard models with zero interoperability (e.g., Armstrong, 2006; Tan and Zhou,
2021), network externality depends only on participation on the same platform so that
zi = xi. We model interoperability by allowing zi to depend on participation mass on
other platforms j ̸= i:

zi = xi +
∑
j ̸=i

λijxj (2)

where λij = λji ∈ [0, 1] indicates strength of the two-way “interoperability link” between
platforms i and j. The interoperability configuration between platforms can be summa-

examine the implications of data sharing, modelled as a one-off ex-ante transfer of data.
8In earlier versions of the paper, we allow s ≥ 1 sides of consumers that exhibit cross-group external-

ities. We opt for s = 1 side for our main model here to simplify the exposition because the alternative
model leads to similar insights but results in more complicated notations. See Appendix A for details.

9Formally, if there is an outside option which yields utility level v0, then v0 → −∞ implies that in
equilibrium consumers always opt out of the outside option.
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rized as an n × n interoperability matrix (or weighted adjacency matrix) Λ = (λij), where
λij = 0 means there is no interoperability link between i and j. We assume that matrix
Λ is symmetric and that the diagonal entries λii = 0, following the convention.10

□ Platforms and symmetry. Each platform i ∈ N makes independent pricing
decisions to maximize its own profit, given by Πi = (pi − c)xi, where we normalize the
marginal cost c = 0 without loss of generality. We focus on the price as a membership
fee that is not conditional on the participation of consumers on any side. We introduce
the following two assumptions to ensure symmetry across platforms.

First, following Tan and Zhou (2021), we assume that the joint distribution function
G(·) is continuously differentiability and symmetric across n platforms, in the sense that
the joint distribution of (ϵ1, · · · , ϵn) is invariant under any permutation of the order of
these n random variables. These assumptions are general enough to permit several specifi-
cations commonly used in the literature, including the case of independent and identically
distributed (IID) shocks across platforms (Perloff and Salop, 1985) and spatial settings
such as Hotelling model.

Second, we assume that matrix Λ is vertex-transitive (Godsil and Royle, 2001), mean-
ing that the platforms are “equivalent” in terms of their positions on the interoperabil-
ity configuration.11 Vertex-transitivity implies that every platform has the same total
(weighted) number of interoperability links, i.e.,

∑
j∈N

λij = λ̂ ∈ [0, n − 1] for all i ∈ N . (3)

We will refer to λ̂ as the total interoperability strength. To fix idea, below are some notable
vertex-transitive configurations Λ, which we will use to refine some of our results:

• Industry-wide interoperability. For all i ̸= j, λij = λ, where λ ∈ [0, 1] and so
λ̂ = (n − 1)λ. This configuration reduces to zero interoperability if λ = 0.

• Duo-coalition interoperability. Suppose all n platforms are partitioned into two
mutually exclusive coalitions. For all i ̸= j, λij = λ ∈ [0, 1] if i and j belong to the
same coalition, and λij = 0 otherwise. That is, there is an interoperability link of
strength λ between all platforms within the same coalition, and zero interoperability
across the two coalitions. Each coalition has n/2 members, and so λ̂ = (n/2 − 1)λ.

• Parameterized interoperability. Consider n = 4 platforms, and suppose we param-
eterize matrix Λ with exactly three paramaters (λ1, λ2, λ3), where λ12 = λ34 = λ1,
λ14 = λ23 = λ2, λ13 = λ24 = λ3 (while applying symmetry λij = λji and λii = 0).
Then, Λ is vertex-transitive for all (λ1, λ2, λ3) ∈ [0, 1]3.

10In vector notations, (2) becomes z = (I + Λ)x, where z =(z1, · · · , zn)⊺ is the profile of effective
network sizes, x =(x1, · · · , xn)⊺ is the profile of participation mass, and I is the identity matrix.

11In formal graph-theoretic terms, an adjancecy matrix Λ is vertex-transitive if any two vertices i and
j (i.e., platforms i and j) are equivalent in the sense that there is an automorphism σ : N → N such
that σ(i) = j. Here, automorphism is a permutation σ : N → N of the set of vertices N that results in
an identical adjancecy matrix, i.e., λij = λσ(i)σ(j) for any i, j ∈ N (Godsil and Royle, 2001).
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Figure 1: Examples of vertex-transitive configurations.

Figure 1 illustrate these examples of vertex-transitive configurations.

□ Timing. (i) Platforms simultaneously choose their prices; (ii) Observing all prices,
users simultaneously decide which platform to join. The solution concept is Subgame
Perfect Nash Equilibrium (SPNE).

3 Equilibrium analysis

3.1 Participation equilibrium and preliminaries

Consider consumer decisions in the participation subgame. By definition, demand
profile X = (x1, · · · , xn)⊺ in the equilibrium of the subgame is such that every consumer
joins the platform that yields the highest utility specified in (1), while taking as given the
participation decisions of other consumers. That is, X = (x1, · · · , xn)⊺ satisfies:

xi = Pr
(

ϵi − pi + ϕ (zi) ≥ max
j ̸=i

{ϵj − pj + ϕ (zj)}
)

for every i ∈ N (4)

where recall zi depends on X as per (2). The existence of a participation equilibrium
satisfying (4) for any price profile is guaranteed by Brouwer’s fixed point theorem.

For the subsequent analysis, it is convenient to define function

Qi(u1, u2, ..., un) ≡ Pr
(

ϵi + ui ≥ max
j ̸=i

{ϵj + uj}
)

as the mass of consumers choosing platform 1 when the non-idiosyncratic component of
consumer participation utility on each platform is given by u =(u1, · · · , un). Furthermore,
denote H(·) and h(·) as the CDF and PDF of the distribution ϵi−maxj ̸=i{ϵj} respectively.

Observe that (4) is equivalent to the system of equation X = Q(u) using vector
Q(u) = (Q1(u), ..., Qn(u)) and substituting ui = −pi + ϕ (zi). Notice that full market
coverage and a symmetric joint distribution G(·) imply that, at any symmetric outcome
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where u1 = u2 = ...un, we have

∂Qi

∂ui

= h(0) and ∂Qi

∂uj

= −1
n − 1h(0) for every j ̸= i. (5)

3.2 Pricing equilibrium

Let the symmetric equilibrium price profile and demand profile be such that each
platform sets price p∗ and has a participation mass of x∗ = 1/n and effective network size
of z∗ = (1 + λ̂)/n. In what follows, we first state the equilibrium price in Proposition 1
below, and then provide a sketch of our analysis to discuss the economic interpretations.
Throughout, we denote I as n × n identity matrix, and superscript ⊺ as the transpose
operator.

Toward pinning down p∗, suppose one of the platforms (say, platform i = 1 without
loss of generality) deviates to p1 ̸= p∗ in an attempt to maximize its profit Π1 = p1x1.
assuming that Π1 is globally quasiconcave in own price p1, we have:12

Proposition 1. Define amplification matrix as

A ≡ (I−δ (I + Λ))−1 , where scalar δ ≡ h(0)ϕ′(z∗)n
n − 1 , (6)

and ϕ′(z∗) ≥ 0 is the marginal externality evaluated at z∗ = 1+λ̂
n

, and assume δ < 1
1+λ̂

.
There exists a SPNE with the outcome that all platforms have the same market share
x∗ = 1/n and charge the same price p∗ = 1/n

∂x1/∂p1
|p1=p∗ > 0, where

(
∂x1

∂p1
,
∂x2

∂p1
, ...,

∂xn

∂p1

)⊺

p1=p∗
= A×

(
−h(0), h(0)

n − 1 , ...,
h(0)
n − 1

)⊺

. (7)

The right-hand side of (7) consists only of model primitives: match distribution (h(·)),
number of platforms (n), marginal externality (ϕ′(z∗)), and interoperability matrix (Λ).
Observe that if there is no network effect (ϕ′ = 0), then A = I and so (7) implies
∂x1/∂p1 = −h(0) and ∂xj/∂p1 = 1

n−1h(0), which reflects the standard demand substitu-
tions following a price increase, with h(0) measuring the extent of product substitutability
in discrete choice models (Perloff and Salop, 1985; Zhou, 2017). Therefore, the amplifica-
tion matrix A describes how network externalities and interoperability amplify standard
demand substitutions.

12Without externalities, global quasiconcavity and the existence of an equilibrium with interior solu-
tions hold under log-concavity of 1 − H(·) (see, e.g., Caplin and Nalebuff, 1991). A recurring feature in
the literature on platform competition is that such existence conditions typically hold when the network
effect is not too strong relative to the extent of horizontal differentiation of the platforms (see, e.g.,
Jullien et al., 2021). In the case of logit demand (i.e., Gumbel distribution for match values) considered
in Section 4, we numerically verified that global quasiconcavity holds in all examples when γ < 1.84β,
where β > 0 is the scale parameter of logit demand.
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To gain economic intuition on Proposition 1, we totally differentiate x1 = Q1(u) with
respect to p1 and use (5) to get:

∂x1

∂p1
|p1=p∗ = −h(0) + h(0)ϕ′(z∗) 1

n − 1
∑
j ̸=1

(
∂z1

∂p1
− ∂zj

∂p1

)

= −h(0) + h(0)ϕ′(z∗) (1 + R) ∂z1

∂p1
, (8)

where the second equality used R ≡ −1
n−1

∑
j ̸=1

∂zj/∂p1
∂z1/∂p1

= 1
n−1 . Here, R is the average z-

diversion ratio measuring the decrease in platform 1’s effective network size z1 (in response
to an increase in p1) that are absorbed by the effective network of other platforms j ̸= 1
on average.13 Then, (8) leads to the following decomposition of the equilibrium price:

Corollary 1. The equilibrium price in Proposition 1 can be stated as:

p∗ = 1/n

h(0)︸ ︷︷ ︸
market power

− (1 + 1
n − 1)η∗

︸ ︷︷ ︸
generalized loop effect

× ϕ′(z∗)︸ ︷︷ ︸
marginal externality

× 1
n︸︷︷︸

market share

> 0, (9)

where
η∗ ≡ ∂zi/∂pi

∂xi/∂pi

|pi=p∗ ≥ 0 (10)

is the equilibrium translation ratio measuring how a change in platform i’s participation
mass translates into a change in its effective network size.

Expression (9) highlights pricing incentives of the platforms. The first term is the
standard measure of market power of the oligopolistic firms offering differentiated prod-
ucts (Perloff and Salop, 1985). What is important here is the second term in (9), which
reflects subsidization incentives of platforms. It features a loop effect due to network ex-
ternalities and inteoperabilities, which can be explained as follows. Specifically, whenever
the initial price change expands i’s participation mass xi by a factor of ∆, it translates
into an increase in effective network size zi by ∆×η∗ by the definition of translation ratio.
Then, the average z-diversion ratio being R = 1

n−1 means that effective network size on
every other n − 1 platforms would decrease, on average, by ∆η∗

n−1 . Therefore, the total
network benefits obtained by users on platform 1, relative to benefits that they can get
from other platforms, is effectively increased by ϕ′(z∗) ×

(
1 + 1

n−1

)
∆η∗. The coefficient

δ = h(0)ϕ′(z∗)n
n−1 of matrix A in (6), after normalizing away the translation ratio, exactly

captures this loop effect.
13Observe that R = 1

n−1 always holds because full market coverage and the definition of λ̂ imply that
the sum

∑
i∈N zi = 1+ λ̂, on and off the equilibrium path. Moreover, in our model the standard demand

diversion ratio (Katz and Shapiro, 2003) equals −
∑

j ̸=1
∂xj/∂p1
∂x1/∂p1

= 1 which, after normalizing by n − 1
(average across the n − 1 competitors of platform 1), is the same as R = 1

n−1 .
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It is useful to compare pricing expression (9) with the special case of zero interop-
erability by Tan and Zhou (2021). In their setting, the loop effect is evaluated based
on the participation mass xi (so η∗ = 1) instead of the effective network size zi. Their
analysis approach leads to the loop effect term 1 + 1

n−1 by using the symmetric demand
diversion ratio property in their setup (∂xj/∂p1

∂x1/∂p1
= −1

n−1 for all j ̸= 1). With our arbitrary
interoperability configurations, the symmetric demand diversion ratio property does not
hold, which motivates our alternative analysis approach. Hence, a non-trivial contribu-
tion from (9) is in identifying a generalized loop effect term (1 + R)η∗, redefined based on
the average z-diversion ratio and the translation ratio.

□ Translation ratio and special cases. Continue from (9), a notable observation is
that the implications of different interoperability configurations can be summarized with
translation ratio η∗ defined in (10). It is an endogenous object that can be expressed as:

η∗ = 1 +
∑
j ̸=i

λ1j
∂xj/∂p1

∂x1/∂p1
. (11)

That is, it is a weight sum of the standard demand diversion ratios between platform 1
and its “partners j”, i.e., other platforms j to which platform 1 has interoperability links
λ1j > 0. In the special case of an industry-wide interoperability with strength λ1j = λ,
full market coverage (that is, ∑j ̸=i ∂xj/∂p1 = −∂x1/∂p1) and (11) gives η∗ = 1 − λ.
Likewise, with zero interoperability, λ1j = 0 and so (11) gives η∗ = 1.

Beyond these special cases, the calculation of the translation ratio is non-trivial be-
cause we have to explicitly compute the demand diversion ratios associated with each
partnered platform j. Nonetheless, Proposition 1 says that we can explicitly solve for
∂x1/∂p1 and ∂xj/∂p1 based on the equation (7). Table 1 summarizes closed-form solu-
tions for the translation ratio in a few notable configurations, which we will return to in
Section 4.

Configurations Total strength λ̂ Translation ratio η∗

Industry-wide (n − 1)λ 1 − λ

Duo-coalition with λ = 1 n/2 − 1 [1 + (1 − nδ)
(
1 − 2

n

)
]−1

Multiple size-m coalitions with λ = 1 m − 1 [1 + (1 − nδ)
(

m−1
n−m

)
]−1

Multiple size-m coalitions (m − 1)λ [1 + 1−δ(1−λ+nλ)
( 1−δ

λ
+δ) n−1

m−1 +nδ(λ−1) ]
−1

Table 1: Translation ratios for each interoperability configuration in the symmetric equilibrium.
These four cases are special cases of expression (20) which are proved in the Appendix.

□ A graph-theoretic interpretation. We now briefly discuss how graph-theoretic
properties of the graph of interoperability links (described by matrix Λ) affect the equi-
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librium price. Readers who are not interested in such interpretations may proceed to the
next section without loss.

Recall that the amplification matrix in Proposition 1 is A ≡ (I−δ (I + Λ))−1, and that
δ < 1/(1 + λ̂) reflects the feedback loop due to network externalities. This expression has
a convenient graph-theoretic interpretation as the Leontief inverse of matrix I + Λ with
decaying factor δ.14 In particular, A’s top-left entry

a11 = 1 + δ + δ2
(

1 +
∑

j ̸=1 λ1jλj1

)
+ .... (12)

is the discounted sum of direct and indirect self-loops, i.e., paths on graph I + Λ that
starts from node 1 (that represents platform 1) and ends at node 1, where each path of
length l (i.e., how many nodes does the path passes by) is discounted by factor δl.

Intuitively, (12) captures the sum of all direct and indirect influences from an initial
increase in participation x1 (due to price change) to x1 itself, via changes in effective net-
work size. The direct influence reflects that an initial increase in platform-1 participation
by ∆ unit increases z1 by the same unit, which then feeds back as a further increase in
x1 by δ∆ units due to network effects, and so on; the indirect influence reflects that the
initial increase in x1 by ∆ unit also raises participation on each linked platform xj by
δλ1j∆ unit, which similarly feeds back as a further increase in x1 by δλj1 × δλ1j∆ unit,
and so on.

Then, we show in the proofs that (7) simplifies to

∂x1

∂p1
|p1=p∗ = −

(
na11 − 1

1 − (1 + λ̂)δ

)
× h(0)

n − 1 , (13)

where recall λ̂ is the total interoperability strength defined in (3). Equation (13) shows
that a greater sum of self-loops a11 ≥ 1 (which is graph-based measure that depends only
on model primitives Λ and δ) implies a stronger incentive for platform 1 to expand its
participation mass via lowering its price.

4 Implications of interoperability

4.1 Overview: price and consumer surplus

□ Prices and profits. It suffices to focus on the price effects of interoperability
because each platform’s equilibrium profit is Π∗ = p∗/n. Corollary 1 reveals that inter-
operability, as described by matrix Λ, influences the equilibrium price p∗ via two distinct
forces on platforms’ cross-subsidization incentives: change in marginal externalities (ME)
and change in loop effects. To conceptually illustrate these two forces, we compare an

14In matrix form, the Leontief inverse can be written as an infinite sum: A = I+δ (I + Λ)+δ2 (I + Λ)2+
.... See, e.g., Jackson (2008) for further details.
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arbitrary interoperability matrix Λ > 0 with a zero interoperability matrix 0:

Change in ME: ϕ′(z∗) − ϕ′( 1
n

)

Change in loop effect: 1
n − 1(η∗ − 1).

First, interoperability expands the effective network size accessed by each consumer
from 1/n to z∗ = (1 + λ̂)/n, which affects the value at which the ME σi(z) is evaluated
at. This channel of effect depends only on the total interoperability strength λ̂ and, more
importantly, the shape of the externality function ϕ(·). In particular, ϕ′(z∗)−ϕ′( 1

n
) > (<)0

if ϕ(·) is convex (concave) in the relevant range.
Second, interoperability modifies the loop effect term by changing the translation

ratio from 1 to η∗. This channel of effect depends on the structure of the interoperability
configuration. As shown in Table 1, in the industry-wide configuration, the translation
ratio η∗ = 1 − λ < 1, which implies a weakened loop effect. In contrast, in the coalition
configuration, η∗ > 1 if and only if δ > 1/n, thus implying an amplified loop effect instead.

□ Consumer surplus. Under the symmetric equilibrium, the consumer surplus is

CS = E[max
i∈ N

ϵi] + ϕ(z∗) − p∗,

where the first term is the expected maximum match value from n platforms and not affect
by interoperability; the second term is the network externality enjoyed by consumers,
evaluated at z∗ = (1 + λ̂)/n; and the third term is the price. Therefore, the consumer
surplus implications follow from the price effects discussed above, with the additional
benefit in terms of consolidating the network externality enjoyed by consumers:

Change in network externality enjoyed: ϕ(z∗) − ϕ( 1
n

) > 0.

This implies that price decrease is a sufficient condition for interoperability to raise con-
sumer surplus.15

To derive further insights, we specialize the discussions above to three specific configu-
rations: industry-wide (Section 4.2), coalition (Section 4.3), and completely parameterized
coalitions with quadropoly platforms (Section 4.4).

15In our model, analyzing the total welfare is relatively less meaningful because TW = E[maxi∈ N ϵi]+
ϕ(z∗) due to full market coverage, where TW is trivially increasing in the effective network size z∗.
Following Doganoglu and Wright (2006), an alternative approach is to define TW as the weighted sum
of the consumers’ and the platforms’ surpluses. The possibility that higher prices lower welfare can be
captured by discounting platforms’ profit relative to consumer surplus. This leads to similar insights as
analyzing consumer surplus.
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4.2 Industry-wide configuration and shapes of externalities

We first consider the implications of interoperability strength in an industry-wide
interoperability with strength λij = λ ∈ [0, 1]. Continuing from (9) with η∗ = 1 − λ, we
get

p∗ = 1/n

h(0) − 1 − λ

n − 1ϕ′(z∗), (14)

and so
dp∗

dλ
= 1

n − 1ϕ′(z∗)︸ ︷︷ ︸
weakened loop effect

− 1 − λ

n
ϕ′′(z∗)︸ ︷︷ ︸

change in ME

, (15)

which reflects the two forces discussed in Section 4.1.
To formally describe the shape of externality functions, we define the curvature index

of the externality function ϕ(·) as:

ρ(z) ≡ ϕ′′(z)
ϕ′(z) for z ∈ [0, 1]. (16)

Recall ϕ′(·) > 0, and so ρ < 0 indicates that ϕ(·) is concave (diminishing returns in
network effects), while ρ > 0 indicates the reverse. If ρ = 0, then we obtains the commonly
adopted linear externality specification. We impose the following regularity assumption:

ρ(z) is weakly decreasing in z ∈ [0, 1]. (17)

Assumption (17) holds for all log-linear and log-concave ϕ′(z) where ρ(z) is constant or
decreasing. A useful special case that satisfies (17), which we will invoke to illustrate
some of our results below, is the class of constant-curvature externality functions:

ϕ(z) =

 γ
(

1−exp{ρz}
−ρ

)
γz

if ρ ̸= 0
if ρ = 0

, (18)

where γ > 0 indicates the strength of externality and the curvature index ρ(z) = ρ is a
constant independent of z. Then, the following result follows from (15):

Proposition 2. Suppose Assumption (17) holds.
• If ρ(1/n) ≤ n

n−1 , then dp∗/dλ ≥ 0 for all λ ∈ [0, 1].
• If ρ(1/n) > n

n−1 , then there exists a cutoff L ∈ (0, 1) such that dp∗/dλ < 0 if and
only if λ < L. Moreover, L is increasing in n.

Proposition 2 shows that when the curvature index ρ is low (e.g., linear externali-
ties), a greater interoperability strength λ relaxes competition and raises the equilibrium
price. However, when ρ is large (i.e., highly convex externalities), the implications of λ

are reversed and result in lower prices.16 The latter occurs when the extent of market
16If the model has negative network externalities such that ϕ′(z) ≤ 0 for all z, then the sign of the
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Figure 2: Interoperability and the equilibrium price, based on the constant-curvature externalities (18)
with γ = 0.3, and the match values follow the Gumbel distribution with scale parameter β = 1 (logit
demand form). We verified that global quasiconcavity holds for all ρ < 10 in both panels.

fragmentation n is large, or when the interoperability strength λ is small. Intuitively,
both of these changes magnify the change in ME relative to the change in loop effect,
as can be seen from (15). A notable consequence of Proposition 2 is a U-shape relation-
ship between interoperability strength λ and the equilibrium price, which we illustrate in
Figure 2 below, based on the constant-curvature externality function.

As for the equilibrium consumer surplus, we have dCS/dλ = n−1
n

ϕ′(z∗) − dp∗/dλ as
discussed in Section 4.1. Simplifying:

Proposition 3. Suppose that Assumption (17) holds. There exists cutoffs LCS > L and
L′

CS such that:17

• If ρ(z) = 0 for all z, then dCS/dλ > 0 if and only if n ≥ 3.
• If ρ(z) > 0 for all z, then dCS/dλ > 0 if and only if λ < LCS.
• If ρ(z) < min{0, ρ′(z)} for all z, then dCS/dλ > 0 if and only if λ > L′

CS.
Moreover, if dCS/dλn=n′ > 0 at some n′, then dCS/dλn=n′′ > 0 for all n′′ > n′.

The intuition of Proposition 3 is the easiest to understand by focusing on the class of
constant-curvature externality function (18), where

dCS

dλ
> 0 ⇔ n − 2 + (1 − λ) ρ >

1
n − 1 . (19)

From (19), dCS/dλ > 0 tends to hold when market fragmentation n is large (implies a
greater gain from consolidating network externalities) or when index ρ is large (implies a

price change is reversed: if ρ(1/n) ≤ n
n−1 then ∂p∗/∂λ ≤ 0; while if ρ(1/n) > n

n−1 , then ∂p∗/∂λ > 0 if
and only if λ < L.

17It is possible that the cutoffs LCS and L′
CS ̸∈ [0, 1], in which case ∂CS/∂λ > 0 has the same sign for

all λ ∈ [0, 1] even when ρ(z) ̸= 0.
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price decrease by Proposition 2). Meanwhile, with linear externalities (ρ = 0), condition
(19) does not depend on λ. With non-linear externalities of ρ > 0, condition (19) tends
to hold when λ is small and is reversed when λ is large, implying an inverted U-shape
relationship between CS and λ (an analogous discussion applies to ρ < 0). Figure 3 below
illustrates Proposition 3.

Figure 3: Interoperability and consumer surplus, with the same parameter specifications as Figure 2.

□ Discussion. The results in this subsection highlight the roles of the curvature of
network externality function ϕ(·). With concave and linear externalities (commonly con-
sidered in the literature), a stronger interoperability tends to relax platform competition
and reduce consumer surplus. With highly convex externalities, the reverse is true.

To fix idea about curvature of network externality, let us consider the context of
network effects via platforms’ data-enabled learning (Hagiu and Wright, 2023). In this
context, ϕ(·) corresponds to the “learning curve” that describe how the input of consumer
demand results in user data that improves the value of a platform’s product. As an
illustration, suppose the learning curve follows the typical S-shaped logistic form ϕ(z) =
(1+exp(−(z + z0)/θ)−1, where θ is the scale parameter while z0 can be interpreted as the
“initial data stock” (accumulated over time) that is available for learning and product
improvement or initial level of product value. By definition:

ρ(z) =
(

1 − exp( z+z0
θ

)
1 + exp( z+z0

θ
)

)
1
θ

which is decreasing in z0. Thus, if z0 is small, e.g., industries at the “early segment” of
the learning curve, then the learning curve tends to be locally convex, and vice-versa.
Existing empirical and theoretical studies (Bajari et al., 2019; Lee and Wright, 2021;
Peukert et al., 2023; Schaefer and Sapi, 2023) have pointed out that the learning curve
tends to be concave in improving the accuracy of media content recommendations and
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search quality, but can be convex in high-stake forecasting tasks where forecast failures
due to insufficient data are extremely punishing.18

4.3 Coalition configuration and amplified loop effect

Consider the following multi-coalition configuration. The set of all N platforms is
partitioned into mutually exclusive coalitions where each coalition has m member plat-
forms. For all i ̸= j, λij = λ ∈ [0, 1] if i and j belong to the same coalition, and λij = 0
otherwise. To focus on the non-trivial cases, we assume m ∈ [1, n/2] so that there will be
a total of l ≡ n/m ∈ [2, n] coalitions, assuming that n/m is a well-defined integer. The
total interoperability strength is λ̂ = (m − 1)λ. Observe that m = 1 corresponds to zero
interoperability.19

Given that the roles of non-linear externalities is well-understood from Section 4.2,
in what follows we focus on linear network externality where ϕ′(z) = γ for all z ∈ [0, 1]
where scalar γ > 0.20 Then, Proposition 1 yields the following equilibrium price:

p∗ = 1/n

h(0) − η∗

n − 1γ

= 1/n

h(0)

 1 − (1 − λ)δ
1 +

(
n−m
n−1

)
λδ

1−(1+λ(m−1))δ

 , (20)

where δ ≡ h(0)γn
n−1 , as defined in (6). Following Proposition 1, we assume δ < 1

1+(m−1)λ ,
which implies (20) is strictly positive.

In what follows, we first focus on comparative statics with respect to λ (the interop-
erability strength), and then briefly discuss how an analysis with respect to m (the size
of each coalition) leads to similar insights. From equation (20), we get

dp∗

dλ
= − γ

n − 1
dη∗

dλ
,

which is negative if and only if the translation ratio increases, i.e., dη∗/dλ > 0. In general,
the sign of dη∗/dλ can go either way, but it can easily be determined by examining a
quadratic equation of λ. For example, with two coalitions (so m = n/2) and n = 4, we

18Examples include medical services that rely on AI-powered medical imaging for recommending con-
ditions or treatments(e.g. Behold.ai), or airport security that rely on AI-based readings of X-rays of bags
for threat detection (e.g. seeTrue.ai), as noted by Lee and Wright (2021).

19Technically, m = n corresponds to an industry-wide interoperability that has been analyzed in
Section 4.2, which is why we focus on m ≤ n/2 here. In addition, there is a potential interpretation
and discontinuity issue when one consider comparative statics with respect to m between m = n/2 and
m = n, which we discuss at the end of this section.

20Using the approach shown in Section 4.2, the insights below readily extend to the case of non-linear
externalities.
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Figure 4: Interoperability and prices, based on the case of n = 4 and two coalition. We assume linear
externality and logit scale parameter β = 1. These parameters imply δ = 1/8 in the first panel, and
δ = 3/8 in the second panel.

have η∗ = 3(1−δ)−λ+3δλ2

3(1−δ)+δλ
and so:

∂η∗

∂λ
= −δ2λ2 − 6(1 − δ)δλ + (1 − δ)2

3
(
1 − δ − δλ

3

)2 .

Generalizing this observation and ruling out the root involving λ > 1, we yield:

Proposition 4. Suppose that m ∈ [2, n/2] and that the network externality function is
linear with slope γ > 0. Define cutoff

Lcoal ≡
(1

δ
− 1

)n − 1 −
√

n(n − m)
n(m − 2) + 1

 > 0.

Then, dp∗/dλ < 0 if and only if λ > Lcoal, where the cutoff Lcoal is decreasing in γh(0),
and increasing in m. Moreover, if δ > 1/n, then Lcoal < 1 and p∗

λ=1 < p∗
λ=0.

As illustrated in Figure 4 below, Proposition 4 shows that the equilibrium price can
decrease with interoperability strength λ in the coalition configuration. This is true
even with linear externalities, meaning that the mechanism involved here is distinct from
Proposition 2, which we explain below.

To understand Proposition 4, recall that linear externality means that any decrease
in price is purely driven by increases in the translation ratio (which measure the intensity
of the loop effect):

η∗ = 1 + (m − 1)λ∂xpartner/∂p1

∂x1/∂p1
(21)

whereby ∂xpartner/∂p1 indicates how a price increase by platform 1 changes the demand
for the same-coalition platforms. To sharpen the discussion, let us compare on λ = 1 and
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λ = 0. Then, a necessary and sufficient condition for p∗
λ=1 < p∗

λ=0 is η∗
λ=1 > 1 = η∗

λ=0,
which is equivalent to ∂xpartner

∂p1
|λ=1 < 0 (recall ∂x1/∂p1 < 0). That is, λ = 1 causes

the same-coalition platforms to become gross complements with respect to the market
demand. This occurs when network effect (γ) is strong relative to the extent of platform
differentiation:

p∗
λ=1 < p∗

λ=0 ⇔ ∂xpartner

∂p1
|λ=1 < 0 ⇔ n2

n − 1γ >
1

h(0) . (22)

Recall that in standard settings with zero interoperability, competing platforms are
necessarily substitutes (∂xj/∂p1 > 0) because a price drop by platform 1 would cause
consumers on all other platforms to switch to platform 1. In contrast, with at least
two coalitions, network interoperability can give rise to product complementarity within
each coalition. To see this, suppose a platform i decreases its price p1, which induces
consumers to substitute away from other same-coalition platforms j and also away from
rival-coalition platforms. Due to network interoperability, the latter substitution indi-
rectly benefits other same-coalition platforms j by expanding j’s effective network size,
making platform j more attractive relative to the rival-coalition platforms, akin to product
complementarities. When the network effect γ is large enough, a greater interoperability
strength λ enhances this product complementarity (i.e., ∂xj/∂p1 becomes lower or even
negative).21 From (21), this results in a greater translation ratio η∗, meaning that each
platform has a stronger incentive to expand its effective network size by cutting price,
and so dp∗/dλ < 0.

□ Discussion. A key insight from results above is that the industry-wide config-
uration, which is commonly considered in the literature, has restrictive properties that
do not extend to other interoperability configurations. To see this, suppose the network
externality is linear. Recall that in the industry-wide configuration, the translation ratio
η∗ is always below one and decreasing, and so any increase in strength λ always weakens
loop effect and increases the equilibrium price. In contrast, in coalition configuration
considered in this section, an increase in λ amplifies loop effect when the network effect
parameter is large. When this occurs, an increase in λ would lower the equilibrium price,
thus benefiting consumers.22

A natural question is, fixing the value of per-link strength λ, how does the coalition
configuration compares with the industry-wide configuration? Given linear externality,
we can express the price in (14) as p∗

wide = 1/n
h(0) (1 − (1 − λ)δ) and compare it to the

equilibrium price in (20), which we denote as p∗
coal. It is easily seen that p∗

coal < p∗
wide

21By this line of reasoning, gross complementarity ∂xj/∂p1 < 0 occurs when, as a result of the initial
decrease in p1, the mass of consumers who switches from rival coalitions to platform j is more than those
who switches from j to platform 1.

22Consumer surplus implications in this configuration has a similar flavor as Proposition 3. That is,
given that network benefits enjoyed by consumers always increase with λ, it follows that dp∗/dλ < 0 is a
sufficient condition for dCS/dλ > 0. Formally, it is easy to show the existence of a cutoff Lcoal

CS < Lcoal,
such that λ > Lcoal

CS implies dCS/dλ > 0. We omit the details here for brevity.
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for all m ∈ [1, n/2], so that the coalition configuration always results in a more intense
platform competition.

Alternatively, we can also consider an increase in the coalition size m ∈ [1, n/2]. This
has a similar effect as an increase in the total interoperability strength (m−1)λ associated
with each platform. If we treat m as a continuous variable (recall that m is technically an
integer), then the derivative dp∗/dm provides valid conclusions if dp∗/dm has the same
sign over the relevant range. Assuming λ = 1, we find that for any m ∈ [1, n/2], we
have dp∗/dm < 0 if and only if n2

n−1γ > 1/h(0).23 This is the same as condition (22), and
the result follows a similar intuition: a greater coalition size m enhances within-coalition
complementarity when the network effect parameter is large.

4.4 Completely parameterized configurations with n = 4
In this section, we consider richer configurations not covered by the previous two sub-

sections. For expositional clarity, we focus on n = 4 platforms, which is the simplest
setting that allows for a variety of interoperability configurations to arise while still satis-
fying our vertex-transitive assumption across platforms.24 As noted in Section 2, in this
case the class of interoperability matrix Λ that we consider is:

Λ =


0 λ1 λ3 λ2

λ1 0 λ2 λ3

λ3 λ2 0 λ1

λ2 λ3 λ1 0

 (23)

for any vector λ⃗ = (λ1, λ2, λ3) ∈ [0, 1]3. Given that each element in λ⃗ is permutable, we can
assume λ1 ≥ λ2 ≥ λ3 without loss of generality. Denote the row sum as λ1 + λ2 + λ3 = λ̂.
Graphically, matrix Λ correspond to Figure 5 below where each node corresponds to a
platform and each link corresponds to an interoperability arrangement of the indicated
strength λi.

For each given vector λ⃗ parameterizing Λ, Proposition 1 leads to

p∗(λ⃗) = γ

δ

 ∑
i=1,2,3

1
1 − δ + (λ̂ − 2λi)δ

−1

(24)

23This result does not hold if we consider m ∈ [n/2, n]. To see this, suppose we interpret the industry-
wide configuration as m = n. Then the previous paragraph implies p∗

m=n > p∗
m≤n/2 always holds. The

distinct results across the two intervals [1, n/2] and [n/2, n] is driven by a division-by-zero problem (or
discontinuous domain) when evaluating dp∗/dm in the latter interval. This observation suggests that
the model with m = n (industry-wide) behaves very differently compared to those with m ≤ n/2, hence
explaning why we choose to focus on m ≤ n/2 in this subsection.

24The only vertex-transitive Λ when n = 2 or n = 3 is an industry-wide configuration, which has been
analyzed in Section 4.2.
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Figure 5: Interoperablity matrix Λ with n = 4 platforms

where the translation ratio writes

η∗ = 1
δ

− 3
δ

 ∑
i=1,2,3

1
1 − δ + (λ̂ − 2λi)δ

−1

,

and δ = 4
3h(0)γ in this setting. Following Proposition 1, we again assume δ < (1 + λ1 +

λ2 + λ3)−1 so that (24) is strictly positive.
□ Allocation of total interoperability strength across links. Our first set of

comparative statics compares the equilibrium prices across interoperability configurations
parameterized by vector λ⃗. To ensure a fair comparison, we fix the total interoperability
strength at a constant λ̂ > 0, and then compare different allocations of strength across
each interoperability link.

Formally, we adopt the partial ordering of majorization (Marshall et al., 2011): for any
given pairs of interoperability vectors that are sorted in descending order λ⃗ = (λ1, λ2, λ3)
and λ⃗′ = (λ′

1, λ′
2, λ′

3), we say that λ⃗ majorizes λ⃗′ (denoted as λ⃗≻λ⃗′) if λ1 ≥ λ′
1, λ1 + λ2 ≥

λ′
1 + λ′

2, and λ1 + λ2 + λ3 = λ′
1 + λ′

2 + λ′
3.

Intuitively, λ⃗≻λ⃗′ means that λ⃗ has a more unequal distribution of interoperability
strength across the link, and so a “narrower”interoperability than λ⃗′. As a case in point,
λ⃗coal ≡ (λ̂, 0, 0) ≻ (λ̂/3, λ̂/3, λ̂/3) ≡ λ⃗wide obviously holds. More generally, we have

λ⃗coal ≻ λ⃗ ≻ λ⃗wide (25)
for any λ⃗ ∈ Ω(λ̂) ≡ {(λ1, λ2, λ3) ∈ [0, 1]3 : λ1 + λ2 + λ3 = λ̂, λ1 ≥ λ2 ≥ λ3}

That is, the coalition configuration (Section 4.3) is the “narrowest” interoperability, while
the industry-wide configuration (Section 4.2) is the “broadest ” interoperability.

Fixing total interoperability strength λ̂ as a constant implies that effective network
size z∗ = (1 + λ̂)/4 is constant across all configurations considered. Therefore, changes in
consumer surplus will only reflect changes in the equilibrium price, and so it suffices to
consider comparative statics with respect to prices.

Proposition 5. Suppose the total interoperability strength is fixed at λ̂. For any pairs
of interoperability vectors such that λ⃗≻λ⃗′, we have p∗(λ⃗) < p∗(λ⃗′). Consequently, (25)
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implies
p∗(λ⃗coal)≤p∗(λ⃗) ≤ p∗(λ⃗wide).

for any λ⃗ ∈ Ω(λ̂).

Proposition 5 says that, conditioned on the same interoperability strength λ̂, a “nar-
rower ”configuration (in terms of majorization ordering) leads to a more intense price
competition between platforms. To see the intuition, recall that we have fixed the ef-
fective network size in Proposition 5, and so the discussion Section 4.1 means that any
decrease in p∗ is purely driven by an increase in loop effect, as measured by translation
ratio η∗ = ∂z1/∂p1

∂x1/∂p1
. Hence, Proposition 5 reflects the idea that changes in platform 1’s

participation mass have substantial impacts on its effective network size when the con-
figuration is more “narrow”.25 Formally, we prove that the equilibrium price p∗(λ⃗) is a
Schur-concave function (Marshall et al., 2011) in interoperability vector λ⃗.

□ Other interoperability structures. We now apply pricing equation (24) to
explore two parameterized examples of economically interesting configurations.

• Interlinked coalitions: λ⃗intcoal = (λ, µ, µ) such that λ ≥ µ ≥ 0. This can be in-
terpreted as generalizing λ⃗coal = (λ, 0, 0) to allow for weaker interoperability links
across the coalitions. More technically, λ⃗intcoal is a convex combination between
(λ, 0, 0) and (λ, λ, λ), i.e., an industry-wide interoperability.

• Circular pairwise: λ⃗cir = (λ, λ, µ) such that λ ≥ µ ≥ 0. If µ = 0, then this
configuration is a simple circular graph, which can be interpreted as platforms
engaging in pairwise interoperability arrangement with each other without involving
an industry-wide arrangement. By setting µ > 0 we can allow for transitivity in
these pairwise interoperability arrangements.26

In what follows, we do not fix the total interoperability strength, meaning that λ and
µ are independent parameters.27 We consider comparative statics with respect to λ and
µ (which can be interpreted as having more interoperability links, in a weighted sense).

Corollary 2. Consider the following configurations.
• Interlinked coalitions: equilibrium price p∗(λ, µ, µ) is increasing in µ; it is decreasing

in λ if and only if λ > Lintcoal, where the cutoff Lintcoal > 0 is increasing in µ.
25In terms of the graph-theoretic notions developed in Section 3, a more “narrow”configuration corre-

sponds to a higher discounted sum of direct and indirect self-loops for each node, as defined in (12).
26For example, consider data-enabled learning and suppose platform 1 has an explicit data-sharing

arrangement with platform 2 but not with platform 3. In this case, data sharing arrangements between
platforms 2 and platform 3 can potentially benefit platform 1 due to possible transmissions of data from
platform 3 indirectly via platform 2, or other forms of data synergy.

27If we fix the total interoperability strength in each configuration below to a constant λ̂, then the
majorization ordering in (25) applies, which implies p∗

coal < p∗
intcoal < p∗

wide and p∗
coal < p∗

cir < p∗
wide

by Proposition 5. However, even in this case, λ⃗intcoal and λ⃗cir are not generally comparable by the
majorization ordering.
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• Circular pairwise: equilibrium price p∗(λ, λ, µ) is increasing in λ and µ.

The first part of Corollary 2 says that across-coalition interoperability µ always relaxes
overall competition (dp∗/dµ > 0), while within-coalition interoperability λ intensifies
overall competition (dp∗/dλ < 0) when λ > Lintcoal. Hence, the insight from Proposition
4 continues to hold as long as across-coalition interoperability µ > 0 is not too strong,
and a higher µ shrinks the parameter region where dp∗/dλ < 0 (in particular, µ → 1
implies Lintcoal > 1). The second part of Corollary 2 demonstrates that similar insights
hold in the circular pairwise setting, except that a strengthened pairwise interoperability
agreement will not reverse the positive relationship between λ and the pricing, as it does
in the interlinked-coalition case.

5 Conclusion

In this paper, we propose a flexible conceptual approach to model a broad range of
configurations of network interoperability in platform markets. A key modelling ingredient
is the interoperability matrix, which determines the interoperability structure between
platforms and the effective network size faced by consumers on each platform. In the
canonical platform competition model, we find that the equilibrium pricing formula has
an intuitive structure, comprising a market power term and a subsidy term. Conveniently,
the price implications of different interoperability configurations can be captured in terms
of translation ratio (i.e., the rate at which changes in a platform’s participation mass affect
its effective network size), which adjusts the subsidy term.

From a regulatory perspective, our analysis highlights conditions under which in-
teroperability intensifies price competition and increases consumer surplus, even with a
relatively symmetrical market structure. As noted in the introduction, an emerging in-
sight from the literature is that an interoperability intervention intensifies competition in
asymmetric settings, but has a potential downside of relaxing competition in symmetric
settings. Our analysis offers a more nuanced view for the latter case, that is, the downside
of competition relaxation does not necessarily hold in richer models with general network
externality functions and interoperability configurations.

Our framework offers several promising avenues for further studies. First, the mod-
elling approach of introducing interoperability matrix and effective network size can read-
ily be applied to other frameworks of platform competition, e.g., the transaction fee models
by Rochet and Tirole (2003, 2006), the net fee model by Ekmekci et al. (2023), and the
aggregative game model by Peitz and Sato (2023). Our current analysis that is based on
Armstrong (2006) can be seen as a proof of concept that demonstrates the feasibility of
this research avenue.

Second, to ensure analytical tractability, we have focused on platforms that are ex-
ante symmetric in terms of their underlying demand function (i.e., the match value dis-
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tributions) as well as their “positions”in the interoperability configuration. Introducing
platform asymmetry would broaden the policy applicability of our framework and al-
low us to examine other interesting configurations. For instance, in the presence of a
dominant platform with multiple smaller platforms, one could compare two options of
interoperability regulations to mitigate the dominance: a “star”configuration (where the
dominant platform is central and has interoperability links with each smaller platforms)
and compare it to a “alliance” configuration where the smaller platforms form a single
interoperability coalition. We believe that the translation ratio would remain a useful
object to assess platforms’ pricing incentives in such settings.28

Finally, we have focused on price competition without considering the endogenous
formation of coalitions. Endogenizing coalition formation would allow us to examine how
industries transition from a no-interoperability benchmark to coalition-based interoper-
ability and, ultimately, to industry-wide interoperability. This extension could shed light
on the strategic factors that may prevent an industry from fully adopting industry-wide
interoperability.

A Appendix: two-sided platforms
In our main model, we have assumed one-sided platforms to streamline the exposition. We

now discuss how our approach and insights extend to case of two-sided platforms We label
the two sides of users as B and S (buyers and sellers), but the model is not restricted to this
particular interpretation. The analysis below easily extends to more than two sides of users.

Denote pi = (pB
i , pS

i ) as the buyer-side and seller-side membership prices charged by platform
i ∈ N , and (xB

i , xS
i ) ∈ [0, 1]2 as the participation vector on platform i. Denote (ϵk

1, · · · , ϵk
n) as

the idiosyncratic match values (or membership benefits) of a consumer on side k ∈ {B, S} with
n platforms. Both sides are singlehoming. We assume cross-side independence, in the sense that
(ϵk

1, · · · , ϵk
n) are independent of (ϵk

1, · · · , ϵk
n) across the two sides.

The participation utility for each each buyer and seller joining a platform i are, respectively,

ϵB
i − pB

i + ϕB
(
zB

i , zS
i

)
and ϵS

i − pS
i + ϕS

(
zB

i , zS
i

)
.

Here, ϕk : [0, 1]2 → R is the network externality functions that indicates the “inbound” network
externalities (including same-side and cross-side externalities) enjoyed by a side-k consumer from
having access to other consumers (on all sides). The effective network size (zB

i , zS
i ) ∈ [0, 1]2 are

determined as
zB

i = xB
i +

∑
j ̸=i

λijxB
j and zS

i = xS
i +

∑
j ̸=i

λijxS
j .

We assume ϕk is continuously differentiable and allow for the possibilities of negative network
externalities. Other specifications remain the same as the main text (Section 2).

28We have examined this issue with extensive numerical simulations, and the results suggest that the
former is superior in terms of mitigating the dominance and improving consumer surplus. Details are
available upon request.
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□ Equilibrium analysis. Similar to the main text, we define for, each side k ∈ {B, S},

function Qk
i (uk

1, uk
2, ..., uk

n) ≡ Pr
(
ϵk
i + uk

i ≥ maxj ̸=i{ϵk
j + uk

j }
)
. For each given profile of prices

(p1, ..., pn) by the platforms, the resulting demand system is pinned down by the following
system of equations:

xk
i = Qk

i (uk
1, uk

2, ..., uk
n) for i ∈ N and k ∈ {B, S}

and uk
i = −pk

i + ϕk
(
zB

i , zS
i

)
.

Let us denote Hk(·) and hk(·) as the CDF and PDF of the distribution ϵk
i − maxj ̸=i{ϵk

j } respec-
tively. Then, at any symmetric outcome, we have

∂Qk
i

∂uk
i

= hk(0) and ∂Qk
i

∂uk
j

= −1
n − 1hk(0) for every j ̸= i and k ∈ {B, S}.

To proceed, we denote marginal externalities as on the equilibrium path as:(
γBB γSB

γBS γSS

)
=
(

∂ϕB/∂zB ∂ϕS/∂zB

∂ϕB/∂zS ∂ϕS/∂zS

)
(zB

i ,zS
i )=(z∗,z∗)

Let the symmetric equilibrium price profile and demand profile be such that each platform
sets price p∗ = (pB∗, pS∗) and has a participation mass of (xB∗, xS∗) = (1/n, 1/n) and effective
network size of (z∗, z∗), z∗ = (1 + λ̂)/n. Toward pinning down the symmetric equilibrium,
suppose one of the platform (say, i = 1, without loss of generality) deviates to p1 ̸= p∗ in an
attempt to maximize its profit Π1 = pB

1 xB
1 + pS

1 xS
1 . Following Armstrong (2006) and Tan and

Zhou (2021), a useful technique to analyze two-sided pricing strategies is to reframe platform
1’s decision variables as directly choosing a target participation vector (xB

1 , xS
1 ), and then pin

down the corresponding price levels (pB
1 , pS

1 ) implicitly from the demand system. In particular,
if we totally differentiate xB

1 = QB
1 (u) and xS

1 = QS
1 (u) with respect to xB

1 , and evaluate the
resulting expression at the symmetric outcome, we get:

1 = −hB(0) ∂pB
1

∂xB
1

+ hB(0)
n − 1

γBB

∑
j ̸=1

(
∂zB

1
∂xB

1
−

∂zB
j

∂xB
1

)
+ γBS

∑
j ̸=1

(
∂zS

1
∂xB

1
−

∂zS
j

∂xB
1

)
and

0 = −hS(0) ∂pS
1

∂xB
1

+ hS(0)
n − 1

γSS

∑
j ̸=1

(
∂zS

1
∂xB

1
−

∂zS
j

∂xB
1

)
+ γSB

∑
j ̸=1

(
∂zB

1
∂xB

1
−

∂zB
j

∂xB
1

) .

Simplifying using full market coverage as in (8) in the main text and rearranging, we get

∂pB
1

∂xB
1

= −1
hB(0) + n

n − 1

(
γBB

∂zB
1

∂xB
1

+ γBS
∂zS

1
∂xB

1

)
(26)

∂pS
1

∂xB
1

= n

n − 1

(
γSS

∂zS
1

∂xB
1

+ γSB
∂zB

1
∂xB

1

)
. (27)

□ Equilibrium price. Utilizing (26) and (27), the first-order condition ∂Π1/∂xB
1 = 0 gives
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the equilibrium buyer-side price as

pB∗ = 1/n

hB(0) − 1
n − 1

(
(γBB + γSB) ∂zB

1
∂xB

1
+ (γBS + γSS) ∂zS

1
∂xB

1

)
. (28)

Likewise, ∂Π1/∂xS
1 = 0 gives the equilibrium seller-side price:

pS∗ = 1/n

hS(0) − 1
n − 1

(
(γBB + γSB)∂zB

1
∂xS

1
+ (γBS + γSS) ∂zS

1
∂xS

1

)
. (29)

To see the relations with the one-sided pricing formula shown in Corollary 1 in the main text,
it is useful to define translation ratio matrix as

η =
(

η∗
BB η∗

SB

η∗
BS η∗

SS

)
=
(

∂zB
1 /∂xB

1 ∂zS
1 /∂xB

1
∂zB

1 /∂xS
1 ∂zS

1 /∂xS
1

)
p1=p∗

.

Matrix η is analogous to the scalar (one-sided) translation ratio (10) defined in the main text,
except that here we do not state the ratios in terms of prices derivatives (recall we are considering
decision variables (xB

1 , xS
1 ) here). Then, (28) and (29) can be expressed in matrix form as:

(
pB∗

pS∗

)
=

 1/n
hB(0)
1/n

hS(0)

− (1 + 1
n − 1)η︸ ︷︷ ︸

generalized loop effect

×
(

γBB + γSB

γSS + γBS

)
︸ ︷︷ ︸

outbound ME

× 1
n︸︷︷︸

market share

. (30)

Decomposition (30) is analogous to Corollary 1, with two key distinctions. First, the
marginal externality term is now replaced by aggregate outbound marginal externalities (out-
bound ME) provided by users from each side k ∈ {B, S} to all sides B and S. It is evaluated
at vector (z∗, z∗) where platform 1’s effective network size is z∗ = (1 + λ̂)/n across both sides.
Second, and more importantly, the augmentation factor in the generalized loop effect term is
now a 2 × 2 diversion ratio matrix, reflecting the two-sidedness. To see why the matrix matters,
we note that any changes in platform i’s participation mass on one side (e.g. xB

1 ) can affect
platform 1’s effective network size on the opposite side (e.g., zS

1 ), even when xS
1 is being held

fixed (in the profit-maximization problem with decision variables (xB
1 , xS

1 )). This is due to cross-
side externalities and network interoperability, such that changes in xB

1 can potentially affect
participation mass xS

j on other platforms j ̸= 1 that are connected with platform 1.
To further understand (30) and the corresponding translation ratio matrix, we now specialize

into two specific interoperability configurations considered in the main text.

□ Industry-wide configuration. Following Section 4.2, we know in this case, zk
1 =

xk
1 + λ(1 − xk

1) on each side k ∈ {B, S}. Therefore,

η =
(

1 − λ 0
0 1 − λ

)
.

and so (28) and (29) becomes

pB∗
1 = 1/n

hB(0) − 1 − λ

n − 1(γBB + γSB)
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pS∗
1 = 1/n

hS(0) − 1 − λ

n − 1(γBS + γSS),

which nests the formula by Tan and Zhou (2021) as special case when λ = 0. Then, the analysis
approach of Section 4.2 continues to hold after redefining the curvature index as in terms of the
outbound ME.

□ Coalition configuration. Beyond the industry-wide configuration, we can still explicitly
solve for the diversion ratio matrix by manipulating the system of demand derivatives, as in
Proposition 1. We outline the general analysis below by focusing on the buyer-side pricing
here (the derivation of the seller-side pricing is similar), and then specialize it into the case of
coalition interoperability (with size m and strength λ, as in Section 4.3).

Continue (30), it remains to identify the system of equation that pins down the translation
ratios ∂zB

1 /∂xB
1 and ∂zS

1 /∂xB
1 associated with the buyer-side pricing. Total differentiating the

demand for platforms i ̸= 1, xB
i = QB

i (u) and xS
i = QS

i (u) with respect to xB
1 , and apply the

same simplifying technique due to full market coverage, we obtain

∂xB
i

∂xB
1

= hB(0)
n − 1

∂pB
1

∂xB
1

+ nhB(0)
n − 1

(
γBB

∂zB
i

∂xB
1

+ γBS
∂zS

i

∂xB
1

)
for i ̸= 1

∂xS
i

∂xB
1

= hS(0)
n − 1

∂pS
1

∂xB
1

+ nhS(0)
n − 1

(
γSS

∂zS
i

∂xB
1

+ γSB
∂zB

i

∂xB
1

)
for i ̸= 1

Subsituting away ∂pB
1 /∂xB

1 and ∂pS
1 /∂xB

1 using (26) and (27), we get

∂xB
i

∂xB
1

= − 1
n − 1 + nhB(0)

n − 1

[
γBB

(
∂zB

i

∂xB
1

+ ∂zB
1

∂xB
1

)
+ γBS

(
∂zS

i

∂xB
1

+ 1
n − 1

∂zS
1

∂xB
1

)]
for i ̸= 1(31)

∂xS
i

∂xB
1

= nhS(0)
n − 1

[
γSS

(
∂zS

i

∂xB
1

+ 1
n − 1

∂zS
1

∂xB
1

)
+ γSB

(
∂zB

i

∂xB
1

+ 1
n − 1

∂zB
1

∂xB
1

)]
for i ̸= 1, (32)

and recall ∂xB
1 /∂xB

1 = 1 and ∂xS
1 /∂xB

1 = 0 by definition.
Specializing into coalition configurations, we know zk

partner = (1 + λ(m − 2))xk
partner + λxk

1
and zk

1 = xk
1 + λ(m − 1)xk

partner. Therefore:

∂zB
partner

∂xB
1

+ 1
n − 1

∂zB
1

∂xB
1

= λ + 1
n − 1 +

(
1 + λ(m − 2) + λ(m − 1)

n − 1

)
∂xB

partner

∂xB
1

∂zS
partner

∂xB
1

+ 1
n − 1

∂zS
1

∂xB
1

=
(

1 + λ(m − 2) + λ(m − 1)
n − 1

)
∂xS

partner

∂xB
1

.

Denote scalar M = 1 + λ(m − 2) + λ(m−1)
n−1 , (31) and (32) becomes

∂xB
partner

∂xB
1

= − 1
n − 1 + nhB(0)

n − 1

[
γBB

(
λ + 1

n − 1

)
+
(

γBB

∂xB
partner

∂xB
1

+ γBS

∂xS
partner

∂xB
1

)
M

]
∂xS

partner

∂xB
1

= nhS(0)
n − 1

[
γSB

(
λ + 1

n − 1

)
+
(

γSS

∂xS
partner

∂xB
1

+ γSB

∂xB
partner

∂xB
1

)
M

]
,
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Solving for the two-by-two simultaneous equation gives explicit solutions:29

∂xB
partner

∂xB
1

= − 1
(n − 1)M

(
1 − λ + λn − (δSSM − 1)(λ − λn − 1 + M)

(δBBδSS − δBSδSB)M2 − (δBB + δSS)M + 1

)
(33)

∂xS
partner

∂xB
1

= − 1
n − 1

(
δSB(λ − λn − 1 + M)

(δBBδSS − δBSδSB)M2 − (δBB + δSS)M + 1

)
. (34)

where we have denoted the amplification coefficients as

(
δBB δSB

δBS δSS

)
=

 nhB(0)
n−1 γBB

nhS(0)
n−1 γSB

nhB(0)
n−1 γBS

nhS(0)
n−1 γSS

 ,

which just depend on the differentiation and the externality parameters.
We can then compute the required translation ratios as η∗

BB = 1 + λ(m − 1)∂xB
partner

∂xB
1

and

η∗
SB = λ(m − 1)∂xS

partner

∂xB
1

. Then, (28) gives a closed-form solution for the equilibrium buyer-side
price pB∗:

pB∗ = 1/n

hB(0) − γBB + γSB

n − 1 − λ(m − 1
n − 1 )

(
(γBB + γSB)

∂xB
partner

∂xB
1

+ (γBS + γSS)
∂xS

partner

∂xB
1

)
,

after substituting (33) and (34). The seller-side equilibrium price can be explicitly solved anal-
ogously.

B Appendix: proofs
Proof. (Proposition 1). As a preliminary step, we prove the following:

−
∑
j ̸=1

∂zj/∂p1
∂z1/∂p1

= −
∑
j ̸=i

∂zj/∂p1
∂zi/∂p1

= 1, (35)

which follows from

∑
i∈N

∂zi

∂p1
=
∑
i∈N

xi +
∑
j ̸=i

λijxj

 = 1 +
∑
i∈N

∑
j ̸=i

λijxj = 1 + λ̄,

where we swapped the order of summation in the final step and used λii = 0. Then, totally
differentiating the system of equation X = Q(u) with respect to p1, we get:

∂x1
∂p1

|p1=p∗ = −h(0) + h(0)ϕ′(z∗) 1
n − 1

∑
j ̸=1

(
∂z1
∂p1

− ∂zj

∂p1

)
= −h(0) + δ

∂z1
∂p1

(36)

∂xi

∂p1
|p1=p∗ = h(0)

n − 1 + h(0)ϕ′(z∗) 1
n − 1

∑
j ̸=i

(
∂zi

∂p1
− ∂zj

∂p1

)
= h(0)

n − 1 + δ
∂zi

∂p1
for i ̸= 1 (37)

29For general interoperability configurations, we recall that for each side k, we can express
∂

∂xB
1

(
zk

1 , ..., zk
n

)⊤ = (I + Λ) · ∂
∂xB

1

(
xk

1 , ..., xk
n

)⊤. Let us continue from (31) and (32) and ∂xB
1 /∂xB

1 = 1
and ∂xS

1 /∂xB
1 = 0, and express them in a matrix form. Then, we get a system of 2n equations with 2n

unknowns that is analogous to (7) in the main text.
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where we used (35). Rearranging the system of equation in matrix form and using the definition
z = (I + Λ)X, we arrive at

(I−δ (I + Λ))
(

∂x1
∂p1

,
∂x2
∂p1

, ...,
∂xn

∂p1

)⊺

p1=p∗
=
(

−h(0), h(0)
n − 1 , ...,

h(0)
n − 1

)⊺

,

which gives (7) after inverting the symmetric matrix B ≡ I−δ (I + Λ), so that A = B−1.
We note that (1+ λ̂)δ < 1 implies that matrix B is strictly diagonally dominant, which then

immediately implies B is invertible. Indeed, for each row i, the entries of matrix B satisfies

|bii| −
∑

j ̸=i
|bij | = 1 − δ − δλ̂ > 0.

Finally, proving p∗ > 0 is equivalent to showing ∂x1
∂p1

|p1=p∗ < 0. We first note that matrix B
being strictly diagonally dominant implies that its inverse matrix A = B−1 satisfies the following
weaker form of strict diagonal dominance: |aii| > |aij | for all row i and column j ̸= i. (see, e.g.,
Johnson et al. (2024)). Then, from (7), the first row of matrix A gives

∂x1
∂p1

|p1=p∗ = − h(0)
n − 1

n∑
j=1

(a11 − a1j) < 0, (38)

where we used a11 > 0 as noted in (12), and so p∗ > 0. Finally, observe that the n × 1 column
vector (1, .., 1)⊺ is clearly an eigenvector of matrix B with eigenvalue 1 − (1 + λ̂)δ, and so the
same vector is also an eigenvector to matrix A with eigenvalue (1 − (1 + λ̂)δ)−1. This means∑n

j=1 a1j = (1 − (1 + λ̂)δ)−1, so that (38) implies (13).

Proof. (Proposition 2). Rearranging (15) gives

1/n

ϕ′(z∗)
dp∗

dλ
= n

n − 1 − (1 − λ) ρ

(
λ + 1 − λ

n

)
,

where the RHS is monotonically increasing in λ. Hence, if n
n−1 ≥ ρ

(
1
n

)
, then dp∗/dλ ≥ 0 for all

λ ≥ 0. If otherwise n
n−1 < ρ

(
1
n

)
, then the intermediate value theorem implies the existence of

the required unique cutoff L ∈ (0, 1), pinned down by n
n−1 = (1 − L) ρ

(
L + 1−L

n

)
, and a total

derivative shows dL/dn > 0.

Proof. (Proposition 3). Rearranging gives

1/n

ϕ′(z∗)
∂CS

∂λ
= n − 2 − 1

n − 1 + (1 − λ)ρ
(

λ + 1 − λ

n

)
. (39)

If ρ(z) = 0 for all z, then (39) implies the result. If ρ(z) > 0 for all z, then the RHS of (39)
is monotonically decreasing in λ by Assumption (17), and so the cutoff LCS is pinned down by
the solution of

n − 2 = 1
n − 1 − (1 − λ)ρ

(
λ + 1 − λ

n

)
. (40)
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If ρ(z) < min{0, ρ′(z)} for all z, then the RHS of (39) is monotonically increasing in λ

and the cutoff L′
CS is similarly pinned down by (40). Finally, differentiating (39) with respect

to n shows ∂CS
∂λ is single-crossing in n, as required for the last statement of the proposition.

Proof. (Pricing expression (20)). Let xpartner be the market share of each of remaining firms
in the same coalition with platform 1. Continue from equations (36) and (37) in the proof of
Proposition 1, we get

∂x1
∂p1

= −h(0) + δ
∂z1
∂p1

= −h(0) + δ

(
∂x1
∂p1

+ λ(m − 1)∂xpartner

∂p1

)
∂xpartner

∂p1
= h(0)

n − 1 + δ
∂zpartner

∂p1
= h(0)

n − 1 + δ

(
(1 + λ(m − 2)∂xpartner

∂p1
+ λ

∂x1
∂p1

)
Solving the simultaneous equation yields

∂x1
∂p1

= − h(0)
n − 1

n − 1 − δλ(m−1)
1−δ−δλ(m−2)

1 − δ − δλ(m−1)δλ
1−δ−δλ(m−2)


= − h(0)

1 − (1 − λ)δ

(
1 +

(
n − m

n − 1

)
λδ

1 − (1 + λ(m − 1))δ

)

From the equilibrium condition p∗ = 1/n
∂x1/∂p1

|p1=p∗ , we pin down equation (20).

Proof. (Proposition 4). The first part follows from differentiating (20):

∂p∗

∂λ
= γ(m − 1)(n − 1)

[F1(λ, m)]2
F2(λ, m)

where

F1(λ, m) = (n − 1)(δ − 1) + (1 − 2n + mn)δλ

F2(λ, m) = (1 + mn − 2n)δ2λ2 + 2(n − 1)(δ − 1)δλ + (δ − 1)2.

Factorizing the quadratic equation F2 in terms of λ, we get:

F2(λ, m) = (1 + mn − 2n)δ2 × (L1 − λ)(L2 − λ)

where

L1 = n − 1 −
√

(n − m)n
(mn − 2n + 1)

(1
δ

− 1
)

≡ Lcoal

L2 = n − 1 +
√

(n − m)n
(mn − 2n + 1)

(1
δ

− 1
)

and the recurring assumption δ < 1
1+(m−1)λ implies 1/δ > 1 + (m − 1)λ ≥ 1. Therefore,

L2 − λ >
n − 1 +

√
(n − m)n

(mn − 2n + 1) (m − 1)λ − λ
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>
n − 1 + n − m

(mn − 2n + 1)(m − 1)λ − λ

= (n − m)mλ

mn − 2n + 1 > 0.

Consequently, F2(λ, m) > 0 (equivalent to ∂p∗/∂λ > 0) if and only if λ < L1 ≡ Lcoal. By
examining Lcoal, it is clear that it is decreasing in δ ≡ h(0)γn

n−1 and also increasing in m.
To prove the last statement, we note δ > 1/n implies

p∗
λ=1 =

n−1
nh(0)

n − 1 + (n−m)γ
n−1

nh(0) −mγ

<

n−1
nh(0) − γ

n − 1 = p∗
λ=0.

where recall δ ≡ h(0)γn
n−1 . Then, p∗

λ=1 < p∗
λ=0 implies that dp∗/dλ < 0 at least over some segment

in λ ∈ [0, 1], which implies Lcoal < 1.

Proof. (Proposition 5). Define function F0 (λ) ≡ 1 − δ + (λ̂ − 2λ)δ, which is linear and
decreasing in its scalar argument (recall λ̂ is a constant in this proposition). Therefore,

F̃ (λ⃗) ≡ 1
F0(λ1) + 1

F0(λ2) + 1
F0(λ3) ,

where F0(λi) > 0 for all i = 1, 2, 3 because δ ≤ 1/(1 + λ̂) by Proposition 1. Clearly, F̃ (λ⃗)
is convex and symmetric in λ⃗ and so Schur-convex in λ⃗ (see Chapter 3 of Marshall et al.
(2011) for references on the properties of Schur-convexity and Schur-concavity). Given that
Schur-convexity is an ordinal property preserved under increasing transformation, we conclude
−1/F̃ (λ⃗) is Schur-convex, and so p∗(λ⃗) = 1/F̃ (λ⃗) is Schur-concave, which implies by definition
that p∗(λ⃗) ≤ p∗(λ⃗′) whenever λ⃗≻λ⃗′. The remaining results follow from Schur-concavity of
p∗(λ⃗).

Proof. (Corollary 2). We continue from pricing equation (24). For this proof, it is convenient
to substitute β = 1

3h(0) , which gives:

p∗(λ, µ, µ) = 1
1

4β−γ(λ−2µ+1) + 2
4β+γ(λ−1)

,

∂p∗(λ, µ, µ)
∂µ

= 2γ(4β + γ(λ − 1))2

[γ(λ − 4µ + 3) − 12β]2 ≥ 0.

Likewise,

∂p∗(λ, µ, µ)
∂λ

=
γ
{

4β + γ
[
(4 + 2

√
2)µ − (3 + 2

√
2)λ − 1

]}{
4β + γ

[
(4 − 2

√
2)µ − (3 − 2

√
2)λ − 1

]}
[12β − γ(λ − 4µ + 3)]2 .
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The assumption of δ < 1
1+λ̂

= 1
1+λ+2µ is equivalent to β ≥ 4

9(1 + λ + 2µ)γ, which implies

4β + γ
[
(4 − 2

√
2)µ − (3 − 2

√
2)λ − 1

]
≥ (16

9 − 1)︸ ︷︷ ︸
>0

γ +
[16

9 − (3 − 2
√

2)
]

︸ ︷︷ ︸
>0

λγ +
[32

9 + (4 − 2
√

2)
]

︸ ︷︷ ︸
>0

µγ

>0

Hence, ∂p∗(λ,µ,µ)
∂λ ≥ 0 if and only if

λ ≤ Lintcoal ≡ (3 − 2
√

2)4β − γ

γ
+ (4 − 2

√
2)µ.

Observe that if µ → 1 (then λ → 1 by assumption so β > 16
9 γ) or γ → 0, Lintcoal > 1.

Meanwhile, p∗(λ, λ, µ) is mathematically equivalent to p∗(λ, µ, µ) given that the arguments
of p∗(·, ·, ·) are symmetrical in permutations:

p∗(λ, λ, µ) = 1
1

4β+γ(2λ−µ−1) + 2
4β+γ(µ−1)

,

∂p∗(λ, λ, µ)
∂λ

= 2γ(4β + γ(µ − 1))2

[12β + γ(4λ − µ − 3)]2 ≥ 0,

and

∂p∗(λ, λ, µ)
∂µ

=
γ
{

4β + γ
[
(4 + 2

√
2)λ − (3 + 2

√
2)µ − 1

]}{
4β + γ

[
(4 − 2

√
2)λ − (3 − 2

√
2)µ − 1

]}
[12β − γ(µ − 4λ + 3)]2 .

Different from previous discussion on p∗(λ, λ, µ), with the assumption λ ≥ µ, we yield

4β + γ
[
(4 + 2

√
2)λ − (3 + 2

√
2)µ − 1

]
> 4β + γ

[
(4 − 2

√
2)λ − (3 − 2

√
2)µ − 1

]
> 0.

Hence, ∂p∗(λ,λ,µ)
∂µ ≥ 0.
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Prüfer, Jens and Christoph Schottmüller (2021) “Competing with big data,” The Journal of
Industrial Economics, 69 (4), 967–1008.

Rhodes, Andrew and Jidong Zhou (2024) “Personalized pricing and competition,” American
Economic Review, 114 (7), 2141–2170.

Rochet, Jean-Charles and Jean Tirole (2003) “Platform competition in two-sided markets,”
Journal of the European Economic Association, 1 (4), 990–1029.

(2006) “Two-sided markets: a progress report,” The RAND Journal of Economics, 37
(3), 645–667.

Schaefer, Maximilian and Geza Sapi (2023) “Complementarities in learning from data: insights
from general search,” Information Economics and Policy, 65, 101063.

Scott Morton, Fiona, Gregory Crawford, Jacques Crémer, David Dinielli, Amelia Fletcher, Paul
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