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Abstract

We propose a combinatorial ascending auction that is “approximately” opti-
mal, requiring minimal rationality to achieve this level of optimality, and is ro-
bust to strategic and distributional uncertainties. Specifically, the auction is rank-
guaranteed, meaning that for any menu M and any valuation profile, the ex-post
revenue is guaranteed to be at least as high as the highest revenue achievable from
feasible allocations, taking the (|M| + 1)th-highest valuation for each bundle as
the price. Our analysis highlights a crucial aspect of combinatorial auction design,
namely, the design of menus. We provide simple and approximately optimal menus
in various settings.
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1 Introduction

Auctions play a critical role in economic activities. For example, the online adver-
tising sector generates trillions of dollars annually through the auctioning of advertising
“slots”. The Federal Communications Commission (FCC) has collected over 200 billion
dollars via auctioning radio spectrum. Despite the critical role these auctions play, there
is a surprising lack of theoretical groundwork to navigate the intricacies of auction de-
sign. This gap in knowledge stems from a unique challenge: “not all slots are created
equal”—bidders typically have complex, combinatorial preferences for different slots. For
instance, YouTube intersperses promotional videos at regular intervals within longer con-
tent. Here, some advertisers might see value in the repetition of their ads, leveraging
the complementarity, while others may fear overexposure could lead to negative percep-
tions akin to “spamming.” Likewise, in the realm of telecommunications, while larger
service providers may pursue nationwide radio spectrum licenses to maximize their cov-
erage, smaller providers often seek only regional licenses, prioritizing local markets over
national presence.

The theoretical study of auctions, in contrast to reality, takes aggressive simplifica-
tions to an extent that overlooks the nuanced realities of the markets. The game theoretic
approach focuses on the incentives of the bidders (incentive compatibility) and auction-
eers (optimality), while limiting to very specific environments. Iconic theories, such as
Myerson (1981), made progress by assuming a single item, independent valuations among
bidders, full Bayesian rationality, and shared prior beliefs. None of these assumptions
hold water in the complex scenarios described earlier, highlighting a clear disconnect.
Conversely, the domain of operations research and computer science typically emphasizes
the procedural aspects of communicating preferences and determining assignments under
complete preferential complexity. This focus often neglects the incentives for bidders to
reveal their preferences truthfully and for auctioneers to maximize revenue (see, e.g., a
review by Cramton et al. (2006)). Therefore, the development of a comprehensive auc-
tion theory that simultaneously addresses both incentives and complexity represents a
significant and unfulfilled challenge.

The goal of this study is to address the dilemma between incentives and complexity
in auction design. This resonates with what Carroll (2019) speculates as the “future of
economic design”:

“My expectation—and my hope—is that progress in mechanism design over
the coming decades will come from developing more useful general models of
preferences, information, and actions in complex environments, relatively free
of structural assumptions; and developing conceptual tools to argue for why
certain kinds of mechanisms will work well in such environments.”

To tackle the complexity of the practical environments, the same article then proposes:
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“Making this progress toward more free-form models will require a shift in
the criteria by which research in economic theory is evaluated.”

The methodology we develop in this paper hinges on the shift to a novel criterion of
approximate optimality, termed the rank guarantee: the kth-rank guarantee is the
maximal ex-post revenue when each feasible bundle can be sold at the kth-highest value
among all bidders. With this approximation, we achieve a near-optimal resolution of the
dilemma: it is possible to design a simple auction mechanism to respect the incentives—
the auctioneer achieves a rank-guaranteed revenue as long as bidders avoid “obviously”
bad strategies—while accommodating the full complexity—fully combinatorial prefer-
ences, without the need for any Bayesian prior.

In our model, an auctioneer sells multiple items to several (potentially a large number
of) strategic bidders, each with private valuations. We introduce a multi-item variant of
the open ascending auction termed the (C)ombinatorial (As)cending (A)uction (CASA).
Prior to the auction, the auctioneer curates a menu of item bundles for allocation, denoted
by M. With the formal game theoretic form of the auction described in Section 2, this
auction model distills down to two straightforward principles:

1. Bidders are allowed to place binding bids (increase prices) on any assortment of
bundles from the menu, even if these selections overlap.

2. The auction concludes when bid prices stabilize, with the winning bids being those
that maximize the total selling price.

Our findings reveal that CASA resolves the dilemma within certain approximation
bounds. First, we show that the outcome of CASA respects the incentives of both bidders
and the auctioneer:

• Bidder rationality: All of our results apply to any non-obviously dominated strat-
egy profile, a collection that excludes strategies that are obviously dominated in the
sense that even in the most favorable case, they underperform some other strate-
gies in their least favorable case (see Li (2017) and Li and Dworczak (2021)). In
other words, we allow the bidders to bid fully strategically, while making a weak
rationality assumption that all we know is that they avoid obviously bad choices.

• Approximate auctioneer optimality: In CASA, any non-obviously dominated
strategy profile yields an ex-post revenue that is rank-guaranteed — achieving the
maximal revenue when each bundle within the menuM can be sold at the (|M|+
1)th-highest value among all bidders. Since the 1st-guarantee is the full ex-post
trading surplus, the approximation we take is close in “ordinal distance” from the
full surplus.
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Second, we show how CASA maintains its performance in complex, unknown environ-
ments:

• Prior-free: The auction format, the selection of strategy profile, and the revenue
guarantee does not depend on any Bayesian prior on either the auctioneer’s side
or the bidders’ side, rendering the mechanism prior-free and our rank guarantee a
prior-free approximation (see, e.g., Chapter 5 and 7 of Hartline (2013)).

• Distributional robustness: We quantify the rank-guarantee using canonical ro-
bust optimality criteria, i.e., the minimal ex-ante expectation when an adversarial
nature chooses the joint distribution of values against the mechanism (see, e.g.,
Carroll (2017)). In the worst case, the revenue from CASA approximates the total
surplus at the rate of O

(
|M|2
N

)
, i.e., CASA asymptotically achieves full surplus

extraction when the number of bidders is large relative to the menu size.

To our knowledge, this paper is the first to introduce the rank-guarantee approxima-
tion. Compared to canonical approximation notions like constant-ratio guarantee and
maxmin guarantee, the rank guarantee offers the added benefit of being easy to evalu-
ate across various Bayesian and non-Bayesian environments. On the one hand, the rank
guarantee provides an easily computable lower bound on the worst-case revenue, even
when the underlying environment changes, such as when there are more bidders, when
the menu changes, or when the auctioneer has additional information on the distribution
of bidders’ valuations. Such adaptivity allows us to further simplify CASA by studying
menu design. On the other hand, the lower bound performance is also straightforward
to assess outside adversarial scenarios. For example, in the canonical setting where the
values are independent and identically distributed, the rank guarantee is an appealing
approximation when N is large, as all order statistics converge to the upper bound of
the valuation support. More generally, beyond understanding the worst-case scenario, the
rank guarantee can be useful to consider the potential upside of a mechanism in best-case
scenarios.

Our framework highlights a crucial aspect of combinatorial auction design, namely,
the design of menus. Crucially, the rank guarantee we derive reveals a novel trade-off
between menu sufficiency and approximation efficiency: a more complete menu achieves
a higher benchmark total surplus but increases the rank |M|. Therefore, to close the
approximation gap, a key exercise is to reduce the menu size while maintaining the
allocation efficiency, leveraging further knowledge about the bidders’ preferences. We
focus on a specific type of sufficient menus that improve approximation efficiency “for
free”—menus that achieve the same benchmark total surplus as the complete menu.
Specifically, we show that when the bidder’s preference exhibits canonical preference
structures, without loss of the benchmark total surplus, the size of menus can be reduced
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to be polynomial in the number of items being auctioned and so is the convergence rate
of revenue guarantee. The result is summarized in Table 1.

Preference Simple and Sufficient Menu Rank k

Weak substitutability Individual items O(M)
Weak complementarity Grand bundle 2

Partitional complementarity Partitional bundles O(M)
Homogeneous goods Menu of quantities O(M2)

Table 1: Simple and sufficient menus

The remainder of the introduction reviews related literature. Section 2 introduces the
auction format of CASA and the notion of rank-guarantee, and shows that CASA achieves
the rank-guarantee. Section 3 bounds the worst-case performance of rank-guaranteed auc-
tions under distributional uncertainties. Section 4 explores specific preference structures
where CASA with simple menus performs as well as the complete menu.

1.1 Related literature

(Approximately) optimal auction design Beyond the simple environment studied
in Myerson (1981) and Bulow and Klemperer (1996), solving for the exact optimal mech-
anism with confounding factors like multiple heterogeneous items, bounded distributional
knowledge or bounded rationality is generally intractable. Various alternative optimal-
ity notions have been proposed to make progress (see surveys by Roughgarden (2015)
and Hartline (2013)). Aggarwal and Hartline (2006) and Goldberg and Hartline (2001)
obtained the “constant fraction” approximation in the auction of sponsored search and
digital goods. Following a broader literature on robust mechanism design pioneered by
Carroll (2017), various authors have studied “robustly” optimal auctions that maximize
the distributional worst-case revenue.1 Particularly, He and Li (2022), Zhang (2022),
and Suzdaltsev (2022) study robust versions of the single-unit auction problem in the
distribution robust framework where the auctioneer has non-Bayesian uncertainty about
the joint distribution of the bidders’ valuations. In this paper, we propose the notion
of rank-guarantee, a distinct notion of approximate optimality. In Section 3, we apply
the distributional robustness analysis similar to that of Carroll (2017) and show that the
rank-guarantee has an appealing worst-case performance.

Multi-item auctions Beyond the efficient Vickrey auction, few theoretic results have
been established regrading multi-item auctions with combinatorial preferences. Jehiel

1 This research direction complements the large body of papers that focus on the case in which the designer does not
have reliable information about the agents’ hierarchies of beliefs about each other while assuming the knowledge of the
payoff environment; see, for example, Bergemann and Morris (2005), Chung and Ely (2007), Chen and Li (2018), Du
(2018), Brooks and Du (2021), Yamashita and Zhu (2022), and Brooks and Du (2023).
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and Moldovanu (2001a) point out the vulnerability of efficiency under multidimensional
bidder information. Ausubel and Milgrom (2002) point out the poor revenue performance
and strategic vulnerability of the Vickrey auction and propose simultaneous ascending
auctions with package bidding (SAAPB). The multi-item auction design problem has
also been extensively studied in the field of combinatorial auctions (see Cramton et al.
(2006) for a survey). This literature mainly focuses on (approximately) efficient auction
design and their communication/computational complexity, which is orthogonal to our
focus on revenue performance and bidder incentives. Compared to other proposals like
SAAPB (Ausubel and Milgrom (2002)) and the Combinatorial Clock Auction (CCA, see
Ausubel et al. (2006) and Levin and Skrzypacz (2016)), CASA uses a simpler “pay-as-
bid” rule, as opposed to personalized prices in SAAPB and demand reporting in CCA.
Importantly, we assume that the bidders are fully strategic instead of single-minded.
The menu design problem we tackle in Section 4 is akin to Rothkopf et al. (1998), which
seeks to make a combinatorial auction computationally tractable by restricting the menu.
We achieved the same goal while allowing for strategic bidders and maintaining the
approximate optimality of the revenue.

Implementation in strategies that are not obviously dominated We study out-
comes when agents are rational in the sense of avoiding obviously dominated strategies.
This solution concept draws from the idea of obvious strategy-proof mechanisms (see Li
(2017)) and is systematically studied in Li and Dworczak (2021). As in Li and Dworczak
(2021), we assume that agents avoid obviously dominated strategies, but refrain from
making assumptions regarding how agents select among strategies that are not obviously
dominated. This methodology aligns with the spirit of implementation in undominated
strategies; see for example Carroll (2014), Börgers (1991), Jackson (1992), and Yamashita
(2015).

2 CASA and rank-guarantee

2.1 The auction environment

There is a set S of M items to be sold to N bidders. Let N = {1, 2, . . . , N}. We write
b ⊆ S to denote a generic bundle of items. Let vn = {vnb }b⊆S denote the valuation vector
of bidder n, where vnb is bidder n’s valuation of bundle b. Valuations are normalized so
that vn∅ = 0 and vnb ∈ [v, v] (v ≥ 0) for all b ̸= ∅. A generic valuation profile is denoted by
v = (v1,v2, . . . , vN). Let M ⊆ 2S denote a menu of bundles chosen by the auctioneer.
While M is a choice variable of the auctioneer, for now we take it as exogenously given;
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we defer the discussion of menu design to Section 4. Assume that N ≥ |M|+ 1. Let

B(M) = {X ⊆M|∀b, b′ ∈ X, b ∩ b′ = ∅}

denote the set of feasible allocations of bundles within the menu M, i.e., all collections
consisting of non-overlapping bundles.

2.2 The Combinatorial Ascending Auction

We define the Combinatorial Ascending Auction (CASA) as follows. The auction has
an iterative structure, with the “state of the auction” characterized by the identity of the
leading bidder and the leading price for each bundle. Initially, the leading price for each
bundle is zero and none of the bidders is a leading bidder for any bundle. Bidders take
turns raising the bids on the bundles, which determines new leading bidders and leading
prices. The process repeats itself until when there are no new bids on any bundle. At
that point, the auction stops. The auctioneer chooses a feasible allocation to maximize
revenue, taking the leading prices as the prices for the bundles. There is also an activity
rule designed to ensure that bidding activity starts out high and declines during the
auction as prices rise far enough to discourage some bidders from continuing.

Formally, let P ⊂ R+ be a finite grid of feasible bids with grid size ϵ and maxP > v.

(1) Initialization stage t = 0. Define

• the leading bidder vector at stage 0: ϕ0 = (ϕ0
b)b∈M = 0,

• the leading price vector at stage 0: p0 = (p0b)b∈M = 0,

• the set of active bidders at stage 0: N 0 = {1, 2, . . . , N}.

(2) Bidding stage t ≥ 1. An active bidder n ∈ N t−1 observes (pt−1, {b |ϕt−1
b = n}),

and decides whether to quit, which bundles to bid on, and how much to bid.2

• Bidder n may choose to quit by submitting an empty bid only if {b |ϕt−1
b = n} =

∅, i.e., bidder n is not a leading bidder for any bundle in stage t − 1. Quitting
is irreversible, that is, if bidder n chooses to quit, then bidder n becomes an
inactive bidder and does not participate in future bidding rounds. Update:

– ϕt = ϕt−1, pt = pt−1, N t = N−1 \ {n}.

• If bidder n chooses not to quit, then she submits a bid—a nonempty set of
bundle-price pairs {(b, pb)} ⊂ M × P , subject to the requirements that (1)
Leading bids are binding: if bidder n is the leading bidder at some bundle in

2 The bidder selection rule and the observability of history is inconsequential for our analysis. For concreteness, we
consider the selection rule that active bidders are cycled in ascending order according to their indices, and the observability
of history is minimized to maximally protect privacy.
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stage t − 1, then she must include that bundle in her bid with a bid that is
weakly higher than the current leading price for that bundle, and (2) Minimum
bid increment: if bidder n would like to bid on some bundle for which she is not
the leading bidder, then her bid for that bundle must be strictly higher than
the current leading price for that bundle. Update:

– ϕt
b = n and ptb = pb for any bundle b included in her bid,

– ϕt
b′ = ϕt−1

b′ and ptb′ = pt−1
b′ for any bundle b′ not included in her bid,

– N t = N t−1.

Then, move on to the bidding stage t+ 1.

(3) Allocation. The auction ends (in stage T ) when the leading prices stay constant for
N consecutive periods. The auctioneer chooses a feasible allocation to maximize

max
b∈B(M)

∑
b∈b

pTb .

Denote the maximizer by b∗. Each bundle b ∈ b∗ is allocated to ϕT
b at the price pTb .

In words, the auction format of CASA runs parallel ascending auctions for each bundle
b ∈ M. Then, the items are allocated to maximize the total price. We discuss possible
variants of CASA and its relation to existing auction formats in Section 2.4.

2.3 The rank-guarantee of CASA

In this subsection, we study the strategic behavior of the bidders and establish the
rank-guarantee property of CASA. We only assume minimal rationality on the part of the
bidders—bidders are rational in the sense of not playing obviously dominated strategies.
Formally we adopt the solution concept of implementation in strategies that are not
obviously dominated (see Li (2017) and Li and Dworczak (2021)). We first sketch the
intuition, and then provide the formal arguments.

At any history, consider a non-leading bidder’s choice as to whether to quit. Obviously,
as quitting is irreversible, quitting the auction leads to a best possible outcome of a zero
payoff. Suppose that there is some bundle for which the bidder’s valuation is higher
than the current leading price for that bundle. Consider the following strategy where the
bidder raises the price for this particular bundle and never revises her bid afterwards.
Clearly, this continuing strategy guarantees a non-negative payoff for the bidder. Thus,
at least for the purpose of deciding whether to quit, it is “obviously optimal” not to quit.

More formally, let h = (t, (N 0, . . . ,N t−1), (p0 . . . ,pt−1), (ϕ0, . . . ,ϕt−1)) denote a his-
tory of the game in stage t, Ht the set of such histories in stage t, and H = ∪t≥0Ht.
Suppose that bidder n is the active bidder in some stage t and In is bidder n’s infor-
mation set. Then the observed prices p and n’s leading bundles b are the same for all
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h ∈ In. Let In denote all information sets of n. Let sn : In → 2M×R+ denote bidder n’s
(pure behavioral) strategy and un(s,v

n|h) the payoff to bidder n given valuation vector
vn, strategy profile s, conditional on the current history h and n bidding in period t.

Definition 1. A bidding strategy sn : In → 2M×P is obviously dominated if there exists
s′n such that at any earliest point of departure In between sn and s′n,

sup
s−n,h∈In

un(s,v
n|h) ≤ inf

s−n,h∈In
un(s

′
n, s−n,v

n|h);

inf
s−n,h∈In

un(s,v
n|h) < sup

s−n,h∈In
un(s

′
n, s−n,v

n|h).

The first inequality is identical to the definition of the obvious dominance relation in
Li (2017), i.e., the best outcome under sn is weakly worse than the worst outcome under
s′n. In addition, we require the dominated strategy to be non-equivalent in terms of the
induced outcome to the strategy that dominates it. The second requirement guarantees
that the set of non-obviously dominated strategies is non-empty. The earlier intuition
then translates to:

Lemma 1. If there exists an information set In ∈ In (with observed prices p) such that
sn(In) = ∅ (i.e., bidder n quits) and

• ∃p′ ∈ P , b̃ ∈ arg max
b∈B(M)

∑
b′∈b p′b′ and b ∈ b̃ such that p′ ≥ p and vnb > p′b > pb,

then sn is obviously dominated.

Proof. To show that sn is obviously dominated, we explicitly construct another strategy
s′n that obviously dominates it. Consider the information set In ∈ In (with observed
prices p) such that sn(In) = ∅ and

• ∃p′ ∈ P , b̃ ∈ arg max
b∈B(M)

∑
b′∈b p′b′ and b ∈ b̃ such that p′ ≥ p and vnb > p′b > pb.

Obviously, the payoff from sn conditional on any history h ∈ In is zero. Let s′n be the
same as sn before the information set In and let bidder n bid s′n(In) = (b, p′b) and never
revise her bid afterwards.

We first discuss a special case in which |N t−1| = 1 and n is not a current leading bidder
(otherwise quitting the auction is not feasible for bidder n). Then, all the current prices
must be 0 and all the other bidders have quit (as this is the unique consistent history).
Following the strategy s′n, the auction ends with bidder n bidding (b, p′b), leading to a
positive payoff of vnb − p′b > 0 for bidder n.

Next, we consider the case in which |N t−1| > 1. It is clear that bidder n will get a
nonnegative payoff regardless of the value profiles and bidding strategies of other bidders.
We show that the best possible payoff for bidder n following the strategy s′n is positive.
It suffices to consider the case in which any other subsequent active bidder bids p′b′ for
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some bundle b′ whenever possible, the auction ends with prices p′, leading to a positive
payoff of vnb − p′b > 0 for bidder n. Q.E.D.

Note that Lemma 1 suggests that our intuition is incomplete as we cannot fully rule
out strategies that quit when the bidder’s value for some bundle is above the leading
price for that bundle. To rule out all such strategies, it further requires the existence of
some scenario under which bidder n may be pivotal: a strictly profitable bid of n may
ever be selected in the end. Nevertheless, we show below that the non-pivotal bidders
are inconsequential for our analysis.

Let Sn
NOD(P ) denote the set of non-obviously dominated strategies of n given price

grid P . Let R(s,v) denote the revenue to seller given value profile v and strategy profile
s. Define

RCASA(v) := lim
ϵ→0

inf
sn∈Sn

NOD(P )
R(s,v),

where the first limit inf is taken over ϵ→ 0 and all P with grid size ϵ. That is, RCASA(v)

is the worst-case ex-post revenue from CASA under non-obviously dominated strategies
in the limit where grid P becomes dense.

Given the valuation profile v and menuM, the kth-guarantee is defined as the maximal
revenue from feasible allocations within M, taking the kth-highest valuations for each
bundle as the price.

Definition 2. The kth-guarantee given the menu M and the value profile v is

Rk
M(v) := max

b∈B(M)

∑
b∈b

v
(k)
b ,

where v
(k)
b denotes the kth-highest value of bundle b.

Our key observation is that CASA achieves the kth-guarantee as long as bidders avoid
strategies that are obviously dominated. In other words, for CASA to achieve the kth-
guarantee, we only need minimal rationality on the part of the bidders.

Theorem 1. RCASA(v) ≥ Rk
M(v) for k = |M|+ 1.

Proof. Consider a grid P with any grid size ϵ > 0. We show that as long as bidders
avoid obviously dominated strategies, for any value profile v,

max
b∈B(M)

∑
b∈b

pTb ≥ max
b∈B(M)

∑
b∈b

(v
(k)
b − ϵ).

Suppose to the contrary, this is not true. Then, there exists strategy profile s (with sn
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being not obviously dominated for each bidder n), value profile v, and δ > 0 such that

max
b∈B(M)

∑
b∈b

pTb < max
b∈B(M)

∑
b∈b

(v
(k)
b − ϵ− δ).

Evidently, there exists some bundle b such that pTb < v
(k)
b − ϵ−δ, or equivalently, pTb + ϵ <

v
(k)
b − δ. For each such bundle b, raise the price of bundle b to (the closest price below)
v
(k)
b − δ sequentially until we find the first pivotal bundle b̃ when maxb∈B(M)

∑
b∈b pb is

strictly improved by such increase in prices.
Since k = |M|+1 and pT

b̃
< v

(k)

b̃
−ϵ−δ, there exists a bidder n with vn

b̃
≥ v

(k)

b̃
that quits

the auction before the auction ends. Let h be the (on-path) history at which n quits (note
that at this history, n must not be a leading bidder and pb̃(h) ≤ pt

b̃
≤ vn

b̃
− δ − ϵ, where

pb̃(h) is the price of bundle b̃ at the history h). Let h ∈ In. Then, sn(In) = ∅. Let p′ be
the raised prices and b̃ ∈ arg max

b∈B(M)

∑
b′∈b p

′
b′ . Then b̃ ∈ b̃, and p′ satisfies the condition in

Lemma 1. Therefore, sn is obviously dominated. We arrive at a contradiction. Q.E.D.

As we have pointed out following Lemma 1, elimination of obviously dominated strate-
gies does not guarantee the ex-post prices to be above the kth-highest values. To establish
Theorem 1, we prove in addition that the behaviors of non-pivotal bidders are inconse-
quential. With Theorem 1, we say that CASA is a rank-guaranteed auction format as
long as we are comfortable assuming that bidders avoid strategies that are obviously
dominated.

CASA and its rank-guarantee become extremely simple when |M| = 1, where CASA
reduces to the canonical English auction of the unique feasible bundle and the kth-
guarantee becomes the second highest value. In this special case, Theorem 1 shares
the insight from Li (2017) that English auction achieves the 2nd-guarantee via an obvi-
ously strategy-proof outcome. To understand our general result, we provide an alternative
interpretation of this special case. The English auction made it obvious that a bidder
should avoid losing the auction when there is a remaining surplus. Therefore, it max-
imally utilizes the competition among losers of the auction, pushing the price to the
highest value among them. Meanwhile, it does not further screen the winner at all.
CASA is exactly the multi-item generalization of this philosophy: it maximally invokes
competition among losers by making it obviously suboptimal to lose with a remaining
surplus. Meanwhile, it does not “care” at all which winner gets which bundle and how
much extra he pays. As a result, the auctioneer extracts at least as much surplus as that
from the losers only, which is exactly the rank-guarantee.
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2.4 Discussions

Alternative formats: As we have discussed above, CASA is an intuitive extension of
the canonical single-item English auction. The idea of generalizing the English auction
to accommodate multiple items has been extensively explored. However, crucial to the
design of CASA is a set of unique properties that cope with the incentives of the players.
In comparison to the simultaneous ascending auction (SAA, Milgrom (2000)), allowing
for bidding on bundles (package bidding) has the advantage of mitigating the demand
reduction problem or the exposure problem, leading to sufficient competition. Compared
to the combinatorial variants of SAA like SAAPB (Ausubel and Milgrom (2002)) and
CCA (Ausubel et al. (2006)), CASA uses a simpler ”pay-as-bid” rule so that the bidders
find it straightforward to determine the remaining surplus from the auction, leading
to the obvious strategy-proof implementation.3 Compared to the majority of iterative
combinatorial auctions (Chapter 2, Cramton et al. (2006)), which seek to replicate VCG
(known not to be rank-guaranteed4) and maximize efficiency, CASA has much better
revenue performance. The design of CASA accommodates fully strategic bidders, as
opposed to single-minded or myopic bidders assumed in the cited papers.

Except for the several crucial features, the exact format of CASA can be flexibly
tailored to the auctioneer’s needs and practical considerations without losing its various
desirable properties. Notably, the menu M is a design variable of the auctioneer, which
we examine in detail in Section 4. Additionally, instead of allowing bidders to bid on
multiple bundles, we could restrict them to bid on a single bundle when it is their turn to
move (if a bidder is already leading for some bundle when it is her turn to move, she could
not bid on any other bundle but she would remain an active bidder). Such restriction
prevents the type of collusive communication documented in Grimm et al. (2003); Jehiel
and Moldovanu (2001b). Moreover, we could also allow the bidders to observe the entire
history if that is considered desirable for transparency purposes.

Robustness to collusion / irrationality: Klemperer (2002) identifies collusion as
the first concern that “really matters in auction design”. We illustrate below that our
framework allows us to quantify the impact of collusive or irrational behavior on the
performance of CASA. Recall that the key force that drives the revenue to the rank-
guarantee is the competition among the losing bidders. Therefore, when there are non-
strategic bidders, one can simply consider the competition among the subset of rational
losing bidders.

Formally, when the number of non-strategic bidders is bounded, then Theorem 1 still
holds when k is relaxed by the number of non-strategic bidders.

3 The SAAPB is indeed kth-guaranteed under non-strategic “straightforward bidding” strategies (Theorem 1 of Ausubel
and Milgrom (2002)). However, whether SAAPB is kth-guaranteed with fully strategic bidders is yet unknown to us.

4 Imagine the case M = {(a), (b), (a, b)}. v(a,b) = 1 for all bidders. va = vb = 0 for all bidders except for two, whose
value for a and b are 1. The VCG revenue is 0, while the kth-guarantee is 1 for any k ≥ 2.
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Proposition 1. Suppose there are j non-strategic bidders, then RCASA(v) ≥ Rk
M(v) for

k = |M|+ 1 + j.

Proof. Observe that in the proof of Theorem 1, since k = |M| + 1 + j, there exists at
least one strategic player n that quits the auction before period t and vn

b̃
≥ v

(k)

b̃
. The rest

of the proof follows. Q.E.D.

Proposition 2 applies when a relatively small number of bidders play collusive/irrational
strategies. Then, they reduce the rank of the guarantee by a small amount. Nevertheless,
CASA is still rank-guaranteed.

What if all bidders are collusive? When the bidders form coalitions, and they strate-
gically maximize group-level payoffs5, Theorem 1 still holds when k is scaled by the
coalition sizes.

Proposition 2. Suppose bidders are partitioned into strategic coalitions {ci}i∈I , where
the index is chosen such that |ci| decreases in i. Then, RCASA(v) ≥ Rk

M(v) for k =∑
i≤|M| |ci|+ 1.

Proof. Observe that in the proof of Theorem 1, since k =
∑

i≤|M| |ci|+1, there exists at
least one coalition of players c that all quit the auction before period t and maxn∈c{vnb̃ } ≥
v
(k)

b̃
. Let h be the (on-path) history at which the last member n in the coalition quits

(note that at this history, n must not be a leading bidder and pb̃ ≤ pt
b̃
≤ maxn{vnb̃ }−δ−ϵ).

Let h ∈ In. Then, sn(In) = ∅. Obviously, quitting gives the entire group zero payoff while
bidding p′

b̃
guarantees a non-negative payoff. Suppose all other bidders bid up to p′b when

it is their turn, the auction ends with p′ and the group obtains a strictly positive payoff.
Therefore, sn is obviously dominated for coalition c. Q.E.D.

The intuition behind the two extensions is exactly the competition among losing
strategic bidders. The price of each bundle must be higher than the value of any losing
strategic bidder or any losing coalition group as otherwise they will outbid the price. Of
course, Proposition 2 has no bite when k is large compared to N ; hence, it should be
interpreted as the strategic robustness of CASA only in relatively thick markets. Never-
theless, CASA is also aligned with the philosophy of anti-collusion design, even in thin
markets, because CASA permits the minimum transmission of information. For exam-
ple, anonymity prevents the reciprocity behavior documented in Cramton and Schwartz
(2000).

Efficiency: In CASA, although bidders can fully avoid the exposure problem by bidding
only on bundles with a positive surplus, they may strategically expose themselves. It is

5 Each group can freely shift allocations within the group and maximize the total payoff.
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not obviously dominated to bid strictly above the true valuation for a bundle.6 Therefore,
CASA might not satisfy ex-post IR; hence kth-guaranteed revenue does not implie kth-
guaranteed surplus. Of course, CASA still satisfies ex-ante IR (assuming bidders have
correct Bayesian priors) since quitting at the beginning is always an option; hence, the
ex-ante bounds we derive in the following sections on the revenue of CASA also apply to
surplus.

3 Rank-guarantee as a desideratum

Section 2 shows that CASA achieves the rank-guarantee as long as bidders avoid
strategies that are obviously dominated. In this section, we explore the concept of rank-
guarantee as a desideratum in auction design.

Clearly, if the auctioneer knows that the bidders’ valuations are independent and
identically distributed, then rank-guarantee is an appealing approximation when N is
large, as all order statistics converge to the upper bound of the valuation support (at the
rate of 1

N
). In what follows, we show that even when the auctioneer has non-Bayesian

uncertainty about the joint distribution of the bidders’ valuations and maximizes the
revenue-guarantee (the worst-case expected revenue where the worst case is taken over
all joint distributions that are perceived to be plausible), in many settings, rank-guarantee
remains an appealing approximation.

Let G ⊂ ∆([v, v]2
S
) be an arbitrary subset of distributions of valuation vector. We

interpret G as the auctioneer’s estimate of a representative bidder ’s valuation. Then, the
joint distributions of the bidders’ valuations that are considered possible by the auctioneer
are

F =
{
F ∈ ∆([v, v]N×2S)

∣∣∣ 1
N

∑
Fn ∈ G

}
,

where Fn is the marginal distribution of bidder n’s valuation. Thus, 1
N

∑
Fn is the

cumulative distribution function of the valuation of a uniformly randomly selected bidder
in the population. We call F an ambiguity set. Such an ambiguity set F could come
from the statistical estimation of F based on a “sanitized” dataset about valuations,
that is, past bidders’ valuations with identity information removed. The ambiguity set
F captures the type of distributional uncertainty introduced by Carroll (2017), while
further generalizing it to capture realistic knowledge structures stemming from statistical
inference.7

6 Consider, for example, the case with three bidders 1, 2, 3 and three items a, b, c . Bidder 1 only wants a, bidder 2 only
wants b, and bidder 3 only wants the grand bundle {a, b, c}. The valuation of each bidder for the desired bundle is 1. By
strategically bidding up item b even though bidder 1 gets zero value from it, bidder 1 can reduce the bid required for him
to win item a, creating an exposure problem for 1.

7 This setup covers a wide range of scenarios, as G is completely general. G could be a singleton set capturing the case
in which the auctioneer has no uncertainty about the distribution of a representative bidder’s valuation. G could also be
the set of distributions satisfying certain statistical properties (say moment conditions), capturing scenarios in which the
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For any F ∈ ∆([v, v]N×2S) and menu M⊆ 2S, define the ex-ante efficient surplus

VM(F ) := EF

[
max

b∈B(M)
max
ι:b→N

∑
b∈b

v
ι(b)
b

]
,

where ι, the assignment function satisfies ι(b) ̸= ι(b′) for any b ̸= b′. The ex-ante efficient
surplus V2S(F ) with respect to the complete menu 2S is denoted by V ∗(F ) for simplicity.

Theorem 2. For any menu M,

inf
F∈F

EF [R
k
M(v)] ≥ inf

F∈F
VM(F )− (k − 1)|M|v

N
.

Proof. Let ® be a uniform random element of N .

Rk
M(v) = max

b∈B(M)

∑
b∈b

v
(k)
b

≥ max
b∈B(M)

(∑
b∈b

v®b −
∑
b∈b

max {v®b − v
(k)
b , 0}

)
≥ max

b∈B(M)

(∑
b∈b

v®b

)
−
∑
b∈M

max {v®b − v
(k)
b , 0}

=⇒ EF [R
k
M(v)] ≥EF

[
max

b∈B(M)

∑
b∈b

v®b

]
−
∑
b∈M

EF

[
v®b − v

(k)
b |v

®
b > v

(k)
b

]
Prob(v®b > v

(k)
b )

≥EF

[
max

b∈B(M)

∑
b∈b

v®b

]
−
∑
b∈M

v Prob(v®b > v
(k)
b )

≥EF

[
max

b∈B(M)

∑
b∈b

v®b

]
− (k − 1)|M|v

N
.

This further implies that

inf
F∈F

EF

[
Rk

M(v)
]
≥ inf

F∈F
EF

[
max

b∈B(M)

∑
b∈b

v®b

]
− (k − 1)|M|v

N

= inf
G∈G

EG

[
max

b∈B(M)

∑
b∈b

vb

]
− (k − 1)|M|v

N

≥ inf
F∈F

VM(F )− (k − 1)|M|v
N

,

where the equality follows from the definition of the set F. For the last inequality,
observe that for any G ∈ G, the joint distribution where each bidder’s value is distributed
according to G and all bidders’ values are maximally positively correlated is contained in

auctioneer also has some non-Bayesian uncertainty about the distribution of a representative bidder’s valuation.
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F. Therefore,

inf
F∈F

VM(F ) ≤ inf
G∈G

EG

[
max

b∈B(M)

∑
b∈b

vb

]
.

Q.E.D.

Theorem 2 highlights a key trade-off between menu sufficiency and approximation
efficiency. Evidently, presenting the bidders with a larger menu has the potentially of
increasing allocation efficiency. Particularly,M can be naively chosen to be the complete
menu 2S to guarantee full menu sufficiency, i.e., VM(F ) = V ∗(F ). However, this leads to
|M| growing exponentially in M , causing both complex auction process and slow con-
vergence. On the other hand, choosing a small menu achieves approximation efficiency
but sacrifices allocation efficiency. Although such trade-off is generally non-trivial under
general combinatorial preferences, we show in the next section that under canonical pref-
erence structures, menu sufficiency and approximation efficiency can often be achieved
simultaneously.

3.1 Discussions

Alternative ambiguity sets: The proof of Theorem 2 goes through for a general F if
the following equality holds.

inf
F∈F

EF

[
max

b∈B(M)

∑
b∈b

v®b

]
= inf

F∈F
VM(F ).

That is, in the worst case, randomly selecting bidders performs as well as optimally select-
ing bidders. Therefore, it is straightforward that Theorem 2 holds under an alternative
ambiguity set:

F̂ =
{
F ∈ ∆([v, v]N×2S)

∣∣∣∀n, Fn ∈ G
}
.

Under F̂, the auctioneer knows that the marginal distributions of bidders are contained
in G, but nothing beyond that. This ambiguity set exactly captures the correlational
uncertainty studied in Carroll (2017), He and Li (2022), Zhang (2022), and Suzdaltsev
(2022).

Distributions with unbounded support: Suppose the support of distributions in G
has unbounded support, i.e., v = ∞, then the bound derived in Theorem 2 has no bite.
However, observe that

EF

[
v®b |v

®
b > v

(k)
b

]
Prob(v®b > v

(k)
b ) ≤

∫ ∞

Q
(k−1)/N

F̄b

vbdF̄ (v),

16



where F̄ =
∑

Fn

N
and Q

(k−1)/N

F̄b
is the top k−1

N
quantile of the marginal of F̄ for vb. To see

why the inequality holds, the LHS is the constrained expectation of vb given F̄ on some
event of probability at most k−1

N
. The RHS is the constrained expectation of vb given F̄

on the probability-k−1
N

event that maximizes its value. Therefore,

inf
F∈F

EF [R
k
M(v)] ≥ inf

F∈F
VM(F )− sup

G∈G

∑
b∈M

∫ ∞

Q
(k−1)/N
Gb

vbdG(v).

For any G, the concentration inequality implies
∫∞
Q

(k−1)/N
Gb

vbdG(v) ≤ EG[v2b ]

Q
(k−1)/N
Gb

. If G has

unbounded support, so is the quantile Q
(k−1)/N
Gb

. As a result, when distributions in G
have unbounded support but uniformly bounded second moment, the worst-case rank-
guarantee converges to the full surplus at the rate of O

(
|M|

infG∈G Q
(k−1)/N
Gb

)
.

Tightness of the bound: The coefficient k|M| in Theorem 2 consists of two parts.
The coefficient k comes from the kth highest value approximation. The coefficient |M|
comes from the total number of bundles in the menuM. Proposition 3 below shows that
the dependence on k is tight.

Proposition 3. For any M,N,M, k, there exists some G such that

inf
F∈F

EF [R
k
M(v)] ≤ inf

F∈F
VM(F )−O

(
k
N

)
.

Proof. See Appendix A.1. Q.E.D.

The dependence of the approximation gap on |M|, however, might not be tight as
we take a very loose upper bound in the proof of Theorem 2: we bound the revenue loss
from the allocated bundles (up to M of them) by the revenue loss from all bundles (|M|
of them). While we speculate that the coefficient |M| can be improved, a formal proof
is yet unknown to us.

4 Menu design and simple menus

In this section, we examine several canonical classes of preference structures where
there exist menus that are both sufficient, ensuring full allocation efficiency, and simple,
with menu size growing at a polynomial rate as M increases.

Definition 3. Menu M is G-sufficient if:

inf
G∈G

EG

[
max

b∈B(M)

∑
b∈b

vb

]
= inf

G∈G
EG

[
max

b∈B(2S)

∑
b∈b

vb

]
.
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In words, a menu M is G-sufficient if the worst-case surplus from allocating to (hy-
pothetically) identical bidders with valuation distribution from G is the same as that
under the complete menu 2S. Importantly, G-sufficiency is defined with respect to the
preference of a single bidder instead of all bidders. It is much weaker than assuming that
restricting to allocations within M is without loss for ex-post efficiency.8 Nevertheless,
sufficiency guarantees full allocation efficiency:

Theorem 3. If menu M is G-sufficient, then

inf
F∈F

EF

[
Rk

M(v)
]
≥ inf

F∈F
V ∗(F )− (k − 1)|M|v

N
.

Proof.

inf
F∈F

EF

[
Rk

M(v)
]
≥ inf

G∈G
EG

[
max

b∈B(M)

∑
b∈b

vb

]
− (k − 1)|M|v

N

= inf
G∈G

EG

[
max

b∈B(2S)

∑
b∈b

vb

]
− (k − 1)|M|v

N

≥ inf
F∈F

V ∗(F )− (k − 1)|M|v
N

,

where the equality follows from the G-sufficiency of menu M, and the two inequalities
have been established in the proof of Theorem 2. Q.E.D.

A simple sufficient condition for the G-sufficiency of menu M is that

max
b∈B(2S)

∑
b∈b

vb = max
b∈B(M)

∑
b∈b

vb (1)

holds ex-post, i.e. ∀v ∈ Supp(G) := ∪G∈G Supp(G). This condition allows us to convert
combinatorial preferences into sufficiency. Theorem 3, as well as Equation (1), states that
one only needs to verify the sufficiency of a menu based on individual bidder’s preference,
as opposed to the distribution of valuations among all bidders. This is a consequence of
the robustness concern. Recall from our analysis in Section 3 that the adversarial nature
minimizes the rank-guarantee by making all losing bidders identical. Then, in the worst-
case, a G-sufficient menu performs as good as the complete menu. In the alternative
cases where losing bidders are asymmetric, even though the G-sufficient menu under-
performs the complete menu, the extra surplus from asymmetry leads to an even higher
rank-guarantee. With Theorem 3 and Equation (1), we derive simple sufficient menus for
several canonical preference structures.

8 Consider for instance two items and two bidders, where for each bidder the sum of the value for each individual item
is more than her value for the grand bundle. Then, menu of individual items is “sufficient” per Definition 3, but not
necessarily ex-post efficient when the two bidder’s values are highly asymmetric.

18



Weak substitutability and itemized ascending auction

Definition 4. We say that bidder preferences exhibit weak substitutability if for any
v ∈ Supp(G) and b ⊆ S, ∑

s∈b

v{s} ≥ vb.

In words, a representative bidder finds the value of any bundle weakly lower than
the sum of her value for each item in the bundle. Weak substitutability is a necessary
condition for various substitutability notions studied in the literature.

Proposition 4. If bidder preferences exhibit weak substitutability, then the menuM = S

is G-sufficient and k = M + 1.

When M = S, CASA reduces to a simple itemized ascending auction, where the
allocation is determined jointly in the end. Weak substitutability is one of the most
widely studied preference assumptions in the literature as it captures a natural dimin-
ishing return to scale. Our analysis shows that under such preference structures, CASA
exhibits extreme simplicity while achieving both allocation and approximation efficiency.
Intriguingly, under weak substitutability, the canonical Vickery auction performs as well
as CASA, despite its much worse performance under more general preference structures.

Proposition 5. If bidder preferences exhibit weak substitutability, then the Vickery auc-
tion achieves a revenue guarantee of RM+1

S (v).

Proof. See Appendix A.2. Q.E.D.

An even more special case of weak substitutability is the sponsored search auction,
where valuations of items are constant (and common) ratios of a one-dimensional private
type. As shown in Edelman et al. (2007), the clock auction version of generalized second
price (GSP) auction is outcome equivalent to the Vickery auction; hence achieving the
same rank-guarantee.

Weak complementarity and the second-price auction

Definition 5. Bidder preferences exhibit weak complementarity if for any v ∈ Supp(G)

and b ∈ B(2S), ∑
b∈b

vb ≤ vS.

In words, a representative bidder finds the value of the grand bundle weakly higher
than the total value of any feasible collection of bundles. Weak complementarity is a
necessary condition for various complementarity notions studied in the literature.
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Proposition 6. If bidder preferences exhibit weak substitutability, then the menu M =

{S} is G-sufficient and k = 2.

When M = {S}, CASA reduces to a simple ascending auction for only the grand
bundle. Evidently, in this case, the standard second-price auction is second-guaranteed
and outcome-equivalent to CASA.

“Partitional” complementarity A hybrid case of substitutability and complemen-
tarity is the partitional complementarity which we define below, described by a partition
K of S.

Definition 6. Let K be a partition of S. Bidder preferences exhibit K-partitioned
complementarity if for any v ∈ Supp(G),

for any b ∈ K and partition κ of b,
∑
b′∈κ

vb′ ≤ vb;

for any b′ ⊆ S,
∑
b∈K

vb∩b′ ≥ vb′ .

In words, K-partitioned complementarity structure means there is weak complemen-
tarity within each b ∈ K and weak substitutability across each b ∈ K.

Proposition 7. If bidder preferences exhibit K-partitioned complementarity, then the
menu M = K is G-sufficient and k = |K|+ 1.

In some cases, the auctioneer may understand that bidder preferences exhibits par-
titional complementarity, but does not know the exact partition. Proposition 7 can be
easily extended to the case with multiple possible partitions {Ki}Ii=1, where I is bounded.
In this caseM = ∪i∈IKi and k ∼ Poly(M). Such partitional complementarity preference
structure arises when there is clear synergy between “nearby” bundles. Think about land
auctions, for example. There are finitely many possible partitions that are determined
by the major divisions of lands by rivers, highways, or railroads. If two distinct lands are
segregated by those divisions, then there is substitutability among them. In such cases,
our theory guarantees the performance of CASA with the partitional menu.

Homogeneous goods and quantity-CASA

Definition 7. The goods are homogeneous if there exists u : N → [v, v] such that for
any v ∈ Supp(G) and b ∈ S,

vb = u(|b|).

With homogeneous goods, a representative bidder’s valuation for any bundle only
depends on the size of the bundle. Note that the dependence of u on |b| is arbitrary.
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We do not even require monotonicity. In this case, we redefine the notion of feasible
allocations to B : (M) = {X ⊂M|

∑
b∈X |b| ≤ M}, i.e., an allocation is feasible as long

as the total number of items being allocated is below M .

Proposition 8. If goods are homogeneous, then the menuM = ∪l∈{1,...,M} {b1l , . . . , b
⌊M

l
⌋

l }
is G-sufficient and k ≤ M2+M

2
, where {bjl } are distinct bundles of size l.

In this case, CASA simply auctions ⌊M
l
⌋ copies of each quantity level l ≤ M via

individual ascending auctions. Like the discussion in partitional complementarity, there
may be finitely many types of homogeneous goods. As long as the number of types I is
bounded, the menu consists of all combinations of ⌊M

l
⌋ copies of each type is sufficient

and of size Poly(M). Such preference structure is typical in examples like the spectrum
auctions. Different frequencies are almost physically homogeneous, except that “middle”
frequencies might be of different value from “boundary” frequencies.

5 Concluding remarks

In this paper, we design an auction format of CASA that guarantees an approximately
optimal ex-post revenue. To achieve this, we only need to assume minimal rationality on
the part of the bidders. In addition, we show that CASA is robust to distributional and
strategic uncertainties under certain approximations. In practice, however, these approx-
imation gaps may become non-negligible, rendering the deployment of CASA challenging.

• Thin markets: The revenue performance of CASA as well as its strategic robustness
crucially hinges on the rank k (menu size) being small relative to the number
of bidders. In the online advertising examples we introduce, the complete menu
is small enough that a handful of bidders may be sufficient to make CASA an
appealing design. However, other interesting auctions may suffer the large menu
problem (e.g. the land auctions) or the thin market problem (e.g. the route auctions
of rideshare apps) or both (e.g., the spectrum auctions), rendering the guarantee
underpowered.

In the latter cases, the menu sufficiency-approximation efficiency tradeoff becomes
eminent. Our theory suggests the importance of preference estimation in those
settings. Finding a simple sufficient menu keeps the revenue guarantee appealing
and CASA directly applicable. Even in settings with a large number of items and a
small number of bidders where our theory has little bite, menu design may still be
a cost-effective way to promote competition and improve the revenue performance
of existing auctions.

• Proxy bidding: While CASA simplifies the bidding process by clarifying “whether
to quit,” the complexity of determining “which bundles to bid on” and “how much
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to bid” remains unresolved. A truthful and full proxy-bidding version of CASA is
not yet known to us. This makes the deployment of CASA challenging in envi-
ronments that require fast resolutions of auctions. Nevertheless, we propose that
advancements in AI could mitigate this by introducing ”copilot” features that as-
sist bidders in decision-making. By integrating AI as the bidding proxy, bidders
would only need to specify values for desired bundles, with the AI advising on bid
placement. This could evolve into a hybrid model where bidders either rely fully on
platform-provided AI, develop their own bidding algorithms, or use a combination
of both strategies.
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A Omitted Proofs

A.1 Proof of Proposition 3

Proof. Pick an arbitrary bundle b ∈ M. Let vb′ = 1b′=b · U [0, 1]; that is, b is the only
valuable bundle and its value is uniformly distributed on [0, 1]. Let G denote such a
distribution and G = {G}. Then, VM(F ) ≥ 1

2
for any F ∈ F. Define F ∗ as follows:

uniformly randomly pick k−1 bidders and their values for b are identical and distributed
according to U [1− k−1

N
, 1]. For the remaining bidders, their values for b are identical and

distributed according to U [0, 1− k−1
N

]. It is straightforward to verify that F ∗ ∈ F and

EF ∗ [Rk
M(v)] = EU [0,1− k−1

N
][x] =

1

2
− k − 1

2N
≤ inf

F∈F
VM(F )−O

(
k
N

)
.

Q.E.D.

A.2 Proof of Proposition 5

Proof. We slightly abuse notation and represent an allocation by a vector of sets b =

(b1, b2, . . . , bN), where bn ∩ bn′ = ∅ and bn is the bundle allocated to bidder n. Let BN
denote the set of all feasible allocations with N bidders. Let b∗(v) denote the efficient
allocation.

We establish a lower bound of the revenue-guarantee of the VCG mechanism by
constructing, for each n, an allocation bn ∈ BN−1 of the objects to the bidders other than
bidder n. Clearly, for any such profile bn,

RV CG(v) =
N∑

n=1

(
sup

b∈BN−1

∑
n′ ̸=n

vn
′

bn′ −
∑
n′ ̸=n

vn
′

b∗
n′ (v)

)

≥
N∑

n=1

(∑
n′ ̸=n

vn
′

bn
n′
−
∑
n′ ̸=n

vn
′

b∗
n′ (v)

)
. (2)

For each n, we construct an allocation bn ∈ BN−1 via the following algorithm:

Algorithm. Bundle bnn′ = ∅ for all n′. Set O = b∗n(v).

(1). For each n′ ̸= n:

If b∗n′(v) ̸= ∅, set bnn′ = b∗n′(v).

Let N̄ = {n′ : bnn′ = ∅, n′ ̸= n}.

(2). If O ̸= ∅, then pick o ∈ O.

Set bnn′ = {o} for some n′ ∈ argmaxn′′∈N̄ vn′′({o}).

Update O ← O \ {o} and N̄ ← N̄ \ {n′}.
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(3). Repeat (2) until O = ∅.

(4). Return allocation bn = (bn1 , b
n
2 , . . . , b

n
n−1, b

n
n+1, . . . , b

n
N).

In words, if an object is allocated to a bidder other than bidder n under b∗(v), then
the object is still allocated to that bidder. We then iteratively pick an object o that is
allocated to bidder n under b∗(v), and allocate the object to the bidder n′ whose value
for the object vn

′

{o} is the highest among all the bidders who are not allocated any object
yet. For each o ∈ b∗n, define no to be the index n′ such that bnn′ = {o}.

It follows from Equation (2) that

RV CG(v) ≥
N∑

n=1

(∑
n′ ̸=n

vn
′

bn
n′
−
∑
n′ ̸=n

vn
′

b∗
n′ (v)

)

=
N∑

n=1

∑
o∈b∗n

vno

{o}

≥
M∑
o=1

v
(M+1)
{o} (3)

=RM+1
M (v).

The first equality holds since (a) when b∗n′(v) ̸= ∅, bnn′ = b∗n′(v), and (b) when b∗n′(v) = ∅,
bnn′ is either {o} for some o ∈ O, or ∅ otherwise. The second inequality follows from the
construction of bi: when an object o ∈ b∗i is being allocated, it is allocated to the bidder n′

whose value for the object vn′

{o} is the highest among all the bidders who are not allocated
any object yet. Since each iteration assigns at least one good to one bidder and there are
at most M goods, we have v

n′
o

{o} must be at least the (M + 1)th highest value among all
vn{o}. Q.E.D.
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